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Abstract

The goal of this thesis is to upper bound the expected value of the second
largest eigenvalue in magnitude of random regular graphs with a given minimum
girth. Having a small upper bound implies such random graphs are likely to
be expanders and thus have several combinatorial properties useful in various
fields of computer science. The best possible upper bound asymptotically on the
second eigenvalue has already been proven for random regular graphs without
conditions on the girth. Finding this upper bound though required long and
complicated analysis due to tangles, which are certain small subgraphs that
contain cycles. This thesis thus hypothesizes that specifying a minimum girth
large enough will prevent tangles from occurring in random graphs and thus
proving an optimal upper bound on the second eigenvalue can avoid the difficult
analysis required in order to handle tangles.

To find such an upper bound on random regular graphs with specified min-
imum girth we consider the probability that a random walk in such a random
graph returns to the first vertex of the walk in the k-th step of the walk. We
prove for 2-regular graphs that the random walk is more likely to visit any given
vertex not in the walk than the starting vertex of the walk on the k-th step,
and bound how much more likely this event is. We also analyze the d-regular
case and we believe our findings will lead to a similar result in this case.
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Chapter 1

Introduction

The adjacency matrix of a finite undirected graph G has only real eigenvalues,
which we order by

λ1(G) ≥ λ2(G) ≥ ... ≥ λn(G)

where n is the size of G (i.e. number of vertices.) For d-regular graphs we have
λ1(G) = d. Note for the rest of this thesis the graphs we will be referring to are
regular and may contain self-loops and multiple edges. We consider λ(G) where

λ(G) = max
1<i≤n

(|λi(G)|).

If the distance between λ1(G) and λ(G) is large than G is known as an expander.
Expanders have various combinatorial properties which lead to their utility in
several fields of computer science. Our definition of expanders is intentionally
vague since there is no consensus on how small λ should be for a graph to be
an expander, and sometimes expanders are defined instead in terms of combi-
natorial properties which are implied by (and also occasionally imply) λ being
small.

1.1 Applications of Expanders

In order to convey the fundamental usefulness of expander graphs to computer
science, we give several brief overviews of ways in which expander graphs appear
in several fields of computer science. We first consider the use of expanders in
network theory, and most of the discussion here is explored further in [7]. One
example of such a combinatorial property implied by λ being small is edge
expansion. If S is a subset of the vertices in G and δ(S) is the set of edges with
only one incident vertex in S than the edge expansion ratio is

h(G) = min
{S||S|≤n/2}

δ(S)
|S|

.

Then a well-known theorem states that

d− λ2(G)
2

≤ h(G).

So if the distance between d and λ2 is large then the number of edges that
must be removed from the graph in order to make some large set S no longer
connected to the rest of the graph is also large. Thus expanders can represent
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1.1. Applications of Expanders

robust networks of communications even though there would be only O(n) edges
in such a network. Note we consider n as growing and d as constant in this thesis.
If λ < cd for constant c then the shortest path between any two vertices in the
graph is O(log n). The maximum of the lengths of these shortest path is called
the diameter of the graph. So if a network is represented by an expander, a
message to be transmitted between any two nodes does not have to pass through
too many nodes along the way. We note that another important use of expander
graphs in network theory is in the development of AKS sorting networks.

Expanders have played an interesting role in complexity theory as well, in-
cluding the recent proof that SL = L. Recall L is the class of problems that
can be solved in logarithmic space. The class SL is composed of all decision
problems that have a logarithmic space reduction to USTCONN, the problem
of determining whether there exists a path between two vertices s and t in an
undirected graph. This problem is fairly trivial if we assume that each compo-
nent of the graph is an expander. If this is true then there exists a O(log n)
length path between s and t assuming they are in the same component. Thus
checking all logarithmically long paths that start at s for whether or not they
reach t would solve the problem in logarithmic space. Reingold [12] showed
one could transform in logarithmic space a graph into a graph where all the
components are expanders using clever and repeated use of the zig-zag product.
This graph product creates a new graph that combines the expansion properties
and general structure of two graphs. Reingold’s algorithm uses repeated zig-zag
products of the original graph with a good expander, and using the algorithm in
practice would depend on being able to find good expanders. Although we only
mentioned USTCONN, this algorithm proved that many problems via logarith-
mic space reduction to USTCONN could be solved in logarithmic space. For
more information on zig-zag products and Reingold’s algorithm see [12] and [7].
Expanders also feature prominently in studying the approximability of NP-hard
problems [7].

Expanders are also “random-like” graphs that have uses in psuedorandom
sampling. Suppose want to sample uniformly over a huge set. Given an equally
large expander graph, we label the vertices of the graph by elements of the set
bijectively. We can transform the expander into a Markov chain where every
edge has probability 1/d. Then no matter what vertex we start from, after few
random steps in this Markov chain we are soon very close to equally likely to
be at any vertex in the graph. So selecting the element of the set we are at
after a few steps in this Markov chain resembles uniformly sampling from that
set. This method is useful since it requires few random bits to approximate a
uniform distribution of a massive set. On this application of expander graphs
and many more applications I do not detail here such as error-correcting codes
more information can be found in [7].

2



1.2. The Second Eigenvalue of Random Graphs

1.2 The Second Eigenvalue of Random Graphs

We define G as Ramanujan if λ(G) ≤ 2
√
d− 1. In this paper we consider d as

a constant and n tending towards infinity. In this setting, the constant term
2
√
d− 1 is as small as possible due to the Alon-Boppanna bound [? ], which

implies
lim inf
n→∞

λ2(Gn) ≥ 2
√
d− 1,

where Gn is any d-regular undirected graph of size n. A stronger version of
this bound due to Nilli is proven in [11]. For more about this or other basic
information about expander graphs see [7] which is a vast overview on the
study of expander graphs. Explicit constructions of Ramanujan graphs are
known, but not for some n and d. On the other hand Alon’s Second Eignevalue
Conjecture, recently proven by Friedman [6], states that for ’most’ d-regular
graphs, λ(G) ≤ 2

√
d− 1 + ε with ε being any positive real. This implies that

one can expect to find a nearly Ramanujan graph quickly by selecting a random
graph, checking the second eigenvalue and repeating this process until a graph
with sufficiently low second eigenvalue is found. This is fine enough for many
of the applications of expander graphs mentioned earlier.

The probability space Gn,d of random 2d-regular graphs is often used in
proving an upper bound on the expected second eigenvalue as in [3] and [4] and
we describe it here. Given n and d with d even, let π1, ..., πd be permutations
on [n] = {1, 2, ..., n} chosen uniformly and independently from the set of all n!
such permutations. We create a graph by setting vertices V = [n] and edges

E = {(i, πj(i)), (πj(i), i))|i = 1, 2, ..., n, j = 1, 2, ..., d/2}.

This graph is directed, though my be viewed as undirected by considering each
(i, πj(i)) and (πj(i), i) as a single directed edge. The graph also may contain
self-loops and multiple edges.

The general tool used by Friedman to prove most graphs are nearly Ramanu-
jan is known as the trace method. In the most basic form, the trace method
bounds the trace of a large power of the adjacency matrix of graph by bounding
the number of walks of a given length that return to their starting vertex. The
trace of a matrix (or respectively graph) is defined as the sum of the diagonal
entries of the matrix (or respectively of the adjacency matrix of the graph.)
The trace method has been used to examine the expected eigenvalues of graphs
since at least 1981 when McKay used it to give the expected distribution the
eigenvalues of regular graphs as their size goes to infinity [10]. There also have
been several attempts to use this method to prove Alon’s second eigenvalue
conjecture since then such as [3] and [4].

Friedman’s proof of the conjecture not only made improvements on the trace
method, but also demonstrated a fundamental reason why previous research us-
ing the trace method was not able to prove Alon’s second eigenvalue conjecture.
Friedman showed that the trace method cannot achieve a proof of Alon’s second
eigenvalue conjecture unless we discount the contribution of tangles to the trace
of the graph. Tangles are certain subgraphs which cause the second eigenvalue
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1.2. The Second Eigenvalue of Random Graphs

of the graph to be large as well as causing certain sums in the trace method’s
analysis to diverge. We avoid a more technical definition, but one can be found
here [6]. Theorem 3.13 of that paper also implies that tangles contain cycles.
This can be seen by noting that if G is acyclic (a tree), then, using the terminol-
ogy found in that theorem, Treed(G) is the infinite d-regular tree and the norm
of the infinite d-regular tree is 2

√
(d− 1) as is shown in [6]. Not only that, but

tangles will need to contain small cycles in order to impede the trace method.
This can be seen due since Friedman only needs to deal with tangles of up to a
small size in the paper.

Friedman avoided tangles in his analysis by creating a selective trace. A
power of the selective trace of a graph is equal to the amount of only some
of the walks of a certain length that return to the original vertex. The walks
the selective trace counts are only those where no small contiguous section of
the walk form a graph containing a tangle as a subgraph. This thesis posits
that instead of a selective trace, choosing random graphs in a way that avoids
tangle would also allow the trace method to show that most of the graphs from
the random set are Ramanujan. The selective trace adds quite a bit to the
complexity and the length of the proof that most graphs are Ramanujan, and
not needing to use a selective trace due to our choice of random graph model
could simplify things greatly. We note that Alon did not specify a random graph
model in his second eigenvalue conjecture.

This paper introduces a new random model of graphs that avoids tangles
by specifying a lower bound on the girth, the length of the shortest cycle in the
graph. The girth in our random model is increasing monotonically as the size
of the graphs increases. We believe such a model will allow us to avoid tangles
since tangles are small subgraphs which contain cycles. Thus a given tangle will
not appear in our model for n large enough. Our new model is also similar to
the standard random model used in [3], [4] and [6] with regards to the trace
method. This similarity is by design so that the analysis in the trace method
may extend to this model more readily.

To use the trace method in our new model, we must first consider random
walks in our model as [3] and [4] did in the standard model. In particular, we
need to consider the following question. Given that a randomly chosen graph
contains a specific walk and an edge label π, what is the probability that π
maps the final vertex of that walk to any given vertex? In the standard model,
this next vertex is just as likely to be a given vertex already in our walk as it
is likely to be a given vertex not already in our walk, assuming that we haven’t
already determined the edge labeled π incident on either of those vertices from
the walk so far [3]. This fact follows almost immediately from the definition
of the standard model. What this probability is in my new model is not so
immediately clear though, and most of my thesis is devoted to understanding
this probability. In chapter 2 I show that the probability this final vertex is any
given vertex already visited by the walk is smaller than probability the final
vertex is any given vertex not along the walk so far, assuming the graph is 2-
regular and neither of those given vertices are along the walk so far. I also bound
the difference between these two probabilities. Chapter 3 works towards similar
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1.3. A Random Graph Model That Specifies Girth

results for d-regular graphs with d > 2 and finds two different formulas relating
the two probabilities. Our analysis so far does not find which probability is
larger. We believe though that as in the 2-regular case, the walk will be less
likely to return to a previously visited vertex. We justify this belief in the end
of Chapter 3.

1.3 A Random Graph Model That Specifies
Girth

The girth of a graph is the length of the shortest cycle in the graph. If the graph
contains no cycles, we define the girth as infinite. We also define a self-loop as a
cycle of length one and two edges between a pair of vertices as a cycle of length
two. Given a size n of a d-regular graph it is known that the maximal girth
of the graph is Ω(log n) [1]. One commonality between graphs with very small
second eigenvalue and graphs with high girth is that they both seem difficult to
explicitly construct.

We can use Gn,d to create a new random graph model that also bounds the
girth from below in the following way. Given a desired lower bound g on the
girth, select randomly a graph G from Gn,d. If the graph has girth less than g,
chose another one and repeat this process until a suitable graph is chosen. Note
that all graphs in Gn,d with girth at least G are equally likely to be chosen. We
call this new probability space Kn,d,g. As before, we consider n as increasing
towards infinity and d as constant, but we also will consider g as increasing
towards infinity with g = O(log(n)).

The girth of the graph has several effects on the trace method used to bound
the second eigenvalue of the graph. As mentioned earlier, certain subgraphs
known as tangles prevent the trace method from giving a proof of Alon’s Second
Eigenvalue conjecture [6]. Given a particular tangle, if we set the girth high
enough we can be sure that tangle will not exist in our graph. This may allow
us to give a good bound on the second eigenvalue of most graphs in Kn,d,g. We
also know that the probability that a walk contains a cycle of length less than
g is 0 in our new model.

1.4 The Trace Method

In this section we describe the trace method [10] and the analysis of random
walks used originially by Broder and Shamir in [3] and subsequently improved
in [4] and [6]. We also begin to discuss how girth affects the trace method. The
trace of a large power of the adjacency matrix A of a graph is related to A’s
eigenvalues via

Trace(Ak) = λk1 + λk2 + ...+ λkn.

Thus, if we consider this equality over a graph probability space, the expected
value of the trace of Ak is equal to the sum of the kth power of the expected
eigenvalues of A. So estimating the expected value of Trace(Ak) for some large
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1.4. The Trace Method

even k allows us to give a bound on the expected value of max{λ2, |λn|} (since
λ1 = d.)

A walk that begins and ends at the same vertex is closed. The trace Ak then
is also the number of length k closed walks. The trace method combinatorially
counts the number (or expected number in the random case) of closed walks
in order to derive information about the spectrum of the graph (or averaged
information in the random case).

We can represent a walk of length k in a graph from Gn,d or Kn,d,g using
a starting vertex i and a word w = σ1σ2...σk with characters taken from the
alphabet

Π = {π1, π
−1
1 , π2, π

−1
2 , ..., πd, π

−1
d }.

The word w gives the edges of the walk in order, but also is thought of as
representing the permutation formed by taking the product of the permutations
its characters represent. The probability that w maps i back to i is independent
of i in both Gn,d and Kn,d,g since they are closed under relabeling of the vertices.
So we may consider the trace in terms of the probability w maps a vertex back
to itself, P (w), which gives

E(Trace(Ak)) = n
∑
w∈Πk

P(w).

A word is irreducible if no character is immediately followed by its inverse.
A walk is said to be irreducible if the corresponding word is irreducible, or
equivalently if the walk does not cross an edge and then immediately cross
that edge again in the opposite direction. We reduce a word w by repeatedly
removing all consecutive occurrences of a character and its inverse until we are
left with an irreducible word. Note that if we reduce a word w we arrive at a
unique irreducible word w′ and that P (w) = P (w′).

Let Irredk be the set of all irreducible word in Πk. The k-th irreducible trace
is the number of closed irreducible walks of length k in the graph, and is denoted
by IrredTr(A, k) where A is the graph’s adjacency matrix. It is not hard to see
that

E(IrredTr(A, k)) = n
∑

w∈Irredk

P (w)

and more detail on this can be found in [3]. The irreducible trace is closely
related to the usual trace as well as the eigenvalues of the graph, and in fact
estimating the irreducible trace will be sufficient for bounding the second eigen-
value. The irreducible trace has been used in [3], [9] and [4]. The relation
between the irreducible trace and the eigenvalues of A is given in Lemma 2.3 of
[6], and the discussion immediately after shows how irreducible traces relate to
the usual trace.

Given a word w = σ1σ2...σk ∈ Irredk and a sequence of integers I =
(i1, i2, ..., ik) with i1 = ik and each integer taken from {1, 2, ..., n}, we find
the probability that the characters of w take i1 along the sequence of vertices
represented by I. To do this, we find the probability that σ1(i1) = i2, and then

6



1.4. The Trace Method

the probability that σ2(i2) = i3 given that σ1(i1) = i2, and then the proba-
bility that σ3(i3) = i4 given that σ1(i1) = i2 and σ2(i2) = i3. This in fact is
the method used by [3] to originally bound P(w) and thus bound the expected
second eigenvalue of random graphs.

In Gn,2d, σ1(i1) takes on any value of {1, 2, ..., n} with probability 1/n. For
any of the next steps of the walk, we will need to consider several cases. Define
the random variables t2 = σ1(i1) and tj = σj(tj−1) for k ≥ j > 1. Now given
that the first j − 1 edges of the walk are along the first j integers of I, the
value of tj may be already determined if we visited the edge that determines
tj previously in our walk. For example if σ1(i) = i and σ2 = σ1, then clearly
σ2(i) = i. We call such a tj a fixed choice, and if tj is not a fixed choice it is
called a free choice. Similarly, we call the edge that determines tj a fixed or a
free choice.

If t2 is a free choice and σ1 6= σ2 then σ2 is a new permutation and t2 equals
i3 with probability 1/n. On the other hand if t2 is a free choice but σ1 = σ2,
then σ2 maps i1 to i2 and so t2 can take on any value from {1, 2, ...., n} − {i2}.
All of these values are also equally likely, so Pr(t2 = i3) = 1

n−1 in this case so
long i2 6= i3. In general if tj is a free choice then Pr(tj = ij+1 = 1

n−m where
m is the number of edges that were free choices that are created due to the
permutation σj .

Now given the walk w and the sequence of vertices w visits we consider
the directed graph Γw,I represented by this walk. The edges of this graph are
labelled by characters from Π and the vertices are all the distinct elements of
I. So the number of edges of Γw,I is the number of free choices in the walk w.
We call Γw,I the generalized form of w, I.

Noticing that to determine the probability that we walk the path represented
by Γw,I , the exact values of I did not matter. What did matter was which
members of I were equal to one another, which is determined in Γw,I by the
corresponding vertices being equal. So we define Γw to be the same graph but
without the labels on the vertices. If aj(w) is the number of times that πj or
π−1
j appears in w and we define Pr(Γw,I) as the probability that the word w

produces a walk along the sequence of vertices I, we have

Pr(Γw,I) =
d∏
j=1

1
n(n− 1)...(n− aj(w) + 1)

where the j-term of the product on the right-hand side is 1 if aj(w) = 0. Since
this probability is independent over the labels on the vertices of Γw,I , and there
are n(n−1)...(n−|VΓ|) possible labels on the vertices, where |VΓ| is the number
of vertices of the generalized form it makes sense to consider

Pr(Γw) = n(n− 1)...(n− |VΓ|+ 1) Pr(Γw,I).

Here Pr(Γw) represents the probability that w maps any vertex to itself via a
walk that has the same form as Γw. We can then estimated the irreducible trace

7



1.5. Open Questions

using that
E(IrredTr(A, k)) =

∑
Γw|w∈Irredk

Pr(Γw).

Note that the formula above applies to Kn,2,g as well, although Pr(Γw) will
have different values than before. A simple example of this is if Γw has girth
less than g. Clearly no such walk could occur in a graph from Kn,2,g, and so
Pr(Γw) = 0. This fact hints that we may be able to achieve similar if not better
bounds on the expected second eigenvalue in a random model that conditions
on girth.

Now we consider a random walk in Kn,2,g. The first g − 1 steps of the walk
are all free choices, since there are no cycles in our walk of length less than
g. Using the tj and I from before, we see that t1 can take on any value in
{1, 2, 3, ..., n} − {i1}, and is equally likely to take on any of these values due to
the symmetry of Kn,2,g. More generally tj for j < g can take on any value in
{1, 2, 3, ..., n}−{i1, i2, ...., ij}, and similarly any of these values are equally likely
due to symmetry. The bulk of the original research in my thesis is dedicated to
describing tj for j ≥ g. For j at least g, we see that tj can take on any value
from {1, 2, 3, ..., n} − Pg where Pg is the set of vertices that are a distance at
most g − 1 from ij in Γσ1σ2...σj−1,(i1,i2,....,ij−1), the portion of Γw,I determined
by the walk so far. We call tj a coincidence if it is equal to a vertex previously
visited by the walk. If tj = r and tj = s each imply tj is no coincidence, than
both these events are equally likely. The reason once again is symmetry, and
this will be discussed in more detail in Chapter 2.

The next few chapters are original research concerning tj in the new random
model. The second chapter studies the case where d = 1. Given vertices r and
s the second chapter shows that if the event tj = r is a coincidence and the
event tj = s is not then tj = r is less likely than tj = s. We also describe how
much more likely the second event is. The chapter following that concerns the
d-regular case for d ≥ 3. Producing similar results to those we found in the
d = 2 case appears to be far more difficult for d larger than 2, but we hope the
analysis in that chapter will lead to such results.

1.5 Open Questions

One unknown is whether the trace method can prove that λ ≤ 2
√
d− 1 + ε

for ε = 0 or even perhaps ε being a negative function of n, tending to 0 as n
approaches infinity. Numerical experiments do indicate the latter but so far the
best bound we have is with ε being any nonzero constant [6]. Even apparently
avoiding tangles with a selective trace in that paper is not sufficient if we are
to have nonpositive ε. Being able to use the trace method in the model Kn,d,g
may lead to results with ε nonpositive although this is completely speculative.
We believe the expected trace of graphs from Kn,d,g is significantly smaller than
the expected trace of graphs from Gn,d since heuristically no small cycles should
imply fewer walks that begin and end at the same vertex.
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1.5. Open Questions

There is also an unproven stronger form Alon’s second eigenvalue conjecture
that continues to drive research in the area. This version asks that given any base
graph and ε > 0, can we prove that most random coverings of degree n of the
base graph have all new eigenvalues at most ρ+ ε. Here ρ is the spectral radius
of the universal cover. This is a stronger version of Alon’s second eigenvalue
conjecture since every d-regular graph of size n can be viewed as a covering of
the base graph of a single vertex with d/2 self loops and ρ = 2

√
d− 1. For more

information about this see [5] and [8]. The best result currently along these lines
is due to Linial and Puder, which says that the new eigenvalues in most random
lifts are in O(λ

1
3
1 ρ

2
3 ) where λ1 is the largest eigenvalue of the base graph.
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Chapter 2

Random Walks in Kn,2,g

We first restrict our discussion to the Kn,2,g, the 2-regular case of our model
that restricts the size of cycles. Note that in the 2-regular case λ1 = 2 and
graphs are Ramanujan if λ2 ≤ 2. Although this immediately implies all graphs
of Kn,2,g are Ramanujan, considering random walks in this Kn,2,g will allow us
to develop methods and theorems that will be useful later.

2.1 The Size of Kn,2,g
Define a simple cycle as a closed path with no repeated vertices except for
the start and end vertices. Also let I be a sequence of s unique integers from
{1, 2, ..., n} with the smallest integer first, and call such sequences cyclic. Let
Cs,I be the set of graphs from Gn,4 with a simple cycle of length s occurring
along the sequence of vertices represented by I. We place the smallest integer
first in I so as not to count cycles multiple times by considering the same cycle
with different vertices first. Then if kn,2,g is the number of graphs in Kn,2,g we
have

kn,2,g = n!− |
⋃
s<g,I

Cs,I |. (2.1)

Inclusion-exclusion principle allows us to rewrite the union above. But first
note that for I 6= J and I and J share at least one vertex we have |Cs,I∩Cr,J | = 0
since a single vertex being in two different simple cycles contradict that these
graphs are all 2-regular.

Also intuitively there are just as many graphs that have cycles of length
s over any any possible cyclic sequence of s integers. We extend this to the
number of graphs with j cycles of lengths s1, s2, ...., sj .

Let I1, I2, ..., Ij be cyclic sequences that share none of the same integers
and let the same hold for the cyclic sequences J1, J2, ..., Jj , then

|
j⋂
i=1

Csi,Ii
| = |

j⋂
i=1

Csi,Ji
|.

So let ri be the number of sh = i for 1 ≤ i < g and 1 ≤ h ≤ j. We think of
ri as being the number of cycles of length i and let r = (r1, r2, ..., rg−1). We
also define |r| = r1 + r2 + ... + rg−1 and |r|∗ = r1 + 2r2 + .... + (g − 1)rg−1.
Now let’s define |

⋂j
i=1 Csi,Ii

| = C(r). In other words C(r) is the number of
graphs in the permutation model with ri simple cycles of length i for 1 ≤ i < g

10



2.1. The Size of Kn,2,g

if the sequences of vertices in the cycles are already given. Clearly C(r) = 0 if
|r|∗ > n, since otherwise we’d have disjoint cycles over more than n vertices. So
applying everything we just discussed to 2.1 implies

kn,2,g = n!−∑
0<|r|∗≤n

ω(r)C(r)(−1)|r| (2.2)

where ω(r1, r2, ..., rg−1) is the number of ways to choose the sequences I1, I2, ...., Ij .
We can think of C(r) as the number of ways to order everything besides

what is in the specified cycles, and ω(r) as the number of ways to choose which
vertices to place in the specified cycles and order those vertices. Immediately
we find that C(r) is the factorial of the number of vertices not in the specified
cycles and so Cr = (n− |r|∗)!. Now if we define(

n

r

)
=
n(n− 1)(n− 2)...(n− |r|∗ + 1)∏g−1

i=1 (i!)ri

we see that the above definition is equivalent to n multinomial choose r1 ones,
r2 twos, and so on. This selects the correct amounts of integers from n to
place in the selected cycles. However this over-counts the number of ways to
select integers in the following way. Suppose r2 = 2 and all the other ri are
0. Then

(
n
r

)
counts the number of ways to select two elements to place in sets

S1 and S2. But for our purposes we do not want the sets to be labeled since
S1 = {1, 2}, S2 = {3, 4} and S1 = {3, 4}, S2 = {1, 2} represent equivalent choices
for our purposes. So the number of ways to select the integers to place in the
cycles is (

n
r

)∏g−1
i=1 (ri)!

.

Now the number of ways to produce a cycle over i elements is (i − 1)!. A
quick reason for this is you can imagine counting cycles by choosing the smallest
element to be the first and last element, and then the number of cycles is simply
number of ways to permute all i− 1 other elements. So this implies that

ω(r) =

(
n
r

)∏g−1
i=1 (ri)!

g−1∏
i=1

((i− 1)!)ri .

We rewrite 2.2 by substituting in for ω(r) and C(r) and simplifying to achieve

kn,2,g = n!

 ∑
0≤|r|∗≤n

g−1∏
i=1

(−1)ri

iriri!

 . (2.3)

As n approaches infinity, the right-hand side becomes n! multiplied by the
Maclaurin series for ex1+x2+...+xg−1 at (x1, x2, x3, ...., xg−1) = (−1,−1/2,−1/3, ...,−1/g − 1).
Notice that if we consider the case g = 2, then we are counting the number of

11



2.2. The Probability of a Coincidence in Kn,2,g

derangements, that is permutations with no fixed points. Then our results so
far imply the well-known result that the number of derangements quickly ap-
proaches n!/e.

By Taylor’s Theorem,

∑
0≤|r|≤bn/(g−1)c

g−1∏
i=1

(−1)ri

iriri!
= e−1−1/2−...−1/(g−1) +Rbn/(g−1)c

where |Rn| < (g−1)n+1/(n+1)!. The bound on the remainder term Rn follows
from Taylor’s Theorem since any sequence of partial derivate on ex1+x2+...+xg−1

has absolute value less than 1 when 0 ≥ xi ≥ −1/i.
Now we still need to bound the rest of the terms in 2.3. These are the terms

where |r| > bn/(g − 1)c and |r|∗ ≤ n. Note that the absolute values of all of
these terms are included among the terms of Macluarin series for ex1+x2+...+xg−1

when xi = 1/i. So the sum of the leftover terms is bounded in absolute value
by the remainder

R′bn/(g−1)c = e1+1/2−...+/(g−1) −
∑

0≤|r|≤bn/(g−1)c

g−1∏
i=1

1
iriri!

. Since e is the largest possible value of any sequence of partial derivatives
on ex1+x2+...+xg−1 with 0 ≤ xi =≤ 1/i for any i, we have that |R′bn/(g−1)c| <
e(g − 1)bn/(g−1)c+1/(bn/(g − 1)c+ 1)!.

So finally we have arrived upon the expression

kn,2,g = n!(e−1−1/2−...−1/(g−1) + En) (2.4)

where |En| < (e + 1)(g − 1)bn/(g−1)c+1/(bn/(g − 1)c + 1)!. This error term
approaches zero as n goes to infinity. Also interestingly if n and g approach
infinity then the probability that a randomly selected graph from Gn,2 is in
Kn,2,g goes to zero. This is true regardless of the rate at which g grows in
comparison to the rate at which n grows.

2.2 The Probability of a Coincidence in Kn,2,g
Consider a walk in a graph from Kn,2,g starting at a vertex i1. Let i2, i3, ...., ij
be vertices along the walk up to j-th vertex in order. Also let tj be a random
variable denoting the j + 1-th vertex along the walk. Suppose that tj is a free
choice and let coin(tj) be the event that tj is a coincidence. Notice that tj can
only be a coincidence if the j+ 1-th vertex along the walk is i1. Then tj can be
any value from {1, 2, 3, ...., n} − {12, 13, ..., 1j} since the graph is 2-regular.

Suppose h1 and h2 are from the set of possible values for tj . As mentioned in
Chapter 1, Pr(tj = h1) = Pr(tj = h2) due to symmetry. One way to argue this
more explicitly is to consider a function from the graphs of Kn,2,g that contain
a walk along i1, i2, ...., ij , h1 to graphs that contain a walk along i1, i2, ...., ij , h2

12



2.2. The Probability of a Coincidence in Kn,2,g

by swapping the labels on vertices h1 and h2. This function is a bijection since
Kn,2,g is closed under , implying Pr(tj = h1) = Pr(tj = h2). Since tj is equally
likely to be any vertex that is not a coincidence we have

Pr(coin(tj) + (n− j)Pr(tj = h1) = 1.

We can use a similar bijective argument to compare the number of graphs
where tj = i1 and tj = h1. Let function f map graphs with a simple cycle
(i1, i2, ...., ij , h1, h2, ..., hk) to graphs with the same structure except that the
cycle is replaced by the simple cycles (i1, i2, ...., ij), (h1, h2, ..., hk). Now consider
the domain of f as all the graphs of Kn,2,g that have the walk (i1, i2, ...., ij , h1).
Then the codomain is all the graphs in Kn,2,g with the simple cycle (i1, i2, ...., ij)
as well as all graphs in Gn,2 with the simple cycle (i1, i2, ...., ij) and no cycles of
length less than g except for the cycle that contains h1. Also we see that over
this domain and codomain, our function is a bijection.

An immediate result of this is that tj has a higher probability of being any
specified vertex that is not a coincidence than being a coincidence. We can
specify the probability of either of these events. Let T (n, j, g) be the number of
graphs in Gn,2 with the simple cycle (i1, i2, ...., ij) and no cycles of length less
than g except for the cycle that contains h1. Define

s =
kn,2,g

(n− 1)(n− 2)...(n− j)
,

the number graphs in Kn,2,g with the walk (i1, i2, ...., ij). Taking the equality
implied by f being a bijection and dividing by s implies

Pr(tj = h1) = Pr(coin(tj)) + T (n, j, g)/s. (2.5)

If we let l be the length of the cycle of length less than g, we can count the
number of ways to make the cycle shorter than g and we already know the
number of ways to make the rest of the graph is kn−l−j+1,2,g. So we have

T (n, j, g) =
g−1∑
l=1

(n− j)(l−1)kn−l−j+1,2,g (2.6)

where n(l) is defined as n(n−1)(n−2)...(n− l+1) for l > 0 and n(0) = 1. Using
2.4 to substitute in for kn−l−j+1,2,g results in

T (n, j, g) = (n− j)!

(
eg(g − 1) +

g−1∑
l=1

En−l−j+1

)
(2.7)

where eg = e−1−1/2−...−1/(g−1). Using 2.7 to substitute in for 2.5 and also
substituting out the s term results in

Pr(tj = h1) = Pr(coin(tj)) + Θ (g) . (2.8)

Here we assumed that j ∈ O(logi) for some power i since we only consider walks
of such length for the trace method. This allows the error terms to become
negligible.
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Chapter 3

Random Walks in Kn,d,g

Now we no longer restrict our discussion to the 2-regular case. This chapter
will show efforts to use methods similar to those in the last chapter in order
to find the probability of a coincidence in Kn,d,g. And similarly to the last
chapter we will first consider the size of Kn,d,g using an inclusion-exclusion
argument. Several nice cancellations do not occur in the following inclusion-
exclusion argument, and as a result we do not achieve a useful estimate of the
size of Kn,d,g.

3.1 The Size of Kn,d,g
Previously we found the size of the set of all graphs in Gn,4 with girth less than g
in order to find the size of Kn,2,g. In the terminology of the last chapter, this set
is equivalent to

⋃
s<g,I Cs,I . We recall Cs,I was the set of graphs in Gn,4 which

had a simple cycle along the length s sequence of vertices I. Finding the size of
Cs,I was relatively straightforward, as was finding the size of any intersection
of such set. This allowed us to use an inclusion-exclusion argument to find the
size of

⋃
s<g,I Cs,I .

For the d-regular case, instead let us consider the set of graphs in Gn,d that
have length s simple cycle along a sequence I of vertices and along the edges
represented by a reduced word w ∈ Πs. We call this set Cs,I,w. A graph is in
Gn,d but not in Kn,d,g if and only if it the graph is a member of Cs,I,w for some
I and w and s < g. There are (n!)

d
2 graphs in Gn,d since any graph from this

probability space is uniquely defined by d/2 permutations of size n. So if we let
kn,d,g be the number of graphs in Kn,d,g then we have

kn,d,g = (n!)
d
2 − |

⋃
s<g,I,w

Cs,I,w|.

The first term of our inclusion-exclusion argument is then
∑
s<g,I,w |Cs,I,w|/2.

We have to divide by two, since summing over all w and I means we would count
every cycle twice. This happens because w and I = (i1, i2, ...., is) represents a
cycle traversed in a particular direction and w−1 and (i1, is, is−1, ...., i2) repre-
sent the very same cycle but traversed in the opposite direction.

Once again, we let aj(w) be the number of occurrences of πj and π−1
j in w.
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3.1. The Size of Kn,d,g

Then we have that

|Cs,I,w| = (n!)
d
2

d∏
j=1

1
n(aj(w))

.

This previous inequality is independent of I as before. So summing |Cs,I,w| over
all possible I is equal to multiplying |Cs,I,w| by the number of ways to choose s
elements from a set of n elements and arrange them in a cycle, which is(

n

s

)
(s− 1)! =

n(s)

s
.

If w = πs for some character π, as it was for for all words in the d = 1 case,
then

|Cs,I,w|
n(s)

s
= (n!)

d
2

1
s
.

If w is composed of several different characters, then we do not have as much
cancelation and instead

|Cs,I,w|
n(s)

s
= (n!)

d
2
n(s)

s

d∏
j=1

1
n(aj(w))

.

Now we begin to see how finding the size of Kn,d,g using inclusion-exclusion
differs significantly from finding the size of Kn,2,g similarly. Each term of our
inclusion-exclusion argument when finding the size of Kn,2,g was n! times a
sum of constants with respect to n. Now instead we have n!

d
2 times a sum

of rational functions with respect to n as the first term. So if our inclusion-
exclusion argument implies that kn,d,g approaches a Taylor series as n goes to
infinity, the function which that series represent will have to be a function on
n. This contrasts with the kn,2,g which approached the Maclaurin series for
ex1+x2+....+xg−1 .

Now let us consider the size of ∪ri=1Csi,Ii,wi
, where theIi are length si se-

quences of integers from {1, 2, ..., n} and wi are length si words from . Clearly
this set is the set of all graphs in Kn,d,g that contain all of the simple cycles rep-
resented by the Ii and wi. When we considered the d = 1 case, this intersection
was the empty set if any pair of the cycles both shared the same vertex. Now
this is no longer the case, as cycles may share vertices and edges.

We can implement the previously used notion of a generalized form applied
to the new setting of unions of simple cycles. Let I = (I1, I2, ...., Ir) and W =
(w1, w2, ..., wr). Then define the generalized form ΓI,W to be the vertex-labelled
and edge-labelled graph that is composed of the simple cycles represented by I
and W . So now we have that | ∪ri=1 Csi,Ii,wi

| is the number of graphs in Kn,d,g
that contain ΓI,W as a subgraph.

Clearly if any vertex in ΓI,W is incident upon two edges with the same label
from Π then no graphs in Kn,d,g contain ΓI,W . Else, we can count the number
of graphs in Kn,d,g containing ΓI,W by considering the probability that every
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3.1. The Size of Kn,d,g

edge of ΓI,W occurs in the graph. This yields

|
r⋃
i=1

Csi,Ii,wi | = (n!)
d
2

d/2∏
j=1

1
n(aj(ΓI,W ))

. (3.1)

Once again this is independent of the labels on ΓI,W ’s vertices. Let ΓW be
the the graph ΓI,W without labels on it’s vertices and let C(ΓW ) = |

⋃r
i=1 Csi,Ii,wi

|.
Note the definition ofC(ΓW ) makes sense since it is independent of any specific
labeling on the vertices which is determined by I. Also define Xr as the set
of graphs that correspond to some ΓW that is determined by r simple cycles.
Then the r-th term of the inclusion-exclusion argument is∑

ΓW∈Xr

C(ΓW )ω(ΓW )(−1)r+1 (3.2)

where ω(ΓW ) is the number of ways to assign labels to the vertices from {1, 2, ..., n}.
Now we again consider a fixed ΓW in order to describe ω(ΓW ). If v is the

number of vertices in ΓW then ω(ΓW ) is equivalent to the number of ways to
select v vertices from a set of n vertices,

(
n
v

)
, times the number of ways to assign

labels to the vertices of ω(ΓW ) from a set of v labels. So clearly

ω(ΓW ) ≥
(
n

v

)
.

There are v! ways to assign v labels to v vertices, but some of these labelings of
Gw may result in equivalent graphs. Hence

ω(ΓW ) ≤
(
n

v

)
v! = n(v).

There are cases where this upper bound does equal ω(ΓW ). Namely this happens
if and only if the only automorphism of ΓW is the identity map.

Define e as the number of edges in ΓW . Since e =
∑d/2

1 aj(ΓW ) we can
rewrite 3.1 as

C(ΓW ) = (n!)
d
2O(n−e).

Using this and our bounds on ω(ΓW ) to perform gives

C(ΓW )ω(ΓW ) = (n!)
d
2O(nv−e). (3.3)

Note that if the simple cycles that compose ΓW do not share any vertices then
v − e = 0, else v − e < 0. So although in the d-regular case, as opposed to
the 2-regular case considered in the previous chapter, our inclusion-exclusion
argument must include overlapping simple cycles, the non-overlapping simple
cycles contribute far more to the inclusion sum.
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3.2. The Probability of a Coincidence in Kn,d,g

3.2 The Probability of a Coincidence in Kn,d,g
We want to use a similar bijective argument as in the previous chapter in order
to estimate the probability that the next vertex in a specified walk in a random
graph from Kn,d,g is equal to a particular vertex. Consider a walk in a graph
from Kn,d,g starting at a vertex i1 and going along vertices i2, i3, ...ij in that
order. These vertices are not all necessarily different. Let w ∈ Πj be the word
that represents the edges along this walk. Also let tj be a random variable
denoting the j+ 1-th vertex along the walk and suppose that tj is a free choice.
Let ΓI,w represent the walk so far. For 1 ≤ k < j we have Pr(tj = ik) = 0 if ik
is at a distance in ΓI,w less than g − 1 from ij . The set of vertices that tj may
equal if tj is a coincidence is not just i1 as it was in the 2-regular case though.

Let π be the final character of w, and so π is also the permutation that gives
rise to the final edge in our walk (ij , tj). Also let i be a vertex in ΓI,w such that
the distance in ΓI,w between i and ij is at least g − 1. In this section we are
going to compare the probability that tj = i with the probability that tj = h for
some h /∈ V (ΓI,w). Given vertices h1 and h2 not in V (ΓI,w) then tj is equally
likely to be either of those vertices due to symmetry. So if h /∈ V (ΓI,w) and
V = |V (ΓI,w| then

1 = (n− V )Pr(tj = h) +
∑

u∈V (ΓI,w)

Pr(tj = u).

One difference from the two regular case is that ij and i are not necessarily
in the same cycle of π, in which case clearly Pr(tj = i) = 0. Another difference
is that tj = i does not imply that h and i are in different cycles in π. Because
of these two differences, we need to modify the bijective function considered in
the previous chapter so that it can map between all the cases where tj = i to
all cases where tj = h.

Our new bijective function f will map between graphs in Gn,d with the walk
ΓI,w as a subgraph and tj = h to the graphs in Gn,d with the walk ΓI,w as a
subgraph and tj = i. Since tj is determined by π we will have to alter this
permutation in some way using f . Given a G graph in the domain of f define
f(G) as the graph created by deleting the edges (ij , h) and (π−1(i), i) which are
labelled by π and replacing them by edges labeled by edges labeled by π (ij , i)
and (π−1(i), h). Note that when we delete (resp. replace) an edge (x, y) labeled
by π I mean we delete (resp. replace) the directed edge (x, y) labeled by π as
well as the directed edge (x, y) labeled by π−1.

The function f is bijection over the given domain and codomain, but we will
need to restrict the domain and codomain to smaller sets so that we can compare
the size of the set H of graphs in Kn,d,g with the walk ΓI,w as a subgraph and
tj = h to the size of the set J of graphs in Kn,d,g with the walk ΓI,w as a
subgraph and tj = i. We are interested in the sizes of H and J since if G(ΓI,w)
is the number of graphs in Kn,d,g that contain the walk ΓI,w then

|H|/G(ΓI,w) = Pr(tj = h) and

17



3.2. The Probability of a Coincidence in Kn,d,g

|J |/G(ΓI,w) = Pr(tj = i). (3.4)

If H is our domain f maps to some of J as well as to some graphs that are
not in Kn,d,g . Due to the definition of f , graph G ∈ H is mapped to a graph
not in Kn,d,g if and only if ij and i or π−1(i) and h are a distance less than
g− 1 apart. The reason this is the one and only way that f(G) /∈ Kn,d,g is that
deleting edges does not add any new small cycles, and any new cycles must use
the edges that f adds to G. Let H ′ ⊂ H be the set of such graphs.

To identify the graphs in J that f does not map to it is helpful to first
consider f−1. If we wall the set of such graphs J ′ than J ′ is the set of graphs
j ∈ J such that f−1(j) /∈ H. Examining f shows that f−1(j) is the graph made
by deleting edges π (ij , i) and (π−1(h), h) labeled by π and replacing them with
edges (ij , h) and (π−1(h), i) labeled by π. So by the same argument that allowed
us to describe H ′, we have that J ′ is the set of graphs in J where the distance
between ijand h or the distance between π−1(h) and i is less than g − 1. We
know f is a bijection between H −H ′ and J − J ′ and so we have

|H| − |J | = |H ′| − |J ′|.

So by 3.4

Pr(tj = h)− Pr(tj = i) =
|H ′| − |J ′|
G(ΓI,w)

.

Unfortunately we do not yet know even the sign of |H ′| − |J ′| so the above
formula is not too useful in comparing Pr(tj = h) and Pr(tj = i). A more useful
comparison might be made if we could somehow modify our function f and
create a new function b that maps from all of J to graphs in Kn,d,g. The reason
f−1 did not do this was because some graphs in J had a short path between
a pair of vertices where our function introduces a new edge, thereby creating a
cycle of length less than g. Our function b will choose which edges to remove
and replace in order to avoid this, but we do this at the cost that the graphs in
our codomain will not all have π(ij) equal to the same vertex.

There are at most 1 + d(d − 1)g−1 vertices that are at a distance less than
g + 1 from any given vertex in a d-regular graph. So there are at at least
n− (1 +d(d− 1)g−1 + ΓI,w) vertices that are at least distance g+ 1 away from i
and not in ΓI,w. Call the set of such vertices D(G). Suppose g is small enough
so that n − (1 + d(d − 1)g−1 + ΓI,w) > 0. Let v be the vertex in D with the
smallest label. Now given G ∈ J , b(G) will be G with the π-labeled edges (ij , i)
and (π−1(v), v) deleted and replace by π-labeled edges (ij , v) and (π−1(v), i).
Note that π−1(v) and i are at least distance g − 1 apart, since if not i and v
would be distance less than g apart. So both new edges of b(G) do not result
in any cycles of length smaller than g.

The function b an is injective map from J to the set N of graphs in Kn,d,g
that contain ΓI,w and tj is not a coincidence. We can define b−1 as the function
on N that deletes π-labeled edges (ij , v) and (π−1(i), i) and replaces them with
π-labeled edges (ij , i) and (π−1(i), v). Let v1, v2, ..., vn−|V (ΓI,w)| be the vertices
not in ΓI,w in order from smallest to largest. Then G ∈ N is not in the range
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of b if π(ij) = vr and there exists some vs at a distance at least g + 1 from i
in g−1(G) such that s < r. Define Nr as the set of all graphs in N such that
π(ij) = vr or vr is not a distance at least g + 1 from i in g−1(G). Given an
uniformly chosen random graph in Nr we denote the event that the graph is in
the range of b by Range(r). So since b is a bijection from J if we define the
codomain as the range we have that

|J | =
n−|V (ΓI,w)|∑

r=1

|Nr|Pr(Range(r)). (3.5)

Note that for 0 < s ≤ n−|V (ΓI,w)| we have that |Nr| = |Ns| since the probabil-
ity that tj is vr or vs is equally likely as neither of these events are coincidences.
So if we divide 3.5 by G(ΓI,w on both sides we find that

Pr(tj = i) = Pr(tj = v1)
n−|V (ΓI,w)|∑

r=1

Pr(Range(r)). (3.6)

So Pr(Range(r)) is at most the probability that a randomG ∈ Nr has {v1, v2, ...., vr−1} ⊂
D(b−1(G)) and vr /∈ D(b−1(G)) since only such graphs can be in the range.
Due to symmetry this equals the probability that a random G ∈ N1 has
{vr, v2, ...., vr−1} ⊂ D(b−1(G)) and v1 /∈ D(b−1(G)).

We believe that eventually we will be able to understand Pr(Range(r) well
enough to find useful comparisons between Pr(tj = i) and Pr(tj = v1). In
particular we suspect that Pr(tj = i) < Pr(tj = v1) as it was in the 2-regular
case. A heuristic reason for this is that a walk with more coincidences implies
more vertices are fairly close to one another and this in turn implies fewer
possible paths between vertices and thus fewer graphs containing that walk.
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Chapter 4

Conclusion

This research examined random walks in a new probability space Kn,d,g. Under-
standing how these walks behave is the basis for the trace method, which gives
upper bounds on the expected second eigenvalue. We believe that the trace
method when applied over a graph probability space with girth suitably high
may result in a proof that most graphs in the probability space are Ramanujan
even if we do not adjust the trace method as in [6] to account for tangles. The
reason for this is that tangles are certain subgraphs that contain cycles, and so
for girth sufficiently high any given tangle can not exist in our graph. We were
able to find the probabilities that the next vertex in some given walk returns
to a previous vertex in the walk or not in the 2-regular case. We only have
weak results in this direction though in the d-regular case. Further research is
required on this model still in order to use the trace method on it.

There are different random graph models than Kn,d,g that still avoids graphs
containing tangles and thus would not require a selective trace. Studying such
models may be beneficial since in one of them the analysis of random walks
might be straight-forward and the trace method could be readily applied. We
note that by specifying the girth, our random model Kn,d,g possibly ignores
several graphs that do not contain tangles. For example, a single self-loop does
not indicate a graph contains a cycle, although a single vertex with enough
self loops is a tangle [6]. Any model that avoids tangles will have to do some
conditioning on small cycles in the graph.
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