
A Content-based Publish/Subscribe
Framework over Structured

Peer-to-Peer Networks
by

Wei Li

B.Sc., Beijing Normal University, 2001
M.Eng., Beijing Normal University, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

(Vancouver)

June, 2008

© Wei Li 2008

Abstract

The Publish/Subscribe model has become a prevalent paradigm for building

distributed notification services by decoupling the publishers and the sub

scribers from each other. Content-based publish/subscribe allows for highly

expressive descriptions of subscriptions and thus is more appropriate for con

tent dissemination when a finer level of granularity is necessary. However,

scalability has become an issue due to the expensive matching and delivering

inherent in content-based events. In this thesis we propose a novel content-

based publish/subscribe framework built over a DHT-based P2P network in

order to provide scalable content delivery mechanisms. Based on efficient

subscription installation, event publishing and event delivery techniques, our

system can provide a scalable platform to support multiple different pub/

sub schemas. There are three key features in our design: (1) A logic space

mapping and a distributed 2d-tree that maintains this space over DHT;

(2) Novel random probing searching schemes allowing for subscription in

stallation and event publication; (3) An efficient application layer multicast

algorithm for message delivery with low bandwidth consumption.

11

Table of Contents

Abstract

Table of Contents

List of Tables

List of Figures

List of Programs

Acknowledgements . .

Dedication

1 Introduction

1.1 Motivation

1.2 Thesis Contributions

1.3 Thesis Organization

2 Chapter Two: Background and Related

2.1 P2P Computing

2.1.1 Unstructured P2P

Work

111

vi

vii

ix

x

xi

1

1

4

4

6

6

7

ill

2.1.2 Structured P2P and Distributed Hash Table 8

2.3.1

2.3.2

11

11

12

141415

18

18

19

20

23

27

32

33

33

37

39

41

42

45

45

45

47

Table of Contents

2.2 Publish/Subscribe Background

2.2.1 Elements of a Publish/Subscribe System

2.2.2 Content-based Publish/Subscribe Model

2.3 Related Work

Non-P2P Approaches

P2P Approaches .

3 System Design

3.1 System Overview

3.2 Logic Space Mapping

3.2.1 2d-Tree

3.2.2 2d-Tree Maintaining

3.3 Subscription Installation

3.3.1 Subscription Management

3.4 Event Publication, Matching and Delivery

3.4.1 Event Publication

3.4.2 Application Layer Multicast

3.4.3 Event Delivery

3.5 Load Balancing

3.6 Fault Tolerance

4 Evaluation

4.1 Simulation Setup

4.1.1 Simulator Configuration

4.1.2 Dataset Configuration .

iv

Table of Contents

4.2 Simulator Architecture 48

4.2.1 Message Types 49

4.3 Simulation Results 50

4.3.1 Evaluation of Subscription Installation 50

4.3.2 Evaluation of Event Publication 52

4.3.3 System Scalability 58

5 Conclusion and Future Work 61

5.1 Conclusions 61

5.2 Future Work 62

Bibliography 65

v

List of Tables

3.1 Example of a LeafNodeRoutingTable. 25

4.1 Simulation Parameters 47

4.2 Publish/Subscribe Schema in simulation 47

4.3 Schema Parameters for Simulation 48

4.4 Simulator Architecture 49

4.5 RTTs for different networks 58

vi

List of Figures

2.1 Example of a Pastry Routing Table 10

2.2 Looking up an object in Pastry overlay network 10

2.3 Elements of a Pub/Sub System 12

3.1 Logical Space Mapping . . 21

3.2 2d-tree Structure 22

3.3 App1icatio Layer Multicast on Pastry 38

3.4 Load Balancing Scheme 42

4.1 Subscription Installation Latency 51

4.2 Bandwidth distribution during Subscription Installation . . 52

4.3 Publication latency distribution 53

4.4 Bandwidth cost distribution 54

4.5 A performance comparison of multicast and unicast 55

4.6 A comparison of mulicast and unicast on first 100 nodes . . 56

4.7 Bandwidth cost comparison of schemes with and without load

balancing 57

4.8 A comparison of load balancing performance on top 125 nodes 57

4.9 Event delivery latencies on different network size 59

vu

List of Figures

4.10 Bandwidth cost on different network size 59

viii

List of Programs

3.1 Leaf Node Split Algorithm 28

3.2 Subscription Installation Algorithm 30

3.3 RndRegionProbe Algorithm 35

3.4 Application Layer Multicast Algorithm 40

ix

Acknowledgements

I would like to gratefully and sincerely thank my supervisor, Dr. Son Vuong,

for his inspiration, guidance and encouragement. Without his support, my

current achievement would have been impossible.

To my second reader, Dr. George Tsiknis, I am grateful to him for his

invaluable and insightful comments that have helped me improve this thesis.

I also would like to thank all my colleagues in NIC lab, especially Juan Li,

Mohammed Alam, Billy Cheung, Stanley Chiu, Ricky Cheng and Minghao

Lu for their constructive discussions and comments, to all those who have

made NIC lab a wonderful workplace. In particular I am indebted to Billy

for proofreading and polishing my thesis.

Last, but not least, I thank my family for their consistent support, love

and patience.

Wei Li

The University of British Columbia

June OO8

x

Dedication

To my father, who loved and supported me throughout his whole life.

xi

Chapter 1

Introduction

Publish/Subscribe systems provide users with the ability to express their

interest in a subscription and subsequently receive notifications for of any

event, generated by a publisher, that matches their interest [11]. A subscrip

tion can either be described by a topic name (topic-based model), or by a

set of attributes and values (content-based model). A Publish/Subscribe

service usually evinces two basic properties: (1) Anonymity: Publishers and

subscribers are independent of each other. A publisher does not need to

be aware of any subscribers to publish an event, and vice versa. (2) Asyn

chronization. The publication and notification of events do not conform

to the main flow of control of the publishers and subscribers. Thus, the

communication between publishers and subscribers are asynchronous.

1.1 Motivation

Publish/Subscribe systems arise in many domains including personal (e.g.,

news alert, online deal-hunting and online bidding), financial (e.g. trading

stock and commodity in real time), etc. For example, a bargain-hunter may

want to buy a new laptop online, but find it too expensive. He decides to wait

until the price drops to a price that he can afford. With a publish/subscribe

1

Chapter 1. Introduction

service, by simply submitting a subscription with his requirements, he is

able to get a notification whenever there is a deal meets his requirements.

This frees him from having to keep refreshing the websites. A stock trader

could also benefit from a publish/subscribe system by watching stock price

through notifications for selling or buying.

Current Publish/Subscribe designs are either centralized or distributed.

Centralized solutions store all the subscriptions on a central server. When

an event is published, a DBMS is used to match the subscriptions with the

event [14] [8]. However, these systems lack scalability as the number of

events and subscriptions increases. Although there are some special data

structures[4] proposed to solve this problem, they try to improve scalability

by limiting the expressiveness of subscriptions. In addition, a single point

of failure can devastate the entire service.

To overcome the scalability problem of centralized model, the academic

community has paid great attention to solutions based on distributed model

such as SIENA [6], Gryphon[3] and MEDYM[5]. All these designs rely on

pre-deployed overlay networks formed by a set of independent, communicat

ing servers. These servers act as brokers for subscriptions and events. The

principle behind these systems involve allowing only a subset of the nodes

in the system to store each subscription and a subset of nodes are visited

by each event so that these events are forwarded only to nodes that lie on

an overlay path leading to interested subscribers. The natural architecture

of the brokers’ overlay for this kind of solution is usually an acyclic tree or

graph. Events are delivered through a multicast tree formed by these bro

kers. Obviously the performance of these solutions is significantly influenced

.2

Chapter 1. Introduction

by the topology of the overlay network. In addition, these brokers’ overlay

networks are inherently static, managed by administrators and expensive to

deploy.

Peer-to-Peer overlay networks have emerged as a promising alternative

solution for internet-scale distributed applications due to their flexibility

and scalability. As completely decentralized peer-to-peer networks com

posed of a set of nodes forming a structured graph, Distributed Hash Tables

(DHTs) [221, [18], [1], [19], [29] have additional advantages including high

searching efficiency, low overhead and fault-tolerance. Therefore, we choose

DHT to be the P2P substrate of our content-based publish/subscribe sys

tem. But DHTs are designed only for exact key matching. By mapping an

object to a hash key in the virtual key space, DHT hides all the semantics

of the object, which makes it a significant hurdle to implement a content-

based publish/subscribe system on top of DHT because users’ interests can

contain various semantic information. Therefore, a content-based publish/

subscribe system over DHT needs to address four core issues: (1) How to

reconstruct the semantics of users’ interests over DHT. (2) How to install

subscriptions to the network and manage them. (3) How to efficiently find

all the subscriptions that match an incoming event and deliver the event to

the corresponding subscribers, and (4) How to take into consideration the

fact that a practical peer-to-peer network is formed by heterogeneous peers.

3

Chapter 1. Introduction

1.2 Thesis Contributions

In this thesis, we propose a novel content-based publish/subscribe system

built on top of DHT. The main contributions of this thesis are:

• We propose a distributed 2d-tree structure to reconstruct the seman

tics behind subscriptions and events, inspired by the kd-tree data

structure [4]

• We design a novel subscription installation algorithm to install all the

subscriptions in the overlay.

• We develop an event publishing and delivery algorithm to publish

events and search peers for event matching. To reduce the bandwidth

consumption, we also propose an application layer multicast algorithm.

• We propose a load balancing scheme to improve our system’s perfor

mance.

• We evaluate our proposed system with FreePastry{26] through an ex

tensive simulation on a large Internet-like network model.

1.3 Thesis Organization

This thesis consists of five chapters. Chapter 2 introduces the background

of P2P and DHT networks, Publish/Subscribe basis and a review of related

work. In Chapter 3, we present our system design in detail, focusing on our

space mapping technique, then our subscription installation, event publish

ing and delivering algorithms, as well as a load balancing scheme to ensure

4

Chapter 1. Introduction

system scalability. We evaluate our design in Chapter 4 and in Chapter 5

examine our results and what conclusions can be drawn from them as well

as look into future areas where we can explore.

5

Chapter 2

Chapter Two: Background

and Related Work

This chapter first provides background information about Peer-to-Peer (P2P)

technology with an emphasis on Pastry [20] network. Then we introduce two

fundamental concepts in a content-based Publish/Subscribe diagram. The

last section is a review of related work.

2.1 P2P Computing

With the prevalence of the Internet, computing and communication envi

ronments have become significantly more complex and chaotic, evolving into

something beyond what a classical distributed systems were ever intended

to support. Since the debut of the first P2P product Napster [16] in late

nineties, Peer-to-Peer overlays have attracted plenty of interest from both

academia and industry because they provide a good substrate for creating

Internet-scale data sharing and content distribution applications.

What is peer-to-peer? A quick look into many literature available re

veals that various different definitions are being used. For example, a widely

accepted definition by Shirky[21J says “peer-to-peer is a class of applications

6

Chapter 2. Chapter Two: Background and Related Work

that take advantage of resources-storage, cycles, content, human presence—

available at the edges of the internet”. But this definition excludes applica

tions which rely upon some centralized servers for their operation, such as

the aforementioned famous p2p application: Napster. Though it’s not the

intention of this thesis to provide a universally accepted definition of P2P,

from our perspective there are three common characteristics present in any

P2P system:

• Nodes are able to be interconnected to share resources such as content,

storage, computing capacities, etc.

• Unlike traditional Client/Server model, nodes in a p2p network are

able to function as both clients and servers.

• A p2p network is self-organizing and resilient to environment dynam

ics. This means that the system is able to adapt itself to topology

changes as nodes enter or leave the network.

In terms of overlay structure, p2p networks can be divided into two

different categories, unstructured and structured P2P.

2.1.1 Unstructured P2P

In an unstructured p2p network, there is usually no specific node placement

structure on the overlay topology. Nodes are randomly placed in either a flat

or hierarchical graph. As a result, unstructured p2p systems traditionally

suffer from the problem of objects in the network being difficult to locate.

Searching mechanisms, ranging from early proposed flooding model of the

7

Chapter 2. Chapter Two: Background and Related Work

network with propagating queries to more recent and sophisticated random

walks and routing indices, have not completely overcome this problem. A

main drawback of unstructured p2p networks therefore is that they lack

scalability.

2.1.2 Structured P2P and Distributed Hash Table

Structured P2P networks have emerged mainly in an attempt to address

the scalability issues that unstructured systems face with. In contrast to

unstructured P2P overlays, in structured P2P systems, through a tightly

controlled network topology, peers are logically placed at deterministic 1-

cations to form and maintain a special structure. The most prominent class

of approaches to such structured P2P systems are Distributed Hash Tables

(DHT), in which each node holds a part of the hash table and an object

is stored on this node if this object’s identifier falls within the range it is

responsible for. DHT-based systems have an identifier space where nodelds

and objectlds (key) are uniformly generated. Given a key, put(key, object)

stores the object to the node corresponding to the key. To retrieve an object

with a given identifier key, get (key) is called. Both of these two operations

need an overlay routing algorithm to send the request to the peer responsible

for the key.

Pastry

Among all the variants of DHT-based overlay schemes such as P-Grid[1],

CAN[18], Chord[22], Pastry[19j, Taspestry[29], Kademilia[15], Pastry is one

of the most well-known. Since our system is initially designed and evaluated

8

Chapter 2. Chapter Two: Background and Related Work

on Pastry, we now provide some background information on it.

In Pastry, each peer or content object is assigned a 128-bit identifier

to be a nodeld or objectld (key1). A nodeld is used to position the node

in a circular Id space, which ranges from 0 to 2128i. Scattered on the Id

space, each node is responsible for a fraction of the Id space (with each key

corresponding to an object, this acts exatcly like a hash table. Thus, this

type of methodology is called Distributed Hash Table). When an object’s Id

falls into a specific Id range, this object is stored on the node corresponding

to this Id range. Particularly, Pastry stores an object to a node whose

nodeld is the numerically closest to the objectld.

Each node maintains a routing table and a leaf set. A routing table,

as shown in Fig 2.1, is designed with LOgBN (B=2b) rows, where each row

holds B-i number of entries. The B-i number of entries at row n of the

routing table each refer to a peer who shares the current peer’s Nodeld in

the first n digits, but whose (n+i)t digit has one of B-i possible values

other than the (n+i)t digit in the current peer’s Nodeld. Each entry in

the routing table contains the IP address of peers whose Nodelds have the

appropriate prefix, and it is chosen according to a close proximity metric.

Now we give a simple example of how Pastry uses its routing table to

perform a lookup function. On the pastry network illustrated in Fig 2.2, we

suppose node Ox65alfc wants to find the object with key Oxde74f7 which is

supposed to be stored on node Oxde7400. A lookup message with the object

key is sent out from node Ox65alfc first. Then the sender looks up his local

routing table to decide the next hop for this message. In this case, the next

‘We use objectld and key interchangeably throughout this thesis

9

Chapter 2. Chapter Two: Background and Related Work

OxOx Oxix Ox2x O4I Ox4x OxDx OxEx OxFx

Ox3Ox Ox3lx OxS2x 0x38x OxEx OxFx

0x370x 0x371x 0x372x th37Ax Ox37Dx Ox37Ex Ox37Fx
—

—

iY4j(Ox37Alx 0x37A2x Ox37ABxOx37ACxOx37AD Ox37Ex Ox3

Figure 2.1: Routing Table of a Pastry node with Nodeld 37AOx with b=4

hop is OxdOS2Ob which shares the first digit with the object Id. The rest

of this routing process acts in a same way on each intermediate node. As

we can see from Fig 2.2, the lookup message gets closer and closer to the

target Id, and finally gets to the destination node OxdeZçOO. The actual

object stored by this key can then be retrieved by the requesting node. This

routing process takes no more than LogN hops.

Figure 2.2: Lookillg up an object in Pastry overlay network

To maintain the overlay, each node has a leaf set L which consists of

10

Chapter 2. Chapter Two: Background and Related Work

ILl /2 peers with numerically closest larger nodelds and ILl /2 peers with

numerically smaller Nodelds. A typical value of ILl /2 is B. Even with

concurrent peer failures, a message is guaranteed to be delivered unless

lL /2 peers with adjacent Nodelds fail simultaneously. To reduce the risk of

a simultaneous failure of nodes that are geographically close to each other,

which is possible to happen in reality, a uniform hash function such as SHA-1

is chosen to distribute nodes and objects randomly on the Id space.

Because node failures may cause data loss in the whole network, a data

preserving technique through replication has been developed specifically for

Pastry, called PAST[1O].

2.2 Publish/Subscribe Background

2.2.1 Elements of a Publish/Subscribe System

A generic Pub/Sub system (also known as Event Service or Notification

Service) is composed of a set of nodes distributed over a communication

network. Clients of the systems are classified according to their role as pub

lishers, which act as producers of information, and subscribers, which act as

consumers of information. Instead of communicating directly among them

selves, subscribers and publishers are decoupled: interaction of subscribers

and publishers relies on the intermediate nodes of the pub/sub system. This

decoupling is a desirable characteristic for a distributed communication sys

tem because applications can be made more independent from the commu

nication issues, avoiding having to deal with aspects such as synchronization

or the need for publishers to address their subscribers directly.

11

Chapter 2. Chapter Two: Background and Related Work

Operationally, the interaction between client nodes and the pub/sub

system takes place through a set of basic operations that can be executed

by clients on the pub/sub system and vice versa (Fig 2.3). A publisher

injects a piece of information e (i.e. an event) to the pub/sub system by

executing the publish(e) operation. On the subscribers’ side, interest in

specific events is expressed through subscriptions. A subscription, s, is a

filter over a part of the event content (or the whole of it), expressed through

a set of constraints. A subscriber can install and remove a subscription

s from the pub/sub system by executing subscribe(s) and urisubscribe(s)

operations respectively.

PublisWSubscnbe System Subscribe(s)
pubIise

Figure 2.3: Elements of a Pub/Sub System

We say an event e matches a subscription s if it satisfies all the declared

constraints of subscription s. The task of verifying whether an event e

matches a subscription s is called matching.

2.2.2 Content-based Publish/Subscribe Model

Various ways of expressing interests have led to distinct variants of the

pub/sub paradigm. The pub/sub models that have been widely adopted

12

Chapter 2. Chapter Two: Background and Related Work

are generally categorized according to their expressive power: topic-based

model and content-based model.

In a topic-based model, a subscriber describes his interest by using only

a topic name and will be notified of all events related to that topic. A

topic-based model is also sometimes called the channel-based model. Due

to the coarse grain expressiveness, a multicast algorithm is usually adopted

to disseminate events to numerous interested subscribers.

The content-based model, on the other hand, is much more expressive.

In this model, subscriptions can be described using a set of attributes, each

of which has a value specified by the subscriber. Our system, based on a

popular model proposed by Fabret et al.[12] in 2001, adopts a schema de

scribed as: S= {A1,A2, A3, . .. , A,}, where each element of S corresponds

to an attribute. Each attribute has a name, type and domain, and can

be specified by a tuple {Name: Type, Mm, Max}. The attributes are

identified by their unique name, which can be a unique namespace followed

by the actual attributeS name. The type could be integer, float, string, etc.

The values Mm and Max define the range of domain values of the given

attributes.

A subscription is a conjunction of predicates over one or more attributes.

Each predicate specifies a constant value (using =) or a range (using <, >,

,) for an attribute. If a subscriber needs to specify multiple predicates

over the same attribute, we can model such a subscription as a combination

of multiple subscriptions, each of which specifies one continuous range over

the attribute. For simplicity of presentation, henceforth, we assume each

subscription specifies a continuous range over one attribute. An example of

13

Chapter 2. Chapter Two: Background and Related Work

a subscription is s = {(A1 < v) A (v2 < A2 < v3)}. An event is a set of

equalities over the attributes e S, which can be expressed as e = {A1 = c1,

A2 = c2, A3 = c3, ..., Ancn}.

An event e matches a subscription s if each predicate of s is satisfied

by the value of the corresponding attribute specified by the event e. A

subscription s might not contain every attribute of the schema, but it is

a match to an event as long as the event satisfies the predicates that the

subscriber has specified. The main functionality of a pub/sub system is

to store the subscriptions and given an event, find all the subscriptions

matching the event and deliver the event to the subscribers.

2.3 Related Work

In this section, we review previous work related to our research. We start

from the non-P2P approaches to pub/sub sytems including central server

based and distributed broker sever based approaches. Then we discuss some

work which has been done on P2P networks.

2.3.1 Non-P2P Approaches

Centralized approaches such as[14j [8j rely on a central server to store sub

scriptions and match events with subscriptions. DBMS or some other special

data structure[12] are usually utilized. As we mentioned in Chapter 1, these

approachese suffer a serious scalability problem as the number of subscrip

tions and events increase.

In order to improve the scalability, many distributed broker server based

14

Chapter 2. Chapter Two: Background and Related Work

Pub/Sub systems[3] [25] [7] [6] [5] have been proposed using routing trees to

perform event delivery through multicast techniques. In Gryphon[3], events

are matched with subscriptions on a matching tree that is constructed in

the pre-processing phase. Based on multicast, event delivery is performed

by the link matching algorithm. In this algorithm, brokers are assembled in

a decision tree which an individual broker uses to determine which subset of

its neighbours it should send an event to. In Siena[6], a new subscription is

stored and forwarded from the originating server to all the broker servers in

the network. This forms a tree that connects subscriber with servers. Noti

fications are then routed towards the subscriber following the reverse path

of the tree. In spite of the various designs, they all share the problems of:

pre-deployed broker overlay, cost of ownership, no self-organization. In ad

dition, the scalability to an Internet-scale deployment has not been verified

yet.

2.3.2 P2P Approaches

With features such as decentralization, share cost of ownership, self-organization,

resilience to fault, P2P overlays are promising substrates for Internet-scale

applications. Many attempts have been made in designing a P2P-based pub

/sub system. We focus on reviewing those based on DHT in this section.

Topic-based Systems

Scribe[20] and Bayeux[31] are two representative topic-based pub/sub sys

tems built on top of Pastry and Tapstry respectively. An application-layer

multicast tree is explicitly formed and maintained to disseminate the events

15

Chapter 2. Chapter Two: Background and Related Work

to subscribers. Not only are these approaches not expressive enough, but

they also incur high maintenance cost of maintaining multicast tree.

Content-based Systems

Terpstra et al[23] proposed Rebeca, a content-based pub/sub system built on

top of Chord. This system needs to maintain the invariants for filters, which

is inefficient in the case of frequent node joins and departures. Tiantafih1ou

et al.[24j developed a content-based pub/sub system also on top of Chord.

According to a preset precision, a range of values is divided into some discrete

values that are stored to the ring. Therefore, a subscription is stored into

nodes which are supposed to be the root nodes of these discrete values.

The main drawback of their system is that subscription installation and

management are expensive if a large number of nodes and messages are

involved such as when a subscription’s range is big and the precision is

high. Zhu et al. proposed another system, Ferry[30], which is based on

Chord as well. Based on the name of each attribute, Ferry hashes each

attribute to the ring to act as a rendezvous point (RP) for this attribute.

This system obviously doesn’t scale to a large number of subscriptions with

limited number of attributes because only I SI nodes actually process the

subscriptions and events. To overcome this problem, an extension to Ferry

was proposed recently, called eFerry[28j. In this system, instead of hashing

each attribute, a vector of attributes is hashed to the ring, which increases

the number of RP nodes. However, this compromises the event matching

performance because it has to investigate each subset of the whole attribute

set, the number of which is exponential to SI.

16

Chapter 2. Chapter Two: Background and Related Work

Besides the attribute based approaches reviewed above, another research

direction is a multi-dimensional treatment, such as Meghdoot [13] and HyperSub [27],

which treats the entire schema as a multi-dimension space. Meghdoot maps

a 2n (n = SI) dimensional space to the CAN[18] DHT network which can

handle multi-dimensional searches in nature. However, it’s not easy to adapt

this approach to other DHTs. More importantly, it’s not able to support

multiple schemas with different dimensions. HyperSub, a newly proposed

system, leverages a multi-dimensional locality-preserving hashing scheme

which sacrifices DHT’s load balance nature by changing a random hashing

such as SHA-1 to a locality-preserving hashing. Iii this system, the number

of nodes which a subscription is installed to could be of an exponential mag

nitude. Moreover, both of these two approaches are not flexible to changes

on schema, such as adding or deleting attributes in a schema. Since one of

our main goals is flexibility, our system takes the attribute based approach.

17

Chapter 3

System Design

In a content-based pub/sub system, a subscription is a conjunction of predi

cates over one or more attributes. Each predicate specifies a range of values

for an attribute. An event normally is a set of equalities over each attribute

in the schema. A subscriber will be notified of any event that matches his

interest which is expressed in a subscription. To accomplish this functional

ity on DHT, two key problems need to be resolved: 1) Given a subscription,

which node(s) on the overlay should it be stored to? 2) Given an event,

which node(s) on the overlay should be queried to find matching subscrip

tions? In this chapter, we present our system design to address these two

problems. We first overview our system in Section 3.1 and then detail our

system’s design in Sections 3.2-3.4. Lastly, fault tolerance is investigated in

Section 3.5.

3.1 System Overview

Our system aims to serve as a platform to host multiple content-based pub

/sub services with unique schemas. For simplicity of expression, we base

our discussion on a pub/sub schema S = {A1,A2, A3, ..., A}, which will

be used in the rest of our thesis.

18

Chapter 3. System Design

In our system, we map each attribute’s one dimensional domain ([Mm, Max])

to a two dimensional square logic space ([Mm, Max], [Mm, Max]). In this

way, a range in one dimensional space becomes a point in the 2d space.

Leveraging a 2d tree, we decompose the 2d space into smaller subareas.

Each small area corresponds to a node in the 2d-tree which is distributed

onto the DHT through hashing each node’s identifier. A subscription is

stored in the form of a tuple (subscriber, sid, s), where subscriber is the

subscriber’s handle in the DHT, including its Id and IP address, sid is the

local subscription id. And s is the subscription that this subscriber has sub

mitted, including its content. When an event is published, it is sent to all

the nodes that store the potentially matching subscriptions to match, and

then this event is delivered to the interested subscribers.

Our system consists of three key mechanisms:

• Logical Space Mapping and distributed 2d-Tree (Section 3.2).

• Subscription Installation (Section 3.3).

• Event Publishing and Delivery (Section 3.4).

3.2 Logic Space Mapping

For ease of exposition, we suppose there is a schema S = {(Attributel:

float, [Mi Max])} which has only one attribute Attributel with type float

and [Mm, Max] as its domain. A subscriber submits a subscription s =

{Attributel: v1<v <v2} and there is an event e = {Attributel: v=v3} with

Vi <v3 <v2, which will be injected into the system. So when e is published,

19

Chapter 3. System Design

the subscriber of s should be able to be notified of this event.

The first problem is how to store subscription s into the DHT overlay.

Simply hashing the mm and max values of the range to the DHT network

makes the event matching very difficult to process because a random hash

function loses all the semantics behind this range: vi is less than V2, and

any value larger than vi and less than v2 is in this range.

To overcome this problem, we therefore map this one dimensional space

to a two dimensional space, as shown in Fig 3.1, by taking the minimum

and the maximum value of this range as the x and y coordinates on the 2d

space. Thus, attribute Attribute] ‘s domain [Mm, Max] become a square

shown in Fig 3.1. Range [vi, v2] in id space becomes a point in 2d space with

coordinate (v1, v2). Similarly, event e with Attribute] = V3 is mapped to a

point on the diagonal of the 2d square. From Fig 3.1, we can infer that all

the subscriptions that match this event are in the up-left grey rectangle area

i.e. the target searching area of the event matching process. With this logic

space mapping strategy, the semantic implication of the original subscription

is reconstructed if we can search the target area efficiently within this 2d

space.

3.2.1 2d-Tree

To search all the points in an area on the 2d space, we adopt the traditional

kd-tree[4] searching algorithm. Essentially, we build a 2d-tree structure

for this 2d space. As illustrated in Figure 3.2, the 2d space is divided

on the x-axis and y-axis alternatively as the tree spans, and all the points

(subscriptions) are stored in the leaf nodes. For example, in Fig 3.2(a), given

20

Chapter 3. System Design

(Mm, Max) (Max, Max)

/

/

(v3,v3)}

(Mm, Mm) (vi, Mm) (Max, Mm)

Figure 3.1: Logical Space Mapping

the domain of attribute Attributel as [0, 100], the corresponding 2d space is

{[0, 1001 ,[0, 100]}.2 A 2d-tree of this 2d space is shown in Fig 3.2(b). As we

can see, the aggregation of all leaf nodes {A, B, C, D, E, F, G} covers the full

potential searching area. Note that only the area above the diagonal is used

in our scheme since a id range (x, y) implies y x. So the bottom-right

area is never used. In Fig 3.2, Subscription s = {Attributel: 10 v < 80}

falls into the area that leaf node D is responsible for. When an event e =

{Attributel: v = 15} is published, leaf nodes A, C and D are queried since

they overlap the target searching area of this event which is the grey area

shown in Fig 3.2(a). Then subscription s will be successfully matched to

this event on node A.

2We use { [xmin, xmax] [ymin, ymax] } to denote a rectangular area throughout this
thesis where [xmin, xmaxj is the range on the x axis, [ymin, ymax] is the range on the y
axis. Note that the inclusiveness of xmin, xmax, ymin, ymax is not always true. It can
be denoted as { (xmin, xmaxj , [ymin, ymax] } if xmin is not in this area.

21

Chapter 3. System Design

(0,0) (100,0)

cE

(a) (b)

Figure 3.2: 2d-tree Structure

To deploy our solution over a DHT, the tree needs to be able to function

in a distributed manner. Therefore, we assign each node in the tree a unique

identifier, and through hashing this identifier, id = hash (identifier), an Id

within the DHT space is generated. Based on this Id, a peer in the DHT

is given responsibility of each node. By treating this 2d-tree as an ordered

binary tree, we can obtain each node’s unique identifier as a string of Os

and is following the current attribute’s name. We define this identifier in a

recursive way: Assume a current node’s identifier is “x” with its 2d area as

{[xi, x2] , [yl, y2]} and its two child nodes as {[x1, (x + x2) /2), [yi, y2]} and

{[(xl+x2)/2,x2],[yl,y2]}or{[xl,x2],[yl,(yl+y2)/2)}and{[xl,x2],[(yl+y2)/2,y2j},

then these two children’s identifiers are “zO” and “xl” respectively. The root

(100, 100)(0, 100)

—ton

I:1l0,8O))

_L

jIJ-4

II

El

A

F

22

Chapter 3. System Design

node’s identifier is this attribute’s name. For example, in Fig 3.2, node B’s

identifier is “AttributelOOl”, assuming attributel’s name is “Attributel”in

the schema.

Leveraging the logical space mapping and 2d-tree techniques, we have

successfully reconstructed the semantics of a range of interest over a DHT

overlay. In the next section, we will discuss how to maintain this tree over

a DHT.

3.2.2 2d-Tree Maintaining

To lower the maintenance overhead imposed by the tree, the tree is main

tained in a lazy manner. We do not physically maintain the links between

the nodes in the tree over DHT, because:

• Extra physical links between peers cause too much overhead for updat

ing or exchanging link information periodically to maintain the links,

especially during a network churn such as frequent nodes joining and

leaving, flash crowds, etc.

• By exploiting the underlying DHT functionalities, it simplifies our

system’s design and deployment. Utilizing DHT’s fault resilience in

creases the robustness of our system without the need to handle net

work dynamics.

Without a physical link between nodes, a traversal from a parent node

to a child node is accomplished through a look’up(child node’s id) query

in DHT. For example, in Fig 3.2, node B’s parent node needs to issue a

23

Chapter 3. System Design

lookup(hash(”Attriubtelool”)) to find which peer is storing node B. Com

pared to the physical link based approach, this approach obviously affects

the searching latency. Since pub/sub is not a delay sensitive application, we

believe this compromise is worthwhile. Furthermore, as we will later show

in Chapter 4, the incurred latency is still acceptable even within large scale

P2P networks.

Taking peer heterogeneity into consideration, our tree evolves on the

DHT when new subscriptions are added into the system. A node splits

into two child nodes if this node’s current load exceeds its capacity. For

example, if a leaf node can store up to 10 subscriptions, it will split by

dividing its current range into halves on the x-axis or y-axis when the load

hits 11 subscriptions. Note however that if the sum of two child nodes’

load is below their parent node’s capacity again because of subscription

cancellations, we do not merge these two leaf nodes back to their parent

node in our scheme since:

• It will need leaf nodes knowing each other’s current load and their

parents’ capacity in real time. Since this information is dynamic, it

can cause overhead when they try to update each other’s knowledge

by exchanging messages.

• Within a short time, the parent node may need to split again after

some new subscriptions are inserted to this node, which makes merging

pointless.

As it evolves, the tree grows deeper because of node splitting. Deep

trees take very long to search if a search follows the tree links. Additionally,

24

Chapter 3. System Design

different branches of the tree may have different heights. A non-leaf node

doesn’t have any knowledge of the height of its branches.

Thus, each node in our system keeps a routing table containing infor

mation about the leaf nodes which are its descendant nodes. As shown in

Table 3.1, a routing table consists of three fields:

• Attribute Name: This states which attribute this leaf node is based

on.

• Area: This specifies which area in the attribute’s 2d space this leaf

node is responsible for.

• Leaf Node Identifier: This stores the unique identifier of this leaf node.

Attribute Name Area Leaf Node Identifier
Attributel {[0, 25) , [50, 75)} Attributel0lO0
Attributel {[0, 25) , [75, 100]} Attributel0l0l
Attributel {[25, 50) , [50, 75)} Attributel0ll0
Attributel {[25, 50) , [75, 100]} AttributelOlll

Table 3.1: A LeafNodeRoutingTable of a node

Attribute Name and Area act as a multi-field primary key to identify a

leaf Node identifier. Table 3.1 shows an example of the routing table kept by

node “AttributelOl” in the 2d-tree in Fig 3.2(b). We name this routing table

LeafNodeRoutingTable in our system. With this routing table, a search

does not need to strictly follow the links in the tree because every node

knows where the leaf nodes are. For example, in Fig 3.2(b), if a query for

area {[0, 25) , [75, 100j} has reached node “AttributelOl”, it can be directly

answered by this node. With one lookup(hash(”Attributelolol”)) message,

25

Chapter 3. System Design

this query can be forwarded to its destination node D. By providing shortcuts

to the leaf nodes, our LeafNodeRoutingTable obviously improves the search

performance and facilitates our random probing search algorithm which we

will discuss in the next section.

Unlike a regular p2p routing table, our LeafNodeRoutingTable, as shown

in Table 3.1, does not keep hard links either. It only keeps soft links pointing

to the leaf nodes, which are the identifiers of the leaf nodes. As we discussed

before, this exempts our system from dealing with underlying network main

tenance.

Instead of updated proactively, this routing table is updated in a reac

tive manner. When its load hits its capacity, a leaf node splits into two leaf

nodes. Program 3.1 gives the pseudo code of how a node splits and how

a LeafNodeRoutingTable gets updated. First, it locates two peers for the

two newly generated leaf nodes based on the two new leaf nodes’ identifiers

which can be decided by the current node locally (line 17-41). Leveraging

DHT’s lookup service, this task can be easily done. Since all the content

objects, which in our system are subscriptions, are stored on leaf nodes,

three operations need to be done on the current node’s subscription reposi

tory: 1) The current subscription objects are divided into halves for the two

new leaf nodes(line 42-44) 2) These two new sets of subscription objects

are transferred to the two new leaf nodes respectively(line 45-50); 3) The

subscription objects are deleted on the current node after transfer is done.

By now, our node has become a parent node. Hence, it must update its

LeafNodeRoutingTable by creating two records pointing to newly created

leaf nodes (line 52). To inform the ancestor nodes of this change, this node

26

Chapter 3. System Design

sends a LeafNodeUpdateMessage to its parent node, which specifies the at

tribute name and which area of this attribute’s space is splitted (line 54-55).

When its parent node receives this message, it updates its own LeafNodeR

outirigTable (line 63) and forwards this message to its parent again (line 65).

This message is forwarded recursively until it reaches the root node.

Although this routing table boosts our search performance, we have to

point out that this routing table is not a requisite of our system. In our

system, a leaf node routing table doesn’t have to contain the latest leaf

nodes information. Some obsolete leaf node information doesn’t affect our

system’s correctness since our system only grows and does not shrink. It

only affects the system’s search performance. In a deployment on the In

ternet, LeafNodeUpdateMessage can be sent by UDP instead of TCP to

save computing resources. A node can also merge some leaf node records

locally to save memory usage because nodes close to the root might contain

too many records in their LeafNodeRoutingTable. This merge doesn’t affect

our system’s correctness either.

Having discussed about logical space mapping and a 2d distributed tree

structure, we now present how these techniques are used to build our Pub

/Sub system.

3.3 Subscription Installation

When a user wishes to subscribe some events, he firstly expresses his interest

through a subscription language, which we introduced in Chapter 2. This

subscription is then delivered to the underlying DHT to be stored.

27

Chapter 3. System Design

Program 3.1 Leaf Node Split Algorithm

/s
* *parom node the current peer
* *parom subs the subscriptions asscociated with this oreo stored on this node
* *poram identifier the unique identifier of this node
a *para,n ottr the current attribute
a @parom oreo the ores to split

public

}

void nodesplit(node, subs, identifier, attr , area){
mt level = identifier. getCurrentlevel()
Identifier subArealdentifiero
Area subAreao // the area with subArealdentifierO
SubscriptiunCullectiuns subO; //the subscriptions with oubAreoU;
Identifier subArealdentifierl
Area subAreal // the oreo with subAreoldentifierl
SubscriptiunCullectiuns subl ; //oubocriptions with subAreal
//to split the areo
if(level % 2 = 1){

//current lcsel is on a axis , it should be dioided on y axis
float ymid=(area . getYRange() . ymin + area. getYRange() .ymax) /2.0f;
YRange buttomYrango= new YRange(area. getYRange () . ymin, ymid)
YRange upperYrange = new YRange(ymid, area.getYRange() .ymax)

}

subAreao = new Area (area . getXRange I,) , bottumYrange)
subAreatdentifiero = new Identiffer (identifier +0”)

subAreal = new Area(area. getYRange() , upperYrange)
subArealdentifierl = new Identifier (identifier +“ 1”);

//current trod is on y axis , it should be disided on a oxis
float xmid=(area . getXRange() . amin + area. getXRange() .xmax) /2.0 t;
XRange leftXrange= new Xttange(area.getXRange() .xmin, xmid)
XRange rigbtXrange = new Xftange(amid, area. getXRange() .xmax)

subAreao = new Area(leftXRange , area. getYRange ())
subArealdentifiero = new Identifier (identifier +0”

subAreal = new Area(rightXRange , area. getYRange ())
subArealdentifterl = new Identifier (identifier +1”

subo = subs, split (subAreao) ; //qef oil the subscriptions in subAreafl;
subl = subs, split (subAreal) ; //gef oil the subscriptions in subAreol

//to locate two new leaf nodes
Nude nudeo = nude.Iuukup(hash(subArealdentifierofl;
Nude nudel = nude.luukup(hash(subAreaIdentifierlfl;
// transfer subscriptions to two children
nude.send (nudeo , new TransferSubMessage (attr , subAreao , subO))
nude. send(nudel , new TransfterSubMessage(atbr , subAreal , subi))
//update myself’s LeafNodeRoutinqTabte
leafnoderuutingtable . update(attr , area, identifier);
//send an update mesoaqe to my parent
Nude parentnude = nude.luukup(hasb(identifier.subStrtng(0, identifier.

lengtb Q—i)));
node.send (parentnude , new LeafNudeUpdateMessage (attr , area , identifier))

public void receiveMessage (Message msg)
i f(msg instanceof TransferSubMessage) {

nude.updateSturage(msg); //stsred the subscriptions
}else if(msg instanceof LeafNudeUpdateMessage){

node. IeafnudeRT .update (msg) ; //update my LeafNodeaoutinqTable
Nude parentnude = nudo.luukup(hash(parentidentifier));
nude, forward (parentnude , msg) ; //forward this messaqe to my parent

}
}

} else

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67

28

Chapter 3. System Design

Our system randomly chooses an attribute out of the attributes speci

fied in the subscription to be the base attribute. This attribute’s value is

used as the key to decide which node in the DHT this subscription should

be stored in. Assuming that the base attribute chosen is A { “Attributei”,

float, mi max} and the value of A in this subscription is a range [vi, v2].

The key problem of subscription installation is in deciding how to find the

node responsible for this subscription (more accurately, for the value [vl, v2]

of attribute A). In other words, it is a problem of finding the leaf node in

the 2d-tree, whose area covers the subscription point (vi, v2) in the corre

sponding 2d space.

A naive way is to search from the root node and follow the tree links

all the way down to the correct leaf node. But in a distributed system,

this method suffers from a severe problem: it overwhelms the root node

since all the query messages are routed through this node. To overcome this

problem, we propose a random probing (RndLeafProbe) algorithm which

does not overload any node.

The basic idea behind our RndLeafProbe algorithm is that we do not

query the root node. Instead, the subscriber selects a random node locally

to query. Since the subscription point can be stored in only one of the leaf

nodes, one random level 1 in the tree is enough to decide which random node

to probe through dividing the subscription point’s coordinate value (v1, v2)

on the x-axis and y-axis alternatively until level 1 is reached. Meanwhile, the

identifier of this random node in the 2d-tree is automatically obtained, which

is used to locate the peer in DHT for this random node. Then a probing

message is sent from the subscriber to this random node next. Program 3.2

29

Chapter 3. System Design

Program 3.2 Subscription Installation Algorithm

1 /s
2 * @pdram sub the subscription about to be installed
3 * 0param subscriber the user sending out this subscription
4 s/
5 public void iustallSub (Subscription sub Subscriber subscriber) {
6 ArrayList<Integer> attrtoinstall_list = new ArrayList<Integer >0;
7 //to decide the key attribute to install
8 Attribute attr = sub. getRandomAttr ()
9 //get the range of this key attribute

10 Range range = sub.getRange(attr);
11 //decide a random level
12 short level = getRandomTreeLevel()
13 //the identifier for the random nsde
14 Identifier idfnrhash = attr.getNameQ;
15 //starl ts install subscription
16 //firstly decide which nsde this subscription should be stored to
17 Float s = range. getMin Q ; Float y = range. getMax Q
18 Float minx = attr.getMin() ; Float maxx = attr.getMax()
19 Float miny = attr .getMin() ; Float maxy = attr .getMax()
20
21 //decide the string to hash
22 for(short i=1; i<=level ; i+-f)(
23 if (i % 2 ==1){
24 //level for x
25 float mid = minx+maxx/2.0;
26 if (x< mid)
27 (
28 maxx = mid; idforhasb += “0”;
29 }else if(x> mid)
30 {
31 minx = mid; idforhash += * 1*;
32 }
33 }
34 else(
35 //level for y
36 float mid = (miny+maxy)/2;
37 if (y < mid){
38 maxy = mid; idforbasb += “0”
39 }else if(y >= mid){
40 miny = mid; idfnrbasb +=“ 1”;
41
42 }
43 }
44 }
45 //look up the peer for the randome node
46 Node randomNode = subscriber.getNode(hash(idfnrbasbfl;
47 //look up the target leaf node
48 Node leafNnde=subscriber.send(node new ProbeSubMessage(attr level sub));
49 //install the subscription to the leaf node
50 subscriber. installSubscription (leafNode , sub);
51 }
52
53 public void receiveMessage (Message msg, Node node)
54 Subscription sub = meg. getSubscription Q
55 if (msg instanceof ProbeSubMessage){
56 if(node.cbeckStorage(sub))
57 //the current node is the target leaf node
58 nnde.ack(msg.sourceQ));
59 else if(node. cbeckLeafNodeRoutingTable (sub))
60 (//this node knows the leaf node
61 Identifier id = nude.

getLeafNndeRoutingTableRecord (sub)
62 node.forward(baeb(id) , sub);
63 }
64 else {
65 //guessing too far , we jump backwards along the

tree
66 lot newlevel = node, identifier /2;
67 Identifier newid = uode.identifier.eubld(uewlevel

68 node.forward(basb(newid) meg);
69 }
70 }
71 if(meg instance of InetallSubMeseage) node. install(sub)
72 }

30

Chapter 3. System Design

outlines this algorithm.

Obviously, this random node might not be the correct leaf node. There

are three possible cases:

• Through sheer luck, this random node is the leaf node. In this case,

the subscription can be stored to this peer directly.

• This random node is above the leaf node in the tree, i.e. this random

node is an ancestor node of the correct leaf node. In this case, by

looking up this node’s leaf node routing table, the probing message

will be directed right to the target leaf node.

• This random node is below the correct leaf node, which means that

this random node doesn’t exist in the 2d-tree yet. So we need to jump

upwards along the tree. A binary search is adopted here so that the

next node which will be probed is of level 1/2, where I refers to the

current tree level, and so on.

Once the target leaf node is follnd, the subscription object is inserted

and a subscription is successfully installed into the pub/sub system.

It’s worth pointing out that a minor problem still exists in our sub

scription installation approach. It’s possible that some subscription points

overlap with some corner points of the sub areas in the square space, for

example, the point C in Fig 3.2(a). If there are too many points overlap

ping with one corner point, node splitting in the node covering this corner

point will not split the points into halves, which means that the number

of these points remaining is still likely to exceed the child nodes’ capacity.

31

Chapter 3. System Design

As a consequence of this, the node splitting process can become infinite. In

order to solve this, we change the subscription’s original range from [vi, v2]

to [vi — r, v2 +]. Since the interest range is now widened, there can be

some false positives which can be removed by a subscriber’s local filtering

system.

Another subscription installation scheme adopted in some existing sys

tems [24] is that installing one copy of the subscription into the network

for each attribute of the schema, then when an event is published, only

one attribute is used to match the event to the subscriptions. In this ap

proach, every attribute that is absent in the subscription is treated as an

attribute with value [mm, max] where mm and max are the minimum value

and maximum value of the domain respectively. This approach however is

not applicable to our system. If this approach were adopted in our system,

the range of values would be mapped to the up-left corner of the square in

2d space. Consequently, this would cause a similar problem as the problem

discussed above, except in this case the range can’t be widened.

3.3.1 Subscription Management

In our system, a subscription is stored in DHT as a subscription object in

a form: SubObject = (subscriber, sid, subscription), where subscriber is the

handle of the subscriber, such as the subscriber’s Id and IP address. sid

refers to the local subscription id for the subscriber and subscription is the

actual subscription content. While there certainly are some special data

structures or a light-weight database that can be applied as the repository,

such investigation is out of the scope of this thesis.

32

Chapter 3. System Design

A subscriber marks the base attribute of each subscription used to install

the subscription. When a subscriber plans to unregister the subscriptions

that has been already installed in the system, the subscriber locates the

latest peer of the subscription first in a way similar to the subscription

installation process. Then the subscriber sends a request to the peer to

remove the subscription. Similarly, a subscriber is also capable of changing

his/her interest.

Our system, being flexible, allows adding new attributes to a schema

as well, since a new attribute does not affect the subscriptions that have

already been installed in the system at all.

3.4 Event Publication, Matching and Delivery

3.4.1 Event Publication

When an event is published, the system should be able to find all the sub

scription objects that match his event. Because of the nature of DHT, these

subscriptions could be scattered all over the network, which means that our

system should be able to find only the peers that store potentially matched

subscriptions. Specifically, in our system, when an event e = {A1 v = v3} is

published, as illustrated in Fig 3.1, we need to find all the leaf nodes that are

covering the target searching area (i.e. the grey area {[min, v3] , [v3,max]}

in Fig 3.1).

This is similar to subscription installation except here we are looking

for a set of leaf nodes instead of only one. We introduce a random region

probing algorithm (RndRegionProbe) to solve this problem outlined in Pro

33

Chapter 3. System Design

gram 3.3. The basic idea behind RndRegionProbe is similar to RndLeaf

Probe algorithm. The set of nodes whose areas are overlapping with the

target searching area is locally decided by using a minimum and maximum

tree level: mini and maxi. In order to even out the probing load, we do not

only select the nodes on level maxi. Instead, every node above level maxi

has a chance to be selected. We chose a breadth-first search algorithm to

execute this node selection process. With a list of candidate nodes and an

empty set of probe nodes, this process starts from level mini. If the current

node’s area overlaps the target searching area, this node is selected with a

probability p (p =1 when this node reaches level maxi), otherwise this node

is removed directly from the candidate nodes list. If this node is selected,

then it is added to the probe node set and removed from the candidate nodes

list. If it is not selected, this node’s two child nodes will be added to the

tail of the candidate list and this node is removed from the candidate list.

This process stops when the list is empty. Whereafter, the publisher sends

out a ProbePubMessage to each node in the probe set.

Since these are locally selected nodes, it is likely that some of these nodes

might not be leaf nodes. By probing them, target leaf nodes can be found.

When a node receives a ProbePubMessage, there are three different cases:

• The node is a leaf node. In this case, an event matching can be exe

cuted right away.

• The node is above the leaf node in the tree. In this case, this node looks

up its LeafNodeRoutingTable to acquire the records of any leaf nodes

which overlap the target search area. Then, the ProbePubMessage is

34

Chapter 3. System Design

Program 3.3 RndRegionProbe Algorithm

1 /*
2 * param event the event that is published
3 * Pparam maxlevel the max tree level to probe
4 * @param minlevel the mm tree level to probe
5 * 4return a set of destinations
6 */
7 public void publishEvent (Event event , mt maxievel mt minlevel){
8 DestinationSet destidset = new DestinationSet Q
9 //deciding nodes to probe

10 for(each attribute in the event){
11 List areal ist
12 Area target_area = event. getTargetArea (attribute);
13 arealtst . add(attribute. getRootArea Q)
14 while(arealtst.empty){
is Area area = arealist . First Q
16 if(area. level < maxlevel){
17 if(area.level > minlevel && randomQ<p)
18 destidset.add(area);
19 else{
20 arealist . add(area, split Q
21 arealist .remove(area)
22 }
23
24 }else
25 destidset , add(area)
26 }
27 }
28 //sends Out prob pub messages to all these nodes
29 sendoutProbPubMessage(event , destidset)
30 }
31
32 /*
33 * @node the current node that receives this message
34 * msg the message received
35 */
36 public void receiveMesssage (Node node, Message msg)
37 if(msg instanceof ProbePubMessage){
38 Event event = msg. getContent Q
39
40 if(node.isLeafnode(event))
41 //if the current node is the leaf node
42 //deliver this to the application for event matching
43 deliver (msg)
44 else if(node.hasLeafRecord(event)){
45 //if the current node has the leaf node record
46 //for this event in the LeafNodeRoutirigTable
47 //getLeafnodeRecords will get all the nodes that
48 //overlapping this event ‘s target area
49 leafset = node.getLeafNodeRecords(event);
50 sendoutProbPubMessage(event , leafset)
51 }else
52 //we are guessing too far, need to jump back.
53 sendoutProbPubMessage(event, new Id(currentlevel/2));
54 }
55 }

35

Chapter 3. System Design

forwarded to those leaf nodes.

• The node is below the leaf node in the tree. The ProbePubMessage

is forwarded to the ancestor node on level 1/2 where 1 refers to the

current level. A possible problem this might cause is that some nodes

are visited multiple times because two different ProbePubMessages

can jump upwards to the same ancestor node. Therefore, when a node

has already been probed by a probe message, any following probing

messages from the same subscription will be discarded on this node.

Once a ProbePubMessage reaches its target node(s), an event match

ing process starts to extract all the matched subscription objects stored in

this node. A simple linear matching algorithm tests each subscription with

the event one by one. The matching from an event to a large number of

subscriptions could be very inefficient. To overcome this, some subliriear

matching algorithms such as [2], could be adopted.

As we discussed in section 2.2.2, the content-based publish/subscribe

model that we use in our system assumes that an event is a set of equalities

over every attribute in the schema. In a practical scenario, however, some

publishers may only specify values to a partial set of attributes in the schema.

In order to handle this situation in our system, the concept of a match

between an event and a subscription needs to be clarified first. For example,

given a subscription s = {(vl < A1 < v2) A (v3 < A2 < v4)} and an event

e = {(A1 = v5)} where vl < V5 < v2, whether the event e matches the

subscription s is ambiguous. It depends on the system’s definition of match.

If this is not match, then our system can handle this case naturally by only

36

Chapter 3. System Design

searching the attributes that are present in the event. If this counts as a

match, then the constraint of A2 in s is essentially ignored. Since attribute

A2 might be the base attribute of subscription s, our system needs to search

the entire searching space of A2 in order not to miss a match, s, in this case.

In other words, every attribute in the schema needs to be searched and the

target search area of any absent attribute is the entire searching space of

that attribute.

3.4.2 Application Layer Multicast

As we discussed, a subscription is installed based on one attribute randomly

chosen from its attributes. Consequently, when a publisher is about to

publish an event, it will need to be published by each of its attributes.

According to our current event publishing scheme, a publisher may need to

probe a large number of nodes at the same time in the DHT even for one

attribute. Using a unicast communication model, probing all the nodes for

all the attributes could result in a lot of ProbePubMessages which causes

overloading and high bandwidth consumption problems.

In this section, we propose an application layer multicast algorithm to

solve this problem. First, let us revisit how messages are routed in Pastry.

In Fig 3.3(a), source node Ox65alfc sends out a lookup message with target

Id Oxde74f7. This message is first routed to node OxdO32Ob because it shares

the first digit with the target Id. As this goes on, the message is routed to

nodes which are closer and closer to the target. Considering the case that

the source node Ox65alfc has a list of target Ids to query as shown in Fig 3.3,

we can observe that Ids(“OxdO9b2a”, “0xde3981” and “Oxde74f7”) share the

37

Chapter 3. System Design

same first digit ‘d’ which incurs that their next hops will be the same node

OxdO32Ob. Based on this observation, the number of query messages sent

out by the source node Ox6öalfc can be reduced by only sending one query

carrying these three Ids as a list of target Ids to OxdO32Ob instead of sending

individual queries for each of these three Ids. Once a target Id arrives at

its destination node, it is removed from the target Id list. Assuming node

OxdO32Ob is the correct destination node for target Id OxdO9b2a in Fig 3.3,

Id OxdO9b2a is removed from the Id list at hop OxdO32Ob. This process can

be repeated on each hop on the route until all target Ids arrive at their

destination nodes.

Oxde63lO dust:
(Oxde74f7,Oxde39Sl)

OxdO32Ob
dust:

kde74f7,Oxde39
ti ,OxdO9b2a)

(b)

Figure 3.3: Application Layer Multicast on Pastry

The basic idea behind this approach is that at each hop the list of target

Ids is regrouped by their shared prefixes and then the message is forwarded

to the next hops in groups accordingly. The algorithm is outlined in Pro

gram 3.4. This approach essentially forms an application layer multicast

(a)

deOxxx delxxx deexxx defxxx

38

Chapter 3. System Design

tree, as shown in Fig 3.3(b). The fan-out degree of each node is B at most,

where B = 21) in Pastry. On average the height of this tree is 0 (logBN),

which implies that our multicast approach does not increase the message

delay on average.

It’s worth us noting that unlike many other application layer multicast

approaches [20] [31] that need to maintain an explicitly built multicast tree,

our approach doesn’t impose any overhead onto the overlay network. It’s

just an exploitation of the underlying Pastry DHT. Leveraging this multicast

scheme, a publisher’s load can be dramatically reduced and the bandwidth

consumption of the whole network can be saved significantly.

3.4.3 Event Delivery

After the matching procedure is done on a node, a list of matched subscribers

is obtained. Delivering events to these subscribers is trivial. Because a

subscriber object includes his IP address, a point-to-point communication

can deliver the event to the subscriber. In addition, all the subscriptions in

our system are scattered over the nodes in the DHT and each node has a

capacity limit. As such, the number matched subscribers on each node is

not a concern to overburden the node. In spite of this, a node can still adopt

the application layer multicast idea described above to save its bandwidth

consumption and local computing resources. The only difference is that in

event delivery, the targets are not Ids in DHT but IP addresses, which means

that no DHT routing table is needed. Thus, the grouping method of target

subscribers does not necessarily conform to their Id prefixes. In fact, any

grouping strategy can be used, although grouping according to their Ids in

39

Chapter 3. System Design

Program 3.4 Application Layer Mulicast Algorithm

1 /v
2 * *parans event The event that will be sent ant
3 * *parara destldset the set af destisnatisn Id.
4 * param prefix the enrrent shared prefix sf all the ids
5 */
6 public void sendnutProbePubMulticast (Event event , DestinatinnSet devtldset

String pretix){
7 EaahMap<String , DevtinatinnSet> destldset_map = new HashMap<String

DevtinatinnSet >0;
8 //regranp the destldset aecarding ta new prefixes.
9 for(each destid in destldset){

10 String newpretix = destid . tnStringFnll Q . vnbstring (0, prefix.
length 0+1)

11 if(destldset_map. cnntainsEey (newprefix)) {
12 deetldeet_map . get (newprefix)
13 addPrnbePnbDest (destid , destldset . getPrnbePubcnnt(deetid))
14]else{
15 DeetinnatinnSet destSet = new DestinnatinnSet Q
16 deetSet . addPrnbeDevt (destid)
17 deetldset_map . pnt (newpretix , dest Set)
18 }
19 }
20 //send ant the messages by granpa
21 for (each IdGrnnp in deatldvet_map){
22 String newprestr = IdGrnnp . getEey Q
23 Id randnmid = Idt3rnnp . getValue Q . getRandnmDest Q
24 prnbemsg = new PrnbePnbMnlticavtMessage (event , devt , newprefix)
25 nnde.rnute(randnmid, prnbemvg, null);
26 }
27
28 /*
29 * ©param nade the cnrrent nade that receives this msg
30 * @param msg the message that is received
31
32 public void receiveMeseage(Nnde nnde, Mevvage mvg){
33
34 if(msg instanceof PrnberubMnlticavtMeavage){
35
36 //get the destldset in the mvlticast message
37 DeatinatinnSet deatldvet = meg. getDeatSet Q
38
39 //examine whether I ‘m the hame nade far same ida in the

idset
40 for(each id in the devtldvet){
41 if (node.hnmennde(id)){
42 //deliver this message ta my applicatian
43 deliver(mvg);
44 deetldset .remnve(id)
45 }
46 }
47 //farward this multicast message
48 aendnntPrnbePnbMulticavt (mag. getEvent Q , deetldvet , mag.

getPretix Q);
49 }
50 }
51 }

40

Chapter 3. System Design

the DHT might be the easiest way.

3.5 Load Balancing

Taking a closer look at our 2d space searching space, it is not hard to see

that the upper-left corner, illustrated in Fig3-4, is likely to become a very

hot search region because it is included in almost every event’s target search

area. The reason for this is that the points in this region correspond to broad

interest ranges, i.e. the ranges whose minimum values are close to their

domains’ minimum values, and whose maximum values are close to their

domains’ maximum values. Thus the points in this area have a high chance

of matching any event, which requires almost every event to search this area.

However, simply splitting this area can’t solve the problem because the areas

after the splitting will still be in this hot area. Therefore, peers responsible

for this area will be overloaded by too many event matching requests.

To overcome this problem, we propose a load balancing scheme for our

system by defining a cut-off line (y = x + c) for each attribute. As illustrated

in Fig 3.4, the area above this cut-off line is cropped from the searching space.

The subscription points in this area are mapped to the searching area below

this cut-off line. Obviously, a one-to-one mapping can’t guarantee not losing

any potentially matched events. A subscription point is mapped to several

points on a line below the cut-off line, which is y = x + h where h < e in

Fig 3.4. In order not to make some areas overcrowded by adding these new

points in the area below the cut-off line, h is randomly, locally selected when

the subscription is submitted by the subscriber. For example, in Fig 3.4 sub

41

Chapter 3. System Design

cut-off line

(Max, Max)

new searching area of e

hot area

cut-off area

(Mi Mm) (Max, Mm)

Figure 3.4: Load Balancing Scheme

scription point s = {Aj : [vl,v2j} is mapped to (A, B, C and D) four points,

whose coordinates are (vi,vi + h) , (v + h, v + 2k) , (v1 + 2k, v + 3k) and

(Vi + 3h, v2) respectively. The target searching area of an event is changed

as well. It is the area below the cut-off line instead of the old area contain

ing the up-left corner. Note that a subscriber will not be notified of a same

event multiple times using this approach.

3.6 Fault Tolerance

Our initial system design goal is to have our system exploit the underlying

DHT infrastructure’s robustness and fault resilience to handle faulty nodes.

This way not only reduces our system’s design, deployment and maintenance

complexity, but also makes our system as robust as the underlying DHT. In

42

Chapter 3. System Design

this section, we look into the details of how the DHT can be exploited to

enhance our system’s fault tolerance.

Suppose that a subscription s is installed on node N called the root

node of s. Then, s is replicated to a set of neighbour nodes of root node

N. These neighbour nodes{N_k,.. . , N_1,N, N+i,.. . Nj] are the nu

merically closest nodes to N in the Id space so that N_1 or N+i can au

tomatically become the new root node of s when node N leaves. Moreover,

keeping several copies of a subscription increases the subscription object’s

availability and durability in DHT, especially when there is a severe churn

in the network such as multiple simultaneous node failures.

As we discussed before, a node in our system is also keeping a LeafN

odeRoutingTable. Since this routing table can be changed frequently, it is

not replicated to its neighbour nodes to reduce the replica maintenance cost.

Instead, we replicate a node Ni’s current position in the 2d tree in its neigh

bour nodes. This position information includes the identifier of this node

in the tree and which area in the 2d space this node is covering. Since this

position information does not change as the 2d tree evolves, we are spared

the cost of frequent updates. After node N leaves, its neighbour N_1 or

N+i becomes the home node of Ni’s identifier and updates its LeafNodeR

outingTable by grabbing a copy of its parent node’s LeafNodeRoutingTable.

If a probe message comes in before the LeafNodeRoutingTable is updated,

this probe message is simply forwarded to the node’s two children nodes.

When a node joins, some concurrency problems need to be considered.

Suppose N_1 and N+i are currently two neighbour nodes in the network.

When a new node N comes in with its Id between N_1 and N+i’ ids, nor

43

Chapter 3. System Design

mally some contents from N1_1 and N+i are transferred to N, including

subscription objects and LeafNodeRoutingTable. However, before the trans

fer process is done, some messages might be delivered to this newly joined

node N. To ensure our system’s correctness, a node will not be marked

completely ready until the transfer process is done. Until N is ready, all

the pub/sub application layer messages are forwarded to N_1 or N+i to

handle. Of course, it can still participate in the DHT layer routing during

this time.

As we can see, handling faulty nodes in our system is very simple and

has a low overhead. There are two key reasons for this: (1) A thorough

exploitation of the underlying DHT; (2) No physical network maintenance

imposed on DHT.

44

Chapter 4

Evaluation

In this section, we evaluate the performance of our proposed architecture

through extensive simulation experiments. We start our discussion by de

scribing the experimental setup and parameters used for evaluation. After

wards, the experimental results are presented and discussed.

4.1 Simulation Setup

4.1.1 Simulator Configuration

We implement our pub/sub architecture on top of FreePastry[26], an ac

tively maintained java implementation of Pastry. Through a virtual socket

layer, simulations and interfaces for real Internet-deployable applications are

integrated together in FreePastry. The simulator component in FreePastry

is discrete event-driven and on transport layer level. Here are some Pastry

parameters that are used in our simulation: (1) Number of bits in Id is 160.

(2) Length of the routing table base is 4 bits. (3) LeafSet size is 16.

The network model used in the simulation is derived from the King

dataset[9], which includes the pairwise latencies of 1740 DNS servers in the.

Internet measured by the King method. The average round-trip time of the

45

Chapter 4. Evaluation

simulated 1740-node network is 180 milliseconds

Our simulation consists of 3 stages:

• Node joining: The simulator first initializes a certain number of nodes

(num_nodes) to join the DHT network.

• Subscription installation: After a DHT network is formed, we start

a subscription installation process. The interarrival time between

subscribing events is exponentially distributed with an average value

/tsub. Each subscription is generated based on a pre-defined schema,

which we will describe in the next section. A subscriber is randomly

drawn from all the nodes alive. Average number of subscriptions per

node (aver.sub/node) and the number of nodes (numnodes) decide

the total number of subscriptions installed, numsubs = num_nodes *

(aver_sub/node). A random capacity of subscriptions (node_capacity)

is also assigned to each node.

• Events publication: After system stabilization, a certain number of

publications (num_pubs) are scheduled to be injected into the system.

Similarly, events are published in a Poisson distribution with parame

ter). = 1/1ub. The publisher of each event is randomly selected from

all the nodes.

Unless otherwise specified, the parameters used in our simulations are

the same as those shown in Table 4.1.

46

Chapter 4. Evaluation

num_nodes 3b(ms) aver_sub/node node_capacity num_pubs ub(ms)

1000 2000 5 rand(10,30) 10000 1000

Attribute Name Type Mm Max
Attn Float 0 10,000
Attr2 Float -10,000 10,000
Attr3 Float 0 3,000
Attr4 Float 0 200

Table 4.2: Publish/Subscribe Schema in simulation

To generate subscriptions and events based on this schema, we define a

set of properties for each attribute, as shown in Table 4.2. Zipfian distri

bution is heavily used in our data generating scheme, which is a common

distribution of real world datasets. The cumulative distribution function

for Zipfian distribution is Hk,s/HN,s, where RN,3 is the Nth generalized har

monic number with skew factor s and k is the rank with 1 <k < N. In our

data generating scheme, a domain’s range is divided into some sub-ranges

according to a subrange_size. These sub-ranges are distributed in a Zipfian

distribution with skew factor subrange_skew_factor. When an event needs to

be generated, a sub-range is selected according to this zipf distribution for

each of its attributes. Then a random value is drawn from this range. After

a value is generated for each attribute, the event is generated. Generating a

Table 4.1: Simulation Parameters

4.1.2 Dataset Configuration

We use synthetic datasets in our simulations. Table 4.2 shows the publish/

subscribe schema that we use in our simulation. The schema has 4 attributes

with each attribute having its own name, type and domain.

47

Chapter 4. Evaluation

subscription takes a bit more work than an event because for each attribute,

a range of interest has to be generated. In our simulation, the distribution

of the sizes of interest range also obeys a Zipfian distribution with skew

factor size_skew_factor. We also have a size_bound parameter to specify the

maximum size of a range. To generate a range for an attribute, a point is

generated from the domain first in a same way how an event is generated.

Then, a size is generated based on size_skew_factor and size_bound. Com

bining this point value with the size, a range is generated. In practice, not

all attributes are required to be present in the subscription. Therefore, we

set a present probability present_prob for each attribute to decide whether

this attribute is in the subscription or not. After all this, a subscription

is successfully generated. The values of the aforementioned parameters are

listed in Table 4.3.

Attribute Name
present subrange subrange size size

skew_factor size skewiactor bound
Attn 0.5 0.6 100 0.8 50%
Attr2 0.5 0.5 20 0.6 40%
Attr3 0.5 0.4 10 0.5 30%
Attr4 0.5 0.3 1 0.4 20%

Table 4.3: Schema Parameters for Simulation

4.2 Simulator Architecture

Our simulation is implemented on the application layer in FreePastry, which

makes our simulator independent of lower transport layer. As described in

Table 4.4, layers are separated from each other, and are replaceable. This

48

Chapter 4. Evaluation

simulation implementation therefore is flexible and easy to export to a real-

world application.

Layer Description
The application layer provides an
application interface to our simulator,

Application
which includes the subscribe and publish
operations.
The Pub/Sub infrastructure core layer is
responsible for the core implementation of

Pub/Sub infrastructure core message processing, routing table
maintaining, subscription insertion,
event matching and delivery.
This layer constructs and maintains a P2P
network and provides the distributed data

DHT(Pastry and PAST)
placement and lookup service. PAST
is used as a storage preserving enhancement.
This layer is the low-level communication
layer. For a simulator,the DirectTransport

DirectTransport Layer / Socket Layer
Layer is used to simulate a socket layer.
This layer can be replaced with a Socket
Layer to export as an application runnable
on the Internet.

Table 4.4: Simulator Architecture

4.2.1 Message Types

Seven different types of messages are implemented in our system:

1. ProbeSubMessage. This message is used to probe the home node for

a subscription.

2. InsertSubMessage. When a home node is found, the subscription is

inserted into the home node through this message.

3. LeafUpdateMessage. This message is sent when a leaf node splits to

update node’s LeafNodeRoutingTable. It is sent to the node’s ancestor

49

Chapter 4. Evaluation

nodes recursively.

4. TransferSubMessage. When a node splits into two new leaf nodes, this

message is used to transfer the subscription objects stored on the local

node to its child nodes.

5. ProbePubMulticastMessage. The publisher multicasts its probing mes

sages through this message to their destinations.

6. ProbePubMessage. This message is sent out to locate all the nodes

that store matched subscriptions. This message is currently sent by

unicast instead of multicast.

7. EventDeliveryMessage. An event is delivered to a matched subscriber

using this message.

These seven messages basically belong to three categories according to

their functionalities: Subscription Installation messages (Prob eSubMessage,

InsertSubMessage), LeamodeRoutingTable maintaining messages (LeafUp

dateMessage, TransferSubMessage) and Event Publishing messages (ProbePub

MulticastMessage, ProbePubMessage, EventDeliveryMessage).

4.3 Simulation Results

4.3.1 Evaluation of Subscription Installation

In this section, we evaluate the system’s performance during the subscription

installation phase by looking at the delay of subscription insertions and the

50

Chapter 4. Evaluation

bandwidth cost for each node. The results are obtained from a simulation

with a 1000-node network with 5 subscriptions per node on average.

Fig 4.1 shows a latency distribution for subscription insertions. The

average latency is 331ms. It shows that about 70% of insertions are done

within 600ms, and about 90% of installations take less than is.

Figure 4.1: Subscription Installation Latency

Fig 4.2 illustrates the bandwidth cost for each node during subscription

installation. The messages that are measured include ProbeSubMessages,

InsertSubMessages, LeafUpdateMessages and TransferSubMessages. Here,

the bandwidth cost is measured per subscription, which means how many

bytes a node contributes for each subscription on average. The average

bandwidth cost is 14.32 bytes per subscription for each node. As it shows,

about 78% percent of nodes’ bandwidth cost is within 20 bytes/sub, nearly

98% nodes’ bandwidth cost is less than 60 bytes/sub. Although there are

1600

0400

1200

1000
C

0

800
0

E

Z 600

400

200

020.00%

100.00%

80.00%

60.00%

*0

C

0
0.
0
0

0
E
U

40.00%

20.00%

200 400 600 800 1000 1300 1000 1900 2200 More

Latency(ms)

0.00%

51

Chapter 4. Evaluation

a few nodes whose bandwidth cost is about 100 bytes/sub, the bandwidth

cost is still relatively low and acceptable. Thus, we can conclude that our

subscription installation mechanism is efficient and incurs low bandwidth

cost. Note that the message size is calculated by serializing each message

using Java’s object serialization method, which has a lot of overhead. In a

practical system, the message size can be reduced by using raw serialization

and compression.

Figure 4.2: Bandwidth distribution during Subscription Installation

4.3.2 Evaluation of Event Publication

In this section, we focus on investigating our system’s performance during

the event publishing, matching and delivering phase.

We start by studying the latency of events delivery first. The latency

is defined as the time it takes for an event to be delivered to an interested

subscriber from the time it’s published by a publisher. Fig 4.3 shows a

900

800

700

, 600

500

400

300

200

100

0

120,00%

100.00%

80.00%

60.00%

40.00%

20.00%

20 40 60 80 100 120 140 More

Bandwidth (bites/sub)

0.00%

52

Chapter 4. Evaluation

latency distribution for each delivery on a network with 1000 nodes and

10000 events. The average latency is 333ms. From Figure 4.3 we can see

that about 70% of event deliveries are done within 400ms and nearly all

the deliveries are within is. Based on a network model derived from the

Internet, our simulation shows that our system can efficiently notify any

subscriber of an event that match his interest.

200 400 600 800 100012001400160018002000

latency (ms)

Figure 4.3: Publication latency distribution

We also study the bandwidth consumption of each node during this

period of time. The bandwidth cost is measured per event and includes

ProbePubMulticastMessages, ProbePubMessages and EventDeliveryMessages.

As we explained before, the size of these messages are also decided by Java

serialization. The average bandwidth cost is 1.32k bytes per event. As shown

in Fig 4.4, it costs no more than 1.6k bytes per event for about 70% of nodes

and 3k bytes for about 90% of nodes. There are about 7 nodes that spend

more than 6k bytes but no more than ilk bytes. With a skewed distribution

53

Chapter 4. Evaluation

of our subscription and event data, we believe this is still acceptable. Part

of our future work is to investigate how to handle highly skewed data.

Figure 4.4: Bandwidth cost distribution

Performance of Application Layer Multicast

In this section, we evaluate the performance of our multicast algorithm and

load balancing scheme. Fig 4.5 and Fig 4.6 present a bandwidth cost com

parison of multicast model and unicast model. Here we ignore the band

width cost of EventDeliveryMessages because these messages are sent after

the matching process is completed. Fig 4.5 shows the comparison of band

width cost distribution. Compared to an average cost of 1.48k in the unicast

model, the average cost in the multicast model is decreased by almost 30%

to 1.05k. In Fig 4.5, it shows that in the multicast model 70% of nodes’

bandwidth cost is less than 1.2k, but in the unicast model only about 55%

of the nodes’ bandwidth cost is in this range. Fig 4.8 plots a bandwidth

250

200

150

U,
S

0
C

0

E
C

100

50

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%0

9.. b

Bandwith cost (Kbyteslevent)

54

Chapter 4. Evaluation

cost against the first 100 nodes with the most bandwidth cost. It shows

the maximum bandwidth cost reduced from 12.2k to 9.4k. We observe that

all the top 100 nodes’ bandwidth costs are decreased. Thus, we can con

clude that our multicast algorithm is effective in reducing the bandwidth

cost of publishing events. In addition, in a practical application, we believe

our multicast algorithm can benefit more because unlike the events used

in our simulations, the events can become very big in size, which incurs

significantly increase in bandwidth cost in a unicast model.

Figure 4.5: A performance comparison of multicast and unicast

Performance of Load Balancing

In this section, we investigate the performance of our load balancing scheme.

As with the previous experiments, the cost incurred by EventDeliveryMes

sage is not factored in. Fig 4.7 and Figure 4.8 illustrates a bandwidth cost

comparison of a system with and without load balancing scheme. According

350

300

250
aa

200

0

E 150
C

100

50

120.00%

100 .00%

80.00%

60.00%

40.00%

20.00%

0.00%

a

C
a

a
a

a
0
E
0
0

0

— unicast

Multicast

unicast %

4€Muhicast

$9
Bandwidth (kbyteslevent)

55

Chapter 4. Evaluation

Figure 4.6: A comparison of mulicast and unicast on first 100 nodes

to what we discussed in section3.4.2, there are three kinds of nodes whose

load are alleviated by our load balancing scheme: 1)the nodes that cover

the inherently hot area in the 2d search space; 2) the nodes that on the

searching paths to the hot area; 3) the publisher nodes by not probing any

nodes in the hot area. As shown in Fig 4.7, the number of nodes with high

bandwidth costs are dramatically reduced, especially the number of nodes

whose bandwidth costs are more than 6k. While the average bandwidth is

2.12k bytes/event without the load balancing scheme, our load balancing

scheme reduces it by about 50% to 1.05k bytes per event. Fig 4.8 plots the

bandwidth cost against the top 125 nodes. From this figure, we can ob

serve that the bandwidth costs of the top 20 nodes are reduced significantly

leading to more balanced system.

14000

‘ 12000
>

• 10000

8000

6000

4000

2000

0

unicast

muIUcast

DCDCOCD

Rank

56

Chapter 4. Evaluation

Figure 4.7:
balancing

Bandwidth cost comparison of schemes with and without load

Figure 4.8: A comparison of load balancing performance on top 125 nodes

120.00%350

300

250
0

200

150

100

50

0

100.00%

80.00%

60.00%

40.00%

— non load balancing

load-balancing

*non load balancing

‘*load balancing
20.00%

0.00%
000000000000
000000000000
(DOL)OLf)OLDOO 0

bandwidth cost(byteslevent)

16000

14000
>

12000

10000

8000
U,

6000

4000

2000
C
0

Non load balancing

‘load balancing

Rank

57

Chapter 4. Evaluation

4.3.3 System Scalability

In this part, we evaluate the performance of our system in networks of

various sizes, derived from the King data. The average RTTs are shown in

Table 4.5.

size 1000 1740 3000 4000 5000
Avg RTT(ms) 175 180 176 177 176

Table 4.5: RTTs for different networks

Fig 4.9 plots average delivery latency and maximum delivery latency

against network size. It shows that average latency slightly increases as

network size increases. It is because as the network size increases it takes

more hops for a DHT lookup. However, as the network size increases 5 times

from 1000 nodes to 5000 nodes, the average latency only increases from

330ms to 430ms which is acceptable for a pub/sub application on a large-

scale network. Figure 4.9 also shows that the maximum latency oscillates

between 1.6s to 1.8s. It doesn’t increase as the network size increases. This

proves that our LeafNodeRoutingTable is efficient to locate the leaf nodes

and our application layer multicast scheme doesn’t incur any extra delay.

Fig 4.10 plots a relationship between bandwidth cost and network size.

As it shows, as the network size increases, the average bandwidth cost ac

tually decreases slightly, though the maximum bandwidth cost increases.

The reason behind this is that as more nodes exist in the network, more

subscriptions are inserted, which causes our 2d-tree to expand more. But in

our simulation, we set the maximum probing tree level to 10, which means

that the nodes below this level in the tree wouldn’t have a chance to help

58

Chapter 4. Evaluation

2,000

1,800 —

1,600

— 1,400
C
E 1,200

1,000

800 4average

600 mamum

400

200

0
1000 1740 3000 4000 5000

network size (nodes)

Figure 4.9: Event delivery latencies on different network size

1400 18000

160001200
0 14000

u

• 1000
12000

800 10000

600 8000 8 ‘+‘awrage
£ 6000 maximum400

200 2000

0 ‘—‘——‘—“——————————— 0

1000 1740 3000 4000 5000

network size

Figure 4.10: Bandwidth cost on different network size

59

Chapter 4. Evaluation

alleviate the probing load, causing the nodes above this level to have to

contribute more bandwidth to forward the probing messages to leaf nodes.

Therefore, we believe that a dynamic max probing level will solve this prob

lem. From the analysis above, we can conclude that our system is scalable

to a large-scale network.

60

Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we have proposed a novel low-cost content-based publish/

subscribe system over a DHT network. In our system, subscriptions are

distributed into an underlying DHT network. When an event is first pub

lished, the process that matches an event with subscriptions is done in a

distributed fashion by only the nodes that store potentially matching sub

scriptions. Finally, this event is delivered to the matching subscribers by

these nodes. To build this system over a heterogeneous DHT network, four

key techniques are presented: (1) A content space mapping technique and

a distributed 2d-tree over DHT. (2) A subscription installation mechanism,

which distributes all the subscriptions over the DHT network through a

random probing search algorithm. (3) An event publishing and delivery

algorithm, which is able to locate all the potentially matching nodes effi

ciently and deliver events to them with a low overhead. (4) Fault tolerance

handled by exploiting the underlying DHT. Therefore, our pub/sub system

can simultaneously support multiple pub/sub schemas without the overhead

of the maintenance of additional in-network data structures. Meanwhile, it

enables the flexibility of schema change.

61

Chapter 5. Conclusion and Future Work

To evaluate the performance of our proposed architecture, we conducted

extensive simulation experiments on a network model inferred from the In

ternet. The simulation results show that the proposed system can efficiently

deliver an event to any users interested with low latency and bandwidth cost.

We also evaluated that our application layer multicast algorithm and load

balancing scheme, concluded that they can effectively reduce the bandwidth

cost and relive some overloaded nodes. It is also shown that our system

scales to large-scale networks.

5.2 Future Work

This thesis constitutes an initial step to building an efficient and scalable

platform for supporting content-based publish/subscribe services in peer-

to-peer networks. A number of issues need to be explored to further our

work:

First, our simulation uses synthetic datasets due to the lack of publicly

available publish/subscribe user data. A full understanding of a real pub

lish/subscribe scenario can let us discover problems that our system might

be faced with when applied to a practical application. Also, an extensive

testing on PlanetLab[17] can help us analyze our system’s performance in

an Internet-like environment.

Second, currently our load balancing scheme is static by presetting a cut

off line for each attribute. This scheme might not be very effective without

considering the runtime load distribution over nodes. As we discussed in

section 3.4.2, an inherently hot search area can overload the nodes responsi

62

Chapter 5. Conclusion and Future Work

ble for this region. But highly skewed data sets could be another overloading

source. For example, if all the events are published on a very small range,

it would be unavoidable that the target search areas of all of these events

are largely overlapped. This could overload the nodes responsible for this

area. Therefore, a more sophisticated and efficient load balancing algorithm

which can balance nodes’ load dynamically could be part of our future work.

Third, our system mainly relies on the underlying DHT to deal with

node joins/departures/failures. Although this frees our system from actively

maintaining a physical network’s stability and availability, the performance

of the proposed architecture under high node churn rate has not been ex

plored. Moreover, some specific strategies could be investigated in the future

to ensure at least the durability of subscription objects under such situation.

On the other hand, a profile of real user activities on a p2p network can also

be used to verify our system’s performance under practical scenarios.

Another problem we will study is how cooperative peer nodes have to

be in our system. For example, if we are disseminating stock data, there

is inherent interest for an intermediate node to delay delivery until it can

take advantage of the data first. Thus, potential applications for large-scale

pub/sub have to consider this issue, i.e., to provide incentives for nodes to

cooperate in event delivery.

Finally, enhancing our system’s expressiveness is also a very interesting

future research direction. Like most of the research on content-based pub/

sub service over p2p, our system focuses on supporting the model proposed

by Fabret et al.{12j. However, this model is not expressive enough. For ex

ample, it can only support prefix or postfix matching for strings, failing to

63

Chapter 5. Conclusion and Future Work

support regular expressions, which can be a very valuable feature. There

fore, supporting more expressive pub/sub models is another direction we

plan to pursue.

64

Bibliography

[1] Karl Aberer. P-grid: A self-organizing access structure for p2p infor

mation systems. In CoopIS, pages 179—194, 2001.

[2] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,

and Tushar D. Chandra. Matching events in a content-based subscrip

tion system. In PODC ‘99: Proceedings of the eighteenth annual ACM

symposium on Principles of distributed computing, pages 53—61, New

York, NY, USA, 1999. ACM.

[3] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagara

jarao, Robert E. Strom, and Daniel C. Sturman. An efficient multicast

protocol for content-based publish-subscribe systems. icdcs, 00:0262,

1999.

[4] Jon Louis Bentley. Multidimensional binary search trees used for asso

ciative searching. Commun. ACM, 18(9):509—517, 1975.

[5] Fengyun Cao and Jaswinder Pal Singh. Medym: Match-early with

dynamic multicast for content-based publish-subscribe networks. In

Middleware, pages 292—313, 2005.

65

Bibliography

[6] Antonio Carzaniga, David S. Rosenbium, and Alexander L. Wolf. De

sign and evaluation of a wide-area event notification service. ACM

Trans. Comput. Syst., 19(3):332—383, 2001.

[7] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-

based network. In SIGCOMM ‘03: Proceedings of the p003 conference

on Applications, technologies, architectures, and protocols for computer

communications, pages 163—174, New York, NY, USA, 2003. ACM.

[8] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Ni

agaracq: a scalable continuous query system for internet databases.

SIGMOD Rec., 29(2):379—390, 2000.

[9] King Dataset. Available: http://pdos.csail.mit.edu/p2psim/kingdata.

[10] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent

peer-to-peer storage utility. In HOTOS ‘01: Proceedings of the Eighth

Workshop on Hot Topics in Operating Systems, page 75, Washington,

DC, USA, 2001. IEEE Computer Society.

[11] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne

Marie Kermarrec. The many faces of publish/subscribe. ACM Comput.

Surv., 35(2):114—131, 2003.

[12] Françoise Fabret, H. Arno Jacobsen, Francois Llirbat, Joào Pereira,

Kenneth A. Ross, and Dennis Shasha. Filtering algorithms and im

plementation for very fast publish/subscribe systems. SIGMOD Rec.,

30:115—126, 2001.

66

Bibliography

[13] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Ab

badi. Meghdoot: content-based publish/subscribe over p2p networks.

In Middleware ‘0: Proceedings of the 5th A CM/IFIP/USENIX in

ternational conference on Middleware, pages 254—273, New York, NY,

USA, 2004. Springer-Verlag New York, Inc.

[14] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,

S. Parthasarathy, J. B. Park, and A. Vernon. Scalable trigger pro

cessing. In Proceedings of the 15th International Conference on Data

Engineering, pages 266—275. IEEE Computer Society Press, 1999.

[15] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer

information system based on the xor metric. In IPTPS ‘01: Revised

Papers from the First International Workshop on Peer-to-Peer Systems,

pages 53—65, London, UK, 2002. Springer-Verlag.

[16] Napster. Website: http://www.napster.com.

[17] PlanetLab. Website:http: //www.planet-lab.org/.

[18] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and

Scott Schenker. A scalable content-addressable network. In SIGCOMM

‘01: Proceedings of the 001 conference on Applications, technologies,

architectures, and protocols for computer communications, pages 161—

172, New York, NY, USA, 2001. ACM.

[19] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentral

ized object location, and routing for large-scale peer-to-peer systems.

67

Bibliography

In Middleware ‘01: Proceedings of the IFIP/ACM International Con

ference on Distributed Systems Platforms Heidelberg, pages 329—350.

Springer-Verlag, 2001.

[20] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and

Peter Druschel. Scribe: The design of a large-scale event notification

infrastructure. In NGC ‘01: Proceedings of the Third International

COST261 Workshop on Networked Group Communication, pages 30—

43, London, UK, 2001. Springer-Verlag.

[211 Clay Shirky. What is p2p and what isnt.

http://www.oreil1ynet.com/pub/a/p2p/2000/11/24/shirky1-

whatisp2p.html . OReilly, 2000.

[22] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Han

Balakrishnan. Chord; A scalable peer-to-peer lookup service for inter

net applications. In SIGCOMM ‘01: Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer

communications, pages 149—160, New York, NY, USA, 2001. ACM.

[23] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler,

and Alejandro P. Buchmann. A peer-to-peer approach to content-based

publish/subscribe. In DEBS ‘03: Proceedings of the 2nd international

workshop on Distributed event-based systems, pages 1—8, New York,

NY, USA, 2003. ACM.

[24] Peter Triantafillou and loannis Aekateninidis. Content-based publish-

subscribe over structured p2p networks. In Third International Work-

68

Bibliography

shop on Distributed Event-Based Systems - DEBS ‘04, Edinburgh,

United Kindom, May 2004.

[25] Peter Triantafihlou and Andreas Economides. Subscription summa

rization: A new paradigm for efficient publish/subscribe systems. In

ICDCS ‘04: Proceedings of the 24th International Conference on Dis

tributed Computing Systems (lCD CS ‘04), pages 562—571, Washington,

DC, USA, 2004. IEEE Computer Society.

[261 FreePastry website. http://freepastry.rice.edu.

[27] Xiaoyu Yang, Yingwu Zhu, and Yiming Hu. A large-scale and decen

tralized infrastructure for content-based publish/subscribe services. In

ICPP ‘07: Proceedings of the 2007 International Conference on Paral

lel Processing, page 61, Washington, DC, USA, 2007. IEEE Computer

Society.

[28] Xiaoyu Yang, Yingwu Zhu, and Yiming Hu. Scalable content-based

publish/subscribe services over structured peer-to-peer networks. In

PDP ‘07: Proceedings of the 15th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing, pages 171—178,

Washington, DC, USA, 2007. IEEE Computer Society.

[29] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:

An infrastructure for fault-tolerant wide-area location and. Technical

report, Berkeley, CA, USA, 2001.

[30] Yinwu Zhu and Yiming Hu. Ferry: An architecture for content-based

publish/subscribe services on p2p networks. In ICPP ‘05: Proceedings

69

Bibliography

of the 2005 International Conference on Parallel Processing, pages 427—

434, Washington, DC, USA, 2005. IEEE Computer Society.

[31] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz,

and John D. Kubiatowicz. Bayeux: an architecture for scalable and

fault-tolerant wide-area data dissemination. In NOSSDA V ‘01: Pro

ceedings of the 11th international workshop on Network and operating

systems support for digital audio and video, pages 11—20, New York,

NY, USA, 2001. ACM.

70

