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Abstract

This work is concerned with the automatic understanding of evaluative text. We

investigate sentence level opinion polarity prediction by assigning lexical polarities and

deriving sentence polarity from these with the use of contextual valence shifters. A

methodology for iterative failure analysis is developed and used to refine our lexicon and

identify new contextual shifters. Algorithms are presented that employ these new shifters

to improve sentence polarity prediction accuracy beyond that of a state-of-the-art existing

algorithm in the domain of consumer product reviews. We then apply the best

configuration of our algorithm to the domain of movie reviews.
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1 Introduction

An important problem in the field of natural language processing is the automatic

understanding of evaluative text. By evaluative text we mean text in which the author is

expressing an opinion or sentiment toward a topic. The internet contains a large volume

of this kind of writing and in a given domain there is usually more information than an

individual or party could possibly manually process. One example domain is that of

consumer reviews. It is commonplace for businesses to provide a mechanism on their

website for consumer feedback. Both the business and the consumers value the

information found here for making decisions but because of the potentially large amount

of information there is a need for fast interpretation and a summary of general trends in

the opinions presented. Opinions about businesses and their products and services can

also extend beyond their own websites, into blogs and other news media. This

information in turn can influence investors and consumers. Reviews are important to

many industries. Consider the entertainment industry where opinions about movies and

music are highly influential. The service industry is another important domain where for

example reviews of hotels and restaurants can be a determining factor in people’s

decision making. There is also value in the automatic analysis of public opinion from a

political and governmental perspective. Detecting trends in opinions of policies and

platforms could help shape the political and social landscape.

The goal of this work is to investigate current methods for discovering the polarity of

people’s opinion in text and to present various techniques for improving these methods.

By polarity of opinion, we mean whether an author is expressing a positive or negative

opinion toward a subject of discussion. This feature of text can be viewed from different

levels of discourse. One might be interested in opinions found at the word, phrase, clause,

sentence, document, or multi-document level. This depends on the application. However,
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information from lower levels of discourse might be useful in making predictions about

the opinions expressed at higher levels. Methods fall into two broad categories: the

lexical and grammatical levels of analysis. The lexical task is to identify polarity

information at the lexical or individual word item level. This is commonly done by

starting with a lexicon (“seed set”) of known polarity words, sometimes expanding this

set with various techniques, and then assigning a polarity score to words in a test corpus

using these polar words. Once the level of discourse has been chosen, the grammatical or

contextual task is to compute a score for the items at that level using local lexical

information and possibly other contextual information.

For example, say we are interested in sentence level opinions. We might assign the

words in the sentence a score, such as +1 or -1 (the lexical task), and then add the word

scores to obtain a sentence score (the contextual task). To improve results, we might

consider the effects of grammatical constructions that affect polarity such as negation and

modality. In this case, we must identify these grammatical features in the sentence and

compute an adjusted sentence polarity score based on their effect on polarity information

contained at the lexical level. For example, negation tends to invert the polarity that

would otherwise be derived from the lexical entries alone. Determining exactly how

various grammatical constructions can shift polarity is a task in itself.

Our current work is primarily concerned with sentence level polarity prediction. We

perform this task by following the commonly applied unsupervised strategy of starting

from a set of seed words of known polarity. Our distinguishing contributions include the

validation of using polarity words with parts of speech beyond adjectives and the

demonstration of iterative failure analysis to refine our seed set and prune bipolar words.

Furthermore, we contribute to the classification of various contextual shifters that adjust

predictions based on linguistic context. We feel that although the important applications

include document classification (reviews, editorials, and so on) or document and multi

document opinion summarization, the atomic components of polarity are the lexical items,

and a bottom-up approach to computing overall polarity is appropriate. We have chosen

the sentence level because it is a convenient and relatively localized context that contains
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both lexical items and grammatical constructions. We hypothesize that discoveries made

at this level may contribute to tasks dealing with higher levels, or at least provide insight

into the interaction between polarity-bearing components and polarity-shifting

constructions in general.

This level of polarity prediction has also been looked at by Yu and Hatzivassiloglou

[YHO3] and Hu and Liu [HLO4]. However, the amount of linguistic knowledge that is

employed in both cases is sparse. An important contribution of our work is the

integration of knowledge drawn from linguistics to provide a more solid theoretical

foundation.

We present various basic algorithms in Chapter 3, and then through an iterative process

of failure analysis using a corpus of consumer product reviews, we develop context-based

improvements to produce a more accurate algorithm.

To support the external validity of our findings, we have also applied the best

configuration of our algorithm to another domain — that of movie reviews. We found that

our algorithm performs significantly better than the baseline in this context.

To summarize the key contributions of this thesis:

• we validate the use of polarity words from parts of speech other than adjectives,

including nouns, adverbs, and verbs, for sentence opinion classification

• we demonstrate the use of iterative failure analysis as a means to efficiently refine

polarity word sets by eliminating words that are bipolar (both positive and

negative in different contexts) or those which have nonpolar (neutral) senses

• we show the limitations of opinion classification that uses feature words for

additional sentiment information

• we develop a set of contextual valence shifters that adjust sentence polarity using

our test corpus as well as a methodology for discovering further shifters
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• we provide a more solid theoretical basis for the use of shifter constructs in

inferring overall sentence opinion by correlating our findings with linguistics

literature
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2 Literature Review

Recently there has been a growing body of work related to evaluative language

processing. The broader area of research that includes this task is concerned with

detecting and classifying subjective language. Subjective language, in contrast to

objective or purely factual language, can be defined as that which contains evaluations,

emotions, and other content that is not factually verifiable but is rather a form of personal

expression. Although our concern is primarily with opinions, this work is relevant in that

similar techniques can be found across the field and detecting subjective language more

generally is needed if opinions are to be extracted from large collections of different

kinds of text. Within the area of opinion classification specifically there is also a growing

body of research. However, it tends to be light in the application of linguistic features

and structure and focuses on more statistical and atomic properties of text. It is our

intention to determine the limitations of these approaches and the point where richer

linguistic features become necessary to understand opinion of text more accurately.

2.1 Subjective Language Classification

Work has been done by Wiebe et a!. [W+99] to determine what the appropriate categories

of subjectivity are and what linguistic features might be predictive of subjectivity.

Machine learning has been applied to this task and the need to develop appropriate and

accurate classifiers was shown by Wiebe et a!. [W+99] and Riloff et al. [R+03]. To

perform supervised learning experiments, text annotated for subjectivity is required.

[W+99] have developed such corpora. These corpora constitute a first attempt at this
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kind of annotation, and are relatively small, but larger corpora have also been recently

developed by Wilson and Wiebe [WWO3I.

One of the first issues at hand is the level of classification. Classification can be done at

the document level, where entire texts such as news articles are classified as subjective or

objective (overall seeming to express opinions or just stating facts). This was

investigated for instance in Wiebe et al. [W+O 1]. Alternatively, classification can be

done at the sentence level as in [W+99], or within sentences, at the clause or even

expression and individual word level, as in the work of Turney and Littman [TLO3].

In addition to the level of classification, the categories of classification must also be

decided upon. The simplest and coarsest category set is the binary classification -

subjective or objective. But because this can be difficult to decide for some sentences, or

sometimes a finer level of detail is desired, other categorizations have been looked at. Yu

and Hatzivassiloglou [YHO3] look at the polarity of subjectivity, that is, whether an

opinion is positive or negative in sentiment. Gordon et al. [G+03] looks at particular

kinds of attitudes. [W+99] uses subjective and objective categories but with levels of

certainty attached, on a scale from 1 to 4.

One of the first attempts to do classification at the sentence level was the work of Wiebe

et al. [W+991. They developed two disjoint, manually annotated corpora consisting of

complete articles randomly selected from the Wall Street Journal Treebank Corpus. Four

judges each independently tagged the non-compound sentences and conjuncts of

compound sentences for whether they were subjective or not.

Once the corpora were tagged, machine learning experiments were performed.

Probabilistic classifiers for subjectivity were used that were developed by Bruce and

Wiebe [BW99]. These were based on the class of probability models known as

decomposable models and were used to find text features that are probabilistically

indicative of the subjective tag. Five part-of-speech features, two lexical features, and a

paragraph feature were found and used in the experiments. They considered the naive
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Bayes, full independence, and full interdependence probabilistic models as well as

models generated from those using forward and backward search. The model then

chosen was the one with the best accuracy for each training set.

Work has been since done to identify richer linguistic features to be used in classifiers.

Wiebe [WOO] uses clustering methods, and Riloff et al. [R+03] has looked at extraction

patterns. Specific parts of speech have also been more carefully looked at in their

usefulness for subjectivity tagging in [WOO] and [R+O3j.

2.2 Opinion Analysis

There has also been work involving the task of predicting the polarity of opinions present

in subjective language. One of the main contributions to this analysis is the work by Yu

and lzlatzivassiloglou [YHO3j. This was motivated by earlier work done by

Hatzivassiloglou and McKeown [HM97], where they took an initial seed set of positive

and negative adjectives and then grew this list by looking at the participation of these

words in conjunctions. If a known positive word occurs in an “and” with another word,

then this word can be inferred to be positive too. This is the same for negative words.

Similarly, if it occurs with “but” and another word, the other word has the opposite

polarity.

Pang et al. [P+O2] used different machine learning techniques to classify movie reviews as

positive or negative in sentiment. They examine the Naïve Bayes, Maximum Entropy,

and Support Vector Machines classifiers, and discuss differences between sentiment and

topic classification. Turney and Littman [TLO3J have also looked at review classification,

but used web search hits to calculate polarity scores. They infer polarity from association

with known polarity words using two measures of association — Pointwise Mutual

Information and Latent Semantic Analysis. Although not concerned with opinions,

Cilibrasi and Vitanyi [CVO4] have recently developed the notion of Google distance to
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measure semantic relationships between words. This could be useful in performing web

based classification tasks like that of [TLO3].

There has also been a line of research that involves opinion polarity detection that is

specific to given subject targets. These could be the names of the company or product in

question, the movie being reviewed, or a s.pecific actor in a movie, depending on the

desired task. Yi et al. [Y+04] have developed a system called Sentiment Analyzer that

first extracts what it thinks are the relevant subject terms, and then assigns an opinion

polarity to statements about them. This is done using a sentiment dictionary of words and

phrases that have been labeled with a known sentiment value. A similar approach has

been taken by Hu and Liu [HLO4]. They give scores to sentences that include specific

product features based on counting positive and negative constituent words. They also

add the context sensitive step of inverting the polarity in the presence of negation words

like ‘not’.

2.3 Evaluation and Appraisal in Linguistics

In the field of linguistics, the use of language to express opinions is variously known as

evaluation, authorial stance, and appraisal. Linguists organize types of evaluative

language into hierarchies and categorize the terms and forms associated with different

levels of appraisal into markers of stance. We are interested in modeling some of these

markers of authorial stance and applying them to our automatic opinion classification

scheme.

Martin’s article in Text [M03] breaks down language used for appraisal into three classes:

engagement, attitude, and graduation. Some of these contain features that can shift a

lexical item’s contribution of positive or negative opinion to the text. Engagement

involves positioning one opinion in relation to another and includes features like

projection, modality, polarity, and concession. These will evidently provide a context
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within which a lexical item can be interpreted and allow for possible adjustments to the

item’s polarity contribution to the sentence. For example, projection might involve a

report of a polarized statement but not be making such a statement. Concession might be

similarly affirming some fact, like “He seemed angry”, while modality might be

acknowledging a possibility without committing to an opinion on it, in for example, “It

might be really fun”. Graduation involves gradability and includes features that raise or

lower the degree of an evaluation, which can again shift the contribution.

The collection of linguistic papers compiled in the book Evaluation in Text: Authorial

Stance and the Construction ofDiscourse, edited by Hunston and Thompson [HTOO],

contains discussions of contextual situations that convey or affect polarity. Biber and

Finegan’ s stance markers are discussed in [THOOJ and these include the following

categories:

1. adverbs indicating affect, certainty, and doubt (e.g. definitely)

2. adjectives indicating affect, certainty, and doubt (e.g. happy)

3. verbs indicating affect, certainty, and doubt; (e.g. enjoy)

4. hedges (vague language e.g. about, sort of)

5. emphatics (e.g. for sure, really)

6. modals indicating possibility, necessity, and prediction (e.g. could be, should have

been)

These too indicate features that have the ability to contribute or modify the opinion being

expressed in evaluative text. Moon’s Fixed Expressions and Idioms in English: A

Corpus-Based Approach {RM98] also has a section on evaluation, and describes

situations that cause a shift or “subversion” of evaluative orientation. We will refer to

these when compiling lists of polarity sensitive linguistic patterns.
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3 Framework

To achieve the sentence-level polarity prediction task, we have formulated a generalized

algorithm that reflects the basic approach taken in the related work and have compiled a

set of improvements to this algorithm that we investigate in Chapter 4. The set of

improvements includes techniques developed by other researchers, modifications of

existing techniques, and techniques we have invented.

3.1 Overview

The simplest baseline we can use for comparison is to take the polarity of the most

frequent class (e.g., positive) as the polarity of all our test sentences. Thus any algorithm

must at least achieve better accuracy than the frequency of the most frequent class. The

common aspect of the various sentence polarity prediction techniques in the related work

seems to be the use of a polarity lexicon. This is a precompiled list of positive and

negative words. These words are either used to assign polarity scores to other words or

to simply contribute to the score of a sentence. This is what we mean by a generalized

algorithm. Beyond the most-frequent-class baseline, a simple algorithm is to compare the

sets of positive and negative lexicon words found in a sentence and to take the class of

the larger set as the prediction. This will be taken as the basic algorithm upon which

various improvement techniques can be applied.
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Movie • Longton-Carenini
Reviews Refined Lexicons

Figure 1: Opinion Classification System Data and Modules

Our framework consists of the following components: corpora, part of speech taggers,

lexicons, lexicon expansion algorithms, baseline sentence scoring and default (tie or no

polarity words) scoring, and contextual valence shifters. We have implemented a script

pipeline that performs opinion classification with these components. It tags and

processes an opinion sentence corpus, expands a polarity word lexicon, and then scores

Figure 2: Opinion Classification System Flow
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the sentences of the corpus. It does this using the lexicon and contextual valence shifters

that modify the polarity contribution of the lexicon words based on various linguistic

constructs. Figure 1 lists the data and modules available in our system and Figure 2

describes the flow of inputs and outputs in our script pipeline.

In Figure 2, the opinion sentence corpus is part of speech tagged and then formatted. The

formatted corpus is then scored using a polarity word lexicon. There is an optional step

of feeding the formatted corpus into one of the polarity lexicon expansion algorithms

before performing scoring. These components are detailed in the next sections.

3.2 Corpus Processing

Our experiments require a corpus of text annotated at the sentence level for polarity. Our

scoring script takes a part-of-speech tagged corpus in XML format where each sentence

is given attributes for its annotated score and its feature words. The first phase in our

script pipeline is responsible for this processing.

3.2.1 Part of Speech Tagging

Part-of-Speech tagging is a common operation in natural language processing {JMOOI. It

involves assigning a part of speech (e.g. adjective, noun, adverb, verb, preposition) to

every word in a corpus, based on a syntactic analysis of the sentence. We experimented

with two third party part-of-speech tagging tools, namely NLProcessor [NOO] and the

StandfordTagger [S04], which produced similar behavior showing high accuracy. This

allowed us to identify lexicon words with the correct part of speech in our corpora.
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3.3 Baseline Algorithms

Our basic algorithm is based on the one proposed by Hu and Liu [HLO4J. We start with a

lexicon of polar adjectives scored as +1 or -1 (eg. amazing has the score +1, bad has the

score -1). Sentences are scored by taking the average of the scores of all the lexicon

words found in the sentence. The polarity of the opinion expressed in the sentence is the

sign of this score. Beyond this basic algorithm, Hu and Liu employ a lexicon expansion

step to their 30 hand picked adjectives, adjust word orientation in the presence of

negation words (like no, not, and yet), and add heuristics to break ties. The first heuristic

applied is to take the average effective opinion of the sentence and relies on the fact that

Hu and Liu work on product reviews. This means averaging over the counts of polarity

words that are closest to the feature terms in the sentence, rather than all the polarity

words. If there is still a tie, the polarity of the previous opinion sentence is taken.

As mentioned above, one aspect that distinguishes Hu and Liu’s work from ours is that

they are considering names of product features (which they extract before the polarity

classification task) as items within the sentence that have a special role (related to the

opinion being expressed). This is because the corpus they are using consists of customer

reviews of commercial products (like cameras and cell phones), and their task is to

recognize opinions toward specific products and their features. Identifying the target of

an opinion may prove to be an important factor in opinion analysis, but we have

separated this task from that of detecting the polarity of a context already known to

express an opinion. We do however include this operation in our set of improvement

tools.

The work of Yu and Hatzivassiloglou [YHO3] provides a different algorithm. They also

start with a polarity lexicon (this time the HM lexicon), and expand this list. For all the

nouns, verbs, adjectives, and adverbs in their corpus (which consists of 8000 Wall Street

13



Journal articles), they compute a polarity score using a log-likelthood equation. Once

this expanded lexicon of real-number valued polarities has been generated, it is used to

predict the polarity of a sentence by taking the average score for that sentence. We have

implemented this algorithm as a component of our infrastructure.

3.4 Lexical Polarity and Lexicon Expansion

One of the components of our algorithm is the automatic expansion of an initial seed

lexicon to include a greater number of words. This improves the coverage of the

algorithm (i.e., more sentences will contain words in the lexicon and will therefore be

scored).

3.4.1 WordNet

WordNet is a semantic lexicon for English [M+90]. It is a database of dictionary entries

along with lists of connections between words. These relationships are of various types,

and we are interested in the relations for synonymy and antonymy (sets of words with

similar and opposite meaning). Hu Liu describe an algorithm for taking a seed list of

polar words and expanding it by adding words found in the corpus that are similar and

opposite to the known polar words. The assumption is that similar words carry similar

polarity. In WordNet, a given adjective will have a list of senses. Each sense will be

associated with a set of synonyms called a synset, and sometimes also two other more

loosely associated sets — the see-also set and the similar-to set. For example, the

adjectivefast has ten senses. Sense eight has quick as a synonym, is similar to hurried,

and says to see also firm. We include options in our infrastructure for varying which of

these sets to draw synonyms from.
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3.4.2 Log Likelihood

The log-likelihood equation of [YHO3] computes polarity based on a collocation

assumption: that a positive word co-occurs with other positive words more frequently that

with negative ones, and likewise for a negative word. The score for a word W1 with part

of speech POSJ (j can be adjective, noun, adverb, or verb) is

/Fre(wiPosiAdin)+e

Freq(W11, POS , Adj) / Freq(W011 , POS , Adj)

where Freq(Wait, POSJ, Adj) is the collocational frequency of all words Wait of part of

speech POS, with Adj and e is a smoothing constant (Yu and Hatzivassilogou use a

value of 0.5). The sign of the score is the word’s polarity. The outer fraction within the

log is a ratio of two values for the word: its relative collocation with positive words and

its relative collocation with negative words. When the fraction is greater than one, the

log will be positive, corresponding to a stronger association with positive words.

Likewise, when it is between zero and one, the log will be negative, corresponding to

stronger association with negative words. This process acts as a lexicon expansion step

in that it includes all the corpus words in the set, with varying polarity strengths. We can

also cut off inclusion below a threshold to avoid deviations due to noise.

3.5 Contextual Valence Shifters

One of our goals is to apply more contextual information in calculating a sentence’s

polarity. Polanyi and Zaenen {PZO4] provide motivation for this task. They discuss a

number of linguistic phenomena, from negation to irony to discourse structure, which

could shift the polarity that would have otherwise been predicted by only considering the
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lexical level. They provide some preliminary ideas on how to implement some of these,

but do not report any experimental results.

We would like to better justify their suggestions, and add to this list, by consulting the

linguistics literature. Our experimental results section details how we identify some of

these shifters in our development corpus and includes descriptions and examples of each.

3.6 Coverage and Accuracy

Since our algorithms are based on the presence of scored polar words, not every sentence

we evaluate will have a nonzero average score with a defmite positive or negative

orientation. Both null sentences that contain no scored polar words and zero-score

sentences where the average of the scored words is zero are possible. But for results to

be comparable across different configurations, we need a way to increase coverage of our

scoring to 100 percent. Therefore we employ a series of default scoring algorithms to

classify the sentences that do not have a nonzero score. These are detailed in the

experimental results section.
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4 Experiments and Analysis

In this section we perform a series of experiments that show how we arrive at an

improved sentence polarity prediction algorithm.

4.1 Lexicons and Corpora

There are two main kinds of data we use in our experiments: polarity lexicons and

corpora. Polarity lexicons consist of positive and negative words. We have two main

collections: the Hatzivassiloglou and McKeown (HM) lexicon, and the General Inquirer

(GI) lexicon. HM contains 1336 (657 positive, 679 negative) adjectives. These were

compiled manually by [HM97]. The lexicon we are referring to as GI is actually two

subsets of a collection of words known as the General Inquirer database developed by

Stone et al.[S+66]. The two subsets we have extracted from the database are those with

tags Pos and Neg, corresponding to positive and negative words. In its raw form, our

extracted GI lexicon contains 4207 (1914 positive, 2293 negative) words. They are not

explicitly part of speech tagged. They instead come with a variable number of other tags

(besides Pos and Neg), some of which imply part of speech membership (such as the

Noun tag, or the verb tags DAV (verb descriptive of an action), IAV (verb interpretive of

an action) and SV (state verb)). Some but not all also have a “comments” section

appended to the entry. However, not all words have tags that imply part of speech. Some

might have multiple allowed parts of speech that are only suggested by the comments

section, and those tags that imply part of speech membership are not given to all words in

that category. Because of these inconsistencies, additional processing must be done if the

part of speech tags are required, as they are in our work.
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We have a number of corpora that will potentially be useful in our polarity prediction

task. The first is the “customer review data” of {HLO4] (the ilL corpus). This is a

collection of commercial product reviews extracted from amazon.com. They are divided

among five products (two digital cameras, a cell phone, a dvd player, and an mp3 player),

and there is a total of 3908 sentences. There are 1700 of these that contain opinions

about features of the products under review (like “digital zoom” or “size”), and they are

annotated with scores representing the polarity and strength of the author’s opinion

toward each feature reference.

Other corpora that we have collected include the movie review database of Pang et al.

[P+02] which consists of sentence summaries of movie reviews annotated with a score,

derived from www.rottentomatoes.com.

4.2 Iterative Failure Analysis

Our plan is to first determine what combination of existing techniques provides the best

accuracy in the sentence polarity prediction task. We start with reproducing the Hu and

Liu algorithm, using their customer review corpus. From there we add various

techniques to improve accuracy. In particular, we vary the polarity lexicon and the word

scoring method, which involves counting adjectives or using the log-likelihood equation.

We also try expanding the lexicons. We can do this by using WordNet synsets or by

applying the log-likelihood collocation equationand extracting words with sufficiently

polar scores. From these variations we determine the best combination of algorithms and

parameters.

In this work we adopt an empirical methodology offailure analysis. This involves the

careful analysis of some of the sentences whose opinion polarity we fail to correctly

predict. The failures in a subset of the corpus are categorized into basic classes with the
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help of our linguistic references and the largest class motivates the addition of a feature to

the system in the next iteration. For example, many sentences fail because of a lack of

adjectives and the presence of unaccounted-for polar words of other parts of speech.

Examples of these are given below. This motivated the investigation of the General

Inquirer lexicon which contains non-adjective polar words.

This approach is similar to the technique known as boosting. Boosting is a general

method for improving the accuracy of any given learning algorithm. It is in this sense

called a metalearner, or ensemble technique [MOO]. The idea is to combine many simple

and only weakly accurate classifiers (just better than random) into a single highly

accurate classifier. The classifiers are trained sequentially, and on the examples most

difficult to classify on previous rounds. Boosting was developed by Freund and Schapire

[FS96] and they presented it in the form of the algorithm AdaBoost. It has since been

proven successful in many learning tasks such as routing, image retrieval and medical

diagnosis [SO2] and in natural language processing tasks such as part-of-speech tagging

and word-sense disambiguation [E+OO]. Our approach differs from boosting in that we

seek to discover the classifiers in our data, which may include those that have been

previously identified as well as new classifiers. We want to establish what the important

classifiers of opinion are first before combining them in a more optimal way.

When we analyze the misclassifications, we separate the lexical from the contextual

failures - that is, failure caused by polar words and those caused by language that shifts

the contribution of a polar word. Using the failures that resulted from ignoring context

information as a guide, we hypothesize a collection of contextual valence shifters, based

on linguistic knowledge, that are responsible for shifting the polarity being expressed at

the lexical level. We then retry the experiment accounting for these contextual

adjustments. After obtaining the configuration that gives the greatest increase in

accuracy, we apply the system with and without the contextual valence shifters to another

corpus to test the range of applicability across domains and to prevent overfitting.
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4.3 Baseline Experiments

4.3.1 Hu-Liu Algorithm

In the following sections, we present tables of results across product review corpora,

details of coverage for the concatenated Hu-Liu corpus (all five products), and lists of

example failure sentences. We report our experimental procedure as a sequence of

interations of failure analysis from which we measure incremental improvements.

In the first phase of our sequence, we implement the Hu-Liu algorithm. We contacted

Ming Hu to ask about acquiring their initial seed set of polar words, but were told that the

orgininal 30 were unavailable. Instead they were able to provide an intermediate set of

82 words, which we took as our seed set. With this set we perform the WordNet

expansion algorithm but find that this produces results significantly under their reported

accuracies [HLO4]. We attribute this to sensitivity on the seed set, given that we did not

use the same input to the WordNet expansion algorithm as they did. These results are

presented in Table 1. In addition to scoring the five sub-corpora separately and

computing the flat average as Hu and Liu have done, we compute the weighted average

which gives more weight to the accuracies for sets with more sentences. We also run the

algorithm on the corpus formed by concatenating the five sets of product reviews for

comparison. This is referred to as the ilL corpus. The Always Positive column shows the

proportion of sentences in that corpus that are annotated as having positive opinion. This

is equivalent to the results obtained running the algorithm with an empty lexicon.
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Table 1: Hu-Liu Implementation

Accuracy
Always Positive Hu-Liu Longton HL

Product

Canon digital camera 183/236 0.775 0.927 174/236 0.737
Nikon digital camera 129/159 0.811 0.946 126/159 0.792

Nokia cell phone 186/258 0.72 1 0.764 196/258 0.760
Creative mp3 player 419/706 0.593 0.842 468/706 0.663
Apex DVD player 148/34 1 0.434 0.730 202/34 1 0.592

HL Corpus 1065/1700 0.626 1142/1700 0.672

4.3.2 Feature Based Effective Opinion

The Hu-Liu corpus consists of sentences that contain an opinion about particular features

of the products being reviewed. These features are attached explicitly to the sentences,

and one of the components of their algorithm is to use these feature words in breaking

ties. When a sentence score is found to be zero, the effective opinion of the sentence is

computed. This is the average of the polarities of the lexicon words that are closest to the

feature words in the sentence. Furthermore, there is an additional set of logic that is used

in the presence of but-conjunctions. The effective opinion of the but-clause takes priority

over the overall sentence score. We separate out these two levels of effective opinion

usage as separate options in our implementation.

To see how the various pieces of the Hu-Liu algorithm contribute to the overall accuracy,

Table 2 shows the accuracies achieved when sequentially enabling different parts of the

algorithm. Each configuration is specified by an abbreviated term of the lexicon used

followed by the set of options given to the scoring script. The Hu-Liu lexicon expanded

with WordNet is abbreviated hulexWN. Optionj refers to adjectives being the part of

speech that are candidates for scoring (later we will see n, r, and v stand of noun, adverb,

Average

Weighted Average 1065/1700

0.667
0.626

0.842

1 166/1700
0.709

0.686
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and verb). Option g means using the negation adjustment and d means using a list of stop

words across which negation is inactive. This helps increase accuracy by effectively

establishing syntactic boundaries. Options e and b refer to the effective opinion tie

breaking and effective opinion but-clause components of the Hu-Liu algorithm. The

configuration hulexWN -jdgeb corresponds to our implementation of the reported Hu-Liu

experiment (called Longton HL above). As seen in Table 2, negation usually improves

accuracy, while only some products benefit from the effective opinion options.

Table 2: Hu Lexicon Analysis
Accuracy
hulexWN —. hulexWN -jdg hulexWN -jdge hulexWN -jdgeb

Product
Apex player 184/341 0.5396 186/341 0.5455 180/341 0.5279 202/341 0.5924
Canon camera 180/236 0.7627 179/236 0.7585 178/236 0.7542 174/236 0.7373
Creative mp3 457/706 0.6473 486/706 0.6884 478/706 0.677 1 468/706 0.6629
Nikoncamera 131/159 0.8239 134/159 0.8428 135/159 0.8491 126/159 0.7925
Nokia cell 194/258 0.75 19 199/258 0.7713 191/258 0.7403 196/258 0.7597

Average 0.705 1 0.7213 0.7097 0.7089
W.Average 1146/1700 0.6741 1184/1700 0.6965 1162/1700 0.6835 1166/1700 0.6859
HLCorpus 1135/1700 0.6677 1169/1700 0.6877 1151/1700 0.6771 1142/1700 0.6718

Table 3: HuIexWN - Coverage for IlL Corpus
Configuration
hulexWN -j hulexWN -jdg hulexWN -idge hulexWN -idgeb

Accuracies
Total 1135/1700 0.6677 1169/1700 0.6877 1151/1700 0.6771 1142/1700 0.6718
Nonnull 758/1037 0.7310 782/1037 0.7541 779/1037 0.7512 761/1037 0.7339
Nonzero 716/957 0.7482 728/950 0.7663 764/1019 0.7498 739/1009 0.7324
Zero 42/80 0.5250 54/87 0.6207 15/18 0.8333 22/28 0.7857
Null 377/663 0.5686 387/663 0.5837 372/663 0.5611 381/663 0.5747
NonzeroReal 728/950 0.7663
NonzeroEff 36/69 0.5217
Coverage
Nonnull 1037/1700 0.6100
Nonzero 957/1700 0.5629 950/1700 0.5588 1019/1700 0.5994 1009/1700 0.5935

Table 3 provides a breakdown of the scoring based on lexicon coverage. This breakdown

is given for the concatenated HL Corpus as a summary and this pattern is continued in
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subsequent sections. In the Accuracies section, Total is the sum of three mutually

exclusive subsets — Nonzero, Zero, and Null. Null sentences are those that do not contain

any lexicon words. Nonzero and Zero are sentences that contain lexicon words and have

a nonzero or zero score, respectively (their union forms Nonnull). When the e option is

used, tie breaking is attempted on Zero sentences. If a nonzero effective opinion score is

found, the sentence counts as Nonzero. In this case Nonzero is further divided into those

that were nonzero initially and those that were due to effective opinion tie breaking. This

breakdown is reported by the NonzeroReal and NonzeroEff sets. There are two coverage

measurements listed. Nonnull is the fraction of sentences containing lexicon words and

Nonzero is the fraction of sentences with a nonzero score. Nonnull coverages that are the

same as the configuration to their left are omitted to highlight that the configurations

contain the same lexicon words.

4.3.3 Polysemy and Bipolarity in WordNet Expansion

Investigating the failures, we find that many are due to wrongly scored WordNet

generated adjectives. Often these are words that are either polysemous as both polar and

neutral words or even as both positive and negative words. Here are some examples with

the scored words marked.

• The screen is large(-), defined, and easy to read, and the silver unit is naturally

cool.

• The locations of various(+) buttons on one side or the other is somewhat illogical.

In the first sentence, large is being used to express a positive opinion, but was added to

our lexicon via its synonym big, which was added as a synonym of our negative seed

word bad. The third sense of bad listed in WordNet is a synonym of big, as in “a bad

storm “. The second sentence is negative, but the neutral word various was incorrectly

given a positive score via its synonym versatile.
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We try variations on the parameters of the WordNet algorithm. These include the

different possible sets to draw synonyms from (the see-also, synset, and similar-to sets),

and the number of words to use from the set starting at the beginning (since earlier listed

ones often are the more common and sometimes less ironic synonyms).

These didn’t improve results significantly so we consulted Ming Hu on their choices.

They confirmed that they used only the synset with no restriction on the number of senses.

Our results with these parameters don’t improve our accuracy.

4.4 Lexical Polarity Analysis

WordNet expansion introduces a significant amount of noise to our lexicon. To see if the

small seed set provided by Hu and Liu was simply too sparse or if WordNet expansion

helps at all for a larger seed set, we investigate the use of a larger manually constructed

lexicon of polarity words.

4.4.1 Intelligent HM Lexicon

We run our scoring algorithm on the Hu-Liu corpus this time using Hatzivassiloglou and

McKeown’s manually constructed lexicon of 1336 positive and negative words. This

intelligent lexicon outperforms Hu-Liu’ s WordNet expanded seed set, as seen in Tables 5

and 6. We even find that WordNet expansion negatively affects HM (adding mostly

wrong-scored words). This is reported in Table 4. We find that with the intelligent

lexicon, effective opinion tie breaking does not improve results over the default previous

sentence score. To measure statistical significance of the improvement in accuracies

across our subcorpora, we perform a two-tailed paired t-test (described in [C95J) on our
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4.4.2 Polarity in other Parts of Speech and the GI Lexicon

Failure analysis of the results using HM reveals the next major source of error: failure

due to sparsity of adjectives and the non-scoring of clearly polar non-adjective words.

The following are some examples:

• It would only transfer 30 or so songs, and then come up with an error(-).

• I gave it only 3 stars due to thefact that the 1st one broke(-) when I dropped it

from afairly short distance (less than 2ft).

• The “scene” mode works well(+)for the remainder of shots that are not going to

be in a “regular” setting.

These sentences would be scored correctly if the marked noun, verb, and adverb were

included in our lexicon. To address this, we test the General Inquirer (GI) lexicon. We

develop the best possible tagged form we can manage automatically, which we call the

“XGI” (extended GI). Each word is given all of the adjective, noun, adverb, and verb

parts of speech, at the risk of some error due to polarity-disagreeing polysemy across

parts of speech for a given word. The results show an increase in coverage as well as the

potential of all of the added parts of speech helping to improve accuracy. The adjectives

from XGI are tested alone for comparison to HM in Table 7, and Table 8 shows our tests

of the different parts of speech in isolation and in combination. All four produces the

best accuracies so far (the best being 0.786) and this is reported in Tables 9 and 10.

Table 7: XGI Lexicon - Adjectives
Accuracy
xgi —j xgi -jdg xgi -jdge

HLCorpus 1185/1700 I 0.6971 1230/1700 I 0.7235 1218/1700 I 0.7165
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a positive and negative entry for help: V, and HM and GI had a conflict in polarity for

flashy:J (positive in HM and negative in GI). We removed these words in constructing

the union. Tables 11 and 12 report the results. Performing the two-tailed paired t-test

this time between the HM and Combined lexicon results yields a p-value of 0.011, again

showing a statistically significant increase in accuracy.

Table 11: Combined Lexicon HX

Average
W. Average
IlL Corpus

124 1/1700
1241/1700

0.7628
0.7300.
0.7300

Table 12: HX - Coverage for IlL Corpus

Configuration
hx -jnrv hx -jnrvdg hx -jnrvdge

Accuracies
Total 1241/1700 0.7300 1317/1700 0.7747 1314/1700 0.7729
Nonnull 1065/1416 0.7521 1135/1416 0.8016 1134/1416 0.8009
Nonzero 963/1242 0.7754 1028/1247 0.8244 1116/1386 0.8052
Zero 102/174 0.5862 107/169 0.6331 18/30 0.6000
Null 176/284 0.6197 182/284 0.6409 180/284 0.6338
NonzeroReal 1028/1247 0.8244
NonzeroEff 88/139 0.6331
Coverage
Nonnull 1416/1700 0.8329
Nonzero 1242/1700 0.7306 1247/1700 0.7335 1386/1700 0.8153

Accuracy
hx —jnrv hx -jnrvdg hx -jnrvdge

Product
Apex player 219/341 0.6422 246/341 0.7214 249/341 0.7302
Canon camera 201/236 0.8517 197/236 0.8348 194/236 0.8220
Creative mp3 482/706 0.6827 530/706 0.7507 526/706 0.7450
Nikon camera 134/159 0.8428 134/159 0.8428 134/159 0.8428
Nokia cell 205/258 0.7946 210/258 0.8140 211/258 0.8178

0.7927
13 17/1700 0.7747
13 17/1700

0.79 16

0.7747
1314/1700 0.7729
13 14/1700 0.7729
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4.4.4 Nonpolar and Bipolar Words and the Robust Lexicon

The next iteration of failure analysis reveals nonpolar and bipolar words in this combined

lexicon. Polarity of words across their different senses varies and so given the context,

some of our lexicon words are either used in a way that does not carry the labeled

polarity or indeed carries the opposite polarity. Examples of these are as follows:

• The main(+) problem with the Nomad Jukebox Zen Xtra 30GB is the software.

• It looks very cool(-), and seems quite small(-) to me and very light.

In the first sentence main is neutral instead of positive, and in the second sentence both

cool and small are positive instead of negative. We subjectively remove words from the

subset found in the corpus that are deemed nonpolar or bipolar, but without direct

reference to the failures so as to partially but not exhaustively prune the combined

lexicon in a subjective but domain-independent fashion. This robust lexicon significantly

improves performance to 0.835. The complete results are shown in Tables 13 and 14.

Table 13: Robust Lexicon myHX
Accuracy
myhx -jnrv myhx -jnrvdg myhx -jnrvdge

Product
Apex player 228/341 0.6686 245/341 0.7 185 249/341 0.7302
Canon camera 200/236 0.8475 209/236 0.8856 2 13/236 0.9025
Creative mp3 510/706 0.7224 570/706 0.8074 565/706 0.8003
Nikon camera 135/159 0.8491 140/159 0.8805 137/159 0.8616
Nokia cell 2 19/258 0.8488 228/258 0.8837 225/258 0.872 1

Average 0.7873 0.8351 0.8334
W.Average 1292/1700 0.7600 1392/1700 0.8188 1389/1700 0.8171
FIL Corpus 1291/1700 0.7594 1392/1700 0.8188 1389/1700 0.8171
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Table 14: MyHX - Coverage for HL Corpus

Configuration
myhx -jnrv myhx -jnrvdg myhx -jnrvdge

Accuracies
Total 1291/1700 0.7594 1392/1700 0.8188 1389/1700 0.8171
Nonnull 961/1154 0.8328 1028/1154 0.8908 1029/1154 0.8917
Nonzero 912/1069 0.8531 978/1072 0.9123 1021/1143 0.8933
Zero 49/85 0.5765 50/82 0.6098 8/1 1 0.7273
Null 330/546 0.6044 364/546 0.6667 360/546 0.6593
NonzeroReal 978/1072 0.9123
NonzeroEff 43/71 0.605 6
Coverage
Nonnull 1 154/1700 0.6788
Nonzero 1069/1700 0.6288 1072/1700 0.6306 1143/1700 0.6724

4.4.5 The Augmented Lexicon

Failure analysis then reveals a number of remaining errors due to missing scored words.

The following examples show words that are missing from the robust lexicon that are

needed to predict the sentence’s opinion. They are marked with the needed polarity.

• The included lens cap is very loose(-) on the camera.

• The cool(÷) thing about the ad-2600 is that itplàys a lot of differentfile types.

We finally top-up the lexicon with these domain-dependent words in order to reduce our

error set to those errors of the more rare but more sophisticated contextual type.

Accuracies improve accordingly and are reported in Tables 15 and 16. We perform the t

test between the Combined and Augmented lexicon and obtain a p-value of 0.027,

showing another statistically significant increase in accuracy.
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Table 15: Augmented Lexicon myHX+
Accuracy
myhx+ -jnrv myhx+ -jnrvdg myhx+ -jnrvdge

Product
Apex player 235/341 0.6892 255/341 0.7478 259/341 0.7595
Canon camera 207/236 0.8771 214/236 0.9068 218/236 0.9237
Creative mp3 521/706 0.7380 575/706 0.8145 571/706 0.8088
Nikon camera 136/159 0.8554 141/159 0.8868 138/159 0.8679
Nokia cell 218/258 0.8450 227/258 0.8798 226/258 0.8760

Average
W. Average
HL Comus

13 17/1700
13 16/1700

0.8009
0.7747
0.7741

1412/ 1700
14 12/1700

0.8471
0. 83 06
0. 83 06

1412/ 1700
1412/1700

0.8472
0. 8306
0. 8306

Table 16: MyHX+ - Coverage for HE Corpus

Configuration
myhx+ -jnrv myhx+ -jnrvdg myhx+ -jnrvdge

Accuracies
Total 1316/1700 0.7741 1412/1700 0.8306 1412/1700 0.8306
Nonnull 1019/1211 0.8415 1088/1211 0.8984 1092/1211 0.9017
Nonzero 971/1128 0.8608 1039/1130 0.9195 1084/1201 0.9026
Zero 48/83 0.5783 49/81 0.6049 8/10 0.8000
Null 297/489 0.6074 324/489 0.6626 320/489 0.6544
NonzeroReal 1039/1130 0.9195
NonzeroEff 45/71 0.6338
Coverage
Nonnull 1211/1700 0.7865
Nonzero 1128/1700 0.7865 1130/1700 0.7865 1201/1700 0.7865

4.5 Contextual Valence Shifters

The next stage involves the study of the effectiveness of the valence shifting operations

performed by the Hu-Liu algorithm [HLO4], an implementation of some of the shifters

suggested by Polanyi and Zaenen [PZO4], and some newly classified valence shifters.

Hu-Liu applies polarity shifting logic for negation and handles but-conjunction in a

special way. Polanyi and Zaenen suggest the shifting capacity of modals and

presupposition. Finally, we discover cases where contrastives, adverbs of excess and

sufficiency, and hedging can shift polarity. We also note that the conjunction but is
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common in reviews but we discover that its usage is complex and varied, and its other

usages are more frequent than its negating behavior.

We experiment with various parameters to the shifters. One is the subset of the sentence

that is affected, including attention to stop-words that form syntactic boundaries.

Another is the operational word sets that are associated with each shifter context.

Accuracies improve sequentially as we tune each shifter and apply them to our corpus

with our various lexicons.

We begin with refining the negation shifter. By varying the keyword set and the window

of activity, we tune these parameters to optimal values. Including the word no helps now

with nouns present and a window of six words instead of Hu and Liu’s five optimizes the

results. These improvements are summarized in Table 17.

Table 17: MyHX+ with Negation Tuning

Configuration
myhx+ -jnrv myhx+ -jnrvdg myhx+ -jnrvdge

Accuracies
Total 1316/1700 0.7741 1425/1700 0.8382 1426/1700 0.8388
Coverage
Nonnull 1211/1700 0.7124
Nonzero 1128/1700 0.6635 1128/1700 0.6635 1201/1700 0.70647

Analyzing the failures from the tuned augmented lexicon experiment, we note the

presence of various polarity shifting constructs. One of these is where a comparison is

made between the main subject of a sentence and another subject for the sake of contrast.

Polar words used in the auxiliary clause are usually of opposite polarity to the opinion

being expressed toward the main subject. These clauses are often marked with a

contrastive keyword like although or despite, so we develop a shifter pattern called a

contrastive to adjust sentence polarity in the presence of such clauses. The following

examples benefit from modeling the contrastive shifter by inverting the polarity of the

lexicon words within the contrastive clause.
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• Despite(c) this minor disappointment(-), I highly recommend the Canon G3 to

anyone who is serious about digital photography.

• Although(c) Ifind it more convenient(+) to use 1-touch dialing, this phone does

not have voice dialing.

Another polarity shifting construct is found in the use of modality. This is where an

evaluation of a subject is suggested if some other condition had been true, thus conveying

the opposite opinion in that condition’s absence. These constructs are marked with

modal words like would and should, and most commonly shift opinion when followed by

be or have been. Predicting the polarity of the following sentences fails without

modeling the inverting function of modal phrases.

• A spare battery would have been(m) great(+).

• At the very least, a sturdier more protective carrying case would be(m) nice(+).

The lexicon words are labeled with their polarity, which needs to be inverted by the

modifying modal phrase.

Sentence polarity can also be shifted by the use of presupposition. This occurs when a

polar word is modified by a word that presupposes an expectation that was not met. The

following are examples that require an inversion of polarity based on the presence of

presuppositional terms.

• It’s way less(p) expensive(-) than the iPod.

• The front panel refused(p) to clip in correctly(+), leaving a noticeable gap

between the panel and base of the player.

• Forget(p) about the sleek(+) looks if it can’t play some ofyour real dvds.

• The remote is a little hard to(p) understand(+).

We developed shifter functionality into our algorithm for each of these constructs and the

results are summarized by Tables 18 and 19. We see an increase in accuracy for each
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construct individually and when used in conjunction with one another (accuracy is 0.868).

Also we note that although effective opinion tie breaking improves coverage it does not

improve accuracy in these cases. Performing the two-tailed paired t-test now on the

results of the tuned Augmented lexicon with and without contextual valence shifters

yields a p-value of 0.028. This shows another statistically significant increase in

accuracy.

Table 18: Aurnented Lexicon MyHX+ with Shifters
Accuracy
myhx+ -jnrvdgcmp myhx+-jnrvdgcmpe

Product
Apex player 266/341 0.7801 268/341 0.7859
Canon camera 215/236 0.9110 218/236 0.9237
Creative mp3 593/706 0.8399 589/706 0.8343
Nikon camera 142/159 0.8931 140/159 0.8805
Nokia cell 236/258 0.9 147 23 1/258 0.8954

Average 0.8678 0.8642
W. Average 1452/1700 0.8541 1446/1700 0.8506
FIL Corpus 145211700 0.8541 1446/1700 0.8506
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We note that accuracies are increasingly improved by the shifters as the lexicon becomes

more refined.

There aie a number of other kinds of contextual valence shifters that we have discovered

and experimented with in the Hu Liu corpus. One is where the conjunction but, or

synonyms except and however, are used to contrast two subjects. When they are used for

this function, they are similar to the class of contrastive shifters we identified but follow

rather than precede the polar word they are shifting. We found that although these

shifters are responsible for a number of failures, the negating function of these

conjunctions is only one of their uses. They are even more often used in waS’s that do not

directly shift the polarity of the sentence away from the preceding polar words. Thus

they are not by themselves effective shifters in the Hu Liu corpus, producing more false

positives than successful polarity shifts. These sentences are examples of but

conjunctions acting as negating shifters, where the annotated sentence polarity is given at

the beginning of the line:

• (-) Nice(+) machines, but(b) I consider their quality pretty low now.

• (+) I was hesitant(-) given the price, but(b) I’ve been extremely impressed since

receiving it.

These sentences are examples where but is not shifting the sentence’s polarity and would

result in a failed prediction:

• (+) Basic usage is easy(+), but(b) the remote has a lot of buttons that I haven’t

used.

• (-) A little weighty(-) (9 ounces... no biggie), but(b) otherwise fine.

Another shifter construct responsible for failures is the use of a class of adverbs known as

adverbs of excess and sufficiency. These are words like too and enough that express an

excess or sufficiency of a quality of a subject that is described by a polar word. They are

similar to our presupposition shifter but rather than negating, these words impose a
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polarity themselves and remove the otherwise polar content of the polar words they

modify. Here is an example containing both kinds of adverbs along with negation:

• (-) The scroll button is overly(x) sensitive(+) at times; not(g) sensitive(+)

enough(x) at others.

The word overly imposes a negative polarity while enough imposes a positive polarity.

Resolving precedence in the presence of other negating shifters however is beyond the

scope of our current system and as this feature is sparse in our data, we omit this shifter

presently. It is however another construct deserving further investigation.

There are also a number of failures due to the construct known as hedging. This is where

the impact of an evaluation is reduced by also making a contrary statement with slightly

less evaluative force. This can be noted in the following examples.

• (-) It doesn’t haveftrewire, not(g) a real complaint(-) since most windows users

don’t generally have firewire cards themselves.

• (-) It could be a little bit bigger, but it’s easy(+) to get used to.

Further experiments measuring strength of opinion in addition to direction could benefit

from modeling this construct.

4.6 Remaining Language Features Affecting Polarity

Finally we are left with a number of classifiable errors and anomalies. These include

language features such as irony and idiom, as well as complex usage and multiple

opinions. The GI lexicon has a tag for idioms, and this could form the beginnings of an

idiom database that could be used as a component in the polarity classification algorithm.

The following are some examples:
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• (-) 3/4 of the way through the first disk we played on it (naturally(+) 31 days after

purchase) the dvd playerfroze.

• (+) I bought itfor my trip to Buenos Aires, and also used it at the Iguazu Falls,

and could not(g) have askedfor more perfect(+) performance!

• (-) No games - it has a cool(+) screen - why not use it?

• (+) The small size is perfect(+)for my little hands, but may perhaps be

uncomfortable(-) or awkward(-) for a bigger person.

The first sentence has an ironic use of a positive word; the second an idiomatic use of

negation that doesn’t invert polarity. The third uses a complex structure that acts like an

unmarked contrastive. The last sentence expresses multiple conflicting opinions.

4.7 Default Scoring Algorithms

The default score used by Hu-Liu is the previous sentence’s score for a corpus consisting

of multi-sentence reviews. To improve the cases where the default score is used, we

explore the combination of our algorithm with the real-number score generating

collocation-based log-likelihood algorithm of Yu-Hatzivassiloglou [YHO3]. This proves

to be ineffective for the highly refined augmented lexicon, since the previous sentence

default accuracy increases as the nonzero accuracy increases, and this default

outperforms the relatively noisy collocation scoring in this case. Nevertheless the

collocation algorithm provides a better than random default scoring method for corpora

of isolated sentences where the previous sentence default does not apply.
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4.8 Application to Another Domain: Movie Reviews

We next apply our algorithm to another larger annotated sentence-level polarity test

corpus (that of Pang et al. [P+02]) in the new domain of movie reviews. Improvements

are shown for most of our developed lexicons and discovered shifter features. We note

that there are some important differences between the Hu-Liu corpus and that of Pang et

al. One is that since the sentences are all isolated movie review summaries and not

sequential sentences about the same subject, we cannot use the previous sentence’s score

as our default score. Also, since the sentence polarity is not focused around particular

feature words, we cannot use something like the effective opinion tie breaking scheme of

Hu and Liu. Since there are an equal number of positive and negative sentences in the

Pang corpus, the best default score we can give is that of the most frequent class,

resulting in 50% accuracy in these cases.

We begin with the Hu-Liu lexicon with WordNet expansion. Results are shown in Table

21.

Table 21: Hu Liu Lexicon with WordNet on Pang Corpus
Configuration
hulexWN -j hulexWN -jd

Accuracies
Total 5746/10662 0.5389 5771/10662 0.5413
Nonnull 4266/7702 0.5539 4291/7702 0.5571
Nonzero 3635/6440 0.5644 3649/6419 0.5685
Zero 631/1262 0.5000 642/1283 0.5004
Null 1480/2960 0.5000 1480/2960 0.5000
Coverage
Nonnull 7702/10662 0.7224
Nonzero 6440/10662 0.6040 64 19/10662 0.6020

We then try the HM lexicon with and without WordNet expansion. This dramatically

improves accuracy from 0.54 1 to 0.6 13. Interestingly, WordNet expansion improves

both accuracy (0.602 to 0.6 13) and coverage (0.62 1 to 0.792) in this corpus. These

results are found in Table 22.
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We then examine the negation shifter using the robust lexicon and these results are

reported in Table 24.

Table 24: Robust Lexicon with Negation Shifter
Configuration
myhx -jdg myhx jnrvdc

Accuracies
Total 6526/10662 0.6 121 6664/10662 0.6250
Nonnull 4684/6977 0.67 14 5794/8923 0.6493
Nonzero 4221/605 1 0.6976 5071/7478 0.6781
Zero 463/926 0.5000 723/1445 0.5004
Null 1842/3685 0.4999 870/1739 0.5003
Coverage
Nonnull 6977/10662 0.6544 8923/10662 0.8369
Nonzero 605 1/10662 0.5675 7478/10662 0.7014

We move on to the augmented lexicon and find that it extends to some degree to this new

domain by showing further improved accuracies overall. Likewise, we find that the rest

of our shifters improve accuracies in isolation and in conjunction. Since WordNet was

found to be effective in this corpus, we expand the augmented lexicon and obtain still

more accurate results. These results are found in Tables 25, 26, and 27.

Table 25: Augmented Lexicon on Pang
Configuration
myhx+ -jnrv myhx+ -jnrvdg

Accuracies
Total 6611/10662 0.6201 6668/10662 0.6254
Nonnull 5757/8955 0.6429 58 14/8955 0.6493
Nonzero 5065/7570 0.6691 509 1/7509 0.6780
Zero 692/1385 0.4996 723/1446 0.5000
Null 854/1707 0.5003 854/1707 0.5003
Coverage
Nonnull 8955/10662 0.8399
Nonzero 7570/10662 0.7 100 7509/10662 0.7043
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We have found that our accuracy increased with each of our various improvements. It

went from 0.54 to 0.61 with the change to using the intelligent lexicon from the simple

seed set that was expanded by WordNet. Accuracy further increased to 0.63 with the

addition of the other parts of speech to the lexicon along with some refinements. It rose

to 0.64 with the application of the other shifters along with WordNet expansion. Finally

it reached 0.66 with the application of the log-likelihood expansion.

4.9 Discussion of Results

In this section we summarize main steps that led to improvements in the algorithm. We

also discuss things that failed to improve accuracy like WordNet for the Hu-Liu corpus,

effective opinion tie breaking in some cases, and but-conjunction for effective opinion in

some cases.

Through the process of failure analysis, we iteratively discover the next most important

feature to model after each subsequent improvement. Since each step involves dealing

with the next most common source of failure, we make the largest jumps in accuracy first,

and then find more and more subtle refinements. The first important finding was that

each of the pieces of the original EIu-Liu algorithm was quite sensitive to the initial seed

set and the full lexicon used to score the sentences. The WordNet expansion algorithm as

it was described added a lot of noise to the polarity word set and hence introduced a lot of

errors. Also the effective opinion tie breaking was inconsistent as it helped in some

product domains and not others, and overall was often less accurate than the previous

sentence default.

Moving to the intelligent HM lexicon reduced the noise in the data and increased

accuracy, and led to the next important finding. This was the validation that nouns,

adverbs and verbs are important carriers of polarity in addition to adjectives. Adding

those words from the GI lexicon increased coverage and accuracy, and after pruning the
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list and adding to it in the next two phases of analysis, we were able to expose a range of

more subtle contextual constructs used in the expression of opinions. There are a number

of contextual valence shifters used to modify the polarity inherent in the lexical items of a

sentence. A number of these types of shifters, such as negation, contrastives, modals,

presuppositions, and but-conjunctions, invert the polarity of the lexical items they operate

on, sometimes inverting the same word’s polarity multiple times when they are present

together. There are still other shifters like adverbs of excess and sufficiency and hedging

that force polarity one way or the other, or reduce the strength of lexical polarity. For

each of our main improvements to the algorithm, including lexicon refinement, parts of

speech expansion, and contextual valence shifter adjustment, we were able to show a

statistically significant increase in accuracy.

Like the Hu corpus, the Pang corpus shows increasing accuracy of prediction as we

improve the lexicon and apply contextual valence shifters. There are however notable

differences. One example is the relative domain dependence of lexicon words. A word

like “complex” is generally negative for consumer products like cameras and dvd players

but positive for movie plots and themes. This suggests polar words exist on a scale of

broadness of application, where words like “annoying” and “enjoyable” are more

universally applicable, while words like “complex” and “simple” have domain dependent

polarity.

Because there are always cases where the predicted score is null or zero, default scoring

algorithms are important. Effective opinion tie breaking is possible when there are

feature words in the corpus but is found to be only marginally effective. Using the score

of the previous sentence when the corpus consists of paragraphs of evaluative text rather

than isolated sentences works well and is best with a refined intelligent lexicon. Default

scoring using log-likelihood lexical scores for non-seed words based on their collocation

frequency with seed words is the next best algorithm and the only option for isolated

sentence corpora like the Pang corpus.
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5 Conclusions and Further Work

Understanding evaluative language is an important task in natural language processing

with widespread applications. We have focused on the task of sentence level opinion

classification in the hope of discovering and classifying the basic building blocks of

evaluative discourse. Starting with a collection of existing algorithms, we have built a

flexible framework capable of classifying opinions with accuracy exceeding current state-

of-the-art results. We have discovered many of the important factors in performing

opinion classification, including the parts of speech that carry polarity, the range of

polarity attached to the different uses and senses of words, and some of the linguistic

constructs that shift the polarity contribution that words make to a sentence.

There are a number of other algorithms and ideas suggested in the literature that were not

applied to sentence level polarity prediction but that we feel could be integrated into our

system as improvement tools. One technique is the semantic orientation equation (called

SO-A, semantic orientation by association) of Turney and Littman [TLO3]. This is based

on the idea of pointwise mutual information, and works in a way very analogous to the

log-likelthood equation of Yu and Hatzivassiloglou [YHO3]. It however uses web search

hits with a proximity operator instead of corpus collocation to compute a polarity score.

The work was originally done using AltaVista’s NEAR operator, but that operator has

since become defunct (upon Yahoo’s acquisition of AltaVista in 2003). Turney has since

developed a Beowuif cluster containing a database of a terabyte of web pages and an

associated query language that includes a proximity operator. So SO-A can now be

computed using this static approximation of the internet. This could be used as an

alternate method for computing lexical polarity scores, or could be used as a method to

cross-check or filter out scores computed by other methods.

45



To improve the accuracy produced by the Yu and Hatzivassiloglou log-likelihood

collocation algorithm, we would like to try augmenting our corpus with other datasets to

increase the amount of collocation that will occur. This should produce a larger number

of more accurate scored polarity words.

The work of Riloff and her colleagues [R+03] suggests a method for extracting linguistic

patterns automatically. They have used a number of unsupervised machine learning

algorithms, such as AutoSlog-TS, MetaBoot, and Basilisk that implement the technique

they call “extraction pattern bootstrapping”. They use these algorithms to discover

patterns indicative of subjectivity, but we would like to explore the possibility of

applying these or similar techniques to discovering patterns to be used in polarity

prediction. These might include patterns that carry polarity or ones that shift the polarity

of the constituent polar lexical items. We will attempt to classify them based on

linguistic phenomena, or possibly use them to propose new linguistic models of

evaluative language.

To evaluate the patterns, we will explore the idea of measuring their consistency and

strength using metrics of polarity like the log-likelihood and SO-A equations. One idea

for doing this is to use the SO-A equation on a series of n-grams constructed by taking a

given pattern and substituting in different lexicon words. By doing this we would like to

be able to rank the patterns by consistency (how consistently they shift the polarity in the

same direction) and strength (how far they shift the polarity).

To optimize the way we use our various lexical and contextual classifiers, we would like

to experiment with boosting. Specifying our polarity features as classifiers for AdaBoost

[FS96] would allow us to optimize how they are used on our dataset for classification.

We provide a first pass of various shifters in our implementation and prove their

mechanics but the sets of marker words and phrases in each shifter category are subject to

expansion. This could be achieved through further rounds of failure analysis on new

corpora from other domains.
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We would also like to investigate but-conjunction, adverbs of excess and sufficiency, and

hedging in more detail. But-conjunction is a common form in evaluative text so finding

ways to distinguish its shifter usage would be very helpful. Modeling adverbs of excess

and sufficiency and hedging would add new layers to the system involving precedence

and strength that could improve accuracies further. Finally, we would like to investigate

more complex rhetorical devices such as idiom and irony. Starting with the General

Inquirer, we would like to compile a database of idiomatic patterns that can effect

polarity, and add this component to our system.

We have established a framework of tools and algorithms for opinion classification and a

methodology for expanding this framework. With further research, the precision of this

system will continue to grow as will its applicability to the task of understanding

evaluative text.

47



References

[BW99j Rebbeca Bruce and Janyce Wiebe. 1999. Decomposable modeling in natural
language processing. Computational Linguistics, 25(2).

[CVO4] Rudy Cilibrasi and Paul Vitanyi. 2004. Automatic meaning discovery using
Google. http://xxx.lanl.gov/abs/cs.CL/0412098.

[C95] Paul Cohen. 1995. Empirical Methods for Artificial Intelligence. MIT Press,
Cambridge, MA.

[E+00] Gerard Escudero, Lluis Marquez, and German Rigau. 2000. Boosting applied to
word sense disambiguation. In Proceedings of the 12th European Conference
on Machine Learning, pages 129—141.

[FS96] Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting
algorithm. In Machine Learning: Proceedings of the Thirteenth International
Conference, pages 148—156.

[G+03] Andrew Gordon, Abe Kazemzadeh, Anish Nair, and Milena Petrova. 2003.
Recognizing expressions of commonsense psychology in English text. In
Proceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (ACL-03), pages 208—215.

[HM97] Vasileios Hatzivassiloglou and Kathy McKeown. 1997. Predicting the semantic
orientation of adjectives. In Proceedings of the 35th Annual Meeting of the
Associationfor Computational Linguistics (ACL-97), pages 174—181.

[HLO4] Hu, M., and Liu, B. 2004. Mining Opinion Features in Customer Reviews. In
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI
2004).

[HTOO] Susan Hunston and Geoff Thompson. 2000. (Eds.) Evaluation in Text: Authorial
Stance and the Construction ofDiscourse. Oxford University Press.

[JMOO] Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall.

48



[MOO] Lluis Marquez. 2000. Machine learning and natural language processing. LSI
OO-45-R. Departament de Llenguatges i Sistemes Informatics (LSI), Universitat
Politecnica de Catalunya (UPC). Barcelona, Spain.

[M03] J. R. Martin. 2003. Introduction. Text 23(2). pages 171-181. Walter de Gruyter.

[M+90j George A. Miller, Richard Beckwith, Christiane Felibaum, Derek Gross, and
Katherine J. Miller. 1990. Introduction to WordNet: An on-line lexical database.
International Journal of Lexicography, 3 (4):235-244.

[RM98] Rosamund Moon. 1998. Fixed Expressions and Idioms in English: A Corpus-
Based Approach. Oxford University Press.

[NO0] NLProcessor — Text Analysis Toolkit. 2000.
http://www.infogistics.comltextanalysis .html

[P+02] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?
Sentiment classification using machine learning techniques. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(EMNLP-2002), pages 79—86.

[PZO4] Livia Polanyi and Annie Zaenen. 2004. Contextual valence shifters. In
Proceedings of the 2004 AAAI Spring Symposium - Exploring Attitude and
Affect in Text: Theories and Applications, pages 114-119.

[R+03] Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003. Learning subjective
nouns using extraction pattern bootstrapping. In Proceedings of the 7th
Conference on Natural Language Learning (CoNLL-2003), pages 25—32.

[SO2] Robert E. Schapire. 2002. The boosting approach to machine learning: an
overview. In Proceedings of the MSRI Workshop on Nonlinear Estimation and
Class,fication, Berkeley, CA.

[S04] Stanford Natural Language Processing Group. 2004. Stanford Tagger.
http://nlp.stanford.edulsoftware/tagger.shtml

[S+66] Philip J. Stone, Dexter C. Dunphy, Marschall S. Smith, and Daniel M. Ogilvie.
1966. The General Inquirer: a computer approach to content analysis. M.I.T.
studies in comparative politics. MIT Press, Cambridge MA.

[THOO] Geoff Thompson and Susan Hunston. 2000. Evaluation: An Introduction. In
Susan Hunston and Geoff Thompson (Eds.), Evaluation in Text: Authorial
Stance and the Construction ofDiscourse, pages 1-27. Oxford University Press.

49



[TLO3] P. Turney and M. Littman. 2003. Measuring praise and criticism: Inference of
semantic orientation from association. ACM Transactions on Information
Systems (TOIS), 21(4):315—346.

[WOO] Janyce Wiebe. 2000. Learning subjective adjectives from corpora. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), pages 735-740.

[W+O1] Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa
Wilson. 2001. A corpus study of evaluative and speculative language. In
Proceedings of the 2ndACL SIGdial Workshop on Discourse and Dialogue.
2001.

[W+99] J. Wiebe, R. Bruce, and T. O’Hara. 1999. Development and use of a gold
standard data set for subjectivity classifications. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics (ACL-99),
pages 246--253, University of Maryland.

[WWO3]Theresa Wilson and Janyce Wiebe. 2003. Annotating opinions in the world
press. In Proceedings of the 4th ACL SIGdial Workshop on Discourse and
Dialogue (SIGdial-03), pages 13—22.

[YNO4] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. 2003. Sentiment analyzer:
Extracting sentiments about a given topic using natural language processing
techniques. In Proceedings of the 3rd IEEE International Conference on Data
Mining (ICDM-2003).

[YHO3] Hong Yu and Vasileios Hatzivassiloglou. 2003. Towards answering opinion
questions: Separating facts from opinions and identifying the polarity of opinion
sentences. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP-2003), pages 129—136.

50



Appendix - Project Code

These scripts correspond to the framework presented in Chapter 3. There is one

preprocessing script for for the NLProcessor (O-hu-preproc.pl) and there are two post

processing scripts for the Standford Tagger (O-pang-prepend-stanford.pl followed by 0-

post-stanford.pl). The tagged xml corpus is then formatted with 1-proc-corp.pl. At this

point there is the option to expand the lexicon using the WordNet algorithm (scripts wn

init.pl, 2-wn-extract-adj.pl, and 3-wn-orient-pred.pl) or the log likelihood algorithm

(scripts 2-log-lex-count.pl, 3-log-word-stats.pl, and 4-log-word-scores.pl). Finally, the

formatted corpus is scored using 5-score-corp.pl (possibly across multiple corpora with

run-5-score-corp.pl). Further usage notes are found in the script comments.
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#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 0-hu-preproc.pl
###author: Adam Longton, longton@cs.ubc.ca

#
*****************************************************************

#description, inputs and output:
#takes a corpus file from the customer review data’ of Hu and Liu ‘04.
#converts from native format to xml markup, for input to the NLProcessor
#pos-tagger and chunker.

**** * ****** * ******* ***************** * **** *** ***

use strict;
use warnings;

my $usage = “usage: pen $0 <corpusfile>\n”;
die $usage if ($#ARGV < 0);
my $line;
#get input file
my $corpfile = shift;
open(CORP, $corpfile) or die “file error: $usage”;
print “<FILE>\n”;
while ($line = <CORP>)(

chomp $line;

#cleam up ampersands and less-thans to be valid xml input
$line =

#$line =— s/</&\#60;/g; --don’t need cuz not in corpus

if ( $line =— /(.*)\#\#(.+)/ ){ #a sentence
print “<S”;
if ($1 eq ““)(print “>$2</S>\n”;}
else (print “ info=\”$1\”>$2</S>\n”;}

elsif ( $line /\[t\J 7(•*)/ ){ #a review title
print “<TITLE>$l</TITLE>\n”;

#else do nothing, iust drop it

print “</FILE>\n”;
close(CORP);

###END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 0-pang-prepend-stanford.pl
###author: Adam Longton, longton@cs.ubc.ca

#**** ****************** *** ********** * * *********** *** ****** * * ******

#description, inputs and output:
#takes a corpus file from the pangi-lee movie review snippet/sentence polarity
#corpus and prepends it with score[+1]## (or score[-ll##) for input into 0-post-stanford
#script.
#

*****************************************************************

use strict;
use warnings;

my $usage = “usage: perl $0 <corpusfile>\n”;
die $usage if ($#ARGV < 0);
my $line;
#get input file
ny $corpfile = shift;
open(CORP, $corpfile) or die “file error: $usage’;
while ($line = <CORP>)(

chomp $line;
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#clean up ampersands and less-thans to be valid xml input
#$line s/&([’\#))/&\#38;$1/g;
#$line =- s/</&\#60;/g; *not in corpus

#for pang, rather than xml codas, usa own symbols:
$lina =— s/\</LT/g;
$line =— s/\>/GT/g;
#could also remove non IJTF-8 chars here by char ascii # limit maybe
print “scoret+l]##$line\n”; # for positiva sentences

#print “score[-l]##$line\n”; #for negative setences

close(CORP);

##END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 0-post-stamford.pl
###author: Adam Longton, lomgton@cs.ubc.ca

***************** * ******** * * * ***************** **** * **************

#description, inputs and output:
#takes a corpus file in the format of the ‘customer review data’ of Hu and Liu ‘04 that
has been
#stanford pos-taggad.
#converts from native plus stanford pos-tagged with ‘/‘ separators to
#xml markup (with ‘j separators), for input to phase 1 script.

use strict;
use warnings;

my $usage = “usage: pen $0 <corpusfile>\n”;
die Susage if ($#ARGV < 0);
my Slime;
#get input file
my $corpfila = shift;
opan(CORP, $corpfila) or die “file error: $usage”;

#denive corp name from filename:
$corpfile =—
my $corp = $1;
my $sid = 0;
my Stid = 0;
my $info;
my $sent;
print “<FILE fid=\”$corp\”>\n”;

while ($line = <CORP>)(
chomp Slime;
#don’t clean up ampersands and less-thsns to be valid xml input
#cuz already done in preproc
#Sline =— s/&([\#])/&\#38;$l/g;
#$line =— sI</&\#60;/g; --not in corpus

if ( $line = /(.*)\#\#(.÷)/ ){ #a sentence
$info = $1;
$sent = $2;
$sid++;
#switch / to — (note that it assumes lines end w/ a space)
$sent =— s/\/([’\/1+) /_$l /g;

primt “<S sid=\”$corp:$sid\””;
if ($info eq ““){print “>$sent</S>\n”;}
else (print info=\”$imfo\”>$sant</S>\m”;

elsif ( $lime =— /A\[t\] ?).*)/ )( #a review title
$tid++;
print “<TITLE tid=\”$corp:$tid\”>$l</TITLE>\m”;
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#else do nothing, just drop it
else(

print STDERR “$line\n”;

print “</FILE>\n”;

close (CORP);

##END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 1-proc-corp.pl
###author: Adam Longton, longton@cs.ubc.ca

*** ********** * * *

#description, inputs and output:

#this script is phase 1 of a multi-phase architecture that implements
#the sentence-level sentiment-polarity calculating scheme of
#[Hu and Liu 20041

#input: a corpus of POS-taged semtences. more precisely, a file from
#hu and liu’s ‘customer review data’ corpus 2004, preprocessed by
#0-hu-preproc.pl to convert it into XML, and pos-taggimg being dome
#by NLProcessor. (post proc’d for sent ids too i think, only so postag
#doesnt meed be done again.(

#the command to pos-tag it looks like, for the apex.xml corpus,

#cat . .7.. /hu-corpus/apex.xml bin/nlp.sh -q P.*/FILr -qs .*/Su
#-xml_f let -show_tags I bim/sgdelmarkup -q .*/W -p “\{#U_\(C\}”
4 > epex-tagged.xml
4
#the tagset is a modified penn treebank set. this script generalizes them
#in this way: N’->N, V->V, J’->J, amd R*_>R umless it’s RP (particle).
4
#output: to standard output, each lime is a clause, of form:
#<ann>, 0,0 (,<stem>: <pos>) *

#that is, a polarity annotation <amm> which cam have the values
#+ for only positive, - for only negative, and m for mixed opimioms, or
#else a 0 for unammotated amd presumably neutral opinion, this assumptiom
#is mot always true tho because they are subject targeted.. if a positive
#semtimemt is being expressed but not toward amy particular feature them
#it might be lablled neutral but positive words will want to score it
#positively. am example is the sentence ‘awesome_JJ !_.‘ foumd
#im the corpus.
4 we also have two more fields: semtence id and
#graded score. they are thrown into subfields of field 0 sep’d by semicolons.
#other fields continued:
#2 intially zero slots for pstv and ngtv
#lexicom-word counts (to be filled in later if using log-likelihood), and the word:pos
pairs
#for that clause.

#There are option-flags for choosing which poe’s you want to filter for.
4-n -v -j -r for noun verb adjective adverb, respectively.

#example:
4
#input line from cat.xml:
4<8 sid=”cat:23’ info=”cat[+21, dog[-i-3]”>The_BT cat_MN and_cc
#especially_RB the_DT dog_MN are_yB very_RB very_RB good_JJ .. </8>
4
#command-line execution:
#>l-hu-proc-corp.pl -vjr cat.xml
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#output line:
#cat:23;+;2.5,O,O,especially:R,are:V,very:R,very:R,good:J

use strict;
use warnings;

my Susage = “usage: perl $0 <xmlcorpusfile>\n”;
die Susage if (5#ARGV < 0);
#process imfile
my Scorpfile = shift;
open(CORP, Scorpfile) or die file error: Susage”;
#variables
my Slime; my @limeArr; my $sent; my @outArr;
my Sword; my Spos; my Spair;
my $imfo; my @infoArr;
my @annArr; my $sum; my Sm;

# eff opinion - need the info field for ph5 scoring
my @infoOutArr;
my $number = 0; my Sroumded = 0;

#proc file - lime im lime out..
while($lime = <CORP>)(

if( Slime /<g[”>]* info=\([A\n>]+)\fl/ )( #if an ammotated semt,
Simfo = $1;

@outArr= (0, 0, 0)
@annArr= (0, 0, 0)

#process bimary annotation
if( Simfo =— /\R÷/ (C

if( Simfo =— /\[—/ )( #mixed
$anmArr[l]=’m’;

else{ SemnArr[lJ=’+’; ) #positive

elsif( Sinfo =— /\[—/ )( #megative
$ammArr[l]=’-’;
# other option is to take sign of graded ann

#only proceed for + amd - (ignore m and 0, 0 including the two
#cases where mo score provided by hu-liu..
if( 5annArr[l] eq ‘÷‘

SannArr[l] eq ‘-‘ ){

if( Slime =— /<g(”>]*>\s*([’<3*)<\/g>/ (C
$semt = 51;

##do delimiter switching here:***************
Ssent =— s/\,/CM/g;
$semt s/\:/CL/g;
$sent =— s/\;/SC/g;

@limeArr = split / /,$semt;

#process other xml attrib (sid)
if( Slime =— /<S[>]* sid=\”([”\”>]+(\”[ )(

SanmArr{01 = $1;

#also put the info attrib into the output, for eff opinion scoring in pht.
# split on commas, remove leading spaces, replace other whitespace with am
It umderscore, join with coloms. clean up that occuremce of “;“ in
It anomalous “at&#38;t” feature word.
@imfoOutArr = split /,/,Simfo;
for( my Si = 0; Si <= SitimfoOutArr; Si++ ){

#remove leading spaces
SimfooutArr[5i] =—

Itreplace other whitespace with underscore
SinfooutArr[5i] =—

#put “&“ ‘s hack in
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SinfoOutArr[5i] =— s/&#38;/&/g;
Sotherwise should remove any remaimimg semicoloms, but ummecessary for

huliu corpus

my SimfoOutStr = join ‘:‘,@imfoOutArr;
SoutArr[2] = “FEATURES=” SimfoOutStr;

#process graded annotation usimg imfo attribute
@imfoArr = split /\[/,Simfo;
#if( Simfo !— /“\[/ )( <--for safety but ummecessary
shift @imfoArr; Spop off imitial part of string
fall other parts start with a number
U
Sm = 0;
Ssum = 0;
foreach my Schumk ( @imfoArr ((

if( substr(Schumk,0,l) eq ‘÷‘ )(
Ssum += substr(Schumk,l,l);
5m++;

elsif( substr(Schumk,O,l) eq ‘-‘

Ssum -= substr(Schumk,l,l);

if(Sm>O)(
Smumber = Ssum/5m;
Sroumded = sprimtf(”%.3f”, Smumber);
SamnArr[21 = Sroumded;

#imsert anmArr imto field zero of outArr
SoutArr[O] = join ‘;‘,@amnArr;

#process semtemce
foreach Spair (@limeArr)( #extract words of valid pos

if(Spair =— /({Fj÷)_([.%_]+)/ (f #disallows — amd —. cases
Sword = $1;
Spos = $2;
if( $pos =- /ANN*/ )( #matches NN[SP(PS)]?

#if(SoptsHasht’m’fl(
push @outArr, (Sword
U

elsif( Spos =- IVB./ (C #matches VB[DGNPZ]?
#if(SoptsHash( ‘v’}( C
push @outArr, (Sword “:V”);
U

elsif( $pos = /JJ*/ ){ #matches JJ[RS]?
#if(SoptsHash{’j’fl(
push @outArr, (Sword

elsif( Spos =- /‘RB.*/ (C #matches RB[RS]?
#if(SoptsHash{’r’}) C
push @outArr, (Sword “:R” (;
#1

elsif( Spos =— I”RP.*/ (C #matches particle RP
push @outArr, (Sword “:P”);

else(
push @outArr, (Sword “:Spos”

if(5#outArr > 2)( ###primt to outfile omly if momempty
primt join(’, ,@outArr(;
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print “\n”;

close (CORP);

###END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: wn-init.pl
###author: Adam Longton, longton@cs.ubc.ca
# this script inits some required environment variables for 3-wn-orient-pred.pl

# paths depend on particular experimental environment
‘setenv WNHOME /cs/public/gemeric/lib/pkg/WordNet-2.l/’; #location of WordNet package
‘setenv PERLSLIB /.autofs/homes/ubccshome/l/longton/adam/proj/wordnet/’; # location of
WordNet-QueryData-l.46 (WordNet perl interface)

#END

#! /hone/hin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 2-wn-extract-adj .pl
###author: Adfl Longton, longton@cs.ubc.ca
4 this script is the first of two used to expand an adjective lexicon using wordnet. this
one extracts
4 the adjectives from the corpus.

#input: a corpus of stemmed and POS-tagged sentences, in the format
#of the output of l-proc-corp.pl

#example:

#input line from lout.txt:
#cat:23;+;2.5,O,O,cats:N,are:V,nice:J,very:R,very:R,good:J,funny:J
S
#command-line execution:
#>2-hu-extract-adj.pl lout.txt > 2out-adjlist.txt

#output:
#fumny:J
#good:J
#nice : J

use strict;
use warnings;

my $usage = “usage: perl $0 <corpusfile>\n”;
die $usage if ($#ARGV < 0);
my $corpfile = shift;
open(CORP, Scorpfile) or die “file error: $usage”;

#process infile, output an adj-list
my Slime;
my %adjHash = 0;
my @lineArr; my Sword;
my $adjCoumt = 0; my $wordCoumt = 0;

while )Slime = <CORP>)(
chomp $line;
@limeArr = split /,/,$line;
for)my $i3;$i<$#lineArr;$i++) (

Sword = $lineArr[$i];
$wordcount++;
#throw adjectives into a hash
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#val=count for reference
if( Sword =— /\:J! (C

$adjhash{ $word}÷+;
$adjcount++;

close (CORP);

my $disCount = scalar keys %adjl-Iash;
#print adjs (for input into wordnet script (ph3()
foreach Sword (sort keys %edjHash)

print “$word\n”;

print STDERR “Nun Distinct Adjs = $disCount\m”;
print STONER “Nun Adjs = Sadjcount\n”;
print STONER “Nun Words = $wordcount\n”;

###END

#! /hone/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filenane: 3-wn-orient-pred.pl
###author: Adam Longton, longton@cs.ubc.ca
# this script is the second of two used to expand an adjective lexicon using wordnet.
this one does the wordnet
# expnasion given the adjectives from the corpus.

#input:pstv and ngtv word lexicons and an adj-list (2out(.

#output: an (expanded( wordscore file, this means a list of adjs consisting
#of those fron pstv file given score ÷1, ngtv -1, and those adjs fron the
#adj list that were synonyms or antonyns of known psv and ngv words
#according to wordnet. in these cases a syn has the same score as its root and
fan ant the opposite (if +1 then -1 for eg(.

#exanple:
#input:
#pv. txt:
#good:J
#quick:J

#nv. txt:
#bad:J

#2out-adj list.txt:
#fast : J
#good:J
#sl ow : J
#nice:J
#nonwerd : J

#connand-line execution:
#>3-wn-orient-pred.pl pv.txt nv.txt 2out-adjlist.txt > 3out.txt

#output:
#bad:J, -l
#fast:J, 1
#good:J, 1
#nice:J, 1
#quick:J, 1
#slow:J, -l

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

4* **setup÷proc options*** **** *** ** * * **** ** ****** ******** * ***** *** *** ****

use strict;
use warnings;
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#wordnet stuff
use WordNet: :QueryData;
my $wn = WordNet: :QueryData->new;

my $usage = “usage: pen $0 [-sa#] <pstvfile> <ngtvfile> <adjfile>\n”;
die $usage if ($#ARGV < 2);
my %optsHash = (‘s’,O, ‘a’,O, n ,0); #flags, default all off
#process options

-s : include ‘similar to’ words
-a : include ‘see also’ words

# -#, where # ±5 1-9 search only senses l-#
# -# is stored as n, where value, rather than being just a boolean, is
#also a count value

my $optsStr =

my $opts;
my @optsArr;
if($#ARGV > 2){

$opts = shift;
$optsStr = $opts;
$opts = /“-/ or die “file error: $usage”;
if($opts eq ‘-‘((die “file error: $usage”;)

$opts = substr($opts,l);
if($opts = /Vsal-9]/){die “file error: $usage”;}

@optsArr = split I/,$opts;
foreach my $c (eoptsArr) (

if( $c =- /[l—9]/ )(
$optsHash{ n

else(
$optsHash($c)=l;

#***file processing setup* **** ***** * ** * *** **************** * *** ************ **

#process infiles
my $pfile = shift;
my $nfile = shift;
my $adjfile = shift;

open(PSTV, $pfile) or die “file error: $usage”;
open(NGTV, $nfile) or die “file error: $usage”;
open(ADJ, $adjfile) or die “file error: $usage”;

# append the outputfiles with the same suffix found in the adjfile (ie which corpus was
it)
my $corpTag =

it) $adjfile =- /2out(—.+)\.txt/ ){
$corpTag = $1;

open(SEEDY, “>seedyAdjs$corpTag.txt”) or die “error trying to open filel for writing”;
open(ADDED, “>addedAdjs$corpTag.txt”) or die “error open file2 for writing”;
open(SCORED,”>scoredAdjs$corpTag.txt”) or die “error open file3 for writing”;
open(UNUSED, “>unusedSeeds$corpTag.txt”) or die “error trying to open filel for writing”;

# put the command in the added file (which now also has the via words)
my $commandAndArgs = “perl $0 $optsStr $pfile $nfile $adjtile”;
print ADDED “command: $commandAndArgs\n”;

#hashes to hold seed words (pv + nv) and unscored adjs
my %seedHash = 0;
my %adjHash = 0;
#hash to hold adjs found in orig seeds
my %seedyAdjs = 0;
#hash to hold adjs with synonyms in (current) seeds list
my %addedAdjs = 0;
#mar08 hash to hold which synonym of an added word caused it to be added
my %addedViaHash = 0;
#aug2- hold unused seeds
my %unusedSeeds = 0;
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#hashes to hold already generated syns and ants arrays for words from adj list
my %synHash = 0;
my %antHash = 0;

#***file processing*********** **************************** **************

my $line;
while ($line = <PSTV>)(

chomp $line;
$seedHash$line}=l;

close(PSTV);

while ($line = <NGTV>)
chomp $line;
$seedHash($line}=-l;

# make a copy of orig seed hash for compare at end..
my %origSeedHash = %seedHash;
close (NGTV);

while ($line = <ADJ>)(

chomp $line;
$adjHash{$line}=undef;

close(ADJ);

my @adjs = sort keys %adjHash;
my $s = scalar adjs;
# to see what’s getting cut, what’s getting used
print ““, “START adjlist(N=$s): “, join(”, “, adjs), “\n\n”;

#my step — prune seeds from adjs
foreach my $seed (keys %seedHash)

if( exists($adjHash($seed}) )(
delete ($adjHash$seed));
#but add it to holder hash with corrsp orientation
$seedyAdjs{$seed} = $seedHash{$seed);

else(
$unusedSeeds($seed} = $seedHash($seed);

my $uCount = scalar keys %unusedSeeds;
print “\nunused seeds count: $uCount\n°;
foreach my $seed (sort keys %unusedSeeds){

print UNUSED “$seed, $unusedSeeds{$seed)\n”;

@adjs = sort keys %adjHash;
$s = scaler @adjs;
print “‘, “PRUNED (seedless) adjlist(N=$s): “, join)”, “, @adjs), “\n\n”;

#HL’ 5 algorithm* * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

my $sizel; my $size2;
my $iter = 1;
do C

$sizel = scaler keys %seedHash;
oriemtationSearch(\%adjHash, \%seedHash, \%addedAdjs, \%addedViaHash);
$size2 = scalar keys %seedHash;
print “, “XX($iter)XX sizel=$sizel and size2=$size2\n\n”;
$iter-f--I-;

while($sizel $size2);

print ““, “\nEND (unused) adjlist(N=” , scaler keys %adjHash, “): “, join(”, “, sort keys
%adjHash), “\n\m”;

#***output* *** * ******** * ** ***** **** * * * * * * ******* ** *** * ****** *** ************

my $sCoumt = scalar keys %seedyAdjs;
print “\nseedy adj count: $sCount\n”;
foreach my $adj (sort keys %seedyAdjs)
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print SEEDY “$adj , $seedyAdjs($adj )\n”;

my $aCount = scalar keys %addedAdjs;
print “\nadded adj count: $aCount\n”;
foreach my $adj (sort keys %addedAdjs((

print ADDED “Sadj,$addedAdjs($adj), \t\t\t$addedViaHash{$adj}\n”;

foreach my $adj (keys %seedyAdjs(
$addedAdj s { $adj) = $seedyAdj s ($adj };

SaCount = scalar keys %addedAdjs;
print “\ntotal scored adj count: $aCount\n\n”;

#print output that will be used for scoring:
foreach my $adj (sort keys %addedAdjs((

print SCORED “$adj,$addedAdjs($adj3\n”;

###END MAIN section******************************* * *** * * ******************

S * * *subroutines* * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

#note we prune first adjs that are seeds. then no need to
#check for existence, instead, when one is added to seeds, remove it
#from adjs.
sub orientationsearch{

my ($adjRef, $seedRef, SaddedRef, $addedViaRef( =

my @synonyms = ((;
my Santonyms = (H
my Sword;
my $found;
foreach my Sadj (keys %($adjReffl{

$found = 0;
((get synonyms
((synonyms = getSynonyms($adj);
print ““, “--grabbed synonyms of $adj\n”;
((for each, try to find it in seedlist. if do, then add orig word
((with same polarity, and remove it from adjlist.
LOOP: foreach my $syn (@synonyns(

if( exists(SseedRef->($syn}( (C
$seedRef->($adj 3=$seedRef->f$syn};
delete ($adjRef->($adj H;
((and add it to added hash
$addedRef->{$adj )=$seedRef->($syn);
((mar08 and add it and its via to the addedVia hash
$addedViaRef->(Sadj)=”via syn: $syn”;
$found = 1;
print ““, “-0-0-0-0-added $adj to seedslist via $sym\n”;
last LOOP;

((if not found yet, check antonyns.. if then, add w/ opp polarity.
if( $found (C

((get antonyns
((antonyns = getAntonyns($adj(;
print ““, “--grabbed antonyms of $adj\n”;

LOOP: foreach my Sent (@antonyns(
if( exists($seedRef—>{$ant}( ((

$seedRef->($adj)= (-l( * SseedRef->{$ant};
delete($adjRef->{Sadj }(;
((add it to added hash
$addedRef->{$adj}= (-l( * $seedRef->($ant};
((add it and its via to the addedVia hash
$addedViaRef->($adj}=”via anto: $ant”;
print “, “-0-0-0-0-added $adj to seedslist via $ant\n”;
last LOOP;
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print ““, “\n”;

#takes a mysyntax word like good:J,
#turns it into a wordnet:querydata word, like good#a. restrict in and out to
#non-phrasal (single word) lexemes.
#optimization: only generate syn(and ant) lists at most once
sub getSynonyms(

my ($adj) =

#unless we’ve already generated the synonyms on a prey iteration..
unless( exists($synHash($adj}) )(

my $word;
my $w;
my @senses = ()
my %syns = 0;
my @currSyns = 0;
my @currSims = 0;
my @currAlsos = 0;

#convert into wordnet syntax
$adj /(t”\:]+)\:J/;
$word = $1 .

#generate all synonyms: use synset, ‘similar to’ synsets,
#and ‘see also synsets.
@senses = $wn->querySense($word);
#chop sense list down to ‘n’ values if that option is nonzero
if( $optsHash(’n’} ){

if( $#senses >= $optsHash’n’} )
splice @senses, $optsHash{’n}; #chop from n onward

foreach my $sense (@senses)(
@currSyns = $wn->querySense($sense, ‘syns”);

foreach my $syn (@currSyns) {
$syn =- /“(V\4t]+)\4t/; #grab the word before the first ‘#‘

= $1;
#if not multiword lex, add it
unless( $w = I[_ 1/ )( #expect only — for multis, but be safe

$syns(”$w:J” }=undef;

if) $optsHash’s} )(
@currSims = $wn->querySense($sense, “sin”);
#print “ ‘similar to’ synsets:\n”;
foreach my $sim (@currSims){

@currSyns = $wn->querySense($sim, “syns”);
#print “ $sim: “, join(”, “, @currSyns), ‘\n”;
foreach my $sym (@currSyns) {

$syn =— /“([\#]+)\#/; #grab word before first ‘#‘

$w = $1;
#if not multiword lex, add it
unless ( $w = / [_ ] / ) ( #expect only —‘ but be safe

$syns”$w:J”=undef;

if( $optsHash(’a’} )(
@currAlsos = $wn->querySense($sense, “also”);
#print “ ‘see also’ synsets:\n”;
foreach my $also (@currAlsos){

@currSyns = $wn->querySense)$also, “syns”);
#print “ $also: “, join(”, “, currSyns), ‘\n’;
foreach my $syn (@currSyns) (

$syn = /“([“\#]-‘-)\#/; #grab word before first ‘#‘

$w = $1;
#if not multiword lex, add it

62



unless( $w =- I[_ 1/ )( #expect only —, but be safe
$syns(”$w:J”)=undef;

#add our new synlist to the adj entry of synHash
$synHash($adj)=[sort keys %syns];
print ““, synonyms of $adj: “, join)’, “, $synHash($adj}}), “\n;

#now we have the synonyms in %syns, return them (the keys)
return @$syriHash{$adj));

sub getAntonyms{
my ($adj) =

#unless we’ve already generated the synonyms on a prey iteration..
unless( exists($antHash{$adj)) ){

my $word;
my $w;
my @senses = 0;
my %ants = 0;
my @currAnts = 0;
my @currSyns = 0;
#convert into wordnet syntax
$adj I([\]+)\:J/;
$word = $1 .

#gen all senses
@senses = $wn->querySense($word);
#aug3—chop sense list down to n values if that Option is nonzero
if( $optsHash{’n’} )(

if( $#senses >= $optsHash{’n’) ){
splice Psenses, $optsHash(’n’}; #chop from n onward

foreach my $sense (senses)(
@currAnts = $wn->queryword($sense, ants”)
#print “‘antonym synsets:\n”;
foreach my $ant (@currAnts)

@currSyns = $wn->querySense($ant, “syns”);
#print ‘ $ant: “, join(”, “, @currSyns), “\n”;
foreach my $syn (@currSyns) {

$syn = /“([“\#J+)\#/; #grab the word before the first ‘#‘

$w = $1;
#if not multiword lex, add it
unless( $w = /[_ 1/ )( #expect only — for multis, but be sate

$ants{”$w:J’)=undef;

#add our new synlist to the adj entry of synHash
$antHash($adj}=[sort keys %ants];
print ““, “antonyrns of $adj: “, join(’, “, {$antHash($adj)}), “\n;

#now we have the antonyms in %ants, return them (the keys)
return @($antHash{$adj } };

###END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 2—log-lex-count.pl
###author: Adam Longton, longtoncs.ubc.ca
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# this script is 1 of 3 that do the log-likelihood lexicon expansion.

#*****************************************************************

#description, inputs and Output:
#input: a positive lexicon, a negative lexicon, and a corpus of stemmed
#and POS-tagged sentences, in the format
#of the output of phase 1 script
#the pstv and ngtv lexicons are lists of word P05 pairs, one per
#line (see eg.)
#
#there is an option, -n, that will only print lines with at least
#one nonzero count. (this presumably reduces the data set by a large
#fraction, down to clauses with only first generation collocations
#with lexicon words.)
4
#output: to standard output, each line is a clause, of form:
#<clause-id>, <PC>, <nc> ( , <stem>, <pos>) +

#that is, a clause id, pstv lexicon-word count, ngtv lex-word-count,
#and the stem/pos pairs for that clause.

#example:

#say you have these input files:
#corpus .txt:
#23,0, O,be:V,very:R,very:R, good:J,poor:J,nice:J
#24,0, 0,Amy:N,be:V, funny:J

#poS .txt:
#excellent :J
#good:J
#nice:J

#neg. txt:
#poor : J
#bad:J
#nasty:J
#
#command-line execution:
#>2-log-lex-count.pl -n posv.txt negv.txt corpus.txt

#output:
#23,2,l,be:V,very:R,very:R,good:J,poor:J,nice:J

******** ** * **** *** *** * ***** ** ***** *****************

use strict;
use warnings;

my $usage = “usage: perl $0 [-n] <pstvfile> <ngtvfile> <corpustile>\n”;
die $usage if ($#ARGV < 2);
###process option
my $zl; #default is to print limes with double zero counts
my $opts;
if($#ARGV > 2){

$opts = shift;
$opts = /-n-t-/ or die “file error: $usage”;
$z0; #meaning double zero is not permitted

#process infiles
my $pfile = shift;
my $nfile = shift;
my $corpfile = shift;
open(PSTV, $pfile) or die “file error: $usage”;
open(NGTV, $nfile) or die “file error: $usage”;
open(CORP, $corpfile) or die “file error: $usage”;

#hashes to hold lexicons- store items as strings in sane form as
#input, ie “stem:pos” (with the colon), this poe info is needed to
#(possibly) distinguish between homonyms of different poe.
#
#may incorporate sense number too if WSD is done in future...
my %pHash = 0;
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my %nHash = 0;
my Slime;
while (Slime = <PSTV>)(

chomp Slime;
SpHash(Sline) =umdef;

close (PSTV)
while (Slime = <NGTV>((

chomp Slime;
SmHash(5 lime) =umdef;

close (NGTV);

#comstruct outlimes on the fly from corpus inlimes
my Spc; my Smc;
my @lineArr;

while (Slime = <CORP>)(
Spc=O, Snc=O; #reset current counts
chomp Slime;
@limeArr = split /,/,Slime;
for (my 5i3;5i<5#lineArr;5i++) C

Spc++ if( exists(SpHash(SlineArr[5i]))
Smc++ if( exists(SnHash(SlineArr[5i)})

SlimeArr[lJ=Spc; #update counts
SlimeArr[2)=Snc;
if(5z Spc>O Snc>OY( #consider mom-zero option

print joim(’, ‘,@lineArr(;
primt “\n”;

close (CORP(;

###END

#1 /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filemame: 3-log-word-stats.pl
###author: Adam Lomgton, lomgtom@cs.ubc.ca
# this script is 2 of 3 that do the log-likelihood lexicon expansiom.

#descriptiom, imputs amd output:
#imput: the output of phase 2 (see its comments(. it is a file
#of clauses with counts of pstv and mgtv lexicon word occurences.

#the options are just like phase 1 - they allow you to filter for
#specific parts of speech. this is a separate operation from the
#filterimg in phase 1. here it is so you cam generate a stats file
#om only those pos’s you’re interested in (presumably the ones that you
#predict will carry polarity(.

#output: to standard output each lime is stats of a word, of form:
#<stem> : <pos>, <ic>, <pic>, <mic>, <pcc>, <ncc>
#where
#ic = imstance coumt, the number of occurences of that word in pstv
#or ngtv comtexts. a pstv (mgtv( ‘comtext’ is a clause that
#has at least ome pstv (mgtv) lexicon word in it.
#pic = pstv instance count, number of occurences of that word in pstv
#contexts
#nic = same as pic, but for ngtv contexts
#pcc = pstv collocation count, the number of pstv lexicon words
#that co-occur in clauses with the word
#ncc = same as pcc, but for mgtv lex words

#note - for the special case of the same word appearing multiple
#tines in a clause, each instance is processed separately, so
#imstances and collocations all get multiply counted in these cases
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#(even for the same instances of lexicon words).

#the output will be in alphabetical order.
#
#the first four lines are totals for the 4 parts of speech

#example:

#say you have this input tile:
#corpus. txt:
#23,2,l,be:V,very:R,very:R,good:J,poor:J,nice:J
#24,l,0,Amy:N,be:V,exceptionally:R,funny:J,nice:J
#
#command-line execution:
#>3-log-word-stats .pl corpus .txt
#
#output:
#N, 1, 1, 0, 1, 0
#V, 2, 2, 1, 3, 1
#J, 5, 5, 3, 8,3
#R,3, 3, 2, 5,2
#P,my:N, 1,1,0,1,0
#be :V, 2,2,1,3,1
#exceptionally:R, 1,1,0,1,0
#funny:J, 1,1,0,1,0
#good:J, 1,1,1,2,1
#nice:J, 2,2,1,3,1
#poor:J, 1,1,1,2,1
#very:R,2,2,2,4,2

*****************************************************************

use strict;
use warnings;

##for now don’t impl onlyfile
my $usage = “usage: pen $0 —nvjr <corpusfile>\n”;
die $usage if ($#ARGV < 0);

my %optsHash = (‘n’,l, ‘v’,l, ‘j’,l, ‘r’,l); #flags, default all on

###process options
my $opts;
my @optsArr;
if($#ARGV > 0)(

$opts = shift;
$opts =- /“-/ or die “file error: $usage”;
if($opts eq ‘-‘((die “file error: $usage”;}
$opts = substr($opts,1);
if($opts =— /[“nvjr]/) (die “file error: $usage”;}
@optsArr = split //,$opts;
%optsHash = (‘n’,O, ‘v’,O, ‘j’,O, ‘r’,O); #reset
foreach my $c (@optsArr) (

$optsHash($c}=1;

#process infiles
my $line;
#process corpus input file
my $corpfile = shift;
open(CORP, $corpfile) or die “file error: $usage”;

#word hash - keys are stem:pos strings (just like input) and
#values are rats to anon arrays of
#size 5, for ic,pic,nic,pcc,ncc counts
my %wHash = 0;

#totals hash
my %tHash = (‘N’=>[O,O,O,O,O],

‘V’=>(O,O,O,O,O]
‘J’=>{O, 0,0,0,0]
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k =>[0, 0,0,0,01);

#generate and update word hash entries fron corpus mimes
#keep running global totals counts..

my $pc; my $nc;
my @lineArr;
my $pos;

while (Slime = <CORP>({
chomp $line;
@lineArr = split /,/,$line;
$pc=$lineArr[l];
$nc=$limeArr[2];
for (my $i=3;$i<=$#lineArr;$i++) {

$pos = substr($lineArr[$i],—l,l);

##added may3o--need pos-filtering here, not im step 1
if( $pos eq ‘N’ && $optsHash(’n’) Spos eq ‘V && $optsHash(’v’} $pos eq ‘J’

&& $optsHash(’j’} Spos eq ‘R’ && $optsHash(’r’) (C

unless( exists($wHash($lineArr[$i])) (
#imitialize the anon count array for curr word
$wHash{$lineArr[$i]}=[0,0,0,0,0];

5wHash($limeArr[$iJ}—>[0]÷-t-;
SwHash($lineArr[$i]}->[l]÷+ if $pc;
$wkash{$lineArr[$il)->{2]÷+ if $nc;
$wkash{SlineArr[$i])—>[3] += $pc;
$wI-{ash{$lineArr($i])—>[41 += $nc;

#update running totals
#$pos = substr($lineArr[$i],-l,l(;
$tkash($pos)—>[0]-i-+;
$tHash($pos)—>[l]+-i- if $pc;
$tHash($pos)—>[2]-i-÷ if $nc;
$tHash($pos)—>[3] += $pc;
$tHash($pos)—>[4] ÷= Snc;

close(CORP(;

#print totals as first 4 lines of output
foreach my $pos (‘N’, ‘V’, ‘J’, ‘R’({

print $pos .

print join(’, ‘, @{$tHash($pos}}(;
print “\n”;

#print the words with their counts, in lexical order
foreach my Sword (sort keys %wHash(f

print Sword
print join(’,’, @($wHash($word))(;
print “\n”;

###END

4! /hone/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filenaxne: 4-log-word-scores .pl
###author: Adam Longton, longton@cs.ubc.ca
# this script is 2 of 3 that do the log-likelihood lexicon expansion.

#description, inputs and output:
#input: the output of phase 3 (see its coxnnents(. it is a file
#of lines of 6 comma separated fields. they are sten:pos entries with
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#5 various polarity word collocation counts.

#output: word, score pairs (score defnd by [yuHatzo3] eqn)
S
#example:
S
#imput file, word—stats.txt:
SN, 1, 1, 0, 1, 0
#V, 2, 2, 1, 3, 1

5, 5, 3, 8,3
#R,3,3,2,5,2
#Axny:N, 1,1,0,1,0
#be:V,2,2,1,3,l
#exceptionally:R, 1,1,0,1,0
#funmy:J, 1,1,0,1,0
#good:J,l,1, 1,2,1
#nice:J, 2,2,1,3,1
#poor:J,l,1, 1,2,1
#very:R,2,2, 2,4,2

#connand-line execution:
5>4-log-word-scores .pl word-stats .txt
S
#output:
#Amy:N, 0
#be:V, 0
#exceptionally:R, 0.310154928303839
#funny:J, 0.211309093667207
#good:J, —0.376477571234912
#nice:J, —0.040005334613699
#poor:J, —0.376477571234912
#very:R, —0.200670695462151

** * * * * * * ******* * ******* ****** ***** * ** **********

use strict;
use warnings;

my Susage = “usage: perl 50 <word-stats-f ile>\n”;
die Susage if (5#ARGV < 0);
#define epsilon for smoothing (for zero counts)
my Sep=0.5;
#process imfile
my 5wordfile = shift;
opem(WFILE, Swordfile) or die “file error: Susage”;

my Sword; my Sic; my Spic; my Smic; my Spcc; my Smcc;
my Sscore;
my Slime;
my Spos;
my @tempArr;

#grab totals info from 1st 4 limes.
my%tHash= (‘N’=>[],’V’=>[],’J’=>[],’R’=>[]);

for(my 5i=0;5i<4;$i++){
Slime = <WFILE>;
chomp Slime;
@tempArr = split /,/,Slime;
Spos = shift @tempArr;
for(my 5j=0;5j<5;5j-i-+){

push( @(StHesh(Spos}}, StempArr[5j1 );

#precalc global score offsets for each pos. tack it onto the
#anom array in tRash
Smote that the offset is +totalmcc-totalpcc
my Sos;
my Stmcc; my Stpcc;
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foreach my $pos (N, ‘V’, ‘J’, ‘R)
$tncc=$tHash($pos)—>[4]
$tpcc=$tHash($pos)->[31;
#these cases shouldn’t occur in a full corpus, only here for testing
#$tncc = 0.5 if $tncc == 0;
#$tpcc = 0.5 if $tpcc == 0;
$os = log($tncc + $ep) - log($tpcc + $ep)
#$os = 0; ###txnp
push @{$tHash($pos}), $os;
#print $pos. ‘, . $os . ‘, ‘ . exp($os) .

my $expscore;
#print the words with their scores, in lexical order
while ($line = <WFILE>){

chomp $line;
($word,$ic,$pic,$nic,$pcc,$ncc) = split /,/,$line;
$pos = substr($word,-l,l); #last char
$score = log($pcc + $ep) - log($ncc + $ep) ÷ $tHash($pos}->[5J;
$expscore = sprintf( “%.5f”, exp($score) );
print ‘$word, $score, $expscore, $ic, $pic, $nic, $pcc, $ncc\n”;

close(WFILE);

###END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: 5-score-corp.pl
###author: Adam Longton, longton@cs.ubc.ca
# this script takes a scored lexicon and a formatted tagged annotated corpus and predicts
the polarity of the sentences
# in the corpus.

#It has options j nvrpmcdgeandb.
# j n v r are the parts of speech you want to score in the corpus.
# p - presupposition context shifter
# m - nodal” context shifter
# c - “contrastive” context shifter
# d - “def lag” option. these are “stop” words that signal a break in the negation context
window, basically it
# provides a coarse estimate of syntactic boundaries, as far as negation words are
concerned, if a stop word
# cones after a negation word, it “deflags” this negation word, reducing its effect to
nothing.
# g - “negation” context shifter
# e - effective opinion processing (tie breaking and optionally but-logic)
# b - “but” context shifter or effective opinion but-logic (toggled in code)

*

use strict;
use warnings;

my $usage = “usage: perl $0 -jnrvdgbcmpxe <scorefile> <corpusfile> [<negWindow>)
[g<addNegWord>] [c<addConWord>] [def<defaultScoreCode>) \n”;

my $minArgs = 3; # opts letters after the “-“ are manditory. this simplifies the optional
params like negWindow.
my $rninLastlndexOfArgv = $miriArgs - 1;
die $usage if ($#ARGV < $rninLastlndexOfArg-v);

my %optsHash = (‘n’,l, ‘v’,l, ‘‘,l, ‘r’,l, ‘g’,l, ‘b’,l, ‘d’,l, ‘c’,l, ‘m’,l, ‘p’,l, ‘x’,l, ‘e’,l);
#process options
my $optsStr =

my $opts;
my @optsArr;

$opts = shift;
$optsStr = $opts;
$opts =- /“-/ or die “file error: $usage”;
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if($opts eq -‘)(die “file error: $usage”;)
$opts = substr($opts,l);
if($opts =- /[nvjrgbdcmpxe]/) (die file error: $usage”;}
@optsArr = split //,$opts;
%optsHash = (‘n,O, ‘v’,O, ‘j’,O, ‘r’,O, ‘g’,O, ‘b’,O, ‘d’,O, ‘c’,O, ‘m’,O, ‘p’,O, ‘x’,O, ‘e’,O);
#reset
foreach my $ch (@optsArr)

$optsHash{$ch}=l;

#get input files and params
#throw word scores file into a hash (word/score as key/value)
my $scorefile = shift;
open(SCOR, $scorefile) or die “file error: $usage”;

my%wHash= 0;
my @lineArr;
my @annArr;
my $line;
while ($line = <SCOR>)(

chomp $line;
@lineArr split /,/,$line;
#only add cand scoredwords (for nvjr subsets)
if) &isCandidateString($lineArr[O]) )(

$wHash($lineArr[O] )=$lineArr[1];

close(SCOR);

# process other params:
my $corpfile = shift;
open(CORP, $corpfile) or die “file error: $usage”;

#append the outputfile with the same suffix found in the input corpus file
my $corpTag =

if) $corpfile =— /lout(—.+)\.txt/ )(
$corpTag = $1;

#some params of the corp scoring loop further down, moved up to here for optional
overrides.
my $negWindow = 6; #5 is better for j only
my $butWindow = 9999; #for advanced but as negation, inf window (ie to beginning of
sentence...)
my $conWindow = 8;

* optional overrides
my $negWinStr =

my $negWinArg =

if($#ARGV >= O)( #means we have further args we haven’t shifted Out yet
$negWindow = shift;
$negWindow = /“\d-i-$/ or die “file error: $usage”; #must be an posy integer
$negWinArg = $negWindow;
$negWinStr = “-$negwindow”;

my $addNegWordStr =

my $addNegWordArg =

if($#ARGV >=O)( #optionally add “no” to meg list. hurts adj only expts but helps jnrv.
use 0/1 as bools and req prepend with g.

$addNegWordArg = shift;
$addNegWordArg =- /“g[Ol]$/ or die “file error: $usage, bad arg: $addNegWordArg”;
$addNegWordStr = “-$addNegWordArg”;

my $addConWordStr =

my $addConWordArg =

if($#ARGV >=O){ #optionally add “while” to contrastives list, use 0/1 as bools and req
prepend with c.

$addConWordArg = shift;
$addconWordArg =- /“c[Ol]$/ or die “file error: $usage, bad arg: $addConWordArg”;
$addConWordStr = “-$addConWordArg”;
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my $defscorestr =

my $defScoreArg =

if($#ARGV >=O){ #optionally specify the default scoring algortihm for ties and nulls. 0-
alwaysNegv, l-alwaysPosv,2-UsePrevsentscore,3-alternate-t-and-. req prepend with def.

$defScoreArg = shift;
$defscoreArg =— /Adef[0123]$/ or die “file error: $usage, bad arg: $defScoreArg”;
$defscorestr = “-$defscoreArg”;

#set up output files
open (RES,
“>results$(corpTag)${optsStr)$(negwinstr}$(addNegwordstr}$(addconwordStr}$(defScoreStr}. t
xt”) or die “error trying to open filel for writing”;
open(ACC, “>acc.txt”) or die “error trying to open file2 for writing”;

#reconstruct arguments of this script call and record this in the results output file for
reference
my $coninandAndArgs = “perl $0 $optsStr $scorefile $corpfile $negWinArg $addNegWordArg
$addConWordArg $defScoreArg”;
print RES “command: $comnandAndArgs\n”;

#now score each test line by averaging its words that are
#in the word score hash, default score is zero (neutral polarity(.

my $score;
my Sn; #number of scored words found in the current sentence

#counters
my $nSuccNonzero = 0; ny $nSucczero = 0; my $nSuccNull = 0;
my $nNonzero = 0; my $nzero = 0; my $nNull = 0;
my $nSuccNonZeroEff = 0; my $nNonzeroEff = 0;
my $nSucccandNull = 0; my $ncandNull = 0;
my $cendFlag = 0;
my $cends =

#internal flag-switch for using nulls or counting null words as zero.
my $usezeros = 0;
#needed for formatted number output
my $number = 0; my $rounded = 0;
#previous binary score holder for default scoring in 0.000 and null cases
my $prevScore = ‘+‘; #note the arbitrariness of + vs -

#neg and but flags
my $negX; #negetion multiplier 1 or -l
my $negcount;
my $butX; my $butCount; my $butFlag = 0;
my $conX; my $concount; my $conFleg = 0;

my %deflagHash = 0;
if( $optsHash(’d’} ){

%deflagHesh =

(“but”,O, “except”,O, “however”,O, “only”,O, “elthough”,O, “though”,O, “while”,O, “wherees”,O,

my %contrastHash = 0;
if( $optsHash(’c’} (C

%contrastHash = (“although”,O,”despite”,O,”while”,O(;
if($addConwordArg eq “cO”((

%contrastHash = (“although”,O,”despite”,O);

my %nodell-{ash = 0;
if( $optsHash{’n’ (C

%nodelHash = (“would”,O,”should”,O);
#%modalHash = (“would”,O,”should”,O,”could”,O);

my %presupHash = 0;
if( $optsHash{’p’) (C

%presupHesh =

(“niss”,O,”forget”,O,”refused”,O,”assumed”,O,”hard”,O,”harder”,O,”less”,O);
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# to be investigated:
my %excessHash = U;
if( $optsHash(’x’} H

%excesshash = (“overly”,O);

#%excessaash = (“overly”,O,”too”,O,”enough”,O);

my %megxash = U;
if( $optsHash{’g’} (C

%megHash =

(“not”,O,”never”,O,”n’t”,O,”doesmt”,O, “‘t” ,O,”cannot”,0,”nothing,O,”nor”,O, “dont”,O,”wou
ldnt”,O,”no”,O);

if($addNegWordArg eq “gO”)(
%megHesh =

(“not”,O, “never” ,0, “n’t” ,0, “doesmt”, 0, “‘t” ,0, “camnot” , 0,”nothing” ,0, “mor”,O, “dont”,O, “wou
ldnt”,O); #redefine w/o no.

my %butHash = (1;
if( $optsHash(’b’) (C

%butHash = (“but”,O,”except”,O,”however”,O);
#to be investigated: yet though whereas despite nevertheless nonetheless

my $negflistance;
my $but]Jistance;
my $conDistance;

# but variables
my $advancedBut = 1; #enables “but” shifter for but-as-negation
my $butAsNot = 1; # 0 means just exclude don’t invert affected words
my $butflefaultFlip = 0; # experimental
my $effButEmabled = 0; # used wih effective opinion to do hu-liu but-conjunction logic.
if this is 1 $advancedBut must be 0 and vice versa

my @wordArr;
my $advCon = 1;
my $comAsNot = 1;
#for the flip def score alg, for corps of isolated setences
my $zflip = ‘—‘

my $nflip =

S loop through the corp file and score each line

while ($line = <CORP>)(
chomp $line;
@lineArr = split I,/,$line;
$score = 0;

= 0;
my SnunEffopimions = 0; Swill be the number of found effective opinions that

contributed to the score, for the sake of averaging later.
my @predArr = (0,0,0,0); #fourth elem for eff tag, moved inside the while loop

SnegX = 1;
SnegCount = -1;
$butX = 1;
Sbutcount = -1;
$butFlag = 0; #0 no 1 yes
5conX = 1;
$comcount = -1;
$conFlag = 0;

my Sfeaturestr = SlineArr[2];

$candFlag = 0;
$cands = &isCandidateString(Sline);

if) $camds (C
$candFlag = 1;
$lineArr[2] = $limeArr(2] . “;CANDS\=$cands”; #feature list support

else {
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$lineArr[2] = $lineArr[2] .

#**********************compute predicted score
#first left to right thru sent, for neg processing. -

#this sec also used for nost tagging (post-neg shifters)
for(ny $i3;$i<””$#lineArr;$i++) (

#context shifter processing:
#negcount
if) $negCount >= 0 ){ #careful with >= and <

$negCount - -;

if) $negCount < 0 (C
$negX = 1;

#def lagging
elsif) &isfleflagWord)$lineArr[$i]) )

$negX = 1;

#check for negation words, if so, flip neg flag
if) &isNegWord)$lineArr[$i]) (C

$negX = -lj
$negCount = $negWiodow; ##reset neg window
$lineArrl:$i] = $lioeArr[$i) . “;“ - “NEG:$negwindow”;

#flag but words (no window for default)
if( &isButWord($lineArr[$i]) (C

if) $i == 3 (C #only set flag for def if at beg of sent
$butFlag = 1;
$lineArr[$i] = $lineArr[$i] - “;“ . “BUTS”; #special tag

else(
$butFlag = 1; #exluding helps All, hurts J
$lineArr{$i] = $lineArr[$i] . “;“ . “BUT”;

#contrastives
if) &isContrastWord($lineArr[$i]) (C

$conFlag = 1;
if( $i == 3 (C

SlineArr[$i] = $lineArr[$i] . “;“ - “CONS”; #special tag

elsef
$lineArr($i] = $lineArr[$i] . “;“ - “CON”;

#tag nodals
if( &isModalword($lineArr[$i]) (C

#grab rest of sent, try to pattern natch..
my Srest = join)’ ‘,@lineArr[$i-i-l .. $#lineArrj(;

#note pattern accounts for stuff like: would not have ever been..
#night want other-than R’s, say ‘sort:? of:?’
if) $rest /A)\S+\:R (*be\:/

$rest /A)\S+\:R (*have\:\S+ )\5+\:R (*been\:/ )C
$conFlag = 1; #just combine processing with cons for inverting shifters
$lineArr[$i] = $lineArr[$i] . “;“ . “MOD”;

if) &isPresupWord)$lineArr[$i]( (
if) $lineArr)$i] = /Ahard/ (C #hard, harder

if) Si < $#lineArr (C
if) $lineArr[$i+l] /Aj;.\./ (C

SconFleg = 1;
$lineArr[$i] = $lineArr[$i] - “;“ - “ORE”;

elseC
$conFlag = 1;
$lineArr[$i] = $lineArr{$i] - “;“ - “PRE”;
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if( &isExcessWord($lineArr[$i]) )
$conFlag = 1;
$lineArr($i] = $lineArr[$i] . . “EXC”;

#only try to score candidate words (ie, of valid P08)
if( &isCandidatestring($lineArr[$il)

if( exists($wHash($lineArr[$i]}) (C
$number = $negx * $wI-Iash{$lineArr[$i]); #neg
$score = $score + $number;

$rounded = sprintf(’%.3P, $numher(;
$lineArr[$i) = $lineArr[$i] . . $rounded; #if want individual word scores

appended
if( $negX == —l (C

$negDistance = $negWindow - $negCount;
$lineArr[$i] = $lineArr[$i] . . “NG0:$negDistance”;

##contrastives and other inverting shifters
if( $advCon && $conFlag (C

for (my $i=3;$i<=$#lineArr;$i++)
if( $conCount >= 0 (C #careful with >= and <

$conCount- -;

if( $conCount < 0 ){
$conX = 1;

eisif( &isoeflagWord($lineArr[$i]( (C
$conX = 1;

#nod
if( $lineArr[$i] =- /CON/ II

$lineArr[$i] =— /MOD/ II
$lineArr[$iJ =— /PRE/ (C
$conX = -1;
$conCount = $conWindow;
$lineArr[$iJ = $lineArr[$i] . “:$conWindow”;

elsif( $lineArr[$iJ =— /\;-?\d/ (C #is a scored word
if( $conx == —l (C

$conDistance = Sconwindow - $conCount;
$lineArr[$i] = $lineArr[$i) .

. tICND:$conoistancefl;
#then flip sign of word score,adjust sentence score:
@wordArr = split /;/,$lineArr[$i);
$wordArr[l] = (-1) * $wordArr[l];
$score += $wordArr[l]; #nullifies original contribution
if( $conAsNot (C

$score += $wordArr[l];
#othe rdirection

elset
$wordArr[l] = 0; #annotate it as 0.000 (nullified)

$wordArr[l] = sprintf(”%.3f”, $wordArr{l](;
$lineArr[$i] = join(’;’,@wordArr(;

#now proc right to left for advanced but-as-not scoring.., comes after the Cons
section cuz it has weaker precedence.

if( $advancedBut && $butFlag (C
for (my $i=$#lineArr;$i>=3;$i——( C

if( $butCount >= 0 (C #csreful with >= and <

$butCount - -;
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if( SbutCount < 0 )(
Sbutx = 1;

if) $lineArr[5i] =— /BU’P/ ){
Sbutx = -1;
SbutCount = Sbutwindow;
SlineArr[5i] = SlineArr[5i) . “:$butWindow”;

elsif) SlineArr[Si] =— /\;—?\d/ ){ #is a scored word
if) $butX == —l )(

Sbutoistance = SbutWindow - Sbutcount;
SlineArr[5i] = SlineArr[Si] ;N “BTD:SbutDistance”;
#then flip sign of word score,adjust sentence score:
@wordArr = split /;/,SlineArr[Si];
SwordArr[l) = (-1) * SwordArr)l];
Sscore ÷= SwordArr[l]; #nullifies original contribution
if) SbutAsNot )(

Sscore += SwordArr[l];
} #otherdirection
else(

SwordArr[l] = 0; #annotate it as 0.000 (nullified)

SwordArr[l] = sprintfV’%.3f”, SwordArr[l]);
SlineArr[5i] = join)’;’,@word.Arr);

apply effective-opinion tie breaking and but-conjunction logic if
requested

if) Soptsl-{ash(’e’} && Sn > 0 && )Sscore == 0 H )SeffButEnabled && SbutFlag)) )(
#for each feature word, try to find it in the sentence. if found, find the closest

scored word.
#add that score to the current score.
if) Sfeaturestr =— /FEATURES=).-’-)/ ){

ny SeffScore = 0;
#if this line contains a but word, consider the line to begin after the first

but word.
ny 5firstButlndex = 3;
if)SbutFlag)( #find the index of the word after the first but word

for)ny Sn = 3; Sn <= 5#lineArr; 5n++)(
if) &isButWord)SlineArr[5n]) H

SfirstButlndex = Sm;
last;

my SfStr = 51;
my @featureArr = split /:/,5fstr;
Ll: foreach my Sfeature ) @featureArr ){

5feature =— s/1V\[1+)\[.*/5l/; #throw away the trailing score stuff
5feature =— sI”).+)_5/5l/; #just in case a feature ended with a
my @currFeatArr = split /_/,Sfeature;
# general case n-word feature, simple case is 1-word )ie this arr is length

1)
my 5firstWordlndex = 3; # 3 is the index of the first word in the sentence
if)SbutFlag) (

$firstWordlndex = SfirstButlndex + 1; )tstart after the first but word

#try to find index in sentence of ScurrFeatArrto]
ny Si = 5firstWordlndex;
L2: for) ; Si <= 5#lineArr; 5i++ ){

5lineArr[5i] =— /“)[‘:]+):/; #grab word
my Sword = $1;
if) &stemNatch) ScurrFeatArr[0], Sword ) (C

last L2 if) 5#currFeatArr == 0 ); #1-word feature found
#if number words left in the feature > number words left in sentence:
if) 5#currFeatArr > )5#lineArr - Si) (C

Si = 5#lineArr + 1; #fall off the end of the sentence
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last L2;
#else attempt to match the whole phrase:

12: for( my 5j = 1; 5j <= 5#currFeatArr; Si++ H
SlineArr(5i-’-SiJ /([A:]+):/; #grab word
Sword = $1;
next L2 unless( &stemMatch( ScurrFeatArr[Si], Sword ( );

last L2; #n-word featura found

next Ll if( Si > 5#lineArr ); #feature not found
#otherwise find its effective opinion (ie the score of the nearest scored

word). search left and right,
#tracking score of mm distamce scored-word, search left:
my SleftDist = 0;
my SleftEffOpimiom = 0;
for( my Si = Si — 1; Si >= SfirstWordlndex; Si—— H

if( SlineArr[Si] /[“:]+:[:J+;(—?[\dJ+\.{\d]--)/ )( #if word is scored,
grab score

SleftEffOpinion = 51;
SleftDist = Si — Si;
last;

my SrightDist = 0;
my SrightEffOpinion = 0;
for( my Si = Si + 5#currFeatArr + 1; Si <= 5#lineArr; Si---- ){

if( SlineArr[5i] =— /‘[:]+:[:]+;(—?[\d]+\.[\d]+)/ )( #if word is scored,
grab scqre

SrightsffOpinion = $1;
Srightflist = Si - (Si + 5#currFeatArr);
last;

unless( SleftDist == 0 && SrightDist == 0 (C #if an effective opinion was
found

my SeffOpinion = 0;
if( SrightDist > 0 && ( SleftDist == 0 SrightDist <= SleftDist ( ) (

Seffopinion = SrightEffopinion;

elset
SeffOpinion = SleftEffopinion;

SeffScore += SeffOpinion;
my Srounded = sprimtf(”%.3f”, SeffOpinion(;
#we found an eff opinion and added it to our sentence score. mark the

feature with it:
for( my Si = Si; Si — Si <= 5#currFeatArr; Si++ ((

#should be bare (no “;‘(, but iust in case it was also scored or a
marked shifter:

my @wArr = split /;/,SlineArr[5i1;
my Smarker =

if( Si - Si == 5#currFeatArr ((
Smarker = Smarker . ‘ : Srounded”;
SnumEffOpinions++;

push @wArr, Smarker;
SlineArr[5i1 = ioim “; “,@wArr;

* update the line score with the effScore
if( Seffscore 0 (C

if($butFlag( C
SpredArr(31 = “EFB:SmumEffopioions”; #mark the sentemce if the score was

determined by the effective-opinion-but rule

elset
SpredArr[3] = “EFF:SmumEffopinions”; #mark the sentence if the score has

become nonzero via effective opinion tie breaking
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$score = $effScore;

elsif($butFlag && $score !=
$score ‘= -1; #if no eff opinion found past the but word, we invert the

originally found score
$predArr[3] = “EFN:$numEffOpinions”; #mark the sentence if the score has was

flipped because of an effective-opinion-free but-clause

#**********************set score, outcome and counts
##grab annarr
@annArr = split /;/,$lineArr[Oj;

#********null case
if($n == O)(

$predArr[2] = “null”;
$predArr{l] = &nullflefaultScoreQ;
#cmp to ann
if( $annArr[l] eq ‘+‘ ){

if( $predArr[l] eq H-’ ){
$predArr[O] = “SUCCESS”;
$nSuccNuil++;
if( $cendFlag ){$nSuccCandNull++;}

else(
$predArrtOj = “FAIL”;

$nNul 1 + +;

if( $candFlag )f$nCandNull+÷;3

elsif( $annArr[l] eq ‘-‘ )(
if( $predArr[lj eq ‘-‘

$predArr[O] = “SUCCESS”;
$nSuccNull++;
if( $candFlag ){$nSuccCandNull++;}

else{
$predArr[O] = “FAIL”;

$nNull++;
if( $candFlag ){$nCandNull+-i-;)

else{ #won’t happen udless have m and 0 anns
$predArr[0] = “IGNORE”;

else{ #***********nonnull case, ie n>0
if( $numEffOpinions > 0 )(

$score = $score/$numEffOpinions;

else{
$score = $score/$n; # average, but could also use raw score

$rounded = sprintf(”%.3f”, $score);
#set float score
$predArr[2] = $rounded;

#********zero case — tie
if( $predArr[2] == 0 ){

$predArr[l] = &zeroDefaultScore;
#cnp to ann
if( $annArr[l] eq ‘+‘ )(

if( $predArr[l] eq ‘+‘ )f
$predArr[0] = “SUCCESS”;
$nSucczero++;

else(
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$predArr[OJ = FAIL;

$nZero++;

elsif( $annArr[l] eq ‘-‘ H
if( $predArr[l] eq ‘- H

$predArr[O] = “SUCCESS”;
$nSucczero-l-+;

elset
$predArr[O) = “FAIL”;

$nzero++;

elsef #won’t happen unless have m and 0 anns
$predArr[0] = “IGNORE”;

#**********nonzero case
else{

#+ or -?
if( $predArr[2] > 0 ){

$predArrtl] =

elsit( $predArr2] < 0 )(
$predArr[lj =

else{ #unexpected
print STOERR “ERROR, sent score was $pradArr[2]\n”;

#cmp to ann
if( $annArr[l] eq ‘+‘ )(

if( $predArr[l] eq ‘+‘ H
$predArr[0] = “SUCCESS”;
$nSuccNonlero++;

if( $nunEffOpinions > 0 ){
$nSuccNonzeroEff++;

elset
$predArr[0] = “FAIL”;

$nNonEero++;
if( SnunEffOpinions > 0 )(

$nNonzeroEff-l-+;

elsif( $annArr[l] eq ‘-‘ H
if( $predArr[l] eq ‘-‘ H

$predArr[0) = “SUCCESS”;
$nSuccNonzero++;

it( $numEffOpinions > 0 H
$nSuccNonEeroEff++;

else(
$predArr[0] = “FAIL”;

$nNonzero++;
if( $nunEffOpinions > 0 H

$nNonzeroEff+-t-;

else( #won’t happen unless have iii and 0 anna
$predArr[0] = “IGNORE”;

#record current predicted binary score as prevScore
$prevScore = $predArr[l];
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#put predArr into lineArr[l] (lineArr[21 has FEAT and C1ND into)
$lineArr[l] = join(;,@predArr);
#reassemble line and print
print join(, ,@lineArr);
print

close (CORP);

#
*************************************************************************

#now stats info at end

#composite counts
my $nSuccTotal = $nSuccNonZero + $nSuccZero + $nSuccNu1l
my $nTotal = $nNonZero + $nZero + $nNull;
my $nSuccNonNull = $nSuccNonZero + $nSuccZero;
my $nNonNull = $nNonZero + $nZero;

my $nSuccCand = $nSuccNonZero + $nSuccZero + $nSuccCandNull;
my $nCand = $nNonZero + $nZero + $nCandNull;

my $nSuccNonZeroReal = $nSuccNonZero - $nSuccNonZeroEtf;
my $nNonZeroReal = $nNonZero - $nNonZeroEtf;

#accurac ies
my $accTotal = 0; my $accNonNull = 0; my $accNonzero = 0; my $accZero = 0;
my $accNull = 0;
if($nTotal 0){$accTotal = sprintt(’%.Sf”, $nSuccTotal/$nTotal);}
it($nNonNull 0){$accNonNull = sprintt(”%.5f”, $nSuccNonNull/$nNonNull);)
if ($nNonZero 0) {$accNonZero = sprintf (‘% 5f’, $nSuccNonZero/$nNonZero);)
if($nZero 0) ($accZero = sprintf(’%.5t’, $nSuccZero/$nZero) ;)
if($nNull 0)($accNull = sprintf(%.5t”, $nSuccNull/$nNull) ;)

my $accCamd = 0; my $acccandNull = 0;
if($nCand != O)($accCand = sprintf(’%5f’, $nSuccCand/$nCamd);}
if($nCandNull 0)($accCandJTull = sprintf(’%.5f”, $nSuccCandNull/$nCandNull);}

my $accNonZeroReal = 0; my $accNonZeroEff = 0;
if ($nNonZeroReal != 0) ($accNonZeroReal = sprintf ( ‘% 5f’,
$nSuccNonZeroReal/$nNonZeroReal) ; }
it ($nNonZeroEff != 0) ($accNonZeroEff = sprintf ( “% 5f’, $nSuccNonZeroEff/$nNonzeroEff);

#compute coverages
my $cvgNonNull = 0; my $cvgNonZero = 0; my $cvgCand = 0;
if($nTotal != 0)(

$cvgNonNull = sprintt(’%.Sf”, $nNonNull!$nTotal);
$cvgNonZero = sprintf C Sf”, $nNonZero/$nTotal);
$cvgCand = sprintf(°% * 5f”, $nCand/$nTotal);

print “nSuccTotal/nTotal \t= $nSuccTotal/$nTotal \t= $accTotal\n”;
print nSuccCand/nCand \t= $nSuccCand/$nCand \t= $accCand\n”;
print “nSuccNonNull/nNonNull \t= $nSuccNonNull/$nNonNull \t= $accNonNull\n”;
print “nSuccNonZero/nNonZero \t= $nSuccNonZero/$nNonZero \t= $accNonZero\n”;
print “nSuccZero/nZero \t= $nSuccZero/$nZero \t= $accZero\n’;
print “nSuccNull/nNull \t= $nSuccNull/$nNull \t= $accNull\n”;
print “nSuccCandNull/nCandNull = $nsuccCandNull/$ncandNull \t= $accCandNull\n”;
if( $optsHash(’e’} )(

print “\n”;
print nSuccNonZeroReal /nNonzeroReal \ t= $nSuccNonZeroReal/ $nNonZeroReal \ t=

$accNonZeroReal \n”;
print “nSuccNonZeroEff/nNonZeroEtf \t= $nSuccNonZeroEft/$nNonZeroEtf \t=

$accNonZeroEff\n”;

print “\ncoverage:\n”;
print nNonZero/nTotal = $nNonZero/$nTotal = $cvgNonZero\n”;
print ‘nNonNull/nTotal = $nNonNull/$nTotal = $cvgNonNull\n”;
print “ncand/nTotal = $nCand/$nTotal = $cvgcand\n”;

print RES “nSuccTotal/nTotal \t= $nSuccTotal/$nTotal \t= $accTotal\n’;
print RES “nSuccCand/nCand \t= $nSuccCand/$nCand \t= $accCand\n’;
print RES “nSuccNonNull/nNonNull \t= $mSuccNonNull/$nNonNull \t= $accNonNull\n”;

79



print RES “nSuccNonZero/nNonZero \t= SnSuccNonzero/SnNonZero \t= SaccNonZero\n”;
print RES “nSuccZero/nZero \t= SnSucczero/$nzero \t= Sacczero\n”;
print RES “nSuccNull/nNull \t= SnSuccNull/5nNull \t= SaccNull\n”;
print RES “nSuccCandNull/nCanclJNTull = SnSuccCandNull/SnCandNull \t= SaccCandNull\n”;
if( SoptsHash{’e’} ){

print RES “\n”;
print RES “nSuccNonZeroReal/nNonZeroReal \t= SnSuccNonzeroReal/SnNonzeroReal \t=

SaccNonZeroReal \n”;
print RES “nSuccNonZeroEff/nNonzeroEff \t= SnSuccNonZeroEff/SnNonZeroEff \t=

SaccNonzeroEff\n”;

print RES “\ncoverage:\n”;
print RES “nNonZero/nTotal = SnNonZero/SnTotal = ScvgNonzero\n”;
print RES “nNonNull/nTotal = SnNonNull/SnTotal = ScvgNonNull\n”;
print RES “nCand/nTotal = SnCand/SnTotal = ScvgCand\n”;

print ACC “SaccTotal\n”;
close (RES);
close (ACC);
##############end nain section#######################lt###4t##############4t#

#stemMatch( sten, word) neans is sten the sten of word
#do sinple plurals and ing (for eg “playing”)
sub stemMatch{

ny )Ssten, Sword) =

return 1 if) Ssten eq Sword );
#else attenpt to pull off plural and then conpare again
if) Sword = /A))5/ )(

return 1 if) Ssten eq $1 );

if) Sword /A) +)es5/ )(
return 1 if) Sstem eq 51 );

if) Sword =— /“).+)ies5/ )(
return 1 if) Sstem eq )51 “y”) );

if) Sword =- /“).÷)ing5/ (C
return 1 if) Sstem eq Sl );

return 0;

sub zerogefaultScore{
return &defaultScore)”z”);

sub nulloefaultScore{
return &defaultScore) ‘n”);

sub defaultScore(

my SinputStr = shift;

if)SdefScoreArg ne ““(C
if)SdefScoreArg eq “def 0”))

return

if)SdefScoreArg eq “defl”))
return ‘+‘;

#def 2 let fall through
if)SdefScoreArg eq “def3”))

if)SinputStr eq “z”))
if) Szflip eq ‘+‘ ))

Szflip = ‘—‘

return Szflip;

else)
Szflip = ‘+‘

return Szflip;
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# else n
if( $nflip eq ‘+‘ )(

$nflip = -,

return $nf lip;

else{
$nflip =

return Snflip;

if( SbutDefaultFlip && SbutFlag ){ #flip prey score
if( $prevscore eq ‘+‘ ){return ‘-‘;}

elsefreturn ‘+‘;

else(
return $prevscore;

sub isCandidateString( #applies to both sentences and single words
ny Ss = shift;
my Sans =

if( (SoptsHash(’j’} && (5s =- /\:J/)) H
Sans = Sans

if( (Soptsl-{ash(’n’} && ($s = /\:N/)) H
Sans = Sans “N’;

if( ($optsNash(’v’} && ($s =- /\:V/)) )(
Sans = Sans

if( ($optsHash(’r’) && (Ss =— /\:R/)) H
Sans = Sans

return Sans;

sub isNegWord{
ny $s = shift;
Ss

/A([A\.])\:/; #grab word
my Sw = $1;
if( exists(SmegHash(5w)) ){

return 1;

else{
return 0;

sub isButWord{
my Ss = shift;

/N[\:]+)\:/; #grab word
my 5w = 51;
if( exists($butHash(Sw}) ){

return 1;

elseC
return 0;

sub isueflagWord(
my Ss = shift;
Ss =— /N[’\:]+)\:/; #grab word
my $w = $1;
if( exists(Sdeflagl-Iash{5w)) H

return 1;

else{
return 0;
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sub isContrastWord
my $s = shift;

/([\:]+)\:/; #grab word
my $w = $1;
if( exists($contrastHash{$w)) )(

return 1;

else{
return 0;

sub isModalWord{
my $s = shift;
$s = /NV\:]+)\:/; #grab word
my $w = $1;
if( exists($modalHash($w)) >1

return 1;

else{
return 0;

sub isPresupWord(
my $s = shift;
$s /“([“\:J+)\:/; #grab word
my $w = $1;
if( exists($presupHash{$w)) ){

return 1;

else
return 0;

sub isExcessWord(
my $5 = shift;
$s =— /“([“\:l+)\:/; #grab word
my $w = $1;
if( exists($excessHash($w)) )f

return 1;

elsef
return 0;

###END

#! /home/bin/perl
#123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
###filename: run-5-score-corp.pl
###author: Adam Longton, longton#cs.ubc.ca
# this script runs 5-score-corp.pl across multiple corpora and summarizes the results.
# if WordNet expansion was used, switch on the commented out lines tagged with “# use
this for WordNet version’

use strict;
use warnings;
my $usage = “usage: pen $0 opts scoredLexiconFile\n”; #this is for non WN, use the
scored lex file directly.
#my $usage = “usage: pen $0 opts pathofScoredCandsFilesFromPh3\n”; # use this for
WordNet version
die $usage if ($#ARGV < 0);
my $opts =

if($#ARGV > 0)(
$opts = shift;

my $lex = shift;
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# these paths to be setup for a particular experimental environment
my $bline = “/ .autofs/homes/ubccshome/l/longton/adam/proj”;
my $scripts = “$bline/exp/scripts’;
my $here = “$bline/exp”; #experiment root

my @corps = (“apex”,”canon”,”creative”,”nikon”,”nokia”);
my $line; my $accavg = 0; my $accadd = 0; my $n = 0;
my $succSum = 0; my $totalSum = 0; my $fracAvg = 0;

open(ACCS, “>accs$opts.txt”) or die “error: couldn’t open accs$opts.txt\n”;
print ACCS command: perl $0 $opts $lex\n”; # track how the accs output file was
generated

my $corp;
foreach $corp (@corps)(

‘pen $scnipts/5-score-corp.pl $opts $lex $here/corp/lout-$corp.txt > tmp5out-
$corp$opts .txt’;

#‘perl $scnipts/5-score-corp.pl $opts $lex/scoredAdjs-$corp.txt $here/corp/lout
$corp.txt > 5out-$corp$opts.txt’; # use this for WordNet version

open(ACC,”acc.txt’) or die “error: couldn’t open acc.txt for $corp\n”;
$line = <ACC>;
close (ACC);
chomp $line;
$accadd += $line;
$n++;
open(RES,’results-$corp$opts.txt”) or die “error: couldn’t open results

$corp$opts . txt\n”;
$line = <RES>;
$line = <RES>; #second line has the acc
close (RES);
chomp $line;
print ACCS “$corp: $line\n”;
‘rm acc.txt’;
# add up the nSuccs and the n’s to get a weighted fractional avg acc too:
if($line =— m (\d+)/(\d+) )(

$succSum += $1;
$totalSun -‘-= $2;

if($n>0)($accavg = $accadd/$n;}
if($totalSum>O)($fracAvg = sprintf(”%.7f”, $succSum/$totalsun);} #jyO8

print ACCS “Avg acc: $accavg, weighted: $succSum/$totalSum = $fracAvg\n”;

# also run on concatenation of the subcorpora for comparison
$corp = “hu”;

‘pen $scnipts/5-score-corp.pl $opts $lex $here/corp/lout-$corp.txt > tnp5out-
$corp$opts .txt’;
#‘penl $scripts/5-score-corp.pl $opts $lex/scoredAdjs-$corp.txt $here/corp/lout-$corp.txt
> Sout-$corp$opts.txt’; # use this for WordNet version

open(RES, “results-$corp$opts .txt”) or die “error: couldn’t open results-$corp$opts. txt\n”;
$line <RES>;
$line = <RES>;
close (RES);
chomp $line;
print ACCS “$corp: $line\n”;
‘rm acc.txt’;
close (ACCS);
‘rn tnp5*’; #cleanup all the big scored sentence files

##END
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