
On Efficient Recommendations for Online Exchange
Markets

by

Zeinab Abbassi

B Sc., Sharif University of Technology, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

August 2008

© Zeinab Abbassi



Abstract

Motivated by the popularity of marketplace applications over social net

works, we study optimal recommendation algorithms for online exchange

markets. Examples of such markets include peerf lix. corn and readitswapit. co . uk.

We model these markets as a social network in which each user has two as

sociated lists: The item list, i.e, the set of items the user is willing to give

away, and the wi.sh list, i.e., the set of items the user is interested in receiv

ing. A transaction involves a user giving an item to another user. Users are

motivated to engage in transactions in expectation of realizing their wishes.

Wishes may be realized by a pair of users swapping items corresponding to

each other’s wishes, but more generally by means of users exchanging items

through a cycle, where each user gives an item to the next user in a cycle,

in accordance with the receiving user’s wishes.

In this thesis, we first consider the problem of how to efficiently gener

ate recommendations for item exchange cycles in an online market social

network. We consider deterministic and probabilistic models and show that

under both models, the problem of determining an optimal set of recommen

dations that maximizes the expected value of items exchanged is NP-hard

and develop efficient approximation algorithms for both models. Next, we

study exchange markets over time and try to optimize users’ waiting times,

11



Abstract

and fairness where by fairness we mean: give higher priority to users who

contribute more to the system in addition to maximizing expected value. We

show that by introducing the concept of points, average waiting time can be

improved by a large factor. By designing a credit system, we try to maxi

mize fairness in the system. We show not only is the fairness optimization

problem NP-hard, but also inapproximable within any multiplicative factor.

We propose two heuristic algorithms, one of which is based on rounding

the solution to a linear programming relaxation and the other is a greedy

algorithm. For both the one-shot market and the overtime market studied

in this thesis, we conduct a comprehensive set of experiments, and explore

the performance and also scalability of the proposed algorithms. Our ex

periments suggest that the performance of our algorithms in practice could

be much better than the worst-case performance guarantee factors.

111



Table of Contents

Abstract . . . ii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xi

1 Introduction 1

1.1 Structure of the Thesis 7

2 One-shot Exchange Markets 8

2.1 Related Work 9

2.2 Model 12

2.3 Hardness Results 19

2.4 The Algorithms 26

2.4.1 Algorithm Maximal 27

2.4.2 Greedy Algorithm 29

2.4.3 Local Search Algorithm 30

iv



Table of Contents

2.4.4 Greedy/Local Search

2.5 Analysis

2.5.1 Performance .

2.5.2 Running Time

2.6 Experimental Results

2.6.1 Data Set

2.6.2 Experiments .

2.7 Conclusion

3 Online Exchange Markets Over Time

3.1 Introduction

3.2 Related Work

3.2.1 Scheduling Problems

3.2.2 Fairness Maximization

3.3 Model

3.4 Minimizing Average Waiting Time

3.5 A Credit System

3.6 Maximizing Fairness

3.7 A Linear Programming Formulation

3.8 A Strong Inapproximability Result

3.9 Heuristic Algorithms

3.9.1 Greedy Algorithm

3.9.2 An LP-rounding Algorithm

3.10 Experimental Evaluation

3.10.1 Dataset

30

31

31

34

34

35

36

39

52

52

53

53

55

56

57

60

62

64

66

68

68

69

70

71

in P2P Systems

v



Table of Contents

3.10.2 Experiments 71

3.11 Conclusion 74

4 Conclusions and Future Work 79

Bibliography 82

vi



List of Tables

2.1 Alice’s Item and Wish list 13

2.2 Bob’s Item and Wish list 14

2.3 Joe’s Item and Wish list 14

2.4 Amy’s Item and Wish list 15

2.5 Mary’s Item and Wish list 15

2.6 % Increase in coverage when considering cycles of length 3, 4

and 5 37

vii



List of Figures

2.1 Both exchanges cannot be present in the system at the same

time 16

2.2 Exchange cycle of length three: [(Alice, B7), (Bob, B4), (Amy,

B8)] 17

2.3 Hardness Proof 24

2.4 Graph Representation of Running Example 28

2.5 Description of the Maximal Algorithm 41

2.6 Description of the Greedy Algorithm 42

2.7 Description of the Local Search Algorithm 43

2.8 Results of the Maximal algorithm on datasets of size 10000,

25000 and 50000 44

2.9 Results of the Greedy algorithm on datasets of size 10000,

25000 and 50000 45

2.10 Results of the Local Search algorithm on datasets of size

10000, 25000 and 50000 46

2.11 Percentage of coverage for different M’s in the Maximal al

gorithm 46

2.12 Average Running Time of Various Algorithms 47

viii



List of Figures

2.13 Running Time of Algorithm Maximal on dataset of size 10,0000

over various alphas 47

2.14 Running Time of Algorithm Maximal on dataset of size 25,0000

over various aiphas 48

2.15 Running Time of Algorithm Maximal on dataset of size 50,0000

over various alphas 48

2.16 Running Time of Algorithm Greedy on dataset of size 10,0000

over various alphas 49

2.17 Running Time of Algorithm Greedy on dataset of size 25,0000

over various alphas 49

2.18 Running Time of Algorithm Greedy on dataset of size 50,0000

over various alphas 50

2.19 Running Time of Algorithm Local Search on dataset of size

10,0000 over various alphas 50

2.20 Running Time of Algorithm Maximal on dataset of size 25,0000

over various aiphas 51

2.21 Running Time of Algorithm Maximal on dataset of size 50,0000

over various alphas 51

3.1 Performance of the heuristics compared to the optimal solu

tion given by ILP on dataset of 10 users 72

3.2 Performance of the heuristics compared to the optimal solu

tion given by ILP on dataset of 20 users 73

3.3 Performance of different algorithms on dataset of size 100. 74

3.4 Performance of different algorithms on dataset of size 500. 75

ix



List of Figures

3.5 Performance of different algorithms on dataset of size 1000 76

3.6 Running times for dataset of size 100 76

3.7 Running times for dataset of size 500 77

3.8 Running times for dataset of size 1000 77

3.9 Number of transacting users in 6 consecutive time windows 78

x



Acknowledgements

I would like to take this opportunity to thank my supervisor, Professor Laks

Lakshmanan, for his great help and guidance through this thesis. I am

indebted to him for his insightful comments on my research and his support

during the past year.

I am also grateful to Professor Raymond Ng for reviewing my thesis and

for his valuable comments.

I owe thanks to all members of the Database Management and Mining

lab, and also Holly Kwan for making my years at UBC memorable.

Last, but not least, I would like to express my gratitude to my dear

family, my parents, Laya and Abbas; my brother and his wife, Hossein and

Sara; and my husband Vahab, whose endless love and support has always

been a bliss for me. Thanks for everything.

xi



Chapter 1

Introduction

Sociologists have studied social networks extensively in the past years. The

six degrees of separation experiment performed by Stanley Milgram in the

late 1960s is a well-known and also remarkable instance of such studies. The

networks studied in social sciences are typically small due to the fact that

collecting information is difficult and typically done by the circulation of

questionnaires or doing interviews, asking respondents to detail their inter

actions with others [291. These days, the availability of the Internet has

caused dramatic changes. Online social networks have emerged and become

popular, data is available in a much larger scale than before, and the in

creased computational power lets us study the statistical properties of the

graph in addition to the individual studies done before. The field of social

networks in computer science is rapidly growing due to the relatively recent

popularity of online social networks such as MySpace and FaceBook. Users

are spending increasing amounts of time on social network websites. For in

stance, a recent survey [1] that ranks websites based on average time spent

by a user, identifies MySpace and Facebook among the top 10 websites, and

MySpace stands at the top by 11.9%.

On the other hand, the increasing amount of choices available on the

1



Chapter 1. Introduction

Web has made it increasingly difficult to find what one is looking for. Three

methods are commonly applied to help web users in locating their desired

items: search engines, taxonomies and, more recently, recommender sys

tems [24]. This is where recommender systems come into the play. Recom

mender systems have been extensively studied. However, in most of them

the properties of social networks are ignored.

One important example of social interaction among users on the Internet

is online exchange markets which are currently present on the web. Some

examples are as follows:

• peerflix.com [3] for exchanging movies: It lets the users exchange their

DVDs with each other instead of renting them.

• readitswapit.co.uk [4] allows book lovers to exchange their afready read

books and receive new books in return. Almost all of the “matching”

(i.e., finding books and owners to exchange with) is done manually by

the user herself, meaning that she has to go and find her desired book

in a library and then mark it. The owner of the desired book will be

informed by an email and will check the seeker’s list of books and if

willing to do the exchange, they will post the books for each other.

• oddshoe.org: [2] is a national organization which is a resource for new,

quality single shoes and pairs of significantly different sizes. Many

have this need due to injury, disease and genetic disorders. This orga

nization has been around since 1943 and the exchanges are not done

online.

2



Chapter 1. Introduction

• Intervac International is a world-wide non-profit organization which

has facilitated home exchanges between its members since 1953. They

operate a multi-language real-time database of home exchange listings

on their website with an option to receive printed catalogues of listings.

• Joebarter.com is an online barter site, plus an array of networking

services and resources to pay the typical charges and fees associated

with online barter exchanges.

Other than the above examples for exchange markets, various market

places for exchanging items can be designed as new applications over online

social networks on the web. This can be already seen to be happening over

Facebook.

Motivated by the above, we study optimal “matching” algorithms for

online exchange markets. Here, by “matching”, we mean finding a set of

users and items such that they can exchange items in a cycle of length two

or more.1 A main motivation behind our work is the lack of comprehensive

and efficient recommendation algorithms for item exchange in the current

systems. These algorithms can improve the quality of user experience in

exchange markets, and in turn, they can make various ways of monetizing

such systems, such as online advertising, more effective.

In Chapter 2 we focus on the problem of generating recommendations

under two models: deterministic model and probabilistic model. In both

models each user receives an item in return for the item which she gives

away. We formulate the problem of finding recommendations as that of

‘No confusion should arise with the standard graph-theoretic notion of matching. The
context will make the meaning clear.

3



Chapter 1. Introduction

finding a set of conflict-free cycles in the graph. Conflict-free means cycles

in the set are pairwise edge-disjoint, a condition necessary to ensure that

when a user commits to a recommended exchange, she is not surprised that

the recommended item is already taken. Thus, a recommendation consists

of a set of conflict-free cycles. The value of a recommendation is the number

of items (potentially) exchanged through the cycles recommended. When

the cycle length is restricted to two, we call the corresponding problem sim

ple exchange markets. In a simple exchange market, the only acceptable

recommendation is a set of (conflict-free) swaps, called a swap recommen

dation. We prove the surprising result that even finding an optimal swap

recommendation is NP-complete.

Next, we consider a more general situation where exchange through short

cycles, i.e., cycles of length up to k, where k is a small predetermined con

stant. We typically consider k = 2, ..., 5. We call this exchange markets

with short cycles. The reason why we focus on short cycles is that, even if

one user in the cycle withdraws the transaction, the whole exchange cycle

collapses. If we have long cycles, then more users would be affected. Now, a

recommendation is a set of conflict-free cycles with length bounded by k. Of

course, the hardness extends to finding optimal recommendations for this

case.

Finally, we consider the probabilistic exchange market. In this case, there

is a probability associated with each user engaging in a transaction with

any other user. As well, there is a probability of a user being willing to

trade one item for another. We assume all probabilities are independent.

A recommendation is defined in exactly the same way as for exchange mar

4



Chapter 1. Introduction

kets through short cycles. The value of a recommendation is the expected

number of items exchanged. The contribution of a cycle to the value of a

recommendation is the number of items exchanged in the cycle multiplied

by the product of all probabilities associated with the cycle. We show that

finding an optimal recommendation remains NP-complete.

We develop heuristic and approximation algorithms for finding optimal

recommendation for all three kinds of markets. We discuss three approxi

mation algorithms — Greedy, Local search, and combination of greedy and

local search — and one heuristic algorithm — Maximal. We prove that the

approximation algorithms find recommendations that are within a factor of

2k, 2k — 1, and (2k + 1)/3 of the optimal, respectively. We also analyze

the complexity of the proposed algorithms. While Maximal has no provable

approximation guarantees, it is by far the most efficient.

We conduct a detailed empirical study of all algorithms proposed using

synthetic data that we generated. The data was generated to conform to

power law distributions commonly found in social networks. Our experi

ments show that even though Maximal has no theoretical approximation

guarantees, recommendations found by Maximal are very competitive with

those found by the approximation algorithms. On the other hand, Maximal

significantly outperforms the other algorithms when it comes to scalability

w.r.t. network size and the sizes of item and wish lists.

In chapter 2 3 we consider exchange markets over time. We set new

objectives in this new setting and try to achieve them by introducing efficient

features and algorithms. Our objectives are:

5



Chapter 1. Introduction

• Maximizing the number (or the total value) of items exchanged in the

market.

• Minimizing the average waiting time of users in the system.

• Maximizing fairness in the system.

In order to achieve the above objectives we introduce virtual points and

also a credit system. We prove that virtual points can decrease the average

waiting time in the system and also assuming that users put their items a

random permutation, there are instance in which in expectation the waiting

time decreases by a factor of 2k+2B.

Moreover, in order to achieve the fairness maximization goal, we define a

credit system and we prove that not only is this problem NP-complete, but

also not approximable within any multiplicative factor. Therefore, we pro

pose two heuristics for this problem. The first one is an linear programming-

rounding approach in which we use the results of the Ip relaxation of the

integer linear programming model of the problem. The other heuristic is a

simple greedy algorithm.

For this chapter we perform experiments on the dataset that we had

generated for Chapter 2’s experiments. As mentioned above the dataset is

generated according to power law distributions common in social networks.

The experiments show that

6



Chapter 1. Introduction

1.1 Structure of the Thesis

In this thesis our focus is on exchange markets which are an important

example of online social networks. Chapters 2, and 3 study generation of

recommendations for online exchange markets, in which the users have two

sets of items. One set includes items which the user wishes for them (a.k.a

wish-list) and the other is the list of items the user does not want anymore

(a.k.a item-list). Chapter 2, models the network as a one-shot model and

chapter 3 addresses the markets over time.

7



Chapter 2

One-shot Exchange Markets

In this chapter we discuss One-shot exchange markets and focus on the prob

lem of generating recommendations under two models: deterministic model

and probabilistic model. In both models each user receives an item in return

for the item which she gives away. We formulate the problem of finding

recommendations as that of finding a set of conflict-free cycles in the graph.

Conflict-free means cycles in the set are pairwise edge-disjoint, a condition

necessary to ensure that when a user commits to a recommended exchange,

she is not surprised that the recommended item is already taken. Thus, a

recommendation consists of a set of conflict-free cycles. The value of a rec

ommendation is the number of items (potentially) exchanged through the

cycles recommended. This chapter is organized as follows. Related work

are described in Section 2.1. The proposed exchange market models are

described in Section 3.3, which also formalizes and illustrates the problems

studied. The complexity of the problems is analyzed in Section 2.3. The

heuristic and approximation algorithms are developed in Section 2.4 while

their analysis is discussed in Section 2.5. Section 2.6 discusses the experi

ments.

8



Chapter 2. One-shot Exchange Markets

2.1 Related Work

The related work can be classified in the three following categories:

Cycle Cover Problem The cycle cover problem has been studied thor

oughly. Given a graph and a subset of marked elements: nodes, edges or

some combination of them, a cycle cover problem seeks to find a minimum

length set of cycles whose union contains all marked elements [22]. In [22]

the authors study cycle cover problem for cycles with bounded size which

cover a subset of the edges of a graph. More specifically, they improve

the trivial approximation factor of 2 to 1 + ln(2) in weighted graphs and

O(lnk) for uniform graphs. The Chinese postman problem was introduced

by Guan [17] and Edmonds and Johnson [121 proposed a polynomial-time

algorithm to solve the problem in undirected graphs. Papadimitriou [30]

proved that the problem is NP-hard for mixed graphs. Later, Raghavachari

and Veerasamy [33] gave a fapproximation for this instance of the problem.

An NP-hard [39] variant of the Chinese postman problem, the minimum

weight cycle cover problem, adds the constraint that covering cycles must

be simple. The bounded cycle cover problem, which constrains cycles to be

of bounded size as well as simple, was introduced by Hochbaum and Olin

ick [18]. They presented a heuristic for the problem along with empirical

analysis. The lane covering problem was introduced by Ergun et al. [13],

who gave a heuristic for the problem along with an empirical analysis. A

variant on the cycle covering problem which imposes a lower bound on the

9



Chapter 2. One-shot Exchange Markets

size of each cycle has been studied as well [9]. Other covering problems

include covering a graph by cliques [16]. The book by Zhang [41] reviews

the literature.

Recommender Systems Extensive work has been done in the area of

recommender systems in different research areas such as cognitive science

[36], approximation theory [31], information retrieval [37] and also man

agement science [28]. The field gained more importance in the mid 1990s

with the emergence of collaborative filtering papers. [34, 35, 38].

Moreover, recommender systems are usually classified into the following

categories, based on how recommendations are made [7]:

• Content-based recommendations: The user will be recommended items

similar to the ones the user preferred in the past;

• Collaborative recommendations: The user will be recommended items

that people with similar tastes and preferences liked in the past;

• Hybrid approaches: These methods combine collaborative and content-

based methods.

Combining trust-based and CF approaches is a direction of current research

[7].

In addition to recommender systems that predict the absolute values of

ratings that individual users would give to the yet unseen items (as dis

cussed above), there has been work done on preference-based filtering, i.e.,

predicting the relative preferences of users [11, 14, 25, 26]. Preference-based

10



Chapter 2. One-shot Exchange Markets

filtering techniques would focus on predicting the correct relative order of

the items, rather than their individual ratings.

The Kidney Exchange Problem. A related problem in exchange mar

kets is the national kidney exchange problem [5]. For many patients with kid

ney disease, the best option is to find a living donor, that is, a healthy person

willing to donate one of his/her two kidneys. The problem is that frequently,

a potential donor and his intended recipient are blood-type or tissue-type in

compatible. In the past, the incompatible donor was sent home, leaving the

patient to wait for a deceased-donor kidney. However, there are now a few

regional kidney exchanges in the United States, in which patients can swap

their willing but incompatible donors with each other, in order for each to

obtain a compatible donor [5]. The kidney exchange problem is very similar

to our problem, specifically the simple exchange market and the exchange

market through short cycles. In kidney exchange, each patient needs one

and only one kidney and each donor is willing to donate only one kidney(!).

Because of medical constraints, one wants short exchange cycles. It is shown

in [5] that (optimal) kidney exchange is NP-complete when exchange cycles

of length k are considered, where k > 2.

If exchanges are restricted to swaps, the kidney exchange problem can

be solved using the maximum weighted perfect matching problem in which

given an edge-weighted bipartite graph, we are looking for a maximum

weighted perfect matching. As a result, the problem will be solved poly

nomially. Given a network G = (V, E), a bipartite graph can be constructed

as follows: put one vertex for each agent and one vertex for each correspond

11



Chapter 2. One-shot Exchange Markets

ing item (i.e. kidney). Connect each agent to its corresponding item with

an edge e with weight zero. For each edge e E E, e = (vi, v) in the original

graph, connect agent v to item v with an edge with weight we. Perfect

matchings in this model are equivalent to cycle covers, because receiving

an item is equal to giving an item away, and finding a maximum weighted

matching solves the problem of finding an optimal set of kidney swaps.

However, in all our exchange markets, users may have multiple items in

their item and wish lists and may be willing to trade more than one item at

a time. This subtle difference alone makes our problem much harder. As we

show later, even finding optimal swap recommendations for simple market

exchange is NP-complete.

2.2 Model

In our proposed system, we assume the algorithm for generating recom

mendations for exchange cycles is run periodically and the set of potential

feasible exchanges are discovered. Users involved in these potential cycles

are informed through email and/or their account will be updated. If they

are interested in performing the transaction, they will get in touch with the

other users. Otherwise they will withdraw the transaction and all other

involved users will be informed. In any case when the transaction is done

the exchanged items are removed from the item lists and wish lists, and the

system will be updated. We also assume that a user does not own multiple

copies of an item and also does not wish for multiple copies of an item.

Obviously the system is dynamic meaning that it changes with time.

12



Chapter 2. One-shot Exchange Markets

The possible changes are: (i) a user joins or leaves the network; (ii) an item

is added to or removed from a user’s wish list or item list: these changes

may be due to a transaction done or due to change in user’s interests.

These changes imply that the set of feasible exchanges will also change

by time. Thus, the system runs the algorithm to find the set of new ex

changes that have become available periodically (e.g., once a day or week).

In this section, we formally define our problems. In the deterministic cases

the objective is to maximize the number of items exchanged and in the

probabilistic case to maximize the expected number of items exchanged.

The following example illustrates many of the notions and will serve as a

running example.

Example 2.2.1 [Exchange Market]

Consider a collection of five users — Alice, Bob, Joe, Amy, and Mary. Each

of them has an item list and a wish list. The lists are shown in tables 2.1,

2.1, 2.2, 2.3, 2.4, and 2.5. Item lists of a user consists items the user is

willing to give away in exchange for some item in their wish list that they

would like to receive. I

The tables indicating the users’ wishlists and itemlists.

Alice’s Itemlist Alice’s Wishlist
B1: Harry Potter I B2: Harry Potter II

Cook Book B3: The secret
B9: PCs for dummies
B8:_TAOCP_I

Table 2.1: Alice’s Item and Wish list

13



Chapter 2. One-shot Exchange Markets

Bob’s Itemlist Bob’s Wishlist
B4: CLRS B5: Intro, to DBMS

B7: Cook Book

Table 2.2: Bob’s Item and Wish list

Joe’s Itemlist Joe’s Wishlist
B2: Harry Potter II B6: Harry Potter III

B3: The secret

Table 2.3: Joe’s Item and Wish list

In all our problems below, we assume a set of users U and a set of items

I. User u E U owns a set of items (aka item list) S, and requires a set of

items (aka wish list) W,,.

Simple Exchange Market: In a simple exchange market, we only

match up users one by one, i.e., in each exchange, two users u and v can

exchange a pair of items i and j. Given a set of users U with the item

lists S and wish lists W for each user u E U, the simple market prob

lem, denoted by SimpleMarket, is to find a set of pairs [(u, i), (v,j)] where

i E S fl W,,,j e S fl W,. We call each pair a swap. The problem can

be modeled as a directed graph C = (V, E) with users as nodes V and a

directed edge (u, v) E E labeled i whenever i e S, fl W,, i.e., u owns item

i and v is interested in receiving it. Thus, swaps correspond to cycles of

length two. Since each user typically has one instance of an item in S, and

also needs one instance from each item in W, [(u, i), (*, *)1 should appear

in the set at most once, where the first * is any other user v u and the

second * is any item. In terms of graphs, the configuration shown in Fig

ure 2.1 is forbidden, i.e., the set of recommended swaps should not contain

this as a subgraph. We call a recommendation, i.e., set of swaps, without

14



Chapter 2. One-shot Exchange Markets

Amy’s Itemlist Amy’s Wishlist
B3: The Secret B2: Harry Potter II

[B8: TAOCP I B4: CLRS

Table 2.4: Amy’s Item and Wish list

Mary’s Itemlist Mary’s Wishlist
B9: PCs for Dummies B2: TAOCP I

B10: TAOCP II

Table 2.5: Mary’s Item and Wish list

such a forbidden configuration conflict-free. To see why conflict-freedom is

necessary, consider recommending both pairs [(u, i), (v, j)] and [(u, i), (w, j)j

to the users. If user u exchanges i for j with user v, then the recommended

exchange is no longer feasible for user w. Thus, set of recommended ex

changes contains a conflict. The condition above ensures it is conflict-free.

Conflict-free recommendations ensure that users do not get turned off or

lose their trust in their system by finding out that a recommendation they

received from the system is no longer feasible. In our running example (Ex

ample 2.2.1), Joe can give away B2 to both Amy and Alice, but both edges

cannot be in the graph at the same time.

Exchange Markets through Short Cycles. In an online exchange

market, we can find cycles of size larger than 2, for example, as can be seen

in Figure 2.2, we may find users Alice, Bob and Amy with items B7, B4, and

B8. If Alice, Bob and Amy have items B8, B7, and B4 respectively in their

wish lists, we can set up a 3-way exchange among them and have all of them

satisfy their wish lists. Note that, in this example, if we restrict ourselves to

swaps, none of the users may be satisfied. An exchange cycle is a sequence

15



Chapter 2. One-shot Exchange Markets

Figure 2.1: Both exchanges cannot be present in the system at the same
time.

[(ui,ii), (U2,i2),.. . (uk,ik)1, with i,j E fl where j e 1 = j + 1,

1 <j <k, and k e 1 = 1. A set of exchange cycles is said to be conflict-free

provided the pattern [(u, i), (*, *)J appears at most once in the set, i.e., the

corresponding graph does not contain the forbidden subgraph in Figure 2.1.

Our goal is to find an optimal set of conflict-free cycles: The objective

is to maximize the number of items involved in exchanges, thus maximizing

the number of transactions. Furthermore, in practice, we may wish to limit

the length of the exchange cycles to a maximum of k, where k is some

predetermined constant. We usually consider k = 2, ..., 5. The reason why

we focus on short cycles is that, even if one user in the cycle withdraws the

transaction, the whole exchange cycle collapses. If we have long cycles, then

more users would be affected.

16



Chapter 2. One-shot Exchange Markets

Figure 2.2: Exchange cycle of length three: [(Alice, B7), (Bob, B4), (Amy,
B8)]

In our running example, we can see that Alice has B7 in her item list

and Bob has it in his wish list. Bob has B4 in his item list and Amy has

wished for that book. At the same time B8 in Amy’s item list while Alice

is interested in B8. As we see the cycle [(Alice, B7), (Bob, B4), (Amy, B8)]

is a feasible cycle.

Probabilistic exchange markets. Formalizing the above problem in a

probabilistic setting, we can assume that using a reputation system, we can

estimate the probability of realizing each exchange in the exchange market

graph. Reputation systems have become one of the essential components of

B8

17



Chapter 2. One-shot Exchange Markets

web-based multi-agent systems. These systems gate agents reviews of one

another, as well as about external events, into valuable information [32].

As a result, we have a graph with some probability on each edge. Assuming

that the probability of realizing each edge is independent of other edges, our

goal is to find a set of cycles with the maximum expected number of edges

covered, since each edge corresponds to an item being exchanged. Note

that the probability of a cycle is the product of the probability of its edges.

It would be interesting to understand the complexity of this problem. The

probability P (v) denotes the probability that u is willing to do an exchange

with user v, and pU(j,j) is the probability that user u will exchange item i

with item j, i.e., she gives i and takes j. In this case, the probability of a

cycle being realized will be

P1(u2)x pul(jl,jk) X P2(u3)X FU2(j2,j1). .
. x

Puk(ul) x puk(jk,jk_1).

Our goal is to find cycles that maximize the total expected number of items

exchanged.

Example 2.2.2 [Probabilistic Exchange Market]

Consider Figure 2.2 as an example. Let the probabilities associated with

the edges (Alice, Bob), (Bob, Amy) and (Amy, Alice) be 0.7, 0.55 and 0.9.

For simplicity, suppose the probability of this cycle being realized will be

0.7x0.55x0.9 = 0.3465. Let R be a recommendation including this exchange

cycle among others. Then the probability of this cycle being realized will be

0.7 x 0.55 x 0.9 = 0.3465. Let R be a recommendation including this exchange

cycle among others. Then the contribution of this cycle to the value of R,

18



Chapter 2. One-shot Exchange Markets

i.e., to the expected number of exchanged items is 3 x 0.3465 = 1.0395. I

In almost all of the cases, the probability of each edge being realized is

less than one, so when the cycle gets larger, the probability would be very

low. Therefore (similar to what we argued before for the deterministic case)

in the probabilistic case short cycles are practically more appealing.

2.3 Hardness Results

In this section, we show that the SimpleMarket problem is NP-complete.

We also show that the ProbMarket problem is NP-complete, regardless of

whether we consider swaps or short cycles with length bounded by a constant

k > 2. Even the “kidney exchange version” of ProbMarket where every user

owns only one item and wishes for only one item remains NP-complete when

cycles of length> 2 are allowed. We first define the decision versions of these

problems formally.

SimpleMarket Decision Problem

Instance: A set of users U with the item lists

S, and wish lists W for each user u E U.

Question: Does a conflict-free swap cover

C with number of items exchanged K?

The simple market decision version, Probusr associates with every user

a probability that she will transact with any user. Probjtm associates with

each user and a pair of items i,j, a probability that the user will give i and

take j in exchange.

19



Chapter 2. One-shot Exchange Markets

ProbMarket Problem

Instance: A set of users U with the item

lists S and wish lists W for each user u e

U and two probability assignment functions

Probusr : U x U —* [0, lj and Probjtm : U x

IxI—[O,1].

Question: Does a cycle cover C whose ex

pected number of items is > K?

We next define TriEdgePart, a well-known NP-complete problem. We

will reduce this problem to our problem.

TriEdgePart Problem

Instance: A tripartite graph G with three

vertex partitions (X, Y, Z) and an edge set

EcXxYUXxZUYxZ

Question: Does an edge partitioning of G

into disjoint sets of cycles of size three?

Finally, we define 4CycEdgePart, a problem involving 4-partite graphs.

We will find it convenient to use this problem as an intermediary in our

reductions.

20



Chapter 2. One-shot Exchange Markets

4CycEdgePart Problem

Instance: A 4-partite graph G with four ver

tex partitions (X, Y, I, J) and a collection of

edges E consisting of a subset of edges from

Xx YUX x IUY x J, together with a multiset

of edges from I x J.

Question: Does an edge partitioning of G

into disjoint sets of cycles of size four?

We first show that the 4CycEdgePart problem is NP-complete and

then give a reduction from 4CycEdgePart to SimpleMarket showing NP-

completeness of SimpleMarket.

Theorem 1 The 4CycEdgePart problem is NP-complete.

Proof: The membership in NP is straightforward: given an edge par

titioning P of C, we can check in polynomial time whether P consists of

4-cycles that are pairwise edge-disjoint, covering all edges of C. To prove

the hardness, we give a reduction from TriEdgePart. The triangle edge-

partitioning of tripartite graphs is known to be NP-complete (and in fact

APX-hard) by a result of Abraham et. al [6], following an NP-completeness

by Holyer [20].

Given an instance G(X U Y U Z, E) of TriEdgePart, we construct an

instance G’ (X’ U Y’ UI’ U J’, E’) of 4CycEdgePart as follows: for any vertex

w E Z, we add two corresponding vertices w e I’ and w2 e J’; for each

u X, we add a vertex u’ E X’; and for any v E Y, we add a vertex v’ e Y’.

21



Chapter 2. One-shot Exchange Markets

In other words, we let

= ixi, I1’I = 11,1 = I.”! =

i.e., we choose X’, Y’ to be any sets with size lxi, iYl and I’ and J’ to

be any sets with size IZI, with X’, Y’, I’, J’ being pairwise disjoint. Then,

we construct edges E’ (G’) of the new instance as follows: for any edge

(u,v) e E(G) where u e X and v e Y, we add an edge (u’,v’) to E’(G’); for

any edge (u, w) E E(G) where u E X and w E Z, we add an edge (u’, w1)

to E’(G’); and for any edge (v, w) E(G) where v e Y and w e Z, we

add an edge (v’, w2) to E’(G’). Finally, we add de(w) edges between every

pair w1 E I’ and w2 E J’ (corresponding to a vertex w € Z). Note that

deg(w) is even in our case, otherwise it is clear that there is no triangle

partitioning. The reason that we put des(w) edges is that there may be more

than one triangle passing through w E Z, and each triangle corresponds

to two edges for passing through any node, therefore to maintain the same

number of cycles in the 4-partite graph, we need to connect w and w2

with dew) edges. Clearly, G(X’ U Y’ U I’ U J’, E’) is an instance of the

4CycEdgePart problem. It should also be noted that while instances of

the TriEdgePart are always simple graphs, instances of the 4CycEdgePart

can be multi-graphs since we need multiple edges between w1 and w2, for

various w E Z. However,they are not arbitrary multi-graphs: e.g., between

x E X and y e Y at most one edge is required (see the formal definition of

the 4CycEdgePart decision problem above).

22



Chapter 2. One-shot Exchange Markets

Now, we formally show that there exists an edge-partitioning of edges of

G into edge-disjoint triangles if and only if there exists an edge-partitioning

of G’ into edge-disjoint 4-cycles. Consider an edge-partitioning T of edges

of C to edge-disjoint triangles T = {((xiylzl),... , (x,yz))} for p = E(G)I

For each triangle XjjZj in this edge-partitioning T where x E, y2 E Y, and

z. e Z, we associate a corresponding 4-cycle x’y’z1z2 in C’ where x’ e X’,

y’ E Y’, and zi E I’, and z2 E J’. Since the edges of p triangle (xjyjzj) for

1 i p cover all edges of G, each vertex z e Z appears exactly in

triangles. Let T’ be the set of corresponding 4-cycles to triangles in T. Thus,

there are exactly 4-cycles in T’ corresponding to triangles in T, and as

a result, T’ is also an edge-partitioning of G’ into edge-disjoint 4-cycles. Now,

consider an edge-partitioning T’ of G’ into edge-disjoint triangles. Similar

to the above construction, we can construct a set T of triangles partitioning

the edges of G to p edge-disjoint triangles. The above two facts show that

there exists an edge-partitioning of edges of C to edge-disjoint triangles if

and only if there exists an edge-partitioning of C’ to edge-disjoint 4-cycles.

This completes the proof of hardness. I

We next show:

Theorem 2 The SimpleMarket problem is NP-complete.

Proof: Once again, membership in NP is straightforward: given a set

swaps, it is easy to check whether it is conflict-free and the number of

items covered is K. To prove the hardness, we give a reduction from

4CycEdgePart to the SimpleMarket problem.

23



Chapter 2. One-shot Exchange Markets

Figure 2.3: Hardness Proof

24



Chapter 2. One-shot Exchange Markets

Given an instance G(X U Y U I U J, E) of the 4CycEdgePart problem,

we construct an instance E of the simple marketing problem as follows: we

let the set of users be X U J, and the set of items be I U Y. For each user

XE X, we set the item list of x to S = {i Eli (x,i) E E(G)} and the wish

list of x to W = {y E J (x,y) E E(G)}. Similarly, for each userj E J, we

set the item list of j to S, = {y E Y (y,j) E E(G)} and the wish list of j

to Wj = {i E I (i,j) E E(G)}.

Now, we show that there exists an edge-partitioning of G into p =

edge-disjoint 4-cycles if and only if there exists a conflict-free set of p swaps

between pairs of users in the instance of the simple market exchange

problem. Consider an edge-partitioning T of G into p edge-disjoint 4-cycles

T = {(x,y,j,i)i1 v p}. In any 4-cycle (Xv,yv,iv,jv) clearly x E X,

Yv E Y, iv E I, and Jv E J. Consider the corresponding possible swap where

x gives item iv to user v and receives item Yv in return from v. By the

construction of item and wish lists, this swap is feasible. Let S be the set of

swaps derived from T. Clearly Si = p. We show S is conflict-free. Suppose

not. Then there is a pair of swaps in $ of the form: user a swaps item a for

item /3 with user b and a also trades a for item y with user c (which may or

may not be b). This implies T contains two 4-cycles which share the edge

(a, a), a contradiction to the edge-disjointness of T.

Now, suppose S is any conflict-free set of p swaps for the instance D.

We construct an edge-disjoint 4-cycle cover T as follows. For every swap

where user a trades a for /3 with user b, choose the corresponding 4-cycle

(a,a,b,/3,a). It is easy to show T covers all edges of G and it is pairwise

edge-disjoint. This completes the reduction and the proof. •

25



Chapter 2. One-shot Exchange Markets

We next turn our attention to the ProbMarket problem. The follow

ing restricted versions are particularly interesting. First, what can we say

about ProbMarket when we restrict attention to swaps, i.e., when we are

interested in finding an optimal conflict-free set of swaps? The hardness

for the corresponding deterministic case implies the probabilistic version is

hard as well. In particular, the deterministic version is a special case when

all probabilities are set to 1. Second, suppose every user owns just one item

and wishes for just one item. This is similar to the kidney exchange problem

and we call it the “kidney exchange version” of ProbMarket. If exchange

cycles with length more than two are allowed, by the result of [5], it follows

that this problem is NP-complete. When only swaps are allowed, the same

technique of finding maximum weighted perfect matching can be used to

solve this problem exactly in polynomial time. We thus have:

Corollary 1 Finding an optimal set of swaps for ProbMarket is in general

NP-complete. However, for the kidney exchange version, the problem can be

solved in polynomial time. Finding an optimal conflict-free set of exchange

cycles where cycle length is bounded by k > 2 for the kidney exchange version

of ProbMarket is NP-complete.

2.4 The Algorithms

In this section, we develop four algorithms for variants of the exchange

market problem. Three of them have provable approximation bounds w.r.t.

optimal algorithm. The remaining one is a heuristic algorithm with no such

guarantees. However, as we will see shortly, it is much more efficient than the

26



Chapter 2. One-shot Exchange Markets

approximation algorithms. While theoretically the heuristic algorithm may

not sound interesting compared to the approximation ones, we study their

relative performance on synthetically generated data sets in Section 2.6.

Some of these algorithms are inspired by algorithms for the set packing

problem. In section 2.5, we define the weighted k-set packing problem and

show that the exchange market problem can be seen as a special case of the

set packing problem. We exploit this connection to derive the approximation

bounds.

In the rest of the paper, we will find it convenient to deal with a graph

representation of market exchange problems. Given a (simple or short-

cycles) market exchange problem instance E = (U, I, {S I u e U}, {W I
u e U}), with users U, items I, item lists S and wish lists W, the cor

responding graph representation GE is defined as follows. GE is a directed

edge-labeled graph and has a node for every user in U. There is a directed

edge (u, v) labeled i whenever i E I is an item such that i E S fl Wi,. For

our running example of Example 2.2.1, the corresponding graph is shown in

Figure 2.4.

2.4.1 Algorithm Maximal

One heuristic algorithm is to look for a maximal set of cycles in GE. S is a

maximal set of cycles if S is conflict-free and there exists no cycle C in GE

which does not appear in S and does not conflict with any cycle in S.

Example 2.4.1 [Maximal vs. Optimal]

Let’s consider the following cycles in the running example:

27



Chapter 2. One-shot Exchange Markets

Figure 2.4: Graph Representation of Running Example.

28



Chapter 2. One-shot Exchange Markets

C1 = [(Alice, B7), (Bob, B4), (Amy, B8)], C2 = [(Alice, B7), (Bob, B4),

(Amy, B10), (Mary, B9)], and C3 = [(Amy, B3), (Joe, B2)]

Two sets S and S2 are maximal:

S1 = {c1,c3} and 52 = {c2,CS}. Note: coverage(Si) ={B7,B4,B8,B2,B3}

and coverage(S2)= {B7,B4,B10,B9,B2,B3}. Both are maximal since no

cycles can be added to either without breaking the conflict-freedom property.

Furthermore, notice that coverage(S1) coverage(S) and coverage(S2)

coverage(S1). However, Si is clearly not optimal since S2 covers strictly

more items. I

In order to find the maximal set of cycles, we first initialize the set of

cycles B to 0. Then for a random node v E V(G) we perform a breadth first

search (BFS) or a depth first search (DFS) from v to find a cycle. While

performing the BFS/DFS the first time that we encounter a backward edge

we can stop because a cycle has been found. BFS will find the shortest cycle.

And terminate if no cycles are found. Add C to B, and remove all edges

that are in conflict with C from the graph. Set C to 0 again and start the

BFS from another node. We repeat this procedure M times and select the

result with maximum weight. In Section 2.6, we explore the performance

of this algorithm for different choices of M. The complete description of

Algorithm Maximal is depicted in Figure 2.4.1.

2.4.2 Greedy Algorithm

Another approach is to perform a greedy algorithm. Initialize B to 0. At

each step find the best exchange cycle C with the maximum weight. In

29



Chapter 2. One-shot Exchange Markets

order to find the best cycle, we should try all short cycles and then pick the

cycle with maximum weight. Then add C to the set of cycles 13. Remove

all the edges that are in conflict with C. Add C to 13 and if no cycles are

found terminate. The complete description of Algorithm Greedy is depicted

in Figure 2.4.2.

2.4.3 Local Search Algorithm

In this algorithm we attempt to replace a small subset of the current solution

by some set of cycles that result in a greater total weight. Let the current

solution be 13. For any exchange cycle C that is not afready selected, try to

add C and remove all the conflicting edges. If the total weight of B increases

by a factor /3, add C to B and update 13 by removing all conflicting cycles

from 13. Do this procedure until no local improvement is possible, output

B and terminate. The complete description of Algorithm Local Search is

depicted in Figure 2.4.3.

2.4.4 Greedy/Local Search

Instead of starting the Local Search algorithm with an empty set, we can

seed it with a good set of cycles. A variant is to run the greedy algorithm to

find a set of cycles B and then run the local search algorithm starting from

cycles in 1.3. Analysis of this variant is presented in Section 2.5.

30



Chapter 2. One-shot Exchange Markets

2.5 Analysis

2.5.1 Performance

In order to prove approximation factors for the algorithms proposed in this

paper we link our problems to the weighted k-set packing problem. We show

that the simple market exchange problem can be formalized as a special

case of the weighted k-set packing problem. Note that the purpose of this

formulation is solely for the purpose of deriving approximation bounds.

In the weighted k-set packing problem, given a collection of sets, each of

which has an associated weight and contains at most k elements drawn from

a finite base set, our goal is to find a collection of disjoint sets of maximum

total weight. The restriction to sets of size at most k properly includes

multi-dimensional matching, which is a generalization of the ordinary graph

matching problem. Weighted k-set packing is proved to be NP-hard for any

k 3, even in the unweighted case [15], and heuristics and approximation

algorithms have been developed for this problem.

To formulate the one-shot exchange market problem as a special case

of the set packing problem, we define the elements of the sets to consist of

the user, the item, and the act of giving or wishing. The formulation is as

follows:

First, enumerate all exchange cycles of length k. This can be done

in polynomial time since k is a constant. Construct a set corresponding to

every exchange cycle. To illustrate, consider an exchange cycle where user

u gives item i to user v and wishes item j in return. The elements of the

set are:

31



Chapter 2. One-shot Exchange Mai*ets

(u gives i) denoted by

(v gives j) be denoted by x.

(u wishes j) be denoted by

(v wishes i) be denoted by y,,.

Thus, the set corresponding to the above exchange is

{xu,j,xv,j,yu,j,yv,j}

In the above notation, x is a symbol for “giving an item” and y for

“wishing an item”. The first term in the subscript shows the user involved

in gives/wishes relation and the second term is the item being exchanged.

Set the weight of each set constructed to be the cardinality of the set. For

a probabilistic variant, set the weight to be the cardinality times the product

of probabilities associated with the exchartge cycle. Let w(C) denote the

weight of a cycle (equivalently, set) C.

In each of the exchange problems, our objective is to find a conflict-free

set of exchange cycles B such that cEBw(C) is maximized. This exactly

corresponds to weighted k-set packing.

We proved in Section 2.3 that the simplest case of our problem which

is the simple marketing problem is NP-complete. We also showed that

the probabilistic exchange market problem is NP-complete. Here, using

the above reduction to the k-set packing problem, we obtain approxima

tion bounds on Algorithms Greedy, Local Search and Greedy/Local Search.

The approximation bounds proved in the literature for these algorithms for

32



Chapter 2. One-shot Exchange Markets

weighted k-set packing carry over to our exchange problems since the latter

can be seen as a special case of weighted k-set packing.

• Algorithm Maximal: It is not obvious how close the solution of this

algorithm will be to the optimal solution. The reason is that the BFS

algorithm is performed from an arbitrary node and picks the first cycle

that is found.

• Algorithm Greedy: In [10], the authors show that performance of a

greedy approach to the weighted k-set packing problem gives us a 2k-

approximation. That is, in the worst case total weight of the output

would be of the total weight of the set of maximum weights. The

factor 2k is because from the sets that are removed in each iteration,

the optimal solution can contain at most 2k sets, at most one for each

element of the selected set all of which are of weight at most that of

our selected set. They also state that this factor cannot be improved.

• Algorithm Local Search: Using a result in [8] we can show that this

algorithm is a 2k — 1-approximation, meaning that in the worst case

the total weight of the given solution would be 1/(2k — 1) of the total

weight of the optimal solution.

• Local Search/Greedy Algorithm: In [10] the local search/greedy al

gorithm is proved to have a performance ratio of 2(2k + 1)/3 and that

this ratio is asymptotically tight.

33



Chapter 2. One-shot Exchange Markets

2.5.2 Running Time

In the following, the number of cycles that are found is depicted by 131. The

worst case running time of the proposed algorithms are as follows:

• Maximal Algorithm: The running time of this algorithm is 0 ((I V I +

El)113l). Each BFS will take O(IVI + IEI) time. In the worst case the

number of cycles that are found is 13!.

• Greedy Algorithm: Finding the best cycle in each step takes 0(1 V 2k)

time, thus the total running time will be 0(IVl2dlBl)

• Local Search: In the local search algorithm, the running time of check

ing all cycles is 0(lVl2c). In order to check if each cycle is in conflict

with the cycles in the current solution at most 0(IEI) time is needed.

At each step, we perform the local operation if it increases the weight

of the solution by more than a 1+ e factor, where e is a small constant.

Therefore, the number of local operations will be log1OPT where

OPT is the weight of the optimum solution. Thus the worst case run

ning time for the local search algorithm will be: Q(V2kElog OPT).

• Greedy/Local Search: The running time of this algorithm simply is the

addition of the greedy and local search algorithm, because the results

of the greedy algorithm will be input to the local search algorithm.

2.6 Experimental Results

We implemented the Maximal, Greedy, and Local Search algorithms using

MATLAB. The experiments were run on a Computer with a 2.160Hz Intel

34



Chapter 2. One-shot Exchange Markets

Core 2 Duo CPU and 1 GB of RAM under Windows XP.

The goals of our experiments are as follows:

• Obviously, allowing exchange cycles of length more than two will make

for increased coverage of users/items. We wish to study the impact

of allowing cycles of length more than two on the extent to which

coverage increases.

• To examine the quality of the results found by algorithms, especially

the Maximal algorithm which does not have a guaranteed approxima

tion factor.

• To study the scalability of Algorithm Maximal and also the impact

of the parameter M (number of repeated trials) on the quality of the

output.

2.6.1 Data Set

We could not get access to the data of real online exchange applications.

Hence, we generated a set of synthetic data. The intuition behind the data

generation is that the popularity of items in wish lists and item lists follow

some power law distributions, i.e., there are many items which are wished

for or provided by a small number of people, and there is a small number

of items which are provided or wished for by many people. To achieve this

goal, first, we generate some power law distributions with a given power as

the parameter. We actually examined four different powers of 0.5, 1, 1.5

and 2. We use one of these power law distributions for the popularity of

the items, i.e., the number of people who own one item. We also generate a

35



Chapter 2. One-shot Exchange Markets

set of item list sizes based on some other power law vectors (this is justified

by the fact that the size of wish lists and item lists should also follow some

power law distribution). We also generate a vector of wish list size in direct

correlation with the vector of item list sizes. The intuition here is that if

a user provides more items, then probably she has larger wish lists as well.

This intuition is not true in all cases, so we add some noise to this process

with a small probability.

Now, given a popularity vector, and the two vectors of the wish list and

item list sizes, we generate the real wish lists and item lists as follows. For

each item to be added to an item list or wish list, we generate an item

independently from the popularity vector. This process ensures that the

expected number of appearances of items in item lists and wish lists follow

some power law distribution.

2.6.2 Experiments

In order to achieve our experimental goals above, we performed the follow

ing experiment. First we just considered cycles of length two (1 = 2) and

observed the number of items involved in cycles. In the next steps we allow

cycles of length three (1 = 3), four (1 = 4) and then five (1 = 5) and measured

the increase in the number of items covered compared to the previous cases.

We didn’t go beyond 1 = 5 since as mentioned in Section 3.3 long cycles

are not of interest in the market exchange problems studied in this paper.

We ran our algorithms on three different data sets with 10, 000, 25,000 and

50,000 users.

Table 2.6 summarizes the results of the algorithms in form of average

36



Chapter 2. One-shot Exchange Markets

amount of increase in coverage as the allowed cycle length is increased from

2 to 5. It is interesting to note that the extent of incremental coverage drops

as the allowed cycle length 1 is increased from 2 to 5. This is consistent for all

three algorithms. This can be explained by the small world phenomenon of

networks following power law distributions. Beyond a certain length, cycles

of longer length tend to pay “diminishing returns” in terms of %increase

in the coverage. The figures in the table correspond to the data set of

size 10, 000, averaged over various a = 0.5, 1.0, 1.5, 2.0. We observed little

variance over different values of a.

%Increase 2—3 3—”4 4—*51
Maximal Aig. 5.56 3.40 2.7
Greedy Mg. 7.33 3.81 3.12

Local Search Alg. 7.71 3.85 3.35

Table 2.6: % Increase in coverage when considering cycles of length 3, 4 and
5.

Figures 2.8, 2.9 and 2.10 illustrate results of the experiments for

maximal, greedy and local search algorithms respectively. In all figures,

“size of data set” refers to the number of users.

First, for any of the algorithms, the number of items covered for any fixed

value of 1 decreases as the skew factor a increases. E.g., in Figure 2.8, at

a = 0.5 and I = 4, about 50,000 items are covered by the recommendations

generated by Algorithm Maximal on the data set of size 25,000. On the

same data set and 1, at a = 2.0, this number drops to about 15,000. The

same trend can be observed in the plots for other algorithms. The reason

this happens is as the data is more skewed, fewer users own or wish for any

reasonable number of items. Thus, the number of users who can engage in

37



Chapter 2. One-shot Exchange Markets

fruitful exchanges decreases which in turn brings down the number of items

covered.

Second, while theoretically, Algorithm Maximal does not enjoy any prov

able approximation guarantees, the quality of its output is comparable to

that of the other algorithms. E.g., consider Figures 2.8, 2.9, and 2.10 and

examine the number of items covered by the algorithms for the following

situation: 1 = 4 and a = 1,1.5, and data set size = 25,000. For a = 1.0,

the maximal algorithm achieves a coverage of about 60, 000 items whereas

both greedy and local search achieve about 65,000. Similarly, for a = 1.5,

maximal achieves about 35,000 compared to about 41, 000 achieved by both

greedy and local search.

Next, Figure 2.12 compares the average of the running times of the

algorithms. The figure shows the running times averaged over various values

of a. As expected, the running time of the Maximal algorithm is much better

than that of the two other algorithms. Taken together with the fact that

the quality of the output of Algorithm Maximal is found to be comparable

to that of the other algorithms, this makes it a serious contender for finding

a conflict-free set of exchange cycles with good coverage.

To compare running time of the algorithms according to different values

of a, we plot the running times of the algorithms on datasets of size 10000,

25,000 and 50,000 over various values of a = 0.5,1, 1.5, and 2. As we can see

in all Figures 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, and 2.21 running

time of the algorithms decreases as the value of a increases.

Another parameter that was explored was the number of times the

maximal algorithm (denoted as M in the Section 2.4) is run in order to

38



Chapter 2. One-shot Exchange Markets

get a reasonable result quality in a reasonable time. We examined M =

20, 50, 100, 120. The results are illustrated in Figure 2.11. The result qual

ity, measured in number of items covered, improves significantly when M

is increased from 20 to 50. From 50 to 100, the increase drops and finally

from 100 to 120, the increase is almost negligible. We selected M = 100 in

all our experiments.

2.7 Conclusion

In this chapter, we study various models for the one-shot exchange market

problem, prove that all of these problems are NP-hard and propose several

heuristic and approximation algorithms for these problems. We analyzed

the approximation algorithms by showing some worst-case approxima

tion guarantees.

In the deterministic case, we motivated simple market exchange where

only exchanges in the form of swaps are acceptable. While for a very similar

kidney exchange problem, this is solvable in polynomial time, we proved that

this is NP-complete in our case. When longer exchange cycles are allowed,

NP-completeness extends to our setting. We also proposed a probabilistic

exchange market problem where there are probabilities associated with a

user engaging with another in an exchange and with exchanging one item

for another. The hardness results extend to this case.

By leveraging a close connection to weighted k-set packing, we developed

a heuristic algorithm (Maximal) and approximation algorithms (Greedy, Lo

cal Search, and Greedy/Local Search). Using this connection, we showed

39



Chapter 2. One-shot Exchange Markets

that known approximation bounds for these algorithms for wighted k-set

packing carry over to our exchange market problems — both deterministic

and probabilistic.

Finally, we conducted a detailed experimentation using synthetically

generated data sets, comparing different algorithms on output quality and

running time and studying the extent of increase in coverage as maximum

cycle length is increased, as well as the impact of data skew on coverage.

Our results show that while Maximal does not have provable approximation

guarantees, its performance in practice may be comparable to that of the

other algorithms. This is interesting given that Maximal is by far the most

efficient.

40



Chapter 2. One-shot Exchange Markets

Algorithm Maximal:

1. Repeat M times:

(a) Construct a graph G from the
exchange market instance.

(b) Initialize the set of cycles 13 to be
the empty set.

(c) While there exists a cycle in graph
G:

i. Run a BFS algorithm on graph
C starting from a random
node to find a cycle C in the
graph.

ii. Add cycle C to the set of cycles
B.

iii. Remove edges of C and all
other conflicting edges of C
from graph G.

2. Select the maximum weight set among
the M sets that are found.

Figure 2.5: Description of the Maximal Algorithm

41



Chapter 2. One-shot Exchange Markets

Algorithm Greedy:

1. Construct a graph G from the exchange
market instance.

2. Initialize the set of cycles 13 to be the
empty set.

3. While there exists a cycle in graph G:

(a) Find an exchange cycle C of size at
most 2k with the maximum weight
in graph C.

(b) Add cycle C to the set of cycles 1.3.

(c) Remove edges of C and all other
conflicting edges of C from graph
C.

Figure 2.6: Description of the Greedy Algorithm

42



Chapter 2. One-shot Exchange Markets

Algorithm Local Search:

1. Construct a graph G from the exchange
market instance.

2. Initialize the set of cycles B to be the
empty set.

3. At each step

(a) Let the current set of cycles be B.

(b) For any exchange cycle C that is
not already picked,

i. 1y to add C, and remove all
cycles in B in conflict with C.

ii. If the total weight of B in
creases, add C to B and
remove all conflicting cycles
from B.

(c) If no local improvement is possible,
output B and terminate.

Figure 2.7: Description of the Local Search Algorithm

43



Chapter 2. One-shot Exchange Markets

10 Alpha = 0.5, Maximal Algonthm io Alpha = 1.0, Maximal Algorithm

a,
0)

-C

10a,

2
I = 33

I I = 414 E
I = 5Il=5

___________________

C C
10000 25000 50000 10000 25,000 50000

Size of Datasets Size of Datasets

x 1 Alpha = 1.5, Maximal Algorithm x 1 o Alpha = 2.0, Maximal Algorithm

a,a,
-C-C

_______

° 1.:

_____

a,

_______

D =4

________

0.5

____

C C
10000 25,000 50000 10000 25000 50000

Size of Datasets Size of Datasets

Figure 2.8: Results of the Maximal algorithm on datasets of size 10000,
25000 and 50000.

44



Chapter 2. One-shot Exchange Markets

Figure 2.9: Results of the Greedy algorithm on datasets of size 10000, 25000
and 50000.

- x io4 Alpha = 0.5, Greedy Algorithm

8

6

4

2

0a)
0)

(U

C.,
‘Ca,
U)
E
a,

0

.0
a,
E
z

•0a,
0)
C

C.)
‘Ca)

0

.0
a,
E
z

1 Alpha = 1.0, Greedy Algorithm
15

0)

10

05

a, Il=4

0
50000 10000 25,000 50(

Size of Datasets

x io4 Alpha 2.0, Greedy Algorithm
3

lö000 25,000
Size of Datasets

x io4 Alpha = 1.5, Greedy Algorithm

)00

0a,
‘ 2.5
(U

C) 2
a,

1.5

.0
a,

0.5
z

10000 25,000
Size of Datasets

50000 10000 25,000
Size of Datasets

50000

45



Chapter 2. One-shot Exchange Markets

V
(U
0)
C
(U

0x
(U
Ci)

E
(U

0

.0
(U
E
2

10ilpha = 0.5, Local Search Algorithm ioA1la = 1.0, Local Search Algorithm

(U
0)
C
(U

0x
(U
(1)
E
0)

0

.0
(U
E
z

Va)
0)
C
CU

0x
(U
Ca
E
(U

0

.0
(U
E
z

Va)
0)
C
CU

C.)x
(U
Cl)
E
(U

0

.0
(U
E
2

25,000 25,000 50000
Size of Datasets Size of Datasets

Figure 2.10: Results of the Local Search algorithm on datasets of size 10000,
25000 and 50000.

5.5

a
Cl

3.5

2.5

—4-----

—4—2
3—,4

----—---

20 50 100 120
M

Figure 2.11: Percentage of coverage for different M’s in the Maximal algo
rithm.

46



Chapter 2. One-shot Exchange Markets

E

2

Figure 2.12: Average Running Time of Various Algorithms.

20
18

. 16

E 14
12
10

c 8
C
C

24
2
0

Maximal, size = 10,000

0.5 1 1.5 2

Alpha

Figure 2.13: Running Time of Algorithm Maximal on dataset of size 10,0000
over various aiphas.

Sire

EEEz- -

z ---

--L2

— Lz5

47



140

120

100

80

60

40

20

0

200
180

- 160
• 140

120
100

c 80
C
C

- 40
20

0

Maximal, size 25k

Maximal, size 50k

0.5 1 1.5 2

Alpha

Figure 2.15: Running Time of Algorithm Maximal on dataset of size 50,0000
over various alphas.

Chapter 2. One-shot Exchange Markets

C

6
V
6
•1

VI
C
C
C

1

0.5 1 1.5 2

—L5

Alpha

Figure 2.14: Running Time of Algorithm Maximal on dataset of size 25,0000
over various aiphas.

L3

— L5

48



Chapter 2. One-shot Exchange Markets

120
C
.100
a)
E 80

I

Greedy, size = 10k

0,5 1 1.5 2

Alpha

Figure 2.16: Running Time of Algorithm Greedy on dataset of size 10,0000
over various aiphas.

1400

1200
C

1000

800

p600

400

200

0

Greedy, size 25k

0.5 1 1.5 2

Alpha

—L5

Figure 2.17: Running Time of Algorithm Greedy on dataset of size 25,0000
over various aiphas.

140

--L2

L3

---_

-
-

-

49



2500

2000

E
1500

1000
C
C

500

0

Chapter 2. One-shot Exchange Markets

Greedy, size 50k

0.5 1 1.5 2

Alpha

Figure 2.18: Ri.mning Time of Algorithm Greedy on dataset of size 50,0000
over various aiphas.

180

160
140

.. 120

100

80
C
c 60
C

40
20

0

local Search, size = 10k

Figure 2.19: Running Time of Algorithm Local Search on dataset of size
10,0000 over various alphas.

____

—

—

——L=3

—L5

—--

:

----.-

—k——L4

—L5

0.5 1 1.5 2

Alpha

50



Chapter 2. One-shot Exchange Markets

4000

3500

3000
E

2500

2000

,E 1500
C

1000

500

0

Local Search, size 25k

1 2 3 4

Alpha

Figure 2.20: Running Time of Algorithm Maximal on dataset of size 25,0000
over various alphas.

-__

--

-__

--

— —

Figure 2.21: Running Time of Algorithm Maximal on dataset of size 50,0000
over various alphas.

- --L3

—15

Local Search, size 50k
5000
4500
4000
3500
3000
2500
2000
1500
1000

500
0

-LM

—L5

0.5 1 1.5 2

Alpha

51



Chapter 3

Online Exchange Markets

Over Time

3.1 Introduction

In Chapter 2, we considered online exchange markets under deterministic

and probabilistic models. The objective in those one-shot models was to

maximize the weight of cycles where weight of a cycle could either be de

fined as the number of items/users involved in an exchange cycle (in the

SimpleMarketProblem and CycleMarketProblem) or the expected number

of items/users involved in the transaction in the ProbMarektProblem.

In this chapter we are considering online exchange markets over time

and designate following objectives as well as the objective to maximize the

expected number of items exchanged.

• Maximizing the number (or the total value) of items exchanged in the

market.

• Minimizing the average waiting time of users in the system.

• Maximizing fairness in the system, where by fairness we mean to give

52



Chapter 3. Online Exchange Markets Over Time

higher priority in receiving items to users who contribute more to the

system by sharing more valuable items.

In this chapter we observe that introducing virtual points and a credit

system can decrease the average waiting time by a large margin and also can

help in maximizing fairness in the system. In order to implement a complete

credit system and virtual points, we need to take into account the following

characteristics:

1. Participation: Motivating users for participation in the system by

giving more active users more items.

2. Providing Popular items: Motivating users to provide more pop

ular items by giving more credit to users who provide more popular

items, where an item is more popular if it appears in more wish lists.

3. Encouraging early participation: Motivating users to participate

in the system as early as possible.

4. Fairness: Assigning items to users in the most possible fair way, i.e,

giving items to people who have already collected more credit.

3.2 Related Work

Related work to this chapter can be classified in the following categories:

3.2.1 Scheduling Problems

The problems in scheduling theory that are related to our problem are:

53



Chapter 3. Online Exchange Markets Over Time

Minimum makespan scheduling: Given processing times for n jobs,

P1, P2,. .. , p, and an integer m, find an assignment of the jobs to m identical

machines so that the completion time (makespan) is minimized.

Minimum makespan scheduling problem is NP-hard as we can reduce

2-PARTITION [15] to minimum makespan scheduling on two machines.

Horowitz and Sahni [211 give an FPTAS for the variant of the problem

when there are a constant number of machines. (An algorithm A is said to

be fully polynomial time approximation scheme (FPTAS) if for each e > 0

the running time of A is bounded by a polynomial in the size of instance I

and 1/c.) The minimum makespan problem is strongly NP-hard for arbi

trary m by a reduction from 3-PARTITION [15]. Thus, there cannot exist

an FPTAS for the minimum makespan problem in general, unless P==NP.

Hochbaum and Shmoys [19] give a PTAS ((1 + e)-approximation algorithm

which runs in polynomial time for any fixed e) for the problem. (An algo

rithm A is said to be polynomial time approximation scheme (PTAS) if for

each e> 0 the running time of A is bounded by a polynomial in the size of

instance I.)

Scheduling on Unrelated Parallel Machines: This problem is a

generalization of the minimum makespan scheduling, where the machines are

not identical and a job has different processing times on different machines.

Lenstra, Shmoys, and Tardos [23] give a 2-approximation for this ver

sion. They also proved that it is not possible to approximate it within a

factor (3/2 — e) for any e> 0, unless P=NP. Other generalizations include,

considering precedence constraints in the scheduling of jobs. Lam and Seth

[27] give a (2— 2/ri)-approximation for the version where each job has a unit

54



Chapter 3. Online Exchange Markets Over Time

processing time.

We use the above problems to prove NP-hardness of the fairness maxi

mization problem 3.6.

3.2.2 Fairness Maximization in P2P Systems

The first Peer-to-Peer (P2P) networks were based on the philanthropic be

havior of the peers. However, newer P2P applications such as BitTorrent

incorporate some kind of incentive mechanism to award sharing peers. One

of the main reasons of the recent success of peer to peer (P2P) file shar

ing systems such as BitTorrent is its built-in tit-for-tat mechanism. For

example, a typical Bit- Torrent client uploads to four of its neighbors from

which it receives the most download. The intuition behind such a design is

that it will encourage upload and lead to a fair and efficient allocation of

bandwidth among the peers. In f40] the authors explore if the bandwidth

allocation converges when all the users adopt the above strategy. Such a

dynamic process is intuitively fair as each node returns more to whoever

sent it more. The authors prove that the bandwidth allocation converges to

a market equilibrium. In other words, simple as this appears to be, it indeed

leads to an efficient allocation of bandwidth in the market equilibrium sense.

The P2P systems mentioned above are different from our system. Users

in those systems don’t have lists,and the systems do not generate recom

mendations. Moreover, points and credit system are not defined explicitly.

55



Chapter 3. Online Exchange Markets Over Time

3.3 Model

Consider a set of users U and a set of items I. User u E U owns a set of

items (a.k.a. item list) S, and requires a set of items (a.k.a. wish list) W.

Each item i E I has a value “popularity” P corresponding to it, which is

the number of times it appears in all users’ wish lists.

In our proposed system, the algorithm is run periodically and the set of

potential feasible exchanges are discovered. Users involved in these potential

exchanges are informed through email and/or their account will be updated.

If they are interested in performing the transaction, they will get in touch

with the other users. Otherwise they will withdraw the transaction and all

other involved users will be informed. In any case when the transaction is

done the exchanged items are removed from the item lists and wish lists,

and the system will be updated.

The system is dynamic meaning that it changes with time. The possible

changes are:

• a new user joins the network.

• a user leaves the network.

• an item is removed from a user’s wishlist or itemlist: either of these

changes may be due to a transaction done or the user’s interests

changed.

• an item is added to a user’s wishlist or itemlist.

These changes imply that the set of feasible exchanges will also change by

56



Chapter 3. Online Exchange Markets Over Time

time. Thus, the system runs the algorithm to find the set of new exchanges

that have become available periodically (as an example: once a week).

3.4 Minimizing Average Waiting Time

In this section, we observe that by introducing “virtual points” in the system,

we can decrease the average waiting time of users by a large margin. To

implement this idea, we give virtual points to a user for giving away their

item, and later give them an item for redeeming their points. As an example

let’s assume that user u has item i in their item list and item j in their wish

list. Also, let’s assume user v has item j in their item list, however v does

not have item i in their wish list. Thus, a swap is not possible. The idea

here is that we recommend item j to u and in return give some points to v.

In this case u does not have to wait until v wishes for i or a feasible swap

comes up. We will elaborate on a credit system that implements exchanging

virtual points in the next section. It can be easily seen that, in the worst

case, using virtual points can decrease the average waiting time of users by

a large margin. In the following, we formally show that introducing points

can decrease the expected waiting time, even assuming that all users arrive

in a random order.

Theorem 3 Consider an exchange market consisting of n users, and n

items. Assume that users put their items at n time steps T = 1, 2,. .. ,n,

and we are allowed to assign cycles of size k. Let A be the average waiting

time of users in a system without points and B be the average waiting time

of users in a system with virtual points. There are instances in which in the

57



Chapter 3. Online Exchange Markets Over Time

worse case, A (k — 1)B. Moreover, assuming that users put their items a

random permutation, there are instance in which in expectation A = kB.

Proof: Assume that we can assign cycles of size at most k, and let p =

Consider n users in the system with their item lists and wish lists as follows:

a cycle of size k among users can be formed by having k users u1,... , uj

such that for 1 j < n, user u3 has item i3 in her item list and item

i1 in her wish list and user u has item i in her item list and i1 in her

wish list. Clearly, this instance has admits p = exchange cycles of size

kof. At the beginning, users have empty item lists and will add items in

a random order to their item lists. At the end of the process, user u3 for

1 < j < n will have item i3 in her item list. Starting from empty item

lists, we assume that items become available. In other words, the wish

lists will be posted at the beginning (time T = 0), and items arrive on times

T = 1, T = 2, T = 3,..., T = n, and they are all required in order to complete

p = cycles of length k.

In the case that we use virtual points in the system, as soon as an item

arrives, it will be given to the user that has that item on her wish list.

Therefore the waiting times would be 1, 2,... ,

2

B
n(n+1)

2 2 2

58



Chapter 3. Online Exchange Markets Over Time

In the worst case, all cycles finish in the last k steps of the process. Thus,

in the worst case,

A=kx i=k(n1)_n1) = n(n+1)k2—n(n-i-k)
(k—1)B.

i=n—+1

Now, we show that assuming that the items arrive in a random order,

in expectation, A We compute the expected waiting time of users

both in the case that we use virtual points in the system, and in the case

we do not. The expected value of B is the same as in the previous case, i.e.,

B = n(;+1) Now let’s consider the case that we do use virtual points in the

system. Let C2 be a random variable showing the time that cycle i becomes

completed. We also know that the expected waiting time of all cycles being

completed is the same:

E [C1] = E [C2] = ... = E [Cr].

The waiting time in this case would be:

= k>C2.

By linearity of expectations, the expected waiting time is equal to

kE[C]=kpE[C] =nE[C].

59



Chapter 3. Online Exchange Markets Over Time

Now, we compute each E(C) as follows:

E[C]
= k

(k_ia
L4 (n
j=k k

n
1 v’111
(k)jkk1

k71 j=
k j0

—

- (n—k

Therefore, the total expected waiting time is

A = E[C] = nE(C)
= kn(n+1)

As a result, the ratio between the expected waiting time with and without

virtual points is 4 =
. i

3.5 A Credit System

In this section, we design a credit system that takes into account the prop

erties that we mentioned earlier. We design a credit system in which each

user i collects credit for providing items, and can redeem credit points to

receive some items. Let C(t) be the credit of user i at time t. Each item j

60



Chapter 3. Online Exchange Markets Over Time

has a credit score P3 which can be a function of the popularity of item j.

Initialization: We can initialize the credit of each new user in the system

to zero or a small positive value.

Updating Rules: Consider a transaction T at time t in which a user i

gives an item j to a user i’, i.e, item j is in item list of i and in wish list

of i’. In the following we describe how to choose transaction T and how

to update the credit of each user after transaction T happens to satisfy the

desired properties discussed in the previous section.

• Participation: To satisfy this property, we make sure that we choose

a user i’ to get the item such that C’ (t) is large (perhaps the largest)

among all users who has item j in their wish list.

In general, after transaction T happens, we update C(t+ 1) = C(t) +

Pj(t) and C1(t + 1) = C(t) — P3(t).

• Providing Popular items: To satisfy this property, we set P3 (t) to

be a function of the number of times that item i appears in the wish

lists.

• Encouraging early participation: To satisfy this property, we up

date the scores of users after each time step as follows: Ck (t + 1) =

Ck(t) * (1 + f) where f is a small interest rate, i.e, = 0.001. This will

encourage users to participate in the system as early as possible.

• Fairness: To satisfy fairness in an online way, we should minimize the

maximum credit of a user at each step. As a result, in order to satisfy

fairness, we wait for a period of time (e.g., a day) for users to post

61



Chapter 3. Online Exchange Markets Over Time

new items in their item list (and wish lists), and then assign the items

to other users in the most fair manner. we will formalize this problem

formally in the next section.

3.6 Maximizing Fairness

In this section, we can formalize the fairness problem for assigning all new

items throughout a fixed time window (e.g., one day) to a set of users.

Consider a time step t at which each user has a current credit C2 Let S be

the new set of items in the item list of users during the last time day. Let

W be the wish list of user i, and P be the current value for item j, i.e, if

we give j E W to user i, C(t + 1) = C — Pj. We want to assign items in

sets S to users such that:

• Each item in each item list S is assigned to at most one user.

• If item j S is given to user i’, then j E Wi’.

• Each user i gets at most one copy of item j E W in his/her wish list.

The goal is to find such assignment that minimizes the maximum credit in

the next step, i.e, minmax C(t + i).

The only issue with the above formulation is that it is possible that a

user k with a large credit provide some new items and not assigning these

items may give a better solution since if user k in this situation provides

2We drop the parameter t as it is clear from the context.
3The ultimate goal is to find a fair assignment that minimizes the maximum credit,

and subject to this, we minimize the second maximum, and so on, but for the sake of
simplicity and as a first attempt, we look at the problem of minimizing the maximum
credit.

62



Chapter 3. Online Exchange Markets Over Time

more items, his score increases even more, and as a result the maximum

score increases. Here there is a trade off between the expected waiting time

of users (or similarly the number of items exchanged in the system) and

the above fairness property. A middle-way solution to take into account the

aforementioned trade off is to say that we want to find an assignment of

items in Sj’s to users such that the assignment is maximal and it minimizes

the maximum credit, i.e, after assigning items from item lists to wish lists,

no other item can be assigned from item lists to wish lists of users.

Theorem 4 The fairness maximization problem is NP-complete.

Proof: We give a reduction from a scheduling problem with restricted

assignment (B I ICmax). In a scheduling problem with restricted assignment

(BIICmax), we have n jobs and m machines, and each job j has a processing

time P3 and can be scheduled on a subset U of machines. Given an assign

ment of jobs to machines, where each job j is assigned to a machine in Uj,

the load of machine i, L is the sum of processing time of jobs assigned to

i. The goal is to assign jobs to machines to minimize the makespan or the

maximum load of each machine, i.e., minassignment max L.

There is a clear reduction from the above problem to the max fairness

problem. Here is the reduction: Given an instance of BIICm, we put a

user for each of the n jobs, and also we put a user for each machine i (in

total, we have m + n users). For user i corresponding to machine i, we

have credit C2(t) = C = 0, with empty wish list (W = 0) and a large

item list S with all jobs that can be scheduled on machine i in it (i.e.,

S = {jli E U3}). For user j corresponding to job j in the instance, we

63



Chapter 3. Online Exchange Markets Over Time

put the initial credit C, = Pj, a wish list Wj = {j } and an empty item

list. It is easy to see that an assignment of jobs to machines in the original

B II Cmax problem correspond to an exchange of items in the new instance.

In particular, the load of machine i is equal to the credit of user i in the

new instance. It is clear to see that the problem of minimizing makespan

in the original instance of B I ICmax is equivalent to the fairness problem in

this new instance, i.e, in order to minimize the maximum load of machines

in BlICmax, we should minimize the maximum credit.i

As also mentioned in Section 3.2 the BIICm problem is NP-hard and

not approximable within any constant factor better than 3/2 [23]. B II0max

and the more general version in which the processing time of each job on

each machine is different (i.e, instead of F,, we have is approximable

within a factor 2.

Thus, the above reduction shows that the fairness problem is NP-hard,

and moreover, since the objective functions of the two problems are the

same, if we can optimize the fairness problem within a factor better than

3/2, then we can optimize the BIICm scheduling problem within a factor

better than 3/2.

In Section 3.8 we prove that our problem is not approximable within any

multiplicative factor.

3.7 A Linear Programming Formulation

In this section, we develop an integer linear programming formulation of the

fairness problem. For a triple (i, j’, j) where j S and j e Wi’, let x’j = 1

64



Chapter 3. Online Exchange Markets Over Time

if we assign item j from i’s item list to user i’, and = 0 otherwise. Also,

we let variable t be a variable that corresponds to the credit of user i after

the assignment of this step, and variable t be the maximum of credits, or

maxiEu t. Finally, for easy of notation, we let U be the set of users and I

be set of items.

mm t

tt% VieU

= Cj + Zi’:jEW, jEW Zi’:jES, x’Pj Vi e U

Ei’:jEW1,Xij’j < 1 Vi E U,j Si

Zi’:jES, 1 Vi E U, j e W

Xii’s + i”:jES,,,i”#i i”i’j + Zih’:jEw,,,i”i’ Xii” 1 Vi, j’ E U,j E Si fl T’V’

xjj’j {0, 1} ViVj SVi’ : j e W’

The first inequality indicates that t is the maximum credit of users. The

second inequality quantifies the credit of user i after the assignment. The

third inequality models the constraint that each item j in the item list of

user i can be assigned to somebody at most once, and the forth inequality

models the fact that each item j in the with list of user i can be received by

user i. Finally, the fifth inequality models the maximality of the solution,

i.e, fact that if user i does not give an item j e W’ to user i’, then either

user i gives j to somebody else, or user i’ gets it from somebody else.

The LP relaxation is as follows:

65



Chapter 3. Online Exchange Markets Over Time

mm t

ttj VieU

t = C + j€S Zi’:jEW, x&,P2 ZjEw i’:jESi Vi U

Zj’:jEW1, < 1 Vi e U,j e Si

Zi’:jES2,xjjj 1 Vi U,j e W,

XVi.J + i”:jESn,i”i2i”i’j + 1 Vi,i’ E U,j E S fl T’V

0 1 ViVj SVi’ j e Wi

This LP is similar to the LP for the scheduling problem but has a minus

sign in the inequality for T. It would be interesting to study this LP and

see if a similar approach works. In particular, it would be nice to study the

basic feasible solutions of this LP.

3.8 A Strong Inapproximability Result

In this section, we show that the fairness maximization problem is not ap

proximable within any factor.

Theorem 5 The problem offairness optimization is not approximable within

any multiplicative factor.

Proof: We show that if we can approximate this problem within any

factor, we can solve an NP-complete problem, i.e., the partitioning prob

lem. In an instance of the partitioning problem, we are given n numbers

66



Chapter 3. Online Exchange Markets Over Time

al,a2,. . . a, with the total sum of B = a,, and our goal is to verify if

there exists a partition of these number into two sets such that each subset

has the total sum of . It is known that the partitioning problem is an NP-

complete problem. We say that an instance of the partitioning problem is a

YES instance, if there exists a subset of number of total sum . Otherwise,

the instance is a NO instance.

We give a reduction from the partitioning problem to the fairness prob

lem. In fact, from any instance of the partitioning problem, we construct

an instance of the fairness problem in which the optimal solution to the

fairness problem is greater than zero if and only if the partitioning problem

is a YES instance. Given an instance of the partitioning problem with n

numbers a1,a2,. . . a, where a = B, we construct an instance of the

fairness problem as follows: We put n items and n + 2 users in the instance

of the fairness problem, n users 1,2,3,... , n corresponding to n numbers in

the partitioning problem, and two extra users n +1 and n + 2(that get items

from the first n users). For each user i where 1 n, we put the initial

credit C = —as, wish list W = 0 and item list S = {i}. For two users n+1

and n + 2, we put C÷1 = C+2 = B/2, empty item lists S,÷1 = S÷2 = 0

andW+1=W+2={ij1in}.

Now the optimal solution for the fairness problem is zero if and only if

the partitioning instance is a YES instance. The reason is that the only way

that the credit of both n + 1 and n +2 goes down to zero if and only if both

of these users get a set of items of total credit .

More formally, if the partitioning problem is a YES instance, and there

exists a set S of number of total sum , then set S of users can give items

67



Chapter 3. Online Exchange Markets Over Time

to user n + 1 and the rest of users can give items to user n + 2, and a result

the credit of each user in the next step is zero. Conversely, if the optimal

resulting credit is zero, it means that both users n + 1 and 11+ 2 got exactly

total credit from users 1,2,... , ri. Thus, the set of users who gave an item

to n + 1 construct a subset of numbers with total sum and therefore, the

partitioning problem is a YES instance.

The above shows that if we can verify if the optimal solution for the

fairness problem is zero or any number above zero, then we can distinguish

between the YES and NO instance of the partitioning problem. Therefore,

if there exists an a-approximation algorithm for the fairness problem, it

will output a x 0 = 0 for an instance of the fairness problem with optimal

solution zero. Hence, no approximation algorithm exists for this problem. I

3.9 Heuristic Algorithms

Here, we propose two heuristic algorithms to solve the fairness problem; one

is a simple fast greedy algorithm, and one is based on randomized rounding

of the linear programming formulation discussed in the previous section.

The basic idea of the rounding algorithm is a standard method for solving

integer linear programs.

3.9.1 Greedy Algorithm

A very simple heuristic algorithm is to assign item transfers among users

one by one, and at each step find the one item transfer that minimizes the

maximum credit after this item transfer. In other words, at each step, we

68



Chapter 3. Online Exchange Markets Over Time

examine all possible item transfers for items j E Si fl for any two users i

and i’, and find the triple i, i’, j such that after item transfer, the maximum

credit the minimum possible. To do so, we sort the users in the decreasing

order of their credit, and try transferring items from users at the beginning

of the list.

3.9.2 An LP-rounding Algorithm

Consider the linear programming relaxation discussed for the fairness prob

lem. In the integer linear program x is 1 if use i give an item j e S fl W,i

to user i’. Consider a solution x to this LP. In the LP relaxation, we can

interpret the variable xj to be the extent at which user i gives item j to

user i’. In other words, we use the value as the probability of trans

ferring item j from i to i’. In order to find a feasible solution, we need to

perform the following rounding algorithm.

1. Initialize = 0.

2. Solve the LP relaxation and find an optimal solution x.

3. For each user i and item j E S such that = 0,

(a) Let Z’3 = >

(b) Let = ZiI:Z,j=OXiiIj

(c) Among all users i’ for which > 0 and ij = 0,

i. Choose one user i” with prob probability

ii. Set jj = 1, and S = S
— {j}.

69



Chapter 3. Online Exchange Markets Over Time

4. For each item j and each i’ such that j e Wj,

(a) Let set be the set of users i for which jj,j became one in this

round.

(b) If ILi’ I = 1, then for each i” e = 0, and W = W\{j}

(finalize transfer (i”i’j)),

(c) else

i. Choose one user i” e T’ with probability

ii. For each i i” and i Ti’, set ii’j = 0, and S = Si U {j}.

iii. For i”, let = 0, and W’ = W\{j} (finalize transfer

(i”i’j)).

5. If any new item transfer was assigned in the last round, go back to 3

to start a new round, otherwise output and terminate.

3.10 Experimental Evaluation

We implemented the integer linear program formulation of the fairness max

imization problem, linear program formulation of the problem using GNU

Linear Program Kit (GLPK), and also the two heuristics: LP-rounding and

the greedy heuristic using MATLAB. The experiments were run on a Com

puter with a 2.40GHz Intel Core 2 Duo CPU and 3 GB of RAM under

Windows Vista.

The goals of our experiments are as follows:

• To examine the quality of the results found by the heuristic algorithms

70



Chapter 3. Online Exchange Markets Over Time

since we proved that the fairness maximization problem is not approx

imable.

• To study the scalability of the heuristic algorithms and also the impact

of the parameter a.

The LP relaxation discussed in the previous sections gives a polynomial-

time computable lower bound on the optimal value of the fairness optimiza

tion problem. In fact, we use this lower bound to evaluate the performance

of our heuristic algorithms.

3.10.1 Dataset

We could not get access to the data of real online exchange applications.

Hence, we generated a set of synthetic data. Data generation for the markets

over time is similar to what we did in the previous chapter for one-shot

exchange markets which was explained in Section 2.6.1.

3.10.2 Experiments

The following experiments were performed in order to examine the per

formance of the heuristic algorithms. We implemented the integer linear

programming (ILP) and also the linear programming (LP) formulation of

the problem using GLPK and the LP-rounding and the greedy heuristic us

ing MATLAB. We ran our algorithms on three different data sets with 100,

500 and 1000 users. The data were generated with four different values for

a = 0.25, 0.5, 0.75 and 1.

71



Chapter 3. Online Exchange Markets Over Time

users = 10, items = 50

—4—integer Linear Program

—I—— LProunding

—i--Algorithm Greedy

0.25 0.5 0.75 1

Figure 3.1: Performance of the heuristics compared to the optimal solution
given by ILP on dataset of 10 users.

We solved the ILP for two small datasets including 10 users, 50 items

and 20 users, 100 items. The ILP gives us the optimal solution however its

running time is exponential. We compare the results of the LP-rounding

and greedy on same datasets to the optimum. The results are depicted in

Figures 3.1 and 3.2 respectively.

Figures 3.3, 3.4, and 3.5 show the results of the LP, LP-rounding and

the greedy heuristic for datasets of size 100, 500, and 1000 respectively. The

number of total items in each case is 5 times the number of users. The Y

axis indicates the maximum credit, and the X-axis shows a for the different

algorithms. We have used the LP results a lower bound on the optimal

value. As can be seen, the LP-rounding has a better performance than the

other heuristic. Also, we can observe that as a increases (in most cases),

120

100

80

E 60

1 40

20

72



Chapter 3. Online Exchange Markets Over Time

Figure 3.2: Performance of the heuristics compared to the optimal solution
given by ILP on dataset of 20 users.

the algorithms’ performance also improves.

The running times of the above algorithms are also depicted in Figures

3.6, 3.7, and 3.8 for datasets of size 100, 500, and 1000 respectively. As

can be seen, the running time of the greedy algorithm is better than the LP

rounding heuristic. Moreover, we can see that by increasing a, the running

time improves.

Another measure that we explored was the number of transactions per

formed at each time step. It is important that the users stay active and

have incentive to share their items, even when they have received an item

from their wish list. Figure 3.9 plots the percentage of active users in at

six consecutive time windows in a simulation done with 100 users.

As can be seen at the beginning we have the maximum activity. The

200

users= 20, items = 100

180

160
I40

120

10o

. 80

Linear Program

0

0.25 05 0.75

a

73



Chapter 3. Online Exchange Markets Over Time

Figure 3.3: Performance of different algorithms on dataset of size 100.

reason is that all users start with equal initial credits.

3.11 Conclusion

In this chapter, we consider exchange market problems over time and study

efficient mechanisms that improve the users’ waiting times and also give

incentive to users to be more active by maximizing fairness in the system.

In order to achieve the above objectives, we introduce points and credits to

the system and we show that waiting times would improve by using points.

Moreover, we show that the problem of fairness maximization not only is

NP-complete, but also inapproximable. Therefore, we propose two heuristic

algorithms: linear programming-based and a greedy algorithm. We perform

experiments to examine the performance and scalability of the proposed

2500

Dataset size = 100

2000
.9

1500

E 1000

0 500

0

-+-LP

—I—. IP-rounding

—i--Greedy

0.25 0.5 0.75

a

74



Chapter 3. Online Exchange Markets Over Time

-__

-_

Figure 3.4: Performance of different algorithms on dataset of size 500.

algorithms. The experiments show that both heuristics perform much better

than the worst-case performance. Moreover, LP-rounding performs better,

however the greedy heuristic is much faster.

Data set size = 500
9000

8000

7000

6000

5000

j 4000

3000
o 2000

1000

0

-4--LP

—4— LP-rounthng

—i--Greedy

025 0.5 0.75 1

(L

75



Chapter 3. Online Exchange Markets Over Time

Figure 3.5: Performance of different algorithms on dataset of size 1000.

Figure 3.6: Running times for dataset of size 100.

25000

Dataset size = 1000

15000

20000
.9

0

E

0

10000

5000

a

S LP-rounding

—*—Greedy

0.25 0.5 0.75

a

Running time, dataset size = 100
3000

2500
w

2000
E
; 1500

__________________________________

—I— LProunding
1000

500
—k—Greedy

a
0.25 0.5 0.75 1

U

76



Chapter 3. Online Exchange Markets Over Time

Figure 3.7: Running times for dataset of size 500.

-

E

Figure 3.8: Running times for dataset of size 1000.

running time, dataset size = 500
16000

14000

12000

10000

8000

6000 -4—LP-rounding

4000 —i—Greedy
2000

0 —

0.25 0.5 0.75 1

a

Running time, dataset size = 1000
30000

— 25000
U

20000
E

15000
E
‘ 10000

•••I••• LP-rounding

I. 5000
—-Greedy

0

0.25 0.5 0.75 1

ci

77



Chapter 3. Online Exchange Markets Over Time

I1hii
Figure 3.9: Number of transacting users in 6 consecutive time windows.

User Activity

lIP-rounding

IGreedy

1 2 3 4 5 6

limesteps

78



Chapter 4

Conclusions and Future

Work

In this thesis, we motivate the use of online exchange markets as an appli

cation over social networks and propose specific market exchange problems

where users own item lists and have a list of wishes and can exchange items

with one another. For these problems, we propose a few optimization prob

lems, study the complexity of these problems, propose various algorithms

with guaranteed approximation factor for some of these problems, and fi

nally perform experimental results to evaluate the performance of several

approximation and heuristic algorithms.

In the one-shot deterministic case, we study simple market exchanges in

which the only acceptable exchanges are in the form of swaps. While for a

similar well-studied problem called the kidney exchange problem, this prob

lem is solvable in polynomial time, we prove that this is NP-complete in our

case. When longer exchange cycles are allowed, kidney exchange was shown

to be NP-complete [5] and this extends to our setting. We also propose a

probabilistic exchange market problem in which there are probabilities as

sociated with a user engaging with another in an exchange. The hardness

79



Chapter 4. Conclusions and Future Work

results extend to this case. By leveraging a close connection to the weighted

k-set packing problem, we develop a heuristic algorithm (Maximal) and ap

proximation algorithms (Greedy, Local Search, and Greedy/Local Search).

Using this connection, we show that known approximation bounds for these

algorithms for weighted k-set packing carry over to our exchange market

problems both deterministic and probabilistic. We conduct a detailed ex

perimentation using synthetically generated data sets, comparing different

algorithms on output quality and running time and studying the extent of

increase in coverage as maximum cycle length is increased, as well as the

impact of data skew on coverage. Our results show that while Maximal does

not have provable approximation guarantee, its performance in practice may

be comparable to that of the other algorithms. This is interesting given that

Maximal is by far the most efficient.

Finally, we consider similar exchange market problems over time and

study efficient mechanisms that improve the users’ waiting times and also

give incentive to users to be more active by maximizing fairness in the sys

tem. In order to achieve the above objectives, we introduce points and

credits to the system and we show that waiting times would improve by

using points. Moreover, we show that the problem of fairness maximization

not only is NP-complete, but also inapproximable. Therefore, we propose

two heuristic algorithms: linear programming-based and a greedy algorithm.

We perform experiments to examine the performance and scalability of the

proposed algorithms. The experiments show that both heuristics perform

much better than the worst-case performance. Moreover, LP-rounding per

forms better, however the greedy heuristic is much faster.

80



Chapter 4. Conclusions and Future Work

As a future work, further investigation of these algorithms on real data

sets would be valuable. Designing improved approximation algorithms or

proving some stronger inapproximability results for the optimization prob

lems discussed in this thesis are desirable. Also, it is interesting to study

special variants of these problems that appear in practice, and design approx

imation algorithms with provably improved approximation factor. Finally

it would be interesting to study incentive issues in these settings, and design

mechanisms that perform well in the presence of strategic users who may not

reveal their true parameters (e.g., their item lists). In such settings, users

may lie about their items lists to get a better assignment. To deal with such

settings, one needs to design (truthful) mechanisms that give incentive to

users to reveal their true parameters. It is also interesting to explore if the

proposed mechanism converges to an equilibrium.

81



Bibliography

[1] “http://blog.compete.com/2007/01/25/top-20-websites-ranked-by-

time-spent/”.

[2] http://www.oddshoe.org.

[3] http://www.peerflix.com.

[4] http://www.readitswapit.co.uk.

[5] David J. Abraham, Avrim Blum, and Thomas Sandholm. Clearing

algorithms for barter exchange markets: Enabling nationwide kidney

exchanges. In ACM Conference on Electronic Commerce, pages 295—

304, June 13-16 2007.

[6] David J. Abraham, Ning Chen, Vijay Kumar, and Vahab Mirrokni.

Assignment problems in rental markets. In WINE 2006, pages 198—

213, 2006.

[7] 0. Adomavicius and A. Tuzhilin. Toward the next generation of rec

ommender systems: A survey of the state-of-the-art and possible ex

tensions. IEEE Transactions on Knowledge and Data Engineering,

17(6):734—749, 2005.

82



Bibliography

[8] Esther M. Arkin and Refael Hassin. On local search for weighted k-set

packing. In ESA 1997, pages 13—22, 1997.

[9] M. Blaser and B. Siebert. Computing cycle covers without short cy

cles. In In Proceedings of the S4st Annual European Symposium of

Algorithms, 2001.

[10] Barun Chandra and Magnus Halldorsson. Greedy local improvement

and weighted set packing approximation. In SODA 1999, pages 169—

176, 1999.

[11J W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things.

Journal of Artificial Intelligence Research, 10:243—270, 1999.

[12] J. Edmonds and E. Johnson. Matching euler tours and the chinese

postman problem. Mathematical programming, 5:88—124, 1973.

[13] Ozlem Ergun, Gultekin Kuyzu, and Martin Savelsbergh. Collaborative

logistics: The shipper collaboration problem. Computers and Opera

tions Research Odysseus, 2003.

[14] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting

algorithm for combining preferences. In 15th International Conference

on Machine Learning, 1998.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman,

New York, 1979.

83



Bibliography

[16] 0. Goldschmidt, D. Hochbauin, C. Hurkens, and C. Yu. Approximation

algorithms for the k-clique covering problem. SIAM Journal of Discrete

Math., 6(3):492—509, 1996.

[17] M. Guan. Graphic programming using odd and even points. Chinese

Mathematics, 1:273—277, 1962.

[18] D. Hochbaum and E. Olinick. The bounded cycle-cover problem. IN

FORMS Journal on Computing, 13(2):104—109, 2001.

[19] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation

scheme for scheduling on uniform processors: Using the dual approxi

mation approach. SIAM Journal of Computing, 17(3):539—551, 1988.

[20] Ian Holyer. The np-completeness of some edge-partition problems.

SIAM Journal of Computing,, 10(4):713—717, November 1981.

[21] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for

scheduling nonidentical processors. J. ACM, 23(2):317—327, 1976.

[22] N. Immorlica, V. S. Mirrokni, and M. Mahdian. Cycle cover with

short cycles. In Symposium on Theoretical Aspects of Computer Science

(STAGS), 2005.

[23] D. B. Shmoys J. K. Lenstra and Eva Tardos. Approximation algorithms

for scheduling unrelated parallel machines. Math. Program., 46(3) :259—

271, 1990.

84



Bibliography

[24] K. Gallagher. J. Parsons, P. Ralph. Using viewing time to infer user

preference in recommender systems. In AAAI Workshop in Semantic

Web Personalization, July 2004.

[251 R. Jin, L. Si, and C. Zhai. Preference-based graphic models for collabo

rative filtering. In 19th Conference Uncertainty in Artificial Intelligence

(UAI 2003), August 2003.

[26] R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative filtering with de

coupled models for preferences and ratings. In 12th International Con

ference Information and Knowledge Management (CIKM 2003), Nove

meber 2003.

[27] S. Lam and R. Sethi. Worst case analysis of two scheduling algorithms.

SIAM Journal of Computing, 6(3):518—536, 1977.

[28] B.P.S. Murthi and S. Sarkar. The role of the management sciences in

research on personalization. Management Science, 49(10):1344—1362,

2003.

[29] M. E. J. Newman. The structure and function of complex networks.

SIAM Reviews, 45(2):167—256, 2003.

[30] Christos H. Papadimitriou. On the complexity of edge traversing. Jour

nal of the ACM, 23(3):544—554, 1976.

[31] M.J.D. Powell. Approximation Theory and Methods. Cambridge Uni

versity Press, 1981.

85



Bibliography

[32] et al. R. Andersen. Trust-based recommendation systems: an axiomatic

approach. 17th International World Wide Web Conference (WWW),

2008.

[33] B. Rachavachari and J. Veerasamy. A 3/2-approximation algorithm for

the mixed postman problem. SIAM journal of Discrete Math., 12:425—

433, 1999.

[34] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl. Grou

plens: An open architecture for collaborative filtering of netnews. In

Computer Supported Cooperative Work Conference, 1994.

[35] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl. Grou

plens: An open architecture for collaborative filtering of netnews. In

Computer Supported Cooperative Work Conference, 1994.

[36] E. Rich. User modeling via stereotypes. Cognitive Science, 3(4):329—

354, 1979.

[37] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[38] G. Shani, R. Brafman, and D. Heckerman. An mdp-based recommender

system. In 18th Conference Uncertainty in Artificial Intelligence, Au

gust, 2002.

[39] Carsten Thomassen. On the complexity of finding a minimum cycle

cover of a graph. SIAM J. Comput., 26(3):675—677, 1997.

[40] F. Wu and L. Zhang. Proportional response dynamics leads to market

equilibrium. In STOC, pages 354 — 363, 2007.

86



Bibliography

[41] C.Q. Zhang. Integer flows and cycle cover of graphs. Marcel Dekker,

1997.

87


