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Abstract 

Parallax is a distributed storage system that uses virtualization to provide storage 
facilities specifically for virtual environments. In Parallax, fragmentation occurs 
when the block addresses visible to the guest virtual machine are sequentially 
placed, but the corresponding physical addresses are not. Because of the copy-
on-write (CoW) nature of Parallax, as virtual disks are created, cloned, deleted, 
snapshotted and migrated, some fragmentation of the physical media can occur, 
potentially incurring seeks even when performing sequential accesses to the virtual 
disk. As the storage pool ages, performance issues due to unchecked fragmenta­
tion, unreclaimed storage space and duplicate data can cause significant concern. 
CoW snapshots also introduce sharing semantics between virtual disks and snap­
shots. The ability to create CoW clones of virtual disks from snapshots of other 
virtual disks leads to more sharing relationships. As a result block reclamation and 
allocation become non-trivial. 

We have developed utilities for garbage collecting, de-fragmenting free disk 
space and virtual disks and reclaiming duplicate read-only blocks in the storage 
pool managed by Parallax. They work by updating and maintaining the metadata 
structures related to each virtual disk and its snapshots. They use very coarse 
grained locking on the metadata and work at the block level. They operate across 
the storage pool and are agnostic to the operating systems and file systems used by 
the virtual machines. 
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Introduction 

Abstracting storage for easier administration is a very powerful concept. Storage 
virtualization pools physical storage from multiple network or local storage de­
vices into a single storage service that can be managed centrally. Typical functions 
include: adding and removing component storage systems, carving out logical par­
titions, resizing them, deleting them and performing storage-wide administrative 
jobs like consistency checks, snapshots, mirroring, replication and the like. As the 
number of features offered by a storage virtualization solution increases, so does 
the size (and complexity) of the metadata that is required to support the virtualiza­
tion. In particular, the capability to create snapshots and clones can significandy 
complicate the metadata. 

Parallax [16] is a distributed storage system diat uses virtualization to provide 
storage facilities specifically for virtual environments. It uses copy-on-write(CoW) 
to snapshot and clone virhial disks. These CoW snapshots not only fragment the 
storage system, but also introduce sharing semantics between disk blocks. The 
ability to create CoW clones of disk objects from snapshots of other disk objects 
leads to more sharing relationships. As a result, operations like disk-space alloca­
tion and reclamation become non-trivial. As the storage pool ages, performance 
issues due to unchecked fragmentation, unreclaimed storage space and duplicate 
data can cause significant concern. 

I have developed utilities for garbage collecting, de-fragmenting free disk space 
and reclaiming duplicate read-only blocks (de-duping) in the storage pool (block-
store) managed by Parallax. These utihties are provided at the block level so as to 
remove the overhead of managing them at a per virtual-machine level. They work 
across the blockstore and are agnostic to the operating systems and file systems 
used by the virtual machines.The remainder of tliis chapter briefly presents each 
of these three issues (garbage collection, defragmentation, deduping), and summa­
rizes my work. 



1.1 Garbage collection 

A Garbage Collector (GC) is a process that reclaims disk blocks that are no longer 
referenced and will never be accessed or mutated again. Analogous GCs are also 
used in memory management. Depending on how the referenced blocks are tracked 
by the storage system, an appropriate GC can be designed. Broadly, there are two 
main approaches. One is the reference counting metliod and the other is the mark 
and sweep method. Almost all schemes are variations of these two approaches. A 
GC is generally invoked explicitly, either when the system is low on disk space or 
periodically. 

We should first define reachability of a disk object [23]. A disk object can be 
an entity like a file, directory or even whole/part of a virtual disk. They can also 
hold pointers (and some metadata) to other disk objects. Examples of such disk 
objects are directories, virtual disks, clusters of virtual Disks, etc. A subset of disk 
objects is assumed to be reachable. These are called the Root objects. Any disk 
objects reachable from one of these roots are also reachable. Transitively, any disk 
objects reachable from another reachable disk object are also reachable. 

In the Reference Counting method, disk objects also maintain a count of the 
number of references to the disk blocks/objects. When the reference count falls 
to zero, the object has become unreachable and can be freed. Obviously, main­
taining these counts incurs extra storage overhead and updating them at every disk 
object allocation and deletion operation incurs performance overhead. It becomes 
especially expensive when disk objects are shared and/or when they are related to 
each other and are represented by graphs or hierarchies. This is because when disk 
objects are shared, there could be several processes competing to modify the value 
of the reference counter. In such situations, locking mechanisms are required for 
consistency which makes the process complicated and more expensive. 

In the Mark and Sweep method, the most naive approach is to visit all disk ob­
jects starting from the root objects and keep track of all disk blocks that are reach­
able. The first stage of collection (mark phase) traverses all root objects, marking 
each accessible object as being "in-use". Al l objects transitively accessible from 
the root set are marked, as well. Thus, the disk is examined again and again until 
all disk objects/blocks have been marked. Finally, in the sweep phase, each object 
is again examined; those disk blocks that are not marked as reachable are freed. 
There are two disadvantages of this approach. The first is that it requires that while 
the GC is running, the process of creating new disk objects be halted. The second 
disadvantage is that it can require arbitrarily many passes over the disk, depending 
on the longest chain of pointers among disk objects. 

However, depending on how the metadata is organised on disk, the mark and 
sweep method can be optimized to reduce the performance overhead and make 



it more efficient. For example, one could use coloring schemes to differentiate 
allocated blocks, unallocated blocks and blocks whose status could have changed 
while the GC was executing. Then there would be no need to halt the system 
to execute the GC. The only side-effect to this scheme is that some unallocated 
blocks could escape being marked (blocks that became unreferenced while the GC 
was executing). 

Besides reclaiming unused space, GCs can also perform several useful opera­
tions. Since they scan the metadata of the entire storage system, given sufficient ad­
ditional information, they can also perform defragmentation tasks. In the absence 
of any additional information, they can at least trivially remap pages to create large 
contiguous pools of free space that would help with block allocation. If provided 
with enough semantic information, they can remap blocks of a file/virtual disk, so 
that they lie close to each other. One could also equip a GC to do sanity checks 
for the disk by calculating checksums of blocks and comparing them with already 
stored values and silently correcting die data from backups or replicas. These smart 
GCs are thus not limited to only free disk space management. 

The GC for Parallax is an example of such a smart GC. It not only reclaims 
deleted blocks, but also helps with defragmenting virtual disks, witli remapping 
pages to create large pools of free disk space and with deduping read-only blocks 
of data. 

1.2 De-fragmentation 

File-system fragmentation is not a new problem at all. As a file-system ages, it be­
comes progressively harder to write files sequentially , because the allocation and 
deletion of variable-sized data objects results in small regions of free space being 
spread across die surface of a disk, where it is preferable to have a single, continu­
ous region of free space. File fragmentation increases disk head movement which 
makes disk I/O slower. Almost all file systems provide a utility to de-fragment the 
disk. These defrag utilities generally have a two-fold purpose. One is to rearrange 
the disk pages such that pages of a single large file are closer to each other on disk 
(read and in-place write locality) and the second is to merge small areas of free 
space to form larger pools of free space (for faster block allocation and sequential 
writes). 

Parallax has a more complicated fragmentation problem. Parallax inserts an 
address translation mechanism below the file systems created by its chents. Hence, 
file-systems are only aware of the file layouts in terms of logical block numbers. 
Making file defragmentation decisions based on only logical block numbers could 
be totally misguided, because logical block numbers would have little semblance 



with the actual layout of the files on disk. Added to that, blocks from files from 
one virtual disk could be interspersed with blocks from files of other virtual disks. 
This worsens the fragmentation problem. 

Parallax also has the problem of metadata fragmentation. Parallax aims at easy 
extensibility, i.e., one should be able to add or remove physical disks or any other 
form of block storage easily. It also supports very large sizes of files/virtual disks 
and their numbers can be in the millions, with versioning, snapshots etc. To support 
all these features, considerable metadata needs to be maintained. This metadata 
cannot be stored in a small fixed area on disk. In fact, it is hard to predict how 
much disk space will be sufficient. Hence, it stores its metadata in an on-disk R-
tree so that metadata blocks can be allocated from anywhere on the storage-system. 
A lot of other metadata is also distributed throughout tlie storage pool. However, 
this brings in the problem of metadata fragmentation. 

A third kind of fragmentation is related file fragmentation [22]. It is caused by 
a lack of locality between related files and depends on the access pattern of specific 
applications. Basically, if related files are spaced out from each other, then there 
could be scenarios where in an application fetches a page from file I, then another 
one from file2 and then again filel and so on. This would cause the disk head to 
move back and forth a lot. 

A Parallax instance serving several virtual disks that are physically spaced out 
is very susceptible to related file fragmentation. Hence, we have written a defrag 
utility for Parallax that computes a remapping scheme so that disk blocks of pop­
ular virtual disks are laid out sequentially on disk. We call these specially laid out 
virtual disks superpages. A superpage can also be just a part of the virtual disk, 
instead of the whole disk. Details on superpages are discussed in Section 3.3. The 
defrag utility also merges small pools of free disk space and remaps interspersed 
allocated pages to create large pools of free disk space which can be used to create 
superpages, speed up block allocation and have more sequential write operations. 

1.3 De-duping 

Duplicate data due to frequent backups, file distribution over the network tlirough 
emails, popular downloads, etc., can end up consuming enormous storage space 
that could be used otherwise. Not only does this incur increased cost in terms of 
disk to store the data, but also incurs additional costs in terms of data center space 
and power. 

The idea behind de-duping is very simple. When writing out data to disk, if 
it is deemed as already present on-disk, then instead of writing it again, leave a 
pointer to the aheady present data. The duplicates can either be detected in-line 



(i.e., before ttiey have been written on disk) or in a post-process (i.e., sometime 
after the data has akeady been stored). Recently, a lot of work has surfaced in 
the area of de-duping. Generally, one of two approaches are taken : de-duping 
at a block level or de-duping at a file level. File level de-duping aims to remove 
duplicates of files either within a system or across the data-center itself. Another 
approach is to remove duplicate files in backups, for example, operating system 
files like Windows' .dll files. This could decrease the size of disk-based backups 
immensely. 

Block-level deduplication works under the file-system. It computes a finger­
print of each block of data and if it finds two blocks with the same fingerprint 
then one of die duplicates is reclaimed. To avoid collision errors, generally the 
data is compared byte-by-byte before a duplicate is deleted. An important factor 
in de-duping is CPU usage. If the volume/ storage system that is being de-duped 
is constantly mutating, then the process of computing the fingerprints could cause 
some performance overhead. Also, if the blocks being reclaimed are still writable, 
then de-duping them would probably be of little value, because any in-place writes 
would trigger far more additional disk operations. 

We have designed a post-process block level deduper for Parallax that remaps 
read-only pages across the blockstore. Our usage scenarios encourage the usage of 
gold masters and snapshots. With de-duping enabled, once VDIs branch off from 
a gold-master, any similar changes to these clones can be easily reclaimed after the 
first snapshot operation itself. This can lead to significant cost savings. De-duping 
can also reclaim any other duplicate read-only pages in the storage pool. A specific 
example of de-duping in a virtual environment is lots of common images (imagine 
10,000 windows desktops) that have the same patch applied to them. Deduping the 
physical storage should be able to reclaim all duplicate copies of the patch. 

1.4 Summary 

We have designed and implemented storage reclamation and remapping techniques 
for the Parallax storage system. Using these techniques we have developed utilities 
to defragment free disk space and create superpages for better disk space allocation 
and seek time. The rest of the thesis is organised as follows. Chapter 2 provides 
background information about Parallax. Chapter 3 gives a detailed account of the 
design changes required in Parallax to implement block reclamation and remapping 
tooks. Chapter 4 gives the implementation details and evaluation of these utilities. 
Chapter 5 is a survey of how these tools have been implemented in several other 
storage systems. Chapter 6 includes some proposed future work and concludes this 
thesis. 



Background - Parallax 

2.1 Introduction 

This chapter gives some relevant information about Parallax. It provides the re­
quired context for the thesis and is central to understanding the issues addressed by 
the remapping operations. It includes a brief explanation of the design princples of 
Parallax and describes the system structure, the metadata and the data layout. At 
the end of this chapter, one should have a fairly good idea of how Parallax manages 
its metadata. 

2.2 Parallax 

Parallax provides block virtualization by interposing between individual virhial 
machines and the physical storage layer. The virtualized environment allows the 
storage virtualization service to be physically co-located with its clients. Figure 2.1 
presents a high-level view of the structure of a parallax-based cluster: the storage 
system runs in an isolated V M on each host and is administratively separate from 
the client VMs running alongside it; effectively. Parallax allows the storage system 
to be pushed out to include slices of each machine that uses it. 

The next section describes the set of specific design considerations that have 
guided the implementation of Parallax and its associated services, and then present 
an overview of the system's structure. 

2.2.1 Design considerations 

Designing a system to provide VM-specific functionality involved a series of deci­
sions that shaped the resulting implementation: 

Agnosticism and Isolation. Parallax is implemented as a collaborative set of 
storage appliances; as shown in Figure 2.1, each physical host in a cluster contains 
a storage VM which is responsible for providing storage to other virtual machines 
running on that host. This V M isolates storage management and delivery to a single 
container that is administratively separate from the rest of the system. This design 
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Figure 2.1: Parallax is designed as a set of per-host storage appliances that share 
access to a common block device, and present virtual disks to client VMs. 

has been used previously to insulate nmning VMs from device driver crashes [5, 
13], allowing drivers to be transparently restarted. Parallax takes this approach a 
step further to isolate storage viruialization in addition to driver code. 

Isolating storage virtualization to individual per-host VMs results in a system 
that is agnostic to both the OSes that run in other VMs on the host, and the physical 
storage diat backs V M data. A single cluster-wide administrator is capable of 
managing the parallax instances on each host, unifying die storage management 
role. 

Blocks not Files. In keeping widi the goal of remaining agnostic to OSes 
running within individual VMs, Parallax operates at the block, rather than file-
system, level. Block-level virtuaHzation provides a narrow interface to storage, 
and allows Parallax to present simple virtual disks to individual VMs. While virtu­
alization at die block level maximizes agnosticity and simplifies implementation, 
it also presents a set of challenges: the "semantic gap" introduced by virtualizing 
the system at a low level obscures higher-level information that could aid in iden­
tifying opportunities for sharing, and complicates request dependency analysis for 
the disk scheduler. 

Minimize the DLM. Parallax's design is premised on the idea that data shar­
ing in a cluster environment should be provided by application-level services with 
clearly defined APIs, where concurrency and conflicts may be managed with appli­
cation semantics in mind. Therefore, it explicitly excludes support for write-sharing 
of individual virtual disk images. The system maintains the invariant that each VDI 



Figure 2.2: Overview of ttie Parallax system architecture. 

has at most one writer, greatly reducing the need for concurrency control. Some 
degree of concurrency management is still required, but only when performing 
administrative operations such as creating new VDIs, and in very coarse-grained 
(multi-gigabyte) allocations of writable areas on disk. Locking operations are ex­
plicitly not required as part of the normal data path or for snapshot operations. 

Snapshots as a primitive operation. Parallax has been designed to incorpo­
rate snapshots from the ground up, representing each virtual disk as a set of radix-
tree based block mappings that may be chained together as a potentially infinite 
series of copy-on-write (CoW) instances. 

2.2.2 System structure 

Figure 2.2 shows a detailed overview of Parallax's architecture and allows a brief 
discussion of tlie relevant components that are presented in more detail in later 
sections. 

As discussed above, each physical host in the cluster contains a storage appli­
ance V M tliat is responsible for mediating accesses to an underlying block storage 
device by presenting individual virtual disks to other VMs running on the host. 
This storage V M allows a single, cluster-wide administrative domain, and effec­
tively allows functionality that is currently implemented within filers, arrays, and 
storage switches to be pushed out and implemented on individual hosts. The re­
sult is that advanced storage features, such as Parallax's snapshot facilities, may 
be implemented in software and provided to the cluster over simple, inexpensive 
network storage. 

Parallax itself runs as a user-level daemon in the Storage Appliance V M , and 



uses Xen's block tap driver [20] to handle block requests. The block tap driver 
provides a very efficient interface for forwarding block requests from VMs to dae­
mon processes that run in user space of the storage appliance V M . The user space 
portion of block tap defines an asynchronous disk interface and spawns a tapdisk 
process when a new V M disk is connected. Parallax is implemented as a tapdisk 
library, and acts as a single block virtualization service for all client VMs on the 
physical host. 

Each Parallax instance shares access to a single shared block device. There 
are no restrictions as to what this device need be, so long as it is shareable and 
accessible as a block target in all storage V M instances. In practice we most often 
target iSCSI devices, but other device types work equally well. We have chosen 
that approach as it requires the lowest common denominator of shared storage, and 
allows Parallax to provide V M storage on the broadest possible set of targets. 

Virtual machines that interact with Parallax are presented with entire virhial 
disks. Xen allows disks to be accessed using both emulated and paravirtualized 
interfaces. In the case of emulation, requests are handled by a device emulator that 
presents an IDE controller to the client V M . Emulated devices generally have poor 
performance, due to the context switching required to emulate individual accesses 
to device I/O memory. For performance, clients may install paravirtual device 
drivers, which are written specifically for Xen-based VMs and allow a fast, shared-
memory transport on which batches of block requests may be efficiently forwarded. 
By presenting virtual disks over traditional block device interfaces as a storage 
primitive to VMs, Parallax supports any OS capable of running on the virtualized 
platform, meeting the goal of agnosticism. 

The storage V M is connected direcdy to physical device hardware for block 
and network access. 

Virtual disk images (VDIs) are the core abstraction provided by Parallax to 
virhial machines. A VDI is a single-writer virtual disk which may be accessed 
in a location-transparent manner from any of the physical hosts in the Parallax 
cluster. There are three core operations, allowing VDIs to be created, deleted, and 
snapshot. These are the only operations required to actively manage VDIs: once 
created, they may be attached to VMs as would any other block device. 

2.2.3 VDIs as block address spaces 

A Parallax VDI is effectively a single block address space, represented by a radix 
tree that maps virtual block addresses to physical block addresses. Virtual ad­
dresses are a continuous range from zero to the size of the virtual disk, while phys­
ical addresses reflect the actual location of a block on the shared blockstore. The 
current Parallax implementation maps virtual addresses using 4K blocks, which are 
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Figure 2.3: VDI tree view—visualizing the snapshot log 

chosen to intentionally match block sizes used on x86 OS implementations. Map­
pings are stored in 3-level radix trees, also based on 4K blocks. Each of the radix 
metadata pages stores 512 64-bit global block address pointers, and the high-order 
bit is used to indicate that a link is read-only. Tliis layout results in a maximum 
VDI size of 512GB (9 address bits per tree-level * 3 levels * 4K data blocks = 
2^ * 3 * 2̂ ^ =̂  2̂ ^ = 512GB). Adding a level to the radix tree extends this by a 
factor of 2^ to 256TB, involves a small configurable change to the code, and has 
a negligible effect on performance for small volumes (less than 512GB) as only 
one additional metadata node per active VDI need be cached. Parallax's address 
spaces are sparse. Zeroed addresses indicate that the range of the tree beyond the 
specified link is non-existent and must be allocated. In this manner, the creation 
of new VDIs involves the allocation of only a single, zeroed, root block. Parallax 
will then populate both data and metadata blocks as they are written to the disk. In 
addition to sparseness, references are shared across descendant radix trees in order 
to implement snapshots. 
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2,2.4 Snapshots 

As mentioned, the high-order bit of block addresses in the radix tree is used to 
indicate diat the block pointed to is read-only. Al l VDI mappings are traversed 
from a given radix root down the tree, and a read-only link indicates that the entire 
subtree is read-only. To take a snapshot. Parallax simply copies the root block of 
the radix tree and marks all of its references as read-only. 

This is illustrated in Figure 2.4. The figure shows a simplified radix tree map­
ping six-bit block addresses with two address bits per radix page. The example 
shows a VDI that has had a snapshot taken, and subsequently had a block of data 
written at virmal block address 111111 (binary). The snapshot operation copies 
the radix tree root block and redirects the VDI record to point to die new root. Al l 
of the links from the new root are made read-only, as indicated by the "r" flags and 
the dashed grey arrows in the diagram. 

Copying a radix tree block always involves marking all links from that block as 
read-only. A snapshot is completed using one such block copy operation, following 
which the V M continues to nin using die new radix tree root. At this point, data 
writes may not be applied in-place as there is not a direct path of writable hnks 
from the root to any data block. The write operation shown in the figure copies 



every radix tree block along the path from the root to the data (two blocks in this 
example) and tlie newly-copied branch of the radix tree is linked to a freshly allo­
cated data block. Al l links to newly allocated (or copied) blocks are writable links, 
allowing successive writes to the same or nearby data blocks to proceed with in-
place modification of the radix tree. The active VDI that results is a copy-on-write 
version of the previous snapshot. 

The address of the old radix root is appended, along with the current time-
stamp, to a snapshot log. The snapshot log represents a history of all of a given 
VDI's snapshots. Parallax enforces that radix roots refered to by snaplogs are im­
mutable. However, they may be used as a reference to create a new VDI. The 
common approach to interacting with a snapshot is to create a writeable VDI clone 
from it and to interact with that. A VM's snapshot log represents a chain of de­
pendent images from the current writable state of the VDI, back to an initial VDI. 
When a new VDI is created from an existing snapshot, its snapshot log is made to 
link back the the snapshot on which it is based. Therefore, the set of all snapshot 
logs in the system form a forest, linking all of the radix roots for all VDIs, which is 
what Parallax's VDI tree operation generates, as shown in Figure 2.3. This aggre­
gate snaplog tree is not explicitly represented, but may be composed by walking 
individual logs backwards from all writable VDI roots. 

From a single-host perspective, the VDI and its associated radix mapping tree 
and snaphot logs are largely sufficient for Parallax to operate. However, these 
structures present several interesting challenges that are addressed in the following 
sections; Section 2.3 explains how the shared block device is managed to allow 
multiple per-host Parallax instances to concurrently access data without conflicts 
or excessive locking complexity. 

2.3 The shared blockstore 

A major challenge in VM-based systems is the tendency of virtualization to in­
crease the exposure of VMs to system failure. In Parallax, distributed locking has 
been avoidedwherever possible, with the intention that even in the face of discon­
nection' or failure, individual Parallax nodes should be able to continue to function 
for a reasonable period of time, while an administrator resolves the problem. This 
approach has guided the management of the shared blockstore both in terms of how 
data is laid out on disk, and where locking is required. 

'This refers to disconnection from other hosts. A connection to the actual shared blockstore is 
still required to make forward progress. 
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Figure 2.5: Blockstore layout. 

2.3.1 Extent-based access 

The physical blockstore is divided, at start of day, into fixed-size extents. These 
extents are reasonably large, 2GB in the current implementation, and represent a 
lockable single-writer region. "Writers" at the blockstore level are physical hosts— 
Parallax instances—rather than the consumers of individual VDIs. These extents 
are typed; with the exception of a special system extent at the start of the block-
store, extents either contain data or metadata. Data extents hold the actual data 
written by VMs to VDIs, while metadata extents hold radix tree blocks and snap­
shot logs. This division of extent content is made to cleariy identify metadata, 
which facilitates garbage collection. Both data and metadata extents start with an 
allocation bitmap that indicates which blocks are in use. 

When a Parallax-based host attaches to the blockstore, it will exclusively lock a 
data and a metadata extent for its use. At this point, it is free to modify unallocated 
regions of the extent widi no addifional locking,^ In order to survive disconnection 
from the lock manager. Parallax nodes may lock additional unused extents to allow 

This is a white lie - there is a lock on the allocation bitmaps to coordinate with the garbage 

collector, see Section 5.6. 



room for additional allocation beyond the capacity of active extents. 
The system extent at tlie front of the blockstore contains a small number of 

blockstore-wide data structures. In addition to system-wide parameters, like the 
size of the blockstore and the size of extents, it has a catalogue of all fixed-size 
extents in the system, their type (system, data, metadata, and unused), and their 
current lock-holder. It also contains the VDI registry, a tree of VDI structs, each 
stored in an individual block, describing all active VDIs in the system. VDIs also 
contain persistent lock fields and may be locked by individual Parallax instances. 
Locking a VDI struct provides two capabilities; First, the locker is free to write data 
within the VDI struct, as is required when taking a snapshot where the radix root 
address must be updated. Second, with the VDI struct locked, a Parallax instance 
is allowed to issue in-place writes to any blocks, data or metadata, referenced as 
writable through the VDI's radix root. 

Figure 2.5 illustrates the structure of Parallax's blockstore, and demonstrates 
how extent locks allow a host to act as a single writer for new allocations within 
a given extent, while VDI locks allow access to allocated VDI blocks across all 
extents on the blockstore. All extents, except the system extent, maintain extent-
metadata at the head of the extent. Various metadata services use the extent meta­
data, which is maintained accordingly. The block allocator (Section 5.2), uses 
the block allocation map (BMap). The BMap is a bitmap that maintains infor­
mation about whether a block in the extent is allocated or not. A BMap can also 
be modified by the garbage collector. The garbage collector unsets bit positions 
corresponding to blocks that are deemed as deleted. Hence access to tlie BMap is 
regulated by a lockmaster as explained in Section 2.3.2 . 

2.3.2 Lock management 

The protocols and data structures in Parallax have been carefully designed to mini­
mize the need for coordination. Locking is required only for infrequent operations: 
to claim an extent from which to allocate new data blocks, to gain write access to 
an inactive VDI, or to create or delete VDIs. Unless an extent has exhausted its 
free space, no VDI read, write, or snapshot operation requires any coordination at 
all. 

The VDI and extent locks work in tandem to ensure that the VDI owner can 
safely write to the VDI irrespective of its physical location in the cluster, even if the 
VDI owner migrates from one host to another while running. The Parallax instance 
that holds the VDI lock is free to write to existing writable blocks in that VDI on 
any extent on the shared blockstore. Writes that require allocations, such as writes 
to read-only or sparse regions of a VDI's address space, are allocated within the 
extents that the Parallax instance has locked. As a V M moves across hosts in the 



cluster, its VDI is managed by different Parallax instances. The only effect of this 
movement is that new blocks will be allocated across multiple extents. 

Because it is unnecessary for data access, the lock manager can be very sim­
ple. We call this as the lockmaster. In the current implementation, a single node is 
designated as the lockmaster. When the lockmaster process instantiates, it writes 
its address into the special extent at the start of the blockstore, and other nodes use 
this address to contact the lockmaster with lock requests for extents or VDIs. Fail­
ure recovery is not currently automated, but the system's tolerance for lockmaster 
failure makes makes manual recovery feasible. 

2.4 Summary 

We now have a good idea of how the blockstore is laid out and how Parallax man­
ages it. This was a description of Parallax in its pristine state before any block 
reclamation and remapping services were added to it. In the next chapter we will 
motivate the need for these services and see how they have been implemented. 



Motivation 

3.1 Introduction 

This chapter explains the motivation to develop block reclamation and remapping 
mechanisms for Parallax. In Parallax, fragmentation occurs when the block ad­
dresses visible to die guest virtual machine are sequentially placed, but the corre­
sponding physical addresses are not. Because of the copy-on-write (CoW) nature 
of Parallax, as virtual disks are created, cloned, deleted, snapshotted and migrated, 
some fragmentation of the physical media will occur, potentially incurring seeks 
even when performing sequential accesses to the virtual disk. CoW snapshots also 
introduce sharing semantics between virhial disks and snapshots. The ability to 
create CoW clones of virtual disks from snapshots of other virtual disks leads to 
more sharing relationships. As a result block reclamation and remapping become 
necessary and non-trivial. 

3.2 Tendency of Parallax to fragment data 

Parallax has a tendency to fragment VDIs for reasons we explain in the remainder 
of this section. As explained in Section 2.3.1, a Parallax instance uses separate ex­
tents to allocate the data and metadata pages respectively. There are several obser­
vations to be made here. Firstly, separating the data extent from the metadata extent 
avoids interspersing metadata blocks within data blocks in the blockstore and thus 
reduces metadata fragmentation. Metadata fragmentation is not fully eliminated 
though. Initially, when an extent is all empty and is newly allocated as a metadata 
extent, it is very likely that radix tree pages of a VDI will get allocated close to 
each other in the extent. Every Parallax instance maintains a cache of metadata 
pages called tlie RadixNodeCache. This cache stores all radix tree pages that were 
read in from the blockstore to serve I/O requests of the VMs nnining on the Paral­
lax instance. Since it is known that the metadata is localized in a particular extent, 
one can take advantage of that and do some read-ahead to improve I/O perfor­
mance. The clean separation of the location of metadata pages from the data pages 
is very useful to tasks like garbage collection and deduping. One can easily browse 



tlirough the entire metadata of a Parallax cluster by simple sequential passes of the 
superblock and the metadata extents. It is often argued that storage systems that 
offer storage virtualization face I/O streams from a number of clients and hence, 
any benefit that one might get from locality is mosdy lost. It is generally up to 
the disk scheduler, diat given a list of I/O requests, it should be able to come up 
with a sequence that will cause minimum disk head seek. However, we argue diat 
having locality is capable of making a considerable difference, especially when 
one is doing sequential scans. One can then take advantage of read ahead policies 
that pre-fetch metadata blocks and that will speed up the Parallax utilities (GC, 
remapper etc.) requesting these pages. 

As the blockstore ages, several things can happen: 
1) Parallax instances could be restarted. Every time a Parallax instance is 

restarted, it can end up with a different data and metadata extent, which will re­
sult in fragmenting the data as well as metadata pages of the VDIs. 

2) When die initially allocated extents fill up, a Parallax instance has to move on 
to newer extents. However, in due time if VDIs or their snapshots are deleted and 
reclaimed, that could create empty blocks in the old extents. When these extents 
are again allocated, it could be to any Parallax instance, resulting in the pages of 
the VDIs of die two Parallax instances being interspersed. 

3) A user could shutdown a V M on one Parallax instance A and then use the 
same VDI to boot another V M on anodier Parallax instance B. Or a user could 
simply migrate a V M from one Parallax instance to another Parallax instance in 
the Parallax cluster. Booting on another Parallax instance will cause all future 
block allocations to happen from the extents owned by the new Parallax instance, 
which will again result in VDI fragmentation, both at the data as well as metadata 
levels. 

4) In our usage scenarios (backups for disaster recovery, system replay etc.), 
we imagine our users taking a large number of snapshots of the VDIs at a very 
frequent rate. Every time a VDI is snapshotted, it renders the entire state of the VDI 
read-only (data as well as metadata). Any writes to any of diese pages will trigger 
a CoW operation to preserve the snapshot. In such cases, if the VDI is mutating 
even at a reasonable rate, then coupled with the snapshot operations, the VDI could 
end up highly fragmented. A similar situation occurs when a VDI is created from 
a snapshot of another VDI. If both VDIs are being managed by different Parallax 
instances, then again all future allocations to the new VDI will be in a different 
extent. 

Thus, Parallax has a tendency to fragment VDIs. Since OS agnosticity is one 
of the chief design principles of Parallax, the guest OSs running in die VMs have 
little idea about the kind of fragmentation below the logical address space. For 
example, consider Figure 3.1. Any defragmentation attempts by these OSs are 
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Figure 3.1: Example of a fragmented VDI 

more likely to backfire and worsen the I/O performance. As we can see, as far as 
the guest file system is concerned, the pages allocated to the VDI will all seem 
contiguous to it. It is only when some files are deleted and the guest file-system 
starts reusing the disk blocks, that it will notice any fragmentation. And even then, 
it is most likely that any remapping schemes that the file system will come up with 
will be faulty and might only worsen the fragmentation problem. If the guest file-
system had some hints about the physical layout of the pages of the disk, then it 
could take smarter decisions about remapping its pages. But that would violate the 
OS agnosticity design principle. Added to that, even if we compromised on this 
principle, a guest file-system can only know about the layout of the pages of its 
VDI. Hence, any remapping decisions that it will take can only involve juggling 
the pages available to it. On the other hand, if a Parallax cluster-wide service can 
take on the task of defragmenting VDIs (or at least part of the VDIs), then it can 
look into entire blockstore and look for better remapping schemes (e.g., look for 
larger chunks of configuous disk space). 

3.3 Superpages 

As discussed in Section 3.2, Parallax has a tendency to fragment VDIs across the 
blockstore which can cause significant performance overhead as the blockstore 
ages. The solution is that the VDIs be defragmented from time to time. In order to 
defragment a VDI, we have to remap its pages to a contiguous piece of available 
disk space in the blockstore. Sometimes, it may not be feasible to find a contiguous 
chunk of diskspace large enough to be able to remap a whole VDI. Hence, we 
should be able to remap at least a part of the VDI. As explained earlier. Parallax 



allows the sharing of VDI pages. These pages can be data pages or radix-tree pages 
(metadata pages). If there is more than one pointer to a radix-tree page, dien that 
indicates that the entire subtree below it is also shared. Hence, remapping at the 
granularity of VDI subtrees will extend its advantages to more than one VDI. We 
call these defragmented VDI subtrees Superpages. 

Once the superpages are created, they should remain so. They should not 
get remapped as a side-effect of defragmenting another VDI subttee. Hence, the 
remapping mechanism should be able to identify superpages. For this, we modify 
the address representation in the radix tree nodes. Earlier, only the 64th bit in the 
global block-address was a reserved bit. This bit is used to indicate whether the 
disk-page pointed to is writable or is read-only. Now we also reserve the 63rd bit 
and use it to indicate if the disk block pointed by the address is the base address of 
a superpage. The format of a global block-address is as shown in Figure 5.1. The 
size of the superpage depends on which level of the radix tree the address occurs 
in. As explained earlier, VDI block addresses are stored in a 3-level radix tree, 
each node of which is of size 4K. Each of the radix metadata pages stores 512 64-
bit global block addresses, the two highest bits of which are reserved. If the root 
node address in the vdi-registry is a superpage address, then it indicates that the 
whole VDI is a superpage and 512GB of contiguous space has been set aside for 
it (a very unlikely case). Similarly, if die superpage address occurs in level 1 of 
the radix tree, then it points to a contiguous space of size 1GB and if it is at level 
2, it points to a contiguous space of size 2MB. Level 3 nodes point to 4K blocks, 
hence superpage addresses won't make any difference there yet unless die num­
ber of levels in the radix tree is increased to accomodate VDIs larger than 512GB. 
Thus, superpage addresses can be at any level of the radix tree, as shown in Fig­
ure 5.2. This addressing scheme also eliminates some levels of address tfanslation. 
During the address translation process, if a superpage address is encountered, then 
the logical block number is simply added to the superpage address to get the phys­
ical block address. Hence, superpages not only help with presenting defragmented 
VDI subtrees, but also help with reducing die address translation overheads. 

The pages have to be remapped irrespective of whether the VDI is in use or not. 
This is take care of by die Remapper process as explained in Section 5.5. In order to 
create a superpage, a contiguous chunk of disk space is required. As the blockstore 
gets increasingly fragmented, diese chunks will have to be made available. An 
Extent Défragmenter process uses the Remapper to remap disk blocks of an extent 
so that all free diskspace gets merged into one large free pool. This is explained in 
Section 5.4. At die outset it might seem that creating superpages is just a one time 
overhead. One can create VDIs from any Parallax host, access them and migrate 
them and remapping techniques can take care to see that the VDIs are eventually 
defragmented. However, that is not always the case. Firstly, because Parallax 



is designed to support millions of VDIs and blockstores of size in the range of 
Terabytes. Creating superpages does incur CPU overhead. Also, because there 
could be significant sharing among VDIs, it may not be possible to convert all VDIs 
into superpages. To convert a VDI subtree into a superpage, it is important that the 
subtree should be largely filled first. Because, creating the superpage vi'ill involve 
setting aside a significant chunk of disk space. For example, if a VDI subtree is only 
half filled and it is converted to a superpage, then when eventually more allocations 
are done, if there is no pre-allocated disk space, the efforts gone into creating the 
initial superpage will be wasted. Pre-allocating disk space in anticipation could 
also prove wasteful. Hence, we give preference to creating superpages starting 
from the lower levels of the radix tree. Also, having superpages at lower levels of 
the tree is likely to benefit many more sharing VDIs. 

3.4 Summary 

Parallax has a tendency to fragment data and metadata blocks over time across the 
blockstore. This fragmentation can lead to longer seek times. Snapshot and cloning 
operations lead to sharing relationships amond VDIs that need to be taken into 
account before any blocks can be remapped or reclaimed. Fragmentation can be 
reduced by remapping frequently accessed parts of VDIs so that they are physically 
sequential on disk and thus creating superpages. This can also reduce some of the 
address translation overhead. In the next few chapters we will see the design and 
implementation of techniques to achieve this. 



Design 

4.1 Introduction 

In this chapter we will look at the design of block remapping schemes that can 
help solve the problems of garbage collection and fragmentation in Parallax. We 
will first look at a naive approach to transparently remap blocks and discuss its 
limitations. We will then derive a better approach and discuss the design changes 
to Parallax's metadata that are required to implement it. 

4.2 Naive approach 

Conceptually, the problem of remapping and reclaiming blocks in the blockstore is 
not a hard one. Given the metadata of the entire blockstore and enough time and 
memory resources, one can find all block locations that have alteast one reference 
to them. Al l remaining blocks are either unallocated blocks or need garbage col­
lection. Using the block allocation maps of each extent, one can separate die two 
and thus do garbage collection. Similarly, given memory resources large enough 
to store an arbitrarily large address translation table, one can find all references to 
an old block address and modify them so diat diey point to die new block address. 
Implementing these approaches is also relatively trivial and require no changes to 
the current metadata layout of Parallax. 

There are several practical problems with the approaches mentioned above and 
they all spring from the fact diat diey work on a blockstore-wide scale. As the size 
and usage of the blockstore increases, the size of the metadata also increases. Ac­
cordingly, the time required to scan all diis metadataa and trace all block references 
to find unreferenced or remapped blocks increases. But since these operations are 
not really high priority, time is one of the smaller concerns. As far as garbage col­
lection is concerned, the main resource required is memory to hold a copy of the 
blockstore's block allocation maps. For a blockstore of size 1 TB, the total size of 
block allocation maps is 256MB (1 bit for every 4K size block), which needs to 
be stored in memory. This seems manageable. However, for a blockstore of size 1 
Petabyte, the size of all block allocation maps is 32GB. One cannot dedicate 32GB 



memory for garbage collection. 
An address translation table for remapping consists of a number of two-column 

tuples. Column 1 of the table is the old block address (that is currently recorded 
in the radix nodes) and is of size 64 bits. Column 2 of the table is the address to 
which the block content has to be remapped to and is also of size 64 bits. Hence 
every row is of size 128 bits. For the process of remapping blocks, one can simply 
keep the entire address translation table in memory and then compare the entries of 
each radix node to each entry in the table to check if it needs to be changed. In the 
worst case, the address translation table could be remapping half the blockstore. 
For a blockstore of size 1 TB, the size of the address translation table could then 
be as large as 32GB (^^^^er of AKbiocks in extent ^ i28Wis). Hence, the global 
approaches are not scalable in memory as the size of the blockstore increases. 

4.3 Per-extent approach 

To solve the above explained scalability problem, an obvious solution is to break 
up the problem into smaller sub-problems that can be dealt with individually. For 
example, instead of garbage collecting the entire blockstore, one can instead try to 
garbage collect/remap only a part (of fixed size) of the blockstore. This would put 
a cap on the maximum resource required to run the utility. An obvious choice is to 
do this on an extent basis, since the blockstore(and its metadata) is already divided 
into extents. The main advantage of this approach is that the utility should not 
have to scan all the metadata of the blockstore, but only that part of the metadata 
that concerns the blocks in the extent. To facilitate this, we introduce some extent 
specific metadata that needs to be maintained, which is described next. 

4.3.1 Per extent metadata 

VDI journal 

The main problem with writing block reclamation and remapping tools for only 
a given extent, is finding all references in the blockstore to any physical block 
address in the extent. In Parallax, CoW snapshots introduce sharing semantics 
between virtual disks and snapshots. The ability to create CoW clones of virhial 
disks from snapshots of other virtual disks leads to more sharing relationships. 
An extent could have been allocated to several Parallax instances since it was first 
initialized. Hence, the blocks in an extent could be referred by any VDI in the 
registty, by its snaphots, its clones and so on. 

For the utilities to work on one extent at a time, we need to know which VDIs 
in the VDI registry could have references to blocks in the extent. For this, a VDI 



journal is maintained for every extent. The ids of all VDIs that have pages allocated 
from the extent are recorded in the VDI journal. When an extent is allocated to a 
parallax instance, the VDI journal is read into memory by the Parallax instance 
and maintained as a sorted list of VDI ids. When die parallax instance recieves 
a request to open a VDI, it first checks if the VDI id is already recorded in the 
VDI journal. If it is not recorded in the joumal, then the VDI id is appended to 
it. A parallax instance could have opened several VDIs before it is allotted this 
extent. These VDIs could subsequently allocate pages from this extent and hence 
dieir VDI ids also have to be recorded in to the VDI joumal. To facihtate diis, the 
parallax instance maintains a list of VDI ids of all VDIs diat it has currently open. 
Every time a VDI is mounted, its VDI id is appended to this list. When the VDI 
is closed, its id is removed from die list. When an extent is newly allocated to an 
extent, the parallax instance adds these VDI ids to the VDI joumal of the extent. 

The VDI joumal will only provide a list of all VDIs that have allocated pages 
in the extent and written to them. But as the VDI ages, it could be snapshot­
ted and cloned. Even if the VDI is deleted later, its snapshots and clones still 
have references to these blocks. This has to be taken into account when reclaim­
ing/remapping blocks. We assume that on an average each VDI recorded in the 
joumal would have allocated at least 2 pages from the extent and reserve disk space 
accordingly for writing die joumal in the extent metadata. 

Remap space 

Processes that want to remap blocks for creating a superpage or to defragment free 
space in an extent have to record the remappings of old locations to the new lo­
cations. These remappings are recorded in die Remap Space(RSpace). For every 
block in an extent that has to be remapped, its new location is recorded in its cor­
responding 64 bit space in the RSpace. The remapper process looks at the RSpace 
and does the required remappings. Since more than one process can modify die 
RSpace, access to it is regulated using by the lockmaster. 

ROMap 

The deduper needs to know which blocks in an extent are read-only so that it can 
calculate the fingerprint of these blocks to look for potential matches. It looks for 
these read-only blocks by reading the Read-only Map (ROMap). The ROMap is a 
bitmap in which every bit represents whedier the corresponding block in the extent 
is read-only or not. The deduper has only read access to an ROMap. The garbage 
collector is the only process that can modify the contents of the ROMap. While 
the garbage collector is executing, it has access to system wide metadata and in-
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Figure 4.1: Extent metadata layout for every 4096 blocks. 

formation regarding which blocks are read-only and which are writable. Hence the 
garbage collector sets the respective bits in the ROMaps. Since only one process 
can modify an ROMap, it does not need lock access. 

Scratch space 

Some scratch space is also reserved. The garbage collector uses this scratch space 
to make an on-disk copy of the BMaps before it starts executing. The size of the 
scratch space is equal to the size of the BMap. 

Al l this metadata is laid out in the extent in such a way so that it can be accessed 
mostly linearly. For every 4K contiguous blocks of the extent, the related metadata 
i.e., its BMap, ROMap, scratch space and remap space are laid out together as 
shown in Figure [4.1]. This helps the metadata services linearly access all metadata 
related to the blocks in an extent. 

Serialized block pool 

Parallax instances allocate blocks from a pool of unallocated block addresses as 
explained in Section 5.2. Although these blocks are not yet allocated, every block-
address recorded in the blockpool is recorded as allocated in the BMap. To avoid 
inconsistencies, the garbage collector needs to know the contents of the block pool 
from an extent so that it can take them into account when reclaiming blocks of the 
extent. Hence, the block allocator writes the contents of the blockpool in the extent 
metadata, which is then used by the garbage collector. This is explained in more 
detail in Section 5.2 and Section 5.6. We assume that the size of the block pool will 
never be more than half the extent size and hence reserve disk space accordingly 
for writing the block pool in the extent metadata. 

The metadata layout of an extent is as shown in Figure (4.2). 



Lock Block f(wBM«t> Lock Block for ROMip Lock Block for Rt»i4p s p 4 t « 

, J^j^ . j ; X 

! ^ r r • : i'^ if j^Jf 
}*B.r ^*;( y 41:. 

SeriiliîttlWock pool 

VDIidJoum»! 

Figure 4.2: Extent metadata layout. 

4.4 Summary 

In principle, block reclamation and remapping are very trivial operations. But if 
they are implemented the trivial way (blockstore-wide), they can be unreasonably 
memory intensive. Hence they have to be implemented such diat they can run on 
one extent at a time. To facilitate this, some more metadata needs to be stored in 
the extent headers. We have seen why each of this is required and how it is laid out 
in the extent for efficient access. In the next chapter we will see the implementation 
details. 



Implementation and evaluation 

5.1 Introduction 

In this chapter we are going to look at tlie implementation details of the block 
allocator, garbage collector, block remapper, extent défragmenter and superpage 
remapper. We will also take a brief look at the performance of each of these util­
ities. The memory and disk resources used by all these tools is directly related to 
the size of the extent. Hence we shall see how they behave on the time scale as the 
size of the extent varies. 

5.2 Block allocator 

When a Parallax instance boots, it grabs two extents for its use: a data extent and a 
metadata extent. These extents are allocated by the Block Allocator using a simple 
algorithm. To allocate a metadata extent, it goes tlirough the extent catalog in the 
Superblock extent and looks for the first unlocked extent that is either unused or is 
a metadata extent. Each block in the extent catalog gives the following information 
about an extent: 

1 ) Extent id 
2) Type of extent: Data / Metadata / Unused 
3) Lock status: Locked / Unlocked 
4) Number of free blocks in the extent. If this value is zero, it indicates that the 

extent does not have any more free blocks. 
5) Block Number at which the Block Allocator had last stopped looking for free 

blocks. When the extent is next allocated, the Block allocator will start looking for 
new blocks from this point onwards. 

The Block Allocator locks the extent with the Parallax Id of the Parallax in­
stance that requested the metadata extent. If it is an unused extent, the type of the 
extent is set to type metadata and the id of the extent is passed on to the Parallax 
instance. A data extent is allocated similarly. 

When the Parallax instance needs to allocate a block from either the data or the 
metadata extent, it first needs to know which blocks in the extent are free and hence 



can be allocated. Each extent (except the superblock extent) has a Block Alloca­
tion Map (BMap) and its associated lock. They are stored in the beginning of the 
extent. The BMap is a simple bitmap, in which each bit indicates whether the cor­
responding block in the extent is allocated or not. When a Parallax instance needs 
new blocks, the block allocator locks the BMap of the extent. This is necessary be­
cause the BMap of an extent can also be modified by the garbage collector. Hence, 
both processes, tlie block allocator and the GC have to first get a lock on the BMap 
before they can read/write to it. If the extent had been previously allocated, then 
its header information in the extent catalog will indicate its last allocated block. 
If this value is non-zero, the block allocator looks for unallocated blocks starting 
from this block. A fixed-size list of the addresses of the unallocated blocks is com­
piled by the block allocator. In the current implementation, this size is set to 10,000 
blocks, but it is a tunable value. For every block address that is included in the list, 
its corresponding bit in the BMap is set indicating that it is no longer free. If a 
garbage collector is executed at this time, then it would detect that these blocks are 
not really in use and mark them as free in the BMap. Since the Parallax instance 
using the extent is oblivious of the garbage collector, it could end up finally allocat­
ing the block from the pool although it is still recorded as available in the BMap. 
To avoid such inconsistencies, the garbage collector needs to know the contents of 
the block pool from an extent so that it can take them into account when reclaiming 
blocks of the extent. Hence, every time a new pool of blocks is created, the block 
allocator writes the contents of the block pool in the extent metadata, which is then 
used by the garbage collector. 

The Parallax instance stores the free-list in memory and uses it to allocate disk 
blocks until the list is exhausted. When the free-list is close to getting exhausted, 
the block allocator repeats the above process starting from locking the BMap, and 
looks for free blocks from the point where it had stopped the last time. If there are 
no more free blocks in the extent, then the extent is marked as full, unlocked and 
another extent is allocated to the Parallax instance. 

When the Parallax instance is shutting down, it first unlocks its allocated data 
and metadata extents. This involves the following: 

1) Lock the BMap of the extent and unmark all blocks that were not used from 
the free list. 

3) Write the address of the last allocated block in the extent catalog. 
4) Calculate the number of free blocks in the extent by scanning the BMap and 

note it in the extent catalog. 
5) Unlock the BMap. 
4) Reset the lock status of the extent in the extent catalog. 
If a Parallax instance crashes, it will not be able to unlock the extents and 

because the free-list is only maintained in memory, any unused blocks will remain 
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Figure 5.1: Address bits in a radix tree node 

marked on the BMap of the extent. The extents can be unlocked manually using a 
simple script. The unallocated blocks will be reclaimed eventually by the garbage 
collector as explained in Section 5.6. 

5.3 Superpages 

As explained in Section 3.3, superpages are specially laid out virmal disks. It 
is easier to defragment a part of VDI rather than degragmenting tlie whole VDI. 
Hence, we start by defragmenting just the lower levels of the VDI radix tree, also 
called as VDI subtrees. Thus, a superpage can also be just a part of the virhial 
disk, instead of the whole virtual disk. We use two heuristics to choose candidate 
VDI subtrees. The first heuristic is to choose VDI subhees with a large number 
of references to them. Another heuristic is to choose those VDI subtrees that are 
accessed relatively more often and hence will benefit with reduced overhead in 
address fi-anslation and disk seek. 

Given the root of a VDI subtree, there are two steps in converting it to a su­
perpage. In the first step, as described in Algorithm 1, we find a contiguous piece 
of the blockstore into which the pages of the VDI subtree can be remapped. The 
address to which a block is to be remapped is stored in the metadata of the extent 
in which the block occurs. After the pages are copied to their new locations, their 
remap addresses in the extent metadata are set to -1. This is to help the free space 
défragmenter recognize superpage blocks in an extent. The third step is to change 
all references to the old locations so that they point to the new locations. I'his is 
accomplished by the Remapper as described in Section 5.5. 

5.4 Free space defragmentation 

This module defragments the free space in an extent. Ordinarily, one can try to 
come up with a scheme to remap pages in an extent, such that one has to do mini-



Algorithm 1 Parallax's Superpage Remapper 
1. MaxSize = Calculate maximum size of VDI subtree 
2. Superpage_Extent = Scan Extent_Catalog for an unused extent 
3. If (Superpage-Extent == NULL) 

Superpage_Extent = Scan extent catalog for an unlocked extent with MaxSize empty blocks 
Else (Report Failure) 
4. if (Superpage_Extent) 

Lock Superpage_Extent 
if (MaxSize blocks are not contiguous) 

Response = Call FreeSpace_Defragmenter to Defragment SuperpageJExtent 
if (Response == Failure) 

Go to Step 3. 
5. List_Extents = Create a list of extents spanned by the pages of tlie VDI subtree. 
6. Write remap addresses in the remap space of extents in List_Extents. 
7. Copy pages from VDI Subtree to Superpage_Extent. 
8. Mark remap addresses = -1 for each superpage block. 
9. Execute Remapper for every extent in List_Extents. 

mum number of remap operations to get the largest contiguous chunk of the extent. 
However, if any of tlie pages in the extent belong to a superpage, then reampping 
them would mean that we are destroying the original superpage to make another 
new one. The benefits from the new superpage could be more than the old one. 
However, as of now, we do not have any means to compare such benefits. Hence, 
by default, superpages are not remapped to make a new superpage. If a block is a 
superpage block, then its remap address is set to -1. The free space défragmenter 
will not remap these blocks. As of now, we follow a naive approach to come up 
with a remapping scheme. The défragmenter looks at the block allocation map 
and remaps allocated blocks (except superpage blocks) starting from the end of the 
extent to any available blocks from the beginning of the extent. Thus, it tries to 
create a contiguous piece at the end of the extent. The address to which a block is 
remapped is stored in the remap space of the extent metadata and the block con­
tents are copied to the new location as well. If the block has a writable pointer to 
it, then it will be recopied during the remapping process. The algorithm for free 
space defragmentation is described in Algorithm 2. 
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5.5 Remapper 

As discussed in Section 5.4 and Section 3.3, once the block remappings have been 
recorded in tlie extent headers, the next step is to change all references to the old 
locations so that they point to the new locations. This is done by the Remapper. 
It works on a per extent basis. If a block is writable, then it will have only one 
radix page pointing to it, whose entry will have to be modified for correct future 
accesses. But, if a block has at least one read-only pointer to it, then there is a dis­
tinct possibility that there may be many other such pointers. Once all these pointers 
have changed, the remapped page will be reclaimed by the garbage collector (even-

Algorithm 2 Parallax's Free Space Défragmenter 
1. Lock Defrag_Extent 
2. Lock the BMap of Defrag.Extent. 
3. Scan the BMap from the end for allocated blocks. 
4. For every allocated block 

If remap address != -1 
4.1 Write remapping to remap address. 
4.2 Copy block contents to new location. 
4.3 Set the corresponding bit in the BMap. 

5. Execute Remapper for Defrag-Extent. 



tually). 
Finding writable pointers to blocks is relatively trivial. Given the VDI joumal 

in the extent, the Remapper only has to search for references to blocks in die radix 
pages of the VDIs recorded in the joumal. Since these are writable blocks, they 
cannot be modified trivially by the Remapper. If the VDI is already owned by a 
Parallax instance, then the remapper delegates the actual modification of the blocks 
to the Parallax instance. It provides die Parallax instance with the following infor­
mation: address of the radix node, value of die entry to be changed, new value of 
the entry, indication if the disk block needs to be copied to the new address. If the 
Parallax instance loses ownership of the VDI, it returns an appropriate error code. 
The remapper then rechecks the ownership of die VDI. If the VDI is unowned, it 
takes ownership itself and modifies the radix blocks. Else, it contacts the respective 
Parallax instance. 

Finding all read-only pointers involves a little more work. A block that has a 
read-only pointer can only occur in a snapshot. A block in a snapshot will have 
pointers in radix blocks of the snapshot, the VDI of the snapshot and any VDIs diat 
were created by cloning any snapshots of the VDI (and their snapshots). 

Hence we have to scan the following for pointers: 
I) VDIs that had allocated pages from the extent (VDI id joumal). 2) Snapshots 

of all VDIs included in 1. 3) Al l VDIs that were cloned from snapshots included 
in 2. 4) Snapshots of VDIs included in 3. 5) Any VDIs that were cloned from the 
snapshots included in 4 and so on. 

The algorithm for remapping read-only pages in an extent is in Algorithm 3. In 
Step 1, the remapper compiles a list of all VDIs that might have pointers to pages 
in die extent being remapped. In Step 2, using a single sequential pass of the VDI 
id journals of all metadata extents, the remapper compiles a list of extents spanned 
by these VDIs. A Reachability Map (RMap) records which pages belong to the 
VDIs (or their snapshots) diat were recorded in Step 1. The remapper can only 
modify entries of radix pages that are read-only themselves. Hence to keep track 
of which radix pages are read-only, it uses another bitmap called the Read-Only 
bitmap (ROMap). This is an in-memory bitmap that is maintained for every extent 
included in the list compUed in Step 2. If a bit in the ROMap is set, it implies 
that the corresponding block in the extent is read-only. In Step 3 the RMaps and 
ROMaps are initialized to zeros. In Step 4, the Remap-space in the extent header 
is read into memory. Using the RMaps and the ROMaps, die remapper changes all 
old locations to point to the new locations. Initially, only the radix roots of VDIs 
and their snapshots are marked as in the RMaps and only the snapshots are maked 
in the ROMaps. Subsequent passes mark blocks that are reachable from these radix 
roots and so on. For every page that is marked in the RMap, we check if any of 
its entries are within the address range covered by the extent being remapped. If 



an entry does belong to the extent, then we can index into its corresponding entry 
in the Remap space to check if it needs to be remapped. If any matches are found, 
they are suitably modified and the modified page is written back to disk. All final 
entries in die radix page are marked in die RMaps and ROMaps accordingly. This 
process is repeated for every level of the radix tree and each time the entire RMap 
and ROMap is scanned. At the end of the process, all read-only radix pages point 
to the new locations. 

Algorithm 3 Parallax's Read-Only Remapper 
Remap_Extent = Id of extent to be remapped. 
1. VDLList = List of all VDIs diat could have pointers to blocks in Remap_Extent. 

1.1 VDI_List = All VDI ids in VDI id joumal of Remap J3xtent. 
1.2 Repeat : VDIXist-Lengdil = length of VDLList. 

VDIXist += Al l VDIs cloned from VDIs in VDI_List. 
VDIXistXengdi2 = length of VDIXist. 

UatiliVDIMst.Length2 > VDI.ListXengthl) 
4. For each VDI in die VDLList: 

If die VDI is not marked as deleted : 
Mark the position of radix root in the RMap. 
For each snapshot that is not marked as deleted: 

Mark its radix root in the RMap. 
Mark its radix root in the ROMap. 

5. Remap.Table = Remap space of Remap_Extent 
6. Mark all New_Locations in Remap.Table in respective RMaps. 
7. For each marked entry in an RMap 

If die corresponding entry in ROMap is marked : 
Check if any entries in the page need to be remapped 

If matches are found, the entries are modified 
and the page is written back to disk. 

Mark all pages (on RMap) that it points to. 
Mark all pages (on ROMap) to which it has read-only pointers. 

8. Repeat step 7 for each level in the radix tree. 

5.6 Garbage collection 

Parallax nodes are free to allocate new data to any free blocks within their locked 
extents. Combined with die copy-on-write nature of Parallax, this makes deletion 



Algorithm 4 Parallax's Writable Remapper 
Remap_Extent = Id of extent to be remapped. 
1. VDLList= List of allVDIs in VDI Journal of Remap_Extent. 
2. Remap-Table = Remap space of Remap_Extent 
.3. For each VDI in VDLList: 

If VDI is not owned by any Parallax instance, lock it. 
Traverse only writable links in the radix tree depth-first order 
Read the radix page into memory. 

Compare all entries in the page with the entries in Remap.Table. 
If matches are found.VDI owner executes: 

If pointer is read only : 
UpdateParent(ParentNode, FromAddress, ToAddress) 

If pointer is writable : 
UpdateParentAndRelocate(ParentNode, FromAddress, ToAddress) 

4. Repeat step 3 for each level in the radix tree. 

a challenge. Our approach to reclaiming deleted data is to have users simply mark 
radix root nodes as deleted, and to then run a garbage collector that tracks metadata 
references across the entire shared blockstore and frees any unallocated blocks. 

Parallaxs garbage collector is described as Algorithm 5. It is similar to a mark-
and-sweep collector, except that it has a fixed, static set of passes. This is possible 
because the maximum length of any chain of references in the VDI is equal to 
the height of the radix trees (which is currently 3). As a result we are able to 
scan the metadata blocks in disk order rather than follow them in the arbitrary 
order that they appear in the radix trees. The key data structure managed by the 
garbage collector is the Reachability Map (RMap), an in-memory bitmap with one 
bit per block in the blockstore; each bit indicates whether the corresponding block 
is reachable. A significant goal in the design of the garbage collector is that it 
interfere as little as possible with the ongoing work of Parallax. While the garbage 
collector is running. Parallax instances are free to allocate blocks, create snapshots 
and VDIs, and delete snapshots and VDIs. Therefore the garbage collector works 
on a checkpoint of the state of the system at the point in time that it starts. Step 
1 takes an on-disk read-only copy of all block allocation maps (BMaps) in the 
system. Initially, only the radix roots of VDIs and their snapshots are marked 
as reachable. Subsequent passes mark blocks that are reachable from these radix 
roots and so on. In Step 5, the entire RMap is scanned every time. This results 
in re-reading nodes that are high in the tree, a process that could be made more 
efficient at the cost of additional memory. Every Parallax instance grabs a pool of 



Algorithm 5 Parallax's Garbage Collector 
1. Checkpoint Block Allocation Maps (BMaps) of extents. 
2. Initialize all ReachabiUty Maps (RMaps) to zeros. 
3. For each VDI in the VDI registry : 

If VDI is not marked as deleted : 
Mark the position of radix root in the RMap. 
For each snapshot in its snaplog 

If snapshot is not marked as deleted: 
Mark its radix root in the RMap. 

4. For each metadata extent : 
Scan its RMap, if a page is marked: 

Mark all pages (on RMap) that it points to. 
5. Repeat step 4 for each level in the radix tree. 
6. For each VDI in the VDI registry: 

If VDI is marked as not deleted : 
Mark each page of its snaplog in its RMap. 

7. For each extent: 
Lock the BMap. 
If the extent is locked by a Parallax instance 

Read the block pool from the extent metadata. 
Mark the block addresses in the pool as reachable. 

For each unmarked bit in the RMap: 
If it is marked in the BMap as well as in the 
checkpointed copy of the BMap : 

Unmark the BMap entry and reclaim the block. 



blocks (currently 10,000) for future allocations. Although these blocks are marked 
as allocated in the BMap, at any given time, several of them would be in fact 
waiting allocation and hence not reachable. The block addresses in the free pool 
are written to extent metadata after every run of the block allocator as explained 
in Section (5.2). To avoid reclaiming these blocks, the garbage collector reads 
their addresses from the extent metadata and marks them as reachable. Hence, 
even though these blocks are marked as allocated in the BMap and its checkpoint 
and are also not reachable, they are still not reclaimed. All other blocks tliat were 
marked as allocated in the checkpoint taken in Step 1 are considered as candidates 
for deallocation by the collector (see Step 7). The only time that the collector 
interferes with ongoing Parallax operations is when it updates tlie (live) allocation 
bitmap for an extent to indicate newly deallocated blocks. For this operation it must 
coordinate with the Parallax instance that owns the extent to avoid simultaneous 
updates, thus the BMap must be locked in Step 7. Parallax instances claim many 
free blocks at once when looking at the allocation bitmap (currently 10,000), so 
this lock suffers little contention. 

5.7 Evaluation 

In this section, we will look at the performance of garbage collection, extent defrag­
mentation, read remapping and write remapping. In all tests, I used IBM eServer 
x306 machines, each node including a 3.2 GHz Pentium-4 processor, 1 GByte of 
R A M , and 3 Intel el000 GbE network interfaces (only one interface is active during 
the tests). Storage is provided from a NetApp FAS3070 4 exporting an iSCSI LUN 
over gigabit links. The filer is accessed in all cases using the Linux openiSCSI 
software initiator (v2.0.730, and kernel module v l . l - 646) running in domain 0. 
Al l development was done against Xen 3.1.0 as a base. 

5.7.1 Garbage collector 

Since the Parallax garbage collector works via sequential scans of all metadata 
extents, the performance of the garbage collector is determined by the speed of 
reading metadata and the amount of metadata, and is independent of both the com­
plexity of the forest of VDIs and their snapshots and the number of deleted VDIs. 
Weve run the garbage collector on full blockstores ranging in size from 10GB to 
50GB, and its performance is perfectly linear at a rate of 1.03GB/sec as show in 
Figure 5.3. The performance of the per-extent garbage collector is also mostly 
linear as shown in Figure 5.4. 

Given a blockstore, the relative cost (time per GB) is expected to be higher for 
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Figure 5.3; Performance of global garbage collector 

the per-Extent GC. This is because the per-Extent GC has to do the extta work of 
calculating the subset of VDIs that need to be scanned. Also, it is possible that sev­
eral VDIs that are scanned have very few pages in die extent that is being garbage 
collected. In spite of that, all blocks of the VDI will be checked for reachability. 
Whereas, In the case of the global garbage collector, every block that is marked 
contributes to the progress of die process. 

5.7.2 Extent defragmentation 

The defragmentation process involves copying disk pages from one end of the ex­
tent to a free slot on the other end of the extent. In the worst case, the extent could 
be fragmented such diat the first half is unused and the odier half is allocated. This 
would require copying the allocated half of the extent to die unallocated half, one 
disk block at a time. This will incur a number of disk seeks back and forth across 
the extent. This is die test case for evaluating die defragmentation process and the 
results are as shown in Figure 5.5. It has been evaluated for different extent sizes ( 
2GB - 10GB). It only shows the worst case performance. Defragmentation can be 
optimised in a number of ways hke implementing smarter schemes for rearranging 
disk blocks such that it requires minimum copying and batching reads and writes 
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of disk blocks. 

5.7.3 Read remapping 

The workings of Read remapping are very similar to that of garbage collection. 
Read remapping gathers a list of all VDIs that could have pointers to blocks in an 
extent. However, unlike the garbage collector, it only traverses read-only links and 
checks the third level of the radix tree to see if it points to a block in the extent 
being remapped and if it needs remapping, then it changes the entry in the radix 
page to the new entry. If any changes are made to a radix block, it is written back 
to disk after all its entries have been checked. Hence, read remapping involves 
linear scans of a few metadata extents. It was evaluated by remapping extents 
whose remap tables were generated by defragmenting the extents as mentioned 
in Section 5.7.2. After defragmenting the extent, all VDIs with pointers in the 
extent were snapshotted to render all their pages read-only. Read remapping is 
then executed to change the pointers in the radix block of these VDIs to the new 
addresses recorded in the remap table. The performance is again mostly linear as 
shown in Figure 5.6. 



Figure 5.5: Performance of extent defragmentation 

5.7.4 Write remapping 

The remap tables generated from defragmenting extents in Section 5.7.2 were used 
to test write remapping. The write remapper gathers a list of all VDIs that have 
pointers to blocks in the extent and then traverses only the writable links and checks 
if they need remapping. If an entry needs to be changed, it is changed in the radix 
block and the coiTesponding disk block is also copied to the new location. In case 
the VDI is locked by another parallax instance, these changes have to be delegated 
to the parallax instance. However, the cuiTent evaluation assumes that the VDI is 
not locked. The performance of the write remapper is as shown in Figure 5.7. 

5.8 Summary 

The metadata services implemented thus far can successfully defragment and remap 
extents in the blockstore. Better defragmentation schemes should definitely help in 
reducing the rearrangement of disk blocks and it would help if the extents are de­
fragmented regulariy. Schemes for defragmenting storage have been in the works 
since a long time. In the next .section we will survey some existing storage systems 
and their mechanisms for defragmentation and remapping. 
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Related work 

This chapter is a brief survey of existing storage virtualization systems and their 
methods to garbage collect, defragment and dedup the storage pool. Broadly, they 
can be categorised into volume managers and file systems. For each system, we 
will look at how they store and maintain their metadata. In particular we will look 
at how they implement delete (deleting a file/virtual disk or garbage collection) and 
defragmentation, since both are crucial operations in any storage system. While 
deduping is not exactly a must-have feature, it is certainly a huge cost-cutter and 
any competing backup system today is trying to implement it [11 ]. Hence, we will 
also look at some popular storage solutions that offer deduping. 

6.1 Volume managers 

The Logical Disk (LD) Interface [21] uses the notion of separating file management 
from disk management. The file system would manage files and interact with LD 
via logical block numbers and Block lists. LD translates the logical block numbers 
to physical block numbers using a Block-number Map which is kept in memory. 
If a file system puts the blocks of a file (including file metadata) on a block list, 
then LD can do file defragmentation by placing these blocks physically together on 
disk. The process would be totally file system agnostic, because the logical block 
numbers would remain unchanged. Garbage collection, on the other hand, would 
be dictated by the file system. For example, in a SpriteLFS [18] implementation 
of LD, the disk is divided into fixed-size logical segments. Segment Cleaning is 
SpriteLFS's version of garbage collection and is carried out by LD. 

The Petal [12] system aims at separating tlie view of a distributed storage sys­
tem from the management of physical resources that implement it. Petal virtual-
izes a given pool of commodity disks and servers, and presents virtual disks to 
the distributed file system. One can add or remove physical disks/servers and take 
snapshots of these virtual disks. These operations are all file system agnostic. Petal 
clients work with virtual disk addresses of the form < vitual-disk identifier, oJfset> 
which are translated to <ser\>eridentifier,diskidentifier,diskoffset>. The translation 
is carried out with the help of tliree important data shoictures: a virtual disk direc-



tory (VDir), a global map (GMap), and a physical map (PMap). The maintenance 
of these data-structures is designed to tolerate server/disk failures. The VDir gives 
the location of the server that has the GMap for the virtual disk. The GMap has in­
formation about which servers are spanned by the virtual disk and the PMap gives 
the actual translation of a virtual diskoffset to its corresponding physical disk id 
and physical diskoffset. 

Petal has two schemes to take snapshots. The first scheme creates consistent 
disk images, but this requires that all client applications be paused for a period 
less than a second. If the pause is unacceptable, dien Petal can create a snapshot 
that would create a disk state similar to a disk-image that would be left after an 
application has crashed. Running a utility like fsck should bring the disk back to a 
consistent state. All read requests are then translated to the latest epoch number of 
the virhial address. To do diis, the address translation mechanism adds a new piece 
of information, the epoch number. The epoch number records the version of each 
disk page that ends up associating it eidier with a particular snapshot of the virtual 
disk or the virtual disk itself. Al l writes are done to the current epoch number of the 
virhial disk, using Copy-on-write operations. These CoWs can fragment the virhial 
disks badly, since every write to a disk page from an earlier epoch will cause Petal 
to write the page with the new content to a new location with die current epoch 
number. Petal does not have a garbage collector to take care of deleting snapshots 
and/or virtual disks. 

Peabody [9] was the next step in storage virmalization. It is a network block 
storage device diat exposes virtual disks. Unhke Petal, Peabody is unconcerned 
with the management of physical resources. Peabody uses an iSCSI initiator as 
the backend storage and carves out virtual disks whose sectors are continuously 
versioned so that any previous state can be recovered. However, maintaining trans­
action logs of every disk-write and versions of every sector imposes a huge storage 
overhead. To reduce this overhead, Peabody maintains a sector store. The sec­
tor store is the actual storage for the virtual disk. There are several mediods to 
implement the sector store. If it is implemented as a contiguous physical piece 
of the LUN, then there would be no fragmentation (at the level of virtual disks) 
and the file-system can address the sectors by their physical addresses. However, 
it also excludes any opportunity for sharing sectors among virtual disks. Another 
alternative is to implement an address translation mechanism for each virtual disk 
using a BTree. The would result in fragmenting the virtual disks across the LUN 
and also incurs address translation costs. However, it does allow sector sharing 
among virtual disks which would be a significant cost saver. An MD5 hash of each 
sector is stored to identify sectors with similar content. A hybrid scheme would 
probably be better. Some virtual disks could be implemented as contiguous pieces 
of the LUN, and if there was sufficient benefit, then some other virtual disks could 



be implemented using the virtual addressing scheme. We don't know if this was 
ever implemented and/or evaluated, but it did set the stage for deduping. Peabody 
also had a garbage collector that could reclaim all sectors that belonged to ver­
sion numbers that were no longer required. However, it could leave the disk in an 
inconsistent state, since it was not integrated with file-system consistency checks. 

Clotho [4] is a block storage abstraction layer that provides data versioning. It 
can be plugged in the Linux block I/O heirarchy in a single machine, a clustered 
I/O system, or a SAN. Higher layers (e.g., file system, volume managers etc.) in­
teract with it like it is a standard block device driver. Other block absfraction layers 
(e.g., RAID) could be plugged under Clotho. Clotho divides the block device into 
two logical Segments, the Primary Data Segment and the Backup Data Segment. 
Versioining is done at an extent level. The size of an extent could be larger than 
the standard block size. File systems refer to data by logical block numbers that 
are converted to physical block numbers using a textitLogical Extent Table(LXT). 
The primary data segment stores the latest version of the disk, while the backup 
data segment stores all earlier versions. The data in the backup data segment is 
strictly read only and would be required only in case of data recovery or histori­
cal analysis operations, which are less frequent. Hence, in order to reduce address 
translations for reading or writing the primary data segment and to avoid fragment­
ing it, the LXT is divided logically into the primary LXT and the backup LXT. In 
the primary LXT, a 1-1 correspondence is maintained between the logical extents 
and the physical extents in the LXT. Thus, only one lookup of the primary LXT is 
required to convert logical block numbers to physical block numbers. Every time 
a COW operation is done to preserve an older version of an extent, the older copy 
is moved to the backup data segment and the corresponding metadata is updated in 
the backup LXT. 

Clotho has automatic garbage collection in the form of the DeleteVersion() 
function. Clotho traverses the primary LXT segment and for every entry that has 
a version number equal to the delete candidate, changes the version number to the 
next existing version number. It then traverses the backup LXT segment and frees 
the related physical extents. One can also dedup or compress extents belonging 
to different versions in the backup data segment in order to reduce the storage 
overhead. 

The FAB (Federated Array of Bricks} [19] project provides a distributed disk 
array with reliable access to logical volumes. It is built from commodity hard­
ware like disks, CPU and N V R A M , all connected by standard networks such as 
Ethernet. One can start building the system with a few bricks and increase it to 
several hundred bricks. Since it all requires just commodity hardware, the cost is 
kept minimum even with 3-way replication. However, due to high risk of com-



ponent failure, they have implemented a quonim system to co-ordinate operations 
like snapshot creation/deletion [10], rephcation, erasure coding, etc. To facilitate 
reconfigurations and recovery from failures, even the quorum system is designed 
to be dynamic. 

In FAB, the unit of data distribution is a segment and its size is 256MB. A 
segment group is the unit of redundant storage. A volume is defined as a collection 
of segment groups. A volume can span a number of bricks. Snapshots are called 
versions and they represent the state of a volume as it was at a certain time. It 
is a consistent state. Each snapshot and current version of a volume has its own 
map, which defines the logical address to physical address mapping. Al l maps 
are connected by bi-directional links and are used for address-translation and for 
merging maps in deletion scenarios. When a write is attempted to a data block in a 
snapshot, the new data block is written to a new location and the physical map of 
the current version is updated to reflect the change. Thus, as more and more blocks 
are modified, the volume also gets increasingly fragmented. 

In order to create and delete snapshots, a voting system is used in which a ma­
jority of the bricks have to agree on whedier the snapshot exists in the system and 
on a timing order for the operation to appear in the globally serializable sequence 
of snapshot/data operations. To create a snapshot, each participating brick creates 
a new map with the current timestamp and makes the current volume point to it. 
Any new writes after diat will now be reflected in this new map. To delete a snap­
shot, each brick merges the content of the map to be deleted (excluding its private 
map) into its next map and removes the map from die linked list. If a quorum 
can't be reached, the operations are aborted. One need not pause applications to 
create/delete snapshots. 

The Logical Volume Manager (LVM) [24] is another volume management sys­
tem. They are popular with both home and production systems. There are two 
versions of LVM: L V M l and LVM2. One can create volume groups (VG) online 
from an existing set of physical volumes (PV). These VGs can be resized by ab­
sorbing or deleting physical volumes. The resizing is done at the granularity of 
extents (concatenating or truncating extents), whose size has to be defined. One 
can also move a VG across the physical volumes and spilt or merge two VGs. To 
manage these operations, the L V M keeps a metadata header in the head of every 
physical volume. Each physical volume header has complete information about 
all volume groups, the identity of other physical volumes, logical volumes, and 
allocation maps of logical extents to physical extents. Hence, even if one physical 
volume is lost, all the system metadata can be recovered. 

Using L V M l one can create read-only snapshots of logical volumes. Read-only 
snapshots are implemeted by creating an exception table. It is used to keep track 
of the blocks that have been changed. If a block is to be changed at the origin, it is 



first copied to the snapshot, marked as copied in the exception table, and then the 
new data is written to the original volume. If the exception table is as large as the 
original volume, then the snapshot will always be consistent. Otherwise once the 
table fills up, the snapshot becomes inconsistent. In order to delete the snapshot, 
one only needs to delete the exception table. 

Using LVM2, one can also create read-write snapshots. That is, if a block is 
changed, then it is marked in the exception table as used, and it never gets copied 
from the original volume. Thus, a read-write snapshot cannot be used for backup 
and recovery. However, it does have other uses. One example is that one can mount 
a read-v/rite snapshot, and try an experimental program that changes files on that 
volume. In case the changes don't work, one can unmount the snapshot, discard 
it, and mount the original volume in its place. It is like creating a gold template 
that can be used to create volumes for use with Xen [3]. One can create a disk 
image, then snapshot it and modify the snapshot for a particular domU instance. 
The only storage used by a snapshot is blocks that were changed in the origin or in 
the snapshot (exception table). Hence, the majority of the volume will be shared 
by the domUs. 

6.2 File systems 

In this section, we will look at two lines of file systems research. The first kind are 
those that snapshot the entire file system itself and the second kind are file systems 
that maintain explicit versions of individual files and directories. 

In order to snapshot an entire file system, the snapshotting/versioning mecha­
nism has to be incorporated into the basic design of the file system. It cannot be 
plugged into an already existing file-system design. Example of such file-systems 
are the Log structured file system (LPS), Write Anywhere File Layout (WAFL) by 
NetApp and ZFS by Sun. 

LFS [18] tries to optimize writes by ensuring that all writes are done sequen­
tially to a massive log-file. The entire disk is divided into segrtients, only one of 
which is acdve at any given time. The log is written to this active segment. The 
files and directories are identified by inode blocks and indirect inode blocks. This 
concept has been borrowed from the FFS [15]. The difference is that, unlike FFS, 
in LFS the inode blocks are not written to a fixed location on disk. Any changed 
data blocks are written to the log. Subsequently, the inode blocks and any indirect 
inode blocks that need updating are also written to the log. The locations of these 
inodes are tracked using an inode map. A checkpoint is scheduled as frequently as 
every 30 seconds, during which LFS writes the last knovra location of the inodes 
into the inode map. This inode map is kept at two separate fixed locations on disk. 



They are updated and used alternatively. Once written, the checkpointed inode map 
represents the latest consistent image of the disk. 

Unless the disk starts running out of segments, LFS will ideally have all ver­
sions of data and metadata. Hence, one could think of implementing some kind 
of recovery system. However, LFS does not offer any such services. It is imper­
ative that segments should be available for re-use in case the disk starts filling up. 
A garbage-collector called the LFS cleaner does the job of reclaiming sparse seg­
ments for reuse. To do so, the cleaner needs to know which blocks of the segment 
are live and also which file these blocks belong to and where they occur in the file, 
so that the appropriate inode blocks can be updated. The cleaner gets this informa­
tion from a segment summary that is maintained at die end of every segment. The 
segment summary maintains information about each block in the segment, diat is 
which file it belongs to and its block number in the file. The cleaner reads sev­
eral segment summaries into memory, gauges which segments have maximum free 
space and cleans diem. Basically it copies out all live blocks into empty spaces 
in other segments and updates die corresponding inode blocks and then marks the 
cleaned segments as ready for re-use. 

Thus, the only criteria for reclaiming blocks for die cleaner is that the segment 
in which diey occur should be largely free. Hence, there is no guarantee regarding 
which block versions are maintained and which are removed. One could possibly 
think of more refined reclamation heuristics, basically designed such that important 
versions of blocks are kept for a relatively longer time. However, this has not 
been implemented in LFS as the primary aim was to free segments. Also, writing 
out files in a log fashion results in a highly fragmented file-system. Even if files 
were initially written sequentially, as they are updated, the updated blocks will be 
written to possibly totally different segments and even the cleaner could move them 
around, further away from the rest of the file. There are no utihties in LFS to solve 
this problem. 

Write Anywhere File Layout (WAFL) [8] [7] by NetApp is a file-system layout 
that is designed specifically to work in an NFS apphance. The primary focus of 
its design was intended to provide easy and fast snapshots of the entire file-system. 
Like FFS, WAFL stores its file and directory metadata in inode blocks. However, 
unlike FFS, these inode blocks are not stored on fixed locations on disk, but in 
metadata files. It has three kinds of metadata files, those which store inodes, a 
block-map file which identifies free blocks and an inode-map file that identifies 
free inodes. Since the metadata is kept in files, they can be written anywhere 
and can be of any size. This makes adding and removing disk capacity a trivial 
operation. 

WAFL is organized as a tree of blocks. At the root of diis ttee is a special inode 
called the root inode. This root inode describes the inodes of die rest of the file 



system, block-map files and inode-map files all included. This root inode is the 
only entity that has a fixed position since WAFL needs it to boot the system and 
find files/directories. To create a snapshot, WAFL simply replicates the root inode. 
The new duplicate root inode will have read pointers to all inodes that the old root 
inode pointed to. Any writes to old blocks will result in CoW operations on the 
blocks. Thus the snapshot is preserved. When it is first created, it is created fast 
and it occupies no more additional space than the old root inode. With more and 
more writes, the snapshot diverges from the current filesystem. 

Earlier, each block in WAFL was represented by 32 bits. When the block 
was free, all bits were unset. If it was in use by tlie current file system, bit 0 
was set. If it was in use by snapshot 1, bit 1 was set. Similary if it was in use 
by the second snapshot, then bit 2 was set and so on. Hence, WAFL could not 
support more than 31 snapshots. However, recently they released a new version 
of WAFL that can support upto 255 snapshots. They do this using the method of 
reference counting [14]. Inodes store not only a pointer to the block, but also its 
associated reference count. This count cannot exceed 255. Using this method also 
enabled them to incorporate deduping. NetApp calls this their Advanced Single 
Instance Storage (A-SIS) deduplication. Basically, they maintain a database of 
fingerprints(checksum) of every data block. Al l disk writes are intercepted and 
the new fingerprints of the written disk blocks are recorded in a log. At a later 
time, these logged fingerprints are compared with the ones in the database, and 
if any matches are found, then the corresponding data blocks are deduped. Before 
deleting a block as a duplicate, A-SIS does a byte-by-byte comparison to make sure 
that the data is indeed the same. A-SIS can also be himed off anytime. However, A-
SIS does not differentiate between writable and read-only data. Hence, if a volume 
is rapidly changing, then A-SIS could cause considerable performance overhead. 

NetApp claims that WAFL fragments far slower than other file-systems and 
in fact handles it better too. Whenever possible, WAFL writes adjacent blocks 
of a file close to each other. As the disk gets used up, adjacent blocks may not be 
available. It will still try to place them as close as possible. To facilitate this, WAFL 
reserves 10% of extra disk space to increase the probability of finding adjacent 
blocks. Writing data over a network generally has the disadvantage that it is broken 
into smaller chunks anyways, but WAFL deals with this by first writing out the data 
in N V R A M , and hence it can group writes together efficiently. 

However, these optimizations should work well to avoid fragmentation so long 
as no snapshots are taken. If snapshots are taken at a reasonable frequency, the 
disk is bound to get fragmented anyways, in spite of all attempts to allocate close 
to other file disk blocks. NetApp does provide a defrag utility, wafl scan reallocate, 
that scans a volume and rewrites the latest version of the file blocks close together. 
But it is recommended that the system be offline and have no snapshots in order 



for the utility to be useful. 
ZFS (Zettabyte File System) [17] [2] by Sun is a filesystem that claims to have 

been designed from a scratch widi explicit support for transactions and snapshots. 
However, their tree like data-structure representation of the file-system and inode 
representation for files and directories seem very similar to those in WAFL. Every 
disk-block in use by ZFS can be reached from the root node of the file-system 
tree. This root node is called die uberblock. To take a snapshot, a copy of die 
uberblock is made with all read-only pointers to the inode blocks below it. Every 
write operation in ZFS results in a CoW operation. Hence, if one has ample disk 
space, then one can rollback the whole filesystem as far as possible. ZFS is not 
a distributed or a parallel file system. ZFS is a local file system and cannot be 
accessed concurrendy from multiple hosts. ZFS has several good features like 
replication of data blocks, storing a checksum with the block pointer which are 
then used to recover data in case of corruption. 

Recently, some concerns have been expressed regarding their garbage collec­
tion method [1]. Every block is tracked by its birdi and deadi - the first snapshot 
in which it is referenced and the last one. When all snapshots between those two 
times have been deleted, the block can be reclaimed. Every snapshot maintains 
a hst of blocks that were deleted from it, that is they occur in earlier snapshots, 
but not in this one. Every time a block is deleted from the main-line file-system, 
a routine checks to see if it occurs in any of its snapshots. If it does occur in any 
of the snapshots, then it is added to list of killed blocks. Odierwise the block is 
reclaimed. The fact that it is reclaimed is written to a log-file that is maintained 
expliciUy to record block allocations and final-deletions. This log is maintained for 
logical partitions of the disk-space. Every once in a while, the log is replayed on 
block bitmaps and dius updated to reflect any freed disk space. 

The linear sequence of die snapshots is central to the management of disk space 
in ZFS. A block can only be referenced by the main file-system or by one of its 
snapshots. However, ZFS also gives the option to create a clone file-system from an 
existing snapshot. Since ZFS supports only one local file-system, there can be only 
one main-line file system. Creating the clone will create references to blocks which 
violate the linear nature of references. If this clone is now made the main-line file-
system, dien there will be no accurate way to frack block lifetime. In fact, there is a 
distinct possibility that one can end up with an undeletable snapshot that one can't 
get rid of until all clones have been backed out. It is not clear whedier ZFS has 
any utilities to combat long-term fragmentation. Although the claim is diat ZFS's 
block allocation policies are designed so as to write file blocks as close as possible. 
Yet, always writing out of place is certain to cause significant fragmentation. 



6.3 Summary 

As discussed above, each storage system has its own scheme of managing meta­
data. Depending on this scheme, each has its own way of managing the issue of 
storage reclamation and fragmentation. Each scheme has its own advantages and 
disadvantages. Parallax also has its own scheme of managing metadata. Accord­
ingly we have developed utilities for block reclamation and remapping to counter 
fragmentation. 

System Block / File Level Reclamation Defragmentation Deduping 
Logical Disk Block Yes Yes Yes 
Petal Block No No No 
Peabody Block Yes Yes Yes 
Clodio Block Yes Yes Yes 
FAB Block Yes No No 
L V M l Block Yes Yes No 
LVM2 Block Yes Yes No 
LFS File Yes No No 
WAFL File Yes Yes Yes 
ZFS File Yes Yes No 



Future work and conclusion 

Techniques to remap and reclaim disk blocks have been implemented for the Paral­
lax storage system. Using these tools, utilities to create superpages and defragment 
free disk space in the blockstore have been implemented. All these operations work 
only with the Parallax metadata and hence they have very little interference with the 
normal operations of the Parallax instances. This along with tlie fact that utilities 
work with disk blocks, makes them totally OS and file-system agnostic. Depend­
ing on the size of the blockstore, available memory resources and time constraints, 
a system administrator can either use these tools on a blockstore-wide scale or run 
them one extent at a time. Although we have a design for a de-duping mechanism 
for the blockstore, due to fime constraints it has not been implemented yet. Im­
plementing this mechanism will definitely be an added benefit. Added to that the 
fact that the global garbage collector gets to see the metadata of the entire block-
store, can be used to more advantage. One can develop a fingerprinting method 
that will facilitate de-duping as well as data restoration. While scanning the block-
store for unreferenced blocks, the garbage collector can calculate the fingerprint of 
each block. When the blocks become read-only these fingerprints can be used for 
de-duping duplicate read-only blocks. The fingerprints can also be used to detect 
data-corruption (for read-only disk blocks). Corrupted data can be restored from 
backups. The existing utilities to defragment extents can be improved to use more 
intelligent means of rearranging blocks in tlie extent so that minimum remapping 
is required. Remapping writable disk blocks requires some co-operation from the 
Parallax instances. One can work to make these requests to be of low priority to the 
Parallax instances, so that the remapper does not interfere much with the normal 
fimctioning of the Parallax instances. 



Bibliography 

[1] Limitations of zfs, http://marc.info/?l=linux-fsdevel&m=113243953111393&w=2. 

[2] Zfs administration guide, http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf. 

[3] P. Barbara, B. Dragovic, K. Fraser, S. Hand, T. HaiTis, A. Ho, R. Neugebauer, I. Pratt, 
and A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM 
Symposium on Operating Systems Principles., October 2003. 

[4] M . D. Flouris and A. Bilas. Clotho: Transparent data versioning at the block i/o level. 

[5] K. Fraser, S, Hand, R. Neugebauer, 1. Pratt, A. Warfield, and M . Williamson. Safe 
hardware access with the xen virtual machine monitor. In Proceedings of the 1st 
Workshop on Operating System- and Architectural Support for the On-Demand IT 
Infrastructure (OASIS-1 j , Oct. 2004, 

[6] D, h T, Meyer, G, Aggarwal, B, Cully, G, Lefebvre, M , hael J, Feeley, N . C, H, 
hinson, and A, Warfield, Parallax: virtual disks for virtual machines, SIGOPS Open 
Syst. /?É'v,,42(4):41-54, 2008, 

[7] D, Hitz, J, Lau, and M , Malcolm, File system design for an nfs file server appliance, 
http://www,netapp,com/library/tr/3002,pdf, 

[8] D. Hitz, J, Lau, and M , Malcolm, File system design for an NFS file server appliance. 
In Proceedings of the USENIX Winter 1994 Technical Conference, pages 235-246, 
San Fransisco, CA, USA, 17-21 1994, 

[9] C. B. M . Ill and D. Grunwald. Peabody: The time travelling disk. In Proceedings 
of the 20 th lEEE/11 th NASA Goddard Conference on Mass Storage Systems and 
Technologies (MSS03), 2003. 

[10] M . Ji. Instant snapshots in a federated array of bricks. In Technical Report HPL-
2005-15, HP Laboratories, 2005. 

[11] Joe Spurr. Deduping: an essential backup tool in the data center? 
http;//searchdatacenter,techtarget,com/originalContent/0,289142,sid80.gcill92939,00.html, 

[12] E, K, Lee and C, A, Thekkath, Petal: Distributed virtual disks. In The Proceed­
ings of the 7th International Conference on Architectural Support for Programming 
Languages and Operating Systems, 1996, 

[13] J, LeVasseur, V. Uhlig, J, Stoess, and S. Gotz, Unmodified device driver reuse and 
improved system dependability via virtual machines. In Proceedings of the 6th Sym­
posium on Operating Systems Design & Implementation (OSDI2004), pages 17-30, 
2004, 

http://marc.info/?l=linux-fsdevel&m=113243953111393&w=2
http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf
http://www,netapp,com/library/tr/3002,pdf


[14] B. Lewis. A-sis: Deduplication comes of age. 
http://www,netapp.com/news/techontap/dedupe.html. 

[15] M , K. Mckusick, W. N . Joy, S. J. Leffler, and R. S. Fabry. A fast file system for unix. 
In ACM Transactions on Computer Systems, Vol. 2, No. i , pages 181-197, 1984. 

[16] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M . J. Feeley, N. C. Hutchinson, 
and A. Warfield. Parallax: Virtual disks for virtual machines. In Proceedings of the 
ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys '08), 
April 2008. 

[17] O. Rodeh and A. Teperman. zfs - a scalable distributed tile system using object 
disks. In MSS 'Oi.- Proceedings of the 20 th IEEE/11 th NASA Goddard Conference 
on Mass Storage Systems and Technologies (MSS'03), page 207, Washington, DC, 
USA, 2003. IEEE Computer Society. 

[18] M . Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating 
Systems Principles and the February 1992 ACM Transactions on Computer Systems., 
February 1992. 

[19] Y, Saito, S. Frlund, A. Veitch, A. Merchant, and S. Spence. Fab: 
Building distributed enterprise disk arrays from commodity components. 
http://hpl.hp.comyresearch/ssp/papers/2004- 10-ASPLOS-FAB.pdf, 2004. 

[20] A. Warfield. Virtual Devices for Virtual Machines. PhD thesis, University of Cam­
bridge, 2006. 

[21] Wiebren de Jonge and M . Frans Kaashoek and Wilson C. Hsieh. 
The Logical Disk; A New Approach to Improving File Systems. 
http://www.cs.utah.edu/ wilson/papers/logical-disk.pdf. 

[22] Wikipedia.org. Fragmentation Overview. http://en.wikipedia.org/wiki/Fragmentation.computer. 

[23] Wikipedia.org. Garbage collection Overview. 
http://en.wikipedia.org/wiki/Garbage.collection.computer_science. 

[24] Wikipedia.org. Logical Volume Manager (Linux). http://en.wikipedia.org/wiki/I^vm. 

http://www,netapp.com/news/techontap/dedupe.html
http://hpl.hp.comyresearch/ssp/papers/2004-
http://www.cs.utah.edu/
http://Wikipedia.org
http://en.wikipedia.org/wiki/Fragmentation.computer
http://Wikipedia.org
http://en.wikipedia.org/wiki/Garbage.collection.computer_science
http://Wikipedia.org
http://en.wikipedia.org/wiki/I%5evm


Statement of co-authorship 

All material in Chapter 2 is included only to provide the background necessary to 
understand the rest of the thesis. It is entirely composed of excerpts from [6]. 

I 


