
Graphically Enhanced Keyboard Accelerators for GUIs

by

Jeff Hendy

B.Sc., The University of Arizona, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

December 2009

© Jeff Hendy, 2009

 ii

Abstract

We present the design and evaluation of Graphically Enhanced

Keyboard Accelerators (GEKA), a user interface interaction method allowing

commands within a graphical application to be quickly and easily invoked

through the keyboard. The high-level goal of this work is to make interactive

desktop computing more pleasant and productive for experienced computer

users. GEKA is designed to provide complete coverage of the command set,

to require low visual demand, and to support ease of learning and

remembering, a low error rate, and high speed. This thesis describes GEKA's

design and two related user studies.

A formative study with 10 participants explored how our target users

currently work with Window, Icon, Menu and Pointer (WIMP) interfaces. The

results of the study suggest that advanced computer users prefer to execute

commands with the keyboard. However, they are often unable to do so in

current applications because shortcuts are not available for all commands or

are unknown. This indicates a desire among advanced users for a GEKA-like

interaction method and motivates our research.

GEKA’s design blends elements from WIMP and command line

interfaces, allowing commands to be entered quickly and precisely while

shifting the focus of the interaction to recognition rather than recall. GEKA

has three key improvements over existing text command systems with

graphical feedback: support for multiple parameters in arbitrary order, smarter

matching – including abbreviations for all commands, and clear visual

feedback of the input characters to facilitate learning and re-use.

A laboratory experiment with 12 participants compared GEKA to

WIMP interaction methods. We found error rates to be nearly identical and

speed to be very competitive. The experiment also explored users’

preferences: When given a choice in situ between WIMP and GEKA for

actual command execution, participants overwhelmingly used existing

 iii

keyboard shortcuts when they knew them and used GEKA when they didn’t.

In a questionnaire, each type of GEKA command was rated better than its

WIMP equivalent except for zero-parameter GEKA commands relative to

keyboard shortcuts. These results suggest that our target user population has a

strong preference for GEKA interaction over the mouse-based WIMP

methods.

 iv

Contents

 ABSTRACT ..ii

 CONTENTS...iv

 LIST OF TABLES ...vii

 LIST OF FIGURES ..viii

 ACKNOWLEDGEMENTS..xi

 DEDICATION ..xii

1 INTRODUCTION ..1

1.1 WINDOWS, ICONS, MENUS, AND POINTERS (WIMP)2
1.1.1 Menu bars...2
1.1.2 Toolbar buttons and drop-downs4
1.1.3 Context menus ..5
1.1.4 Keyboard shortcuts and mnemonics6
1.1.5 Dialog boxes...7

1.2 THE GUI GAP...8
1.3 GRAPHICALLY ENHANCED KEYBOARD ACCELERATORS..........9
1.4 OVERVIEW OF THE THESIS ..11

2 RELATED WORK ..12
2.1 EXISTING INTERFACE PARADIGMS ..12

2.1.1 Graphical user interfaces...12
2.1.2 Command line interfaces..14

2.2 COMPARING WIMP AND CLIS ..16
2.3 OTHER APPROACHES TO WIMP AND CLI PROBLEMS18

2.3.1 Adaptable and adaptive GUIs ..18
2.3.2 Search...19
2.3.3 Improvements to command line interfaces.......................21

2.4 LITERATURE SUPPORTING KEYBOARD INTERACTION..............22
2.5 RELATED APPLICATIONS ...22

 v

3 FORMATIVE STUDY ..26
3.1 PHASE 1 TASKS ..27
3.2 PHASE 2 TASKS ..30
3.3 APPARATUS ...32
3.4 PARTICIPANTS ...32
3.5 PROCEDURE ...33
3.6 RESULTS ..33

3.6.1 Phase 1 ...33
3.6.2 Phase 2 ...38

3.7 LIMITATIONS ...40
3.8 DISCUSSION AND CONCLUSIONS..41

4 GEKA DESIGN AND PROTOTYPES42
4.1 GOALS..42

4.1.1 GEKA vision ...42
4.1.2 Prototype goals ..43
4.1.3 Long term goals..44

4.2 PROTOTYPE DESIGN...45
4.2.1 GEKA command language ...46
4.2.2 GEKA graphical feedback..49

4.3 DESIGN DISCUSSION..62
4.4 DESIGN LIMITATIONS...63

5 LABORATORY EXPERIMENT ...68
5.1 EXPERIMENTAL ENVIRONMENT AND TASKS............................68

5.1.1 Commands ..69
5.2 TASK ..71
5.3 PARTICIPANTS ...74
5.4 PROCEDURE ...75
5.5 PILOTING ...76
5.6 DEPENDENT MEASURES...77
5.7 MOTIVATION ...78

 vi

5.8 HYPOTHESES..79
5.9 DESIGN ..79
5.10 RESULTS ..80

5.10.1 Time ..80
5.10.2 Errors ...85
5.10.3 Method choice ..85
5.10.4 Qualitative findings ..86
5.10.5 Summary of results ...90

5.11 DISCUSSION ...90

6 CONCLUSIONS AND FUTURE WORK93
6.1 DISCUSSION AND LIMITATIONS ...95
6.2 FUTURE WORK ...98

BIBLIOGRAPHY...101

APPENDIX A FORMATIVE STUDY DOCUMENTS.............105

APPENDIX B LAB EXPERIMENT COMMAND IMAGES...107

APPENDIX C EXPERIMENT QUESTIONNAIRE111

APPENDIX D ETHICS APPROVAL CERTIFICATES123

 vii

List of Tables

Table 2-1: An overview of command language structures.15
Table 3-1: Commands used in the interview portion of our formative study. 28
Table 3-2: Commands used in dialog box exploration during our formative

study. ...30
Table 3-3: Commands used in GEKA practice during Phase 2 of our formtive

study. ...30
Table 3-4: Commands used during the guided task in Phase 2 of our formative

study. ...31
Table 3-5: Command usage in Word 2003. ..34
Table 3-6: Keyboard versus mouse usage for the six command executions

involving parameters...37
Table 4-1: Examples of GEKA commands...47
Table 5-1: The WIMP methods and their GEKA equivalents.69
Table 5-2: Breakdown for the interaction between condition, block, and

interaction method. ...84
Table 5-3: Total errors. ...85

 viii

List of Figures

Figure 1-1: A menu bar in Mac OS X...3
Figure 1-2: Two toolbars in a Mac OS X application.......................................4
Figure 1-3: A context menu in a Mac OS X application5
Figure 1-4: A dialog box in a Windows application...7
Figure 2-1: Mac OS X’s Spotlight search mechanism....................................20
Figure 2-2: Mozilla Firefox 3 showing the search mechanism built into the

address bar. ...20
Figure 2-3: The search mechanism built into the Help menu of Mac OS X

10.5..21
Figure 2-4: Quicksilver ...23
Figure 2-5: Enso..24
Figure 3-1: Preferences for each WIMP method ..35
Figure 3-2: Percentage of commands reported to be most frequently executed,

with each technique broken down by frequency of command use36
Figure 3-3: Likert scale responses from Phase 2 of the formative study........39
Figure 4-1: GEKA prototype graphical feedback ...51
Figure 4-2: GEKA prototype after the characters “p c ” have been entered...54
Figure 4-3: The result of pressing BACKSPACE in Figure 4-2.....................54
Figure 4-4: Initial GEKA command list with all possible commands.55
Figure 4-5: GEKA command list after the character 's' has been typed.56
Figure 4-6: GEKA command list after the characters 'tab' have been typed.

The best matching command is insert table. This command list contains
all four categories of match described in the command language section.
...56

Figure 4-7: GEKA command list after the characters 'align' have been entered.
There is no way to select a command other than center alignment by
continuing to type characters. ...57

Figure 4-8: GEKA command list after the characters 'align' have been entered
and the down arrow has been pressed twice. ..58

Figure 4-9: GEKA window with the parameter list in focus59
Figure 4-10: GEKA window showing the parameter list for 'insert table' after

'c' has been entered..59
Figure 4-11: GEKA window with the parameter value entry in focus60

 ix

Figure 4-12: GEKA window with the parameter value entry in focus61
Figure 4-13: GEKA window demonstrating the text entry area62
Figure 4-14: The Find and Replace dialog in Microsoft Word 2008..............64
Figure 4-15: The font colour chooser in Microsoft Word 200865
Figure 4-16: The “format paintbrush” item in Microsoft Word 200865
Figure 4-17: The print dialog box in Microsoft Word 200366
Figure 5-1: Command image for 'bold'. ..71
Figure 5-2: Command image for 'copy'. ...72
Figure 5-3: Command image for 'font size 24'..72
Figure 5-4: Command image for 'print copies 2 pages selection'.72
Figure 5-5: Experimental application ...74
Figure 5-6: Dialog box times for WIMP and GEKA in each block81
Figure 5-7: Menu bar times for WIMP and GEKA in each block..................82
Figure 5-8: Keyboard shortcut times for WIMP and GEKA in each block....82
Figure 5-9: Toolbar button times for WIMP and GEKA in each block83
Figure 5-10: Toolbar drop-down times for WIMP and GEKA in each block 83
Figure 5-11: Percentage of command executions using each method in the

method choice phase of the experiment..86
Figure 5-12: Ratings for WIMP and GEKA methods from the qualitative

feedback phase of the experiment, part 1 of 2 ..88
Figure 5-13: Ratings for WIMP and GEKA methods from the qualitative

feedback phase of the experiment, part 2 of 2 ..89
Figure A-1: Unformatted document provided to formative study participants.

...105
Figure A-2: Formatted document for formative study participants to match.

...106
Figure B-1: Lab experiment image for “bold”..107
Figure B-2: Lab experiment image for “italic” ...107
Figure B-3: Lab experiment image for “paste”...107
Figure B-4: Lab experiment image for “font size 24”108
Figure B-5: Lab experiment image for “underline”......................................108
Figure B-6: Lab experiment image for “save”..108

 x

Figure B-7: Lab experiment image for “print copies 3 page range selection”
...108

Figure B-8: Lab experiment image for “insert table rows 5 columns 3”109
Figure B-9: Lab experiment image for “insert page numbers position top

alignment center first page no” ...109
Figure B-10: Lab experiment image for “undo”...109
Figure B-11: Lab experiment image for “apply style heading 1”.................109
Figure B-12: Lab experiment image for “center” ...110
Figure B-13: Lab experiment image for “toggle bullets”110
Figure B-14: Lab experiment image for “line spacing 2”.............................110
Figure B-15: Lab experiment image for “copy” ...110

 xi

Acknowledgements

The supervisory committee included co-supervisors Dr. Kellogg S.

Booth and Dr. Joanna McGrenere, and Dr. Michiel van de Panne who served

as a “second reader” for the thesis.

The research reported in this thesis was supported by funding from the

Natural Sciences and Engineering Research Council of Canada under the

Strategic Research Network program through the Network for Effective

Collaboration Technology through Advanced Research, and under the

Discovery Grant program. Research facilities were provided under funding

from the Canada Foundation for Innovation and the British Columbia

Knowledge Development Fund for the Institute for Computing, Information

& Cognitive Systems at the University of British Columbia.

 xii

Dedication

To East Van Bike Polo for giving me a family and a home in this

foreign land. Mistey eyed X100. 1-2-3 KILL!

 1

1 Introduction

This thesis documents research on the design and evaluation of

Graphically Enhanced Keyboard Accelerators (GEKA), an interaction method

designed to allow fast and easy-to-learn interaction with interactive desktop

computer applications. Most computers today make use of a graphical user

interface (GUI), which is any interface that has visual feedback beyond plain

text. GEKA addresses the problems of a specific type of GUI called

Windows, Icons, Menus, and Pointers (WIMP). WIMP interfaces organize

applications into windows and allow commands to be executed through

menus and button. This is the main type of interface on nearly all major

operating systems.

GEKA is designed to address a specific problem with WIMP

interaction, namely that its two distinct types of interaction leave experienced

computer users with an unmet need. The first type of WIMP interaction is

mouse-based, which is easy to learn but slow to use. The second type is

keyboard-based interaction, which is fast to use but difficult to learn and

incomplete. We call the unexplored design space between these two extremes

“the GUI gap.” GEKA is designed to fill the GUI gap by providing a

keyboard-based interaction method that is both quick to use and easy to learn

while being available for nearly all commands within an application. GEKA

accomplishes this by combining features from modern graphical interfaces

and traditional command line interfaces (CLIs).

In this chapter, we explore WIMP interaction, describing the interaction

methods that comprise WIMP and discussing their shortcomings. We then

introduce the concept of the GUI gap, describe how our work draws from

CLIs, and then discuss GEKA at a high level. The chapter concludes with an

overview of the research and the rest of this thesis.

 2

1.1 Windows, Icons, Menus, and Pointers (WIMP)

Nearly all of today’s personal computers use a graphical user interface

based on the WIMP paradigm. Applications are contained in windows, which

can be manipulated with a pointing device that is typically a mouse. There are

several methods for executing commands within a WIMP application,

including menu bars, toolbar buttons, toolbar drop-downs, context menus,

keyboard shortcuts, and mnemonics. We refer to these, as well as dialog

boxes, which are often used to select parameters for commands, as the WIMP

methods.

This section briefly describes each of the WIMP methods in order to

allow for discussion of the GUI gap and GEKA in subsequent sections. Most

readers will already be familiar with these methods and may only require a

brief skim of this section. Detailed information about these methods and how

to properly use them appears in Shneiderman’s Designing the User Interface

(1997). Chapter 2 in this thesis discusses literature on WIMP interfaces and

specific design elements that have influenced GEKA.

1.1.1 Menu bars

Menu bars, which are typically located either at the top of the screen

(Macintosh) or at the top of each window (Windows and Linux), organize

commands into a series of drop-down menus. The menus typically contain all

of the commands available in an application. The commands are organized

into high-level categories on the menu bar, and often further organized into

sub-menus. Figure 1-1 shows a menu bar from an application in Mac OS X

10.5.

 3

Figure 1-1: A menu bar in Mac OS X. The menu bar is at the top of the screen, and each
of the top level menus can be pulled down from the bar with a mouse click. Some menus
contain submenus, such as the “Break” submenu located within the “Insert” menu shown
in this example.

Menu bars are a space-efficient way to organize all of an application’s

commands. They take very little space when the menus are all closed but can

expand to accommodate huge numbers of commands. Menu bars can be

useful for learning about an application. A new user can quickly scan through

the commands listed in each menu to get an idea of what types of actions are

possible. The hierarchical structure of menu bars provides an organization of

commands that can make them easy to find. The plain text format of menu

items makes it possible to concisely describe commands so that there is little

ambiguity about an item’s function.

On the downside, menu bars can be quite slow and frustrating to use. In

the best case, when a user knows exactly where the desired menu item is,

there are still two mouse clicks required: one to open the menu, and one to

select the item. This is often frustrating because mouse clicks require precise

motor movement and full visual attention. Menu bars are considered to be

quite slow by experienced computer users. Furthermore, the organization of

 4

the menu hierarchy may not match the user’s mental model, making it

difficult to find the desired item. In today’s complex applications, this can

result in the need to scan through dozens of menu items before the desired one

is found.

1.1.2 Toolbar buttons and drop-downs

Toolbars are typically located at the top of each window and contain

two distinct interaction methods: buttons, which are selected with a simple

click, and drop-downs, in which a value is selected from a list of alternatives.

Figure 1-2 shows a portion of the toolbar from a typical Mac OS X 10.5

application, which includes both buttons and drop-downs.

Figure 1-2: Two toolbars in a Mac OS X application. The top toolbar includes buttons
with both icons and text, while the bottom toolbar has icons only. Additionally, there is a
drop-down menu on the right side of the top toolbar, which is currently opened.

Toolbars provide easy access to the most frequently used commands in

an application. Toolbar buttons are always visible and can thus be selected

with only one click. Because toolbars are always visible, they can also be

used to provide state information. For example, two of the buttons in Figure

1-2 are drawn as being depressed, showing which setting is currently selected.

The drop-down also shows its current value.

Toolbar items, while generally being easier to access than menu bar

items, still require the use of the mouse, which frustrates many users. Because

toolbars are always visible, they typically contain only a small number of

commands in order to preserve screen space. Visual icons on the toolbar can

often be difficult to interpret, sometimes requiring the user to hover the mouse

above the icon to read the textual “tooltip” describing the icon’s functionality.

This can be mitigated by adding text to the icon, as seen in the top toolbar of

Figure 1-2, but doing so takes up even more screen space.

 5

1.1.3 Context menus

Context menus pop up when the secondary mouse button is clicked

(typically a right click) within an application. Figure 1-3 shows a context

menu from a typical Mac OS X application.

Figure 1-3: A context menu in a Mac OS X application. This menu appears when the
right mouse button is clicked on an item within the application and lists commands that
can be performed on that item.

Context menus generally contain only commands that can be executed

on the currently selected item. For this reason, they are often a good way to

find the desired command because there are far fewer items to scan than there

are with the menu bar. However, context menu item selection still requires at

least two mouse clicks.

 6

1.1.4 Keyboard shortcuts and mnemonics

The previously described methods are all mouse-based. Experienced

users often desire to execute commands quickly without the need to use the

mouse. Currently there are two choices for doing so in WIMP interfaces:

shortcuts (also known as hotkeys) and mnemonics.

Most WIMP platforms support some form of keyboard shortcut to

execute commands. A modifier key (generally CTRL on Windows and

COMMAND on Mac) is pressed in combination with one or more other keys to

execute a command. This method can be very useful for experienced users,

because pressing a two-key combination is generally much faster then a

mouse selection and it requires no visual attention.

When the number of commands is small, simple and intuitive mappings

can be created for keyboard shortcuts such as CTRL+B for bold or CTRL+S

for save in Microsoft Word. However, when there are more than just a

handful of commands, straightforward mappings are not always possible,

resulting in combinations such as CTRL+SHIFT+P for superscript in

OpenOffice.org and CTRL+ALT+SHIFT+L for auto contrast in

Adobe Photoshop CS4. Because of this, keyboard shortcuts are generally not

available for all commands in an application and, beyond a small basic subset,

are often quite difficult to learn and remember even when they are available.

Microsoft Windows has another form of keyboard support: mnemonics.

Each item in a menu or dialog box has a single underlined character. The item

can be accessed by pressing ALT and then the underlined character. For

example, in many programs in Windows, the save command can be

executed by pressing ALT to enter mnemonic mode, followed by F to open

the file menu and then S to select the save item. As with keyboard shortcuts,

mnemonics can often save time, but the mappings can become quite unnatural

when there are a large number of commands. For example, the combination to

access cut is typically ALT -> E -> T.

 7

1.1.5 Dialog boxes

When a command in a WIMP application requires parameters, the

parameters are usually chosen through a dialog box. Figure 1-4 shows a

typical dialog box from an application in Microsoft Windows. The desired

values can be chosen through a set of widgets that might include text boxes,

check boxes, radio buttons, sliders, and more. When the values have been

chosen, the command can generally be executed by clicking a button at the

bottom of the dialog box, in this case the OK button.

Figure 1-4: A dialog box in a Windows application. This dialog box allows the user to
enter parameters for the “print” command. Pressing “OK” executes the command with
the selected parameters.

Dialog boxes generally do a good job of displaying all possible options

in a logical format that makes it easy to find and select the desired parameters.

As with the other methods described above, dialog boxes have problems when

there are a large number of options. Often the only way to fit all of the options

into a single dialog box is to use multiple tabs. This adds more steps to the

selection process and can make it difficult to find the desired parameter if the

tabs are not organized the way that the user would expect them to be.

 8

Dialog boxes are typically intended to be used with a pointing device,

but can be navigated with the keyboard as well. Typically, the TAB key

moves between the various parameters in a dialog box, and the individual

values can be specified by typing (for text boxes) or with the arrow keys (for

menus and radio buttons). This is very helpful for small simple dialog boxes.

For example, in Microsoft Word, to insert a table with 4 rows and 2 columns,

once the insert table dialog box is open, the user could simply type 4

TAB 2 ENTER and be done. However, this interaction can be problematic

when there are a large number of options. Sometimes the TAB key needs to be

pressed so many times to reach the desired element that any benefits of using

the keyboard are negated. Worse, the TAB key navigation is sometimes not

linear (top-down, left-to-right) in large dialog boxes, and it is often impossible

to know where the focus will move on the next TAB press.

1.2 The GUI gap

The WIMP methods described above fall into two distinct categories:

the mouse-based methods of menu bars, toolbars, and context menus, and the

keyboard-based methods of shortcuts and mnemonics. The mouse-based

methods are what make WIMP so easy to learn and use that it has become the

primary interaction technique on most personal computers. Before GUIs and

WIMP interfaces, most computing was done through CLIs, which require the

user to learn complicated syntax and memorize many obscure command

names. This essentially restricted computer use to highly trained experts. The

visual nature of the mouse-based WIMP methods make the basis of

interaction recognition, rather than recall, which makes these methods easy to

learn, use, and remember even for people with little to no computer

experience or training (Norman, 1988). Even for advanced computer users

who are proficient with CLIs, these mouse-based methods are very helpful

when learning a new application or accessing infrequently used commands.

 9

Mouse-based techniques, of course, are not without problems.

Advanced users often know exactly what command they want to execute and

exactly where it is, but are slowed down by the need to position the pointer. If

the users’ hands are not in the proper position for pointing, they must first be

repositioned. Once the hands are in place, pointer positioning, whether it be

mouse-, finger-, or stylus-based requires physical movement that is governed

by Fitts’s Law (MacKenzie, 1995). Especially for the mouse, pointer

movement requires the user’s visual attention to be diverted from the main

task to follow the pointer, which can be quite distracting.

These issues are partially addressed by the keyboard-based WIMP

methods, which allow experienced users to quickly execute commands with

little distraction. However, these methods are not available for all commands

and when they are available, they often remain unknown to users because of

difficulty in learning and remembering them. Furthermore, when a command

has parameters, the keyboard shortcut or mnemonic brings up a dialog box. It

is possible to navigate a dialog box with the keyboard, but, as discussed

above, this is often confusing and tedious.

In short, the mouse-based methods are easy to learn and remember, but

are slow and frustrating for advanced users, while the keyboard-based

methods are fast but not available for all commands and often too difficult to

learn even when they are available. We call the unexplored design space

between these two extremes the GUI gap. We are working toward filling this

gap with a new interaction method that is easy to learn and remember,

available for almost all commands and parameters, and faster than mouse-

based methods.

1.3 Graphically Enhanced Keyboard Accelerators

We have designed an interaction method called Graphically Enhanced

Keyboard Accelerators (GEKA) that aims to fill the GUI gap. GEKA’s

 10

primary goal is to make computing more pleasant for advanced computer

users. We expect to achieve this through a combination of high speed, low

error rate, and easy-to-learn-and-remember commands. Even if we cannot

demonstrate an advantage in any of these quantifiable areas, we expect that

many people will choose to use GEKA simply because they prefer the

keyboard and are currently not able to use it for many tasks. We focus on

advanced computer users because we consider them the most likely to adopt

and benefit from a new keyboard-based interaction method. However, our

design is not intended to disadvantage less experienced users. We expect them

to share many of the same benefits that advanced users get from GEKA.

GEKA’s design is influenced heavily by traditional CLIs. In a CLI,

command names are typically abbreviated to a few characters, allowing them

to be typed very quickly by an experienced user, and parameters can be very

powerful and flexible, with the user able to set values for only the relevant

parameters and to do so in any order. Additionally, many CLIs have auto-

completion mechanisms for commands and parameters, which reduce the

amount of typing necessary. For an experienced user, a CLI provides an

environment where desired actions can be performed very quickly with little

distraction from the main task. The biggest downside of CLIs is that the user

must memorize all necessary command and parameter names (or tediously

look them up each time they are used). This makes it very difficult to learn

and very easy to forget how to use commands in a CLI.

GEKA uses the flexible syntax and time saving auto-completion of a

CLI while drastically reducing the amount of memorization required by using

natural, plain English command names and making use of graphical feedback

to display command and parameter options, thus shifting the focus of the

interaction to recognition rather than recall.

Incorporating these concepts into a GUI is not an entirely new idea.

Auto-completion is seen in places such as the formula editor in Microsoft

Excel, the address bar of a web browser, and function names in IDEs. A

 11

handful of programs, including Enso (Humanized, n.d.) and Quicksilver

(Blacktree, n.d.), allow a limited number of commands to be executed through

the keyboard in a GUI environment, incorporating auto-completion and

graphical feedback. These programs are discussed in more detail in Chapter 2.

1.4 Overview of the Thesis

This thesis documents the design and evaluation of our first version of

GEKA. Chapter 2 discusses previous work related to this research, including

evaluations of and comparisons between WIMP and CLIs, other approaches

to improving user experience with WIMP and CLIs, and previous applications

that combine graphics with keyboard commands. Chapter 3 discusses a

formative study, which examined how advanced computer users interact with

current WIMP interfaces and which found support for our notion of the GUI

gap. The formative study included a preliminary evaluation of an early GEKA

prototype. Chapter 4 presents the design of our current GEKA prototype,

discussing how it functions and our design rationale. Chapter 4 also explains

the changes to our design that were made as a result of the formative study.

Chapter 5 documents a laboratory experiment evaluating the GEKA

prototype. The experiment compared advanced users’ performance in GEKA

and WIMP with respect to time and error rate. It also explored their

preferences between GEKA and WIMP interaction methods. Chapter 6

discusses directions that future research on GEKA could take and summarizes

conclusions from the research.

 12

2 Related Work

This chapter is an overview of the literature and applications that are

relevant to the research. We begin by discussing current WIMP and command

line interfaces (CLIs), describing how each of them has influenced GEKA’s

design and then summarizing several papers that compare WIMP with CLIs.

Next, we cover alternate approaches to mitigating the problems that are

inherent in WIMP and CLIs. We then discuss literature by prominent

members of the HCI community pointing out that a GEKA-like interface is

needed. We conclude by describing existing applications that have inspired

the design of GEKA.

2.1 Existing interface paradigms

GEKA runs within WIMP-based GUI environments. Many aspects of

GEKA’s design are inspired by features of CLI environments. As such, it is

important to discuss these two interface paradigms. We describe the relevant

features of each. Further thoughts on how to properly design command line

and graphical interfaces can be found in Shneiderman’s Designing the User

Interface (1997).

2.1.1 Graphical user interfaces

Shneiderman (1983) provides an overview of early GUIs and describes

their benefits. Among them are “novices can learn basic functionally

quickly,” “intermittent users can retain operations concepts,” “error messages

are rarely needed,” and “users can immediately see if their actions are

furthering their goals.” All of these benefits derive from the fact that the use

of graphics allows the application to show a detailed visual depiction of the

 13

work being performed as well as a listing of all the possible actions that the

user can choose from.

Since then, nearly all personal computer systems have adopted a WIMP

paradigm and users have come to expect the benefits described above.

Shneiderman (1997) later enumerated eight “golden rules” for designing user

interfaces. Among them are “offer informative feedback,” “design dialog to

yield closure,” “offer simple error handling,” “permit easy reversal of

actions,” and “reduce short-term memory load.” The latest version of Apple’s

“Human Interface Design Principles” (Apple Computer, 2009) includes many

similar ideas such as “direct manipulation,” “feedback and communication,”

“what you see is what you get,” and “forgiveness.” Most other sets of user

interface guidelines include some variant of these rules. Each of these are

either much easier with or only possible because of the use of graphics.

GEKA exists in a graphical environment. It is thus capable of capturing

the benefits and adhering to the guidelines described above. Indeed, it must do

so in order to meet the expectations of today’s users.

Most GUIs provide keyboard shortcuts that allow efficient interaction

for experienced users. Recent work, however, has shown that keyboard

shortcuts are underutilized even by experienced computer users. Lane, Napier,

Peres, & Sándor (2005) conducted a study of 251 professional workers who

used Microsoft Word frequently as part of their jobs. For many of the most

frequently used commands in Word, participants were asked what percentage

of the time they used each possible method of execution, including shortcuts,

toolbar, menu items, and mnemonics. There were no commands found in

which keyboard shortcuts were the most used method.

Peres, Tamborello, Fleetwood, Chung, & Paige-Smith (2004) explored

social factors that might lead to low shortcut usage with 82 participants,

finding that shortcut usage was much more common among participants who

watched others use computers and who knew other people who used

shortcuts. The participants who reported low shortcut usage provided

 14

questionnaire responses indicating that they would be reluctant to start using

shortcuts even if they felt that it would save them time and somebody was

available to train them on the shortcuts. Grossman, Dragicevic, &

Balakrishnan (1997) explored ways to encourage shortcut usage such as

displaying the shortcuts more prominently in menus and disabling frequently

used menu items to force shortcut usage.

We were surprised by Lane, Napier, Peres, & Sándor’s (2005) findings

of such low shortcut usage because it does not match our personal experience

working in an environment populated largely by experienced computer users.

We conducted a formative study, described in Chapter 3, to examine, among

other things, shortcut usage among technical graduate students in order to

help explore this issue.

2.1.2 Command line interfaces

There are two key syntactic properties in describing a command

language. The first is the order of tokens: in a prefix language, the command

comes before the parameters, whereas in a postfix language, the command

comes after the parameters. The second property is parameter specification:

with positional parameters, all parameters must be specified in order. With

keyword parameters, only the needed parameters have to be specified, and the

user can do so in any order.

Buxton (1982) discussed the issue of prefix vs. postfix in a paper on

selection-positioning tasks. Cherry (1986) conducted a study with 60

participants that found no performance difference between a prefix and a

postfix language, though participants indicated a preference for the prefix

language. There do not appear to be any studies comparing positional to

keyword parameters.

Table 2-1 provides an overview of the command language structures

with examples of languages from the categories where we know one to exist.

GEKA uses prefix commands with keyword parameters.

 15

Table 2-1: An overview of command language structures. GEKA is a prefix, keyword
language.

 Positional

parameters

Keyword

parameters

Mixed

parameters

Prefix Ubiquity GEKA UNIX, JCL

Postfix HP-10

calculator

Mixed/infix Quicksilver

Our work builds on a number of features that existed in pre-GUI CLI

implementations. We mention only a few highlights. OS/360 introduced JCL,

perhaps the most complex CLI to date, with a myriad of commands,

parameters, and optional specifications. Like JCL, the OS/360 macro

assembler language accepted both positional and keyword parameters.

Keyword parameters allowed for shorter specifications because parameters

whose default values were appropriate do not need to be listed.

The original command completion feature on the UC Berkeley-

developed CLI for the SDS 940 Genie operating system was automatic – as

soon as the stem uniquely determined the command the full command name

was typed by the system. This was later modified for the PDP- 10 Tenex CLI

so that command completion only took place when ESC was typed, and this

was extended as well to provide file name completion. This led to TAB

completion in tcsh on Unix, which also provides a list of possible

completions to provide recognition-based hints to the user if CTRL-D is

typed instead of TAB (Wikipedia, 2009).

There is a clear pattern in the development of traditional CLIs. As the

complexity of the CLI increased, features were introduced to decrease the

number of keystrokes required to specify a command and its parameters. In

some cases (such as tcsh) visual aids were added (the list of possible

completions) to allow users to rely on recognition rather than recall.

 16

Command naming has always been an issue with CLIs. Several papers

have been published on the matter, with the most relevant being a study by

Grudin and Barnard (1985). This study examined four groups of seven

participants learning command names in one of four conditions: one in which

all commands used abbreviated names chosen by the researchers, one in

which participants could use full command names or the researchers’

abbreviations, one in which participants started with the full command names

and later moved to the researchers’ abbreviations, and one in which

participants started with the full command names and later moved to

abbreviations that they chose themselves. The participants who began the

study using full command names made fewer errors at the beginning of the

experiment. After switching to abbreviations, those who were using the

researchers’ abbreviations continued to outperform those who were using

abbreviations all along. Performance for those who created their own

abbreviations actually got worse when they began using the abbreviations.

As with the more advanced CLIs, GEKA relies on auto-completion and

visual aids to make interaction faster and easier. GEKA commands use the

full names that are found in menus and dialog boxes, but we provide a built-in

abbreviation for each command and an auto-completion mechanism that

allows other character sequences to become abbreviations. Based on Grudin

and Barnard’s findings, this should help reduce error rates when using GEKA.

2.2 Comparing WIMP and CLIs

Many studies compare elements of CLI and WIMP interaction. We

discuss several of these studies here. These are not always direct comparisons

between a full CLI and a pointer-based WIMP interface. For example, one

study compared keyboard menus to command lines. While more direct

comparison would be ideal, each of these studies does compare some aspect

of CLI to some aspect of WIMP and is therefore useful in determining how to

blend the two interaction techniques in GEKA.

 17

Gong and Salvendy (1995) conducted an experiment in which 40

participants completed identical tasks with one of four interface types:

keyboard menu-based, text command-based, hybrid (offering both menu and

command options), and adaptive (initially the same as the hybrid, but forcing

command usage as participants gained experience). At the beginning of the

experiment, the menu-based interface was the fastest, but by the end, the

adaptive and command-based interfaces dominated. In Likert-based user

satisfaction ratings, the command-based interface fared worse than the menu-

based on all questions, though these differences were not statistically

significant.

Geller and Lesk (1983) compared user preference between menu and

command/search based interfaces for two information retrieval tasks: finding

information about books in a library catalog and reading the daily news. For

each task users chose between a hierarchical menu containing all entries and a

keyword-based search mechanism. Over 900 users accessed the library

catalog during the study. These users preferred the keyword search because

they typically knew what they were looking for and the search was much

more efficient than navigating the large hierarchy in the menu. Between 100

and 150 people had access to the news program. These users preferred the

menu because there was no way of knowing what to search for given that

news is very dynamic.

Whiteside, Jones, Levy, & Wixon (1985) compared file manipulation

tasks with 76 participants on three types of interfaces: command, iconic, and

menu. Performance was found to be best on the command-based interfaces for

all experience levels of the participants. Despite this, the most popular

interface was iconic.

Westerman (1997) explored individual differences in using command

and menu interfaces among 64 participants. There was no performance or

preference difference between interfaces based on cognitive ability as

measured by tests of verbal ability, spatial memory, spatial visualization,

 18

logical reasoning, and associative memory. Additionally, there was no

significant difference in preference based on experience level.

Karat, McDonald, & Anderson (1986) compared menu selections using

mouse, keyboard, and touch panel. In all cases, the mouse was the least

preferred of the three methods. The touch interface consistently had the

highest performance. In one experiment with 24 participants, keyboard

outperformed mouse. A second experiment, which was identical except that

there were 48 participants and they were given more practice trials, showed

the reverse outcome.

Most of these studies showed that a more CLI-like (keyboard or

command) interface was faster than a more WIMP-like (mouse, menu, or

icon) option. Preference was less clear and appears to depend largely on the

task involved. These findings are encouraging, showing that GEKA has a

good chance of outperforming WIMP interaction, but that it will need to be

designed carefully and put into an appropriate context for users to react

positively.

2.3 Other approaches to WIMP and CLI problems

The problems that we are addressing in both WIMP and CLIs are well

known. Several different approaches have been pursued to address them. We

summarize some of those approaches.

2.3.1 Adaptable and adaptive GUIs

One approach to the problem of icons and menu items often being

difficult to locate in WIMP applications is to alter the interface so that the

most likely to be needed items are in the easiest to use locations. There are

two main approaches to doing this: adaptable interfaces in which the user

decides when and where to move interface elements, and adaptive interfaces

in which the application controls these decisions. Examples of adaptable

interfaces are the Buttons system (MacLean, 1990) that allows the user to

 19

place buttons with custom functionality within a UNIX desktop environment,

and user interface Facades (Stuerzlinger, Chapuis, Phillips, & Roussel, 2006)

which allow users to move buttons, sliders and other interface elements to any

window, toolbar, or dialog box that they see fit. McGrenere, Baecker, &

Booth (2002) evaluated an adaptable interface that allows users to simplify

the interface in Microsoft Word by removing elements, finding that it was

well utilized and well received. Examples of adaptive interfaces include the

adaptive condition in the previously mentioned study by Gong and Salvendy

(1995) that forces users to move from menu use to command use after a

certain level of expertise, and SUPPLE (Gajos & Weld, 2004), an application

that automatically adds frequently used features to a second pane within a

user interface. A compromise between adaptable and adaptive interfaces is the

mixed-initiative approach in which the application suggests changes to the

interface, but the user must approve them. An example of this is the MICA

system (Bunt, Conati, & McGrenere, 2007), which builds upon McGrenere et

al.’s (2002) adaptable system.

While these systems can often make WIMP interfaces easier to manage

and more efficient to use, they do not address the core problem that we are

dealing with. The available interaction methods do not change, and thus the

GUI gap remains.

2.3.2 Search

As shown in the study by Geller and Lesk (1983), described above,

users prefer search mechanisms over menus when they know what they are

looking for and the set of choices is large. GUI designers have begun to

acknowledge this fact and build convenient search mechanisms into software.

Microsoft Windows and Mac OS X now both include file searches that can be

opened with one or two keystrokes to very quickly search through an index of

all files on the computer. Figure 2-1 shows the Mac OS X search mechanism.

Most web browsers have a feature that displays relevant items from the user’s

browsing history when text is typed into the address bar. Mozilla Firefox 3

 20

goes a step beyond this by including the user’s bookmarks in this search. This

is shown in Figure 2-2. Microsoft has released a plug-in for Office 2007

(Microsoft, 2009) that searches through all of the commands available in the

ribbon, displaying those that match the input and allowing them to be

executed by a simple mouse click or key press. In Mac OS X 10.5, there is a

search box in the Help menu for each application that searches both the help

contents and the contents of the application’s menu bar, dynamically

changing the contents of the help menu to reflect the search. Figure 2-3 shows

this search box.

Figure 2-1: Mac OS X’s Spotlight search mechanism.

Figure 2-2: Mozilla Firefox 3 showing the search mechanism built into the address bar.

 21

Figure 2-3: The search mechanism built into the Help menu of Mac OS X 10.5.

Each of these search mechanisms uses an incremental search, which

updates the results as each character is typed as opposed to having to enter the

full search term before any results are displayed. Raskin strongly advocated

for incremental search in his book The Humane Interface (Raskin, 2000).

GEKA’s auto-completion mechanism uses incremental search.

2.3.3 Improvements to command line interfaces

While CLIs have not dramatically changed in several decades, there

have been some improvements. Examples in the literature include

automatically generating optimal command aliases (Nichols & Ritter, 1995),

mechanisms to more easily locate files by searching for file attributes (Giger

& Wilde, 2006), and more efficient history mechanisms (Greenberg &

Witten, 1988). There has also been some work done on creating an adaptive

command line that predicts the next desired command (Davison & Hirsh,

1997). A recently developed command shell called Fish Shell includes syntax

highlighting and improved auto-completion that allows each command to

decide what to auto-complete and shows descriptions of the completions

(Fish Shell, 2009). These improvements deal with aspects of command line

interaction that are more advanced than our short-term goals for GEKA, so

they will not be discussed in detail here, but will be revisited during future

design iterations of GEKA.

 22

2.4 Literature supporting keyboard interaction

Several prominent HCI researchers have advocated for text-based

interaction methods similar to GEKA.

Gentner and Neilsen (1996) listed many problems with GUIs in

colourful language, saying that “direct manipulation quickly becomes

repetitive drudgery" and that what they call see-and-point interfaces are “as if

we have thrown away a million years of evolution, lost our facility with

expressive language, and been reduced to pointing at objects in the immediate

environment.” Among their recommendations are a focus on expert users and

a more expressive interface focused on language.

Raskin (2000) called for “[an interaction method] that is as fast and

physically simple to use as typing a few keystrokes and that makes the

commands easier and faster to find than does a menu system.”

Norman (2007) predicted that one of the next “UI breakthroughs”

would be related to command lines, stating that “GUIs work well only when

the number of alternative items or actions is small.” He cites search (both

online search engines and operating system file searches) as an example of

where command line type interaction is already prevalent. For example,

Google supports some types of commands as search queries – including “1

CAD to USD” to convert currency or “weather Vancouver” to display current

weather information. Norman also mentions YubNub (YubNub), a web site

that is self described as “a social command line for the web.”

2.5 Related applications

There are several existing applications that have similar functionality to

GEKA.

Quicksilver (Blacktree, n.d.), shown in Figure 2-4, is a Mac OS X

application that allows many tasks to be completed through the keyboard. All

 23

interactions with Quicksilver begin with a search for an object in its catalog.

Basic Quicksilver catalogs only the computer’s file system. Plug-ins are

available to handle a wide variety of other object types. Objects are selected

through an adaptive incremental search mechanism. Once an object is

selected, an action can be chosen to execute on the object. For a file, some of

the possible actions are “open,” “rename,” and “move to.” Some commands

involve a parameter, selected at the end. The full command syntax for

Quicksilver is object→action→parameter. This allows for quite a bit of

flexibility, especially with plug-in support. For example, free text input can be

the object, so using a plug-in that supports email the command "Hello!"

→ email to → Mom can be executed. Unfortunately, this syntax does not

match how a user would typically think of the action. The restriction to only

one parameter is also a major limitation.

Figure 2-4: Quicksilver with the object “picture 1” command “open with” and parameter
“preview” selected.

Enso (Humanized, n.d.), shown in Figure 2-5, is a Windows

application that uses text commands for several actions. It has simple syntax:

a command name optionally followed by one parameter. Enso often makes

use of the current selection in the Windows GUI, for example opening the

highlighted file with a specific application or doing a spell check on

highlighted text. Enso is available for a small number of commonly used

commands such as navigating between windows and looking up words in a

dictionary.

 24

Figure 2-5: Enso with the command “open” and the parameter “firefox” selected.

Ubiquity (Mozilla Labs, 2009) is a plug-in for Mozilla Firefox, created

by a team with the same lead designer as Enso, that supports command input

in a way very similar to Enso. It supports commands including translating or

mapping addresses in the selected text. A major improvement in Ubiquity

over Enso is that it supports multiple parameters, though there is no auto-

completion for parameters, and they must be entered in a fixed order.

Inky (Miller, et al., 2008) is described as a “sloppy command line.” It

uses a text interface to invoke common browser commands. Many of the

challenges of traditional command lines are overcome by including multiple

synonyms for command and parameter names and using a very loose syntax.

LAPIS (Miller & Myers, 2000) is a web browser that allows text

commands to be entered into the address bar. The commands perform actions

on the contents that are displayed in the browser. For example, if the web

page contains a table listing information about vehicles, an example command

could be “sort car –by horsepower –order numeric”. This

results in a web page being re-rendered in the browser to display the desired

order of cars.

There are several issues with the current generation of applications that

 25

combine keyboard commands and graphical feedback. GEKA attempts to

address these issues. Enso, Inky, LAPIS, and Ubiquity have very narrow foci

for what their commands can do. Enso focuses on simple text and window

manipulation commands and the others focus on the web. Most of these

applications have a very limiting syntax as well. Quicksilver and Enso only

support single parameters. Ubiquity supports multiple parameters, but they

are positional, and thus the user must specify all parameters in a fixed order.

Quicksilver uses an adaptive matching algorithm that attempts to move the

most likely needed command to the top of the results list based on the user’s

past behaviour. This can save time, but it means that the user must look at the

screen every time a command is typed because there is no way to know which

command will match a certain input.

GEKA aims to avoid these problems with three specific improvements

over current applications: support for multiple parameters in arbitrary order,

smarter matching – including abbreviations for all commands and tolerance

for “sloppy typing,” and clear visual feedback of the input characters to

facilitate learning and re-use. GEKA’s design is described in detail in Chapter

4.

 26

3 Formative Study

Our formative study had two distinct phases with the common goal of

eliciting requirements for and informing the design of GEKA. We first

provide a high level overview of the study goals and then describe each phase

in detail before moving on to the results.

Phase 1 was designed to help shape the requirements for GEKA by

exploring how advanced users currently interact with WIMP interfaces,

specifically with word processors. One of our main foci was to determine how

often advanced computer users utilize each of the available WIMP interaction

methods, including drop-down menus, context menus, toolbars, keyboard

shortcuts, and mnemonics. When this study was conducted, we had not yet

made the distinction between toolbar buttons and toolbar drop-downs as

described in Chapter 1. Previous work by (Lane, Napier, Peres, & Sándor,

2005) has explored this question, with a focus on keyboard shortcuts. Lane et

al. found that keyboard shortcuts were very underused by participants. In fact,

keyboard shortcuts were not the most used method for any of the commands

that were examined. Our approach in investigating interaction method usage

differs from Lane et al.’s primarily in the expertise of our participants. Lane et

al.’s participants had significant computer and Microsoft Word experience,

but they were mainly professionals who don’t necessarily fit our definition of

an advanced computer user. Our participants were computer science and

electrical and computer engineering graduate students, a category that we

believe to be among the most experienced computer users. We suspected that

our target users would show more keyboard shortcut usage than did Lane et

al.’s. In addition to the focus on more advanced users, we were very interested

on qualitative feedback about why participants choose each method. Lane et

al. did not collect any such information.

 27

To augment the data that we collected on method usage, Phase 1 of

our formative study also looked at user preferences to determine which

methods each user favoured and why they might choose to use a method that

wasn’t their favourite. Finally, we watched users execute a series of

commands to see if their actual actions matched their stated preferences and

to identify specific problems with current interfaces that GEKA might be able

to address.

In Phase 2, we conducted a preliminary evaluation of a GEKA

prototype to ensure that we were taking the correct approach and to refine the

design of the prototype before continuing with a more rigorous study. The

particular prototype design used in the study is not essential to understanding

the procedure or most of the results of the formative study, so we will not

discuss it here. The full GEKA design process will be described in the next

chapter, at which point we will also discuss the qualitative feedback obtained

in Phase 2 of the formative study, which is the only data that relies on the

specific design. We do this to simplify the presentation of the study and to

integrate the one part of the study that deals with design issues with the

discussion of the design of GEKA.

The two phases were completed by each participant in a single

session.

3.1 Phase 1 tasks

Phase 1 was designed to explore advanced computer users’ current

behaviour with WIMP interfaces. We chose to work with word processors

because they exemplify WIMP interfaces and are complex enough to explore

the issues in which we are interested. Participants were given a choice of

word processors to work with, based on their experience and preferences. The

options were: Microsoft Word 2003, OpenOffice.org 2, and OpenOffice.org 3

 28

for Windows users, and Microsoft Word 2008 for Macintosh users. All

participants chose to use Microsoft Word 2003.

In Phase 1, participants were first asked to execute a series of

commands the way that they normally would when using Word. This exercise

was designed to get each participant to use as many distinct WIMP methods

as possible in order to facilitate discussion in a subsequent interview. There

were five commands, which were read off by the researcher one at a time. The

commands were: apply bullets, align right, italic, undo, and

print preview. We expected most participants to use the toolbar for the

first two commands, keyboard shortcuts for the next two, and the drop-down

menu for the final command. After executing these commands, participants

were asked if they knew of any other interaction methods that they hadn’t

used for one of the five commands. The methods listed in response to this

question and the methods used in the command execution for each participant

were explored in detail.

 An interview discussing how participants use commands in Word

formed the bulk of Phase 1. The specific commands that were discussed were

based on Linton, Joy, and Schaefer’s (1999) list of the 20 most frequently

used word processor commands. The print default command was

removed because it does not exist in current word processors, and the spell

check command was removed because it is rarely used explicitly with

current word processors. Several common formatting commands were added

to give more variety to the discussion. The final list of command is shown in

Table 3-1.

Table 3-1: commands used in the interview portion of our formative study.

Paste save copy

bold cut undo

underline new file find

 29

superscript redo close document

quit

application

center Font face

font size apply style font colour

zoom open print

Save as print preview header

insert table insert picture

For each of these commands, participants were asked how frequently

they use the command (frequently, sometimes, rarely, or never), which

method (drop-down menu, context menu, toolbar, keyboard shortcut, or

mnemonic) they most frequently use for the command, which other methods

they sometimes use, and which methods they know but never use.

The next step was to determine participants’ method preferences as

well as the magnitude of their preferences. They were given small pieces of

paper representing each of the WIMP methods that they had said they use and

instructed to place each of these along a meter stick with 0cm being the most

pleasant method they can imagine and 100cm being the least.

After rating the methods, each one was discussed in detail. Participants

were asked what they like and dislike about each method as well as the

reasons for not always using their most favourite method and the reasons for

resorting to each of the others.

For the final part of Phase 1, participants were asked to complete

another series of commands using Word. These commands all involved

parameters. They were chosen in order to see how users interact with dialog

boxes. The commands are listed in Table 3-2.

 30

Table 3-2: Commands used in dialog box exploration during our formative study.

Print 5 copies print page 2 in landscape

format

print 10 copies of

page 2

replace all occurrences of

“the” with “an”

set line spacing to

1.5

save the document as “new

file” in a folder called

“save as.”

It was noted how participants completed each command: completely

with the mouse, completely with the keyboard, or started with the keyboard

and then finished with the mouse. After all of the commands were completed,

participants were asked to discuss why they used a particular combination of

methods.

3.2 Phase 2 tasks

Phase 2 was designed as a preliminary evaluation for an early GEKA

prototype running in OpenOffice.org Writer 2. Participants were give a

demonstration of GEKA and then asked to complete a series of commands

one at a time to practice using GEKA. The commands are listed in Table 3-3.

Table 3-3: Commands used in GEKA practice during Phase 2 of our formtive study.

bold redo

cut set font to Arial

undo set font size to 25

underline set background colour to

black

 31

paste insert table with 5 rows

and 3 columns

center zoom to 200%

copy print 5 copies

superscript print 10 copies of page 2

print preview print page 3 in landscape

format

close document set line spacing to 1.5

 After these practice commands, participants were given a guided task

to perform. A document with no formatting was opened on the computer, and

they were given a printout showing the desired result, which included

formatting and some textual changes. The printout was annotated where the

desired result was ambiguous, for example, font sizes were labeled.

Participants were asked to apply the formatting and to make the text changes.

They were asked to use GEKA as frequently as possible when executing

commands. The complete formatted and unformatted documents are shown in

Appendix A. The commands used in completing the task are listed in Table

3-4.

Table 3-4: Commands used during the guided task in Phase 2 of our formative study.

right align insert date insert page

numbers

center align font size underline

highlight font colour bullets

superscript strikethrough insert

hyperlink

insert table subscript

 32

 All comments made by participants and any apparent difficulties seen

during the task were noted. After the task, participants were asked general

interview questions about their experience and then were asked a series of

Likert scale questions comparing GEKA to each of the WIMP methods that

they used in Phase 1, as well as to dialog box navigation with mouse and with

keyboard. These Likert scale questions asked participants to compare WIMP

and GEKA in terms of speed, ease of learning, ease of remembering, ease of

use, and overall preference.

3.3 Apparatus

 All tasks involving computer use were conducted on an Apple

MacBook laptop running Windows XP in a dual boot setup using Apple’s

Boot Camp software with a 13” screen at a resolution of 1280x800. An

external mouse and Windows keyboard were used. Phase 1 tasks were

completed using a standard installation of Microsoft Word 2003 without any

customization. Phase 2 tasks were completed using OpenOffice.org Writer 2

with a GEKA prototype running as a Java plug in.

3.4 Participants

 Because GEKA is designed primarily as a tool to help advanced

computer users, this study was interested only in advanced users. Recruiting

was done through an email sent to the UBC computer science graduate

student mailing list. We had 10 participants (3 females), of which nine were

computer science graduate students, and one was an electrical and computer

engineering graduate student. Participants were compensated with $15 for

their time.

 33

3.5 Procedure

Each participant completed a single 90-minute session. After a brief

introduction to the study, and completing a questionnaire gauging their

computer and word processor experience, participants completed all of Phase

1 followed by all of Phase 2, as described above.

3.6 Results

We describe the data analysis and results for the two phases of the

formative study.

3.6.1 Phase 1

As expected, we found a very low rate of mnemonic usage, with only

two participants reporting using mnemonics at all, and then only for a very

small number of commands. Because of this, mnemonics are left out of our

analysis.

 Table 3-5 shows the reported command usage from the interview

portion of Phase 1. Of the 10 participants, there were only two cases where

anyone indicated that they didn’t use a command. Far more commands were

reported to be frequently- or sometimes-used than rarely-used, so we

conclude that we chose a command set that is fairly representative of what our

participants generally use.

We were expecting to find significantly more shortcut usage with our

participants than (Lane, Napier, Peres, & Sándor, 2005) did with their less

experienced participants, and indeed we did. For 11 of our commands, at least

half of our participants indicated using keyboard shortcuts more often than

any other method. While this is much higher usage than Lane et al. found, we

still consider it to be fairly low, especially considering the preferences that

our participants stated.

 34

Table 3-5: Command usage in Word 2003. The second through fifth columns show the
number of participants who use each command with each frequency. The sixth column
shows the number of participants who know shortcuts for each command. The final four
columns show the number of participants who use each method most frequently for each
command. The top row shows which percentage of commands fall into each category.

Fr
eq

ue
nt

ly

So
m

et
im

es

R
ar

el
y

N
ev

er

K
no

w
 k

b
sh

or
tc

ut

M
en

u

Sh
or

tc
ut

C
on

te
xt

 M
en

u

To
ol

ba
r

Percent of
cmds 48% 31% 20% 0% 46% 25% 39% 0% 36%

Paste 9 1 0 0 10 0 10 0 0
Save 9 1 0 0 10 0 9 0 1
Copy 9 1 0 0 10 0 10 0 0
Bold 6 3 1 0 10 0 9 0 2
Cut 7 2 1 0 9 0 8 2 0
Undo 7 3 0 0 9 2 9 0 0
Underline 5 2 3 0 10 0 7 0 4
New File 7 1 2 0 7 3 6 0 2
Find 6 4 0 0 9 2 8 0 1
Superscript 0 5 5 0 5 4 5 1 0
Redo 4 2 4 0 5 3 5 0 2
Close Doc 6 3 1 0 4 1 3 0 7
Quit App 8 1 1 0 4 0 3 0 8
Center 3 4 3 0 1 0 1 0 9
Font 7 2 1 0 1 0 0 0 10
Size 7 3 0 0 2 0 2 0 8
Style 1 6 3 0 0 1 0 0 9
Font Color 1 4 5 0 0 0 0 0 10
Zoom 3 4 3 0 0 1 0 0 9
Open 6 3 1 0 8 5 3 0 3
Print 6 4 0 0 5 8 2 0 1
Save as 5 3 2 0 1 8 1 0 0
Print Pre 4 4 2 0 0 7 0 0 2
Head 0 4 6 0 0 8 0 0 1
Table 0 6 3 1 0 6 0 0 3
Insert Picture 0 5 4 1 0 7 0 0 1

 35

Figure 3-1 shows the average rating that participants gave each

WIMP technique, with 0 being the best score, and 100 being the worst. All 10

participants rated keyboard shortcuts as their most preferred method and drop-

down menus as their least preferred method. Toolbars and context menus

varied between second and third place. The positioning on the scale indicates

that the preference for keyboard shortcuts is quite strong, with a rating very

close to zero. Similarly, the dislike for drop-down menus appears strong.

They are rated nearly twice as bad as context menus and toolbars. Common

reasons for liking keyboard shortcuts included speed, precision, and being

able to keep one’s hands in the same place. Similarly, common reasons for

disliking menus included the need for multiple clicks and scanning through

the options to find the right one. Seven of the 10 participants stated that they

generally prefer using the keyboard during word processing because their

hands are usually already there.

These preferences, examined in conjunction with the usage data,

indicate significant problems with current WIMP interfaces. The average

participant uses keyboard shortcuts most frequently for 10 of the 26

commands that we examined, the toolbar for 9 commands, and menus for 7

commands. While keyboard shortcuts are used more often than each of the

Figure 3-1: Preferences for each WIMP method. A rating 0 is best, and 100 is worst
(N=10).

 36

other methods, grouping the methods into keyboard versus mouse paints a

different picture. Only 10 commands use the keyboard but 16 use the mouse,

even though keyboard shortcuts were strongly preferred over mouse-based

methods. Of the 7 commands where drop-down menus were the most used

method, 3 were commands that most participants reported using frequently,

suggesting that our participants often resort to their least favourite interaction

method to execute commands.

Figure 3-2 sheds further light on this issue by breaking down method

usage by frequency of command usage. Keyboard shortcuts are in fact used

for the majority of frequently executed commands, but this is a rather slim

majority; for sometimes- and rarely-used commands, mouse-based methods

dominate.

Figure 3-2: Percentage of commands reported to be most frequently executed, with each
technique broken down by frequency of command use (N=10).

The most common reason that participants gave for not using keyboard

shortcuts was simply that they did not know the shortcut. This could be either

because a shortcut does not exist for a command, or because learning and

remembering the shortcut is too difficult. Indeed, 5 of the commands we

 37

discussed do not have keyboard shortcuts in Word 2003, and of the remaining

21 commands, participants on average only knew 12 shortcuts.

Table 3-6 shows the breakdown of keyboard and mouse usage in the six

commands involving parameters that participants executed. Each row shows a

specific combination of methods used to open the dialog box and then to

navigate within the dialog box, with the first column showing whether the

dialog box was opened with a keyboard shortcut or a mouse-based method,

and the second column showing whether the keyboard, the mouse, or a

combination of the two was used to navigate through the fields in the dialog

box. The penultimate row, “other,” shows two cases where the line spacing

was set through the toolbar, so no dialog box was used.

Table 3-6: Keyboard versus mouse usage for the six command executions involving
parameters. The final column shows the total number of commands executed using the
combination of methods indicated in the first two columns (N=10).

In the majority of cases, 40 of the 58 times dialog boxes were used, the

mouse was used both to open and to navigate the dialog box. This is perhaps

not surprising considering that two of the six commands that were used do not

have keyboard shortcuts and that participants indicated that they generally

used the menu to select the print command. When a command that invokes a

dialog box is selected using the mouse, it is not unreasonable to continue

using the mouse for parameter selection. What is surprising is looking at the

16 cases where a keyboard shortcut was used to select the command. In 10 of

those cases, the mouse was used either exclusively or in conjunction with the

Dialog opened with Values selected with Count
Keyboard Keyboard 6
Keyboard Mouse 5
Keyboard Both 5

Mouse Keyboard 0
Mouse Mouse 40
Mouse Both 2

Other 2
Total 60

 38

keyboard to select parameters. Thus, even when a dialog box is opened with

the keyboard and participants have indicated a general preference for the

keyboard, the mouse ended up being used 62.5% of the time in order to finish

the dialog box for the command. When participants were asked why they

would use the mouse in a dialog box, the overwhelming answer was that the

TAB key navigation through dialog boxes is slow and confusing because the

cursor jumps around the dialog box in a way that seems completely

unpredictable and random.

3.6.2 Phase 2

A full understanding the qualitative feedback for the GEKA prototype

requires an understanding of the prototype design, so that will be discussed in

the next chapter after the design description. This section will focus only on

the Likert scale responses shown in Figure 3-3.

 39

Keyboard Shortcuts Toolbars
GEKA is: Better Same Worse GEKA is: Better Same Worse

Speed 0 0 10 Speed 5 2 2
Learn 7 2 1 Learn 6 0 3

Remember 8 2 0 Remember 3 2 4
Ease of use 2 3 5 Ease of use 3 3 3

Overall 2 2 6 Overall 6 2 1

Menus Context Menus
GEKA is: Better Same Worse GEKA is: Better Same Worse

Speed 10 0 0 Speed 5 1 1
Learn 6 2 2 Learn 2 4 1

Remember 7 3 0 Remember 3 2 2
Ease of use 8 1 1 Ease of use 3 2 2

Overall 9 1 0 Overall 3 2 1

Dialog Box with Mouse
Dialog Box with

Keyboard
GEKA is: Better Same Worse GEKA is: Better Same Worse

Speed 8 1 1 Speed 6 1 1
Learn 1 4 4 Learn 3 5 0

Remember 0 5 5 Remember 4 3 1
Ease of use 6 2 2 Ease of use 5 2 1

Overall 8 1 1 Overall 7 1 0

Figure 3-3: Likert scale responses from Phase 2 of the formative study. The 17 situations
where most participants favoured GEKA are shown in green (lighter shading), while the
2 where most participants preferred the WIMP method are shown in red (darker
shading). Those with no clear preference are in white. Some methods do not have ten
responses, either because a participant did not indicate having used that method or
because they didn’t feel they had enough GEKA experience to compare to it (N=10).

 40

Participants unanimously felt that GEKA was slower than keyboard shortcuts,

and they generally preferred keyboard shortcuts. This is not surprising

because GEKA does in fact require more keystrokes than do shortcuts.

However, participants did find GEKA to be easier to learn and remember than

shortcuts, which is a major advantage considering that the primary reason for

not using shortcuts was difficulty in learning and remembering them.

Participants felt that GEKA was faster than all of the mouse-based WIMP

techniques and preferred it over all of them except for context menus, which

were considered the same (i.e., a neutral rating). Participants also found

GEKA faster and easier than dialog boxes, both with the mouse and with the

keyboard. This is another major success for GEKA because as we have

already shown, participants often have a very difficult time using current

dialog boxes quickly and effectively.

These responses, while very preliminary and qualitative, suggest that

our goals for GEKA are on the right track to becoming a useful augmentation

to existing user interfaces.

3.7 Limitations

The command usage data in Phase 1 is imperfect because it was

collected through self-report rather than actual usage data. There should be no

reason for participants to be dishonest about usage, but it is often very

difficult to reflect on previous actions and report them in this way. Thus,

despite the participants’ best intentions, it is possible that the numbers do not

fully reflect actual usage.

All of the data reported from Phase 2 was based on self-report and thus

could be biased by participants’ desire to please the researchers. This was less

likely to be a problem in Phase 1 because participants would not have known

what answers the researchers might be hoping to get.

 41

3.8 Discussion and conclusions

Phase 1 of our formative study showed that current WIMP interfaces

are not meeting the needs of advanced computer users. In at least the context

of word processing, advanced users prefer to execute commands through the

keyboard. In many cases, there are a number of hurdles preventing this from

being possible. Keyboard shortcuts are often not available for commands, and

when they are, even advanced computer users have trouble learning and

remembering all of the shortcuts for commands that they use. When a

command has parameters, a dialog box is generally used. While it is possible

to navigate a dialog box with the keyboard, even advanced users rarely do so

apparently because the current navigation methods are very slow and

confusing.

These findings indicate a great opportunity for GEKA. If GEKA can

avoid the drawbacks of keyboard shortcuts and dialog boxes by being

available for most commands, being easy to learn and remember, and

handling parameters in a straightforward way, the participants that we studied

would almost certainly be glad to have GEKA available and make frequent

use of it.

Phase 2 showed that an early GEKA prototype was on the right track to

meeting those goals, with most participants feeling that it was easier to learn

and remember than shortcuts, and that it was faster than all mouse-based

WIMP methods and all dialog box methods.

With the information that we learned in this formative study, we were

able to make improvements to the GEKA design as described in the next

chapter and proceed to a laboratory experiment, described in Chapter 5, to

more thoroughly compare GEKA to existing WIMP techniques.

 42

4 GEKA Design and Prototypes

We designed and implemented two GEKA prototypes, one for the

formative study described in the previous chapter, and one for the laboratory

study described in the next chapter. The design of these prototypes and the

goals that helped shape the design process are described here.

4.1 Goals

Our prototype design was motivated by a set of concrete design goals

as well as our general vision for GEKA and our long term goals. We describe

each of these.

4.1.1 GEKA vision

The highest level goal for GEKA is to make computing more pleasant

and productive for advanced users. This could come from increased speed,

reduced errors, reduced cognitive demand, or simply preference, and will be

achieved by allowing most commands in most applications to be executed

through the keyboard. We see GEKA as an addition to WIMP interfaces,

augmenting them with an additional input mechanism rather than removing or

replacing any existing features. As such, the additional choice in interaction

methods is strictly a benefit: it can be utilized when users see fit; the rest of

the time, it should not detract in any way from their experience.

We envision a future version of GEKA that can be used in a consistent

manner across all applications. While our initial prototypes are designed for

the command set of a specific application domain, we tried to not make any

decisions that would limit GEKA’s usefulness in other domains.

 43

4.1.2 Prototype goals

The following list summarizes the concrete goals that our prototypes

were designed to meet. They are based on our vision for GEKA as well as the

results from Phase 1 of the formative study discussed in the previous chapter.

Speed – In the formative study, all participants identified keyboard

shortcuts as their favourite interaction method. The primary reason for doing

so was speed. Clearly speed of execution of commands is very important to

advanced users. In order to be successful, GEKA must be fast.

Because we decided that GEKA would not replace any current WIMP

features, keyboard shortcuts will continue to be available alongside GEKA.

We expect continued use of keyboard shortcuts when they are available and

known to users, so it is not necessary that GEKA match their speed. What is

important is that GEKA be noticeably faster than the mouse-based WIMP

techniques that our formative study participants wanted to avoid using.

Error rate – It is important for any interaction method to have a low

error rate. A constant need to identify and correct errors while executing

commands is frustrating and time consuming. Error rate did not come up as an

issue during our discussion of WIMP methods in the formative study, so we

can conclude that users are satisfied, or at least not overly dissatisfied, with

their error rates using both keyboard shortcuts and mouse-based methods.

While outperforming WIMP would certainly be desirable, we feel that simply

matching the error rates of WIMP interfaces is enough for GEKA to be

considered a success on this measure.

Ease of learning and remembering commands – The biggest drawback

that we found for keyboard shortcuts was that participants often simply did

now know them, which was due in large part to difficulty in learning and

remembering shortcuts. In order to be a viable alternative to mouse-based

WIMP methods, GEKA must be easier to learn and remember than keyboard

shortcuts, and ideally as easy as menus and toolbars. We are hoping to

 44

accomplish this by making extensive use of graphical feedback so that GEKA

interaction is based on recognition rather than recall.

Visual demand – High visual demand is a major drawback of pointer

based interaction methods. Users often must scan through long menus or

many toolbar items to find the desired command. Even when the exact

location of the command is known, the user’s visual attention must be

completely focused on the pointer, ensuring that it is in the proper location

before selecting the item. This can distract users heavily from their main task,

sometimes causing significant frustration and time loss. GEKA is designed in

a way that allows advanced users to execute commands with little or no visual

attention.

Note that there is a potential conflict between this goal and the previous

goal, which requires the use of visual feedback. GEKA must include visual

feedback that is readily available when needed but does not distract more

experienced users who do not rely on it.

Completeness – GEKA must be designed in a way that will support

most commands and parameters. This, along with ease of learning and

remembering, should address users’ main issue with keyboard shortcuts: that

there are too many commands for which keyboard shortcuts are unknown or

simply don’t exist. Our prototypes do not aim to implement the full command

set for their application domain, but the command structure is designed to

place as few restrictions as possible on the types of commands that can be

implemented so that a complete set could eventually be implemented.

4.1.3 Long term goals

We can already anticipate some features that might be added to future

GEKA iterations. While the prototypes were not specifically designed to

accommodate any of these features, they were kept in mind throughout the

process. We tried to not make any decisions that would adversely impact our

ability to implement them in the future. These features include command and

 45

parameter history, aliasing, scripting, and inter-application communication.

They will be discussed more thoroughly in the final chapter of this thesis.

4.2 Prototype design

We designed and implemented a GEKA prototype to use in Phase 2 of

our formative study (previous chapter) and another for our laboratory

experiment (next chapter). Consistent with Phase 1 of the formative study, we

chose to implement the prototype in the domain of word processing because

word processors have rich, complex feature sets appropriate for studying,

word processor interfaces are generally very typical WIMP interfaces, and

most computer users are familiar with word processors.

The prototypes used in each of the two studies differed in two ways.

The formative study prototype ran as a plug-in within OpenOffice.org Writer

in order to give participants the true experience of using GEKA in a fully

functional word processor, whereas the laboratory experiment used a replica

of the Microsoft Word 2003 user interface but with a very limited command

set implemented. In addition, some slight changes were made after the

formative study based on participant’s feedback. Despite these differences,

the appearance and functionality of the GEKA design was very similar in both

versions, and the implementation was based on the same source code. The

two versions will be described as one, with the changes that occurred as a

result of the formative study being described when appropriate.

There are two major components to the GEKA design. The first is the

command language, including the actual command structure as well as the

auto-completion mechanism. The second is the graphical feedback, which

provides cues and shows command and parameter options. Each component

will be described separately.

 46

4.2.1 GEKA command language

The core of GEKA is its command language. GEKA commands need to

be flexible and expressive while both keeping keystrokes low and being easy

to learn and remember. The flexibility and expressiveness come from a

command syntax that closely resembles those of powerful traditional

command line interfaces. The reduction of keystrokes and ease of learning

and remembering commands are provided by a uniform auto-completion

mechanism for both command names and parameters that lists results

effectively, shifting the focus of interaction to recognition rather than recall.

4.2.1.1 Command syntax

The GEKA command syntax relies on existing application-specific

command and parameter names that users should already be familiar with

through their WIMP interactions with an application. This should greatly

reduce the time and difficulty of learning commands for experienced users,

potentially eliminating it entirely in some cases. The downside of this is that

command and parameter names are often quite long. This is addressed by the

auto-completion mechanism described below, and by giving each command a

short name in addition to its full name. The short name is a sequence of a few

characters that will uniquely select a command or parameter.

GEKA uses a prefix command syntax with keyword parameters. This

command structure provides a straightforward and flexible way to execute

commands and will be familiar to users who have experience with CLIs. For

most GEKA commands with parameters, a command name is selected, and

then parameters may be selected by specifying a parameter name and then a

value. There is one exception: for commands with only one parameter, the

parameter name is left out, leaving just the command name and the parameter

value. Examples of GEKA commands include:

 47

Table 4-1: Examples of GEKA commands.

4.2.1.2 Auto-completion

The auto-completion mechanism is what gives GEKA its ease of

learning and remembering commands and parameters and its ability to require

only a small number of keystrokes. After each character that the user types, an

incremental search mechanism finds all of the commands or parameters that

the user may have intended. The search results are presented in a graphical

match list whose ordering is intended to approximate the likeliness that each

was intended. This eliminates the need to memorize and type full names.

To order the match list, matches are divided into four categories,

described below:

Exact match – An exact match is a command or parameter whose

name (either the full name or the short name) is exactly the text that

has been entered. In order for this to work, names and short names

must be designed in such a way that all short names are unique and

the short name for one command is not the full name for another

command.

Prefix match – A prefix match is a command or parameter whose

name begins with the characters in the entered text. For example,

bold Command with no parameters

zoom 200 Command with one parameter

print copies 4 Command with multiple parameters, where

only one parameter is used

Insert_table

rows 4 columns 2
Command with multiple parameters used

 48

the commands save, save as, and save as web page are

all prefix matches for the input “sav”.

Substring match – A substring match is a command or parameter

that contains the characters in the entered text as a contiguous

sequence. For example, the commands superscript,

subscript, and full screen are all substring matches for

the input “scr”.

Subsequence match – A subsequence match is a command or

parameter that contains all of the characters in the entered text in

order, though there may be other characters in between. For

example, the commands background colour, font

colour, and clear are all subsequence matches for the input

“clr”.

The results within each category are ordered lexicographically, and all

matches within one category are displayed before any of the matches from the

next category.

We considered using an adaptive mechanism to order the matches

based on the user’s history with executing GEKA commands. This could

potentially reduce the number of keystrokes needed to execute a command by

bringing frequently used commands to the top of the list more quickly.

However, there would be a major drawback in that the match list would be

unpredictable and users would be required to look at the feedback to

determine which command is selected after inputting text. Thus, we decided

that a static sorting algorithm was more consistent with our goal of low visual

attention because once a user learns a character sequence that will bring the

desired result to the top of the list, the pairing will never change, and if the

sequence is remembered, the command or parameter can then be used without

looking at the screen.

 49

The match ordering algorithm is based on our intuition about how users

would search for commands. This assumption should be validated in a future

study.

4.2.2 GEKA graphical feedback

The second part of the GEKA design is the graphical feedback that

displays the auto-completion match lists and all of the other information

needed to make GEKA interaction quick and easy. We designed and

implemented a simple graphical feedback component in order to test the

command language as described above. In contrast to the command language,

which we believe to be robust and complete, this initial graphical feedback

component is less complete. We plan to iterate and improve upon it in future

work.

The primary purposes of the graphical feedback component are to

prompt the user to enter characters and display the characters that have been

typed, list the possible options for command and parameter names, refine the

lists according to the matching algorithm above as text is entered, and confirm

the selected command and parameters so that the user is confident the correct

combination will be executed.

The graphical feedback component performs these core functions in a

very straightforward way, borrowing heavily from the design of Quicksilver

(Blacktree), which has proven itself to be well suited to this type of keyboard

interaction. The main purpose of the graphical feedback prototype is to be

able to test the command language with users, determining whether our core

approach to the problem is on the right track. Our formative study and our

laboratory experiment were designed to explore issues including how easily

users can learn to use GEKA, how their performance compares to WIMP

performance after practice, and how much they like using GEKA. All of these

can be addressed with a simple, straightforward feedback component. We

were not concerned with our initial prototypes being attractive or flashy,

 50

making novel use of visual information, or necessarily supporting all of the

commands that are possible within the GEKA command language.

We will give an overview of how the graphical feedback combines with

the command language to allow the user to execute commands and then

describe each part of the graphical feedback in detail.

4.2.2.1 Overview of GEKA interaction

GEKA exists as a separate mode within the WIMP application. It is

entered through the key combination CTRL+ENTER, which brings the

GEKA window to the front of the screen. Figure 4-1 shows an overview of

the GEKA graphical feedback component.

 51

Figure 4-1: GEKA prototype graphical feedback showing four distinct stages of
interaction. Stage A is before anything has been typed, B shows command name selection,
C shows inputting a parameter for a command with only one parameter, and D shows
inputting a parameter for a command with multiple parameters. In each stage, the blue
and white pane has the input focus.

 52

Initially, a list of all possible commands is shown with a prompt for the

user to begin typing, as seen in Part A of Figure 4-1. As the user types, the

command list is refined to include only the match list results as described in

the command language section. When the best-match command has

parameters, a second pane listing the parameters and their current values is

shown on the right, as seen in Part B.

When the selected command has parameters, pressing SPACE will

move the focus (shown by displaying the focused panel in blue and white

while the other panels are grayed out) to the second panel, allowing parameter

name selection in a manner identical to command selection. After a parameter

name is selected, pressing SPACE again will open and move focus to the

parameter value pane, as shown in Part D. When the value is selected,

pressing SPACE another time will move focus back to parameter name

selection, and any number of further parameter name and value pairs can be

selected. Pressing ENTER at any time that a valid command and set of

parameters are selected will execute the selected command with the parameter

values, if applicable. Pressing ESCAPE will close the GEKA window without

executing a command.

Parameter selection differs slightly if the command has only one

parameter. In this case, there is no need to select the parameter name. The first

press of SPACE will shift the focus straight to value selection, as shown in

Part C.

The title bar of the GEKA window shows all characters that have been

entered. It resembles a traditional command line. In the command or

parameter name at the top of each pane, the characters that match the input are

shown in red, and the characters in the short name for the command or

parameter are underlined.

The use of SPACE to move between panes in GEKA came out of the

formative study. Initially, we had been using TAB for this purpose, because

 53

TAB is traditionally used to move between parts of a GUI. Many of our

participants reported that this was confusing for two reasons. First, after a

parameter value is selected, the focus actually moves backward, and the TAB

key moving forward sometimes and backward sometimes felt very awkward.

Second, it did not feel like using a command line interface in which SPACE is

typically used to denote the end of a command or parameter.

Another improvement made based on the formative study is the use of

BACKSPACE to remove characters from the input. Initially, there was no

way to “undo” a parameter value that had already been set. The way to correct

a mistake was simply to input the value a second time. Some of our

participants intuitively tried to use BACKSPACE for this purpose, so we added

this functionality. Pressing BACKSPACE at any time will remove the most

recent character from the input. In some cases, this is very straightforward.

For example, if a parameter value is currently being set and “abc” has been

entered; pressing BACKSPACE will simply remove the ‘c’ leaving “ab.” It

becomes more complicated when eliminating a character would change the

focus of the graphical feedback. For example, in Figure 4-2, the focus is on

parameter value entry, and the input is “p c ” with the last character being a

SPACE. Pressing BACKSPACE at this point would eliminate the SPACE from

the input. Because that SPACE was what triggered the move to the parameter

value entry, and it is now no longer part of the input, the focus will move back

to parameter value selection with the input string “p c” as shown in Figure

4-3.

 54

Figure 4-2: GEKA prototype after the characters “p c ” have been entered. There is a
trailing SPACE after the ‘c’ that opened the parameter value pane.

Figure 4-3: The result of pressing BACKSPACE in Figure 4-2, removing the trailing
SPACE from the input and leaving just the characters “p c”.

We next describe each aspect of the graphical feedback in detail.

4.2.2.2 Command list

The command list is shown in a pane that lists each command on a

separate line. Before any text has been entered, all possible commands are

listed, and a prompt is displayed at the top asking the user to type a command

name. This is illustrated in Figure 4-4.

As characters are typed, the list of commands updates to show only

those commands that match the input according the matching algorithm. The

prompt to type a command is replaced with the first command in the match

 55

list, indicating that if the enter key is pressed, that command will be executed.

A short description of each command is also displayed to remind the user of

its functionality. Figure 4-5 shows GEKA after one character, ‘s’ has been

typed. The command save has ‘s’ as its short name and is brought to the top

of the list. Figure 4-6 shows just the command list after the characters “tab”

have been entered. This list contains all four match categories, and they are

labeled in the figure.

Figure 4-4: Initial GEKA command list with all possible commands. The user is
prompted to type a command name.

 56

Figure 4-5: GEKA command list after the character 's' has been typed. The save
command is shown at the top because it is the best match. It will be executed if ENTER is
pressed.

Figure 4-6: GEKA command list after the characters 'tab' have been typed. The best
matching command is insert table. This command list contains all four categories of
match described in the command language section.

The down and up arrows can be used to scroll through the command

list. Figure 4-7 shows GEKA after “align” has been entered. If the user was

looking for the command left alignment, it would not be possible to

bring that command to the top based on the matching algorithm. However, the

 57

command can be selected by using the down arrow. Figure 4-8 shows GEKA

after left alignment has been selected by entering the text “align” and

then pressing the down arrow twice.

If a letter, number, or the BACKSPACE key is typed, any down and up

arrow input is disregarded, and the match list is updated according to the auto-

completion algorithm with the first result in the list becoming the current

selected command.

In both the command list and the best match command at the top, the

characters that match the input string are shown in red. In the best match

command at the top, the characters comprising the command’s short name are

shown underlined.

Figure 4-7: GEKA command list after the characters 'align' have been entered. There is
no way to select a command other than center alignment by continuing to type characters.

 58

Figure 4-8: GEKA command list after the characters 'align' have been entered and the
down arrow has been pressed twice, moving the selection to the command left alignment.
The text entry area, discussed in section 4.2.2.5 displays exclamation marks (!) for the
down arrows.

4.2.2.3 Parameter name list

The parameter list looks and acts very similarly to the command list.

The only difference is that in addition to the parameter name, the current

value of the parameter is listed. The value is shown on a separate line and in a

different colour to make it distinct from the parameter name. Figure 4-9

shows the parameter list for the command insert table. Figure 4-10

shows the same list after the character ‘c’ has been typed.

 59

Figure 4-9: GEKA window with the parameter list in focus. This parameter list shows all
parameters for the command 'insert table'

Figure 4-10: GEKA window showing the parameter list for 'insert table' after 'c' has been
entered. The best matching parameter is columns. Pressing SPACE will allow a value for
that parameter to be selected. The parameter list has been updated to show only
parameters that match the input ‘c.’

4.2.2.4 Parameter value entry

Parameter value entry is handled in a separate pane. The mechanism

used depends on the type of the parameter. We have implemented entry

mechanisms for text values (either strings or numbers) and list selection

values. The text mechanism is shown in Figure 4-11 for the columns

 60

parameter of the insert table command. Though not implemented, it

would be fairly straightforward to prevent illegal parameter values from being

entered by displaying a warning and preventing the parameter value from

being accepted. Examples of where this could be useful are preventing letters

from being entered into a number field or preventing entry of numbers that

are out of the acceptable range.

Figure 4-12 shows the entry mechanism for selecting a value from a

list. This mechanism functions just like the command and parameter lists: the

user types in characters, and with each one the list is culled and a best match

is shown at the top.

For full implementation of a command set, it would be useful to design

other specific parameter value mechanisms such as file and colour choosers

and simplified input for Boolean values.

Figure 4-11: GEKA window with the parameter value entry in focus. This third pane in
the window allows a value to be entered for “columns.”

 61

Figure 4-12: GEKA window with the parameter value entry in focus. Parameter values
from a list are selected in the same way as command and parameter names. Because the
“apply style” command has only one argument, there are only two panels in the window.

4.2.2.5 Text entry area

The full set of characters that have been entered into GEKA is always

shown in the title bar of the window. Figure 4-13 shows an example of the

text entry area where the text “tab r 5 c 3” has been entered. When a user

gains experience with GEKA, learning the short names (or any other sequence

of characters that is known to match the desired selection) for commands and

parameters, it is possible to ignore the rest of the graphical feedback and just

look at the text area as if it were a traditional command line. Very

experienced users might go a step beyond this and not look at the GEKA

window at all while typing a command and its parameters.

 62

Figure 4-13: GEKA window demonstrating the text entry area. All characters that have
been typed are displayed in the title bar of the GEKA window, in this case “tab r 5 c 3”.

Any down arrows that have been used to scroll through a list are

included in this display, while an up arrow cancels out the previous down

arrow and removes it from the display. Because Windows XP does not have

full Unicode support, exclamation marks (!) are used to display down arrows

rather than the Unicode downward arrow (↓).

4.3 Design Discussion

GEKA’s design has three main improvements over existing

applications like Quicksilver and Enso.

Support for multiple parameters in arbitrary order – GEKA’s use of

keyword parameters allows for more flexible commands than other

application support. Quicksilver and Enso support only one parameter for

each command. Ubiquity has support for multiple parameters, but these are

positional parameters, which restrict the flexibility of command input.

Smarter matching including abbreviations for all commands – GEKA

uses a static matching algorithm whose results are always the same for any

given input. This fits better with our goals than does Quicksilver’s adaptive

algorithm. Additionally, each command and parameter name in GEKA has a

 63

built-in abbreviation, allowing experienced users to very quickly select the

desired item.

Clear visual feedback of the input characters – The title bar in the

GEKA window displays all of the characters that have been typed. This

allows GEKA to be used more like a traditional command line for advanced

users who do not need to look at the graphical feedback. Quicksilver has no

display of the input characters. Enso does highlight the input, but it is

incorporated into the auto-completed command name and can be difficult to

differentiate.

4.4 Design limitations

In order to assess how well we have reached our goal of being able to

support as many commands as possible, we looked through all of the

commands available in the menus and toolbars in Microsoft Word 2003 and

identified each of the commands where our current prototype either won’t

work or will be awkward to use. We grouped these commands into four

categories, described below:

Multi-step dialogs between the user and the computer – The GEKA

mechanism does not work when completing an action that requires multiple

phases of input from the user based on output from the computer. A common

example of this is wizards. The simplest version of a wizard is just a

command with a large number of parameters split across multiple pages.

GEKA could certainly handle a command of this type, but often in a wizard,

the contents of one page are dependent on the user’s input from previous

pages. GEKA is not designed to accommodate this kind of multi-step

interaction. Another example is find/replace (shown in Figure 4-14), where a

dialog box persists on the screen through multiple iterations of executing

actions such as find next and replace. With the current prototype, the

GEKA window is closed after each command is executed and there is no

 64

support for find/replace type interaction where multiple commands are

executed rapidly with the same set of parameters.

Figure 4-14: The Find and Replace dialog in Microsoft Word 2008.

Inherently visual tasks – Some actions rely heavily on visual

information. These include selecting a document theme or a font colour

(Figure 4-15), or inserting a symbol. It would not be a challenge to implement

these commands in GEKA, for example, using hex codes for colours resulting

in something like “set colour ffee84” or giving names to symbols resulting in

“insert symbol n-ary summation.” However, using these commands without

any visual preview would likely be quite challenging for users who aren’t

experts with the specific command.

 65

Figure 4-15: The font colour chooser in Microsoft Word 2008.

Direct manipulation – Some actions involve directly manipulating

objects within a document. One example of this is the format paintbrush

(Figure 4-16), where after the command is selected, a portion of the document

text must be selected with the mouse to be “painted.” In this case, the

command could be easily adapted to work with GEKA by breaking it up into

“copy format” and “paste format,” with the selections performed

independently of the command (this type of formatting is already supported in

Excel). Another example is dragging a table border to change its size. This is

similar to the inherently visual tasks described above, where it is possible to

create a command such as “set width 400,” but the outcome is difficult to

predict without a preview.

Figure 4-16: The “format paintbrush” item in Microsoft Word 2008.

 66

Nested or multi-part parameters – Some parameters are not a simple

name/value pair. For example, in Word 2003, the print command has a

page range parameter in which one of the values, pages, requires further

input of the actual page numbers as shown in Figure 4-17. Rather than being a

simple name/value pair, this parameter has three parts: name, value, and

secondary value. The GEKA command language does not prevent this kind of

command from being implemented, because nothing is specified about what a

parameter value must be. However, the rigid three-pane layout of our

graphical feedback prototype does not allow for this kind of parameter to be

fully implemented. A workaround to use this kind of parameter with the

current design would be to make the parameter value a freeform text entry,

but this would lose all of the benefits of auto-completion and visual feedback.

Figure 4-17: The print dialog box in Microsoft Word 2003. The highlighted value “pages”
for the “page range” parameter requires further input.

Most of these issues could be addressed with a redesign of the graphical

feedback component. One can imagine a graphical component that is less

rigid than our prototype allowing more flexibility with the types of parameter

 67

values that can be input, for example showing a colour chooser where values

can be easily selected through text input. There could even be a plug-in

structure for value entry so that application developers can create parameter

value entry mechanisms for specialized parameter types. Furthermore, there

could be a signal such as pressing ALT+ENTER that executes a command but

leaves the window open to facilitate multi-step dialogs. Thus, we feel that the

GEKA command language paired with a future iteration of graphical

feedback meets our goal of being able to execute most commands.

The prototype design described in this chapter is what was used in our

laboratory experiment, described in the following chapter, which explored

user’s reaction to GEKA and quantitatively compared GEKA with the various

WIMP techniques.

 68

5 Laboratory Experiment

We conducted a laboratory experiment to quantitatively examine

whether our GEKA prototype was meeting its goals. Specifically, we were

interested in testing our design goals of high speed and a low error rate

through actual usage data as well as assessing our high-level goal of making

computing more pleasant for advanced users by examining their behaviour

when given a choice between GEKA and WIMP, and through qualitative

questionnaire responses. This chapter describes the experimental design and

results.

5.1 Experimental environment and tasks

The experiment used the GEKA design described in the previous

chapter. The prototype was initially created as a plug-in for OpenOffice.org

Writer. For this experiment, however, we needed greater control over the

functionality of the environment than we could get from simple modifications

to an existing word processor. We decided to create a replica word processor

user interface and to base our replica on Microsoft Word 2003 because it is

the best known word processor that uses a standard WIMP interface. The

replica contains the full toolbar and menu structure of Word 2003 but a very

limited portion of the actual functionality.

The Word replica and the experimental software was coded using

C#.NET, while the GEKA prototype was taken from the user interface portion

of our OpenOffice.org plug-in, which was written in Java. The Java and

C#.NET programs communicate with each other through standard

input/output redirection.

 69

5.1.1 Commands

The design for the experiment was based on comparing specific WIMP

methods to their GEKA alternatives. The WIMP methods used in the

experiment were slightly different than those used in the formative study.

Toolbars were broken down into two categories, toolbar buttons and toolbar

drop-downs, because these are in fact quite different methods, with the first

executing simple zero-parameter commands and the latter involving the

selection of one parameter. Our formative study showed that dialog boxes

often frustrate users, so dialog boxes were added to the WIMP methods in this

study and compared to multi-parameter GEKA commands. Finally, context

menus were removed because the formative study showed that they are rarely

used. The study thus examined five types of WIMP commands: keyboard

shortcuts, toolbar buttons, menu items from the menu bar, toolbar drop-

downs, and dialog boxes. Throughout this chapter, we will refer to WIMP

methods and their GEKA equivalents. Keyboard shortcuts, toolbar buttons,

and menu bar items were compared to using GEKA with zero-parameter

commands, toolbar drop-downs were compared to GEKA with one-parameter

commands, and dialog boxes were compared to GEKA with multiple-

parameter commands. This is shown in Table 5-1.

Table 5-1: The WIMP methods and their GEKA equivalents used in this experiment.

To examine these types of commands, we needed to select a set of

commands for each method that could be executed in the experiment using

WIMP Method GEKA Equivalent

Keyboard shortcut Zero-parameter commands

Toolbar button Zero-parameter commands

Toolbar drop-down One-parameter commands

Menu bar item Zero-parameter commands

Dialog box Multiple-parameter commands

 70

both the WIMP method and the corresponding GEKA method. The

commands that we chose are representative of their WIMP method and should

be familiar to advanced Microsoft Word users. We used the following 15

commands for the experiment.

• Keyboard shortcuts – underline, italic, copy

• Toolbar buttons – bold, center alignment, toggle bullets

• Toolbar drop-downs – font size, apply style, line spacing

• Menu bar commands – paste, undo, save

• Dialog boxes – print, insert table, insert page

Many of these commands can be executed in Microsoft Word through

several WIMP methods. Because we needed an equal number of command

executions with each method, every command was restricted to only being

able to be executed through the method for which it is listed above. Some of

the command-to-method mappings are not what we would expect an

advanced user to typically choose. For example, executing paste though the

menu bar is very rare for advanced users. These unexpected mappings were

chosen primarily due to low numbers of commands in some categories, i.e.

there are few menu bar commands that are familiar to most users and have no

parameters.

The commands listed above were fully implemented in our

experimental software for the listed WIMP method and the corresponding

GEKA method. To create a realistic environment, the full toolbar and menu

bar contents of Microsoft Word 2003 were replicated in our user interface.

However, none of the entries other than those listed above had any

functionality. Similarly, all toolbar items and top-level menu bar items were

added to the GEKA command list, but only those listed above had

functionality. Selecting a command other than these had no effect.

 71

5.2 Task

Because using GEKA involves typing a portion of the command name,

displaying these names to the participants during the trials could bias the

results. Thus, we had to create an alternative method to prompt participants on

which command to execute. We created a series of images that correspond to

each command. To prevent bias for the WIMP condition, the images needed

to avoid resembling the icons used in Word. The text formatting images were

very straightforward. They simply showed the effect of the command on the

text, as illustrated in Figure 5-1 for the command bold. Commands with no

clear effect on document contents required more abstract images, as illustrated

in Figure 5-2 for the command copy. When the precise effect of a command

was ambiguous, such as which exact size the font was being changed to, that

information was included in the image, as seen in Figure 5-3 for the command

font size 24. Finally, commands with multiple parameters required a

description of each parameter as illustrated in Figure 5-4 for the print

command. The full list of images is in Appendix B.

Figure 5-1: Command image for 'bold'.

 72

Figure 5-2: Command image for 'copy'.

Figure 5-3: Command image for 'font size 24'.

Figure 5-4: Command image for 'print copies 2 pages selection'.

 Figure 5-5 shows a screenshot of the experimental application. On the

right side of the screen is the replica of the Microsoft Word user interface,

showing the toolbar, menu bar, text area, and the dialog box for the insert

page numbers command. On the left of the screen is an instructions

window that tells the participant which action to perform. Each set of

instructions is called a task, and consists of a text selection followed by four

 73

command executions. The text to be selected is indicated in the first image of

the window, and the four commands appear below it. The actions must be

performed in the correct order. After an action is completed, the blue

highlight moves down the list indicating which action is to be performed next.

Beside each command in the instruction window is a piece of text indicating

which method must be used to execute the command. If an incorrect action

was performed, nothing happened. The participant was required to continue

trying until the correct action was performed. Each incorrect attempt was

considered an error.

We created five document editing tasks using the commands described

above. The tasks are sets of commands that could reasonably be executed

sequentially in actual word processor usage. Each task contains a mixture of

the WIMP methods. The tasks are as follows.

• Task A – bold, italic, paste, insert table

• Task B – font size, underline, save, print

• Task C – insert page numbers, undo, apply style, center alignment

• Task D – font size, toggle bullets, line spacing, italic

• Task E – insert page numbers, undo, bold, copy

The grouping of commands into tasks is not relevant to our hypotheses

or analysis. It was done simply to present commands to the participants in

reasonable chunks. The only important factor in the task design was that each

WIMP method appears an equal number of times across the five tasks. With

15 commands and 20 slots in the tasks, it was necessary that five of the

commands appear twice. One command from each WIMP method is used

twice in the tasks, resulting in exactly 4 executions of each WIMP method in

the tasks (bold, insert page numbers, italic, and undo).

 74

Figure 5-5: Experimental application

5.3 Participants

As with our formative study, we were interested primarily in studying

advanced computer users for this laboratory experiment. Our 12 participants

(3 female) were all graduate students, 3 in computer science, 6 in electrical

and computer engineering, and 3 in mechanical engineering. In addition to

those 12 participants, we had 8 pilot participants whose data was not used in

the analysis. There were two regular participants who were not able to finish

all of the tasks on time. Their data was not included in the analysis. Two

replacement participants were recruited whose data was used. All participants

had significant experience with Microsoft Word 2003. Participants were

compensated $30 for their time and the top 1/3 in terms of performance were

given an additional $10.

 75

5.4 Procedure

Each participant completed a single three-hour session in which four

distinct phases were completed.

Phase 1: Introduction – After a brief description of the session,

participants were given a list containing all 15 of the commands used in the

experiment and asked to indicate which of the 5 WIMP methods that they

knew how to use for each command. They were then given a demonstration of

how to use GEKA. Next, they were given sheets of paper containing all of the

images used to represent commands in the study alongside the command

name and any parameter names and values that the images represented.

Participants were asked to review the sheets until they were comfortable with

each of the image-to-command pairings.

Phase 2: Performance testing – This phase was the bulk of the

experiment. Participants completed a number of repetitions of the five tasks

described above in two separate conditions: one using only WIMP methods

and one using only GEKA. The presentation order for the two conditions was

counterbalanced.

Each condition began with a simple practice block that was not

included in the analysis. These practice blocks were designed to ensure that

the participant knew how to execute each command that was required.

Practice blocks contained each of the 15 commands one time. During the

practice blocks, participants were able to look at the sheets containing the

image–to-command-name mappings and to ask questions of the researcher.

Neither of these aids was allowed in subsequent blocks. After the first

practice block, participants were given an overview of how the rest of the

session would proceed and they were reminded of the monetary prize for top

performers.

 76

Each condition consisted of three blocks. Each block contained 10

back-to-back repetitions of each of the five tasks. The order of the five tasks

was randomized for each participant and remained consistent across all blocks

for each participant. Within a block, after the 10 repetitions of each task were

completed, participants took a break for at least 30 seconds. After each block,

participants took a break for at least 90 seconds. There was no upper time

limit on the breaks. Participants were provided with magazines to peruse

during the breaks.

Phase 3: Method choice – After the WIMP and GEKA conditions,

participants were given one final block of tasks in which they could choose

any WIMP method or GEKA to execute each command. Because participants

had grown used to executing each command with only one specific method,

they were first given an exercise to remind them of all the methods they knew

for each command. The researcher read through the list of commands and

method types that the participant filled out in the introduction, and the

participant executed each command once with each WIMP method and once

with GEKA. In the method choice block, each task was repeated only three

times, and participants could choose any method to execute each command

each time.

Phase 4: Qualitative feedback – In the final phase of each session,

participants completed a questionnaire in which they rated various aspects of

their interaction experience with GEKA and WIMP throughout the

experiment.

5.5 Piloting

The above description of the experimental procedure includes

improvements to the design whose need became apparent through piloting.

Initially, the order of tasks within each block was completely randomized for

each participant, with no forced back-to-back repetition. In the early piloting,

 77

it became apparent that participants were spending too much time deciphering

the instructions for each task, especially in the WIMP condition, where two

pieces of information were required for each command: the command itself

and the necessary method. To remedy this, we switched to the back-to-back

repetitions. First, we tried five blocks with five repetitions of each task in

each block. With this design, there was no plateau within the five repetitions

of each task, so it was clear that even by the fifth repetition, participants were

still spending time deciphering the instructions. We then moved to the final

design using three blocks each containing ten back-to-back repetitions of each

task.

5.6 Dependent measures

Time was recorded for each command from the moment that the

previous command was completed until the current command was correctly

completed. This includes an implicit error penalty because the timer was not

reset after an error occurred.

Because our hypotheses dealt with interaction methods rather than

specific commands, the time measure was collapsed into a single time for

each interaction method. Each interaction method was used four times in the

set of five tasks. Each of the tasks was repeated ten times per block. The final

time measure for each repetition of each interaction method is the mean of its

four executions in that particular repetition. For example, the menu bar time

for repetition 1 is the average of the paste command from repetition 1 of

task A, the save command from repetition 1 of task B, the undo command

from repetition 1 of task C, and the undo command from repetition 1 of task

E. Similarly, a menu bar time for repetition 2 was calculated using the second

repetition of the same commands.

The number of errors was also recorded for each command. An error

consisted of trying to execute an incorrect command, or the correct command

 78

with incorrect parameters. For example, clicking on redo instead of undo in

the menu bar, printing 4 copies instead of 3 copies, or pressing CTRL+V

instead of CTRL+C were errors. Incorrect actions that did not result in a

command execution were not considered errors: opening a dialog box and

then clicking cancel, clicking the wrong menu heading but not actually

selecting anything in the menu, or pressing an invalid key combination such

as CTRL+SHIFT.

Once again, our hypotheses related to errors dealt with interaction

methods rather than specific commands. Thus, an error value for each

interaction method was computed similarly to the time value described above.

The one difference is that the error value for each repetition is the sum of the

errors for each of the four command executions instead of the mean.

Method choice was measured for each command as the method used in

the final repetition of each task during the method choice phase. The final

repetition was used because participants often changed methods during the

repetitions. The results were very similar when analyzed using all repetitions.

Finally, the questionnaire had participants rate each of the methods on a

scale resembling the NASA TLX on 12 dimensions: ease of learning, ease of

remembering, physical demand, mental demand, visual demand, effort,

tediousness, frustration, distraction, speed, error rate, and overall opinion. The

actual wording and scale used in the questionnaire is in Appendix C. The five

WIMP methods were included as well as three cases for GEKA: zero-, one-,

and multi-parameter commands.

5.7 Motivation

To motivate participants to execute commands as quickly and

accurately as possible, an additional $10 prize was awarded to the top-third-

highest performers in the experiment. The one-third ratio was chosen so that

participants would know they had a reasonable chance of winning.

 79

5.8 Hypotheses

We had the following hypotheses, which are consistent with our goals

in designing GEKA.

• H1: Command selection in GEKA will be faster than and

preferred to menu selection.

• H2: Command selection in GEKA will be slower than and will

not be preferred to keyboard shortcuts.

• H3: For commands with multiple parameters, GEKA will be

faster than and preferred to dialog boxes.

• H4: For commands with one parameter, users will prefer

GEKA to toolbar drop-downs.

• H5: GEKA will be no more error-prone than WIMP.

Here, preference refers to both explicit method choice and the

qualitative questionnaire ratings.

5.9 Design

Data was analyzed using the collapsed time and error measures

described in section 5.6. The following mixed factor design was used: 2

(conditions) x 3 (blocks) x 5 (interaction methods) x 10 (repetitions) x 2

(presentation orders). Presentation order was a between-participants factor,

while all others were within-participants factors.

Pairwise comparisons used Bonferroni corrections. When sphericity

was an issue with our data, Greenhouse-Geisser corrections were used, which

can be identified by non-integer df.

 80

5.10 Results

Initial analysis showed no significant main or interaction effects of

presentation order, so presentation order was dropped as a factor to simplify

further analysis.

5.10.1 Time

There was a significant main effect of condition (F(1, 11) = 13.320, p =

.004, η2 = .548), with WIMP (mean 2.719s) being overall faster than GEKA

(mean 3.645s). There was also a significant main effect of block (F(1.12,

12.35) = 115.610, p < .001, η2 = .913), showing that learning was occurring

across blocks. An interaction effect between block and condition (F(2, 22) =

53.670, p < .001, η2 = .830), shows that GEKA improved more rapidly across

blocks than did WIMP. This may explain a major part of WIMP’s overall

time advantage.

The most interesting time effect was a significant three-way interaction

between condition, block, and interaction method (F(2.65, 29.13) = 27.604, p

< .001, η2 = .715). Figure 5-6 through Figure 5-10 illustrate this interaction

with a graph for each interaction method. Table 5-2 shows the full means and

significance for this interaction.

The pairwise comparisons show that in block 1 each WIMP method

was faster than its GEKA equivalent (all p < .05), except for menu, which

showed no significant difference (p = .817). By block 3, GEKA performance

had improved dramatically in comparison to WIMP. GEKA was significantly

faster than menus (p < .05), while there was no significant difference for

toolbar drop-downs, p = .503, or dialog boxes, p = .102. WIMP remained

faster for shortcuts and toolbar buttons (both p < .05).

 81

Figure 5-6: Dialog box times for WIMP and GEKA in each block. Blocks are labeled with
a * when the time differences are statistically significant (p < .05) (N=12).

 82

Figure 5-7: Menu bar times for WIMP and GEKA in each block. Blocks are labeled with
a * when the time differences are statistically significant (p < .05) (N=12).

Figure 5-8: Keyboard shortcut times for WIMP and GEKA in each block. Blocks are
labeled with a * when the time differences are statistically significant (p < .05) (N=12).

 83

Figure 5-9: Toolbar button times for WIMP and GEKA in each block. Blocks are labeled
with a * when the time differences are statistically significant (p < .05) (N=12).

Figure 5-10: Toolbar drop-down times for WIMP and GEKA in each block. Blocks are
labeled with a * when the time differences are statistically significant (p < .05) (N=12).

 84

Table 5-2: Breakdown for the interaction between condition, block, and interaction
method. Times are in seconds (N=12).

 To determine whether performance was still improving, we examined

the difference between blocks 2 and 3 in the above condition-method-block

interaction. In the WIMP condition, there was a significant difference only for

toolbar buttons (p = .042) and a borderline difference for menus (p = .057).

This indicates that the other three interaction methods had plateaued:

participants were no longer improving. For the GEKA equivalents, there were

significant differences for toolbar buttons, drop-downs, menus, and dialog

Block Method WIMP
Time (s)

GEKA
Time (s)

Significance

1 Shortcuts 1.305 2.452 .000

 Toolbar buttons 1.877 3.158 .000

 Toolbar drop-downs 3.139 5.060 .002

 Menus 2.741 2.800 .817

 Dialog boxes 6.663 12.112 .000

2 Shortcuts 1.022 1.527 .001

 Toolbar buttons 1.497 1.976 .004

 Toolbar drop-downs 2.568 3.100 .116

 Menus 2.312 1.649 .000

 Dialog boxes 5.496 7.378 .014

3 Shortcuts .930 1.411 .000

 Toolbar buttons 1.435 1.736 .047

 Toolbar drop-downs 2.478 2.651 .503

 Menus 2.069 1.430 .000

 Dialog boxes 5.248 6.237 .102

 85

boxes (all p < .05), showing that performance was still improving for all but

one method (shortcuts).

Additionally, but not surprisingly, there were significant main effects of

repetition (F(1.79, 19.68) = 65.505, p < .001, η2 = .856) and interaction

method (F(1.14, 12.57) = 216.641, p < .001, η2 = .953), and an interaction

between condition and interaction method (F(1.27, 13.96) = 19.670, p < .001,

η2 = .641).

5.10.2 Errors

The analysis for errors showed no significant difference for condition,

with a total of 254 errors in WIMP and 256 in GEKA (F(1, 11) = .004, p =

.948, η2 < .001). There was a borderline significant main effect of block

(F(2,22) = 3.322, p = .055, η2 = .232), but no interaction between block and

condition. There was a significant interaction between condition and

interaction method (F(4,44) = 3.260, p = .020, η2 = .229), with pairwise

comparisons showing two borderline significant differences: GEKA had more

errors than dialog boxes (p = .071) and fewer errors than toolbar drop-downs

(p = .085). Table 5-3 shows the full breakdown for this interaction.

Table 5-3: Total errors. Each method was used 1440 times per condition (N = 12).

5.10.3 Method choice

Figure 5-11 shows how often each interaction method was chosen for

each of the 15 commands in the method choice phase of the experiment.

 WIMP GEKA Sig.
Shortcut 30 33 0.845
Toolbar button 15 23 0.136
Toolbar drop-
down 91 46 0.085
Menu bar 43 31 0.394
Dialog box 75 123 0.071
Total 254 256 0.948

 86

Participants overwhelmingly chose to use the two keyboard-based methods:

GEKA and keyboard shortcuts. For commands that have parameters and thus

cannot be completed fully with keyboard shortcuts, GEKA was used nearly

all of the time. For commands that don’t have parameters, shortcuts were

chosen the majority of the time, except for two commands: bullets and

center. The shortcuts for these commands were generally unknown to our

participants (one knew center and none knew bullets). Rather than

resorting to a mouse-based method, participants chose GEKA for all instances

of bullets and the majority of center.

In short, keyboard shortcuts were used where they were known, GEKA

was chosen where shortcuts weren’t known.

Figure 5-11: Percentage of command executions using each method in the method choice
phase of the experiment (N=12).

5.10.4 Qualitative findings

Figure 5-12 and Figure 5-13 show the full questionnaire results. For

each dimension, participants rated each interaction method individually. A

lower score is better.

The responses on each dimension appear to be very similar. This was

confirmed by a reliability analysis showing high consistency (Cronbach’s α =

.966). Because of this similarity, we collapsed the data into a single measure

 87

by averaging the responses on each dimension, shown in the last chart of

Figure 5-13. A Friedman test on these averaged ratings showed a significant

main effect of interaction method (χ2(7)=63.328, p < .001) and Wilcoxon

Signed Rank Tests showed significant differences (p < .05) between each

GEKA method and its corresponding WIMP method: between GEKA zero-

parameter and both toolbar and menu, between GEKA one-parameter and

dropdown, and between GEKA multi-parameter and dialog box. The one

exception is that there was no significant difference between GEKA zero-

parameter commands and keyboard shortcuts (p = .155).

Thus, GEKA was preferred overall to each WIMP method except

keyboard shortcuts, to which it was comparable.

There are two interesting points to be drawn from the individual charts.

First, the error rate responses, shown in Figure 5-12, are the only place where

GEKA multi-parameter commands were rated worse than dialog boxes. This

is in fact consistent with the performance data on error rate discussed above.

The speed responses, shown in Figure 5-13 – consistent with the rest of the

responses – show GEKA to be better rated than all WIMP methods except

keyboard shortcuts. This is interesting because it conflicts with the actual

performance data on speed, which had mixed results with GEKA even being

slower in some cases. It appears that participants felt GEKA was faster than it

actually was.

 88

Figure 5-12: Ratings for WIMP and GEKA methods from the qualitative feedback phase
of the experiment, part 1 of 2. Lower scores are better (N=12).

 89

Figure 5-13: Ratings for WIMP and GEKA methods from the qualitative feedback phase
of the experiment, part 2 of 2. Lower scores are better (N=12).

 90

5.10.5 Summary of results

We summarize our results according to our hypotheses:

• H1: Command selection in GEKA will be faster than and preferred to

menu selection. Supported. GEKA zero-parameter commands were

significantly faster than WIMP menu selections. In the method choice

phase and the questionnaire, GEKA was overwhelmingly preferred.

• H2: Command selection in GEKA will be slower than and will not be

preferred to keyboard shortcuts. Supported. Keyboard shorcuts in the

WIMP condition were significantly faster than GEKA zero-parameter

commands. Keyboard shortcuts were generally used when they were

known in the method choice phase and were rated more highly than

GEKA on the questionnaire.

• H3: For commands with multiple parameters, GEKA will be faster

than and preferred to dialog boxes. Partially supported. There was no

difference in speed, but GEKA was preferred in the questionnaire and

method choice phase.

• H4: For commands with one parameter, users will prefer GEKA to

toolbar drop-downs. Supported. GEKA one-parameter commands

were consistently chosen over toolbar drop-downs in the method

choice phase were rated better in the questionnaire.

• H5: GEKA will be no more error-prone than WIMP. Supported.

There was no significant difference in errors between GEKA and

WIMP.

5.11 Discussion

We conclude that GEKA’s speed is very competitive with WIMP.

GEKA is faster than menus and no different in speed than the other mouse-

based WIMP techniques except for toolbar buttons. This is after only a short

 91

exposure to GEKA. In most cases, participants were shown to be still

improving. It is possible that these results would be even more encouraging

for GEKA after more practice.

GEKA had comparable error rates to WIMP. Analyzing the errors by

interaction method, there are interesting differences that need to be examined

further, but overall, there is almost no difference in error rates. This is

promising, considering that our participants have been using GUIs for a

number of years but had no prior GEKA experience.

GEKA was overwhelmingly preferred to mouse-based WIMP methods.

Both the method choice and qualitative feedback phases of the experiment

showed very strong preference for GEKA over all WIMP methods except

keyboard shortcuts.

In the method choice phase of the experiment, GEKA was consistently

used instead of toolbar buttons, toolbar drop-downs, dialog boxes, and menus,

even though it was only faster than menus. This is consistent with responses

on speed in the questionnaire. It is possible that those responses were biased

by participants’ desire to please the researchers, but this is much less likely in

the method choice phase because participants were aware that there was a

monetary reward contingent on their performance and were thus motivated to

select what they truly felt was the fastest method.

We have as yet no firm basis to know why GEKA feels faster than it

truly is. We speculate that our participants found GEKA more pleasant to use

than WIMP and therefore time spent using GEKA might seem to pass more

quickly, but further work is needed to tease this apart.

This finding on perception of speed causes us to reflect back on our

original goal that GEKA should be faster in order to be attractive to advanced

users, a goal consistent with others working in this design space, such as

Raskin (2000). Achieving pleasurable use, with no notable degradation in

speed, is quite possibly just as important, or perhaps more important than a

 92

speed improvement alone.

 93

6 Conclusions and Future Work

This thesis presents research on the design and evaluation of

Graphically Enhanced Keyboard Accelerators (GEKA). The goal of this work

is to make interactive desktop computing more pleasant and productive for

experienced computer users by giving them the option to execute commands

and specify parameters quickly and easily using the keyboard. Our work

builds on design ideas from a number of similar applications, introducing

improvements that support our design goals of completeness, low visual

demand, ease of learning and remembering, low error rate, and high speed.

Additionally, we provide the first formal evaluation of this type of technique.

Our formative study explored how our target users currently work with

WIMP interfaces. We confirmed our suspicions that advanced computer users

prefer to use the keyboard to execute commands but are often not able to do

so either because there is no keyboard method available or because they have

not been able to learn or remember the available method. We identified dialog

boxes as a particularly problematic interface component for which nearly all

users resort to the mouse despite their stated desire to use a keyboard. The

formative study confirmed our notion of the GUI gap: the unexplored design

space between the easy but slow mouse-based methods and the fast but

incomplete and difficult keyboard-based methods. This suggests that there is

in fact a desire among advanced users for a GEKA-like interaction method

and it motivates our research in this area. Finally, the formative study

provided initial feedback on an early GEKA prototype, helping us to refine

the final design that is presented in this thesis.

GEKA’s design blends several elements from WIMP and CLIs. It uses

a prefix command language with keyword parameters and an auto-completion

mechanism based on incremental search to allow commands to be entered

 94

quickly and precisely. Additionally, it makes use of graphical feedback to

show what values have been selected and what options are available, shifting

the focus of interaction to recognition rather than recall. This design builds on

applications such as Quicksilver and Enso, which also combine command

languages with graphical feedback and incremental search. GEKA has three

key improvements over existing systems: support for multiple parameters in

arbitrary order, smarter matching – including abbreviations for all commands

and tolerance for “sloppy typing,” and clear visual feedback of the input

characters to facilitate learning and re-use.

Our laboratory experiment was the first evaluation of any of the recent

applications supporting command language interaction in graphical

environments. Participants in the experiment were all from our target user

group of advanced computer users. The primary goal of the experiment was to

compare zero-, one-, and multiple-parameter commands in GEKA to the

equivalent WIMP interaction methods in terms of speed and error rate. We

found overall error rates to be nearly identical. Examining error rates by

interaction method showed two borderline significant differences: GEKA

multiple-parameter commands had roughly twice as many errors as dialog

boxes, but GEKA one-parameter commands had about half the errors of

toolbar drop-downs. In terms of speed, GEKA was not designed to compete

with keyboard shortcuts and thus it was, not surprisingly, slower. GEKA was

very competitive with the speeds of the mouse-based WIMP methods, being

faster than menus and showing no statistically significant difference from

dialog boxes and toolbar drop-downs. Toolbar buttons, however, were faster

than their GEKA equivalent.

The experiment also explored users’ preferences between WIMP and

GEKA through a series of tasks where users could choose which interaction

method to use for each command, and through a questionnaire. When given a

choice between WIMP and GEKA, participants overwhelmingly used

keyboard shortcuts when they knew them and used GEKA when they didn’t

 95

know the shortcuts. In the questionnaire, each type of GEKA command was

rated better than its WIMP equivalent except for zero-parameter GEKA

commands relative to keyboard shortcuts. These results suggest that our target

user population may have a strong preference for GEKA over the mouse-

based WIMP methods.

6.1 Discussion and limitations

A surprising result from the study was that the questionnaire and

method choice data both indicate that participants feel GEKA is faster than all

of the mouse-based WIMP methods. This contradicts the quantitative data,

which shows no significant time difference in most cases and GEKA actually

performing worse than toolbar buttons. Further study is required to explore

this disconnect.

While GEKA speeds were competitive with mouse-based WIMP

methods, the results were not as strong as we had expected. Part of this may

be due to the fact that GEKA performance was shown to be improving more

than WIMP performance at the end of the experiment. Our experiment

sessions were three hours long and could not have been reasonably extended

to add more repetitions without running a risk of fatigue effects. It is possible

that extended exposure to GEKA, through a longitudinal multi-session study,

would show GEKA performance continuing to improve compared to WIMP.

Furthermore, given the strong preference for GEKA, it is clear that GEKA has

advantages over WIMP beyond raw speed. Further research will help us

understand these advantages.

The current method of using CTRL+ENTER to open GEKA and ENTER

to execute the selected command could be improved to speed up GEKA

interaction. The easiest alternative to imagine, but most difficult to

implement, would be a dedicated keyboard modifier for GEKA, so that it acts

more like a keyboard shortcut rather than requiring a mode switch using

 96

CTRL+ENTER. This would eliminate one keystroke from each GEKA

invocation, leading to increased performance for every command. Another

possibility would be to use a quasi-mode for command execution, as Enso

does. Rather than having a keystroke to enter GEKA and another keystroke to

confirm the command, a single command key would be held down during

command selection and released to execute the command. Perhaps both could

be provided, leaving the user to choose which to use: a quasi-mode may be

most appropriate for zero- and one-parameter commands, and a full mode for

multi-parameter commands.

We expect that performance with applications such as Quicksilver and

Enso would be roughly comparable to GEKA performance in an experiment

similar to the one we ran because many aspects of the interaction are very

similar. We did observe, however, that most participants made use of

GEKA’s built in command abbreviations, which we suspect would give a

speed and error rate advantage in comparison to other applications that don’t

have command abbreviations. Additionally, GEKA’s use of a static sorting

algorithm likely provides a speed advantage over Quicksilver’s adaptive

algorithm because once GEKA users have figured out a sequence of

keystrokes that will execute a particular command, the mapping will not

change. With an adaptive sorting algorithm, the results are unpredictable. The

user must visually check the graphical feedback to ensure that the correct

command is selected. Finally, many of the commands used in the experiment

would not be possible with the more limited command languages used in

other applications.

As with any laboratory experiment, the tasks in our study were not fully

realistic. Each task was fairly short and consisted entirely of executing

commands as opposed to users’ typical interactions with word processors that

have commands interspersed with extended periods of typing text.

Additionally, participants executed several of the commands with methods

that they would not generally use, for example using the menu bar to execute

 97

paste. A field study where participants use a version of GEKA in their

normal working environments could avoid these issues, but it would be at the

sacrifice of specific precise measurements that we felt were necessary for a

first evaluation.

The long sessions in our laboratory experiment were filled with GEKA

and WIMP tasks. There was no time available for interviews or qualitative

data collection beyond the questionnaires. Without this richer type of data, we

are left with no ability to understand which specific aspects of the GEKA

design contributed to users’ strong preference for it and which were

unsuccessful. Any future studies will have to include more qualitative data

collection to help answer these questions.

Our formative study identified dialog boxes as a key WIMP method

that needs to be improved upon. Users found keyboard interaction with dialog

boxes to be frustrating and nearly always resorted to mouse usage.

Unfortunately, our current design has failed to show any significant

improvement over dialog boxes. While GEKA multi-parameter commands

were rated much better than dialog boxes in our questionnaire and were

chosen much more often in the method choice phase of the experiment, there

was no quantitative benefit. Speed was shown to be similar, and GEKA had

many more errors. Further design iterations of GEKA must focus on

providing a performance increase over dialog boxes.

Some limitations of our work have been discussed in previous chapters.

Section 3.7 explains the problems with our formative study data being

primarily based on self-report rather than actual usage observations. Chapter 4

discusses limitations with the current GEKA design that will need to be

addressed in future iterations.

 98

6.2 Future work

The previous section describes many limitations of the current GEKA

design and of the two studies that we conducted. Future work to address these

limitations could include redesigning the GEKA graphical feedback to allow

for faster command execution and to better support multiple-parameter

commands in order to compete with dialog boxes. Future empirical studies

could include a longitudinal study to measure performance over time and a

field study to examine GEKA usage in actual work environments. These

studies should have a significant qualitative component in order to determine

which parts of GEKA work and which don’t work, why GEKA is perceived

as faster than it actually is, and why some types of commands have far fewer

errors than their WIMP counterparts but others have far more.

A major challenge with moving GEKA forward will be expanding

beyond one specific application domain. We have demonstrated that the

GEKA command language and our prototype graphical feedback work well in

the context of word processing. However, we have not yet explored other

domains. We envision a consistent GEKA interface being available for all

applications and for system-wide global commands, which could pose design

challenges.

It is possible that some application domains will contain command

structure and object selection methods that force us to rethink our approach to

keyboard interaction. For example, some applications might require an object

to be selected before a command can be executed, which could conflict with

our prefix command language. We believe that expanding to other domains

will likely only require small tweaks to our approach, but this is yet to be

determined.

Expanding GEKA to support multiple applications will cause issues

with command naming. It is likely that two applications will have commands

with identical functionality but different names, which could cause confusion

 99

when using GEKA. Perhaps worse would be two applications with commands

that have the same name but completely different functionality. An additional

area of concern could be global commands that are available regardless of

application (such as window manipulation actions). An application attempting

to implement a command with the same name as a global command would

certainly cause confusion. Each of these issues also applies to choosing a

command’s short name. Ultimately, it will be up to application developers to

decide on the command names and short names that GEKA will use for each

specific application. An important piece of research is to develop naming

guidelines that will ensure a consistent user experience across applications.

Traditional CLIs have a variety of features beyond basic command

executions that help make them very powerful and flexible. History

mechanisms help users to find previously executed commands and reuse part

or all of the command without the need to input the full command. Aliases

and scripting allow users to create custom commands, potentially saving

significant time and effort if used frequently. Piping allows data to be easily

transferred between applications, which lets multiple small applications be

combined in very powerful ways. Each of these features has the potential to

be very useful in GEKA, and should be studied.

There are possibilities for GEKA-like interaction to be useful beyond

the typical personal computer setup with a standard keyboard and monitor.

Tabletops, large scale displays, tablet PCs, and mobile devices all have unique

challenges that a GEKA-like approach might help address. Developing

versions of GEKA that work with gesture or handwriting recognition might

improve the experience of using some of these devices.

GEKA has the potential to be very helpful to people with motor

impairments. Some people have a very difficult time using a mouse or other

pointing device. Providing these people with a straightforward way to use the

keyboard for all applications could be a tremendous benefit to them. It is

possible that the GEKA command syntax could even be used with speech

 100

processing to provide an interface for people who cannot use a keyboard. The

specific needs of people with motor impairments should be explored in order

to create a version of GEKA that will benefit them.

Interesting work could be done in exploring natural-language-like or

“sloppy” command syntax as used in Inky (Miller, et al., 2008). For example,

there are many ways to phrase the command “insert a table with 4 rows and 2

columns,” including “table rows 4 columns 2,” “table 4x2,” “4x2 table,”

“table 4 rows 2 columns,” and “4 row 2 column table.” A future GEKA

system could include support for these variations and more. The command

variations might be determined by the application designers, through a survey

of users eliciting their mental models of commands, or perhaps added to the

vocabulary based on users’ “errors” in attempting to input unsupported

command variations.

 101

Bibliography

Apple Computer. (2009). Mac Dev Center: Apple Human Interface
Guidelines: Introduction to Apple Human Interface Guideleines.
Retrieved 11 23, 2009, from Mac Dev Center:
http://developer.apple.com/mac/library/DOCUMENTATION/UserExper
ience/Conceptual/AppleHIGuidelines/XHIGIntro/XHIGIntro.html

Blacktree. (n.d.). Blacktree. Retrieved 11 23, 2009, from
http://www.blacktree.com/

Bunt, A., Conati, C., & McGrenere, J. (2007). Supporting interface
customization using a mixed-initiative approach. Proceedings of the 12th
international Conference on intelligent User interfaces, (pp. 92-101).

Buxton, W. (1982). An Informal Study of Selection-Positioning Tasks.
Proceedings of Graphics Interface '82, (pp. 323-328). Toronto.

Cherry, J. M. (1986). An experimental evaluation of prefix and postfix
notation in command language syntax. International Journal of Man-
Machine Studies , 24 (4), 365-374.

Davison, B., & Hirsh, H. (1997). Toward an adaptive command line interface.
International conference on human-computer interactions No7.

Fish Shell. (2009). Fish Shell. Retrieved 11 23, 2009, from
http://fishshell.org/

Gajos, K., & Weld, D. S. (2004). SUPPLE: automatically generating user
interfaces. Proceedings of the 9th international Conference on intelligent
User interfaces (pp. 93-100). ACM.

Geller, V. J., & Lesk, M. E. (1983). User interfaces to information systems:
choices vs. commands. Proceedings of the 6th Annual international ACM
SIGIR Conference on Research and Development in information
Retrieval (pp. 130-135). New York: ACM.

Gentner, D., & Nielsen, J. (1996). The Anti-Mac interface. Commun. ACM ,
39 (8), pp. 70-82.

Giger, K., & Wilde, E. (2006). XPath filename expansion in a Unix shell.
Proceedings of the 15th international Conference on World Wide Web
(pp. 863-864). ACM.

 102

Gong, Q., & Salvendy, G. (1995). An approach to the design of a skill
adaptive interface. International Journal of Human-Computer
Interaction , 7 (4), 365-383.

Greenberg, S., & Witten, I. H. (1988). How users repeat their actions on
computers: principles for design of history mechanisms. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
ACM.

Grossman, T., Dragicevic, P., & Balakrishnan, R. (1997). Strategies for
accelerating on-line learning of hotkeys. Proceedings of the SIGCHI
conference on Human factors in computing systems (pp. 1591-1600).
ACM.

Grudin, J., & Barnard, P. (1985, April). When does an abbreviation become a
word? and related questions. ACM SIGCHI Bulletin , 16 (4), pp. 121-
125.

Humanized. (n.d.). Humanized > Enso. Retrieved 11 23, 2009, from
http://humanized.com/enso/

Karat, J., McDonald, J. E., & Anderson, M. (1986). A comparison of menu
selection techniques: touch panel, mouse and keyboard . International
Journal of Man-Machine Studies , 25 (1), 73-88.

Lane, D. M., Napier, H. A., Peres, S. C., & Sándor, A. (2005). Hidden Costs
of Graphical User Interfaces: Failure to Make the Transition from Menus
and Icon Toolbars to Keyboard Shortcuts. International Journal of
Human-Computer Interaction , 18 (2), 133-144.

Linton, F., Joy, D., & Schaefer, H. (1999). Building user and expert models
by long-term observation of application usage. Proceedings of the
Conference on User Modeling 1999, (pp. 129-138).

MacKenzie, I. (1995). Movement time prediction in human-computer
interfaces. In R. M. Baecker, W. A. Buxton, J. Grudin, & S. Greenberg,
Readings in human-computer interaction (2nd ed.) (pp. 483-493). Los
Altos, CA, USA: Kaufmann.

MacLean, A., Carter, K., Lövstrand, L., & and Moran, T. (1990). User-
tailorable systems: pressing the issues with buttons. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 175-
182). ACM.

McGrenere, J., Baecker, R. M., & Booth, K. S. (2002). An evaluation of a
multiple interface design solution for bloated software. Proceedings of

 103

the SIGCHI Conference on Human Factors in Computing Systems (pp.
164-170). ACM.

Microsoft. (2009). Search Commands. Retrieved 11 23, 2009, from Microsoft
Office Labs:
http://www.officelabs.com/projects/searchcommands/Pages/default.aspx

Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van Kleek, M., Karger,
D., et al. (2008). Inky: a sloppy command line for the web with rich
visual feedback. Proceedings of the 21st Annual ACM Symposium on
User interface Software and Technology (pp. 131-140). ACM.

Miller, R., & Myers, B. (2000). Integrating a Command Shell Into a Web
Browser. Proceedings of USENIX 2000 Annual Technical Conference,
(pp. 171-182).

Mozilla Labs. (2009). Mozilla Labs >> ubiquity. Retrieved 11 23, 2009, from
https://mozillalabs.com/ubiquity/

Nichols, S., & Ritter, F. E. (1995). A theoretically motivated tool for
automatically generating command aliases. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM.

Norman, D. A. (1988). The Psychology of Everyday Things . New York, NY,
USA: Basic Books.

Norman, D. (2007). The next UI breakthrough: command lines. interactions ,
14 (3), pp. 44-45.

Peres, S. C., Tamborello, F. P., Fleetwood, M. D., Chung, P., & Paige-Smith,
D. L. (2004). Keyboard Shortcut Usage: The Roles of Social Factors and
Computer Experience . Human Factors and Ergonomics Society Annual
Meeting Proceedings (pp. 803-807). Human Factors and Ergonomics
Society.

Raskin, J. (2000). The Humane Interface. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co.

Shneiderman, B. (1997). Designing the User Interface: Strategies for
Effective Human-Computer Interaction, 3rd edition. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming
Languages. IEEE Computer , 16 (8), 57-69.

Stuerzlinger, W., Chapuis, O., Phillips, D., & Roussel, N. (2006). User
interface façades: towards fully adaptable user interfaces. Proceedings of

 104

the 19th Annual ACM Symposium on User interface Software and
Technology, (pp. 309-318).

Westerman, S. (1997). Individual Differences in the Use of Command Line
and Menu Computer Interfaces. International Journal of Human-
Computer Interaction , 9 (2), 183-198.

Whiteside, J., Jones, S., Levy, P. S., & Wixon, D. (1985). User performance
with command, menu, and iconic interfaces. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 185-191).
ACM.

Wikipedia. (2009). Command Line Completion. Retrieved 11 23, 2009, from
Wikipedia - the free encyclopedia:
http://en.wikipedia.org/wiki/Command_line_completion

YubNub. (n.d.). YubNub. Retrieved 12 10, 2009, from http://yubnub.org/

 105

Appendix A Formative Study Documents

Figure A-1: Unformatted document provided to formative study participants.

 106

Figure A-2: Formatted document for formative study participants to match. The study
used a printout with hand written annotations of font sizes, colours, and hyperlink URLs.

 107

Appendix B Lab Experiment Command

Images

Figure B-1: Lab experiment image for “bold”

Figure B-2: Lab experiment image for “italic”

Figure B-3: Lab experiment image for “paste”

 108

Figure B-4: Lab experiment image for “font size 24”

Figure B-5: Lab experiment image for “underline”

Figure B-6: Lab experiment image for “save”

Figure B-7: Lab experiment image for “print copies 3 page range selection”

 109

Figure B-8: Lab experiment image for “insert table rows 5 columns 3”

Figure B-9: Lab experiment image for “insert page numbers position top alignment
center first page no”

Figure B-10: Lab experiment image for “undo”

Figure B-11: Lab experiment image for “apply style heading 1”

 110

Figure B-12: Lab experiment image for “center”

Figure B-13: Lab experiment image for “toggle bullets”

Figure B-14: Lab experiment image for “line spacing 2”

Figure B-15: Lab experiment image for “copy”

 111

Appendix C Experiment Questionnaire
Easy to learn: How easy do is it to learn a new command or parameter

in each of the following techniques?

Keyboard

shortcuts
Very easy | Very hard

Toolbar

buttons
Very easy | Very hard

Toolbar

drop-down
Very easy | Very hard

Menu bar
Very easy | Very hard

Dialog box
Very easy | Very hard

GEKA

simple commands
Very easy | Very hard

GEKA with

one parameter
Very easy | Very hard

GEKA with

multiple

parameters

Very easy | Very hard

 112

Easy to remember: How easy is it to remember how to use a

command or parameter that you know in each of the following techniques?

Keyboard

shortcuts
Very easy | Very hard

Toolbar

buttons
Very easy | Very hard

Toolbar

drop-down
Very easy | Very hard

Menu bar
Very easy | Very hard

Dialog box
Very easy | Very hard

GEKA

simple commands
Very easy | Very hard

GEKA with

one parameter
Very easy | Very hard

GEKA with

multiple

parameters

Very easy | Very hard

 113

Mental demand: How mentally demanding is it to use a command or

parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very low demand | Very high

demand

Toolbar

buttons

Very low demand | Very high

demand

Toolbar

drop-down

Very low demand | Very high

demand

Menu bar

Very low demand | Very high

demand

Dialog box

Very low demand | Very high

demand

GEKA

simple commands

Very low demand | Very high

demand

GEKA with

one parameter

Very low demand | Very high

demand

GEKA with

multiple

parameters

Very low demand | Very high

demand

 114

Physical demand: How physically demanding is it to use a

command or parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very low demand | Very high

demand

Toolbar

buttons

Very low demand | Very high

demand

Toolbar

drop-down

Very low demand | Very high

demand

Menu bar

Very low demand | Very high

demand

Dialog box

Very low demand | Very high

demand

GEKA

simple commands

Very low demand | Very high

demand

GEKA with

one parameter

Very low demand | Very high

demand

GEKA with

multiple

parameters

Very low demand | Very high

demand

 115

Visual demand: How much visual attention is required to use a

command or parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very low demand | Very high

demand

Toolbar

buttons

Very low demand | Very high

demand

Toolbar

drop-down

Very low demand | Very high

demand

Menu bar

Very low demand | Very high

demand

Dialog box

Very low demand | Very high

demand

GEKA

simple commands

Very low demand | Very high

demand

GEKA with

one parameter

Very low demand | Very high

demand

GEKA with

multiple

parameters

Very low demand | Very high

demand

 116

Effort: How hard do you have to work to use a command or parameter

that you know in each of the following techniques?

Keyboard

shortcuts

Very low effort | Very high

effort

Toolbar

buttons

Very low effort | Very high

effort

Toolbar

drop-down

Very low effort | Very high

effort

Menu bar

Very low effort | Very high

effort

Dialog box

Very low effort | Very high

effort

GEKA

simple commands

Very low effort | Very high

effort

GEKA with

one parameter

Very low effort | Very high

effort

GEKA with

multiple

parameters

Very low effort | Very high

effort

 117

Tediousness: How tedious (tiring or boring) is it to use a command or

parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very low tediousness | Very

high tediousness

Toolbar

buttons

Very low tediousness | Very

high tediousness

Toolbar

drop-down

Very low tediousness | Very

high tediousness

Menu bar

Very low tediousness | Very

high tediousness

Dialog box

Very low tediousness | Very

high tediousness

GEKA

simple commands

Very low tediousness | Very

high tediousness

GEKA with

one parameter

Very low tediousness | Very

high tediousness

GEKA with

multiple

parameters

Very low tediousness | Very

high tediousness

 118

Frustration: How frustrating (discouraging, irritating, or annoying) is

it to use a command or parameter that you know in each of the following

techniques?

Keyboard

shortcuts

Very low frustration | Very

high frustration

Toolbar

buttons

Very low frustration | Very

high frustration

Toolbar

drop-down

Very low frustration | Very

high frustration

Menu bar

Very low frustration | Very

high frustration

Dialog box

Very low frustration | Very

high frustration

GEKA

simple commands

Very low frustration | Very

high frustration

GEKA with

one parameter

Very low frustration | Very

high frustration

GEKA with

multiple

parameters

Very low frustration | Very

high frustration

 119

Distraction: How much does it distract you from your main task to use

a command or parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very low distraction | Very high

distraction

Toolbar

buttons

Very low distraction | Very high

distraction

Toolbar

drop-down

Very low distraction | Very high

distraction

Menu bar

Very low distraction | Very high

distraction

Dialog box

Very low distraction | Very high

distraction

GEKA

simple commands

Very low distraction | Very high

distraction

GEKA with

one parameter

Very low distraction | Very high

distraction

GEKA with

multiple

parameters

Very low distraction | Very high

distraction

 120

Speed: How fast is it to use a command or parameter that you know in

each of the following techniques?

Keyboard

shortcuts
Very fast| Very slow

Toolbar

buttons
Very fast| Very slow

Toolbar

drop-down
Very fast| Very slow

Menu bar
Very fast| Very slow

Dialog box
Very fast| Very slow

GEKA

simple commands
Very fast| Very slow

GEKA with

one parameter
Very fast| Very slow

GEKA with

multiple

parameters

Very fast| Very slow

 121

Error rate: How many errors do you make when using a command or

parameter that you know in each of the following techniques?

Keyboard

shortcuts

Very few errors | Very

many errors

Toolbar

buttons

Very few errors | Very

many errors

Toolbar

drop-down

Very few errors | Very

many errors

Menu bar

Very few errors | Very

many errors

Dialog box

Very few errors | Very

many errors

GEKA

simple commands

Very few errors | Very

many errors

GEKA with

one parameter

Very few errors | Very

many errors

GEKA with

multiple

parameters

Very few errors | Very

many errors

 122

Overall opinion: How much to you enjoy using each of the

following techniques?

Keyboard

shortcuts
Very much | Very little

Toolbar

buttons
Very much | Very little

Toolbar

drop-down
Very much | Very little

Menu bar
Very much | Very little

Dialog box
Very much | Very little

GEKA

simple commands
Very much | Very little

GEKA with

one parameter
Very much | Very little

GEKA with

multiple

parameters

Very much | Very little

 123

Appendix D Ethics Approval Certificates

 124

 125

