
Metadata services for the Parallax storage
system

by

Gitika Aggarwal

B.Sc, The International Institute of Information Technology, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

July, 2008

© Gitika Aggarwal 2008

Abstract

Parallax is a distributed storage system that uses virtualization to provide storage
facilities specifically for virtual environments. In Parallax, fragmentation occurs
when the block addresses visible to the guest virtual machine are sequentially
placed, but the corresponding physical addresses are not. Because of the copy-
on-write (CoW) nature of Parallax, as virtual disks are created, cloned, deleted,
snapshotted and migrated, some fragmentation of the physical media can occur,
potentially incurring seeks even when performing sequential accesses to the virtual
disk. As the storage pool ages, performance issues due to unchecked fragmenta­
tion, unreclaimed storage space and duplicate data can cause significant concern.
CoW snapshots also introduce sharing semantics between virtual disks and snap­
shots. The ability to create CoW clones of virtual disks from snapshots of other
virtual disks leads to more sharing relationships. As a result block reclamation and
allocation become non-trivial.

We have developed utilities for garbage collecting, de-fragmenting free disk
space and virtual disks and reclaiming duplicate read-only blocks in the storage
pool managed by Parallax. They work by updating and maintaining the metadata
structures related to each virtual disk and its snapshots. They use very coarse
grained locking on the metadata and work at the block level. They operate across
the storage pool and are agnostic to the operating systems and file systems used by
the virtual machines.

Table of Contents

Abstract i i

Table of Contents i ii

List of Figures v

Acknowledgements vi

1 Introduction 1
1.1 Garbage collection 2
1.2 De-fragmentation 3
1.3 De-duping 4
1.4 Summary 5

2 Background - Parallax 6
2.1 Introduction 6
2.2 Parallax 6

2.2.1 Design considerations 6
2.2.2 System strucmre 8
2.2.3 VDIs as block address spaces 9
2.2.4 Snapshots 11

2.3 The shared blockstore 12
2.3.1 Extent-based access 13
2.3.2 Lock management 14

2.4 Summary 15

3 Motivation 16
3.1 Introduction 16
3.2 Tendency of Parallax to fragment data 16
3.3 Superpages 18
3.4 Summary 20

4 Design 21
4.1 Introduction 21
4.2 Naive approach 21
4.3 Per-extent approach 22

4.3.1 Per extent metadata 22
4.4 Summary 25

5 Implementation and evaluation 26
5.1 Introduction 26
5.2 Block allocator 26
5.3 Superpages 28
5.4 Free space defragmentation 28
5.5 Remapper 30
5.6 Garbage collection 32
5.7 Evaluation 35

5.7.1 Garbage collector 35
5.7.2 Extent defragmentation 36
5.7.3 Read remapping 37
5.7.4 Write remapping 38

5.8 Summary 38

6 Related work 40
6.1 Volume managers 40
6.2 File systems 44
6.3 Summary 48

7 Future work and conclusion 49

Bibliography 50

8 Statement of co-authorship 52

List of Figures

2.1 Parallax is designed as a set of per-host storage appliances diat
share access to a common block device, and present virtual disks
to client VMs 7

2.2 Overview of the Parallax system architecture 8
2.3 VDI tree view—visualizing the snapshot log 10
2.4 Parallax radix tree (simplified with short addresses) and COW be­

havior. 11
2.5 Blockstore layout 13

3.1 Example of a fragmented VDI 18

4.1 Extent metadata layout for every 4096 blocks 24
4.2 Extent metadata layout 25

5.1 Address bits in a radix tree node 28
5.2 Example of superpages 30
5.3 Performance of global garbage collector 36
5.4 Performance of per extent garbage collector 37
5.5 Performance of extent defragmentation 38
5.6 Performance of read remapper 39
5.7 Performance of write remapper 39

Acknowledgements

I would like to express my gratitude to my supervisor. Dr. Norm Hutchinson for his
guidance and kindness. I want to thank Norm for all his patience and for being my
mentor. 1 would also like to thank my co-supervisor, Dr Andrew Warfield. It was
an honour to work with him. Without Andy's brilliant ideas it is hard to imagine
how this thesis would have shaped up. I would also like to thank Dutch, Geoffrey
and Brendan. They have all helped me on a number of occasions when I needed
help with my thesis work. 1 would like to thank all the members of the DSG for
their constructive suggestions. 1 thank all my friends at the University of British
Columbia, who made my stay here really memorable. Most importantly, I want
to thank my family. They have been the guiding light in my life all along and my
inspiration to pursue graduate studies. Their support, encouragement and wisdom
have always helped me face my roadblocks. I can never thank them enough.

Introduction

Abstracting storage for easier administration is a very powerful concept. Storage
virtualization pools physical storage from multiple network or local storage de­
vices into a single storage service that can be managed centrally. Typical functions
include: adding and removing component storage systems, carving out logical par­
titions, resizing them, deleting them and performing storage-wide administrative
jobs like consistency checks, snapshots, mirroring, replication and the like. As the
number of features offered by a storage virtualization solution increases, so does
the size (and complexity) of the metadata that is required to support the virtualiza­
tion. In particular, the capability to create snapshots and clones can significandy
complicate the metadata.

Parallax [16] is a distributed storage system diat uses virtualization to provide
storage facilities specifically for virtual environments. It uses copy-on-write(CoW)
to snapshot and clone virhial disks. These CoW snapshots not only fragment the
storage system, but also introduce sharing semantics between disk blocks. The
ability to create CoW clones of disk objects from snapshots of other disk objects
leads to more sharing relationships. As a result, operations like disk-space alloca­
tion and reclamation become non-trivial. As the storage pool ages, performance
issues due to unchecked fragmentation, unreclaimed storage space and duplicate
data can cause significant concern.

I have developed utilities for garbage collecting, de-fragmenting free disk space
and reclaiming duplicate read-only blocks (de-duping) in the storage pool (block-
store) managed by Parallax. These utihties are provided at the block level so as to
remove the overhead of managing them at a per virtual-machine level. They work
across the blockstore and are agnostic to the operating systems and file systems
used by the virtual machines.The remainder of tliis chapter briefly presents each
of these three issues (garbage collection, defragmentation, deduping), and summa­
rizes my work.

1.1 Garbage collection

A Garbage Collector (GC) is a process that reclaims disk blocks that are no longer
referenced and will never be accessed or mutated again. Analogous GCs are also
used in memory management. Depending on how the referenced blocks are tracked
by the storage system, an appropriate GC can be designed. Broadly, there are two
main approaches. One is the reference counting metliod and the other is the mark
and sweep method. Almost all schemes are variations of these two approaches. A
GC is generally invoked explicitly, either when the system is low on disk space or
periodically.

We should first define reachability of a disk object [23]. A disk object can be
an entity like a file, directory or even whole/part of a virtual disk. They can also
hold pointers (and some metadata) to other disk objects. Examples of such disk
objects are directories, virtual disks, clusters of virtual Disks, etc. A subset of disk
objects is assumed to be reachable. These are called the Root objects. Any disk
objects reachable from one of these roots are also reachable. Transitively, any disk
objects reachable from another reachable disk object are also reachable.

In the Reference Counting method, disk objects also maintain a count of the
number of references to the disk blocks/objects. When the reference count falls
to zero, the object has become unreachable and can be freed. Obviously, main­
taining these counts incurs extra storage overhead and updating them at every disk
object allocation and deletion operation incurs performance overhead. It becomes
especially expensive when disk objects are shared and/or when they are related to
each other and are represented by graphs or hierarchies. This is because when disk
objects are shared, there could be several processes competing to modify the value
of the reference counter. In such situations, locking mechanisms are required for
consistency which makes the process complicated and more expensive.

In the Mark and Sweep method, the most naive approach is to visit all disk ob­
jects starting from the root objects and keep track of all disk blocks that are reach­
able. The first stage of collection (mark phase) traverses all root objects, marking
each accessible object as being "in-use". Al l objects transitively accessible from
the root set are marked, as well. Thus, the disk is examined again and again until
all disk objects/blocks have been marked. Finally, in the sweep phase, each object
is again examined; those disk blocks that are not marked as reachable are freed.
There are two disadvantages of this approach. The first is that it requires that while
the GC is running, the process of creating new disk objects be halted. The second
disadvantage is that it can require arbitrarily many passes over the disk, depending
on the longest chain of pointers among disk objects.

However, depending on how the metadata is organised on disk, the mark and
sweep method can be optimized to reduce the performance overhead and make

it more efficient. For example, one could use coloring schemes to differentiate
allocated blocks, unallocated blocks and blocks whose status could have changed
while the GC was executing. Then there would be no need to halt the system
to execute the GC. The only side-effect to this scheme is that some unallocated
blocks could escape being marked (blocks that became unreferenced while the GC
was executing).

Besides reclaiming unused space, GCs can also perform several useful opera­
tions. Since they scan the metadata of the entire storage system, given sufficient ad­
ditional information, they can also perform defragmentation tasks. In the absence
of any additional information, they can at least trivially remap pages to create large
contiguous pools of free space that would help with block allocation. If provided
with enough semantic information, they can remap blocks of a file/virtual disk, so
that they lie close to each other. One could also equip a GC to do sanity checks
for the disk by calculating checksums of blocks and comparing them with already
stored values and silently correcting die data from backups or replicas. These smart
GCs are thus not limited to only free disk space management.

The GC for Parallax is an example of such a smart GC. It not only reclaims
deleted blocks, but also helps with defragmenting virtual disks, witli remapping
pages to create large pools of free disk space and with deduping read-only blocks
of data.

1.2 De-fragmentation

File-system fragmentation is not a new problem at all. As a file-system ages, it be­
comes progressively harder to write files sequentially , because the allocation and
deletion of variable-sized data objects results in small regions of free space being
spread across die surface of a disk, where it is preferable to have a single, continu­
ous region of free space. File fragmentation increases disk head movement which
makes disk I/O slower. Almost all file systems provide a utility to de-fragment the
disk. These defrag utilities generally have a two-fold purpose. One is to rearrange
the disk pages such that pages of a single large file are closer to each other on disk
(read and in-place write locality) and the second is to merge small areas of free
space to form larger pools of free space (for faster block allocation and sequential
writes).

Parallax has a more complicated fragmentation problem. Parallax inserts an
address translation mechanism below the file systems created by its chents. Hence,
file-systems are only aware of the file layouts in terms of logical block numbers.
Making file defragmentation decisions based on only logical block numbers could
be totally misguided, because logical block numbers would have little semblance

with the actual layout of the files on disk. Added to that, blocks from files from
one virtual disk could be interspersed with blocks from files of other virtual disks.
This worsens the fragmentation problem.

Parallax also has the problem of metadata fragmentation. Parallax aims at easy
extensibility, i.e., one should be able to add or remove physical disks or any other
form of block storage easily. It also supports very large sizes of files/virtual disks
and their numbers can be in the millions, with versioning, snapshots etc. To support
all these features, considerable metadata needs to be maintained. This metadata
cannot be stored in a small fixed area on disk. In fact, it is hard to predict how
much disk space will be sufficient. Hence, it stores its metadata in an on-disk R-
tree so that metadata blocks can be allocated from anywhere on the storage-system.
A lot of other metadata is also distributed throughout tlie storage pool. However,
this brings in the problem of metadata fragmentation.

A third kind of fragmentation is related file fragmentation [22]. It is caused by
a lack of locality between related files and depends on the access pattern of specific
applications. Basically, if related files are spaced out from each other, then there
could be scenarios where in an application fetches a page from file I, then another
one from file2 and then again filel and so on. This would cause the disk head to
move back and forth a lot.

A Parallax instance serving several virtual disks that are physically spaced out
is very susceptible to related file fragmentation. Hence, we have written a defrag
utility for Parallax that computes a remapping scheme so that disk blocks of pop­
ular virtual disks are laid out sequentially on disk. We call these specially laid out
virtual disks superpages. A superpage can also be just a part of the virtual disk,
instead of the whole disk. Details on superpages are discussed in Section 3.3. The
defrag utility also merges small pools of free disk space and remaps interspersed
allocated pages to create large pools of free disk space which can be used to create
superpages, speed up block allocation and have more sequential write operations.

1.3 De-duping

Duplicate data due to frequent backups, file distribution over the network tlirough
emails, popular downloads, etc., can end up consuming enormous storage space
that could be used otherwise. Not only does this incur increased cost in terms of
disk to store the data, but also incurs additional costs in terms of data center space
and power.

The idea behind de-duping is very simple. When writing out data to disk, if
it is deemed as already present on-disk, then instead of writing it again, leave a
pointer to the aheady present data. The duplicates can either be detected in-line

(i.e., before ttiey have been written on disk) or in a post-process (i.e., sometime
after the data has akeady been stored). Recently, a lot of work has surfaced in
the area of de-duping. Generally, one of two approaches are taken : de-duping
at a block level or de-duping at a file level. File level de-duping aims to remove
duplicates of files either within a system or across the data-center itself. Another
approach is to remove duplicate files in backups, for example, operating system
files like Windows' .dll files. This could decrease the size of disk-based backups
immensely.

Block-level deduplication works under the file-system. It computes a finger­
print of each block of data and if it finds two blocks with the same fingerprint
then one of die duplicates is reclaimed. To avoid collision errors, generally the
data is compared byte-by-byte before a duplicate is deleted. An important factor
in de-duping is CPU usage. If the volume/ storage system that is being de-duped
is constantly mutating, then the process of computing the fingerprints could cause
some performance overhead. Also, if the blocks being reclaimed are still writable,
then de-duping them would probably be of little value, because any in-place writes
would trigger far more additional disk operations.

We have designed a post-process block level deduper for Parallax that remaps
read-only pages across the blockstore. Our usage scenarios encourage the usage of
gold masters and snapshots. With de-duping enabled, once VDIs branch off from
a gold-master, any similar changes to these clones can be easily reclaimed after the
first snapshot operation itself. This can lead to significant cost savings. De-duping
can also reclaim any other duplicate read-only pages in the storage pool. A specific
example of de-duping in a virtual environment is lots of common images (imagine
10,000 windows desktops) that have the same patch applied to them. Deduping the
physical storage should be able to reclaim all duplicate copies of the patch.

1.4 Summary

We have designed and implemented storage reclamation and remapping techniques
for the Parallax storage system. Using these techniques we have developed utilities
to defragment free disk space and create superpages for better disk space allocation
and seek time. The rest of the thesis is organised as follows. Chapter 2 provides
background information about Parallax. Chapter 3 gives a detailed account of the
design changes required in Parallax to implement block reclamation and remapping
tooks. Chapter 4 gives the implementation details and evaluation of these utilities.
Chapter 5 is a survey of how these tools have been implemented in several other
storage systems. Chapter 6 includes some proposed future work and concludes this
thesis.

Background - Parallax

2.1 Introduction

This chapter gives some relevant information about Parallax. It provides the re­
quired context for the thesis and is central to understanding the issues addressed by
the remapping operations. It includes a brief explanation of the design princples of
Parallax and describes the system structure, the metadata and the data layout. At
the end of this chapter, one should have a fairly good idea of how Parallax manages
its metadata.

2.2 Parallax

Parallax provides block virtualization by interposing between individual virhial
machines and the physical storage layer. The virtualized environment allows the
storage virtualization service to be physically co-located with its clients. Figure 2.1
presents a high-level view of the structure of a parallax-based cluster: the storage
system runs in an isolated V M on each host and is administratively separate from
the client VMs running alongside it; effectively. Parallax allows the storage system
to be pushed out to include slices of each machine that uses it.

The next section describes the set of specific design considerations that have
guided the implementation of Parallax and its associated services, and then present
an overview of the system's structure.

2.2.1 Design considerations

Designing a system to provide VM-specific functionality involved a series of deci­
sions that shaped the resulting implementation:

Agnosticism and Isolation. Parallax is implemented as a collaborative set of
storage appliances; as shown in Figure 2.1, each physical host in a cluster contains
a storage VM which is responsible for providing storage to other virtual machines
running on that host. This V M isolates storage management and delivery to a single
container that is administratively separate from the rest of the system. This design

> Storage Administration Domain
' Storage functionality such a i snapshot
j facitrtfesthataretradftionally
, implemented wrthtn storage devices
t are pushed out into a per-host storage
! appliance VMs, which interact with a
' simple shared bJocl< device and may

also use local physical disks.

Shared Block Device
Any netvwjrk bfockdevice
may tie used:FC, iSCSI,
AoE, GNBD,NFS-lMsed
file, etc.

Physical Hosts

AppliBftw

V M M (X « l)

AppBanaf
VM

VM VM VM

Figure 2.1: Parallax is designed as a set of per-host storage appliances that share
access to a common block device, and present virtual disks to client VMs.

has been used previously to insulate nmning VMs from device driver crashes [5,
13], allowing drivers to be transparently restarted. Parallax takes this approach a
step further to isolate storage viruialization in addition to driver code.

Isolating storage virtualization to individual per-host VMs results in a system
that is agnostic to both the OSes that run in other VMs on the host, and the physical
storage diat backs V M data. A single cluster-wide administrator is capable of
managing the parallax instances on each host, unifying die storage management
role.

Blocks not Files. In keeping widi the goal of remaining agnostic to OSes
running within individual VMs, Parallax operates at the block, rather than file-
system, level. Block-level virtuaHzation provides a narrow interface to storage,
and allows Parallax to present simple virtual disks to individual VMs. While virtu­
alization at die block level maximizes agnosticity and simplifies implementation,
it also presents a set of challenges: the "semantic gap" introduced by virtualizing
the system at a low level obscures higher-level information that could aid in iden­
tifying opportunities for sharing, and complicates request dependency analysis for
the disk scheduler.

Minimize the DLM. Parallax's design is premised on the idea that data shar­
ing in a cluster environment should be provided by application-level services with
clearly defined APIs, where concurrency and conflicts may be managed with appli­
cation semantics in mind. Therefore, it explicitly excludes support for write-sharing
of individual virtual disk images. The system maintains the invariant that each VDI

Figure 2.2: Overview of ttie Parallax system architecture.

has at most one writer, greatly reducing the need for concurrency control. Some
degree of concurrency management is still required, but only when performing
administrative operations such as creating new VDIs, and in very coarse-grained
(multi-gigabyte) allocations of writable areas on disk. Locking operations are ex­
plicitly not required as part of the normal data path or for snapshot operations.

Snapshots as a primitive operation. Parallax has been designed to incorpo­
rate snapshots from the ground up, representing each virtual disk as a set of radix-
tree based block mappings that may be chained together as a potentially infinite
series of copy-on-write (CoW) instances.

2.2.2 System structure

Figure 2.2 shows a detailed overview of Parallax's architecture and allows a brief
discussion of tlie relevant components that are presented in more detail in later
sections.

As discussed above, each physical host in the cluster contains a storage appli­
ance V M tliat is responsible for mediating accesses to an underlying block storage
device by presenting individual virtual disks to other VMs running on the host.
This storage V M allows a single, cluster-wide administrative domain, and effec­
tively allows functionality that is currently implemented within filers, arrays, and
storage switches to be pushed out and implemented on individual hosts. The re­
sult is that advanced storage features, such as Parallax's snapshot facilities, may
be implemented in software and provided to the cluster over simple, inexpensive
network storage.

Parallax itself runs as a user-level daemon in the Storage Appliance V M , and

uses Xen's block tap driver [20] to handle block requests. The block tap driver
provides a very efficient interface for forwarding block requests from VMs to dae­
mon processes that run in user space of the storage appliance V M . The user space
portion of block tap defines an asynchronous disk interface and spawns a tapdisk
process when a new V M disk is connected. Parallax is implemented as a tapdisk
library, and acts as a single block virtualization service for all client VMs on the
physical host.

Each Parallax instance shares access to a single shared block device. There
are no restrictions as to what this device need be, so long as it is shareable and
accessible as a block target in all storage V M instances. In practice we most often
target iSCSI devices, but other device types work equally well. We have chosen
that approach as it requires the lowest common denominator of shared storage, and
allows Parallax to provide V M storage on the broadest possible set of targets.

Virtual machines that interact with Parallax are presented with entire virhial
disks. Xen allows disks to be accessed using both emulated and paravirtualized
interfaces. In the case of emulation, requests are handled by a device emulator that
presents an IDE controller to the client V M . Emulated devices generally have poor
performance, due to the context switching required to emulate individual accesses
to device I/O memory. For performance, clients may install paravirtual device
drivers, which are written specifically for Xen-based VMs and allow a fast, shared-
memory transport on which batches of block requests may be efficiently forwarded.
By presenting virtual disks over traditional block device interfaces as a storage
primitive to VMs, Parallax supports any OS capable of running on the virtualized
platform, meeting the goal of agnosticism.

The storage V M is connected direcdy to physical device hardware for block
and network access.

Virtual disk images (VDIs) are the core abstraction provided by Parallax to
virhial machines. A VDI is a single-writer virtual disk which may be accessed
in a location-transparent manner from any of the physical hosts in the Parallax
cluster. There are three core operations, allowing VDIs to be created, deleted, and
snapshot. These are the only operations required to actively manage VDIs: once
created, they may be attached to VMs as would any other block device.

2.2.3 VDIs as block address spaces

A Parallax VDI is effectively a single block address space, represented by a radix
tree that maps virtual block addresses to physical block addresses. Virtual ad­
dresses are a continuous range from zero to the size of the virtual disk, while phys­
ical addresses reflect the actual location of a block on the shared blockstore. The
current Parallax implementation maps virtual addresses using 4K blocks, which are

[root]

10 snapsho

2 snapshots

snapshots

NelBSD Pristine
Sept6Ol;20-.39 20O7
snapid: (10507(M,10)

Fedora Cote 6 Pristine
Sept 6 10:19:03 2007
snapid: (1871224,2)

2 snapshots

1 snapshots

NetBSD testbox
Sept 6 02:34:23 2007

VDI id: 2

Fedora Core 6 install
Sept 6 12:23:51 2007

VDI id: I

W2K3 itnage 1
Sept 7 11:13:51 2007

VDI id: 3

Windows 2003 Pristine
Sept 7 08:38:55 2007
snapid: (3746722,1)

1 snapshots ^ W2K3 image 2
Sept 7 11:14:26 2007

VDI id: 4

Windows 2003 Pristine
Sept 7 08:38:55 2007
snapid: (3746722,1) •^^snapshots

W2K3 image 2
Sept 7 11:14:26 2007

VDI id: 4

"S^l snapshots W2K3 image 3 "S^l snapshots
Sept 7 11:14:32 2007

VDI id: 5

W2K3 image 4
Sept 7 11:14:39 2007

VDI id: 6

Figure 2.3: VDI tree view—visualizing the snapshot log

chosen to intentionally match block sizes used on x86 OS implementations. Map­
pings are stored in 3-level radix trees, also based on 4K blocks. Each of the radix
metadata pages stores 512 64-bit global block address pointers, and the high-order
bit is used to indicate that a link is read-only. Tliis layout results in a maximum
VDI size of 512GB (9 address bits per tree-level * 3 levels * 4K data blocks =
2^ * 3 * 2̂ ^ =̂ 2̂ ^ = 512GB). Adding a level to the radix tree extends this by a
factor of 2^ to 256TB, involves a small configurable change to the code, and has
a negligible effect on performance for small volumes (less than 512GB) as only
one additional metadata node per active VDI need be cached. Parallax's address
spaces are sparse. Zeroed addresses indicate that the range of the tree beyond the
specified link is non-existent and must be allocated. In this manner, the creation
of new VDIs involves the allocation of only a single, zeroed, root block. Parallax
will then populate both data and metadata blocks as they are written to the disk. In
addition to sparseness, references are shared across descendant radix trees in order
to implement snapshots.

VDI Snapshot and Copy-on-Write
Snapshot Log
p«r«nt_log

2005.3.2
23:10:12.59

2005.3.2
23 :40 :12 . 2>*n

VDI Record
l a s t _ s n a p s h o t

rttdix_rc>ot
c a p a c i t y

Radix mappings:
• - Read-only Link

Writable Link

VDI Address Mapping Metadata

Previous
Radix Root

Data B/ocks

Figure 2.4: Parallax radix tree (simplified with short addresses) and COW behavior.

2,2.4 Snapshots

As mentioned, the high-order bit of block addresses in the radix tree is used to
indicate diat the block pointed to is read-only. Al l VDI mappings are traversed
from a given radix root down the tree, and a read-only link indicates that the entire
subtree is read-only. To take a snapshot. Parallax simply copies the root block of
the radix tree and marks all of its references as read-only.

This is illustrated in Figure 2.4. The figure shows a simplified radix tree map­
ping six-bit block addresses with two address bits per radix page. The example
shows a VDI that has had a snapshot taken, and subsequently had a block of data
written at virmal block address 111111 (binary). The snapshot operation copies
the radix tree root block and redirects the VDI record to point to die new root. Al l
of the links from the new root are made read-only, as indicated by the "r" flags and
the dashed grey arrows in the diagram.

Copying a radix tree block always involves marking all links from that block as
read-only. A snapshot is completed using one such block copy operation, following
which the V M continues to nin using die new radix tree root. At this point, data
writes may not be applied in-place as there is not a direct path of writable hnks
from the root to any data block. The write operation shown in the figure copies

every radix tree block along the path from the root to the data (two blocks in this
example) and tlie newly-copied branch of the radix tree is linked to a freshly allo­
cated data block. Al l links to newly allocated (or copied) blocks are writable links,
allowing successive writes to the same or nearby data blocks to proceed with in-
place modification of the radix tree. The active VDI that results is a copy-on-write
version of the previous snapshot.

The address of the old radix root is appended, along with the current time-
stamp, to a snapshot log. The snapshot log represents a history of all of a given
VDI's snapshots. Parallax enforces that radix roots refered to by snaplogs are im­
mutable. However, they may be used as a reference to create a new VDI. The
common approach to interacting with a snapshot is to create a writeable VDI clone
from it and to interact with that. A VM's snapshot log represents a chain of de­
pendent images from the current writable state of the VDI, back to an initial VDI.
When a new VDI is created from an existing snapshot, its snapshot log is made to
link back the the snapshot on which it is based. Therefore, the set of all snapshot
logs in the system form a forest, linking all of the radix roots for all VDIs, which is
what Parallax's VDI tree operation generates, as shown in Figure 2.3. This aggre­
gate snaplog tree is not explicitly represented, but may be composed by walking
individual logs backwards from all writable VDI roots.

From a single-host perspective, the VDI and its associated radix mapping tree
and snaphot logs are largely sufficient for Parallax to operate. However, these
structures present several interesting challenges that are addressed in the following
sections; Section 2.3 explains how the shared block device is managed to allow
multiple per-host Parallax instances to concurrently access data without conflicts
or excessive locking complexity.

2.3 The shared blockstore

A major challenge in VM-based systems is the tendency of virtualization to in­
crease the exposure of VMs to system failure. In Parallax, distributed locking has
been avoidedwherever possible, with the intention that even in the face of discon­
nection' or failure, individual Parallax nodes should be able to continue to function
for a reasonable period of time, while an administrator resolves the problem. This
approach has guided the management of the shared blockstore both in terms of how
data is laid out on disk, and where locking is required.

'This refers to disconnection from other hosts. A connection to the actual shared blockstore is
still required to make forward progress.

fxagnfO
Typ«:»<q»c
Hocksore Global Lotk
tHtent Catalogue

Extent I

va Registry
SDI 19

Dutoiï' s « 2 K 3 t « t

mi îil
tuî lackadl

VtXUick
All d!ta lefwencet) by a VCH is pfotîcbsd by the
VO kxk. irrespective of ttte «xtent that it is in.

VDn9l0!:ketltiv

EntantLoda:
Brtents are locked by a single h « t a^ indlcateij In
theext*mcatalogue, "ThathosiKfraetoallocate
new blocks (in greyj above vnthin these.

Ejfien rj n -J ondn-} lockeà by host ptxj.

Figure 2.5: Blockstore layout.

2.3.1 Extent-based access

The physical blockstore is divided, at start of day, into fixed-size extents. These
extents are reasonably large, 2GB in the current implementation, and represent a
lockable single-writer region. "Writers" at the blockstore level are physical hosts—
Parallax instances—rather than the consumers of individual VDIs. These extents
are typed; with the exception of a special system extent at the start of the block-
store, extents either contain data or metadata. Data extents hold the actual data
written by VMs to VDIs, while metadata extents hold radix tree blocks and snap­
shot logs. This division of extent content is made to cleariy identify metadata,
which facilitates garbage collection. Both data and metadata extents start with an
allocation bitmap that indicates which blocks are in use.

When a Parallax-based host attaches to the blockstore, it will exclusively lock a
data and a metadata extent for its use. At this point, it is free to modify unallocated
regions of the extent widi no addifional locking,^ In order to survive disconnection
from the lock manager. Parallax nodes may lock additional unused extents to allow

This is a white lie - there is a lock on the allocation bitmaps to coordinate with the garbage

collector, see Section 5.6.

room for additional allocation beyond the capacity of active extents.
The system extent at tlie front of the blockstore contains a small number of

blockstore-wide data structures. In addition to system-wide parameters, like the
size of the blockstore and the size of extents, it has a catalogue of all fixed-size
extents in the system, their type (system, data, metadata, and unused), and their
current lock-holder. It also contains the VDI registry, a tree of VDI structs, each
stored in an individual block, describing all active VDIs in the system. VDIs also
contain persistent lock fields and may be locked by individual Parallax instances.
Locking a VDI struct provides two capabilities; First, the locker is free to write data
within the VDI struct, as is required when taking a snapshot where the radix root
address must be updated. Second, with the VDI struct locked, a Parallax instance
is allowed to issue in-place writes to any blocks, data or metadata, referenced as
writable through the VDI's radix root.

Figure 2.5 illustrates the structure of Parallax's blockstore, and demonstrates
how extent locks allow a host to act as a single writer for new allocations within
a given extent, while VDI locks allow access to allocated VDI blocks across all
extents on the blockstore. All extents, except the system extent, maintain extent-
metadata at the head of the extent. Various metadata services use the extent meta­
data, which is maintained accordingly. The block allocator (Section 5.2), uses
the block allocation map (BMap). The BMap is a bitmap that maintains infor­
mation about whether a block in the extent is allocated or not. A BMap can also
be modified by the garbage collector. The garbage collector unsets bit positions
corresponding to blocks that are deemed as deleted. Hence access to tlie BMap is
regulated by a lockmaster as explained in Section 2.3.2 .

2.3.2 Lock management

The protocols and data structures in Parallax have been carefully designed to mini­
mize the need for coordination. Locking is required only for infrequent operations:
to claim an extent from which to allocate new data blocks, to gain write access to
an inactive VDI, or to create or delete VDIs. Unless an extent has exhausted its
free space, no VDI read, write, or snapshot operation requires any coordination at
all.

The VDI and extent locks work in tandem to ensure that the VDI owner can
safely write to the VDI irrespective of its physical location in the cluster, even if the
VDI owner migrates from one host to another while running. The Parallax instance
that holds the VDI lock is free to write to existing writable blocks in that VDI on
any extent on the shared blockstore. Writes that require allocations, such as writes
to read-only or sparse regions of a VDI's address space, are allocated within the
extents that the Parallax instance has locked. As a V M moves across hosts in the

cluster, its VDI is managed by different Parallax instances. The only effect of this
movement is that new blocks will be allocated across multiple extents.

Because it is unnecessary for data access, the lock manager can be very sim­
ple. We call this as the lockmaster. In the current implementation, a single node is
designated as the lockmaster. When the lockmaster process instantiates, it writes
its address into the special extent at the start of the blockstore, and other nodes use
this address to contact the lockmaster with lock requests for extents or VDIs. Fail­
ure recovery is not currently automated, but the system's tolerance for lockmaster
failure makes makes manual recovery feasible.

2.4 Summary

We now have a good idea of how the blockstore is laid out and how Parallax man­
ages it. This was a description of Parallax in its pristine state before any block
reclamation and remapping services were added to it. In the next chapter we will
motivate the need for these services and see how they have been implemented.

Motivation

3.1 Introduction

This chapter explains the motivation to develop block reclamation and remapping
mechanisms for Parallax. In Parallax, fragmentation occurs when the block ad­
dresses visible to die guest virtual machine are sequentially placed, but the corre­
sponding physical addresses are not. Because of the copy-on-write (CoW) nature
of Parallax, as virtual disks are created, cloned, deleted, snapshotted and migrated,
some fragmentation of the physical media will occur, potentially incurring seeks
even when performing sequential accesses to the virtual disk. CoW snapshots also
introduce sharing semantics between virhial disks and snapshots. The ability to
create CoW clones of virtual disks from snapshots of other virtual disks leads to
more sharing relationships. As a result block reclamation and remapping become
necessary and non-trivial.

3.2 Tendency of Parallax to fragment data

Parallax has a tendency to fragment VDIs for reasons we explain in the remainder
of this section. As explained in Section 2.3.1, a Parallax instance uses separate ex­
tents to allocate the data and metadata pages respectively. There are several obser­
vations to be made here. Firstly, separating the data extent from the metadata extent
avoids interspersing metadata blocks within data blocks in the blockstore and thus
reduces metadata fragmentation. Metadata fragmentation is not fully eliminated
though. Initially, when an extent is all empty and is newly allocated as a metadata
extent, it is very likely that radix tree pages of a VDI will get allocated close to
each other in the extent. Every Parallax instance maintains a cache of metadata
pages called tlie RadixNodeCache. This cache stores all radix tree pages that were
read in from the blockstore to serve I/O requests of the VMs nnining on the Paral­
lax instance. Since it is known that the metadata is localized in a particular extent,
one can take advantage of that and do some read-ahead to improve I/O perfor­
mance. The clean separation of the location of metadata pages from the data pages
is very useful to tasks like garbage collection and deduping. One can easily browse

tlirough the entire metadata of a Parallax cluster by simple sequential passes of the
superblock and the metadata extents. It is often argued that storage systems that
offer storage virtualization face I/O streams from a number of clients and hence,
any benefit that one might get from locality is mosdy lost. It is generally up to
the disk scheduler, diat given a list of I/O requests, it should be able to come up
with a sequence that will cause minimum disk head seek. However, we argue diat
having locality is capable of making a considerable difference, especially when
one is doing sequential scans. One can then take advantage of read ahead policies
that pre-fetch metadata blocks and that will speed up the Parallax utilities (GC,
remapper etc.) requesting these pages.

As the blockstore ages, several things can happen:
1) Parallax instances could be restarted. Every time a Parallax instance is

restarted, it can end up with a different data and metadata extent, which will re­
sult in fragmenting the data as well as metadata pages of the VDIs.

2) When die initially allocated extents fill up, a Parallax instance has to move on
to newer extents. However, in due time if VDIs or their snapshots are deleted and
reclaimed, that could create empty blocks in the old extents. When these extents
are again allocated, it could be to any Parallax instance, resulting in the pages of
the VDIs of die two Parallax instances being interspersed.

3) A user could shutdown a V M on one Parallax instance A and then use the
same VDI to boot another V M on anodier Parallax instance B. Or a user could
simply migrate a V M from one Parallax instance to another Parallax instance in
the Parallax cluster. Booting on another Parallax instance will cause all future
block allocations to happen from the extents owned by the new Parallax instance,
which will again result in VDI fragmentation, both at the data as well as metadata
levels.

4) In our usage scenarios (backups for disaster recovery, system replay etc.),
we imagine our users taking a large number of snapshots of the VDIs at a very
frequent rate. Every time a VDI is snapshotted, it renders the entire state of the VDI
read-only (data as well as metadata). Any writes to any of diese pages will trigger
a CoW operation to preserve the snapshot. In such cases, if the VDI is mutating
even at a reasonable rate, then coupled with the snapshot operations, the VDI could
end up highly fragmented. A similar situation occurs when a VDI is created from
a snapshot of another VDI. If both VDIs are being managed by different Parallax
instances, then again all future allocations to the new VDI will be in a different
extent.

Thus, Parallax has a tendency to fragment VDIs. Since OS agnosticity is one
of the chief design principles of Parallax, the guest OSs running in die VMs have
little idea about the kind of fragmentation below the logical address space. For
example, consider Figure 3.1. Any defragmentation attempts by these OSs are

Typ« . Metadata Type Ditâ Type • Data Type Data

'

Figure 3.1: Example of a fragmented VDI

more likely to backfire and worsen the I/O performance. As we can see, as far as
the guest file system is concerned, the pages allocated to the VDI will all seem
contiguous to it. It is only when some files are deleted and the guest file-system
starts reusing the disk blocks, that it will notice any fragmentation. And even then,
it is most likely that any remapping schemes that the file system will come up with
will be faulty and might only worsen the fragmentation problem. If the guest file-
system had some hints about the physical layout of the pages of the disk, then it
could take smarter decisions about remapping its pages. But that would violate the
OS agnosticity design principle. Added to that, even if we compromised on this
principle, a guest file-system can only know about the layout of the pages of its
VDI. Hence, any remapping decisions that it will take can only involve juggling
the pages available to it. On the other hand, if a Parallax cluster-wide service can
take on the task of defragmenting VDIs (or at least part of the VDIs), then it can
look into entire blockstore and look for better remapping schemes (e.g., look for
larger chunks of configuous disk space).

3.3 Superpages

As discussed in Section 3.2, Parallax has a tendency to fragment VDIs across the
blockstore which can cause significant performance overhead as the blockstore
ages. The solution is that the VDIs be defragmented from time to time. In order to
defragment a VDI, we have to remap its pages to a contiguous piece of available
disk space in the blockstore. Sometimes, it may not be feasible to find a contiguous
chunk of diskspace large enough to be able to remap a whole VDI. Hence, we
should be able to remap at least a part of the VDI. As explained earlier. Parallax

allows the sharing of VDI pages. These pages can be data pages or radix-tree pages
(metadata pages). If there is more than one pointer to a radix-tree page, dien that
indicates that the entire subtree below it is also shared. Hence, remapping at the
granularity of VDI subtrees will extend its advantages to more than one VDI. We
call these defragmented VDI subtrees Superpages.

Once the superpages are created, they should remain so. They should not
get remapped as a side-effect of defragmenting another VDI subttee. Hence, the
remapping mechanism should be able to identify superpages. For this, we modify
the address representation in the radix tree nodes. Earlier, only the 64th bit in the
global block-address was a reserved bit. This bit is used to indicate whether the
disk-page pointed to is writable or is read-only. Now we also reserve the 63rd bit
and use it to indicate if the disk block pointed by the address is the base address of
a superpage. The format of a global block-address is as shown in Figure 5.1. The
size of the superpage depends on which level of the radix tree the address occurs
in. As explained earlier, VDI block addresses are stored in a 3-level radix tree,
each node of which is of size 4K. Each of the radix metadata pages stores 512 64-
bit global block addresses, the two highest bits of which are reserved. If the root
node address in the vdi-registry is a superpage address, then it indicates that the
whole VDI is a superpage and 512GB of contiguous space has been set aside for
it (a very unlikely case). Similarly, if die superpage address occurs in level 1 of
the radix tree, then it points to a contiguous space of size 1GB and if it is at level
2, it points to a contiguous space of size 2MB. Level 3 nodes point to 4K blocks,
hence superpage addresses won't make any difference there yet unless die num­
ber of levels in the radix tree is increased to accomodate VDIs larger than 512GB.
Thus, superpage addresses can be at any level of the radix tree, as shown in Fig­
ure 5.2. This addressing scheme also eliminates some levels of address tfanslation.
During the address translation process, if a superpage address is encountered, then
the logical block number is simply added to the superpage address to get the phys­
ical block address. Hence, superpages not only help with presenting defragmented
VDI subtrees, but also help with reducing die address translation overheads.

The pages have to be remapped irrespective of whether the VDI is in use or not.
This is take care of by die Remapper process as explained in Section 5.5. In order to
create a superpage, a contiguous chunk of disk space is required. As the blockstore
gets increasingly fragmented, diese chunks will have to be made available. An
Extent Défragmenter process uses the Remapper to remap disk blocks of an extent
so that all free diskspace gets merged into one large free pool. This is explained in
Section 5.4. At die outset it might seem that creating superpages is just a one time
overhead. One can create VDIs from any Parallax host, access them and migrate
them and remapping techniques can take care to see that the VDIs are eventually
defragmented. However, that is not always the case. Firstly, because Parallax

is designed to support millions of VDIs and blockstores of size in the range of
Terabytes. Creating superpages does incur CPU overhead. Also, because there
could be significant sharing among VDIs, it may not be possible to convert all VDIs
into superpages. To convert a VDI subtree into a superpage, it is important that the
subtree should be largely filled first. Because, creating the superpage vi'ill involve
setting aside a significant chunk of disk space. For example, if a VDI subtree is only
half filled and it is converted to a superpage, then when eventually more allocations
are done, if there is no pre-allocated disk space, the efforts gone into creating the
initial superpage will be wasted. Pre-allocating disk space in anticipation could
also prove wasteful. Hence, we give preference to creating superpages starting
from the lower levels of the radix tree. Also, having superpages at lower levels of
the tree is likely to benefit many more sharing VDIs.

3.4 Summary

Parallax has a tendency to fragment data and metadata blocks over time across the
blockstore. This fragmentation can lead to longer seek times. Snapshot and cloning
operations lead to sharing relationships amond VDIs that need to be taken into
account before any blocks can be remapped or reclaimed. Fragmentation can be
reduced by remapping frequently accessed parts of VDIs so that they are physically
sequential on disk and thus creating superpages. This can also reduce some of the
address translation overhead. In the next few chapters we will see the design and
implementation of techniques to achieve this.

Design

4.1 Introduction

In this chapter we will look at the design of block remapping schemes that can
help solve the problems of garbage collection and fragmentation in Parallax. We
will first look at a naive approach to transparently remap blocks and discuss its
limitations. We will then derive a better approach and discuss the design changes
to Parallax's metadata that are required to implement it.

4.2 Naive approach

Conceptually, the problem of remapping and reclaiming blocks in the blockstore is
not a hard one. Given the metadata of the entire blockstore and enough time and
memory resources, one can find all block locations that have alteast one reference
to them. Al l remaining blocks are either unallocated blocks or need garbage col­
lection. Using the block allocation maps of each extent, one can separate die two
and thus do garbage collection. Similarly, given memory resources large enough
to store an arbitrarily large address translation table, one can find all references to
an old block address and modify them so diat diey point to die new block address.
Implementing these approaches is also relatively trivial and require no changes to
the current metadata layout of Parallax.

There are several practical problems with the approaches mentioned above and
they all spring from the fact diat diey work on a blockstore-wide scale. As the size
and usage of the blockstore increases, the size of the metadata also increases. Ac­
cordingly, the time required to scan all diis metadataa and trace all block references
to find unreferenced or remapped blocks increases. But since these operations are
not really high priority, time is one of the smaller concerns. As far as garbage col­
lection is concerned, the main resource required is memory to hold a copy of the
blockstore's block allocation maps. For a blockstore of size 1 TB, the total size of
block allocation maps is 256MB (1 bit for every 4K size block), which needs to
be stored in memory. This seems manageable. However, for a blockstore of size 1
Petabyte, the size of all block allocation maps is 32GB. One cannot dedicate 32GB

memory for garbage collection.
An address translation table for remapping consists of a number of two-column

tuples. Column 1 of the table is the old block address (that is currently recorded
in the radix nodes) and is of size 64 bits. Column 2 of the table is the address to
which the block content has to be remapped to and is also of size 64 bits. Hence
every row is of size 128 bits. For the process of remapping blocks, one can simply
keep the entire address translation table in memory and then compare the entries of
each radix node to each entry in the table to check if it needs to be changed. In the
worst case, the address translation table could be remapping half the blockstore.
For a blockstore of size 1 TB, the size of the address translation table could then
be as large as 32GB (^^^^er of AKbiocks in extent ^ i28Wis). Hence, the global
approaches are not scalable in memory as the size of the blockstore increases.

4.3 Per-extent approach

To solve the above explained scalability problem, an obvious solution is to break
up the problem into smaller sub-problems that can be dealt with individually. For
example, instead of garbage collecting the entire blockstore, one can instead try to
garbage collect/remap only a part (of fixed size) of the blockstore. This would put
a cap on the maximum resource required to run the utility. An obvious choice is to
do this on an extent basis, since the blockstore(and its metadata) is already divided
into extents. The main advantage of this approach is that the utility should not
have to scan all the metadata of the blockstore, but only that part of the metadata
that concerns the blocks in the extent. To facilitate this, we introduce some extent
specific metadata that needs to be maintained, which is described next.

4.3.1 Per extent metadata

VDI journal

The main problem with writing block reclamation and remapping tools for only
a given extent, is finding all references in the blockstore to any physical block
address in the extent. In Parallax, CoW snapshots introduce sharing semantics
between virtual disks and snapshots. The ability to create CoW clones of virhial
disks from snapshots of other virtual disks leads to more sharing relationships.
An extent could have been allocated to several Parallax instances since it was first
initialized. Hence, the blocks in an extent could be referred by any VDI in the
registty, by its snaphots, its clones and so on.

For the utilities to work on one extent at a time, we need to know which VDIs
in the VDI registry could have references to blocks in the extent. For this, a VDI

journal is maintained for every extent. The ids of all VDIs that have pages allocated
from the extent are recorded in the VDI journal. When an extent is allocated to a
parallax instance, the VDI journal is read into memory by the Parallax instance
and maintained as a sorted list of VDI ids. When die parallax instance recieves
a request to open a VDI, it first checks if the VDI id is already recorded in the
VDI journal. If it is not recorded in the joumal, then the VDI id is appended to
it. A parallax instance could have opened several VDIs before it is allotted this
extent. These VDIs could subsequently allocate pages from this extent and hence
dieir VDI ids also have to be recorded in to the VDI joumal. To facihtate diis, the
parallax instance maintains a list of VDI ids of all VDIs diat it has currently open.
Every time a VDI is mounted, its VDI id is appended to this list. When the VDI
is closed, its id is removed from die list. When an extent is newly allocated to an
extent, the parallax instance adds these VDI ids to the VDI joumal of the extent.

The VDI joumal will only provide a list of all VDIs that have allocated pages
in the extent and written to them. But as the VDI ages, it could be snapshot­
ted and cloned. Even if the VDI is deleted later, its snapshots and clones still
have references to these blocks. This has to be taken into account when reclaim­
ing/remapping blocks. We assume that on an average each VDI recorded in the
joumal would have allocated at least 2 pages from the extent and reserve disk space
accordingly for writing die joumal in the extent metadata.

Remap space

Processes that want to remap blocks for creating a superpage or to defragment free
space in an extent have to record the remappings of old locations to the new lo­
cations. These remappings are recorded in die Remap Space(RSpace). For every
block in an extent that has to be remapped, its new location is recorded in its cor­
responding 64 bit space in the RSpace. The remapper process looks at the RSpace
and does the required remappings. Since more than one process can modify die
RSpace, access to it is regulated using by the lockmaster.

ROMap

The deduper needs to know which blocks in an extent are read-only so that it can
calculate the fingerprint of these blocks to look for potential matches. It looks for
these read-only blocks by reading the Read-only Map (ROMap). The ROMap is a
bitmap in which every bit represents whedier the corresponding block in the extent
is read-only or not. The deduper has only read access to an ROMap. The garbage
collector is the only process that can modify the contents of the ROMap. While
the garbage collector is executing, it has access to system wide metadata and in-

BMap

4K

ROMap

4K

Scratch
Space
4K

1 1 BMap

4K

ROMap

4K

Scratch
Space
4K

Remap Address space (64*4K)
BMap

4K

ROMap

4K

Scratch
Space
4K 1 1

Figure 4.1: Extent metadata layout for every 4096 blocks.

formation regarding which blocks are read-only and which are writable. Hence the
garbage collector sets the respective bits in the ROMaps. Since only one process
can modify an ROMap, it does not need lock access.

Scratch space

Some scratch space is also reserved. The garbage collector uses this scratch space
to make an on-disk copy of the BMaps before it starts executing. The size of the
scratch space is equal to the size of the BMap.

Al l this metadata is laid out in the extent in such a way so that it can be accessed
mostly linearly. For every 4K contiguous blocks of the extent, the related metadata
i.e., its BMap, ROMap, scratch space and remap space are laid out together as
shown in Figure [4.1]. This helps the metadata services linearly access all metadata
related to the blocks in an extent.

Serialized block pool

Parallax instances allocate blocks from a pool of unallocated block addresses as
explained in Section 5.2. Although these blocks are not yet allocated, every block-
address recorded in the blockpool is recorded as allocated in the BMap. To avoid
inconsistencies, the garbage collector needs to know the contents of the block pool
from an extent so that it can take them into account when reclaiming blocks of the
extent. Hence, the block allocator writes the contents of the blockpool in the extent
metadata, which is then used by the garbage collector. This is explained in more
detail in Section 5.2 and Section 5.6. We assume that the size of the block pool will
never be more than half the extent size and hence reserve disk space accordingly
for writing the block pool in the extent metadata.

The metadata layout of an extent is as shown in Figure (4.2).

Lock Block f(wBM«t> Lock Block for ROMip Lock Block for Rt»i4p s p 4 t «

, J^j^ . j ; X

! ^ r r • : i'^ if j^Jf
}*B.r ^*;(y 41:.

SeriiliîttlWock pool

VDIidJoum»!

Figure 4.2: Extent metadata layout.

4.4 Summary

In principle, block reclamation and remapping are very trivial operations. But if
they are implemented the trivial way (blockstore-wide), they can be unreasonably
memory intensive. Hence they have to be implemented such diat they can run on
one extent at a time. To facilitate this, some more metadata needs to be stored in
the extent headers. We have seen why each of this is required and how it is laid out
in the extent for efficient access. In the next chapter we will see the implementation
details.

Implementation and evaluation

5.1 Introduction

In this chapter we are going to look at tlie implementation details of the block
allocator, garbage collector, block remapper, extent défragmenter and superpage
remapper. We will also take a brief look at the performance of each of these util­
ities. The memory and disk resources used by all these tools is directly related to
the size of the extent. Hence we shall see how they behave on the time scale as the
size of the extent varies.

5.2 Block allocator

When a Parallax instance boots, it grabs two extents for its use: a data extent and a
metadata extent. These extents are allocated by the Block Allocator using a simple
algorithm. To allocate a metadata extent, it goes tlirough the extent catalog in the
Superblock extent and looks for the first unlocked extent that is either unused or is
a metadata extent. Each block in the extent catalog gives the following information
about an extent:

1) Extent id
2) Type of extent: Data / Metadata / Unused
3) Lock status: Locked / Unlocked
4) Number of free blocks in the extent. If this value is zero, it indicates that the

extent does not have any more free blocks.
5) Block Number at which the Block Allocator had last stopped looking for free

blocks. When the extent is next allocated, the Block allocator will start looking for
new blocks from this point onwards.

The Block Allocator locks the extent with the Parallax Id of the Parallax in­
stance that requested the metadata extent. If it is an unused extent, the type of the
extent is set to type metadata and the id of the extent is passed on to the Parallax
instance. A data extent is allocated similarly.

When the Parallax instance needs to allocate a block from either the data or the
metadata extent, it first needs to know which blocks in the extent are free and hence

can be allocated. Each extent (except the superblock extent) has a Block Alloca­
tion Map (BMap) and its associated lock. They are stored in the beginning of the
extent. The BMap is a simple bitmap, in which each bit indicates whether the cor­
responding block in the extent is allocated or not. When a Parallax instance needs
new blocks, the block allocator locks the BMap of the extent. This is necessary be­
cause the BMap of an extent can also be modified by the garbage collector. Hence,
both processes, tlie block allocator and the GC have to first get a lock on the BMap
before they can read/write to it. If the extent had been previously allocated, then
its header information in the extent catalog will indicate its last allocated block.
If this value is non-zero, the block allocator looks for unallocated blocks starting
from this block. A fixed-size list of the addresses of the unallocated blocks is com­
piled by the block allocator. In the current implementation, this size is set to 10,000
blocks, but it is a tunable value. For every block address that is included in the list,
its corresponding bit in the BMap is set indicating that it is no longer free. If a
garbage collector is executed at this time, then it would detect that these blocks are
not really in use and mark them as free in the BMap. Since the Parallax instance
using the extent is oblivious of the garbage collector, it could end up finally allocat­
ing the block from the pool although it is still recorded as available in the BMap.
To avoid such inconsistencies, the garbage collector needs to know the contents of
the block pool from an extent so that it can take them into account when reclaiming
blocks of the extent. Hence, every time a new pool of blocks is created, the block
allocator writes the contents of the block pool in the extent metadata, which is then
used by the garbage collector.

The Parallax instance stores the free-list in memory and uses it to allocate disk
blocks until the list is exhausted. When the free-list is close to getting exhausted,
the block allocator repeats the above process starting from locking the BMap, and
looks for free blocks from the point where it had stopped the last time. If there are
no more free blocks in the extent, then the extent is marked as full, unlocked and
another extent is allocated to the Parallax instance.

When the Parallax instance is shutting down, it first unlocks its allocated data
and metadata extents. This involves the following:

1) Lock the BMap of the extent and unmark all blocks that were not used from
the free list.

3) Write the address of the last allocated block in the extent catalog.
4) Calculate the number of free blocks in the extent by scanning the BMap and

note it in the extent catalog.
5) Unlock the BMap.
4) Reset the lock status of the extent in the extent catalog.
If a Parallax instance crashes, it will not be able to unlock the extents and

because the free-list is only maintained in memory, any unused blocks will remain

Read-only bit

n 1 1 4 6 7 62 63

Address bits
Super-page bit

Figure 5.1: Address bits in a radix tree node

marked on the BMap of the extent. The extents can be unlocked manually using a
simple script. The unallocated blocks will be reclaimed eventually by the garbage
collector as explained in Section 5.6.

5.3 Superpages

As explained in Section 3.3, superpages are specially laid out virmal disks. It
is easier to defragment a part of VDI rather than degragmenting tlie whole VDI.
Hence, we start by defragmenting just the lower levels of the VDI radix tree, also
called as VDI subtrees. Thus, a superpage can also be just a part of the virhial
disk, instead of the whole virtual disk. We use two heuristics to choose candidate
VDI subtrees. The first heuristic is to choose VDI subhees with a large number
of references to them. Another heuristic is to choose those VDI subtrees that are
accessed relatively more often and hence will benefit with reduced overhead in
address fi-anslation and disk seek.

Given the root of a VDI subtree, there are two steps in converting it to a su­
perpage. In the first step, as described in Algorithm 1, we find a contiguous piece
of the blockstore into which the pages of the VDI subtree can be remapped. The
address to which a block is to be remapped is stored in the metadata of the extent
in which the block occurs. After the pages are copied to their new locations, their
remap addresses in the extent metadata are set to -1. This is to help the free space
défragmenter recognize superpage blocks in an extent. The third step is to change
all references to the old locations so that they point to the new locations. I'his is
accomplished by the Remapper as described in Section 5.5.

5.4 Free space defragmentation

This module defragments the free space in an extent. Ordinarily, one can try to
come up with a scheme to remap pages in an extent, such that one has to do mini-

Algorithm 1 Parallax's Superpage Remapper
1. MaxSize = Calculate maximum size of VDI subtree
2. Superpage_Extent = Scan Extent_Catalog for an unused extent
3. If (Superpage-Extent == NULL)

Superpage_Extent = Scan extent catalog for an unlocked extent with MaxSize empty blocks
Else (Report Failure)
4. if (Superpage_Extent)

Lock Superpage_Extent
if (MaxSize blocks are not contiguous)

Response = Call FreeSpace_Defragmenter to Defragment SuperpageJExtent
if (Response == Failure)

Go to Step 3.
5. List_Extents = Create a list of extents spanned by the pages of tlie VDI subtree.
6. Write remap addresses in the remap space of extents in List_Extents.
7. Copy pages from VDI Subtree to Superpage_Extent.
8. Mark remap addresses = -1 for each superpage block.
9. Execute Remapper for every extent in List_Extents.

mum number of remap operations to get the largest contiguous chunk of the extent.
However, if any of tlie pages in the extent belong to a superpage, then reampping
them would mean that we are destroying the original superpage to make another
new one. The benefits from the new superpage could be more than the old one.
However, as of now, we do not have any means to compare such benefits. Hence,
by default, superpages are not remapped to make a new superpage. If a block is a
superpage block, then its remap address is set to -1. The free space défragmenter
will not remap these blocks. As of now, we follow a naive approach to come up
with a remapping scheme. The défragmenter looks at the block allocation map
and remaps allocated blocks (except superpage blocks) starting from the end of the
extent to any available blocks from the beginning of the extent. Thus, it tries to
create a contiguous piece at the end of the extent. The address to which a block is
remapped is stored in the remap space of the extent metadata and the block con­
tents are copied to the new location as well. If the block has a writable pointer to
it, then it will be recopied during the remapping process. The algorithm for free
space defragmentation is described in Algorithm 2.

Type : Mei^ ta

.20

Type : Di t i Type : DiU

Figure 5.2: Example of superpages

5.5 Remapper

As discussed in Section 5.4 and Section 3.3, once the block remappings have been
recorded in tlie extent headers, the next step is to change all references to the old
locations so that they point to the new locations. This is done by the Remapper.
It works on a per extent basis. If a block is writable, then it will have only one
radix page pointing to it, whose entry will have to be modified for correct future
accesses. But, if a block has at least one read-only pointer to it, then there is a dis­
tinct possibility that there may be many other such pointers. Once all these pointers
have changed, the remapped page will be reclaimed by the garbage collector (even-

Algorithm 2 Parallax's Free Space Défragmenter
1. Lock Defrag_Extent
2. Lock the BMap of Defrag.Extent.
3. Scan the BMap from the end for allocated blocks.
4. For every allocated block

If remap address != -1
4.1 Write remapping to remap address.
4.2 Copy block contents to new location.
4.3 Set the corresponding bit in the BMap.

5. Execute Remapper for Defrag-Extent.

tually).
Finding writable pointers to blocks is relatively trivial. Given the VDI joumal

in the extent, the Remapper only has to search for references to blocks in die radix
pages of the VDIs recorded in the joumal. Since these are writable blocks, they
cannot be modified trivially by the Remapper. If the VDI is already owned by a
Parallax instance, then the remapper delegates the actual modification of the blocks
to the Parallax instance. It provides die Parallax instance with the following infor­
mation: address of the radix node, value of die entry to be changed, new value of
the entry, indication if the disk block needs to be copied to the new address. If the
Parallax instance loses ownership of the VDI, it returns an appropriate error code.
The remapper then rechecks the ownership of die VDI. If the VDI is unowned, it
takes ownership itself and modifies the radix blocks. Else, it contacts the respective
Parallax instance.

Finding all read-only pointers involves a little more work. A block that has a
read-only pointer can only occur in a snapshot. A block in a snapshot will have
pointers in radix blocks of the snapshot, the VDI of the snapshot and any VDIs diat
were created by cloning any snapshots of the VDI (and their snapshots).

Hence we have to scan the following for pointers:
I) VDIs that had allocated pages from the extent (VDI id joumal). 2) Snapshots

of all VDIs included in 1. 3) Al l VDIs that were cloned from snapshots included
in 2. 4) Snapshots of VDIs included in 3. 5) Any VDIs that were cloned from the
snapshots included in 4 and so on.

The algorithm for remapping read-only pages in an extent is in Algorithm 3. In
Step 1, the remapper compiles a list of all VDIs that might have pointers to pages
in die extent being remapped. In Step 2, using a single sequential pass of the VDI
id journals of all metadata extents, the remapper compiles a list of extents spanned
by these VDIs. A Reachability Map (RMap) records which pages belong to the
VDIs (or their snapshots) diat were recorded in Step 1. The remapper can only
modify entries of radix pages that are read-only themselves. Hence to keep track
of which radix pages are read-only, it uses another bitmap called the Read-Only
bitmap (ROMap). This is an in-memory bitmap that is maintained for every extent
included in the list compUed in Step 2. If a bit in the ROMap is set, it implies
that the corresponding block in the extent is read-only. In Step 3 the RMaps and
ROMaps are initialized to zeros. In Step 4, the Remap-space in the extent header
is read into memory. Using the RMaps and the ROMaps, die remapper changes all
old locations to point to the new locations. Initially, only the radix roots of VDIs
and their snapshots are marked as in the RMaps and only the snapshots are maked
in the ROMaps. Subsequent passes mark blocks that are reachable from these radix
roots and so on. For every page that is marked in the RMap, we check if any of
its entries are within the address range covered by the extent being remapped. If

an entry does belong to the extent, then we can index into its corresponding entry
in the Remap space to check if it needs to be remapped. If any matches are found,
they are suitably modified and the modified page is written back to disk. All final
entries in die radix page are marked in die RMaps and ROMaps accordingly. This
process is repeated for every level of the radix tree and each time the entire RMap
and ROMap is scanned. At the end of the process, all read-only radix pages point
to the new locations.

Algorithm 3 Parallax's Read-Only Remapper
Remap_Extent = Id of extent to be remapped.
1. VDLList = List of all VDIs diat could have pointers to blocks in Remap_Extent.

1.1 VDI_List = All VDI ids in VDI id joumal of Remap J3xtent.
1.2 Repeat : VDIXist-Lengdil = length of VDLList.

VDIXist += Al l VDIs cloned from VDIs in VDI_List.
VDIXistXengdi2 = length of VDIXist.

UatiliVDIMst.Length2 > VDI.ListXengthl)
4. For each VDI in die VDLList:

If die VDI is not marked as deleted :
Mark the position of radix root in the RMap.
For each snapshot that is not marked as deleted:

Mark its radix root in the RMap.
Mark its radix root in the ROMap.

5. Remap.Table = Remap space of Remap_Extent
6. Mark all New_Locations in Remap.Table in respective RMaps.
7. For each marked entry in an RMap

If die corresponding entry in ROMap is marked :
Check if any entries in the page need to be remapped

If matches are found, the entries are modified
and the page is written back to disk.

Mark all pages (on RMap) that it points to.
Mark all pages (on ROMap) to which it has read-only pointers.

8. Repeat step 7 for each level in the radix tree.

5.6 Garbage collection

Parallax nodes are free to allocate new data to any free blocks within their locked
extents. Combined with die copy-on-write nature of Parallax, this makes deletion

Algorithm 4 Parallax's Writable Remapper
Remap_Extent = Id of extent to be remapped.
1. VDLList= List of allVDIs in VDI Journal of Remap_Extent.
2. Remap-Table = Remap space of Remap_Extent
.3. For each VDI in VDLList:

If VDI is not owned by any Parallax instance, lock it.
Traverse only writable links in the radix tree depth-first order
Read the radix page into memory.

Compare all entries in the page with the entries in Remap.Table.
If matches are found.VDI owner executes:

If pointer is read only :
UpdateParent(ParentNode, FromAddress, ToAddress)

If pointer is writable :
UpdateParentAndRelocate(ParentNode, FromAddress, ToAddress)

4. Repeat step 3 for each level in the radix tree.

a challenge. Our approach to reclaiming deleted data is to have users simply mark
radix root nodes as deleted, and to then run a garbage collector that tracks metadata
references across the entire shared blockstore and frees any unallocated blocks.

Parallaxs garbage collector is described as Algorithm 5. It is similar to a mark-
and-sweep collector, except that it has a fixed, static set of passes. This is possible
because the maximum length of any chain of references in the VDI is equal to
the height of the radix trees (which is currently 3). As a result we are able to
scan the metadata blocks in disk order rather than follow them in the arbitrary
order that they appear in the radix trees. The key data structure managed by the
garbage collector is the Reachability Map (RMap), an in-memory bitmap with one
bit per block in the blockstore; each bit indicates whether the corresponding block
is reachable. A significant goal in the design of the garbage collector is that it
interfere as little as possible with the ongoing work of Parallax. While the garbage
collector is running. Parallax instances are free to allocate blocks, create snapshots
and VDIs, and delete snapshots and VDIs. Therefore the garbage collector works
on a checkpoint of the state of the system at the point in time that it starts. Step
1 takes an on-disk read-only copy of all block allocation maps (BMaps) in the
system. Initially, only the radix roots of VDIs and their snapshots are marked
as reachable. Subsequent passes mark blocks that are reachable from these radix
roots and so on. In Step 5, the entire RMap is scanned every time. This results
in re-reading nodes that are high in the tree, a process that could be made more
efficient at the cost of additional memory. Every Parallax instance grabs a pool of

Algorithm 5 Parallax's Garbage Collector
1. Checkpoint Block Allocation Maps (BMaps) of extents.
2. Initialize all ReachabiUty Maps (RMaps) to zeros.
3. For each VDI in the VDI registry :

If VDI is not marked as deleted :
Mark the position of radix root in the RMap.
For each snapshot in its snaplog

If snapshot is not marked as deleted:
Mark its radix root in the RMap.

4. For each metadata extent :
Scan its RMap, if a page is marked:

Mark all pages (on RMap) that it points to.
5. Repeat step 4 for each level in the radix tree.
6. For each VDI in the VDI registry:

If VDI is marked as not deleted :
Mark each page of its snaplog in its RMap.

7. For each extent:
Lock the BMap.
If the extent is locked by a Parallax instance

Read the block pool from the extent metadata.
Mark the block addresses in the pool as reachable.

For each unmarked bit in the RMap:
If it is marked in the BMap as well as in the
checkpointed copy of the BMap :

Unmark the BMap entry and reclaim the block.

blocks (currently 10,000) for future allocations. Although these blocks are marked
as allocated in the BMap, at any given time, several of them would be in fact
waiting allocation and hence not reachable. The block addresses in the free pool
are written to extent metadata after every run of the block allocator as explained
in Section (5.2). To avoid reclaiming these blocks, the garbage collector reads
their addresses from the extent metadata and marks them as reachable. Hence,
even though these blocks are marked as allocated in the BMap and its checkpoint
and are also not reachable, they are still not reclaimed. All other blocks tliat were
marked as allocated in the checkpoint taken in Step 1 are considered as candidates
for deallocation by the collector (see Step 7). The only time that the collector
interferes with ongoing Parallax operations is when it updates tlie (live) allocation
bitmap for an extent to indicate newly deallocated blocks. For this operation it must
coordinate with the Parallax instance that owns the extent to avoid simultaneous
updates, thus the BMap must be locked in Step 7. Parallax instances claim many
free blocks at once when looking at the allocation bitmap (currently 10,000), so
this lock suffers little contention.

5.7 Evaluation

In this section, we will look at the performance of garbage collection, extent defrag­
mentation, read remapping and write remapping. In all tests, I used IBM eServer
x306 machines, each node including a 3.2 GHz Pentium-4 processor, 1 GByte of
R A M , and 3 Intel el000 GbE network interfaces (only one interface is active during
the tests). Storage is provided from a NetApp FAS3070 4 exporting an iSCSI LUN
over gigabit links. The filer is accessed in all cases using the Linux openiSCSI
software initiator (v2.0.730, and kernel module v l . l - 646) running in domain 0.
Al l development was done against Xen 3.1.0 as a base.

5.7.1 Garbage collector

Since the Parallax garbage collector works via sequential scans of all metadata
extents, the performance of the garbage collector is determined by the speed of
reading metadata and the amount of metadata, and is independent of both the com­
plexity of the forest of VDIs and their snapshots and the number of deleted VDIs.
Weve run the garbage collector on full blockstores ranging in size from 10GB to
50GB, and its performance is perfectly linear at a rate of 1.03GB/sec as show in
Figure 5.3. The performance of the per-extent garbage collector is also mostly
linear as shown in Figure 5.4.

Given a blockstore, the relative cost (time per GB) is expected to be higher for

Garbage collector Performance

5 -

0 -I 1 1 1 1 r
0 10 20 30 40 50

Data Size (GB)

Figure 5.3; Performance of global garbage collector

the per-Extent GC. This is because the per-Extent GC has to do the extta work of
calculating the subset of VDIs that need to be scanned. Also, it is possible that sev­
eral VDIs that are scanned have very few pages in die extent that is being garbage
collected. In spite of that, all blocks of the VDI will be checked for reachability.
Whereas, In the case of the global garbage collector, every block that is marked
contributes to the progress of die process.

5.7.2 Extent defragmentation

The defragmentation process involves copying disk pages from one end of the ex­
tent to a free slot on the other end of the extent. In the worst case, the extent could
be fragmented such diat the first half is unused and the odier half is allocated. This
would require copying the allocated half of the extent to die unallocated half, one
disk block at a time. This will incur a number of disk seeks back and forth across
the extent. This is die test case for evaluating die defragmentation process and the
results are as shown in Figure 5.5. It has been evaluated for different extent sizes (
2GB - 10GB). It only shows the worst case performance. Defragmentation can be
optimised in a number of ways hke implementing smarter schemes for rearranging
disk blocks such that it requires minimum copying and batching reads and writes

2 3 4 5 6 7 8 9 10

Figure 5.4; Performance of per extent garbage collector

of disk blocks.

5.7.3 Read remapping

The workings of Read remapping are very similar to that of garbage collection.
Read remapping gathers a list of all VDIs that could have pointers to blocks in an
extent. However, unlike the garbage collector, it only traverses read-only links and
checks the third level of the radix tree to see if it points to a block in the extent
being remapped and if it needs remapping, then it changes the entry in the radix
page to the new entry. If any changes are made to a radix block, it is written back
to disk after all its entries have been checked. Hence, read remapping involves
linear scans of a few metadata extents. It was evaluated by remapping extents
whose remap tables were generated by defragmenting the extents as mentioned
in Section 5.7.2. After defragmenting the extent, all VDIs with pointers in the
extent were snapshotted to render all their pages read-only. Read remapping is
then executed to change the pointers in the radix block of these VDIs to the new
addresses recorded in the remap table. The performance is again mostly linear as
shown in Figure 5.6.

Figure 5.5: Performance of extent defragmentation

5.7.4 Write remapping

The remap tables generated from defragmenting extents in Section 5.7.2 were used
to test write remapping. The write remapper gathers a list of all VDIs that have
pointers to blocks in the extent and then traverses only the writable links and checks
if they need remapping. If an entry needs to be changed, it is changed in the radix
block and the coiTesponding disk block is also copied to the new location. In case
the VDI is locked by another parallax instance, these changes have to be delegated
to the parallax instance. However, the cuiTent evaluation assumes that the VDI is
not locked. The performance of the write remapper is as shown in Figure 5.7.

5.8 Summary

The metadata services implemented thus far can successfully defragment and remap
extents in the blockstore. Better defragmentation schemes should definitely help in
reducing the rearrangement of disk blocks and it would help if the extents are de­
fragmented regulariy. Schemes for defragmenting storage have been in the works
since a long time. In the next .section we will survey some existing storage systems
and their mechanisms for defragmentation and remapping.

5 6 7
BlocK Eicjem iGBi

1

Figure 5.6: Performance of read remapper

200
5 6 ; 10

Figure 5.7: Performance of write remapper

Related work

This chapter is a brief survey of existing storage virtualization systems and their
methods to garbage collect, defragment and dedup the storage pool. Broadly, they
can be categorised into volume managers and file systems. For each system, we
will look at how they store and maintain their metadata. In particular we will look
at how they implement delete (deleting a file/virtual disk or garbage collection) and
defragmentation, since both are crucial operations in any storage system. While
deduping is not exactly a must-have feature, it is certainly a huge cost-cutter and
any competing backup system today is trying to implement it [11]. Hence, we will
also look at some popular storage solutions that offer deduping.

6.1 Volume managers

The Logical Disk (LD) Interface [21] uses the notion of separating file management
from disk management. The file system would manage files and interact with LD
via logical block numbers and Block lists. LD translates the logical block numbers
to physical block numbers using a Block-number Map which is kept in memory.
If a file system puts the blocks of a file (including file metadata) on a block list,
then LD can do file defragmentation by placing these blocks physically together on
disk. The process would be totally file system agnostic, because the logical block
numbers would remain unchanged. Garbage collection, on the other hand, would
be dictated by the file system. For example, in a SpriteLFS [18] implementation
of LD, the disk is divided into fixed-size logical segments. Segment Cleaning is
SpriteLFS's version of garbage collection and is carried out by LD.

The Petal [12] system aims at separating tlie view of a distributed storage sys­
tem from the management of physical resources that implement it. Petal virtual-
izes a given pool of commodity disks and servers, and presents virtual disks to
the distributed file system. One can add or remove physical disks/servers and take
snapshots of these virtual disks. These operations are all file system agnostic. Petal
clients work with virtual disk addresses of the form < vitual-disk identifier, oJfset>
which are translated to <ser\>eridentifier,diskidentifier,diskoffset>. The translation
is carried out with the help of tliree important data shoictures: a virtual disk direc-

tory (VDir), a global map (GMap), and a physical map (PMap). The maintenance
of these data-structures is designed to tolerate server/disk failures. The VDir gives
the location of the server that has the GMap for the virtual disk. The GMap has in­
formation about which servers are spanned by the virtual disk and the PMap gives
the actual translation of a virtual diskoffset to its corresponding physical disk id
and physical diskoffset.

Petal has two schemes to take snapshots. The first scheme creates consistent
disk images, but this requires that all client applications be paused for a period
less than a second. If the pause is unacceptable, dien Petal can create a snapshot
that would create a disk state similar to a disk-image that would be left after an
application has crashed. Running a utility like fsck should bring the disk back to a
consistent state. All read requests are then translated to the latest epoch number of
the virhial address. To do diis, the address translation mechanism adds a new piece
of information, the epoch number. The epoch number records the version of each
disk page that ends up associating it eidier with a particular snapshot of the virtual
disk or the virtual disk itself. Al l writes are done to the current epoch number of the
virhial disk, using Copy-on-write operations. These CoWs can fragment the virhial
disks badly, since every write to a disk page from an earlier epoch will cause Petal
to write the page with the new content to a new location with die current epoch
number. Petal does not have a garbage collector to take care of deleting snapshots
and/or virtual disks.

Peabody [9] was the next step in storage virmalization. It is a network block
storage device diat exposes virtual disks. Unhke Petal, Peabody is unconcerned
with the management of physical resources. Peabody uses an iSCSI initiator as
the backend storage and carves out virtual disks whose sectors are continuously
versioned so that any previous state can be recovered. However, maintaining trans­
action logs of every disk-write and versions of every sector imposes a huge storage
overhead. To reduce this overhead, Peabody maintains a sector store. The sec­
tor store is the actual storage for the virtual disk. There are several mediods to
implement the sector store. If it is implemented as a contiguous physical piece
of the LUN, then there would be no fragmentation (at the level of virtual disks)
and the file-system can address the sectors by their physical addresses. However,
it also excludes any opportunity for sharing sectors among virtual disks. Another
alternative is to implement an address translation mechanism for each virtual disk
using a BTree. The would result in fragmenting the virtual disks across the LUN
and also incurs address translation costs. However, it does allow sector sharing
among virtual disks which would be a significant cost saver. An MD5 hash of each
sector is stored to identify sectors with similar content. A hybrid scheme would
probably be better. Some virtual disks could be implemented as contiguous pieces
of the LUN, and if there was sufficient benefit, then some other virtual disks could

be implemented using the virtual addressing scheme. We don't know if this was
ever implemented and/or evaluated, but it did set the stage for deduping. Peabody
also had a garbage collector that could reclaim all sectors that belonged to ver­
sion numbers that were no longer required. However, it could leave the disk in an
inconsistent state, since it was not integrated with file-system consistency checks.

Clotho [4] is a block storage abstraction layer that provides data versioning. It
can be plugged in the Linux block I/O heirarchy in a single machine, a clustered
I/O system, or a SAN. Higher layers (e.g., file system, volume managers etc.) in­
teract with it like it is a standard block device driver. Other block absfraction layers
(e.g., RAID) could be plugged under Clotho. Clotho divides the block device into
two logical Segments, the Primary Data Segment and the Backup Data Segment.
Versioining is done at an extent level. The size of an extent could be larger than
the standard block size. File systems refer to data by logical block numbers that
are converted to physical block numbers using a textitLogical Extent Table(LXT).
The primary data segment stores the latest version of the disk, while the backup
data segment stores all earlier versions. The data in the backup data segment is
strictly read only and would be required only in case of data recovery or histori­
cal analysis operations, which are less frequent. Hence, in order to reduce address
translations for reading or writing the primary data segment and to avoid fragment­
ing it, the LXT is divided logically into the primary LXT and the backup LXT. In
the primary LXT, a 1-1 correspondence is maintained between the logical extents
and the physical extents in the LXT. Thus, only one lookup of the primary LXT is
required to convert logical block numbers to physical block numbers. Every time
a COW operation is done to preserve an older version of an extent, the older copy
is moved to the backup data segment and the corresponding metadata is updated in
the backup LXT.

Clotho has automatic garbage collection in the form of the DeleteVersion()
function. Clotho traverses the primary LXT segment and for every entry that has
a version number equal to the delete candidate, changes the version number to the
next existing version number. It then traverses the backup LXT segment and frees
the related physical extents. One can also dedup or compress extents belonging
to different versions in the backup data segment in order to reduce the storage
overhead.

The FAB (Federated Array of Bricks} [19] project provides a distributed disk
array with reliable access to logical volumes. It is built from commodity hard­
ware like disks, CPU and N V R A M , all connected by standard networks such as
Ethernet. One can start building the system with a few bricks and increase it to
several hundred bricks. Since it all requires just commodity hardware, the cost is
kept minimum even with 3-way replication. However, due to high risk of com-

ponent failure, they have implemented a quonim system to co-ordinate operations
like snapshot creation/deletion [10], rephcation, erasure coding, etc. To facilitate
reconfigurations and recovery from failures, even the quorum system is designed
to be dynamic.

In FAB, the unit of data distribution is a segment and its size is 256MB. A
segment group is the unit of redundant storage. A volume is defined as a collection
of segment groups. A volume can span a number of bricks. Snapshots are called
versions and they represent the state of a volume as it was at a certain time. It
is a consistent state. Each snapshot and current version of a volume has its own
map, which defines the logical address to physical address mapping. Al l maps
are connected by bi-directional links and are used for address-translation and for
merging maps in deletion scenarios. When a write is attempted to a data block in a
snapshot, the new data block is written to a new location and the physical map of
the current version is updated to reflect the change. Thus, as more and more blocks
are modified, the volume also gets increasingly fragmented.

In order to create and delete snapshots, a voting system is used in which a ma­
jority of the bricks have to agree on whedier the snapshot exists in the system and
on a timing order for the operation to appear in the globally serializable sequence
of snapshot/data operations. To create a snapshot, each participating brick creates
a new map with the current timestamp and makes the current volume point to it.
Any new writes after diat will now be reflected in this new map. To delete a snap­
shot, each brick merges the content of the map to be deleted (excluding its private
map) into its next map and removes the map from die linked list. If a quorum
can't be reached, the operations are aborted. One need not pause applications to
create/delete snapshots.

The Logical Volume Manager (LVM) [24] is another volume management sys­
tem. They are popular with both home and production systems. There are two
versions of LVM: L V M l and LVM2. One can create volume groups (VG) online
from an existing set of physical volumes (PV). These VGs can be resized by ab­
sorbing or deleting physical volumes. The resizing is done at the granularity of
extents (concatenating or truncating extents), whose size has to be defined. One
can also move a VG across the physical volumes and spilt or merge two VGs. To
manage these operations, the L V M keeps a metadata header in the head of every
physical volume. Each physical volume header has complete information about
all volume groups, the identity of other physical volumes, logical volumes, and
allocation maps of logical extents to physical extents. Hence, even if one physical
volume is lost, all the system metadata can be recovered.

Using L V M l one can create read-only snapshots of logical volumes. Read-only
snapshots are implemeted by creating an exception table. It is used to keep track
of the blocks that have been changed. If a block is to be changed at the origin, it is

first copied to the snapshot, marked as copied in the exception table, and then the
new data is written to the original volume. If the exception table is as large as the
original volume, then the snapshot will always be consistent. Otherwise once the
table fills up, the snapshot becomes inconsistent. In order to delete the snapshot,
one only needs to delete the exception table.

Using LVM2, one can also create read-write snapshots. That is, if a block is
changed, then it is marked in the exception table as used, and it never gets copied
from the original volume. Thus, a read-write snapshot cannot be used for backup
and recovery. However, it does have other uses. One example is that one can mount
a read-v/rite snapshot, and try an experimental program that changes files on that
volume. In case the changes don't work, one can unmount the snapshot, discard
it, and mount the original volume in its place. It is like creating a gold template
that can be used to create volumes for use with Xen [3]. One can create a disk
image, then snapshot it and modify the snapshot for a particular domU instance.
The only storage used by a snapshot is blocks that were changed in the origin or in
the snapshot (exception table). Hence, the majority of the volume will be shared
by the domUs.

6.2 File systems

In this section, we will look at two lines of file systems research. The first kind are
those that snapshot the entire file system itself and the second kind are file systems
that maintain explicit versions of individual files and directories.

In order to snapshot an entire file system, the snapshotting/versioning mecha­
nism has to be incorporated into the basic design of the file system. It cannot be
plugged into an already existing file-system design. Example of such file-systems
are the Log structured file system (LPS), Write Anywhere File Layout (WAFL) by
NetApp and ZFS by Sun.

LFS [18] tries to optimize writes by ensuring that all writes are done sequen­
tially to a massive log-file. The entire disk is divided into segrtients, only one of
which is acdve at any given time. The log is written to this active segment. The
files and directories are identified by inode blocks and indirect inode blocks. This
concept has been borrowed from the FFS [15]. The difference is that, unlike FFS,
in LFS the inode blocks are not written to a fixed location on disk. Any changed
data blocks are written to the log. Subsequently, the inode blocks and any indirect
inode blocks that need updating are also written to the log. The locations of these
inodes are tracked using an inode map. A checkpoint is scheduled as frequently as
every 30 seconds, during which LFS writes the last knovra location of the inodes
into the inode map. This inode map is kept at two separate fixed locations on disk.

They are updated and used alternatively. Once written, the checkpointed inode map
represents the latest consistent image of the disk.

Unless the disk starts running out of segments, LFS will ideally have all ver­
sions of data and metadata. Hence, one could think of implementing some kind
of recovery system. However, LFS does not offer any such services. It is imper­
ative that segments should be available for re-use in case the disk starts filling up.
A garbage-collector called the LFS cleaner does the job of reclaiming sparse seg­
ments for reuse. To do so, the cleaner needs to know which blocks of the segment
are live and also which file these blocks belong to and where they occur in the file,
so that the appropriate inode blocks can be updated. The cleaner gets this informa­
tion from a segment summary that is maintained at die end of every segment. The
segment summary maintains information about each block in the segment, diat is
which file it belongs to and its block number in the file. The cleaner reads sev­
eral segment summaries into memory, gauges which segments have maximum free
space and cleans diem. Basically it copies out all live blocks into empty spaces
in other segments and updates die corresponding inode blocks and then marks the
cleaned segments as ready for re-use.

Thus, the only criteria for reclaiming blocks for die cleaner is that the segment
in which diey occur should be largely free. Hence, there is no guarantee regarding
which block versions are maintained and which are removed. One could possibly
think of more refined reclamation heuristics, basically designed such that important
versions of blocks are kept for a relatively longer time. However, this has not
been implemented in LFS as the primary aim was to free segments. Also, writing
out files in a log fashion results in a highly fragmented file-system. Even if files
were initially written sequentially, as they are updated, the updated blocks will be
written to possibly totally different segments and even the cleaner could move them
around, further away from the rest of the file. There are no utihties in LFS to solve
this problem.

Write Anywhere File Layout (WAFL) [8] [7] by NetApp is a file-system layout
that is designed specifically to work in an NFS apphance. The primary focus of
its design was intended to provide easy and fast snapshots of the entire file-system.
Like FFS, WAFL stores its file and directory metadata in inode blocks. However,
unlike FFS, these inode blocks are not stored on fixed locations on disk, but in
metadata files. It has three kinds of metadata files, those which store inodes, a
block-map file which identifies free blocks and an inode-map file that identifies
free inodes. Since the metadata is kept in files, they can be written anywhere
and can be of any size. This makes adding and removing disk capacity a trivial
operation.

WAFL is organized as a tree of blocks. At the root of diis ttee is a special inode
called the root inode. This root inode describes the inodes of die rest of the file

system, block-map files and inode-map files all included. This root inode is the
only entity that has a fixed position since WAFL needs it to boot the system and
find files/directories. To create a snapshot, WAFL simply replicates the root inode.
The new duplicate root inode will have read pointers to all inodes that the old root
inode pointed to. Any writes to old blocks will result in CoW operations on the
blocks. Thus the snapshot is preserved. When it is first created, it is created fast
and it occupies no more additional space than the old root inode. With more and
more writes, the snapshot diverges from the current filesystem.

Earlier, each block in WAFL was represented by 32 bits. When the block
was free, all bits were unset. If it was in use by tlie current file system, bit 0
was set. If it was in use by snapshot 1, bit 1 was set. Similary if it was in use
by the second snapshot, then bit 2 was set and so on. Hence, WAFL could not
support more than 31 snapshots. However, recently they released a new version
of WAFL that can support upto 255 snapshots. They do this using the method of
reference counting [14]. Inodes store not only a pointer to the block, but also its
associated reference count. This count cannot exceed 255. Using this method also
enabled them to incorporate deduping. NetApp calls this their Advanced Single
Instance Storage (A-SIS) deduplication. Basically, they maintain a database of
fingerprints(checksum) of every data block. Al l disk writes are intercepted and
the new fingerprints of the written disk blocks are recorded in a log. At a later
time, these logged fingerprints are compared with the ones in the database, and
if any matches are found, then the corresponding data blocks are deduped. Before
deleting a block as a duplicate, A-SIS does a byte-by-byte comparison to make sure
that the data is indeed the same. A-SIS can also be himed off anytime. However, A-
SIS does not differentiate between writable and read-only data. Hence, if a volume
is rapidly changing, then A-SIS could cause considerable performance overhead.

NetApp claims that WAFL fragments far slower than other file-systems and
in fact handles it better too. Whenever possible, WAFL writes adjacent blocks
of a file close to each other. As the disk gets used up, adjacent blocks may not be
available. It will still try to place them as close as possible. To facilitate this, WAFL
reserves 10% of extra disk space to increase the probability of finding adjacent
blocks. Writing data over a network generally has the disadvantage that it is broken
into smaller chunks anyways, but WAFL deals with this by first writing out the data
in N V R A M , and hence it can group writes together efficiently.

However, these optimizations should work well to avoid fragmentation so long
as no snapshots are taken. If snapshots are taken at a reasonable frequency, the
disk is bound to get fragmented anyways, in spite of all attempts to allocate close
to other file disk blocks. NetApp does provide a defrag utility, wafl scan reallocate,
that scans a volume and rewrites the latest version of the file blocks close together.
But it is recommended that the system be offline and have no snapshots in order

for the utility to be useful.
ZFS (Zettabyte File System) [17] [2] by Sun is a filesystem that claims to have

been designed from a scratch widi explicit support for transactions and snapshots.
However, their tree like data-structure representation of the file-system and inode
representation for files and directories seem very similar to those in WAFL. Every
disk-block in use by ZFS can be reached from the root node of the file-system
tree. This root node is called die uberblock. To take a snapshot, a copy of die
uberblock is made with all read-only pointers to the inode blocks below it. Every
write operation in ZFS results in a CoW operation. Hence, if one has ample disk
space, then one can rollback the whole filesystem as far as possible. ZFS is not
a distributed or a parallel file system. ZFS is a local file system and cannot be
accessed concurrendy from multiple hosts. ZFS has several good features like
replication of data blocks, storing a checksum with the block pointer which are
then used to recover data in case of corruption.

Recently, some concerns have been expressed regarding their garbage collec­
tion method [1]. Every block is tracked by its birdi and deadi - the first snapshot
in which it is referenced and the last one. When all snapshots between those two
times have been deleted, the block can be reclaimed. Every snapshot maintains
a hst of blocks that were deleted from it, that is they occur in earlier snapshots,
but not in this one. Every time a block is deleted from the main-line file-system,
a routine checks to see if it occurs in any of its snapshots. If it does occur in any
of the snapshots, then it is added to list of killed blocks. Odierwise the block is
reclaimed. The fact that it is reclaimed is written to a log-file that is maintained
expliciUy to record block allocations and final-deletions. This log is maintained for
logical partitions of the disk-space. Every once in a while, the log is replayed on
block bitmaps and dius updated to reflect any freed disk space.

The linear sequence of die snapshots is central to the management of disk space
in ZFS. A block can only be referenced by the main file-system or by one of its
snapshots. However, ZFS also gives the option to create a clone file-system from an
existing snapshot. Since ZFS supports only one local file-system, there can be only
one main-line file system. Creating the clone will create references to blocks which
violate the linear nature of references. If this clone is now made the main-line file-
system, dien there will be no accurate way to frack block lifetime. In fact, there is a
distinct possibility that one can end up with an undeletable snapshot that one can't
get rid of until all clones have been backed out. It is not clear whedier ZFS has
any utilities to combat long-term fragmentation. Although the claim is diat ZFS's
block allocation policies are designed so as to write file blocks as close as possible.
Yet, always writing out of place is certain to cause significant fragmentation.

6.3 Summary

As discussed above, each storage system has its own scheme of managing meta­
data. Depending on this scheme, each has its own way of managing the issue of
storage reclamation and fragmentation. Each scheme has its own advantages and
disadvantages. Parallax also has its own scheme of managing metadata. Accord­
ingly we have developed utilities for block reclamation and remapping to counter
fragmentation.

System Block / File Level Reclamation Defragmentation Deduping
Logical Disk Block Yes Yes Yes
Petal Block No No No
Peabody Block Yes Yes Yes
Clodio Block Yes Yes Yes
FAB Block Yes No No
L V M l Block Yes Yes No
LVM2 Block Yes Yes No
LFS File Yes No No
WAFL File Yes Yes Yes
ZFS File Yes Yes No

Future work and conclusion

Techniques to remap and reclaim disk blocks have been implemented for the Paral­
lax storage system. Using these tools, utilities to create superpages and defragment
free disk space in the blockstore have been implemented. All these operations work
only with the Parallax metadata and hence they have very little interference with the
normal operations of the Parallax instances. This along with tlie fact that utilities
work with disk blocks, makes them totally OS and file-system agnostic. Depend­
ing on the size of the blockstore, available memory resources and time constraints,
a system administrator can either use these tools on a blockstore-wide scale or run
them one extent at a time. Although we have a design for a de-duping mechanism
for the blockstore, due to fime constraints it has not been implemented yet. Im­
plementing this mechanism will definitely be an added benefit. Added to that the
fact that the global garbage collector gets to see the metadata of the entire block-
store, can be used to more advantage. One can develop a fingerprinting method
that will facilitate de-duping as well as data restoration. While scanning the block-
store for unreferenced blocks, the garbage collector can calculate the fingerprint of
each block. When the blocks become read-only these fingerprints can be used for
de-duping duplicate read-only blocks. The fingerprints can also be used to detect
data-corruption (for read-only disk blocks). Corrupted data can be restored from
backups. The existing utilities to defragment extents can be improved to use more
intelligent means of rearranging blocks in tlie extent so that minimum remapping
is required. Remapping writable disk blocks requires some co-operation from the
Parallax instances. One can work to make these requests to be of low priority to the
Parallax instances, so that the remapper does not interfere much with the normal
fimctioning of the Parallax instances.

Bibliography

[1] Limitations of zfs, http://marc.info/?l=linux-fsdevel&m=113243953111393&w=2.

[2] Zfs administration guide, http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf.

[3] P. Barbara, B. Dragovic, K. Fraser, S. Hand, T. HaiTis, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles., October 2003.

[4] M . D. Flouris and A. Bilas. Clotho: Transparent data versioning at the block i/o level.

[5] K. Fraser, S, Hand, R. Neugebauer, 1. Pratt, A. Warfield, and M . Williamson. Safe
hardware access with the xen virtual machine monitor. In Proceedings of the 1st
Workshop on Operating System- and Architectural Support for the On-Demand IT
Infrastructure (OASIS-1 j , Oct. 2004,

[6] D, h T, Meyer, G, Aggarwal, B, Cully, G, Lefebvre, M , hael J, Feeley, N . C, H,
hinson, and A, Warfield, Parallax: virtual disks for virtual machines, SIGOPS Open
Syst. /?É'v,,42(4):41-54, 2008,

[7] D, Hitz, J, Lau, and M , Malcolm, File system design for an nfs file server appliance,
http://www,netapp,com/library/tr/3002,pdf,

[8] D. Hitz, J, Lau, and M , Malcolm, File system design for an NFS file server appliance.
In Proceedings of the USENIX Winter 1994 Technical Conference, pages 235-246,
San Fransisco, CA, USA, 17-21 1994,

[9] C. B. M . Ill and D. Grunwald. Peabody: The time travelling disk. In Proceedings
of the 20 th lEEE/11 th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSS03), 2003.

[10] M . Ji. Instant snapshots in a federated array of bricks. In Technical Report HPL-
2005-15, HP Laboratories, 2005.

[11] Joe Spurr. Deduping: an essential backup tool in the data center?
http;//searchdatacenter,techtarget,com/originalContent/0,289142,sid80.gcill92939,00.html,

[12] E, K, Lee and C, A, Thekkath, Petal: Distributed virtual disks. In The Proceed­
ings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1996,

[13] J, LeVasseur, V. Uhlig, J, Stoess, and S. Gotz, Unmodified device driver reuse and
improved system dependability via virtual machines. In Proceedings of the 6th Sym­
posium on Operating Systems Design & Implementation (OSDI2004), pages 17-30,
2004,

http://marc.info/?l=linux-fsdevel&m=113243953111393&w=2
http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf
http://www,netapp,com/library/tr/3002,pdf

[14] B. Lewis. A-sis: Deduplication comes of age.
http://www,netapp.com/news/techontap/dedupe.html.

[15] M , K. Mckusick, W. N . Joy, S. J. Leffler, and R. S. Fabry. A fast file system for unix.
In ACM Transactions on Computer Systems, Vol. 2, No. i , pages 181-197, 1984.

[16] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M . J. Feeley, N. C. Hutchinson,
and A. Warfield. Parallax: Virtual disks for virtual machines. In Proceedings of the
ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys '08),
April 2008.

[17] O. Rodeh and A. Teperman. zfs - a scalable distributed tile system using object
disks. In MSS 'Oi.- Proceedings of the 20 th IEEE/11 th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSS'03), page 207, Washington, DC,
USA, 2003. IEEE Computer Society.

[18] M . Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles and the February 1992 ACM Transactions on Computer Systems.,
February 1992.

[19] Y, Saito, S. Frlund, A. Veitch, A. Merchant, and S. Spence. Fab:
Building distributed enterprise disk arrays from commodity components.
http://hpl.hp.comyresearch/ssp/papers/2004- 10-ASPLOS-FAB.pdf, 2004.

[20] A. Warfield. Virtual Devices for Virtual Machines. PhD thesis, University of Cam­
bridge, 2006.

[21] Wiebren de Jonge and M . Frans Kaashoek and Wilson C. Hsieh.
The Logical Disk; A New Approach to Improving File Systems.
http://www.cs.utah.edu/ wilson/papers/logical-disk.pdf.

[22] Wikipedia.org. Fragmentation Overview. http://en.wikipedia.org/wiki/Fragmentation.computer.

[23] Wikipedia.org. Garbage collection Overview.
http://en.wikipedia.org/wiki/Garbage.collection.computer_science.

[24] Wikipedia.org. Logical Volume Manager (Linux). http://en.wikipedia.org/wiki/I^vm.

http://www,netapp.com/news/techontap/dedupe.html
http://hpl.hp.comyresearch/ssp/papers/2004-
http://www.cs.utah.edu/
http://Wikipedia.org
http://en.wikipedia.org/wiki/Fragmentation.computer
http://Wikipedia.org
http://en.wikipedia.org/wiki/Garbage.collection.computer_science
http://Wikipedia.org
http://en.wikipedia.org/wiki/I%5evm

Statement of co-authorship

All material in Chapter 2 is included only to provide the background necessary to
understand the rest of the thesis. It is entirely composed of excerpts from [6].

I

