
Lacome

A Cross-platform Multi-user Collaboration System for
a Shared Large Display

by

Zhangbo Liu

B.Eng., The University of Electronic Science and Technology of China, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University of British Columbia

December, 2007

© Zhangbo Liu 2007

Abstract

Lacome is a multi-user cross-platform system that supports collaboration
in a shared large screen display environment. Lacome allows users to share
their desktops or application windows using any standard VNC server. It
supports multi-user concurrent interaction on the public shared display as
well as input redirection so users can control each other's applications. La-
come supports separate types of interaction through a Lacome client for
window management tasks on the shared display(move, resize, iconify, de-
iconify) and for application interactions through the VNC servers. The
system architecture provides for Publishers that share information and Nav-
igators that access information. A Lacome client can have either or both,
and can initiate additional Publishers on other VNC servers that may not be
Lacome clients. Explicit access control policies on both the server side the
client side provide a flexible framework for sharing. The architecture builds
on standard cross-platform components such as VNC and JRE. Interac-
tion techniques used in the window manager ensure simple and transparent
multi-user interactions for managing the shared display space. We illustrate
the design and implementation of Lacome and provide insights from initial
user experience with the system.

11

Contents

Abstract ^ ii

Contents ^ iii

List of Tables ^

List of Figures ^ vi

Acknowledgements ^ vii

1 Introduction ^ 1
1.1 Motivation ^ 2
1.2 Guiding Principles ^ 5
1.3 Contributions ^ 6
1.4 Overview of the Thesis ^ 7

2 Related Work^ 8
2.1 Single Display Groupware ^ 9
2.2 Multi-Display Environments ^ 14
2.3 Multi-Cursor Window Management ^ 17
2.4 Input Redirection ^ 19
2.5 Other Techniques ^ 20
2.6 Summary ^ 22

3 System Architecture ^ 25
3.1 System Outline ^ 25
3.2 Server Architecture ^ 29
3.3 Client Architecture ^ 33
3.4 Access Control Policies ^ 34
3.5 Summary ^ 37

111

Contents^ iv

4 Interface Design ^ 38
4.1 Design Requirements ^ 38
4.2 Multi-Cursor Window Manager Design ^ 39
4.3 Client Design ^ 54
4.4 Summary ^ 58

5 Implementation ^ 60
5.1 Hardware ^ 60
5.2 Software ^ 62
5.3 Implementation Tips and Experience ^ 69
5.4 Summary ^ 72

6 System Experiences, Conclusion and Future Work ^ 73
6.1 System Experiences ^ 73
6.2 Conclusion ^ 75
6.3 Future Work ^ 77
6.4 Summary ^ 80

Bibliography ^ 82

A Message Protocol of Lacome ^ 93

List of Tables

2.1 Examples of Typical SDG Implementation ^ 23
2.2 Multi-Display Environments Implementations ^ 24

V

List of Figures

3.1 A Typical Hardware Configuration of Lacome ^ 26
3.2 Lacome System Outline ^ 27
3.3 Network Component ^ 31
3.4 Client Structure in Data Component ^ 32

4.1 Cursors with Different Colors, Sizes and Same Default Shape 41
4.2 Initial States and Modified Windows ^ 42
4.3 A Cursor Hovers on a Shared Window ^ 44
4.4 Two Cursors Hover on a Shared Window ^ 44
4.5 Scalable Shared Windows ^ 46
4.6 Transparent Windows ^ 47
4.7 Windows Iconification ^ 48
4.8 Expanding Window Icons ^ 49
4.9 Controller Mode ^ 50
4.10 Lacome Client ^ 55
4.11 Server Connection Component ^ 56
4.12 Navigator Control Component ^ 57
4.13 Publisher Control Component ^ 57
4.14 Configuration with a System Administrator ^ 58

5.1 Projector Array ^ 61
5.2 A typical hardware configuration for Lacome ^ 62
5.3 Data Structures Maintained in Data Component ^ 66

6.1 System Demo With Group Users ^ 75

vi

Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Kellogg
S. Booth for his support and encouragement. Not only did he provide moti-
vations and ideas on my research, he has also helped me establish confidence
to pursue my life goals. I would like to thank my second reader Dr. Norman
Hutchinson, for efficiently providing invaluable comments and suggestions
on my thesis. I am also grateful to my lab manager Ron Fussell for his
kindly support on everything during the project.

I would like to acknowledge my fellow students and friends for their sup-
port and feedback. This research could not have been successfully done with-
out the help from Man Hon Chan, Joel Lanir, Yamin Htun, Jian Xu, Mike
Tsai, Haoyuan Hu, Gang Peng, Garth Shoemaker, Tony Tang, Clarence
Chan and Sherman Lai.

Last, but not least, my thanks go to my family for their endless support
and unconditional love.

The research reported in this thesis was supported by The University
of British Columbia and by the Natural Sciences and Engineering Research
Council of Canada under the Discovery Grant program and the Strategic
Network Grants program as a component of NECTAR, the Network for
Effective Collaboration Technologies through Advanced Research.

vii

1

Chapter 1

Introduction

In the last decade, personal computers have evolved from supporting an

individual's work to supporting collaborative work for groups of people.

Single Display Groupware (SDG) [53] is a model that supports multi-user

co-located work with a shared display. There are a number of SDG sys-

tems [4, 7, 8, 10, 21, 23, 36, 39, 44, 52, 62] that have been developed or even

commercialized. Multi-Display Environments (MDE), on the other hand,

integrate multiple devices such as desktops, laptops, PDAs, large displays,

and digital cameras into interactive workspaces [18, 32, 45, 54]. Our project

bridges between these two models.

Laconic, which stands for "LArge C011aborative Meeting Environment",

is a software system that supports multi-user, multi-platform co-located

collaborative work with a shared display.. Using Lacome, users can share

information such as full desktops or selected application windows by placing

them onto a shared display. Users can also simultaneously interact with the

shared display and the information within it. This includes direct interaction

with desktops or application windows on other computers. Lacome is a

combination of SDG and MDE: it has a primary shared display that contains

all of the shared information, but it shows multiple windows from different

Chapter 1. Introduction^ 2

devices on the shared display and it allows users to interact with either the

shared display or with other users' personal displays.

The remainder of this chapter describes the motivation for our project,

some guiding principles that we followed throughout our work, and a sum-

mary of the rest of the thesis.

1.1 Motivation

The motivation for the Lacome project comes from the following scenario.

A group of co-workers comes to a meeting room for a weekly meeting. The

meeting room has a projector. Anyone who wants to give a presentation can

connect his or her laptop to the projector via a video cable so that others

can see the information the presenter wants to show. When only one person

presents, this works well. However, sometimes there are multiple persons

who want to present during a meeting. That makes the switching of the

video cables between people's laptops very frequent, which takes a certain

amount of time, especially when those laptops have different configurations

and the owners are not familiar with the projector. This affects the efficiency

of the meeting. Lacome aims to solve this problem by providing a better

collaborative meeting environment.

A secondary goal of Lacome is to integrate and fully deploy our existing

facilities and resources. In our laboratories we have three wall-sized large

display surfaces (16 feet wide by 9 feet high) each with an IBM Deep Com-

puting Visualization (DCV) system [29] available for collaboration-related

research. There is no existing software toolkit for us to fully leverage the

Chapter 1. Introduction^ 3

computational power of the DCV to support our research. We thus faced a

number of challenges working with the DCV system.

The DCV system only supports standard OpenGL [5] programs on its

application nodes, which distribute the rendering tasks to multiple rendering

nodes. Non-OpenGL programs cannot run on the DCV. Many of our existing

research projects and demos are not built on OpenGL. Thus, we needed

software to bridge the gap between the software environment of the powerful

hardware facility available to us and our own project-specific software.

We tackled these problems by building a software system that allows

non-OpenGL applications to be shown on the large display via the DCV

and allows user to manipulate the applications remotely instead of directly

operating on the DCV machine.

The constraints of the system configuration was not the only reason to

develop Lacome. Multi-touch pointing techniques have been attracting much

attention. Products such as Apple's iPhone [3], Microsoft's Surface PC [4]

and various novel techniques such as done by Han [25] and Izadi et al. [31]

using touch sensitive displays have showcased the potential of this area and

are getting increased attention from the general public. Systems that sup-

port single-user multi-touch and multi-user multi-pointing will become more

popular and may eventually become standard in the next generation of per-

sonal computers. How to accommodate conventional single-pointer systems

to new multi-pointer systems will become an important issue to resolve.

With built-in multi-pointer support, Lacome has the potential to provide a

transition from conventional single-pointer systems to next-generation multi-

platform systems.

Chapter 1. Introduction^ 4

In addition, our research group has been doing research projects in sev-

eral directions on human-computer interaction and computer supported co-

operative work in large display environments. Our purpose in building such

a software system was in part to integrate our knowledge and experience to

build a framework for further research activities.

For single-user applications, VNC [47] can be used to display an appli-

cation running on one personal computer and to let the owner of the second

personal computer control the input to the application on the first personal

computer. Our work uses VNC as one of its building blocks but substantially

extends VNC to multiple users and multiple simultaneous input.

The design concept of Lacome has been inspired from the Integrated

Tabletop by Nakashima et al. [39]. The Integrated Tabletop is based on the

Remote Frame Buffer (RFB) protocol [46] which is widely used in VNC-

based applications [47]. It supports multi-cursor interaction in an appli-

cation window under the Windows system. We have adopted some of the

successful experiences from the Integrated Tabletop during the development

of Lacome, but tried to resolve some of its drawbacks and improve some

existing features.

• The Integrated Tabletop only supports Windows; while Lacome sup-

ports all three mainstream operating systems for personal computers.

• The Integrated Tabletop requires the installation of a modified VNC

server on users' machines; Lacome, on the other hand, requires no

changes to the VNC server: Any standard VNC server can be used

unmodified to connect to Lacome.

Chapter 1. Introduction^ 5

• The Integrated Tabletop has only one control layer. Window manipu-

lation takes place only when the user drags the margin of the windows

as with a normal GUI window manager; Lacome has multiple con-

trol layers to better support different modes of interaction with shared

displays.

1.2 Guiding Principles

In order to guide our work, we have identified a list of design principles that

we used throughout our research:

Make it simple. We try to minimize changes to existing systems and

keep individual systems as loosely coupled as possible so that when Lacome

gets updated or modified, other system connecting with it won't be affected.

Make it compatible. Although we were initially motivated by a par-

ticular situation with a particular hardware and software configuration, we

do not want Lacome to be used exclusively in only one setting. Instead,

we want Lacome to be a general purpose system that can be easily de-

ployed in many settings. Wherever possible cross-platform approaches are

adopted to achieve greater compatibility. The server side should be portable

to other systems with minimum changes; the client side is kept light-weight

and setup-free to minimize installation problems.

Rely on social conventions. Following the advice given by the iRoom

team [32], we do not intend to make Lacome "smart" nor have it automat-

ically adapt itself to users. Instead, we leave it to the users themselves to

coordinate their collaborative work with Lacome. It is likely that issues

Chapter 1. Introduction^ 6

of human-human communication as well as human-computer interaction

will rise in multi-user collaboration with the system. We provide smooth

human-computer interaction in order to facilitate naturally arising social-

based human-to-human interactions.

1.3 Contributions

By designing and implementing Lacome, we have made the following contri-

butions: First, Lacome separates the types of interaction a Navigator client

can do into windows management tasks on the shared display (move, resize,

iconify, deiconify) and application interactions through the VNC servers. In

addition there are tasks such as pointing or other annotation on the shared

display that we can consider as a third Annotator mode. Although the An-

notator mode is not novel, we include it into our design for the completeness

of all task types. Second, Lacome separates the Publisher and Navigator

functions so a client can have one or both, or perhaps multiple Publishers,

and can initiate Publisher connections for other VNC servers that may not

have Lacome clients. Third, Lacome adds an explicit access control policy

with components that are on both the server side and the client side to

provide a flexible framework for sharing. Fourth, Lacome provides an ar-

chitecture that builds on standard cross-platform components such as VNC

and JRE. Last but not least, we take care to make good choices concerning

the interaction techniques used in the window manager tasks to ensure sim-

ple and transparent multi-user interactions for managing the shared display

space.

Chapter 1. Introduction^ 7

1.4 Overview of the Thesis

The remaining of this thesis is organized as follows. Chapter 2 presents

related work. It draws attention to the key techniques that we used in

developing the Lacome system. Chapter 3 presents the system architecture

of Lacome from a system designer's perspective. Details of the user interface

design are elaborated in Chapter 4. Chapter 5 describes implementation

details and experience we have gained during our works. Informal evaluation

with pilot users, conclusions drawn from the result, and future work are

discussed in Chapter 6.

8

Chapter 2

Related Work

Personal computers started with the desktop and later the laptop. These

two types of computers are designed for single-user activities. When we

collaborate with colleagues who are co-located with us, we may find that a

single desktop or laptop, or even multiple single computers used together do

not satisfy our requirement for collaboration. There has been a demand that

urges computer scientists and engineers of the need to design a new paradigm

for computers to support multi-user co-located collaborative activities.

Another branch of the personal computer evolution seeks to make the

size of the hardware smaller, such as for handheld devices. These portable

devices are easy to hold, but in many cases, not easy to use. A common

drawback of handheld devices is that they are too small to be easily ma-

nipulated. Although the size of handheld devices is continuously becoming

even smaller, users still want bigger screens to allow more information to be

displayed. This is the presumable reason the relative size of the screens in

many handheld devices is getting bigger.

In this chapter, we elaborate on Single Display Groupware and Multi-

Display Environments, as well as on several techniques that are closely re-

lated to Lacome, such as multi-cursor window management and network-

Chapter 2. Related Work^ 9

based input redirection.

2.1 Single Display Groupware

The term Single Display Groupware (SDG) was coined by Stewart et al. in

1999 [53]. However, the history of development and research on SDG can

be traced to early 1987 when Xerox PARC created their CoLab system to

make meetings for researchers more effective [52].

With increasing demand to have a computer that supports multiple users

for co-located collaboration with enough screen space for multiple users to

work on, SDG arose to meet the requirement. SDG is a model for supporting

collaborative work between people who are co-located with each other [53].

A SDG system involves only one shared display on which all users col-

laborate. A SDG system can be used in conjunction with other personal

computing devices such as desktops or laptops [36, 52], or PDAs [38]. These

additional devices are used for displaying personal information for an indi-

vidual user. Early examples of SDG systems with this type of configuration

are the CoLab system created by Xerox PARC and the CaptureLab system

designed by University of Toronto that use desktops [36], and the Pebbles

project done by Carnegie Mellon University that uses PDAs [38]. A SDG

may also consist only of a single shared display for the entire system, with-

out any other personal displays, like with the DiamondTouch developed by

Mitsubishi Electric Research Laboratories (MERL).

Strictly speaking, an implementation of a SDG is a system with one

shared display to support multi-user co-located collaboration. We can dis-

Chapter 2. Related Work^ 10

cuss SDG from several aspects according to various attributes of factors of

the display:

Display Model. This factor divides all SDG systems into two cat-

egories: shared display, and public plus private displays. In the shared

display model, all users are working on the same single display. No other

display devices are involved. In the public plus private displays model,

users have a shared public display that shows the information available to

all users. Meanwhile individual users have their own private displays that

contain non-public information. The different models target different usage

requirements. The shared display model is usually used when participants

are involved in group discussion, sitting around a tabletop or standing in

front of a wall display. The public plus private model applies to large meet-

ing rooms in which participants are holding a group meeting in which some

will do a presentation to others.

Resolution and Size. This factor also divides the SDG into two parts:

single-tile displays and multi-tile displays. The single-tile display uses either

a rear or front projector, or a single LCD monitor as the shared display. The

multi-tile display leverages arrays of multiple projectors or flat displays to

form a large mosaic of displays that acts as a single high resolution, large

physical size display. Here we are more interested in those tiled displays that

can increase both display size and resolution rather than those that only

increase the display size. The advantages and disadvantages of both types

are apparent. Single-tile displays are cheap, easy to implement, but have

low resolution and relatively small size. Multi-tile displays offer wonderful

resolution and greater size of the display, but are often expensive and space

Chapter 2. Related Work^ 11

consuming. We observe that larger displays seem to be the trend of recent

development for SDG.

A study by Swaminathan and Sato indicates that "when a display ex-

ceeds a certain size, it becomes qualitatively different" [55]. Larger displays

enable users to create and manage many more windows, as well as to en-

gage in more complex multitasking behaviors [20]. Tan et al. conducted a

series of experiments [56, 57] to explore the effects of display size on user

performance in reading comprehension tasks involving static text, spatial

orientation tasks involving static 2D scenes, and path integration tasks in-

volving interactive 3D virtual environments and found that physically large

displays improve performance on spatial tasks. Ni et al. provide a summary

of the benefits of large displays [40]. We envision that with the projectors

and flat displays gradually becoming more affordable, multi-tile display will

become more popular.

Orientation. A SDG has two orientation styles. One is vertical, which

mounts the shared display on the wall. The other is horizontal, which puts

the shared display on a tabletop. The wall-mounted display may require

more space, especially if it is a projection-based display instead of a flat

display. However, the wall-mounted display naturally avoids one problem

that the tabletop display suffers which is the issue of orientation of the

displayed objects [34]. With a vertical display all users see objects in an

upright orientation, but displaying the same objects on the tabletop display

cannot satisfy all users because users are located around the tabletop thus

some of them can only see the objects in a reversed orientation.

Touch Sensitivity. Some SDG systems are touch sensitive, others are

Chapter 2. Related Work^ 12

not. Typical examples of touch sensitive displays are DiamondTouch [21]

and Microsoft Surface PC [4]. The DiamondTouch table developed by

MERL is a multi-user, touch-and-gesture-activated screen for supporting

small group collaboration. DiamondTouch allows up to four users to simul-

taneously use two pointer inputs each on specialized touch table hardware.

There are many projects that have explored thi [41, 51, 59, 60, 66] using

the DiamondTouch Table and DiamondTouch SDK. Although it has some

limitations such as an inability to differentiate between the two pointers

from the same user, and a limitation on the number of users, it is popular

among researchers. Microsoft Surface PC [4] is touted as Microsoft's next

generation personal computer. Various technologies [16, 64, 65] have been

developing over the past five years during the Surface PC development road

map. For touch sensitive systems, several different techniques are used to

achieve input sensing. DiamondTouch and SmartSkin [44] use a conduc-

tive pad under the display panel to detect multiple pointers. Perceptive

Pixel [25, 26] relies on frustrated total internal reflection (FTIR), a tech-

nique familiar to the biometrics community where it is used for fingerprint

image acquisition. Microsoft Surface PC employs a camera sitting under-

neath the table to recognize users' hands and physical objects. ThinSight,

the latest technique to emerge for multi-touch sensing, adds a new layer

behind a regular LCD that allows infrared sensing to detect multi-touch

input [31].

Projection Style. Depending on the hardware of the display and the

space requirement, the projection style of a SDG can be front or rear-

projected for a wall-mounted display, or top or bottom-projected for a table-

Chapter 2. Related Work^ 13

top display. A flat panel LCD display does not need projection. SMART

Board [10] designed by SMART Technologies has a number of different ver-

sions that can be used as front or rear projection displays as well as flat

touch sensitive tabletop or wall displays to satisfy a variety of user require-

ments. One disadvantage of many projection-based displays is that with a

top or front-projected display a shadow of the user's arm or body will be

cast on the display, which occludes the information shown in certain areas

on the display. A bottom-projected display suffers from the bulky com-

ponents that reside under the table such as projectors and mirrors. They

often require users to stand or sit awkwardly for extended periods of time,

which potentially impacts the comfort level of users [50]. A rear-projected

display neither occludes information nor impacts the comfort level of users,

however, it requires dedicated space which might be a concern for small

rooms, or elaborate mirror geometry that may be difficult to calibrate and

maintain.

We summarize the discussion above with Table 2.1, and fill in some

typical SDG systems as examples.

We give brief descriptions for those system that we haven't introduced

before:

The Integrated Tabletop [39] proposed by Nakashima et al. is a tabletop

system that combines 2D and 3D projection together. The system is based

on the remote frame buffer (RFB) protocol [46]. It supports multi-cursor

interaction in an application window under Windows. The RFB protocol

was used in VNC, which will be elaborated on later in this chapter. During

the development of the Lacome system, we benefited from the experience

Chapter 2. Related Work^ 14

with the 2D-3D Integrated Tabletop. We tried to solve or remedy some

problems it has exposed. This will be discussed in more detail in later

chapters.

The SmartSkin system [44] designed by Rekimoto uses non-camera-based

sensing techniques as describe above to support multi-pointer gestural in-

put. Similarly, Perceptive Pixel [26], originally developed by Han based on

an earlier technique he developed [25], also supports free hand multi-finger

input. Both of their systems focus on bringing together multiple inputs.

They do not distinguish which input comes from which user.

The PowerWall developed at University of Minnesota [8],the Scalable

Display Wall developed at Princeton University [62], and the Interactive

Wall developed at Stanford University [23] are typical wall display systems

built by academic research. They all have very large sizes and resolutions.

Conventional SDG systems such as the CoLab [52] and the Capture-

Lab [36], were built with one public display and a number of personal dis-

plays. Each participant was able to switch his/her input devices to the

shared display, but no simultaneous multi-user input was supported. This is-

sue has been solved in more recent systems in which smaller personal displays

and the shared display are integrated into interactive workspaces. They are

discussed in the next section.

2.2 Multi-Display Environments

As we saw in the prior section, SDG systems are not employed mutually

exclusively with other personal displays. They are sometimes combined

Chapter 2. Related Work^ 15

together to form a Multi-Display Environment, sometimes also called Mul-

tiple Display Groupware (MDG) [15]. A common characteristic of these

systems is that they all consist of a big, shared display and several small,

personal displays. The Augmented Surface [45], iRoom [32], i-LAND [54]

and ARIS [18] are just a few examples of Multi-Display Environments. Ta-

ble 2.2 summarizes these systems and lists examples of the various types.

Augmented Surface developed by Rekimoto from Sony Computer

Science Laboratories and Saitoh from Keio University [45] allows users to

smoothly interchange digital information among their portable computers,

tabletop and wall displays, and other physical objects such as a videotape

or a document folder. It uses a technique called hyperdragging, supported

by a camera-based object recognition system, that allows users to drag in-

formation beyond the screen boundaries to transfer to another screen.

i-LAND [54] is a Multi-Display Environment developed by Streitz et

al. at the German National Research Center for Information Technology

(GMD) and the Integrated Publication and Inforamtion System Institute

(IPSI). i-LAND embeds different types of displays into office furniture to

form several "roomware" components including an interactive electronic

wall (DynaWall), an interactive table (InteracTable), two types of computer-

enhanced chairs (CommChairs) and two "bridges" for the Passage-mechanism.

The idea of integrating computing facilities into furniture follows the re-

searchers' vision of future workspaces. Physical objects are supported in

i-LAND via a concept called Passage that will detect uniquely physical ob-

jects with their weight to identify them. Other than using camera-based ob-

Chapter 2. Related Work^ 16

ject recognition systems like what the Augmented Surface does, the Passage

implementation in i-LAND uses the weight of physical objects for identifi-

cation and computer-controlled scales are built in the Bridge 'for detection.

ARIS is an interface for application relocation in Multi-Display Envi-

ronments developed by Biehl and Bailey from the University of Illinois [18].

ARIS provides a direct manipulation interface that enables a user to vi-

sually relocate applications among computers in an interactive workspace.

The interface uses an iconic map of the space to enable a user to perform ap-

plication relocation. ARIS leverages the Gaia middleware framework [48] to

handle application migration, which introduces a limitation that machines

in the same space must be running the same operating system in order to

support application migration.

The iRoom developed by Johanson et al. at Stanford University is an-

other Multi-Display Environment. While i-LAND emphasizes the "roomware"

that integrates computing facilities with furniture, the iRoom focuses on

augmenting a dedicated meeting space with large displays, wireless or mul-

timodal devices, and seamless mobile appliance integration [32]. iRoom has

its own approach to moving objects between displays. Using the iROS mid-

dleware framework [42], it allows the data and state of the applications to

be stored in a DataHeap. By sending events through an EventHeap, appli-

cations can be launched on another machine when the application window

is dragged into its display. iRoom uses the PointRight system [33] to handle

peer-to-peer pointer and keyboard input redirection in a multi-user multi-

machine environment that will be discussed later.

In the next two sections, we discuss techniques that are critical to SDG

Chapter 2. Related Work^ 17

and Multi-Display Environments: including Multi-Cursor Window Manage-

ment and Input Redirection. We then briefly summarize some other systems

in the final section of this chapter.

2.3 Multi-Cursor Window Management

Multi-cursor support is necessary and important for both SDG and Multi-

Display Environments, because they both support multi-user collaboration.

Both have at least one shared display that allows concurrent multi-user

collaboration. It is natural to imagine a scenario in which a group of partic-

ipants work together on shared displays each with his own mouse or some

kind of pointing device. One can also immediately realize that there might

be issues with how to interpret input actions, especially when participants

are working with legacy applications that are by default configured for single

users.

Various researchers have studied a number of techniques to support mul-

tiple cursors [33, 38, 39, 59, 63]. These multi-cursor supporting techniques

have several limitations and drawbacks. In the Integrated Tabletop sys-

tem [39], the shared display can have multiple remote desktop windows and

multiple cursors on it, but because the system only supports Windows, only

one cursor can control a desktop window at any given time.

PointRight is similarly "restricted by the operating system to single cur-

sor control per machine" [33], as is the SDGToolkit [59]. Moreover, if mul-

tiple users connect to the same display simultaneously, PointRight will "av-

erage" the cursor movements from all devices.

Chapter 2. Related Work^ 18

In work done by Wallace et al. [63], a limited number of virtual cursors

time-share the system's single cursor. According to the authors' system

experience, a user is usually interfered with by other users only when their

windows are obscuring his.

In Lacome, we try to solve or remedy many of the above issues concerning

multiple cursors. The machine on which Lacome is running acts as a dedi-

cated server and does not deal with user inputs. Currently we are using a

Linux machine, but this is transparent to end users and can be easily ported

to other platforms. This makes Lacome a cross-platform system. Any desk-

top or application window can be shared on Lacome. For making Lacome a

general purpose system that supports any platform, following our "make it

compatible" principle, we do not perform any modification that is platform-

specific. According to the original configurations of our targeted operating

system's (Windows, Mac OS, Linux), the default setting only supports a

single user. As a result a cursor can only control one window at a time in

Lacome. Lacome also restricts the number of cursors that can simultane-

ously control certain single user application windows to avoid ambiguous

behavior. The support of a semi-transparent window allows multiple users

to collaborate together without being interfered with by others.

At the time of writing, the only technique that supports real multiple sys-

tem cursors is the Multi-Pointer X Server (MPX) [28]. MPX is a groupware

windowing system that natively supports SDG. When running on a SDG,

MPX allows multiple cursors to interact with a single application simultane-

ously. The feature is not supported in any other multi-cursor systems so far.

MPX directly modifies the X window system. As the first windowing system

Chapter 2. Related Work^ 19

supporting real multiple system cursors, MPX is still under active develop-

ment with more features being added [27]. The current challenge of MPX

and any other windowing systems that support multiple cursors is that the

feature is not natively supported on either the hardware or the application

level. Currently hardly any X window applications are designed with mul-

tiple users in mind. Thus if we apply MPX directly on these applications

the outcome will be ambiguous and unpredicted due to the indetermination

introduced by the load of serialization of cursor activity. We consider MPX

to be a potential component of our Lacome system so that Lacome could

potentially support multi-cursor manipulation on a single X window desktop

that has MPX installed. We will discuss this possible extension in the final

chapter.

2.4 Input Redirection

Input Redirection is crucial when we want to allow users to interact with

content on a remote machine. There are many tools supporting this mecha-

nism such as VNC [47], Integrated Tabletop [39], WinCuts [58], Rover [19],

PointRight [33], Pebbles [38], ARIS [18], and Swordfish [24].

VNC is a popular software for remote control which we will discuss in

the next section. Integrated Tabletop uses an extended VNC client to send

the input redirection information to a specific machine. WinCuts manages

remote machines by coupling them with a separate program called Visitor

that handles input redirection. Rover, PointRight and Swordfish all use a

spatial layout to arrange the screens so the mouse can travel between remote

Chapter 2. Related Work^ 20

screens that are adjacent in the layout. Pebbles allows a number of users

to control multiple pointers on one remote display via PDA input. ARIS

leverages its iconic map together with hot key combinations to accomplish

the input redirection task.

In Lacome, our input redirection mechanism is similar to the one that

is implemented in Integrated Tabletop. The major difference is that we

implement multiple controlling modes instead of single controlling mode like

all other systems. Details of the Lacome controlling mode will be elaborated

in later chapters.

We treat the spatial layout for multiple remote windows as a separate

type of action and provide users the capability to arbitrarily rearrange them

independent of their ability to interact with the content of the applications

running in the windows. In addition, we provide multi-user multi-pointer

support similar to Pebbles, except that our pointers are controlled by mice

instead of by PDA's, although we have the potential to extend this to sup-

port other external input devices such as PDAs and laser pointers without

significant changes to the current system.

2.5 Other Techniques

We briefly summarize three techniques that are closely related to the devel-

opment of the Lacome project and which form the basis for our work.

Chapter 2. Related Work^ 21

VNC

Virtual Network Computing (VNC) [47] is a software package that allows

users to view and fully interact with a remote computer (the VNC server)

using a simple program (the VNC viewer) running on another computer

anywhere on the Internet [9] The VNC server can disable input from other

VNC viewers for security and the VNC viewer can disable output to VNC

servers for efficiency.

Currently there are several implementations of VNC such as Rea1VNC [9],

TightVNC [12], U1traVNC [13] and OSXVNC [6]. They are all implemented

based on the remote frame buffer (RFB) protocol [46] and have nearly the

same features. Although VNC was originally developed for remote control of

a computer, it can be applied to co-located collaboration [43]. We make use

of the RFB protocol to build our Lacome system. We used the TightVNC

server for our initial prototype testing.

Rover

Rover [19] by Booth et al. allows seamless switching between different ma-

chines under a multi-machine multi-platform environment to mimic a multi-

screen computer. Rover provides a spatial layout for multiple screens in a

virtual workspace. Moving the cursor out of one screen will let the cursor

enter into the adjacent screen if that screen is available. Rover can be used

by either a single user to seamlessly navigate through multiple computers

under multiple platforms, or by multiple users to collaboratively access each

other's desktops, subject to the constraint that when a computer/screen is

Chapter 2. Related Work^ 22

occupied by a user, other users who move their cursor into the screen will

have to skip that screen immediately.

WinCuts

WinCuts is an interaction technique developed by Tan et al [58]. that allows

users to replicate arbitrary window regions on the same or different com-

puter. Each WinCut is a "live" view of a region of source window with which

a user can interact. WinCuts supports replicating arbitrary window regions

into independent windows. Manipulation of the WinCut source window

will be continuously updated in the replicated window. The input redirec-

tion mechanism allows users to interact with the content in the replicated

WinCut window and have the input redirected to the source window. The

purpose of WinCuts is to more effectively use limited screen space.

2.6 Summary

In this chapter we have reviewed general concepts of Single Display Group-

ware and Multi-Display Environments as well as some typical systems. We

also have discussed underlining key techniques that have been applied in

this area. All of these impact our design and implementation of Lacome,

which stands for "LArge C011aborative Meeting Environment". Starting in

the next chapter, we elaborate the design of the system architecture and the

user interface of Lacome. In addition, we provide selected implementation

details, and some of the insights we have gained from our work.

Chapter 2. Related Work
^

23

System Display
Mode

Resolution
Size(cm/incla)
Orientation

Touch/
Max Points

Projection
Style

DiamondTouch

[21]
Shared

2736x2048
86x65/(34x26)
Vertical

Yes/4
Top

Microsoft

Surface PC [4]
Shared

1024x768
56x53(22x21)
Horizontal

Yes/52
Bottom

Integrated

Tabletop [39]
Shared

NA
NA
Horizontal

TopNo
&
Bottom

SmartSkin [44] Shared
NA
80 x 90/(32x35)
Horizontal

Yes/<=10
Top

SMART

Board [10]
Shared

1600x1200
171x128/(67x50)
Hori./Vert.

Yes/1 Rear
Front
Flat

Perceptive

Pixel [26]
Shared

5120x1024
488x91(192x36)
Hori./Vert.

Yes/NA
Rear

CoLab [52] Pub.
&
Pri.

NA
NA
Vertical

Yes/1
Rear

CaptureLab

[36]

Pub.

Pri.

NA
NA
Vertical

No
Rear

PowerWall [8]
Shared

3200x2400
183x244/(72x96)
Vertical

No
Rear

Interactive

Wall [23]
Shared

4096x2304
183x107/(72x42)
Vertical

Yes/1
Rear

Scalable Disp-

lay Wall [62]
Shared

6000x3000
244x549/(96x216)
Vertical

No
Rear

Table 2.1: Examples of Typical SDG Implementation

Chapter 2. Related Work^ 24

System
Display Type Data Proce. Tech.

Sup. Physi. Obj.
Sensing Techniques

Au,menteComputer,dAugmented

Surface
Wall Display,
Tabletop

Hyperdragging [45]
Yes

Camera-based

i-LAND
DynaWall,
CamraChairs
InteracTable

BEACH [54] .
Yes

Weight Detection

ARIS
Computer, PDA,
Wall Display

Gaia [48]
No

NA

iRoom
Computer, PDA,
Tabletop,
Wall Display

iROS [42]
No

Touch-based

Table 2.2: Multi-Display Environments Implementations

25

Chapter 3

System Architecture

In this chapter we discuss Lacome from a system designer's perspective.

We first give an outline of the system, followed by the architectural design

of both the server and client components. After that we elaborate on the

access control policies we have incorporated into the system.

3.1 System Outline

In Lacome we used a client/server architecture to design and implement the

system. The system consists of one server and an arbitrary number of two

types of clients. The clients are all communicating directly with the server

while the server decides what needs to be drawn on the large display and how

to do it. Figure 3.1 illustrates the configuration for a typical Lacome usage

scenario. There is no direct connection between clients. All communication

goes through the server.

During our discussion on Lacome, we will use a few terms which are

explained below:

The term Publisher refers to a machine that shares its workspace for

others to access on the shared display via a VNC server running on the

Publisher. This is a little ambiguous but in Lacome, a VNC server will be

Network

Chapter 3. System Architecture^ 26

Large Display

Publisher

Clients

Navigator

Publisher.Navigator

Figure 3.1: A Typical Hardware Configuration of Lacome

considered as a Lacome client that we call a Publisher.

The term Navigator refers to a machine that forwards its mouse and

keyboard events onto the workspace to interact with the workspace.

The term Manipulator refers to an operating mode in which a Naviga-

tor can do several kinds of manipulation tasks such as move, resize, iconify

and deiconify to the windows on the shared display. This is the default mode

when a Navigator first gets initialized.

The term Controller refers to an operating mode in which a Navigator

controls some Publisher's workspace via the Publisher's VNC server. All

input events generated from the Navigator are redirected to the Publisher

in the Lacome server.

For completeness, we use the term Annotator to refer to an operating

mode in which a Navigator is used in a "drawing" or "sketching" mode

to annotate or "decorate" information on the shared display. Our current

Server

Chapter 3. System Architecture^ 27

Lacome Server

Publisher Publisher

Figure 3.2: Lacome System Outline

implementation does not implement this mode, but a production system

would.

Publisher and Navigator are not mutually exclusive. One client can

be a Publisher, a Navigator, or both at the same time, as illustrated in

Figure 3.1.

Figure 3.2 shows a more detailed view of the system architecture. Within

Chapter 3. System Architecture^ 28

the Lacome server, there are three components:

The Network Component deals with all communication between the

Lacome server and the clients. A connection manager is developed to man-

age all client connections. Each connection is associated with a particular

client's data in the Data Component.

The Data Component is the core component of the server. On the one

hand, it serves as a bridge between the two other components. It constantly

extracts events from the Network Component and processes them. More-

over, it sends information to the Rendering Component so the appropriate

data can be displayed to the users. Determining which information to send

is one of the major tasks of this project.

The Rendering Component is responsible for drawing everything in

a proper way.

On the client side, there are two components that correspond to the

Publisher and Navigator roles, both introduced above. A client does not

need to have both active. Each can be enabled and disabled on demand,

which provides more flexibility.

There are two major types of data flow.

Client to Server: data flows as a Publisher client informs the server

when to establish or close a VNC session and as it sends frame data to

the server to update the display of a shared desktop or application window.

Similarly a Navigator client sends data and events to the server to update

its cursor information, such as size, position or color.

Server to Client: the server is responsible for establishing connec-

tions and disconnecting from clients or VNC sessions. Server also redirects

Chapter 3. System Architecture^ 29

the Navigator's inputs to the specific Publisher when the Navigator is in

Controller mode.

3.2 Server Architecture

The Lacome server contains the three components introduced in Section 3.1.

In this section we elaborate on each of them.

Network Component

The Network Component is responsible for all connections and data trans-

missions between the server and the clients. When the Lacome server starts

running, a connection manager is installed. The connection manager con-

sists of a client manager and a Publisher manager. The client manager first

initiates a thread that keeps waiting and accepting new client connections.

When a new connection has been established, a new thread is spawned and

assigned to that connection. The new thread extracts data from the client

connection and forwards the data to the Data Component. There are two

modes by which Publishers can connect. Firstly, we establish a thread that

passively listens to VNC requests from external Publishers. Moreover, a

client may register a Publisher machine requesting the system to connect to

the Publisher. The Publisher manager will then actively establish a VNC

connection to the designated machine.

When a Publisher connection is established, the Lacome server acts as

a VNC client to the VNC server installed on the Publisher. Similar to the

client connection case, a dedicated thread is associated with each active

Chapter 3. System Architecture^30

Publisher connection to handle tasks such as reading frame data from the

Publisher and redirecting input events to the Publisher. A detailed graph

of the Network Component is illustrated in Figure 3.3.

The connection manager is also responsible for maintaining the status

of each connection and disconnecting inactive ones.

We have reused the RFB protocol [46] for transmitting frame data and in-

put events, so our system is compatible with all standard VNC servers. That

means any implementation of the standard VNC server such as TightVNC,

Rea1VNC, etc. can be used to establish a Publisher and connect to the

Lacome server without any changes.

Data Component

The Data Component manages the current status of each client, including

information about its Navigator and Publishers. The structure of a client is

shown in Figure 3.4. A client can be associated with at most one Navigator

and an arbitrary number of Publishers. In our case, the Navigator must

be exactly the same machine where the client is located, but the Publishers

might come from either the local machine or other machines. A Publisher

has an association with a client when that Publisher is registered by that

client.

A client that is not associated with any Navigator or Publisher is called

an Empty Client. By default, a client is empty when the client is initialized

and first connected to the Lacome server. An empty client contains basic

information such as IP, nickname, etc.

As suggested by its name, a Non-empty Client is a client that has at

Publisher
Manager

Publisher
Connection

Publisher
Connection

Publisher
Connection

Chapter 3. System Architecture^31

Connection

Connection Manager

Figure 3.3: Network Component

least one Navigator or Publisher. For a non-empty client, any of its Navi-

gator and Publishers will have a corresponding connection in the Network

Component. A data manager is designed and implemented to keep track

of all the data in the Data Component. All data are kept in specific data

objects and the data manager organizes them into several logical sets. For

example, the data manager keeps a list of references to the Publishers that

have been iconified, so that it is very easy for the OpenGL thread to ren-

der them appropriately. The iconification and the OpenGL thread will be

discussed in Chapter 4 and Section 3.2 respectively.

The data of a client can be grouped into three categories:

Chapter 3. System Architecture^ 32

Figure 3.4: Client Structure in Data Component

Basic client information This includes client ID or nickname as the

replacement of its IP, its control mode (discussed in Section 3.4), a list of

references to the Publishers registered by it.

Navigator data This includes information such as the coordinates of

the cursor and the button mask of the keyboard, both needed for manip-

ulating multiple windows and redirecting input events. It also contains a

reference to the Publisher window that is under its control, and the size and

color of the cursor.

Publisher data This includes the scale and the aspect ratio of the

window, the screen position of the window on the shared display, a backward

reference to its owner as well as to its controller, and a reference to its frame

buffer.

Chapter 3. System Architecture^ 33

Rendering Component

The entire Rendering Component resides within the main OpenGL graphics

thread. It handles the rendering tasks with the help of a modified version

of the ivLib [61], which provides well defined advanced primitives such as

vector. We discuss this in more detail in Chapter 4.

3.3 Client Architecture

The client/server subsystem supports multi-client collaboration. The struc-

ture outline for a single client is illustrated in Figure 3.4. When there is only

one client, there is little need for structure. However, when there are multi-

ple clients working together, the situation becomes more complicated than

the single client case, so careful design and implementation are important.

Navigator

A Lacome client can have at most one Navigator. The Navigator is respon-

sible for transmitting the client's cursor and keyboard events to the server to

support the client's cursor on the server. The Navigator belongs to its client.

When the client disconnects, the Navigator is also immediately disconnected

Publisher

A Publisher is a machine with a standard VNC server that shares a desktop,

application window, or part of a desktop or application window with the

server.

Chapter 3. System Architecture^34

All Publishers, even when their VNC servers are not running on the

same machine as some client, have a logical connection with the client that

introduced them to the server, but the client does not control their resources.

Once connected to a Lacome server, a Publisher sends its frames to the

Lacome server and may accept redirected input messages. When a Publisher

is introduced to the Lacome server by a Lacome client, the Lacome client is

the "owner" of the Publisher. As a result, when a Lacome client disconnects,

all Publishers that have been brought to the Lacome server by that client

are also disconnected.

3.4 Access Control Policies

As mentioned in Section 3.3, when there are multiple clients connected si-

multaneously, there are several situations that do not exist in a single-client

scenario.

Scenario 1

Two users, A and B, are working together each on their laptops using Navi-

gators to access a public machine serving as a Publisher. Both A and B need

to get into the Publisher in Controller mode to control the shared desktop

or application window. Since most operating systems on personal computers

are currently designed for single user access, the result will be unpredictable

when both A and B try to control the application at the same time. Lacome

does not attempt to solve this problem but does provide features that facil-

itate social mechanisms for coordinating usage of access control to reduce

Chapter 3. System Architecture^ 35

inadvertent collisions.

Scenario 2

Several users are working simultaneously on the large display. User A con-

nects his laptop as a Navigator via his Lacome client while at the same

time sharing his desktop using a standard VNC server as a Publisher. User

B connects with another Navigator. B wants to control A's desktop when

A's Navigator is controlling somebody else's desktop. User B might find

that by controlling A's desktop he is indirectly controlling the desktop that

is currently under A's control. Moreover, A loses control of both his own

desktop and the one he is controlling. This is neither B's nor A's purpose.

Thus we need to design a series of policies for access control to make the

system robust. The problems described in the above scenarios are the major

access control problems in our system. In order to tackle these problems,

we carefully analyze our system and come up with the following policies:

Three-Mode Interaction. Nearly all existing window management

systems leverage a single mode structure to handle access control. In our

system, we use a new, three-mode structure which we believe provides a

better sense of control and management. In the Manipulator mode, Navi-

gators can freely manipulate any of the windows shared by the Publishers,

moving, resizing, and iconifing them as they desire to arrange the shared

space. Only when a Navigator enters Controller mode does it communicate

with the application running on the Publisher's computer. In Controller

mode the cursor is restricted to stay within the window it is controlling.

In Annotator mode the Navigator is able to do annotation on the shared

Chapter 3. System Architecture^36

display space either with a single window or across multiple windows. The

advantages of this three-mode structure will be discussed in detail in Chap-

ter 4.

One Owner Interaction. We store a reference in every Publisher that

points to the Navigator which controls it. At any given time a Publisher can

be controlled by at most one Navigator. Other Navigators cannot access an

occupied Publisher until the controlling Navigator relinquishes its control.

Tailorable Access Control. A flexible access management module is

proposed to handle the complexity brought by the situation of single-client-

multiple-roles to prevent unexpected outcomes. The basic strategy is to not

allow a client to have multiple roles at the same time. When a client is

already a Publisher and sharing its desktop or application window, there

are several different options to solve the problem that occurred in Scenario

2:

• Force Navigator and Publisher to be mutually exclusive in a client.

When there is already an active Publisher in a client, the system will

forbid the Navigator in the same client to be turned on, and vice versa.

This prevents the problem from happening.

• For a client who has an active Publisher, if a Navigator from another

machine is trying to get access into the Publisher, the system will

send a query message to the client to ask for a response. If the client

approves, it will give up its Navigator. The client then needs to repel

the controlling Navigator out before it can re-enable its own Navigator.

The access control in Lacome is crucial. In this section we have discussed

Chapter 3. System Architecture^37

the system structure side of our access control policies. In Chapter 4 we will

elaborate the interface side, to which we pay more attention.

3.5 Summary

In this chapter, we have discussed the system architecture of Lacome. We

have gone through both the server side and the client side, as well as the

design of the access control. With a general concept of the system archi-

tecture in mind, in the next chapter we will turn to the design of the user

interface, which is another important component of the system.

38

Chapter 4

Interface Design

Interface design is considered the most important part of Lacome. Exist-

ing window systems are designed to support a single user and they are not

suitable for multi-user co-located collaboration. Multi-user concurrent col-

laboration is our goal in Lacome. In this chapter we introduce the interface

design of Lacome. We first list some design requirements that we set for the

system. We then describe the multi-cursor window manager we designed,

followed by a description of the client interface design.

4.1 Design Requirements

Building on the guiding principles set forth in Chapter 1, we adopted the

following requirements during the design process to guide our work. We

used these same requirements to test the prototype we built.

• The system should be cross-platform. It should support all main-

stream operating systems including Microsoft Windows, Apple Mac

OS, and Linux.

• Any user should be able to connect his/her own laptop to Lacome

without complicated setup work. Users should be able to join, leave,

Chapter 4. Interface Design^ 39

or re-join a Lacome session, at any time without disruption.

• The system should provide most, if not all, of the basic window man-

agement features that a typical window system provides, such as mov-

ing, resizing, iconifying and deiconifying windows. Moreover, these

features should be intuitive enough for the users to recognize, learn

and remember, without imposing heavy mental workload on first-time

users.

• All users should be able to visibly identify their cursors on the shared

large display. They should also be able to customize the size, shape,

and color of their cursors.

• Mutual interference between multiple users should be minimized both

when they are doing individual work and when they are collaborating.

• The access control model set by the system should be easy to un-

derstand with sensible defaults to ease the transition from novice to

expert user.

4.2 Multi-Cursor Window Manager Design

Mainstream windowing systems only support a single-user and their window

managers support only a single cursor. There are, however. , research systems

that provide multi-cursor window managers [33, 39, 59, 63]. Unfortunately,

we cannot directly adopt these approaches. The major challenges are that

they only support a single specific operating system [33, 39, 59, 63], and they

require a fair amount of specialized setup. These factors make them less

Chapter 4. Interface Design^ 40

portable. Moreover, there are other drawbacks such as only one single mode

for access control [39], a limited number of cursors [39, 63], and undesirable

interference between users when one user's window obscures another user's

window.

Based on the experiences reported by other researchers, we took all these

factors into consideration when designing Lacome. With respect to our

three-mode access control structure, we divide this section into three parts.

In the first part we describe the general features we develop for the Laconic

system in the Manipulator mode including Cursor Customization, Drag and

Drop, Scaling, Transparency, and Iconification. In the second part, we in-

troduce more features we have developed exclusively for the system under

the Controller mode. At last, we illustrate the Annotator mode which we

have not yet implemented in the current version of Lacome. However, we

explain its features for the sake of completeness.

Manipulator Mode

The features we describe here are not novel. Each of them have been imple-

mented in some single user windows systems. However, to our knowledge,

Lacome is the first multi-cursor window system that has combined all of

these features together. We have reasons to believe that they should all

co-exist within a multi-cursor window system. We elaborate them one by

one and explain our design rationale for each.

Cursor Customization. Cursor customization is important in a multi-

cursor window system. Individual users need to visibly differentiate their

cursors from other users' cursors. Different users may also have different

Chapter 4. Interface Design^ 41

preferences for their cursors. We enable cursor customization in three cate-

gories: color, size and shape. Figure 4.1 shows a picture of sizes and colors

for the default arrow-shaped cursors. When a user starts the Navigator on

Figure 4.1: Cursors with Different Colors, Sizes and Same Default Shape

his/her client machine, the Lacome server will automatically assign a unique

color to his/her cursor on the shared large display. The color of the cursor

should be also shown on the client. This makes it easy to identify the cursor

anywhere on the screen. When the user disconnects from the system, the

Lacome server will "recycle" the color that the user was using so that it

can be reassigned for another incoming user. Users can change the size of

their cursors on demand through the Lacome client, which is described in

Section 4.3.

Window Initialization. The initial states of all shared windows are

pre-defined. The system sets the coordinates of the center of any new shared

window to the same point on the shared large display.

It also sets a fixed initial value for the height of a shared window and

calculates the width based on the actual aspect ratios of the source window

provided by the Publisher. The width of the window will be recalculated

whenever the aspect ratio for that window is updated on the Publisher. In

Chapter 4. Interface Design^ 42

Figure 4.2: Initial States and Modified Windows

Figure 4.2, the window in the middle of the screen is at the initial location

with the initial default height. The window on the right has the initial size

but has been moved from its initial location. The two windows have the

same height. The window on the right has a bigger width than the one in

the middle because its aspect ratio is bigger than the other's. The window

on the left is at a modified location with a modified size.

This design decision was made after investigating several approaches.

There are two sets of parameters we need to consider: the initial location

of a shared window and its initial height and width. Many window sys-

tems seem to believe the most obvious choice for the start up location is

a random location. More sophisticated approaches employ heuristics such

as calculating the area of unoccupied screen to find a place to locate the

window to minimize occlusion of existing windows. All of these approaches

have shortcomings:

Firstly, since the shared windows are popped up at a random location;

Chapter 4. Interface Design^ 43

it is not easy for the users to find the one they want when there are multi-

ple shared windows arriving quickly in succession, especially when they are

initiated by multiple users. Moreover, the dynamics get more complicated

when other users are concurrently manipulating existing shared windows so

the mere fact that a window is changing on the screen does not identify it

as being the new window.

Secondly, if a new shared window shows up at a location occupied by

some window currently being manipulated by another user, the new window

may interrupt the other user's work.

Based on these considerations, we decided to have all new windows show

up at the same location to save available screen space and give users clear

hints on where to find new windows. For similar reasons we chose to fix the

initial height of each new window.

Drag and Drop. Drag and drop are the most common means of reposit-

ing individual windows in most window systems. We followed the conven-

tions of other popular window systems for this feature and set the left mouse

button as the trigger for drag and drop. Here we assume that the user of

Lacome uses a three-button mouse (we later discuss the solution for mice

with fewer buttons). A shared window is busy when there is a cursor holding

(dragging or scaling) or controlling it. A window on the shared large display

is either busy or available. When a cursor is hovering on or dragging an

available shared window, the color of the window's border will become the

same as the color of the cursor, as illustrated in Figure 4.3. This identifies

the "owner" of the window.

There are problems that are specific to multi-user window systems that

Chapter 4. Interface Design^ 44

Figure 4.3: A Cursor Hovers on a Shared Window

Figure 4.4: Two Cursors Hover on a Shared Window

are completely absent in the single-user scenario. One of them is that mul-

tiple cursors might be hovering on the same shared window. In that case

the color of the border of the window brought by a cursor below will be

overlapped by the one's above[39]. In Lacome, we solve this by making the

extra border bigger than the existing one, as illustrated in Figure 4.4, so

that users are aware that there are multiple cursors working in the region

of this window and they can easily find theirs as well as others' cursors on

the shared large display.

Chapter 4. Interface Design^ 45

The difference in how drag and drop works between Lacome and almost

all other systems, is that in other systems, drag and drop can only be per-

formed by clicking on the window's border because there is only one mode

of access control; when the cursor moves inside the window region, it starts

to control the shared desktop on the machine where the desktop resides. In

Lacome, we have three-mode access control to tackle this problem. Drag

and drop operations are operating in the Manipulator mode, so a user can

click and hold on any point within the window region or its border to move

the window. Thus users need not to worry about whether their cursors

are clicking exactly on the border of the windows if they want to drag the

windows without interacting with the content of the window.

Resizing. Resizing is important especially in the large display environ-

ment. In order to save screen space, we set the initial window size to be

relatively small. When a user wants to do a presentation with some slides

or several people want to see the same window on the shared large display,

they may want the window to become large enough for everyone to easily

see it. We use a modified drag and drop with the right mouse button to set

resizing. Similar to the drag and drop for positioning, the user holds and

drags any point in the window region to resize it, instead of clicking only on

the border.

Lacome tries to support multiple users without too much interference.

To achieve this, we set a minimum and maximum values for the size of

a shared window, so that a window will neither obscure the whole large

display, nor become too small to be recognized. In Figure 4.5, the window

in the middle has the initial size, the one on the left has maximum size and

Chapter 4. Interface Design^ 46

Figure 4.5: Scalable Shared Windows

the one on the right has minimum size. The threshold for the minimum

and maximum size can be adjusted according to the physical screen size and

resolution as part of the system specific parameters.

Transparency. Based on the experience provided by the Integrated

Tabletop [39], we realized the value of rendering transparent windows in

some circumstances. The Dashboard widgets in Apple Mac OS X have a

similar semi-transparent windowing feature [2]. We decided to implement

this feature in Lacome, as shown in Figure 4.6. The most obvious advan-

tage transparency provides is that it supports concurrent interactions with

overlapped shared windows by allowing more than one window to be visible

at the same location. This reduces interruptions between multiple users.

Iconification. Windows not currently in use can take up valuable screen

space and obscure other windows. To preVent this from happening, we

implement iconification as do most window managers. A window is iconified

when a user double-clicks on it. An iconified window is shrunk to a standard

Chapter 4. Interface Design^ 47

Figure 4.6: Transparent Windows

sized icon that resides at the bottom of the shared screen. It will recover to

its previous size and location when someone double-clicks on the iconified

window. Figure 4.7 illustrates this. This iconified version of a window is

simply a smaller sized rendering of the window. We do not substitute an

iconified window with a static icon because Lacome is a multi-user system

and we cannot expect each user to know or remember what every icon made

by others is. So we show a miniature of the window to give users enough

information to identify it.

Following a technique by [37], we have added a window expanding effect

to the icon list, as illustrated in Figure 4.8. When a cursor is moving close

enough to a window icon, that window icon will temporarily expand to

Icenify ,

Chapter 4. Interface Design^ 48

Figure 4.7: Windows Iconification

become bigger so that it will be easy to reach and read.

Controller Mode

As mentioned previously, there is a three-mode access control structure in

Lacome. In Section 4.2 we introduced the features in the first mode, known

as the Manipulator mode. In this section, we discuss the Controller mode.

We first discuss the frame stack, which is an essential concept to under-

standing the Lacome interface. We then elaborate on input redirection.

Chapter 4. Interface Design^ 49

Figure 4.8: Expanding Window Icons

Mode Switching. To switch from the Manipulator mode to the Con-

troller mode, a user clicks the middle mouse button on a target window. De-

pending on which access control policy the system is using (see Section 3.4),

the server will either grant or refuse the access request of the user. When a

cursor is in the Controller mode, its movement will be restricted to within

the area of the target window. Figure 4.9 shows a Navigator going into

Controller mode and interacting with a shared desktop window.

In Manipulator mode a cursor can move and resize a target window,

but cannot get into the desktop or interact with the machine on which the

desktop resides. We have chosen a key combination so the cursor will not ac-

cidentally switch out of Controller mode. The hot key combination Crtl-F1

is used to switch from Controller mode back to Manipulator mode. We be-

lieve interaction requirements are distinctly different under different modes.

This isolation provided by separated modes allows us to tailor our interface

to facilitate people working in each mode. More details are discussed later.

Chapter 4. Interface Design^ 50

Figure 4.9: Controller Mode

Frame Stack. The frame stack provides an ordering of the shared

windows, telling which windows should be displayed in front of others. We

have implemented the following policies in our prototype design:

Windows controlled by cursors in the Controller mode have highest pri-

ority and reside on the top of the stack. They are rendered on top of all

other windows, even those being manipulated by cursors in Manipulator.

mode. Windows that are not being controlled or manipulated have the

lowest priority and reside at the bottom of the stack. As a result, shared

windows under the Controller mode and shared windows under the Manip-

ulator mode will be on top of all windows that are available.

Secondly, whenever a window enters a new mode (from available to Ma-

nipulator or Manipulator to Controller), it will be put on top of everything

in that mode. As a result, the ordering of the windows within a mode will

Chapter 4. Interface Design^ 51

be determined by the order they entered that mode: oldest rendered first,

most recent rendered last.

The above design policies indicate that shared windows residing in the

Controller mode will always be on top. Intuitively, windows in the Con-

troller mode are actively interacting with users and should not be obscured

if another window is merely moving across them in the shared display.

Input Redirection. The input redirection feature utilizes the RFB pro-

tocol [46], which is used by VNC. As a result, any machine with a standard

VNC server is able to connect to Lacome and share its desktop and/or appli-

cation windows. When Lacome starts processing input redirection between

a client (Navigator in Controller mode) and a VNC server (Publisher), it

forwards the mouse and keyboard events it receives from the Lacome client

to the corresponding Publisher client (a VNC server). One may question

why the two interacting parties are not directly connected instead of hav-

ing a server redirecting input events. There are several reasons behind this

design.

Primarily, Lacome holds the context on the cursor coordinates. Recalling

that each shared window could be resized and moved, we must take these

parameters into account when we translate the mouse coordinate between

different desktops. More specifically, we must first translate the controller

coordinates from its local desktop to the shared coordinate of the large

display. After that, we have to figure out the position of the cursor relative to

the controlled target window left top corner, with appropriate scaling, before

we can correctly redirect input events. In addition, the Controller Navigator

may have a different desktop resolution than the one it is controlling. For

Chapter 4. Interface Design^ 52

example, the input machine may operate with a resolution of 1024 x 768

while the target machine operates on 1600 x 1200. In a standard VNC

implementation, the controller will have scroll bars to accommodate the

difference in the area. Lacome, on the other hand, has built-in support to

accommodate different window sizes by resizing, so it can easily handle these

cases.

The second reason Lacome serves as an intermediary is that it is not a

common practice to have a single VNC server accept multiple client connec-

tions. Unless specifically set by the user in the VNC server, a VNC server

typically either rejects further incoming connections or disconnects the cur-

rent connection in order to accept a new connection. Both of these cases

are undesirable. When multiple connections occur, we observe a significant

increase in system workload on the Publisher. This increase is unnecessary

because it is handling two clients of which one is only out-going (Lacome)

while the other one is only in-coming (input redirection). Because our VNC

servers are often running on laptops or mobile devices, it seems more appro-

priate to shift the workload to the dedicated server running Lacome.

The third reason is that Lacome can act as a security checkpoint to

avoid exposing IP addresses or user identities. In some cases, Publishers are

behind firewalls that impose restricted access. It may be easier to add a

Lacome server as a trusted endpoint thus to add multiple Navigator clients.

Moreover, adding each client which may be interacting only for a limited

amount of time to a firewall exception list is tedious and prone to security

flaws..

The final reason is that Lacome serves as a buffer for faulty connections.

Chapter 4. Interface Design^ 53

In the situation where one of the parties is suddenly disconnected, the La-

come can maintain all of the data and gracefully handle the disconnection

and reconnection if the missing party returns.

The user of a Controller forfeits control of a window by pressing Ctrl-F1.

We have found that this combination is seldom used by most software and

operating systems. We have little worry that this key combination would be

intercepted by the underlying operating system. After some trial-and-error

on several operating systems (Microsoft Windows, Apple Mac OS, Linux),

we have confirmed that Ctrl-F1 is a good choice.

Although we cannot expect Lacome to monitor all key stroke events and

detect if Ctrl-F1 was pressed, we leave this task to the Navigator client. We

are expecting a much higher data flow rate in the Controller mode, so we

believe that monitoring keys strokes may introduce unnecessary processing

overhead. As well, we envision that there will be scenarios where the client

would customize the Navigator to use a different key combination. Our

design makes this change invisible to Lacome and to the Publisher client.

Upon detecting the forfeit key combination, the Navigator client would send

a message to inform the Lacome server to switch the Navigator back to

Manipulator mode. The Publisher would not be informed of this.

Annotator Mode

One significant difference between Annotator mode and the other two modes

is that the Annotator mode has nothing specific to do with the Publisher.

Its manipulation target is the shared display space. By allowing users to

do annotation on the shared display space, Lacome provides the feature of

Chapter 4. Interface Design^ 54

collaborative painting that is also provided by other collaboration toolkits or

systems such as GroupKit [49]. When entering the shared space, a Navigator

will get into Manipulator mode by default. Then it can change its mode

to either Controller or Annotator, depending on the user's purpose. A

Navigator in Controller mode or Annotator mode will have to switch back

to Manipulator mode before switching to the third mode.

In the current version of Lacome we have not implemented the Annotator

mode. However, we want to include it in the future extension of Lacome for

its widely applicable area as well as function completeness. In addition, it

is not difficult to implement it under our framework.

4.3 Client Design

Compared to the Lacome server, a Lacome client is relatively small, but

that does not mean it is of little consequence. To the contrary, the client is

the middleware that end users use to interact with the system. The design

of the client is directly related to the usability, and hence the success of

Lacome.

Functional Components

A complete version of an interface for a Lacome client (shown in Figure 4.10)

consists of the following three components:

Server Connection. This has a text field to provide the IP address

of the running Lacome server and its port. Currently, a user has to know

the exact IP address and the port on which the Lacome server is running

- ^Conned

Send Nick

cc c^ (Dis)Connect

I (Dis)Connect

:pbavc ube cal^ (Dis)Connect

Toggle Nav

Chapter 4. Interface Design^ 55

Figure 4.10: Lacome Client

in order to be connected to the server. In later versions, we will add a

discovery browser or favorite list to enable quick connection to the Lacome

server. Users are also able to choose a nickname for others to use to reference

them on the Lacome server. See Figure 4.11 for a screenshot of the text field.

Navigator Control. This GUI component is used to toggle between

the Navigator and the client's system cursor. When a user clicks the Toggle

Nay button, the system cursor will be mounted into the rectangular region

(highlighted with a yellow background of the user's screen) as shown in

2001^Connect

Chapter 4. Interface Design^ 56

Figure 4.11: Server Connection Component

Figure 4.12. When the system cursor reaches the boundary of the rectangle,

it will be reset to the center of the rectangle. Thus the system cursor will

not be able to get out of the rectangle. As a result, the cursor is virtually

in an unbounded 2D plane. Meanwhile, the relative displacement of the

system cursor movement as well as the mouse button events are sent to the

Lacome server. The Lacome server will draw a virtual cursor on the shared

large display which updates accordingly.

For the same reason as in Controller-Manipulator switching, a user needs

a unique hot key combination to switch between the Navigator and the local

system cursor. Currently we have chosen Shift+Backspace to achieve this.

The control bar beside the toggle button is used to adjust the size of the

Navigator cursor. Users sitting at different distances to the large display

may need to adjust the size of theirs cursors accordingly. We have only

implemented the cursor size customization feature in our client. There may

be other customization options which we could add in the future.

Publisher Control. Using this component, a user is able to instruct

the Lacome server to connect to any available VNC server as long as he/she

has the password to that VNC server. The machine on which the VNC

server resides does not need to be a Lacome client (see Figure 4.13). This is

an optional component. For those users who do not need to share desktops

it--^-Id I

(Dts)Coggect

(Dis)Cognecl

(Dis)Comect

Chapter 4. Interface Design^ 57

Toggle Nav

Figure 4.12: Navigator Control Component

Figure 4.13: Publisher Control Component

or application windows, a compact version of the Lacome client can be used

that does not have this component.

Role-Based Configuration

Among the functional components described above, the Server Connection

and Navigator Control are mandatory for a client, while the Publisher Con-

trol is optional. According to different scenarios, we can choose to either

include the Publisher Control into the client or not. In the default sys-

tem configuration like the one shown in Figure 3.1, the clients normally

Network

Lacome Server

Dedicated VNC Servers

Chapter 4. Interface Design^ 58

Large Display

System Admin

Clients As Pure
Navigators

Figure 4.14: Configuration with a System Administrator

include the Publisher Control component, but in a meeting with a system

administrator and several dedicated machines as servers, we may remove

the Publisher Control component from the clients and only make this op-

tion available to the administrator. In that case, the system administrator

is responsible for bringing all shared content to the meeting. Each user will

use his/her laptop to connect to the Lacome server as a pure Navigator, as

shown in Figure 4.14.

4.4 Summary

In this chapter we have elaborated the design details of the interfaces in

Lacome. With this and Chapter 3 we now have a relatively complete un-

Chapter 4. Interface Design^ 59

derstanding on both the internal system architecture and the external user

interface. In next chapter, we discuss specific details of the implementation

and the experience we have gained from our work.

60

Chapter 5

Implementation

In the previous two chapters we introduced the Lacome system architecture

and the user interface, respectively. In this chapter we discuss some of the

details, as well as the difficulties we encountered implementing the system.

Aditional details are in the source code, which is commented. We first

describe the hardware and software environment for our implementation,

and then we present selected details of the implementation.

5.1 Hardware

The Lacome system is part of the collaboration infrastructure maintained

by the Large Shared Display Group (LSD-G) at the University of British

Columbia. In our laboratories we have three large tiled display surfaces that

are each 16 feet wide by 9 feet tall. Behind each surface there are projector

arrays with 12 projectors, each having a resolution of 1280 x 1024 pixels, as

shown in Figure 5.1 (one display surface has stereo-capable projectors having

a resolution of 1024 x 780 pixels). The projector arrays are connected to

an IBM DCV (Deep Computing Visualization) graphics cluster with each

display driven by one application node and six rendering nodes comprising

dual CPU Intel Xeon 3.6GHz processors with 8Gbytes of memory. Including

Chapter 5. Implementation^ 61

Figure 5.1: Projector Array

an additional administrative node, there are 22 dual CPU processors, all

communicating through an Infiniband high-speed interconnect [29].

Each rendering node controls the display of two projectors. The Lacome

server runs on the application node using the associated rendering nodes

to update the display surface. The laboratory is part of the UBC campus

wireless network so users easily gain connectivity to the Laconic system. In

addition, there are some desktop PCs in the laboratory that can be used as

clients or data servers to test the system. This accommodates a variety of

meeting requirements. The configuration is illustrated in Figure 5.2. The

IBM graphics cluster provides a powerful processing capability that we have

used in our research. However, the Lacome system is designed to be largely

independent of the particular hardware environment. A variety of high

performance architectures could be used instead for large display surfaces,

or just a single projector driven by a personal computer could be used for

smaller display surfaces.

^Rendering^Application^ Clients

^

Nodes^N e

Lacome Server

Chapter 5. Implementation^ 62

Projector Array

IBM Graphics Cluster

Figure 5.2: A typical hardware configuration for Lacome

5.2 Software

The Lacome server and its clients are implemented separately, using differ-

ent approaches because of the different purposes they have. The server is

implemented in C++ under Red Hat gcc-4.1.1 in order to accommodate the

working environment of the application node of the IBM graphics cluster;

the client is implemented in Java to achieve cross-platform functionality.

DCV

The IBM Deep Computing Visualization (DCV) software [29] installed on

the IBM graphics cluster is used to manage the parallel rendering for the

projector array. The architecture is designed so we can consider the display

of the shared workspace onto the large screen to be a black box. We describe

some of the salient details of the server and the client to illustrate some of

Chapter 5. Implementation^ 63

the choices made in the architecture.

Server

The current version of the Lacome server contains about 5000 lines of com-

mented C++ code, excluding the ivLib graphics library. The implementa-

tion has three components as described in Chapter 3. These are discussed

in turn here.

Network Component

The Network Component is implemented based on the RFB protocol. Cur-

rently most standard implementations of the VNC [6, 9, 12, 13] are con-

figured so that one or more VNC clients can connect to a VNC server but

a VNC client can only connect to one VNC server. In the Lacome archi-

tecture the VNC servers are actually running as Laconic Publisher clients,

while the VNC client software is running on the Laconic server. Thus the

notion of "client" and "server" is reversed from its normal meaning with re-

spect to VNC. This distinction should be kept in mind during the rest of

this chapter to avoid any confusion.

The Lacome server has to realize multiple VNC client connections, one

to each VNC server that is an active Publisher. At first we manually created

multiple VNC clients on the server side, but after developing the Network

Component, we employ multi-threading to dynamically allocate multiple

connections to the VNC servers, each of which runs on a Lacome client.

This is realized by a Publisher Manager that receives a connection request

from a Lacome client. The request includes the IP address and port for a re-

Chapter 5. Implementation^ 64

mote VNC server. The Publisher Manager creates a new thread running an

instance of a standard VNC client and establishes a network connection be-

tween that thread and the remote Publisher. When a Publisher disconnects,

the system resources are recycled and the thread is terminated.

The same approach is used by the Navigator Manager to dynamically

create a new thread to manage each remote Navigator after receiving a

connection request from a Lacome client.

These two are deleted when the remote client terminates. In this way

the Network Component can provide connection-on-demand services so users

can join and quit a meeting at any time.

Access to VNC servers is normally controlled through password authen-

tication. Currently we assume a default password for all VNC servers that

connect to Lacome. It makes sense for a co-located collaboration among a

group of co-workers who trust each other to share the same password. Fu-

ture versions will need to implement more stringent password protection if

Lacome is to be used on a public network to support multi-group distributed

collaboration.

In a more robust implementation either the Lacome client that initiates a

connection to a VNC-based Publisher would provide its password, or the La-

come server might provide a repository for passwords. There are advantages

to each approach. If the Lacome server is trusted, it might be preferable to

have all password authentication done by it, with Lacome clients accessing

Publishers only through the the Lacome server. If the Lacome server is not

trusted, it is problematic how it could connect to a Publisher without having

the Publisher's password, unless a client acted as an intermediary. This is

Chapter 5. Implementation^ 65

not supported by the current architecture, which has the Lacome server as

the central control point for communication with all Publishers.

Data Component

The Data Component must support full Lacome clients with Navigator and

Publisher components, as well as Publishers that do not reside on machines

running a Lacome client. The Data Component is designed to manage data

efficiently from a number of perspectives.

The Data Component keeps track of the state of each client and makes

this information available to the other components. The primary data is the

list of client connections. As described in Section 3.2, a Lacome client may

be associated with one Navigator and an arbitrary number of Publishers.

Each has a connection to the Lacome server. These connections are recorded

in the Data Component. Every Publisher and every Navigator must have

a unique Lacorne client as its owner, as well as a corresponding connec-

tion in the Network Component. Publishers and Navigators connected to

a Lacorne server will be disconnected if their owner client disconnects. The

Data Component initiates the disconnections when it detects that a Navi-

gator or Publisher no longer has a Lacome client with an active connection.

Figure 5.3 illustrates the relationship between data sets in the Data Com-

ponent. Lacome clients, Navigators and Publishers are maintained in three

sets. Each Navigator or Publisher is "owned" by a client. Note that a

Publisher does not have to be in the same machine with its owner client,

but a Navigator has to reside in the same machine with its owner client.

Maintaining a single set for each data type ensures no duplication occurs.

Chapter 5. Implementation^ 66

Client
Set

Navigator
Set

Publisher
Set

Figure 5.3: Data Structures Maintained in Data Component

It is also easy to implement extensions based on this model.

A Publisher may be iconified (or not) and it may be under the control

of a Navigator (or not), and it has a current location and size. Similarly

a Navigator may be in one of three states, corresponding to whether it is

in Manipulator, Controller, or Annnotator mode. If it is a Manipulator or

Controller it is associated with the Publisher it is manipulating or control-

ling.

Rendering Component

The Rendering Component uses a light weight OpenGL based graphics li-

brary ivLib [61] to draw graphics primitives. Specifically, we only make use

Chapter 5. Implementation^ 67

of the vector and matrix class defined in the library. The library is indepen-

dent of the Lacome system so any other suitable graphics library could be

used in a Lacome implementation. Everything we draw on the screen is in

pure OpenGL. Most of the rendering is from bitmaps provided by the RFB

protocol, so mostly we rely on texture-mapped rectangles to render images

of what Publishers send us with some additional vector graphics for cursors

and borders of windows. A display function is implemented to provide a

mechanism to draw all the objects on the shared display, including windows

and cursors on the different layers.

To effectively use the IBM DCV system, our system must be a standard

OpenGL program. Following the OpenGL framework, the Rendering Com-

ponent resides in the main thread. However, this can be changed based on

the system requirements of a particular Lacome implementation. The ren-

dering function gathers data such as window positions, cursor colors, etc.,

from the Data Component and displays them on the OpenGL window. The

window is refreshed every time a new RFB frame has arrived or when any

of the client states changes.

Client

Our goal in designing the Lacome client was to build a light-weight, platform-

independent application with minimal functionality so most of the process-

ing would be done on the Lacome server. We implemented our Lacome client

in Java. The current source code contains about 1000 lines of commented

Java code. In previous chapters the structure and design of the Lacome

client was discussed. We describe a few of more implementation details in

Chapter 5. Implementation^ 68

following sub-sections.

Main Connection

A Lacome client must first connect to the Lacome server. This is done by

opening a socket. After a successful connection, the Lacome client can start

invoking other features by initiating connections for its Navigator or for one

or more Publishers.

Publisher Registration

As described in Chapter 4, a Lacome client can register an arbitrary number

of Publishers with a Lacome server. The Lacome client uses its socket con-

nection to tell the Lacome server the IP address and port number of a VNC

server running on the Publisher machine. In doing so the Lacome client

does not directly connect to the Publishers. This keeps the networking and

processing overhead relatively low. It also means that we do not need to

install the Lacome client on every machine that we want to use as a source

of data for the shared display. This is especially useful for some machines

that are not physically present, but may still have useful information for a

meeting.

Navigator

The Navigator uses a custom version of the RFB protocol to talk to the

Lacome server. The client wraps all user input events in a format similar to

the normal RFB protocol and sends them to the Lacome server. We made

this implementation decision because we want to minimize the processing

Chapter 5. Implementation^ 69

overhead when we are performing input redirection. The only information

that needs to recalculated from what is provided by the Navigator's host

windowing system is the cursor coordinates with respect to the shared screen

based on the size and location of the window the Navigator is controlling.

5.3 Implementation Tips and Experience

This section is written for researchers who intend to delve into the implemen-

tation details of the Lacome system. The source code of Lacome is licensed

under the GPL and is free for distribution. However, in order to use the

graphics library that Lacome uses, one must have a license for ivLib [61]

according to its software license agreement. Otherwise it can be replaced

with some other graphics library. The following tips are useful when using

our current Lacome implementation or developing further features based on

it:

• All external libraries or open source code should be maintained in a

highly independent form. In our implementation we use two external

libraries, namely the ivLib graphics library and the RFB protocol li-

brary. We have tailored both of them to fit our use (for example, we

eliminate the display of the remote desktop on the VNC client side).

In addition, we have made them as minimally coupled with other mod-

ules as possible so that future updates on the library will not affect

the code base much.

• Different versions of the same library might not be compatible with

each other and that may raise issues. In our case, the GL library

Chapter 5. Implementation^ 70

on the DCV system cannot recognize the routines glIsTexture and

glBlendColor while the library on our developing machine can. We

have to compromise our code to achieve the most compatibility when

we cannot upgrade the library on the machine that we might not be

able to configure.

• The bmp image texture has a restriction that the size (both width

and height) of the texture must be a power of 2. This is a popular

issue in computer graphics. Some extensions of OpenGL have already

provided routines to solve this problem. In our system we don't have

certain extensions in our GL library, so we solve this issue simply by

using glTexImage2D to create an empty texture with size a power of 2,

and using glTexSubImage2D to update the image texture. This gives

us an advantage since glTexSublmage2D waives the restriction on the

size of the input data.

• In order to make the OpenGL window update repeatedly we use the

callback routine glutldleFunc instead of glutTimerFunc, since we don't

know when the frames arrive.

• In an OpenGL window, the Y axis is pointing upward; while in the

VNC desktop window, the Y axis is pointing downward.

• We use threads extensively in our Lacome implementation. Keeping

the system thread-safe is crucial throughout the development proce-

dure and should be paid high attention in further extensions. Mutexes

and condition variables are widely used in our code base. However,

Chapter 5. Implementation^ 71

we notice that excessive use of them will potentially slow down the

program and thus impact the efficiency of the system. We currently

maintain the minimum number of mutexes and condition variables in

our code base via careful design. Future development should also make

sure they are not abused.

• During the development of the client, we were trying to make the

Navigator mouse panel transparent and hide the cursor. We wish

to provide minimal obstruction to the workspace. However, even in

Java, these functionalities cannot be implemented in a cross-platform

fashion. Moreover, we would have to install extra packages on each

Linux machine running the Lacome client to support transparency.

In addition, mouse right clicks on a transparent window on a Mac

machine is not detectable.

• Currently in our implementation, we use a three-hit binary code to

represent the color of the Navigator's cursor. More colors can be eas-

ily added by extending the number of bits of the binary code. However,

care must be taken to ensure that the chosen colors are easily distin-

guishable.

• The hot key combination we set for the Navigator to toggle between

different modes is done by taking all hot key combinations from pop-

ular applications on multiple platforms into consideration. We are

confident that it works in most cases. Further extensions should also

be careful in deciding similar platform independent features.

Chapter 5. Implementation^ 72

5.4 Summary

In future versions of the system we plan to integrate an enterprise version of

Rea1VNC [9] to support application-level window sharing and collaboration,

rather than only full desktop sharing.

In this chapter, the implethentation details of the Lacome system have

been discussed. In addition, we have listed some tips that we believe will

be helpful to colleagues who intend to work in related projects. In the next

chapter we will talk about our early system experience with pilot users. After

that we draw conclusions from our work and discuss the further extensions

of the current Lacome system.

73

Chapter 6

System Experiences,

Conclusion and Future Work

In Chapters 3, 4 and 5 we discussed the design and implementation of the

structure and interface of the Lacome system. In this chapter we discuss our

experience using the system and draw some conclusions about the project.

We then describe several avenues for future development.

6.1 System Experiences

We have successfully run a demo session in our laboratory with the La-

come system (see Figure 6.1) and invited our colleagues to participate in

the demo. Eight people (consisting of faculty members, technical staff and

graduate students, all with computer science or engineering backgrounds)

came in with their laptops or used the dedicated testing machines and joined

the demo session. First, we asked participants to download and run our La-

come client from the project webpage l . The Lacome client is written in

Java and requires a Java Runtime Environment(JRE) [11] installation on

the participants' machines. However, JRE is very common and all our par-

i littp://www.cs.ubc.ca/ ,--zephyr/lacome

Chapter 6. System Experiences, Conclusion and Future Work^74

ticipants had JRE already installed and experienced no difficulties running

our Lacome client on their machines no matter which platform they were

using. Next, we provided several dedicated Publishers and allowed our par-

ticipants to freely register those Publishers onto the Lacome server and ma-

nipulate those windows with their Navigator cursor in the shared workspace

on the large display. After a brief introduction on the Lacome system and

explanation on the hot-key configurations, participants were asked to try

any features they wanted. They were able to simultaneously interact with

the windows smoothly in the shared workspace without obvious interference

from other participants. Those participants who were interested in trying

to share their desktop specific application windows were asked to install a

VNC server on their machine. After that they could choose to share a win-

dow from their machines to the shared workspace. Thus, other participants

could either manipulate the window or enter the Controller mode to control

the shared window's machine. We employed the user-level communication

principle that if a participant intended to access into another participant's

computer, they should communicate verbally and the subject would discon-

nect his Navigator from the server before the other participant got in. Thus

we avoided encountering security issues and undefined behaviors brought by

multiple input redirections.

Participants have provided positive comments as well as some construc-

tive suggestions including enabling the privacy control so that no default

password would be used, refining the layout of the client interface to enable

adding arbitrary number of Publishers instead of 3, and adding some vi-

sual/audio indication when users are switching modes to support the aware-

Chapter 6. System Experiences, Conclusion and Future Work^75

Figure 6.1: System Demo With Group Users

ness. In Section 6.3 we will talk about more future extensions of the Lacome

system.

6.2 Conclusion

So far in this thesis, we have discussed the design and implementation of

the Lacome system which supports multi-user cross-platform collaboration

with a shared display and a number of personal computers.

Lacome supports separate types of interaction through a Lacome client

for window management tasks on the shared display (move, resize, iconify,

Chapter 6. System Experiences, Conclusion and Future Work^76

deiconify) and for application interactions through the VNC servers. The

system architecture provides for Publishers that share information and Nav-

igators that access information. A Lacome client can have either or both,

and can initiate additional Publishers on other VNC servers that may not be

Lacome clients. Explicit access control policies on both the server side the

client side provide a flexible framework for sharing. The architecture builds

on standard cross-platform components such as VNC and JRE. Interac-

tion techniques used in the window manager ensure simple and transparent

multi-user interactions for managing the shared display space.

The original idea of Lacome was inspired by the Integrated Tabletop [39]

proposed by Nakashima et al. Compared with their system, Lacome has

achieved a number of enhancements. Firstly, their system only supports

Windows; while Lacome is a cross-platform system. Secondly, their system

requires the installation of a modified VNC server on user's computer; while

in Lacome any standard VNC server will work and no specialized modifi-

cation is needed. Last but not the least, their system has only one control

layer and the window manipulation takes place only when user drags the

margin of the windows; while Lacome has multiple control layers to better

support different control modes.

An OpenGL based server has been developed to enable the sharing of

multiple windows and manipulating via multiple cursors. We currently run

the sever on our Red Hat Linux system and it should be able to migrate

to other platforms with few or no modifications. Lacome provides a cross-

platform, light-weight, setup-free client for the end users to easily get in-

volved in collaborative interaction with the shared display. The client pro-

Chapter 6. System Experiences, Conclusion and Future Work^77

vides a user-friendly and simple interface that is fully-functional and easy

to use. We have designed Lacome with flexibility to accommodate different

system requirements and configurations based on a broad literature review

in the related areas such as SDG and Multi-Display Environments. The the-

sis describes the structure and interface design of all the components of the

Lacome server and client module. We have also elaborated the implementa-

tion details of the Lacome system. Moreover, we provide the experiences we

have gained during the development of the Lacome system and hope they

are useful for other colleagues. Early experience from our demo participants

has indicated the promising future of our Lacome and encourages us to take

more efforts into further development.

6.3 Future Work

The successful development of the Lacome system has aroused several possi-

ble extensions in certain directions. In this section we are going to describe

those we believe should be completed in the next steps.

Access Control Support

In current version of Lacome, we do not have a full implementation of the

access control module. However, this has already been taken into considera-

tion during the design phase and the framework has already been created in

the code base. Next we are going to implement the module on the framework

which needs no modification on the current system.

Chapter 6. System Experiences, Conclusion and Future Work^78

Privacy Control in Document Sharing

In our usage scenario, there is a privacy concern. When a participant shares

his/her desktop or application window onto the shared workspace other

participants can see all the information on it. However, sometimes the

provider only wants to show part of the information in the window and

hide others.. For example, a project manager wants to present the project

budget to his/her team. The budget includes other project costs as well as

the employees' salaries. The manager wants to show other costs and the

total salary amount but not the details of individual employee's. WinClone

introduced by Berry et al. [17] and extended to work distributively by Lanir

et al. [35] aimed to address this issue. We plan to integrate WinClone with

Lacome to enable privacy control in Lacome. Since WinClone is also VNC

based software, it should not be hard to make the combination.

Multi-Cursor Support in a Single Client

Currently, Lacome supports each client with one Navigator (cursor) on the

shared workspace. Moreover, only one cursor can get into a shared window

at any given time, constrained by the platform restriction. As described

inSection 2.3, MPX allows multi-cursor manipulation on a single desktop

running under Linux. Integrating MPX into Lacome will bring more flexibil-

ity and diversity to our meeting environment. Several participants can then

choose to either use a single machine to navigate on the shared workspace

each with their own cursor or get into the same machine and manipulate it

simultaneously.

Chapter 6. System Experiences, Conclusion and Future Work^79

Handheld Device Support

Handheld device support is the immediate extension of our Lacome system.

Sometimes participants may not bring a laptop with them, but they may

have a PDA in their pocket. To support handheld devices in Lacome, we

need to develop another version of our client for the handheld device. For-

tunately, our Lacome client is written in Java, so it would be fairly simple

to convert it to a J2ME version.

Video and Audio Support

Access Grid is an ensemble of resources including multimedia large-format

displays, presentation and interactive environments, and interfaces of Grid

middleware and visualization environments [1]. These resources are used

to support group-to-group interactions across the Grid. The WestGrid [14]

community is using the Access Grid for video conferences and virtual sem-

inars. Currently the seminars are supported with video and audio feeds

provided by the Access Grid system plus the shared slides presentation pro-

vided by a VNC client. One possible next step is to try to enable video and

audio support in the Lacome system and ultimately integrate Lacome into

the future version of the Access Grid system.

Annotator Mode

The emphasis in our current work has been on the Manipulator and Con-

troller modes for Lacome clients. The Manipulator mode allows each user to

manipulate the arrangement (location, size, and iconification) of the shared

Chapter 6. System Experiences, Conclusion and Future Work^80

display objects (desktops or application windows). The Controller mode

provides access to the applications "underneath" the display objects that

run on Publisher clients. The Annotator mode works only on the shared

display by overlaying information ("annotations") either on the full screen

of the shared display, or on top of display objects, perhaps with some degree

of transparancy so both the underlying content and the annotations can be

seen together. Annotations on the full screen are in absolute locations and

sizes, whereas annotations on a display object are relative to that object

and scale accordingly when the object is scaled.

We have not yet implemented Annotator mode because it does not re-

quire any changes to the framework and thus was not of particular interest

for this stage of our research. Like Navigator mode, Annotator mode uses

mouse and keyboard information from a Navigator as the input for manipu-

lating the shared display, but in this case it is running a custom drawing or

sketching program that supports shared annotation by multiple users. There

are many examples of these, ranging from basic "what you see is what you

get" systems [22] to more elaborate structured drawing programs that main-

tain a model of the annotations with explicit concurrency control [30]. Any

of these approaches could be implemented within the Lacome framework.

6.4 Summary

In this chapter, we have discussed the early user experiences with the Lacome

system and drawn our conclusions from the current phase of the project.

We consider the development of the Lacome system as a successful step in

Chapter 6. System Experiences, Conclusion and Future Work^81

the research of interactive group collaboration tools. The promising future

extensions show the flexibility and extensibility of the Lacome system.

Bibliography

[1] Access Grid. http : //www . accessgrid . org, retrieved 2007-10-21.

[2] Apple Dashboard Widgets.^http : //www . apple . com/downloads/

dashboard/, retrieved 2007-11-24.

[3] Apple iPhone. http : //www. apple . com/iphone, retrieved 2007-10-28.

[4] Microsoft Surface PC. http : //www^crosof t com/surf ace/, re-

trieved 2007-08-11.

[5] OpenGL. http : //www. opengl . org/, retrieved 2007-08-08.

[6] OSXVNC. http : //www redstonesof tware . corn!, retrieved 2007-08-

16.

[7] Perceptive Pixel. http : //www . percept ivepixel . com, retrieved 2007-

08-11.

[8] PowerWall.^http : //www . lcse .umn . edu/research/powerwall/

powerwall . html, retrieved 2007-08-12.

[9] Rea1VNC. http : //www. realvnc . com/, retrieved 2007-08-16.

[10] Smart Technologies, SMART Board. http : //www2 . smarttech . corn/

st/en-US/Products/SMART+Boards/, retrieved 2007-09-26.

82

Bibliography^ 83

[11] Sun Microsystems Java Runtime Environment. http: //java. sun.

com/ j 2s e/deskt op j ava/ j re/index . j sp, retrieved 2007-10-17.

[12] TightVNC. http://www.tightvnc .com/, retrieved 2007-08-16.

[13] U1traVNC. http://www.ultravnc.com/, retrieved 2007-08-16.

[14] WestGrid. http : //www .westgrid.ca, retrieved 2007-10-21.

[15] Ritchie Argue. Advanced Multi-display Configuration and Connectiv-

ity. Master's thesis, Dalhousie University, August 2007.

[16] Hrvoje Benko, Andrew D. Wilson, and Patrick Baudisch. Precise Se-

lection Techniques for Multi-touch Screens. In CHI '06: Proceedings of

the SIGCHI conference on Human Factors in computing systems, pages

1263-1272, New York, NY, USA, 2006. ACM.

[17] Lior Berry, Lyn Bartram, and Kellogg S. Booth. Role-based Control of

Shared Application Views. In UIST '05: Proceedings of the 18th annual

ACM symposium on User interface software and technology, pages 23-

32, New York, NY, USA, 2005. ACM Press.

[18] Jacob T. Biehl and Brian P. Bailey. ARIS: An Interface for Appli-

cation Relocation in an Interactive Space. In GI '04: Proceedings of

Graphics Interface 2004, pages 107-116, School of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian

Human-Computer Communications Society.

[19] Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie

Argue. The "Mighty Mouse" Multi-screen Collaboration Tool. In UIST

Bibliography^ 84

'02: Proceedings of the 15th annual ACM symposium on User interface

software and technology, pages 209-212, New York, NY, USA, 2002.

ACM Press.

[20] Mary Czerwinski, George Robertson, Brian Meyers, Greg Smith, Daniel

Robbins, and Desney Tan. Large Display Research Overview. In CHI

'06: CHI '06 extended abstracts on Human factors in computing sys-

tems, pages 69-74, New York, NY, USA, 2006. ACM Press.

[21] Paul Dietz and Darren Leigh. DiamondTouch: A Multi-user Touch

Technology. In UIST '01: Proceedings of the 14th annual ACM sym-

posium on User interface software and technology, pages 219-226, New

York, NY, USA, 2001. ACM Press.

[22] Saul Greenberg and Ralph Bohnet. GroupSketch: A Multi-user Sketch-

pad for Geographically Distributed Small Groups. In Graphics Interface

'91, pages 207-215, June 1991.

[23] Francois Guimbretiere, Maureen Stone, and Terry Winograd. Fluid

Interaction with High-resolution Wall-size Displays. In UIST '01: Pro-

ceedings of the 14th, annual ACM symposium on User interface software

and technology, pages 21-30, New York, NY, USA, 2001. ACM Press.

[24] Vicki Ha, Kori Inkpen, Jim Wallace, and Ryder Ziola. Swordfish: User

Tailored Workspaces in Multi-display Environments. In CHI '06: CHI

'06 extended abstracts on Human factors in computing systems, pages

1487-1492, New York, NY, USA, 2006. ACM Press.

Bibliography^ 85

[25] Jefferson Y. Han. Low-cost Multi-touch Sensing Through Frustrated

Total Internal Reflection. In UIST '05: Proceedings of the 18th annual

ACM symposium on User interface software and technology, pages 115-

118, New York, NY, USA, 2005. ACM.

[26] Jefferson Y. Han. Multi-touch Interaction Wall. In SIGGRAPH '06:

ACM SIGGRAPH 2006 Emerging technologies, page 25, New York,

NY, USA, 2006. ACM.

[27] Peter Hutterer. Mpx Blog. http://wearables.unisa.edu.au/mpx/,

retrieved 2007-08-16.

[28] Peter Hutterer and Bruce H. Thomas. Groupware Support in the Win-

dowing System. In AUIC '07: Proceedings of the eight Australasian con-

ference on User interface, pages 39-46, Darlinghurst, Australia, Aus-

tralia, 2007. Australian Computer Society, Inc.

[29] IBM. Deep Computing Visualization. http://www- 03.ibm .

com/servers/deepcomputing/visualization/index.html, retrieved

2007-08-08.

[30] Claudia-Lavinia Ignat and Moira C. Norrie. Draw-together: Graphical

Editor for Collaborative Drawing. In CSCW '06: Proceedings of the

2006 20th anniversary conference on Computer supported cooperative

work, pages 269-278, New York, NY, USA, 2006. ACM.

[31] Shahram Izadi, Steve Hodges, Alex Butler, Alban Rrustemi, and Bill

Buxton. ThinSight: Integrated Optical Multi-touch Sensing Through

Bibliography^ 86

Thin Form-factor Displays. In EDT '07: Proceedings of the 2007 work-

shop on Emerging displays technologies, page 6, New York, NY, USA,

2007. ACM.

[32] Brad Johanson, Armando Fox, and Terry Winograd. The Interactive

Workspaces Project: Experiences with Ubiquitous Computing Rooms.

IEEE Pervasive Computing, 1(2):67-74, 2002.

[33] Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone.

PointRight: Experience with Flexible Input Redirection in Interactive

Workspaces. In UIST '02: Proceedings of the 15th annual ACM sym-

posium on User interface software and technology, pages 227-234, New

York, NY, USA, 2002. ACM Press.

[34] Russell Kruger, Sheelagh Carpendale, Stacey D. Scott, and Saul Green-

berg. How People Use Orientation on Tables: Comprehension, Coordi-

nation and Communication. In GROUP '03: Proceedings of the 2003

international ACM SIGGROUP conference on Supporting group work,

pages 369-378, New York, NY, USA, 2003. ACM Press.

[35] Joel Lanir, Lior Berry, and Kellogg S. Booth. WinClone: Role-based

Control of Distributed Application Views. CSCW'06 demo, Banff, 2006.

[36] Marilyn Mantei. Capturing the Capture Concepts: A Case Study in

the Design of Computer-supported Meeting Environments. In CSCW

'88: Proceedings of the 1988 ACM conference on Computer-supported

cooperative work, pages 257-270, New York, NY, USA, 1988. ACM

Press.

Bibliography^ 87

[37] Michael McGuffin and Ravin Balakrishnan. Acquisition of Expanding

Targets. In CHI '02: Proceedings of the SIGCHI conference on Human

factors in computing systems, pages 57-64, New York, NY, USA, 2002.

ACM Press.

[38] Brad A. Myers, Herb Stiel, and Robert Gargiulo. Collaboration Using

Multiple PDAs Connected to a PC. In CSCW '98: Proceedings of the

1998 ACM conference on Computer supported cooperative work, pages

285-294, New York, NY, USA, 1998. ACM Press.

[39] Kousuke Nakashima, Takashi Machida, Kiyoshi Kiyokawa, and Haruo

Takemura. A 2D-3D Integrated Environment for Cooperative Work.

In VRST '05: Proceedings of the ACM symposium on Virtual reality

software and technology, pages 16-22, New York, NY, USA, 2005. ACM

Press.

[40] Tao Ni, Doug A. Bowman, and Jian Chen. Increased Display Size

and Resolution Improve Task Performance in Information-rich Virtual

Environments. In GI '06: Proceedings of Graphics Interface 2006, pages

139-146, Toronto, Ont., Canada, Canada, 2006. Canadian Information

Processing Society.

[41] Anne Marie Piper, Eileen O'Brien, Meredith Ringel Morris, and Terry

Winograd. SIDES: A Cooperative Tabletop Computer Game for So-

cial Skills Development. In CSCW '06: Proceedings of the 2006 20th

anniversary conference on Computer supported cooperative work, pages

1-10, New York, NY, USA, 2006. ACM Press.

Bibliography^ 88

[42] Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman, and Armando

Fox. Portability, Extensibility and Robustness in iROS. In PERCOAI

'03: Proceedings of the First IEEE International Conference on Perva-

sive Computing and Communications, page 11, Washington. DC, USA,

2003. IEEE Computer Society.

[43] Holger Regenbrecht, Michael Wagner, and Gregory Baratoff. Mag-

icMeeting: A Collaborative Tangible Augmented Reality System. Vir-

tual Reality, 6(3):151-166, 2002.

[44] Jun Rekimoto. SmartSkin: An Infrastructure for Freehand Manipula-

tion on Interactive Surfaces. In CHI '02: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 113-120,

New York, NY, USA, 2002. ACM Press.

[45] Jun Rekimoto and Masanori Saitoh. Augmented Surfaces: A Spatially

Continuous Work Space for Hybrid Computing Environments. In CHI

'99: Proceedings of the SIGCHI conference on Human factors in com-

puting systems, pages 378-385, New York, NY, USA, 1999. ACM Press.

[46] Tristan Richardson. The RFB Protocol. http://www.realync. com/

docs/rfbproto.pdf, retrieved 2007-08-11.

[47] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and

Andy Hopper. Virtual Network Computing. IEEE Internet Computing,

2(1):33-38, 1998.

[48] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ran-

ganathan, Roy H. Campbell, and Klara Nahrstedt. A Middleware

Bibliography^ 89

frastructure for Active Spaces. IEEE Pervasive Computing, 1(4):74-83.

2002.

[49] Mark Roseman and Saul Greenberg. Building Real-time Groupware

with GroupKit, a Groupware Toolkit. ACM Transaction on Computer-

Human Interaction, 3(1):66-106, 1996.

[50] Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System

Guidelines for Co-located, Collaborative Work on a Tabletop Display.

In ECSCW'03: Proceedings of the eighth conference on European Con-

ference on Computer Supported Cooperative Work, pages 159-178, Nor-

well, MA, USA, 2003. Kluwer Academic Publishers.

[51] Chia Shen, Frederic D. Vernier, Clifton Forlines, and Meredith Ringel.

DiamondSpin: An Extensible Toolkit for Around-the-table Interaction.

In CHI '04: Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 167-174, New York, NY, USA, 2004. ACM

Press.

[52] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan

Lanning, and Lucy Suchman. Beyond the Chalkboard: Computer Sup-

port for Collaboration and Problem Solving in Meetings, pages 335-366.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[53] Jason Stewart, Benjamin B. Bederson, and Allison Druin. Single Dis-

play Groupware: A Model for Co-present Collaboration. In CHI '99:

Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 286-293, New York, NY, USA, 1999. ACM Press.

Bibliography^ 90

[54] Norbert A. Streitz, JOrg GeiBier, Torsten Holmer, Shin'ichi Konomi,

Christian Miiller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter

Seitz, and Ralf Steinmetz. i-LAND: An Interactive Landscape for Cre-

ativity and Innovation. In CHI '99: Proceedings of the SIGCHI con-

ference on Human factors in computing systems, pages 120-127, New

York, NY, USA, 1999. ACM Press.

[55] Kishore Swaminathan and Steve Sato. Interaction Design for Large

Displays. Interactions, 4(1):15-24, 1997.

[56] Desney S. Tan, Darren Gergle, Peter Scupelli, and Randy Pausch. With

Similar Visual Angles, Larger Displays Improve Spatial Performance.

In CHI '03: Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 217-224, New York, NY, USA, 2003. ACM

Press.

[57] Desney S. Tan, Darren Gergle, Peter Scupelli, and Randy Pausch. Phys-

ically Large Displays Improve Performance. on Spatial Tasks. ACM

Trans. Coinput.-Hum. Interact., 13(1):71-99, 2006.

[58] Desney S. Tan, Brian Meyers, and Mary Czerwinski. WinCuts: Ma-

nipulating Arbitrary Window Regions for More Effective Use of Screen

Space. In CHI '04: CHI '04 extended abstracts on Human factors in

computing systems, pages 1525-1528, New York, NY, USA, 2004. ACM

Press.

[59] Edward Tse and Saul Greenberg. Rapidly Prototyping Single Display

Groupware Through the SDGToolkit. In A UIC '04: Proceedings of

Bibliography^ 91

the Fifth Australasian User Interface Conference, pages 101-110, Dar-

linghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[60] Edward Tse, Saul Greenberg, and Chia Shen. GSI Demo: Multiuser

Gesture/Speech Interaction Over Digital Tables by Wrapping Single

User Applications. In ICMI '06: Proceedings of the 8th international

conference on Multimodal interfaces, pages 76-83, New York, NY, USA,

2006. ACM Press.

[61] James M. Van Verth and Lars M. Bishop. Essential Mathematics for

Games and Interactive Applications: A Programmer's Guide. Morgan

Kaufmann, March 2004.

[62] Grant Wallace, Otto J. Anshus, Peng Bi, Han Chen, Yuqun Chen,

Douglas Clark, Perry Cook, Adam Finkelstein, Thomas Funkhouser,

Anoop Gupta, Matthew Hibbs, Kai Li, Zhiyan Liu, Rudrajit Samanta,

Rahul Sukthankar, and Olga Troyanskaya. Tools and Applications for

Large-scale Display Walls. IEEE Comput. Graph. Appl., 25(4):24-33,

2005.

[63] Grant Wallace, Peng Bi, Kai Li, and Otto Anshus. A Multi-cursor X

Window Manager Supporting Control Room Collaboration. Computer

Science Report No. TR-0707-04, Princeton University, 2004.

[64] Andrew D. Wilson. Playanywhere: A Compact Interactive Tabletop

Projection-vision System. In UIST '05: Proceedings of the 18th annual

ACM symposium on User interface software and technology, pages 83-

92, New York, NY, USA, 2005. ACM.

Bibliography^ 92

[65] Andrew D. Wilson. Robust Computer Vision-based Detection of Pinch-

ing for One and Two-handed Gesture Input. In UIST '06: Proceedings

of the 19th annual ACM symposium. on User interface software and

technology, pages 255-258, New York, NY, USA, 2006. ACM.

[66] Mike Wu and Ravin Balakrishnan. Multi-finger and Whole Hand Ges-

tural Interaction Techniques for Multi-user Tabletop Displays. In UIST

'03: Proceedings of the 16th annual ACM symposium on User interface

software and technology, pages 193-202, New York, NY, USA, 2003.

ACM Press.

93

Appendix A

Message Protocol of Lacome

La.come uses a message protocol that extends the existing RFB protocol used

by VNC. Each message has at least one integer header that identifies the

message type followed optionally by additional fields that have type-specific

information.

Send Nick Name int int int byte[
1 4 string number in bytes string

Send Cursor Size int int float
1 6 size

Request VNC Connection int int int int byte[[
2 0 session id string number in bytes string

Disable Navigator
int int
3
^

0

Enable Navigator
int int
3
^

1

Switch Out From Controller mode int
5

Appendix A. Message Protocol of Lacome^94

Terminate VNC Connection int int int
2 1 session id

Send Mouse Event int int int int
64 dx dy button mask

Send Key Down Event int int int
65 key code 1

Send Key Up Event int int int
65 key code 0

Send Toggle Iconification Request int int int
-6 dx dy

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101

