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Abstract

Large data sets are difficult to analyze. Visualization has been proposed to assist
exploratory data analysis (EDA) as our visual systems can process signals in
parallel to quickly detect patterns. Nonetheless, designing an effective visual
analytic tool remains a challenge.

This challenge is partly due to our incomplete understanding of how common
visualization techniques are used by human operators during analyses, either in
laboratory settings or in the workplace.

This thesis aims to further understand how visualizations can be used to
support EDA. More specifically, we studied techniques that display multiple
levels of visual information resolutions (VIRs) for analyses using a range of
methods.

The first study is a summary synthesis conducted to obtain a snapshot of
knowledge in multiple-VIR use and to identify research questions for the thesis:
(1) low-VIR use and creation; (2) spatial arrangements of VIRs. The next two
studies are laboratory studies to investigate the visual memory cost of image
transformations frequently used to create low-VIR displays and overview use
with single-level data displayed in multiple-VIR interfaces.

For a more well-rounded evaluation, we needed to study these techniques in
ecologically-valid settings. We therefore selected the application domain of web
session log analysis and applied our knowledge from our first three evaluations
to build a tool called Session Viewer. Taking the multiple coordinated view
and overview + detail approaches, Session Viewer displays multiple levels of
web session log data and multiple views of session populations to facilitate data
analysis from the high-level statistical to the low-level detailed session analysis
approaches.

Our fourth and last study for this thesis is a field evaluation conducted at
Google Inc. with seven session analysts using Session Viewer to analyze their
own data with their own tasks. Study observations suggested that displaying
web session logs at multiple levels using the overview + detail technique helped
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Abstract

bridge between high-level statistical and low-level detailed session analyses, and
the simultaneous display of multiple session populations at all data levels using
multiple views allowed quick comparisons between session populations. We also
identified design and deployment considerations to meet the needs of diverse
data sources and analysis styles.
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Chapter 1

Introduction

A study in 2002 found that human beings collectively produced more than five
exabytes, or 5x1018 bytes, worth of recorded information per year in the form
of print, film, magnetic and optical storage media (Lyman and Varian 2003).
The same study estimated that new stored information had grown by about
30% per year between 1999 and 2002 (Lyman and Varian 2003). Having such
massive amounts of data is a double-edged sword. Ideally, availability of data
makes it possible to make decisions based on data rather than intuition. For
example, it has been argued that data analysts can obtain better insights into
human behaviours from available databases to support decision making in both
corporations and governments, and in a wide range of areas such as marketing,
economics, and social policies (Levitt and Dubner 2005; Thomas and Cook
2005; Ayres 2007). In practice, however, human beings may be overwhelmed
by the massiveness of data sets. Even as early as 1960, the flood of available
data to individuals made information overload a subject of interest in clinical
psychiatry (Miller 1960). By the mid 1990s, the term “information revolution”
had became part of our vocabulary, and commentators on the social impacts
of technology described challenges an individual had to face in our information
age (e.g., Shenk 1997). If the burden on individual citizens to make informed
decisions given the amount of data is heavy, the challenges on data analysts
demand more than human diligence. The reason being that analysts have to
routinely handle and analyze massive amounts of raw and potentially conflicting
data gathered from various sources in multiple formats such as text, numbers,
sounds, and images.

In 2008, a decade later, data overload is still considered to be a generic and
difficult problem for the data analyst (Woods et al. 2002; Thomas and Cook
2005). Given our visual ability to process a large amount of information in
parallel, visualization has often been considered as a vital component in the
solution (Tukey 1977; Thomas and Cook 2005). According to Tukey (1977),
“the greatest value of a picture is when it forces us to notice what we never
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expected to see” (p. vi).
Indeed, visualization has been applied to support a wide range of analyses

in different domains. Examples include text documents with the ThemeView
3D visual landscape in In-SPIRE (Hetzler and Turner 2004) and ThemeRiver
(Havre et al. 2002), computer source code with Seesoft (Eick et al. 1992),
e-mails with Themail (Viégas et al. 2005), calendar data with DateLens (Bed-
erson et al. 2004), tree analysis with Treemaps (Johnson and Shneiderman
1991) and TreeJuxtaposer (Munzner et al. 2003), and tabular database anal-
ysis with Table Lens (Rao and Card 1994) and Polaris (Stolte and Hanrahan
2000). Visualization systems have also been built to assist data exploration and
analysis. One example is the GeoTime software by Oculus (Hetzler and Turner
2004).

In terms of visualization techniques, one main class of techniques display
data in multiple visual information resolutions (VIRs). Examples of multiple-
VIR techniques include zooming, focus + context, and overview + detail. In the
list of visualization systems given above, panning and zooming techniques were
applied to the ThemeView 3D visual landscape for users to access thousands of
documents clustered by themes (Hetzler and Turner 2004). Overview + detail
techniques were used in Themail (Viégas et al. 2005) and Seesoft (Eick et al.
1992). Seesoft displays up to 50,000 lines of source code with each line mapped
to a thin row in the overview. Users can access the actual source code in a
separate window. Themail displays gigabytes of e-mails by extracting keywords
and displaying them in columns. Users can select words to view corresponding
e-mail messages in detail. Focus + context applications in our example list
include Table Lens to display up to 68,400 table cells on a 19-inch screen (Rao
and Card 1994), DateLens to display up to six months of calendar data on small
screens (Bederson et al. 2004), and TreeJuxtaposer to display up to 500,000 tree
nodes (Munzner et al. 2003).

Despite continual efforts, displaying large data sets to support exploratory
analysis remains difficult. Part of the challenge is scalability (Thomas and Cook
2005, p. 24–28). The sheer size of modern data sets requires novel visualization
techniques that can display more data points and dimensions than available
pixels on standard output devices. Displaying large data sets also requires a
non-trivial amount of engineering effort to ensure system interactivity for data
exploration. In addition to technical challenges, visualization system designers
also need to consider perceptual and cognitive limitations of human operators.

Due to the complex interplay between the human operator and the visual-
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ization system, empirical evaluation of system use is paramount in providing
effective visualization support for data analysis. However, our understanding
of frequently-used visualization techniques such as animation (Tversky et al.
2002) and focus + context (Furnas 2006) remains incomplete. Another impor-
tant aspect of evaluation that tends to be overlooked in visualization research
concerns system deployment (Thomas and Cook 2005, p. 149). Deployment-
related considerations involve handling real-world data and diverse analytical
practices, and integrating the visualization system with established workflows
and tools. Perhaps because of the lack of follow-through of research prototypes
into the workplace, technology transfer and commercialization of prototypes re-
main rare despite the proliferation of visualization research. In short, building
an effective visualization system to support visual exploratory analysis of large
data sets requires understanding of both information-visualization specific issues
and non-visualization specific deployment issues.

This thesis therefore investigated both information-visualization specific and
general deployment considerations in system building, and crystalized findings
as design guidelines and considerations. To scope the project, we focused on
multiple-VIR visualization techniques. As no single research strategy can ade-
quately answer a research question, we investigated different aspects of multiple-
VIR techniques with four studies conducted using a wide variety of meth-
ods, including a qualitative summary synthesis, a laboratory experiment, an
experimental-simulation study, and a field evaluation.

The thesis started by taking a high-level view to obtain a more comprehen-
sive snapshot of knowledge about multiple-VIR interface use using a qualitative
summary synthesis approach, reported in Chapter 4 as the first of four eval-
uations. We examined 19 existing experimental-simulation studies to extract
high-level guidelines for multiple-VIR interface designs, looking at issues such
as the amount of information displayed on overviews, the number of VIRs re-
quired for effective analysis, and methods to present the various VIRs in the
interface. We also identified two research areas for further examination in this
thesis: (1) overview creation in multiple-VIR interfaces, and (2) spatial arrange-
ments of the different VIRs.

We investigated these two questions in our quantitative laboratory studies.
The second study of the thesis is a laboratory experiment. Reported in Chap-
ter 5, our laboratory experiment systematically measured visual memory costs
incurred by two-dimensional geometric transformations that are frequently used
in creating data overviews and integrating VIRs in multiple-VIR interfaces.
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The third study of the thesis is an experimental-simulation study detailed in
Chapter 6. We examined the use of overviews in multiple-VIR interfaces for
single-level data.

While laboratory studies can be effective in studying visualization tech-
niques, such approaches are necessarily limited by the need to study isolated fac-
tors such as task and visualization components using predetermined dependent
variables (Plaisant 2004). To truly understand how a visualization technique is
used and to understand deployment issues, we need to consider the technique
as part of a visualization system in ecologically-valid settings.

The remaining efforts in this thesis were therefore devoted to addressing
these questions using a specific application domain. We chose web session log
analysis as our application domain since it is representative and relevant: chal-
lenges faced by web session analysts are also found in other analytical scenarios
involving large data sets with complex compositions, and the need to analyze
web log data to understand search behaviour increases with the growing impor-
tance of the Internet as an information source. Existing tools for web session
log analysis are largely non-visual and do not adequately support data explo-
ration. This application domain is therefore an opportunity for us to apply the
knowledge and experience gained in the first three studies, such as guidelines
for overview construction and VIR presentation, to better support analysis of
large data sets by mitigating problems in existing analysis practices. We built
Session Viewer and deployed it at Google Inc. The design and implementation
of Session Viewer are detailed in Chapter 7. Chapter 8 reports the fourth, and
last, study in this thesis, which is a field evaluation conducted to evaluate design
choices made in the process and to further understand issues encountered by
visualization systems in the workplace.

Chapter 9 discusses four questions addressed in our studies that remain re-
search challenges. The chapter looks at the two research questions in the thesis:
design choices in overview creation and design choices in spatial arrangements
of VIRs in interfaces. We also discuss a question related to overview creation—
potential roles of context in data analysis. The last open question addressed in
Chapter 9 concerns approaches to evaluating visualization techniques and sys-
tems to sum up our experiences in the four evaluations conducted in this thesis.
The chapter concludes the thesis by elaborating on contributions of the thesis
and suggests future directions.

The remainder of this introductory chapter is structured as follows. After
introducing two sets of terminology used throughout the thesis in Section 1.1,
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Sections 1.2 and 1.3 list the contributions of the thesis. Appendix A contains a
list of published, submitted, and in-preparation papers related to the thesis.

1.1 Terminology

Two sets of terminologies are used throughout the thesis. The first set concerns
the interface techniques under study (Section 1.1.1), and the second set concerns
the strategies employed to study those techniques (Section 1.1.2).

1.1.1 Visual information resolution (VIR)

In this thesis, we devised the term visual information resolution (VIR) as
a measure of visual information perceivability. Visual information is defined as
datum values made accessible to the visualization system’s users by showing
them visually.

By our definition, displays with low VIR have comparatively lower visual
information perceivability than displays with high VIR. Perceivability can be
further characterized based on type, visual quantity, and visual quality of the
displayed data. In terms of information type, VIR of interface views can differ if
they display data from different levels of the hierarchy in the data organization:
lower VIR shows data at higher levels of the hierarchy. For example, in Treemaps
(Bederson et al. 2002), users can focus on different layers of the hierarchical tree
at different VIRs in the display. In terms of quantity, interface views can differ in
the amount of information displayed. One example is semantic zooming, where
users are provided with different amounts of details in a view by zooming in and
out. Both our metrics of information type and visual quantity are akin to Simon
and Larkin’s (1987) definition of informational equivalence of representations,
where “two representations are informational equivalent if all of the information
in the one is also inferable from the other, and vice versa” (p. 67).

In terms of quality, visual objects can display the same amount of data
points with different visual encodings that result in different perceivability. One
common example is the display of textual data. With the same font type, data
displayed using small unreadable font sizes is considered to be of lower VIR
than those displayed in larger readable font sizes. As for visual objects, the
criteria of perceivability is less well defined. One example is the visual encod-
ings used in our overview-use study in Chapter 6 where we encoded the same
line graph data using two different types of encodings. The high-VIR encoding
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displays the y-dimension of line graphs using both space and colour, while the
low-VIR encoding only uses colour, thus making the fine details of the displayed
lines graph less perceivable. This characterization is akin to Simon and Larkin’s
(1987) definition of computational equivalence of representations, where “two
representations are computationally equivalent if they are informationally equiv-
alent and, in addition, any inference that can be drawn easily and quickly from
the information given explicitly in the one can also be drawn easily and quickly
from the information given explicitly in the other, and vice versa” (p. 67).

Taxonomies of multiple-VIR techniques exist. One example is Plaisant
et al.’s (1995) taxonomy for image browsers. Detailed mapping between ex-
isting taxonomies to our terminologies is beyond the scope of our discussion
here. In general, our terminologies differ by focusing on the visual encodings
instead of on their expected functions: for example, focus (as in focus + con-
text) or detail (as in overview + detail) can be thought of as high VIR, while
context or overview is of comparatively low VIR.

Multiple-VIR interfaces can be further classified as temporal or simulta-

neous based on the way they display the multiple VIRs, as shown in Figure 1.1.
Temporal interfaces, an example being the pan-and-zoom user interfaces, allow
users to drill up and down the zoom hierarchy and display the different VIRs
one at a time. In contrast, simultaneous interfaces show all the VIRs on the
same display. We refer to interfaces that integrate and spatially embed the dif-
ferent VIRs as embedded displays, as in focus + context visualizations. When
the different VIRs are displayed as separate views, we refer to these interfaces
as separate, as in overview + detail displays. Since the different VIRs can
occupy the entire display window, or be integrated as part of a single window,
we explicitly differentiate the two by using the term view to denote separate
windows or panes, and the term region to denote an area within a view.

Additional examples of multiple-VIR interfaces can be found at
http://www.cs.ubc.ca/∼hllam/res ss interfaces.htm.

1.1.2 Evaluation strategies in information visualization

A wide range of experimental designs have been applied to study information
visualization techniques and systems. This thesis employed four different types
of strategies to examine various aspect of multiple-VIR interface use. This
section introduces terminologies used in reference to visualization evaluation
strategies, explains experimental design, tasks, and measurements, and how the
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Figure 1.1: Our classification of interfaces. Interfaces can be classified based on
the number of visual information resolutions (VIR). (a) Single-VIR interfaces
display one VIR, as in panning interfaces. (b)–(d) Multiple-VIR interfaces show
multiple VIRs. In this illustrate, each interface contains two VIRs: high (de-
noted as large circles) and low (denoted as small circles). (b) In the Temporal
approach, users can pan around in the low-VIR view and zoom into an subarea
as a high-VIR view, as in pan and zoom interfaces. (c) In the Separate approach,
the low- and the high-VIRs can be placed in separate panels, as in overview +
detail interfaces. (d) In the Embedded approach, the low- and the high-VIRs
are embedded in a single unified display, as in focus + context interfaces.

four evaluations in this thesis relate to these terminologies and strategies.
There are a number of ways to classify experimental approaches. Some pos-

sibilities include the type of analysis performed on collected data (quantitative
versus qualitative), the time span (short term versus longitudinal), the study
environment (laboratory versus field), and the study designs (controlled exper-
iments versus observational studies). Unfortunately, no one axis is adequate in
classifying existing approaches. To facilitate discussion in this thesis, we adopt
McGrath’s (1994) taxonomy of research strategies, originally developed for so-
cial and behavioural sciences, as it covers a wide range of strategies and focuses
on research goals.

McGrath (1994) classified research strategies with five axes into eight strate-
gies, each represented as a slice in the strategy circumplex shown in Figure 1.2.
The first three axes are based on three desirable features or criteria researchers
wish to maximize in an experiment: A. Generalizability of evidence of different
study populations; B. Precision of measurements of behaviours being studied;
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Figure 1.2: McGrath’s research strategy circumplex. c©1994 by Morgan Kauf-
mann. Reprint by permission.

and C. Realism of the situation or context within which the measurements are
being made in relation to where study results will be applied. The fourth axis
is concrete-abstract, or “the degree to which the setting used in the strategy is
universal or abstract vs. particular or concrete” (McGrath 1994, p. 156). The
last axis is obtrusive-unobtrusive, or “the degree to which the strategy involves
procedures that are obtrusive, vs. procedures that are unobtrusive, with respect
to the ongoing human systems that are to be the object of the study” (McGrath
1994, p. 156).

With these five axes, McGrath (1994) derived eight research strategies grouped
into four quadrants: field, experimental, respondent, and theoretical strategies.
In this section, we discuss strategies employed in this thesis in the order of
their presentation: the formal theory strategy of the theoretical strategies; the
experimental strategies (laboratory experiment, experimental simulation); and
the field strategies (field experiment, field study). We therefore will not discuss
the respondent strategies in this discussion even though they have been used in
surveys and questionnaires in visualization evaluations.
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Quadrant IV: Theoretical Strategies

Of the two strategies in theoretical strategies included in McGrath’s (1994)
research strategy circumplex, the formal theory strategy include a class of eval-
uation method called systematic review. Though infrequently conducted, sys-
tematic reviews can provide snapshots of existing knowledge based on existing
study results, where “the researcher focuses on formulating general relations
among a number of variables of interest” that “hold over some relatively broad
range of populations” (McGrath 1994, p. 158). The following description of the
various types of systematic review is based on Chapter 13 of (Shadish et al.
2002).

Narrative review is a qualitative approach and describes existing litera-
ture using narrative descriptions without performing quantitative synthesis of
study results. Most published papers have related work sections that can be
considered as narrative reviews. Due to its descriptive and qualitative nature,
narrative reviews can include study results gathered using dramatically different
methods and therefore can potentially present a more realistic view of existing
knowledge. Reflections made by the reviewers, especially when they are experi-
enced in the area under review, can be very illuminating and thought provoking.
Two excellent examples are Card et al.’s (1999) essays on various information
visualization topics such as interaction and focus + context, by Tversky et al.’s
(2002) review on effectiveness of animation, and Furnas’s (2006) follow-up work
on focus + context visualization techniques after his original paper on the topic
ten years prior (Furnas 1986).

Despite its strength, narrative review can lead to incorrect conclusions as the
readers must rely on the reviewer to weight the significance of each reviewed
publication. In addition, the selection of reviewed publications can be biased as
well. Quantitative approaches were therefore developed to mitigate these biases,
which form the basis of meta-analysis.

Roughly, there are two main approaches to a meta-analysis: (1) vote count-
ing and (2) study-effect analysis. Instead of describing study results, the vote-

counting approach categorizes results as significantly positive, significant neg-
ative, or nonsignificant in reference to the research question. The category with
the most entries is considered to best represent existing knowledge about the
research question under analysis. Its simplicity confuses treatment effect and
sample-size effects, as nonsignificant results may be due to lack of experimental
power, rather than lack of effect. In other words, the vote-counting approach
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to meta-analysis can miscount studies with small effects, which can lead to
incorrect conclusions such as missing side-effects of medications.

Meta-analysis that computes effect size is perhaps the most popular ap-
proach to meta-analysis in information visualization evaluation. Indeed, as dis-
cussed in Section 3.1.4, to the best of our knowledge, the only meta-analysis
in information visualization computed effect size (Chen and Yu 2000). Effect
size measure is used as a common metric for the diverse study outcomes so
that the results can be meaningfully compared in a meta-analysis. However,
using a standard metric usually leads to a drastic reduction of studies that can
be brought under meta-analysis. In the case of Chen and Yu (2000), only 6
out of the 35 studies considered for the review met the researchers’ criteria for
inclusion in the meta-analysis.

Chapter 4 is a systematic review that took a mixture of the two approaches to
obtain a snapshot of existing knowledge on multiple-VIR interface study results.
Since our approach is not a conventional one, we termed it summary synthesis

to avoid confusion. Due to the small number of experimental-simulation studies
concerning multiple-VIR interfaces, we combined the inclusiveness and flexibil-
ity of narrative review with some of the rigor of meta-analysis by listing all
applicable study results for each research question under consideration, instead
of only reporting results that supported our conclusions, as in most narrative
reviews. Section 4.1 further details the methodology.

Quadrant II: Experimental strategies

The two strategies included in the experimental strategy quadrant are labora-
tory experiment and experimental simulation.

Laboratory experiment is a strategy where the researcher “deliberately
concocts a situation or behaviour setting or context, defines the rules for its
operation, and then induces some individuals or groups to enter the concocted
system and engage in the behaviours called for by its rules and circumstances”
(McGrath 1994, p. 157). Typically, designs in laboratory experiments in in-
formation visualization are modeled after experiments in sciences, especially in
experimental psychology, where “purposeful changes are made to the input vari-
ables of a process or system so that we may observe and identify the reasons for
changes that may be observed in the output response” (Montgomery 2001, p. 1).
Examples include perceptual and cognitive studies to understand human limi-
tations when interacting with visual displays. Section 3.1.1 discusses literature
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in this area.
In the context of information visualization, “input variables of a process or

system” relate to properties of the visual display such as item density and vari-
ations in colour encoding or texture of display items. Stimuli used in laboratory
experiments are mostly static images. Input variables are generally referred to
as independent variables or experimental factors. The design is usually such
that effects of these factors, such as reaction time and task accuracy, can be
analyzed using established statistical methods such as t-tests and analysis of
variance (ANOVA) F -tests.

To isolate study factors, tasks in laboratory experiments are generally simple
abstracted tasks such as visual search tasks and visual memory tasks. The
visual search paradigm is an experimental technique developed by experimental
psychologists to study a number of visual processes, such as preattentive and
attentive processes in vision (Wolfe 2000, p. 335). In this paradigm, participants
are shown visual displays containing varying numbers of objects and are asked to
determine whether a pre-specified target is included in the display. For example,
a person might be asked to look for a red T in a display containing different
numbers of blue T’s and red O’s, and, on trials where the target is present, a
red T as well (e.g., in Treisman and Gelade 1980).

Another popular task used in laboratory experiments is the study of explicit
memory using a three-phased task: a studying or encoding phase where the
participant is exposed to the stimuli; a retention phase during which the stimuli
is held in memory; and a testing phase where the participant is asked to recog-
nize or recall information presented in the study phase (Wixted 1998, p. 265).
Chapter 5 reports a study in this thesis that adopted the visual memory task to
measure visual memory costs incurred by image transformations in interfaces.

Experimental simulation is a strategy where the researcher “attempts to
achieve much of the precision and control of the laboratory experiment but to
gain some of the realism (or apparent realism) of field studies” by “concocting
a situation or behaviour setting or context” and “making it as much like some
class of actual behaviour setting as possible” (McGrath 1994, p. 157). Over
50% of evaluations published in the ACM SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI) proceedings included formal evaluations em-
ploying this strategy (Barkhuus and Rode 2007). Like laboratory experiments,
experimental-simulation studies mostly use factorial design, measure task com-
pletion time and task accuracy analyzed using established statistical methods.
The major differences reside in bringing realism to the study setting, which in-
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clude testing interactive interfaces displaying realistic data instead of static ab-
stract stimuli, studying scenario-based tasks instead of simple abstracted tasks,
and soliciting subjective participant feedback in addition to objective time and
accuracy measurements. Tasks are chosen based on the intended application of
the visualization technique or system under investigation, and usually comprise
basic task operations such as locate, identify, compare, associate, distinguish,
rank, cluster, correlate, and categorize (Amar et al. 2005; Roth and Mattis
1990; Tory and Möller 2004; Wehrend and Lewis 1990). To obtain feedback
from participants regarding study interfaces, experimental-simulation studies
typically gather subjective feedback in the form of questionnaires, which can be
reported quantitatively such as in the NASA-TLX scale that measures mental
workload (Zhang 2005), and qualitatively such as open-ended questions that
solicit perceived positive and negative aspects of the interfaces.

The third study in this thesis took the experimental simulation strategy
to study overview use in multiple-VIR interface to display single-level data.
Section 3.1.2 surveys experimental-simulation studies that focused on multiple-
VIR interface techniques and systems. Chapter 4 systematically reviews existing
experimental-simulation studies in this area to derive design guidelines.

Quadrant I: Field strategies

Two strategies were included in the Quadrant I field strategies (Figure 1.2):
field experiment and field study (McGrath 1994).

Both field studies and field experiments are strategies where the re-
searcher studies a natural behavioural system. In field studies, the research
“sets out to make direct observations of ‘natural’, ongoing systems, while in-
truding on and disturbing those systems as little as possible” (McGrath 1994,
p. 157). This strategy is frequently employed during visualization designs to
gather design requirements by understanding user characteristics such as work-
flow and expertise, and existing practices and problems of the target application.
In this thesis, the task of interest is exploratory data analysis, discussed in Sec-
tion 2.1, and the application domain is web session log analysis, discussed in
Section 2.4.2. Section 7.1 reports interview findings of existing analysis prac-
tices and problems identified before system design. Section 8.1.1 reports similar
findings from interviews conducted as part of our field work detailed in Chap-
ter 8.

Field experiments, in contrast, give up some of the unobtrusiveness by mod-
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ifying one aspect of the system, as the goals of these studies are frequently to
assess the causal effects of the difference in that manipulated feature on other
behaviours of the system. In the context of visualization evaluation, the mod-
ification often comes in the form of a visualization system, usually designed to
address existing analysis concerns. The study therefore aims to evaluate the
system by observing changes in task behaviours. To preserve the naturalness
and unobtrusiveness of the method, researchers prefer having the participants
use their own data performing participants’ own tasks instead of prescribed
tasks whenever possible. Data collected are qualitative and observational. Sec-
tion 3.1.3 surveys field experiments performed to evaluate information systems.

Chapter 8 reports the field work conducted at Google Inc. to study the use of
Session Viewer, a visual analytic tool built as part of this thesis to support web
session log analysis. Our work is akin to field experiments as we introduced the
tool at a workplace. However, we focused more on tool use than on behavioural
changes brought about by the tool, so use of the term “experiment” could lead
to misunderstanding. We labeled our work field evaluation instead.

1.2 Thesis Contributions: Evaluation

The evaluation aspect of this thesis involves four studies to investigate chal-
lenges in building visualization systems to support data analysis, each with a
different research strategy based on McGrath’s (1994) research circumplex, as
shown in Figure 1.2. We started with a summary synthesis to systematically
review existing multiple-VIR study results. From our findings, we identified
two research areas for further investigations using a laboratory experiment, an
experimental-simulation study, and a field evaluation.

Contributions from each study are described as follows:

1. Given the lack of understanding of multiple-VIR interface use and effec-
tiveness in both the information visualization and human-computer inter-
action communities, we analyzed 19 existing multiple-VIR interface stud-
ies to extract high-level interface design guidelines. Chapter 4 details our
findings.

2. We systematically examined the effects of two-dimensional geometric trans-
formations and background grids on visual memory and defined a no-cost
zone for each transformation type within which we did not detect per-
formance degradations. We verified and refined two established design
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guidelines in this context: we refined guidelines on preserving orthogonal
ordering, and verified the effectiveness of background grids (Misue et al.
1995). Chapter 5 details the study.

3. In interfaces that provide multiple VIRs, low-VIR overviews typically sac-
rifice visual details for display capacity, with the assumption that users
can select regions of interest to examine at higher VIRs. We examined
and refuted this assumption for single-level data and proposed interaction
costs as a factor. Chapter 6 details the study.

4. There have been very few long term and detailed evaluations of infor-
mation visualization systems in the workplace using real-world data. We
evaluated Session Viewer with seven web session log analysts at Google
Inc. in a field evaluation and identified two design themes summarizing
issues and implications for visualization system effectiveness in the work-
place. Chapter 8 details the study.

The remainder of this section elaborates on each conducted evaluation in
terms of study motivations and goals, study approach, and major findings.

1.2.1 Summary synthesis: multiple visual information

resolution interface designs

Motivations and goals

Despite numerous evaluation efforts and the long history of applying multiple-
VIR techniques to interface design, the use and effectiveness of these techniques
remain unclear (Furnas 2006). The difficulty in studying these interfaces re-
flects their complexity; a large number of factors are at play that significantly
affect their use. These factors include the match between task information re-
quirements and the type and amount of information displayed, the supported
interactions, the use of image transformations in the implementations, and user
characteristics in terms of spatial ability, interface use, and task domain knowl-
edge.

Chapter 4 details the summary synthesis in this thesis that aimed to provide
a clearer snapshot of our existing knowledge based on empirical evaluations
of multiple-VIR interface techniques and systems, with the goal of extracting
guidelines for design and identifing research questions for the thesis.
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Approach and major findings

Our summary synthesis analyzed 19 existing multiple-VIR interface studies and
cast findings into a four-point decision tree to design multiple-VIR displays: (1)
When are multiple VIRs useful? (2) How to create the low-VIR display? (3)
Should the multiple VIRs be displayed simultaneously? (4) Should the multiple
VIRs be embedded or separated?

We summarized our findings as design recommendations. We concluded that
the number of VIRs should match the number organization levels in the data,
and the information displayed in the low VIRs should be relevant, sufficient, and
necessary for the supported task. Simultaneous display of the different VIRs was
found to be suited to tasks where answers, or information scent leading to the
answers (Pirolli et al. 2003), spanned multiple levels of the VIRs. Otherwise,
temporal switching of the VIRs should be more appropriate due to simpler and
more familiar interactions. The issue of spatial arrangements of the various
VIRs remains an open question in research. The questions of overview creation
and spatial arrangements of the various VIRs were further examined in the next
three studies.

1.2.2 Laboratory experiment: visual memory costs of

transformations

Motivations and goals

Geometric transformations are widely used in interface design, particularly in
multiple-VIR visualization systems to create the low-VIR overview. In this
study, we investigated the visual memory costs of four frequently used geometric
transformations: scaling, rotation, rectangular fisheye, and polar fisheye.

Rotation has been used in embedded interfaces such as the Hyperbolic tree
(Lamping et al. 1995) and to create interactive radial graph layout (Yee et al.
2002). Likewise, scaling is extremely popular; for example, scaling is frequently
used to create the low-VIR display in multiple-VIR interfaces, for example, as
the lowest zoom level in Summary Thumbnails that provide semantic zooming
for webpages displayed on mobile devices (Lam and Baudisch 2005), and as
the low-VIR overview in separate interfaces for documents (e.g., Hornbæk and
Frokjær 2001, Hornbæk et al. 2003) and maps (e.g., Hornbæk et al. 2002).

Unfortunately, scaling only works to a certain extent: when the size of an
image is reduced too far, its details become indiscernible. One possible remedy
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is to selectively scale visual objects such that readability is preserved for the
part of the image relevant to the user, while the rest remains available in a
reduced form to serve as context. The class of embedded techniques, a popular
multiple-VIR technique, does so by providing both an unscaled focus (a high-
VIR region) and a scaled-down context (a low-VIR region) in a single integrated
image (Leung and Apperley 1994; Skopik and Gutwin 2005). Focus + context
can be realized using a nonlinear transformation called a fisheye transformation,
which has two main variants: rectangular and polar (Leung and Apperley 1994;
Skopik and Brown 1992). There exists a large body of work using the fisheye
transformation, such as the Fisheye menu to support item selection from a
long list (Bederson 2000), Fishnet to display lengthy web documents (Baudisch
et al. 2004), DateLens to display calendar data on small-screens (Bederson
et al. 2004), and a two-dimensional graph display for large information spaces
(Bartram et al. 1995).

While scaling, rotation, rectangular fisheye, and polar fisheye transforma-
tions can provide benefits in overview creation and VIR presentation, there is a
danger that the transformed image may be too distorted to remain recognizable.
This issue is a serious usability concern, since users need to be able to retain,
or at least compensate for, their orientation in the visualization after the trans-
formation. They also need to be able to associate displayed components before
and after the transformation to equate the two views as the same, or at least
holding the same information. Unfortunately, effects of these transformations
on visual memory are largely unknown.

Our goal was therefore to systematically measure visual memory costs of
these four two-dimensional geometric transformations to guide interface design.
Also, we aimed to refine existing design guidelines, such as to mitigate incurred
perceptual costs by preserving orthogonal ordering and by applying background
grids.

Approach and major findings

Since we were mostly interested in visual memory cost, which is a perceptual
cost, we modeled our study design after those in experimental psychology and
conducted a laboratory experiment. Instead of using a fully interactive system
with scenario-based tasks, we showed static abstract images and studied a three-
phased visual memory task (encode, retain, test). We also only measured task
completion time and accuracy without soliciting subjective feedback or recording

16



Chapter 1. Introduction

observations.
For each transformation type, we defined a no-cost zone boundary after

which we observed degradations in task time and accuracy. We refined the
orthogonal-ordering guideline proposed by Misue et al. (1995) where we sug-
gested that instead of preserving left-right and up-down ordering, providing an
up-down indicator would suffice. We verified the use of background grids in
mitigating visual memory costs in these transformations, and provided further
insights as to how they compensated different transformations such as provid-
ing distance cues to compensate for distance distortions in rectangular fisheye
transformations.

1.2.3 Experimental-simulation study: overview use

Motivations and goals

Creation of the low-VIR view is one of the first steps in the multiple-VIR design
process. A low-VIR view corresponds to the overview in separate techniques, the
context in embedded techniques, and the lowest zoom level display in zooming
techniques. While it is obvious how to display data at the highest VIR in the
detail, focus, or high-zoom displays, how and what to display in low VIRs can be
difficult. Ideally, the low VIRs should map to all the data in the data population
so that users can select an area of interest for detail explorations at higher VIRs.

When the data is structured at multiple levels that are relevant to the task,
that structure can be used to create the lower-VIR views as low-level data can be
aggregated and collectively represented by higher-level structures. For example,
designers can represent individual species (e.g., Panthera tigris, Panthera leo
and Panthera onca) by Genus (e.g., Panthera). Using multiple VIRs for data
organized at multiple levels of detail was found to be effective in our summary
synthesis, detailed in Chapter 4.

However, when the data has only a single level of inherent structure or has
no known structure, designers have little guidance on low-VIR creation. The
lack of known data structures may necessitate the display of every datum in
the data population, and designers may need to sacrifice the amount of visual
detail displayed for each datum to increase the low-VIR’s display capacity. This
approach is viable if the designer can assume users can recover lost visual details
in higher-VIR displays. In other words, designers need to ensure sufficient and
perceivable visual details to enable users to select areas of interest in the low-
VIR display for further examination.
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Displaying visual details does not always guarantee that users can access the
displayed visual information. For example, information encoded by text with a
font that is unreadable is not accessible to users. In other words, the usefulness
of displayed text can be characterized by font readability. For graphical displays,
the corresponding visual requirements are more difficult to define despite the
rich history of perception research. One such requirement is visual salience.

In general, a visual object is salient when it attracts the user’s attention
more than its neighbours, and is therefore easily detected (Landragin et al.
2001). One way to achieve extreme visual salience is by visual pop-out, where
visual objects with features that can be preattentively processed are spotted
quickly and reliably on the display independent of the number of distractors
and observer intent (Treisman 1985). However, this extreme approach can be
inappropriate when it is unclear a priori which of several aspects of the data
should be emphasized. Instead, a more appropriate strategy would be to encode
visual objects with sufficient salience to enable overview use without having one
aspect overpower the others. The low-VIR view would contain a variety of items
of similar salience, where the visual target would not draw more attention than
the non-targets but could be detected and accessed.

Based on pilot study results and Tullis’s (1985) work on display character-
istics and visual search time (discussed in Section 3.1.1 in the Related Work
Chapter), we selected two perceptual parameters of visual salience out of a col-
lection of six: target visual complexity and visual span. We established the
boundaries of these requirements by showing that our participants universally
chose to use the low-VIR displays only when the visual targets were structurally
simple and spanned a small visual angle. We then focused on situations where
these visual requirements were not completely met. The goal of this study was
therefore to investigate whether distributing high-VIR details amongst multiple
VIRs could relax perceptual requirements established for single low-VIR views,
and if the spatial arrangements of high and low VIRs affect overview effective-
ness.

Approach and major findings

While laboratory experiments are appropriate in measuring perceptual costs,
they are unsuitable vehicles to better understand interface use since they tend
to ignore interactivity and participant usage behaviours. The third study in
this thesis took the experimental-simulation approach to understand overview
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use in multiple-VIR interfaces. We therefore studied fully-interactive interfaces
with scenario-based tasks, and recorded detailed observations in addition to task
completion time and accuracy to gain insights into interface use.

We found that, surprisingly, neither of our separate or embedded multiple-
VIR interfaces provided performance benefits when compared to the optimal
single-VIR interfaces. However, we did observe benefits in providing side-by-
side comparisons for target matching in the separate interface. We conjectured
that the high cognitive load of multiple-VIR interface interactions, whether
real or perceived, is a more considerable barrier to their effective use than was
previously considered.

Overview design in multiple-VIR interfaces is a complex issue and remains
an open question in research, which is discussed further in the last chapter of
this thesis, in Section 9.1.1.

1.2.4 Field evaluation: Session Viewer at Google Inc.

Motivations and goals

Interface use is a complex phenomenon that cannot be adequately studied in
laboratories (Plaisant 2004; Shneiderman and Plaisant 2006). Finding effective
methods to evaluate visualizations is an open research area, and is discussed
in Section 9.1.4. Traditionally, the information visualization community has
focused largely on experimental-simulation studies to compare between visual-
izations. Generally, these studies lack realism and have had limited success in
discovering unexpected factors that affect interface use, in ensuring participant
engagement during the study, and in studying domain expertise. Laboratory
studies also cannot provide insights into prototype deployments in the workplace
to discover issues that may be unrelated to information visualization techniques,
but nonetheless may determine the outcome of technology transfers.

We therefore focused on the web session log analysis application domain
and built a visual analytic tool called Session Viewer to examine some of these
issues. Our goal in the fourth study in this thesis was therefore two-fold: to
examine design choices made in building Session Viewer, and to study system
requirements in the workplace.

19



Chapter 1. Introduction

Approach and major findings

We conducted a field evaluation at Google Inc. with seven log-analyst partic-
ipants working on their own data and their own tasks, reported in Chapter 8.
Taking a qualitative approach, we collected 20 hours of tool-use observations
and grouped our findings into two design themes: (1) design implications in
dealing with real-world noisy data, and (2) factors that lead to tool reception
in the workplace.

In terms of visual-design findings, we found that noisy data requires sub-
stantial validation, and tools should convey the gist of the data. Tools should
allow fluid data-view projection to support frequent analysis direction changes.

We examined design choices made during the creation of Session Viewer.
We found that our analysts could effectively identify interesting sessions for
further examination using Session Viewer’s scrollable overview, which displays
small multiples of sessions that are interactively reorderable, even though the
overview did not simultaneously show all data. We also found that the sepa-
rate visualization technique, when coupled with statistical data attributes, was
surprisingly effective in supporting data cleaning and data selection. In terms
of spatial layout, we found a tradeoff in optimizing screen space for single-
population analysis and multiple-population comparisons.

We also identified three main considerations for system deployment. We
found that the level of data configurability should be based more on target
users’ technical skills than on existing data schema. We believe the strongest
determinant of our tool’s reception was its unique contribution to the analysis
process by bridging between existing analysis practices. However, the complex-
ity of a powerful tool may deter its use. In our case, integration with current
tool sets was found to be less crucial than we previously assumed.

1.3 Thesis Contributions: Application

The application aspect of this thesis involves our detailed design study of a
information visualization system prototype called Session Viewer to support
web session log analysis. Session Viewer is our proposed solution to address
existing data exploration concerns of web session log analysts based on their
current analysis practices, characteristics of web session log data, and the task
of exploratory data analysis. The software is unique in its ability to handle
multi-level data and support cross-level analysis. Chapter 7 covers the design
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of Session Viewer in detail.
Session Viewer plays a major role in this thesis as it provides a test bed to

examine our design ideas based on knowledge gained in the first three evalua-
tions in the thesis. We identified two research themes from the multiple-VIR
design summary synthesis in Chapter 4: overview creation and the choice be-
tween the embedded and separate approach to spatially arrange VIRs. Specific
aspects of these two themes were examined further in two subsequent evalua-
tions: the visual-memory experiment in Chapter 5 studied perceptual costs of
image transformation, and the overview-use study in Chapter 6 looked at visual
details required for effective overview use.

In Session Viewer, we provided a concrete design example in the application
domain of web session log analysis to further explore design choices associated
with these two research themes. Section 7.6 describes our design evolution of
Session Viewer and listed our design choices, while the last evaluation of this
thesis, the field evaluation, examined the impact of our design choices.

In addition to our design study of Session Viewer, our application contribu-
tions are therefore:

1. We proposed a solution to create overviews of large data sets. Instead
of data pre-selection, we allowed scrolling in our overview that displays
session objects as small multiples with each session object comprised of
events. We augmented our overview with visually and interactively linked
session attribute for each session object. With session reordering based on
attributes, we found in our field evaluation that analysts could effectively
isolate interesting sessions in a population for further analysis.

2. We provided positive evidence for using the separate technique to display
multiple levels of data. We found in our field evaluation that the separate
technique provided close mapping between VIRs and analysts’ concept of
session logs, and the technique was found to be effective in supporting
data validation and session selection.
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Background: Exploratory

Data Analysis and

Visualization

Given the focus of exploratory data analysis of the thesis, this chapter provides
background information in general, and the thesis domain of web session log
analysis in specific.

Data analysis has long resided in the realm of statistics, with established
methods that summarize data populations and model patterns in the data.
An essential step in data analysis is data exploration, where the analyst tries
to understand the data to generate hypotheses. This step is arguably difficult,
especially in situations where the data size under analysis is large, and when the
data contains multiple subpopulations that are unknown prior to the analysis.
Visualization systems, by taking advantage of the human visual system’s ability
to process large number of visual signals in parallel, has been suggested as a
viable solution to aid data exploration.

This chapter surveys these areas in more depth. The survey begins with
a survey of the exploratory data analysis (EDA) task, based mostly on the
statistics and analytical methodology literature (Section 2.1), followed by a
list of proposed roles played by visualization in data exploration (Section 2.2).
These proposed roles are solidified into design challenges and requirements for
visualization systems that support EDA (Section 2.3). The last section in this
chapter focuses on the application domain of this thesis, web session log analysis.
Section 2.4 explains the rationale of our domain choice and provides background
information on the subject.
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2.1 Exploratory Data Analysis

Data analysis is a complicated process, which is part of a larger context of
inquiry. Tukey described the process of data analysis as a continuum from
exploration to confirmation data analysis (Tukey 1986), that generally starts
with data exploration. The term “exploratory data analysis” (EDA) was first
coined by Tukey in 1977 in his seminal work of the same title (Tukey 1977).
The goal of EDA is to discover patterns in data. The emphasis is to study data
to obtain an understanding. This thesis focuses on EDA instead of the entire
analysis process, since the goal of visualization is to support EDA (Section 7.3)
and since there exist numerous statistical packages that address confirmatory
analysis. Instead of discussing specific EDA statistical methods such as data
transformation and residual analysis (Tukey 1986; Leinhardt and Wasserman
1979), we focus on EDA philosophies to understand how visualization can play
a role in supporting the task of EDA.

According to Hartwig and Dearing (1979), the essence of EDA is skepticism
and openness: skeptical of potentially inappropriate use and fallacies of data
representations and analytical methods, and open to unanticipated patterns in
the data. EDA therefore focuses on tentative model building and hypothesis
generation in an iterative process of model specification, residual analysis, and
model re-specification (Behrens 1997). In other words, analysts should form
their hypotheses while studying the data, not before.

Ho (1994) further characterized the logic of EDA based on the work of Peirce
in 1878, and suggested applying the process of abduction to EDA. Abduction
is the process where analysts “look for a pattern in a phenomenon and suggest
hypothesis” (Ho 1994, p. 15). Its purpose is to generate guesses of a kind that
deduction can explicate and that induction can evaluate. Ho argued that in ex-
ploratory data analysis, “although there may be more than one convincing pat-
terns, we ‘abduct’ only those which are more plausible” and that “exploratory
data analysis is [therefore] not trying out everything” (Ho 1994, p. 16), since in
general, it would be impossible to falsify every possibility. On the other hand,
exploratory data analysis is not to make hasty decisions, as “researchers must be
well-equipped with proper categories in order to sort out the invariant features
and patterns of phenomena” (Ho 1994, p. 18).

Even though EDA is more a philosophy of approach than a prescribed
method, several researchers have provided concrete steps to achieve these goals.
The analysis starts with analysts studying the data. Hartwig and Dearing (1979)

23



Chapter 2. Exploratory Data Analysis and Visualization

advocated a bottom-up approach that starts by understanding the data distri-
bution of each data dimension value, building the understanding to correlate
between dimension pairs, examining the network of relationships between the
variables, and building models about the data. Sanderson and Fisher (1994)
adapted the philosophy of EDA to sequential data exploration, or exploratory
sequential data analysis (ESDA), for data with integral temporal components.
Sanderson and Fisher (1994) described the process of ESDA as “Eight Cs”,
where the first three Cs (Chunks, Comments and Codes) are initial steps to
understand the data, and the next four steps (Connections, Comparisons, Con-
straints and Conversions) are devoted to data exploration. The last step, Com-
putations, is where analysts reach the conclusion of the analysis.

The outcome of EDA or abduction is therefore a set of plausible models that
can be further assessed. Ho (1994) argued that the next stage in the analysis
is to refine the hypothesis by drawing logical consequences using deduction, or
“a process through which we start with general claims or general assertions
and ask what follows from these premises” (Reisberg 2001, p. 411). However,
since deduction relies on the truthfulness of the premises, empirical justification
of the hypotheses with data is required. That is the next stage of analysis, or
induction, “a process in which one begins with specific facts or observations and
then draw some general conclusion from them” (Reisberg 2001, p. 378). Ho’s
induction process is akin to confirmatory data analysis (CDA) modes of Tukey
(1986). In the first stage, or the rough CDA mode, analysts use probabilistic
approaches such as confidence intervals or significant tests to initially assess the
plausible hypotheses. In the next CDA mode, specific hypotheses are tested
using a strict probabilistic framework following a decision theoretic approach.
This process is cyclical, leading to a good description of the data by successive
approximations.

A related area is the work on analytical reasoning and sense making. A
comprehensive review is beyond the scope of this thesis but can be found in
Chapter 2 of Thomas and Cook (2005). However, I will briefly mention Pirolli
and Card’s (2005) Sensemaking process, which is partly based on their ear-
lier work on information foraging theory (Pirolli and Card 1999). Information
foraging theory is widely known in the fields of human-computer interaction
and information visualization, and has been applied to web-searching support
tool designs (e.g., Olson and Chi 2003) and to model web usage behaviours
(e.g., Card et al. 2001; Chi et al. 2001).

Briefly, Pirolli and Card’s (2005) Sensemaking process has two main loops,
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the foraging loop based on Pirolli and Card (1999) and the sensemaking loop
based on Russell et al. (1993). The bottom-up process in the foraging loop
is akin to EDA as prescribed by EDA advocates such as Hartwig and Dear-
ing (1979). According to Pirolli and Card (2005), analysts start with the step
of “search and filter” to collect relevant external data sources into a tempo-
rary storage space or “shoebox”, after which the documents in the shoebox are
read to extract evidence to draw inferences and to trigger new hypotheses and
searches.

In summary, data analysis operates in a cyclic fashion in terms of processes
(abduction, deduction, induction) or modes (EDA, rough CDA, CDA). The
analyst, when trained in different modes of analysis, moves fluidly between ex-
ploratory and confirmatory processes in a single analysis (Behrens 1997). Pat-
terns and unexpected outcomes are regarded as starting points for hypothesis
generation and future testings rather than as statistical conclusions. In addition,
the analyst familiar with EDA will explore data patterns associated with the
hypothesized main effect to make sure the CDA was not misled by unrecognized
patterns that can lead to conclusions inconsistent with the data.

Given our visual capability to process large amounts of information in par-
allel, visualization is an attractive tool to support EDA.

2.2 Roles of Visualization in EDA

Advocates of EDA often recommend using graphical displays to represent data.
According to Tukey, “the greatest value of a picture is when it forces us to
notice what we never expected to see” (Tukey 1977, p. vi). Thomas and Cook
summarized the six basic ways where visualization can amplify human cognitive
capabilities (2005, p. 46):

1. Increasing cognitive resources, such as by using a visual resource to expand
human working memory;

2. Reducing search, such as by representing a large amount of data in a small
space;

3. Enhancing the recognition of patterns, such as when information is orga-
nized in space by its time relationship;

4. Supporting the easy perceptual inference of relationships that are other-
wise more difficult to induce;
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5. Perceptual monitoring of a large number of potential events;

6. Providing a manipulable medium that, unlike static diagrams, enables the
exploration of a space of parameter values.

In addition to the visual display, modern visualization systems offer interac-
tivities that further assist EDA, as interactivities allow analysts to quickly and
fluidly “hold and assess” working hypotheses (Behrens 1997), either by viewing
the data in different perspectives, or by emphasizing different parameters of a
problem (MacEachren and Kraak 1997).

2.3 Challenges and Requirements for EDA

Visualization Systems

Good (1983) posed two questions for EDA tool designers:

How should we present a collection of k -tuples to match the cognitive

powers of the analyst so that he can (i) see patterns in the data, and (ii)

formulate sensible hypotheses about the data?

Existing EDA literature provides further and specific design requirements,
such as to provide context for data interpretation, to provide re-representation
and multiple representations of data, and to provide links between different data
views. These requirements were part of the considerations in creating Session
Viewer, the visual analytic tool in this thesis built to support web session log
analysis. Design considerations of Session Viewer are listed in Section 7.3.

2.3.1 Provide context for data interpretation

Interpretation of data usually requires comparison, either to existing standards,
or to related values. According to Woods et al. (2002), “Presenting data in the
context shifts part of the burden to the external display rather than requiring
the observer to carry out all of this cognitive work in the head.” (p. 32). Outliers
can only be detected when the analyst understands how the datum departs from,
or conforms to, the typical expected case (Woods et al. 2002).

In addition to interpreting individual data, analysts often need to discover
relationships in the context of the field of practice. Such a frame of reference
is a fundamental prerequisite for depicting relations rather than simply making
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data available. Instead of organizing displays around pieces of data, displays
should organize data in units meaningful to the application.

2.3.2 Provide re-representation and multiple

representations of data, and allow fluid traversals

EDA advocates have stressed the fact that conventional views of data are more
based on habits than for enhancing analysis, and analysis tools should support
re-representation of data (Behrens 1997).

In addition, data analysis often requires checking multiple hypotheses, as
“science is the holding of multiple working hypotheses” (Chamberlain 1965).
Almost always there are multiple frames of reference that apply. Each frame
of reference is like one perspective from which an analyst views or extracts
meaning from data (Woods et al. 2002), and patterns and anomalies in data may
only be obvious in certain views. Multiple representations of data are therefore
needed to view data in different ways using multiple scales and perspectives,
both spatially and conceptually (MacEachren and Kraak 1997; Sanderson and
Fisher 1994).

Another important aspect of EDA tools is to allow analysts to shift per-
spectives fluently so as to support the fast data-view projection changes in the
process (Behrens 1997; Woods et al. 2002), as the definition of relevance in data
can be highly context sensitive (Woods et al. 2002).

2.3.3 Provide linking between data views

An individual datum is meaningless unless the data analyst can interpret its
value in the context of other data. In some cases, the analyst may need to
interpret data values in the context of the theory that unifies the data (Behrens
1997). Indeed, part of the analysis is to discover the multiple potentially relevant
frames of reference and to find ways to integrate and couple these multiple
frames (Woods et al. 2002).

EDA tools should therefore link multiple data views to allow propagation
of changes in one plot to all relevant plots (Behrens 1997), and to identify
relationships among variables (MacEachren and Kraak 1997).
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2.4 Web Session Log Analysis

Given the general background on exploratory data analysis and possible roles
played by visualization, this section focuses on the chosen application domain
of this thesis: web session log analysis.

To better study exploratory data analysis, web session log analysis was cho-
sen as the thesis’s design example due to problem relevance and commonality
with other analysis situations. In the year 2002, the size of the World Wide
Web was about 533x103 terabytes (Lyman and Varian 2003). The same study
reported that in the year 2002, each individual in the United States spent about
100 hours per year online (Lyman and Varian 2003). With the increasing im-
portance, complexity and volume of the web, providing better web information-
seeking support is essential and requires an understanding of web search usage
behaviours.

Researchers have used methods ranging from field experiments and studies to
web session log analyses to achieve this goal. Typically, field-study researchers
observe participants perform their information-seeking activities on the web in
participants’ own environments, followed by interviews to further understand
participants’ tasks, motivations, thinking processes, and expectations. Pub-
lished examples include Jones et al.’s (2001) study to identify methods people
use to manage web information for re-use, Sellen et al.’s (2002) study to observe
web activities conducted by knowledge workers, and Teevan et al.’s (2004) study
on orienteering behaviours in directed search.

While such observational studies can reveal rich and detailed information and
allow for deep understandings of naturalistic search behaviour in the context of
users’ goals, the approach is too labour intensive for large population analyses.
Session log analysis is a more scalable alternative. Session logs are computer logs
that capture user actions in units of sessions. Session logs can be obtained by
server- or client-side logging. Server-side logs include transactions of web search
engines, Intranets and web sites, while client-side logs are usually recorded by
plug-in tools installed in users’ web browsers. Even though session logs cannot
capture user goals and intent, they do capture realistic search behaviours as
users perform real information searches in their own environments uninterrupted
by the data collection mechanism. However, session logs are difficult to analyze
due to the large data size and complex compositions.

Before discussing existing difficulties in web session log analysis in Sec-
tion 2.4.2, we first explain the structure and composition of web session logs.
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Figure 2.1: A sample web session log from user study described in Russell and
Grimes (2007). Each row is an event, with the sequence number, participant
ID, question number, navigation type, event time, URL, and webpage title.

2.4.1 Session logs

One method to obtain web session logs is by client-side logging. This method is
commonly used in short-term user studies to understand web-usage behaviours.
Figure 2.1 shows a sample log from one such study (Russell and Grimes 2007).

In session logs, the basic unit of analysis is a session, a time-stamped se-
quence of events. An event corresponds to a user action, such as submitting
a query to the search engine, clicking on the next page link, or clicking on a
web result. Each event has attributes, such as a time-stamp, URL, action type
(e.g., web search, webpage click), search domain (e.g., Image, Product), and the
submitted query.

Since a session is simply an ordered list of events, aggregates of event at-
tributes become session attributes. Examples include the total number of events
in a session and the total dwell time of a session. In addition, session logs may
contain participant feedback at the session level that also constitute session
attributes. Examples include task satisfaction and self-reported task outcomes.

A session population is a group of sessions with shared characteristics
such as usage patterns. In short, a session log has structure at three levels:
session population, session, and event.

In general, a session is a multi-dimensional data object. Most dimensions are
single values (e.g., event count per session), but one dimension is a time-ordered
sequence of event objects. Each event is itself a multidimensional datum. In
other words, the session data object is a multi-level data object.
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2.4.2 Log analysis: existing practices and problems

One analysis option is a detailed study of individual sessions. One example
is Kellar et al.’s (2007) study to better understand four types of information-
seeking tasks. These task categories were created by detailed studying of task
descriptions in session logs. In their case, they looked at 40 task descriptions
sampled from a larger set of logs generated by six participants over four days.

This detailed study approach can lead to interesting insights, but is very
labor intensive. In Kellar et al.’s (2007) case, the task categories were created by
ten focus-group participants over an hour, and further refined by the researchers
themselves after the focus-group session. The large amount of time required for
detailed analysis thus limits sample size, and sampling from a larger data set may
be potentially biased, which may render general conclusions drawn inaccurate
or even misleading.

A more scalable and commonly used alternative is to compute overall pop-
ulation statistics at multiple levels, such as unique term frequency at the query
level and event type frequency at the session level (Jansen 2006), or more com-
plex web usage mining methods to model and predict user behaviours (e.g.,
Pierrakos et al. 2003). While these statistical approaches are scalable and
effective, they tend to be hypothesis-driven and confirmatory rather than data-
driven and exploratory, and may not uncover unexpected trends or may obscure
subpopulation differences in the data. In addition, without exploring the data
in detail, hypothesis formation can be difficult.

The detailed and the statistical approaches to analyzing web session logs are
therefore complementary, as one approach can potentially mitigate the short-
comings of the other. For example, the difficulty in selecting representative
sessions for detailed analysis may be mitigated if the selection could be guided
by statistical session attributes such as session duration distributions. For sta-
tistical analysts, being able to view representative sessions of various statistical
populations in detail may facilitate hypothesis generation and uncover unex-
pected trends. The key challenge with session log analysis is therefore to bridge
between detailed and aggregate analysis to better support data exploration.

The lack of cross-level analysis is not unique to web session log analysis.
Tukey and others advocated exploratory data analysis using graphical plots to
ensure adequate data exploration and understanding before applying statistical
methods, and data analysis was considered as a continuum from exploratory to
confirmatory analysis (Tukey 1986). Visual exploratory analysis (VEA) is an
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attractive approach given our visual capabilities to spot trends, patterns, and
anomalies. In practice, effective VEA requires a sophisticated visualization tool.
Building such a tool is the subject in Chapter 7 of the thesis.
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Related Work

Given that this thesis studies how interfaces that display multiple levels of data
detail can support exploratory data analysis using four diverse research strate-
gies, this chapter surveys related empirical studies employing each of the four
strategies in Section 3.1: laboratory experiments (Section 3.1.1), experimen-
tal simulation (Section 3.1.2), field experiments (Section 3.1.3), and systematic
reviews (Section 3.1.4).

In terms of applications, we survey the general area of visual analytics where
interactive visual interfaces are used to support analytical reasoning in Sec-
tion 3.2. More specifically, in Section 3.2.1 we cover visualization systems de-
signed for visual exploratory analysis, as well as three categories of visualization
techniques to display multiple data forms, multiple data levels, and multiple
data dimensions.

Since our chosen application domain for our field evaluation in Chapter 8
is web session log analysis, this chapter also reviews visualization specifically
designed for to visualize web session logs (Section 3.2.3, the more general com-
puter logs (Section 3.2.4), and non-visualization approaches to web session log
analyses (Section 3.2.5).

3.1 Empirical Studies

As the field of information visualization matures, researchers have begun to
acknowledge the need to evaluate existing visualization techniques and systems
(Chen and Czerwinski 2000). Indeed, a 2007 study found that over 90% of the
papers that were accepted for the ACM SIGCHI Conference on Human Factors
in Computing Systems (CHI) in 2006 included formal evaluations, where only
about half of the papers did in 1983 (Barkhuus and Rode 2007).

The main themes in empirical studies include laboratory experiments to
study human perceptual and cognitive capabilities in interacting with visual-
izations, experimental-simulation studies to evaluate information visualization
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techniques, field experiments to study information visualization systems use in
practical contexts, and systematic reviews of study results to obtain overviews
of existing knowledge.

This section delineates previous efforts in these four areas of investigations,
and how this thesis contributes to and extends existing work. Due to the large
body of work that exists in perceptual and visualization-technique evaluations,
this section focuses on work related to multiple visual resolution interface reso-
lution (VIR) visualization techniques when discussing these two themes, as the
study of multiple-VIR interfaces is the main focus of this thesis.

3.1.1 Laboratory experiments to study human

perceptual and cognitive capabilities

Perception and cognition research in information visualization and related fields
such as human-computer interaction and experimental psychology aim at estab-
lishing models and limitations of human perceptual and cognitive capabilities to
better visualization designs. Ware (2004) focuses on subjects in vision research
that are pertinent in visualization design and extracts design principles that can
be applied to better information display.

The major areas of vision research study how humans perceive various kinds
of visual stimuli such as colour, shape, motion, and depth, along with research
on object recognition and visual attention. Knowledge gained from these kinds
of studies has been applied to visualization design. Examples include using
study results of colour perception to derive design guidelines to encode nominal
or continuous data in interface design (e.g., Ware 2004, p. 123–138); using depth
perception to create three-dimension visual representations on two-dimensional
output devices (e.g., Hubona et al. 1999); using Gestalt laws of perceptual or-
ganization to facilitate visual search (e.g., Hornof 2001); and using pre-attentive
processing for rapid visual numerical estimations (e.g., Healey et al. 1996).

In addition to establishing human limitations in interacting with visualiza-
tion displays, researchers have also proposed models to describe human be-
haviours. Examples of models in interface design and evaluation include Card
et al.’s (1983) GOMS (Goals, Operators, Methods, and Selection rules) model
for observations and evaluations of interactions, Plumlee and Ware’s (2006) gen-
eral model for navigation-intensive information seeking, and Pirolli and Card’s
(1999) model on information foraging. Pirolli and Card’s (1999) model on in-
formation foraging was discussed in Section 2.1 in the context of examining
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the task of exploratory data analysis to derive design requirements for Session
Viewer, a visualization tool to support web session log analysis.

On visual memory and geometric transformations

Of particular interest to evaluating multiple visual information resolution (VIR)
interfaces are studies on visual memory and on perceptual costs in geometric
transformations, a technique frequently employed in multiple-VIR interface de-
sign, and studies on visual salience, a subject closely related to low-VIR overview
designs.

Several studies examined the roles of visual memory in interface design. An
example is Robertson et al.’s (1989) Data Mountain. Data Mountain makes use
of our spatial memory and allows users to place thumbnails of documents at
arbitrary positions on an inclined plane in a three-dimensional desktop virtual
environment using a simple two-dimensional interaction technique. In a subse-
quent study, the researchers demonstrated that users could retrieve documents
faster with better accuracy than the benchmark Microsoft Internet Explorer
Favorites (Robertson et al. 1989), and the performance did not measurably
degrade after six months (Czerwinski et al. 1999). While these studies demon-
strated the use of spatial memory in interface design, they did not quantify
perceptual limits applicable in designs.

Skopik and Gutwin (2005) looked at the effects of rectangular fisheye trans-
formation on visual memory and found that distortions increased the time re-
quired to remember and find target nodes, but without affecting task accuracy.
The researchers proposed and demonstrated the effectiveness of adding visual
markers, called “visit wear”, of the places previously visited by users to offset
distortion effects and improve navigation.

Several studies have looked at effects of geometric transformations. Shep-
ard, Cooper, and Metzler examined the effects of mental rotation in a series of
experiments where participants were asked to determine whether two geometric
objects were identical but viewed from different perspectives (Cooper and Shep-
ard 1973; Shepard and Metzler 1971). Their experimental results show a clear
linear relationship between the angle of rotation and response times, suggesting
that participants mentally rotate one of the stimulus to match the other. While
these results suggest a mechanism for mental rotation, the experiments did not
aim to study visual memory costs.

Two other studies measured perceptual costs of geometric transformations
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in visual search tasks using abstract images based on time and accuracy mea-
surements. Rensink (2004) found no measurable cost for translational shifts up
to at least 2 degrees of visual angle, or 2 cm at a viewing distance of 55 cm.
Performance was not measurably affected for rotations up to 17 degrees, but
degraded sharply beyond that. Scaling was found to be invariant at a reduction
factor of two, but created a measurable cost at a factor of four. In another
series of experiments involving visual search on displays with nonlinear polar
fisheye transformations, Lau et al. (2004) found that the studied transforma-
tions had significant time costs, with performance slowed by a factor of almost
three under large distortions. Interestingly, the study did not find any benefits
in adding background grids to their images. In fact, the researchers found that
grids caused participants’ performance to slow down, suggesting that the grids
only added to the perceptual noise. However, these two experiments focused
mostly on visual search. Even though visual search is a common component of
many of the visual operations in information visualization (Ware 2004), other
important factors are still at play. One of these factors is visual memory.

Our laboratory experiment in this thesis, reported in Chapter 5, contributes
to these previous efforts by systematically quantifying visual memory costs in
four types of geometric transformations: scaling, rotation, rectangular fisheye,
and polar fisheye. The study also looked at if and how background grids can mit-
igate incurred visual memory costs. This study was conducted in a larger con-
text of understanding low-VIR display creation and VIR integration in multiple-
VIR interface design.

On visual salience

Visual salience is a broad topic and a vast amount of human vision research has
been done to measure and to understand the phenomenon. In general, a visual
object is salient when it attracts the user’s attention more than its neighbours,
and is therefore easily detected (Landragin et al. 2001). Since the study of
visual salience has a long history in vision research, a comprehensive review of
the literature is beyond the scope of this thesis, this section only includes work
that is directly applied in interface design and evaluation.

To automatically evaluate interfaces, researchers have built predictive mod-
els to measure visual salience. Using plain character displays, Tullis (1985)
identified six display characteristics that correlated with visual search times:
(1) the overall density of characters on the display; (2) the local density of other
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characters near each character; (3) the number of distinct groups of characters;
(4) the average visual angle subtended by those groups; (5) the number of dis-
tinct labels or data items; (6) the average uncertainty of the positions of the
items on the display. Recent efforts in measuring visual salience were based on
image processing and statistics models, for example, Rosenholtz et al.’s (2005)
Feature Congestion model measured display element saliency using color and
luminance contrast to quantify display clutter.

In terms of mechanisms, one well-studied area is preattentive vision, or vi-
sual pop-out, where researchers have discovered a limited set of visual proper-
ties such as colour and motion that are detected very rapidly and accurately
by the low-level visual system (e.g., Palmer 1999, p. 554–560; Treisman 1985).
The information visualization community has incorporated much of this knowl-
edge into its design guidelines for visual encoding. One example is using visual
features that can be preattentively and individually processed to encode multi-
dimensional data (Ware 2004, p. 151–156), such as texture and colours (Healey
and Enns 1999) or motion (Huber and Healey 2005). Another application is
to highlight visual objects on displays by encoding them with pre-attentively
distinct visual symbols.

Our efforts in applying measurements of visual salience in interface design
reside in the area of low-VIR overview design. Typically, low-VIR overviews in
multiple-VIR interfaces need to accommodate a large volume of data to allow
users to select individual datum for further examinations at higher details. Such
practice is in accordance with Shneiderman’s (1996) information-seeking mantra
of “overview first, zoom and filter, then details on demand” (p. 337). Displaying
a large number of visual objects on the low-VIR overviews can lead to visual
cluttering when the number of objects presented on the overview exceeds the
perceptual capability of its users, thus rendering the overview ineffective. One
proposed solution is attention filtering using colour and intensity coding to help
users segregate their visual fields so that they can focus on regions that are
pertinent for the task at hand. This approach has been verified in Yeh and
Wickens’s (2001) study on designs of electronic map displays.

The third study in this thesis, detailed in Chapter 6, examined a different
aspect of the overview problem. Instead of taking the decluttering approach, we
investigated how visual objects could remain visually available to users without
being overtly salient, as in the phenomenon of visual pop-out. We adapted
two of Tullis’s (1985) display characteristics, the number of distinct groups
of characters as visual complexity and the average visual angle subtended by
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those groups as visual span, to graphical displays and investigated the limits to
which visual objects remained available for users to select for further detailed
examinations. This study was conducted in a larger context of studying low-VIR
overview creation and VIR arrangements in multiple-VIR interfaces.

3.1.2 Experimental-simulation studies to evaluate

multiple-VIR techniques

While the vision science literature offers valuable advice to designers in their
choice of visual encoding, the studies have generally focused on single static
images. To better evaluate information visualization techniques, researchers
have to consider interactivity. There exists a large amount of experimental-
simulation studies to evaluate visualization techniques (see Chen and Yu 2000
for a meta-analysis). This section focuses on studies that aim at evaluating
multiple visual information resolution (VIR) techniques such as zooming, focus
+ context, and overview + detail. Since Chapter 4 details a summary synthesis
of 19 existing studies in this area to better guide multiple-VIR interface design,
this section only briefly lists related work in the general area of multiple-VIR
interface studies. Instead, the focus here is evaluations of overview use, which
is the subject of the third study in this thesis detailed in Chapter 6.

Although study results of multiple-VIR interfaces are sometimes character-
ized as mixed (e.g., in Nekrasovski et al. 2006), the situation becomes clearer
when we categorize the studies. In cases where the task required multiple levels
of the displayed data, study results generally show that multiple-VIR interfaces
outperformed their high-VIR counterparts. Examples include Schaffer et al.’s
(1996) network repair task where the answers involved links at all levels of a
network, and Hornbæk et al.’s (2003) essay-writing task where participants were
required to summarize the main points of an electronic document. In both cases,
interfaces that showed multiple levels of details simultaneously were found to
better support the study tasks than interfaces that showed single data levels.

In cases where the data set structure had only a single intrinsic level, multiple-
VIR interfaces were found to be beneficial only when the low-VIR display pro-
vided perceivable details required by the task. For text, perceivability is simply
readability, and unreadable text on low-VIR overviews does not enhance task
performance. The situation is well illustrated by Baudisch et al.’s (2004) study
on information searches on web documents. Their multiple-VIR interfaces dis-
played web documents with guaranteed legible keywords, but surrounding text
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was too small to read. Their single-VIR interface was a high-VIR scrollable web
browser. The study demonstrated performance benefits for their multiple-VIR
interfaces over the high-VIR browser, but only for selective tasks. When the
task only required reading the legible keywords, as in their Outdated task, their
multiple-VIR interfaces outperformed their high-VIR browser. The superior
performances supported by their multiple-VIR interfaces were probably due to
participants’ ability to answer the task questions based on information displayed
on the low-VIRs alone. Since the low-VIR displays were considerably smaller
than the high-VIR display, the low-VIR displays effectively concentrated task-
relevant information. In contrast, when the task required reading text around
these keywords, as in the Analysis task, having a low-VIR display did not result
in performance benefits. One possible explanation is that participants did not
find the low-VIR useful and focused instead on the high-VIR displays.

Similarly, in North and Shneiderman’s (2000) study, their multiple-VIR in-
terface had a low-VIR overview that displayed the names of geographic states
in the United States. These names acted as hyperlinks for relevant passages in
the high-VIR view that provided detailed census information for these states.
Again, their single-VIR interface was a high-VIR scrollable browser. The study
found that when the answers were available on the low-VIR overview, partic-
ipants did not need the high-VIR view as their performance was not affected
by the lack of interactive coordination between the low- and the high-VIR dis-
plays. In cases where the tasks required information that was only available
on the high-VIR view, interactive coordination was crucial as participants used
the low-VIR hyperlinks as shortcuts to reach relevant passages in the high-VIR
view.

Another example is Hornbæk and Hertzum’s (2007) study, which investi-
gated visualizations for large numbers of menu items. Their Multifocus interface
provided larger numbers of readable menu items in the low-VIR regions based on
a priori significance, while the other interface implemented Bederson’s (2000)
Fisheye Menu and displayed unreadable items in the low-VIR regions at the
extreme ends of the menus. Even though the study failed to find differences
between these two interfaces in terms of participant performance, satisfaction
ratings or subjective preference, eye-tracking results suggested that participants
used the low-VIR regions more frequently in the Multifocus interface trials. The
researchers thus questioned the use of screen space to provide unreadable text
as being beneficial.

For non-textual graphic displays such as geographic maps, one study has
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demonstrated the costs of ineffective low-VIR overviews. Hornbæk et al.’s
(2002) study found that having a low-VIR overview resulted in slower per-
formance times and worse recall accuracy for their Washington map trials, and
their Montana map trials had generally poor performance results. Their results
suggest that the failure of the overviews was partly due to insufficient details
provided to support their study tasks: the Montana map itself was single-level
and did not offer enough meaningful map contents at low VIRs to guide region
selections, and the Washington map display did not show enough details at the
overview level to support their tasks.

Given the delicate balance between the need for concise yet perceivable visual
objects on low-VIR views, the third study in this thesis, detailed in Chapter 6,
was conducted to study perceptual requirements for low-VIR graphical visual
targets to be reliably accessible to users of multiple-VIR interfaces.

3.1.3 Field experiments to understand visualization

system use in the field

While experimental strategies can be effective in evaluating specific visualization
techniques, such approaches fall short in evaluating visualization systems, as
the number of factors that may influence system use and reception is large
and, in many cases, unpredictable (Shneiderman and Plaisant 2006). Also, field
experiments can study interface-use questions in ecologically-valid settings. This
section therefore focuses on evaluations of whole visualization systems using field
experiments.

To the best of our knowledge, only four sets of field experiments were con-
ducted to look at visualization system use in exploratory data analysis. With
expert meteorological forecasters analyzing data provided by the researchers,
Trafton et al. (2000) found that users tended to be goal-directed when dealing
with large amounts of data and mainly extracted qualitative information from
visualizations. González and Kobsa (2003b) reported two studies on InfoZoom
with five office workers and found that even though InfoZoom provided benefits
in creative discovery, the stand-alone tool was not integrated into participants’
daily analysis routine in the long run (González and Kobsa 2003a). Saraiya et al.
(2004) compared the number of insights generated using five visualization tools
for microarray data including Clusterview, TimeSearcher, Hierarchical Cluster-
ing Explorer, Spotfire, and GeneSpring. Their study found that these tools
did not adequately link the data to biological meaning, different visualization
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tools resulted in different kinds of insights, and ineffective interaction mecha-
nisms severely reduced tool usability. This initial study was followed by a more
in-depth longitudinal study (Saraiya et al. 2006) with participants using their
own data to address the motivation issue. The longitudinal study reported how
data analysts used a combination of tools in their analysis processes and further
examined the issue of interaction in these tools. Seo and Shneiderman (2006)
evaluated the Hierarchical Clustering Explorer with three case studies and an
e-mail user survey to evaluate the software.

Two studies looked at other uses of visualization systems. Bellamy et al.
(2007) reported the design and pilot deployment of a visualization to monitor
and manage compliance processes, and concluded that diagnostic visualizations
should provide an integrated view of all required information at sufficient detail.
Biehl et al. (2007) evaluated FASTDash, a visualization to improve team ac-
tivity awareness. Their field experiment found that FASTDash improved team
awareness, reduced reliance on shared artifacts, and increased project-related
communication.

The fourth study in this thesis, detailed in Chapter 8, contributes to previ-
ous efforts in studying visualization systems in ecologically-valid settings. The
chapter details a field evaluation of Session Viewer, a visualization tool to sup-
port web session log analysis. Our efforts were directed to examine particular
design choices made during the creation of Session Viewer such as overview use
and spatial arrangements of various VIRs, and to study design issues unique to
visualization use and deployment in the workplace in general.

3.1.4 Systematic reviews to summarize existing

visualization study results

No single user study can provide a complete picture of multiple-VIR interface
use due to the large number of factors involved. Similar to the idea that groups
composed of independent thinkers tend to be more accurate in their conclusions
(Surowiecki 2004), systematic reviews can potentially produce more accurate
views of existing research questions than any individual study.

To the best of our knowledge, two systematic reviews have been conducted to
study visualization systems. The first is Chen and Yu’s (2000) meta-analysis.
Based on 35 experimental studies published between 1991 and 2000, the re-
searchers isolated six studies that satisfied their selection criteria. They found
two broad types of causal relationships: (1) effects of visual-spatial interfaces
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on information retrieval, and (2) effects of cognitive ability of users on infor-
mation retrieval. The researchers concluded that for users with the same level
of cognitive abilities, simpler visual-spatial interfaces tended to result in better
task performance.

The second systematic review is Hudhausen et al.’s (2002) meta-study of
the effectiveness of algorithm visualizations (AV). Due to the diversity of the
24 experimental studies under analysis, the researchers decided against a gen-
eral statistical meta-analysis. Instead, the analysis employed a vote-counting
approach within groups defined with dependent and independent variables in
the studies. The meta-study found that how students used the AV technology
was more important than what the visualization showed.

Two other reviews can also be included in this category, even though they
did not directly examine visualization systems. Tversky et al. (2002) provides
a narrative review to identify scenarios in which using animation in education is
effective. The paper also explains the reasons behind ineffective use of animation
based on cognitive principles of congruence and apprehension. Hornbæk (2006)
reviewed 587 papers and included 180 to review usability measures employed in
human-computer interaction research.

The summary synthesis in this thesis, detailed in Chapter 4, adds to their
efforts and focuses on extracting design guidelines for multiple-VIR interface
based on 19 existing experimental-simulation studies.

3.2 Visual Analytics

The term visual analytics was coined by Thomas and Cook (2005) to represent
“the science of analytical reasoning facilitated by interaction visual interfaces”
(p. 4). The field of visual analytics researches techniques in analytical reasoning,
visual representations and interaction, and data representations and transfor-
mation to facilitate exploration and understanding of large data sets, as well as
to produce, present and disseminate analysis results.

Given the vast scope of the topic, this section selectively reviews systems
and techniques developed for visual data analysis and exploration, many of
which influenced and inspired the design of Session Viewer, a visualization tool
to support web session log analysis presented in Chapter 7. As web session
logs analysis is the application domain of the thesis, this review focuses on
visualizations that support exploratory analysis of web session logs in particular,
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and computer-based log analysis in general. To complete the discussion on
session log analysis, Section 3.2.5 briefly explores non-visual approaches to web
session log analysis.

3.2.1 Existing visualizations for data exploration

Many visualization systems have been developed to support general data ex-
ploration (Keim 2002), including commercial ventures such as Spotfire (spot-
fire.com), Tableau (tableausoftware.com), and Inxight (inxight.com). While
these systems support exploration, their visualizations are typically standard
graphical displays with single-level data, where each data attribute is a single
value. However, these systems are not tailored for showing multi-level data
such as web session logs, where at least one of the data attributes is also a
multi-dimensional data object.

A wide range of visualization and interaction techniques have been devel-
oped to facilitate visual data exploration and analysis. This section focuses
on visual techniques developed for data display, which can be classified as (1)
multiple data-form displays showing the same data in multiple representations,
(2) multiple data-level displays showing data at multiple levels of organization
(or multiple visual information resolutions), and (3) multiple data-dimension
display showing multiple attributes for each datum.

1. Multiple data-form display

Analysis often requires viewing the same data in different forms, for example,
in linear and logarithmic scales. Roberts (2000) advocated a technique called
Multiform to provide different representations, or forms, of the same data to
allow analysts to view the data in a more multi-faceted manner. The rationale
behind Multiform is based on the fact that different visualization techniques
highlight different aspects of the data, and displaying multiple representations
of the same data may increase the likelihood of knowledge discovery, as discussed
in Section 2.3.2.

A related idea is to provide different views of the same data in the same
form. One example is the reorderable matrix, an idea first introduced by Bertin
(1981) and implemented in Table Lens (Rao and Card 1994). The rationale is
that reordering visual data displays based on data attributes can reveal outliers,
correlated features and trends in sample populations.
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For data populations, the technique of small multiples provides a means
to compare between populations. The idea was first proposed by Bertin as
collections (Bertin 1981), and further advocated by Tufte (1983). Different
forms of small multiples have been arranged in rows and columns to create
univariate and bivariate matrices (e.g., MacEachren et al. 2003).

Techniques developed for multiple data-form display can be used to create
low-VIR in multiple-VIR interfaces. For example, we adapted the techniques
of small multiples and reorderable matrix to create a sessions-level low-VIR
overview in Session Viewer (Chapter 7).

2. Multiple data-level display

In cases where the total number of data points far exceeds the display capability,
techniques such as zooming, focus + context, and overview + detail have been
used as solutions. The central idea behind these techniques is to display data at
multiple visual information resolutions such that users can follow the sequence
of “overview first, zoom and filter, then details on demand” as suggested by
(Shneiderman 1996, p. 337). While the detailed data level may simply be the
highest data resolution available, creating the overview requires data filtering,
clustering, or visual compression of overview visual objects.

Taking the approach of data filtering, Furnas (1986) proposed the degree-of-
interest function based on a priori significance of the data objects and their dis-
tance relative to the object under inspection, or the object in focus. The amount
of display emphasis for data objects is proportional to their degree-of-interest
distances. Data objects far away from the focus objects are de-emphasized on
the display, for example by being displayed with fewer pixels, or not displayed
at all. Jakobsen and Hornbæk (2006) further extended the distance parameter
in the degree-of-interest function by separating it into syntactic and semantic
distances. If the data is inherently hierarchical, the a priori function can reflect
the data structure and the overview can display the highest level of the hier-
archy allowed by available space. For example, Hornbæk and Frokjær (2001)
developed an overview for electronic documents by displaying only the section
and subsection headers in their low-VIR overview window.

Another approach of data filtering involves user interaction. Ahlberg and
Shneiderman (1994) proposed tight coupling of dynamic query filters to selec-
tively reduce the number of data points on a scatter plot such that the analyst
can focus on a subset of the larger data.
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In terms of data clustering, van Wijk and van Selow (1999) illustrated the
use of pre-processing data to create a more visually manageable overview using
a year-long timeseries data set with 52,560 data points. Based on the results of
a cluster analysis, their interface only displayed averaged values of the clusters
instead of all the data points.

In terms of visual compression of overview objects, Kincaid and Lam (2006)
developed a more spatially compact line-graph encoding to display a large col-
lection of line graphs. Instead of encoding both the x- and the y-dimension of
line graphs by spatial positions, their visual encoding uses colour to encode the
y-dimension, thus reducing the amount of space required to display each line
graph. Their visual encoding also enables stacking of line graphs to avoid the
inevitable visual cluttering in the overlay alternative.

Considerations in creating overviews constitute one of the design discussions
in this thesis. In addition to creating the overview, displaying multiple levels of
data involves considerations such as the number of display resolutions required
and spatial arrangements of the different visual resolutions. These issues are
explored in Chapter 4, our summary synthesis of existing study results, and in
Chapters 7 and 8, where we detail Session Viewer’s design and deployment.

3. Multiple data-dimension display

Most two-dimensional data plots and graphs can only display two variables at
a time. Viewing all data dimensions using these displays thus requires multi-
ple plots. Some visualizations work around this limitation by allowing users to
dynamically select data attributes displayed, for example, Ward’s (1994) Xmd-
vTool and Stolte and Hanrahan’s (2000) Polaris.

Other visualizations strive to simultaneously display as many data dimen-
sions as possible. Parallel Coordinates (Inselberg 1985) takes such an approach
and displays data points in n-dimensional space as polylines with vertices on
the parallel axes. Dense-pixel displays (Keim and Kriegel 1994) map each data
dimension value to a colored pixel and group the pixels belonging to each di-
mension into adjacent areas. Display arrangements of data provide detailed
information on local correlations, dependencies and areas of interest of the data
set. Since most dense-pixel displays use one pixel for each data dimension, this
approach maximizes display capacity of output devices. The third common ap-
proach to display multi-dimensional data is glyphs (Littlefield 1983). A glyph
is a graphical object that combines multiple visual features in a single object,
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with each feature encoding a data dimension. Many examples of glyphs have
been developed, such as the whisker plot where each data value is represented
by a line segment radiating out from a central point (Ware 2004, p. 184), and
the Chernoff Faces, a more whimsical example where different data dimensions
are mapped to the sizes and shapes of different facial features (Chernoff 1973).

Another approach to display multi-dimensional data is to reduce the high-
dimensional data space to a displayable two, or three, dimensional space by
multidimensional scaling. One example is Wise et al.’s (1995) ThemeScape to
display text-based documents. Even though the distance relationships between
the data points are preserved in multidimensional reduction, how each dimen-
sion in the high-dimensional data space relates to the displayed low-dimensional
space is not clear, thus making it difficult to understand individual data dimen-
sions. Multidimensional scaling is therefore used to show data clusters, rather
than to read off individual data dimension values.

3.2.2 Existing interactions for data exploration

Our discussion of visual analytic related work continues with interaction tech-
niques that were developed for (1) data querying and filtering, and (2) data-view
coordination. These works influenced the design of Session Viewer.

1. Data filtering and querying

Analysts often need to isolate interesting subpopulations in large data sets to
focus analysis. Dynamic query filtering allows users to progressively refine filter
criteria aided by visual feedback of the results (Ahlberg and Shneiderman 1994).
For data querying, pattern matching allows analysts to highlight sequences, as
implemented in TimeSearcher for time-series data (Hochheiser and Shneiderman
2003).

Session Viewer employed both dynamic querying and pattern matching to
filter and highlight sessions (Chapter 7).

2. Data-view coordination

View coordination is a well-known problem found in situations where informa-
tion is displayed over multiple views and users need to relate visual objects
between views. Smooth animation has been proposed as a solution to connect
the different temporal views in zooming interfaces to preserve object constancy
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(Robertson et al. 1989). Interactive brushing and linking have been proposed to
visually relate simultaneously displayed regions or views in interfaces. Brush-
ing is a rapid interaction technique that enables a user to “highlight, select,
or delete a subset of elements being graphically displayed by pointing at the
elements which a mouse or other suitable input device” (Ward 1994, p. 330).
Linking is when “brushing elements in one view affects the same data in all
other views” (Ward 1994, p. 330).

North and Shneiderman (1997) constructed a taxonomy of multiple window
coordination based on navigation and selection. Coordination has been shown to
facilitate the use of overview as a navigational aid when the different resolutions
are needed in the task, since it provides “the ability to directly select a target
in the overview to immediately locate its details”, and the overview thus acts as
“an improved scroll bar that facilitates exploration” (North and Shneiderman
2000, p. 736). Coordination between multiple views also allows selection of the
same data object in multiple views, which helps users relate the different views
and allows concurrent considerations of all the views in their data exploration.

Session Viewer took the multiple view approach to display various levels of
session details coordinated by linking (Chapter 7).

3.2.3 Visualizations for web session logs

Visualizations have been used to display aggregate data derived from session
logs for presentation or analysis. For example, Pass et al. (2006) surveyed
traditional graphical plots to describe and evaluate search services. Despite
having analysis goals similar to our tool, these static plots are more suited for
presentation than exploration and discovery.

While interactive systems designed for session log analysis exist, they gener-
ally focus on website design evaluations based on traffic and user paths, rather
than on search usage behaviours. Examples of website traffic visualizations
include disk-tree and time-tube visualizations (Chi 2002) and a 3D structure
(Wong and Marden 2001). User paths are often displayed as node-link graphs,
as in VISVIP (Cugini and Scholtz 1999), WebViz (Pitkow and Bharat 1994), and
WebQuilt (Waterson et al. 2002). Lee et al. (2001) took a different approach,
displaying web traffic statistics with starfields and user paths with parallel coor-
dinates. Hochheiser and Shneiderman (2001) used a multiple-coordinated visu-
alization to show web visitation data. Other visualizations, such as 3D WebPath
(Frecon and Smith 1998) and History tree (Kreuseler et al. 2004), displayed per-
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sonal web-navigation histories and were designed to help users navigate rather
than to analyze their usage behaviours. Generally in these analyses, analysts
tend to look for different paths through a fixed set of web pages. For example,
usability engineers use VISVIP to study how experimental participants use a
single website to accomplish study tasks (Cugini and Scholtz 1999). In contrast,
the goals of analyzing web session logs to study search behaviours are different.
For example, Kellar et al. (2007) aimed to study four types of information-
seeking activities. In that case, their participants could potentially go through
an infinite number of pages across a large number of site domains. Visually
depicting all user paths as trees or graphs is therefore challenging, and conse-
quently, existing systems do not adequately address the needs of web search
analysis.

The one exception is Card et al.’s (2001) Web Behavior Graphs, which show
search structures of individual users as modified state diagrams to help re-
searchers locate problem spaces within the web site under analysis, and identify
usage behaviour patterns. Despite the richness of the information and insights
obtained from the analysis, Card et al.’s (2001) approach is difficult to scale.

3.2.4 Visualizations for computer-based logs

An area highly related to web session log visualization is usability log visualiza-
tion. Gray et al. (1996) used the coloured Bar Visualization to show usability
sessions, with each bar consisting of a stack of colour-coded boxes encoding user
activities types. However, the system does not allow comparison between pop-
ulations or displays at multiple levels of detail. Many visualizations associated
with usability log analysis use two- and three-dimensional graphs. Examples
include population counts and summary statistics of events (Kay and Thomas
1995) and mouse activities (Guzdial et al. 1994), sequence patterns displayed
as state transition diagrams to support Markov-based analysis (Guzdial et al.
1993), and a spreadsheet-like display for sequence alignment (Sanderson and
Fisher 1994). These graphs are better suited for presenting analysis results
than for data exploration, especially since many of them have to be generated
manually.

There are also systems designed for computer log analysis, such as MieLog,
which displays textual log entries as colour-coded bars based on their type
(Takada and Koike 2002), AuthorLines, which shows e-mail participation and
initiation counts based on author (Viégas and Smith 2004), and SnortView,
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which shows network-based intrusion detection system logs as two-dimensional
time diagrams (Koike and Ohno 2004). However, since the analysis goals are
typically detecting anomalies rather than identifying and characterizing popu-
lations, these systems are not well-suited for exploratory session log analysis.

3.2.5 Non-visual log analysis tools

Commercial statistics packages are frequently used for web log analysis, for ex-
ample, Microsoft Excel (microsoft.com) and SPSS (spss.com). Analysts also
build custom programs, from simple scripts to calculate summary statistics to
elaborate algorithms to find usage patterns and population clusters (e.g., Pier-
rakos et al. 2003). For usability log analysis, systems such as MacSHAPA offers
integrated support with a largely text-based interface (Sanderson and Fisher
1994).

3.2.6 Summary of Visual Analytics Related Work

Even though we surveyed a large body of visualization systems that may be used
for web session log analysis, we decided to build our own visual analytic tool
for three reasons. First, we found that generic visual data exploration systems
were not tailored to showing our multi-level web session log data. Also, most
visualizations built for web-log analysis were designed to display user paths of
a limited number of webpages, and were thus inadequate in supporting analysis
of web search behaviours in general that may involve a potentially unlimited
number of webpages. Second, even though non-visual approaches to web session
log analysis exist and are popular amongst analysts, they tend to focus on
confirmatory analysis rather than exploratory data analysis, which is the focus
of the thesis. Third, by building a system, we could apply our knowledge and
experience gained in our first three evaluations in the design (Chapter 7) and
examine our choices in an evaluation of the resultant system (Chapter 8).
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Chapter 4

Summary Synthesis: A

Study-based Guide to

Multiple Visual Information

Resolution Interface

Designs

In this review, we analyzed 19 existing multiple-VIR interface studies to get
a clearer snapshot of the current understanding of multiple-VIR interface use,
and how to apply this knowledge in their design. To unify our discussion, we
grouped the interfaces into single or multiple-VIR interfaces. For single-VIR
interfaces, we looked at the hiVIR interface that shows data in detail and at the
highest available VIR, for example, the “detail” in overview + detail interfaces.
We considered three multiple-VIR interface types in this review: temporal, or
temporal switching of the different VIRs as in zooming interfaces; separate,
or displaying the different VIRs simultaneously but in separate windows as in
overview + detail interfaces; and embedded, or showing the different VIRs in
a unified view as in focus + context interfaces. Section 1.1.1 includes a more
detailed explanation of our terminology. Since most of the existing multiple-
VIR interface studies did not explicitly consider user characteristics such as
visual-spatial ability, we did not address this important issue in our discussion.

To better guide design processes, this chapter is structured as a decision tree
to create a multiple-VIR visualization, as shown in Figure 4.1. Our decision tree
has four major steps:
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Figure 4.1: Decision tree to create a multiple visual information resolution dis-
play. There are four major steps in the decision process, each covered in a
section in the chapter: (Decision 1/Section 4.3) Decide if multi-VIR is appro-
priate for the application; (Decision 2/Section 4.4) Decide on the number of
resolutions, amount of data and visual information to be displayed on the low
VIRs; (Decision 3/Section 4.5) Decide on the methods to display the multi-
ple VIRs; (Decision 4/Section 4.6) Decide on the spatial layout of the multiple
VIRs. Considerations at each decision point are listed with their respective
section numbers.

DECISION 1 (Section 4.3): Single- or multiple-VIR interface

The first step in the process is to decide if a multiple-VIR interface is suitable for
the task and data at hand. The choice is not obvious as multiple-VIR interfaces
typically have more complex and involved interactions than their single-VIR
counterparts. Section 4.3.1 discusses interaction costs reported in the reviewed
studies. Section 4.3.2 discusses considerations in using multiple VIRs to display
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single-level data.

DECISION 2 (Section 4.4): Create the low VIRs

If the designer decides to use a multiple-VIR interface for his data, the next step
in the design process is to create the low VIRs, which is a challenge with large
amounts of data (Keim et al. 2006). In addition to the technical challenges in
providing adequate interaction speed and in fitting the data onto the display
device, the designer also needs to consider the appropriate levels of visual reso-
lution provided by the interface. Study results indicate that providing too many
levels of resolution may be distracting to users, as discussed in Section 4.4.1.
Similarly, showing too much data in the low VIRs can also be distracting, as
discussed in Section 4.4.2. In many cases, the data may have to be abstracted
and visually abbreviated to increase the display capability of the low VIRs.
Ellis and Dix (2007) provides a taxonomy of clutter reduction techniques that
include sampling, filtering, and clustering. Section 4.4.3 discusses cases where
designers had gone too far in their abstractions and study participants could no
longer use the visual information in the low VIRs. Instead of abstraction, the
designer could choose to selectively display or emphasize a subset of the data in
the low VIRs, for example, based on the generalized fisheye degree-of-interest
function (Furnas 1986). However, study results suggest that a priori automatic
filtering may be a double-edged sword, as discussed in Section 4.4.4. Given all
these considerations, we complete the discussion by re-examining the roles of
low VIRs in Section 4.4.5 to help ground low-VIR design.

DECISION 3 (Section 4.5): Simultaneous or temporal display of the

VIRs

Once the VIRs are created, the designer then needs to display them, either
simultaneously as in the embedded or the separate interfaces, or one VIR at a
time as in the temporal interfaces. Generally, temporal displays require view
integration over time and can therefore burden short-term memory (Furnas
2006). On the other hand, simultaneous-VIR interfaces have more complex
interactions such as view coordination in separate displays and the issue of
image distortion frequently found in embedded displays. Our reviewed study
found that for tasks that did not involve multi-level answers, or tasks that
did not provide multi-level clues to single-level answers, displaying data with
simultaneous multiple-VIR interfaces was not beneficial. Sections 4.5.1 and 4.5.2
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consider the case when the study tasks did not require simultaneous display of
VIRs, as in single-level answer with single-level clues.

DECISION 4 (Section 4.6): Embedded or separate display of the

VIRs

If the choice is simultaneous display, the designer then has to consider the spatial
layout of the different VIRs. The choices are to display the VIRs in the same
view, as in the embedded interfaces, or by showing them in separate views, as
in the separate interfaces. Both spatial layouts involve tradeoffs: the embedded
displays frequently involve distortion, as discussed in Section 4.6.1, and the
separate displays involve view coordination.

For each of these decision points, we summarized current beliefs and assump-
tions about multiple-VIR interface use, along with relevant study results. We
also flagged situations where study results did not clearly support our previous
beliefs based on existing literature.

4.1 Methodology

Ideally, we would like to perform a meta-analysis to translate results from differ-
ent studies to a common metric and statistically explore relationships between
study characteristics and study results, as a meta-analysis is more objective,
thorough and systematic than qualitative approaches. However, recognizing
that the reviewed studies are different in their implementations of the various
multiple-VIR techniques, their study tasks and their data, and in some cases,
their experimental design and measurements, meta-analysis may only be able to
include a very small subset of existing studies. Indeed, only 6 of the 35 studies
considered by Chen and Yu (2000) met their criteria for their meta-analysis, and
the researchers had a long list of recommendations to visualization evaluators
to standardize their study designs. Some of their recommendations, echoed by
others (e.g., Plaisant 2004; Ellis and Dix 2006), are still active areas of research.
One example is to create standardized task taxonomies for interface evaluations
(e.g., Winckler et al. 2004; Valiati et al. 2006).

Perhaps a compromise worth making is to take a more qualitative, albeit
less rigorous, approach to extract high-level themes from existing study results.
That is the approach we took to extract design guidelines for multiple-VIR in-
terfaces in this study. Instead of comparing between studies, we focused on
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pairwise-interface comparisons within each study to abstract generalizable us-
age patterns based on task, data characteristics, and interface differences. We
collected an initial set of candidate papers by performing keyword searches
on popular search engines (Google and Google Scholar) and large academic
databases (ACM and IEEE digital libraries), along with our own collection of
study publications accumulated over the years. From this initial set, we further
located more study publications based on citations of the initial set. During the
course of our synthesis, we continuously added new publications.

Since our goal was to understand multiple-VIR interface use, we differed from
most systematic reviews as we did not have specific questions in mind when we
began our review. Instead, we took a bottom-up and qualitative approach to
find emergent themes from coded individual study findings. We started our
process by first coding the papers based on the interfaces studied, as shown in
Table 4.1, and the major study findings, as shown in Appendix B. We focused
on objective measures of task time and accuracy since these measures were
reported in all user studies we sampled. We then gathered study findings for
each interface pair (e.g., hiVIR and temporal) to identify possible underlying
reasons that may explain study results. We considered the interfaces (e.g., visual
elements, interactions), the data displayed (e.g., level of organization details,
levels of data), the tasks (e.g., task natures), and explanations provided by paper
authors based on their observations and understanding of their studies. We
therefore labeled these interface-pair findings, along with possible explanations,
as considerations in design. We organized these considerations into a four-point
decision tree, which became the framework of our review (Figure 4.1). For
some comparisons, we could not abstract general results from the studies, and
we explained our reasons for excluding these interface pairs when appropriate.
Since many studies looked at more than two study interfaces, their study results
were mentioned in more than one section of the chapter.

Our approach therefore may suffer from reviewer bias in our study inclusion
and in our emphasis put on various study results. To ensure objectivity, or at
least to convey to our readers the basis of our claims, we listed the studies we
considered in each of the design considerations. Given that we collected only 19
papers, we believe explaining each set of study results qualitatively instead of
attempting statistical meta-analysis would provide a more encompassing snap-
shot of our collective knowledge on multiple-VIR use. While we did count the
number of studies that produced statistically significant results that support
the claim for each design consideration, we did not take the vote-counting ap-
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proach in systematic reviews (see the terminology section in 1.1.2), as we did
not base our findings on the these numbers. Instead, we considered each study
publication individually to identify evidence that might either support or refute
our findings, taking into consideration possible explanations for study results
regardless if they achieved statistical significance. In fact, we put more empha-
sis in the researchers’ insights reported in their publications than on statistical
results. Section 4.9 discusses other limitations of our review.

4.2 Summary of Studies

Table 4.1 lists the 19 studies reviewed, along with our encoding of the test
interfaces as hiVIR, temporal, separate and embedded. Screen captures of study
interfaces are available at http://www.cs.ubc.ca/∼hllam/res ss

interfaces.htm. In order to provide a reasonably concise review, we excluded
studies where study results did not differentiate between study interfaces in
terms of performance measures or usage patterns (e.g., Buring et al. 2006).

We considered all the interfaces in the reviewed studies except for the Saraiya
et al. (2005) study, since their two “Multiple View” interfaces displayed the
same data in separate views at the same VIR, but used a different graphical
format. Since our review focused on multiple-VIR interfaces, we considered the
issue of multiple presentation forms to be beyond the scope of our review.

Since this study aimed to provide an evidence-based guide to designers in
using multiple-VIR interfaces, and not a review paper on existing multiple-VIR
study results, we only provided enough study details to illustrate our points so as
to maintain readability. For reference, Appendix B.1 provides brief summaries
of each study, and Appendix B.2 lists the interfaces, tasks, data, and significant
results for each of the reviewed papers.

For each design consideration, we listed studies included for the analysis.
Each paper is designated with an identification letter which is used in subsequent
tables. Please note that Hornbæk et al.’s online document study was reported
in two papers: Hornbæk and Frokjær (2001) and Hornbæk et al. (2003). For
completeness, we also included our overview-use study in this review. Chapter 6
details the study, and references to the study in this review is denoted as (Lam
et al. 2007) for consistency.
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ID Authors Paper Title
Sgl Multiple
H T E S

A Baudisch et al.
(2002)

Keeping things in context: a com-
parative evaluation of focus plus
context screens, overviews, and
zooming

x x x

B Baudisch et al.
(2004)

Fishnet, a fisheye web browser
with search term popouts: a com-
parative evaluation with overview
and linear view

x x x

C Bederson et al.
(2004)

DateLens: a fisheye calendar in-
terface for PDAs

x x

D Gutwin and
Skopik (2003)

Fisheye views are good for large
steering tasks

x x

E Hornbæk and
Frokjær (2001)

Reading of electronic documents:
the usability of linear, fisheye and
overview + detail interfaces

x x x

Hornbæk et al.
(2003)

Reading patterns and usability in
visualization of electronic docu-
ments

x x x

F Hornbæk et al.
(2002)

Navigation patterns and usability
of zoomable user interfaces with
and without an overview

x x

G Hornbæk
and Hertzum
(2007)

Untangling the usability of Fish-
eye menus

x x x

H Jakobsen
and Hornbæk
(2006)

Evaluating a fisheye view of
source code

x x

I Lam and
Baudisch
(2005)

Summary Thumbnails: readable
overviews for small screen web
browsers

x x

J Lam et al.
(2007)

Overview use in multiple visual
information resolution interfaces

x x x

K Nekrasovski
et al. (2006)

An evaluation of pan and zoom
and rubber sheet navigation

x x x

L North and
Shneiderman
(2000)

Snap-together visualization: can
users construct and operate coor-
dinated visualizations?

x x

Sgl = Single; H = HiVIR; T = Temporal; E = Embedded; S = Separate. continued on next page...
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...continued from previous page

ID Authors Paper Title
Sgl Multiple
H T E S

M Pirolli et al.
(2003)

The effects of information scent
on visual search in the hyperbolic
tree browser

x x

N Plaisant et al.
(2002)

SpaceTree: supporting explo-
ration in large node link tree, de-
sign evolution and empirical eval-
uation

x x

O Plumlee and
Ware (2006)

Zooming, multiple windows, and
visual working memory

x x

P Saraiya et al.
(2005)

Visualization of graphs with asso-
ciated timeseries data

x x

Q Schafer and
Bowman
(2003)

A comparison of traditional and
fisheye radar view techniques for
spatial collaboration

x x

R Schaffer et al.
(1996)

Navigating hierarchically clus-
tered networks through fisheye
and full-zoom methods

x x

S Shi et al.
(2005)

An evaluation of content brows-
ing techniques for hierarchical
space-filling visualizations

x x

Table 4.1: Multiple-VIR studies reviewed. An ’X’ in the cell denotes the study
included an interface of the corresponding type: Sgl = Single; H = HiVIR; T =
Temporal; E = Embedded; S = Separate. Note that Lam et al. (2007) is the
third study in this thesis, reported in Chapter 6.

4.3 Decision 1: Single or Multiple-VIR

Interface?

The first step in our design decision tree is to decide if a multiple-VIR interface
is appropriate for the task and data at hand. To isolate situations where the
additional low VIRs were found to be useful, we looked at studies that compared
the single-VIR hiVIR interfaces to the three multiple-VIR interfaces: temporal,
embedded, and separate.

It is generally believed that interfaces should provide more than one VIR
(e.g., Card et al. 1999, p. 307). However, for users, having the extra VIRs
means more complex and difficult VIR coordination and integration, which may
be time consuming and require added mental and motor efforts. The topic of
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interaction costs in multiple-VIR interface is further discussed in Section 4.3.1.
Interaction costs may be justified if lower VIRs provided in addition to the

basic hiVIR interfaces are useful to users. In general, usefulness of the additional
lower VIRs hinges upon the levels of data structure required by the task. In
other words, single-level data may not be suited for multiple-VIR display, as
discussed in Section 4.3.2.

4.3.1 Consideration 1: multiple-VIR interface interaction

costs should be considered

Interaction complexity can be difficult to measure and isolate. Commonly used
objective measurements such as performance time and accuracy are aggregate
measures and cannot be used to identify specific interaction costs incurred in
interface use. In ten of our reviewed papers, researchers recorded usage pat-
terns, participant strategies, and interface choice that revealed interaction costs
(Table 4.2).

1. Interaction costs from usage patterns

Source Papers
Usage patterns G. Hornbæk and Hertzum (2007)
(Eye-tracking records) M. Pirolli et al. (2003)

Usage patterns E. Hornbæk et al. (2003)
(Navigation-action logs) F. Hornbæk et al. (2002)

H. Jakobsen and Hornbæk (2006)
Participant strategies A. Baudisch et al. (2002)

J. Lam et al. (2007)
Interface choice E. Hornbæk and Frokjær (2001);

Hornbæk et al. (2003)
F. Hornbæk et al. (2002)
J. Lam et al. (2007)

Table 4.2: Ten papers that reported interface interactions. Five reported usage
patterns obtained either from eye-tracking records or navigation-action logs; two
reported participant strategies; and two reported interface choice.

As shown in Table 4.2, 5 of the 19 studies reported usage patterns con-
structed based on eye-tracking records or navigation action logs. Two of the
studies reported usability problems with their multiple-VIR interfaces (Hornbæk
et al. 2002; Hornbæk and Hertzum 2007).
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Hornbæk et al.’s (2002) study on map navigation reported that participants
who actively used the low-VIR view switched between the low- and the high-
VIRs more frequently, which resulted in longer task completion time. The
researchers reported that using the additional low-VIR view may require mental
effort and time moving the mouse, thus adding complexity in the interaction
(p. 382). Indeed, navigation patterns showed that only 55% of the 320 tasks
were solved with active use of the low-VIR view in their multiple-VIR interfaces
(p. 380).

Hornbæk and Hertzum’s (2007) study on fisheye menus reported large navi-
gation costs in their separate and embedded interfaces, all implemented a focus-
locking interaction mechanism (Bederson 2000). Even though these interfaces
succeeded in facilitating quick, coarse navigation to the target, participants
had difficulty getting to the final target since the menu items moved with the
mouse. Based on eye-tracking data, the researchers reported that participants
made longer fixations and longer scan paths with their separate and embed-
ded interfaces than with their temporal interface, suggesting increased mental
activity and visual search.

2. Interaction costs from participant strategies

As shown in Table 4.2, 2 of the 19 studies reported participant strategies in
interface use.

In Baudisch et al.’s (2002) study on map path-finding and verification, some
participants avoided continuously zooming in and out using the temporal in-
terface by memorizing all the locations required in the task and answered the
questions in a planned order. As a result, they could stay at a specific magni-
fication without zooming back to the low-VIR view, thus effectively using the
temporal interface as a hiVIR interface.

In Lam et al. (2007), participants developed a strategy to use the seemingly
suboptimal hiVIR interface in a visual comparison task. The data consisted of a
collection of line graphs that were identical except shifted by various amounts in
the x-dimension. The task involved matching a line graph with the same amount
of horizontal shift. Some participants took advantage of spatial arrangement of
the separate interface by selecting candidate line graphs from the low-VIR view
and displaying them in high VIR for side-by-side comparison. The majority
of participants, however, developed a strategy to enable the use of the high-
VIR view alone. Taking advantage of the mouse wheel and the tool-tips which
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displayed horizontal and vertical values of the line graph point under the cursor,
participants scrolled vertically up and down with the cursor fixed horizontally
at the point where the target peaked. As a result, they eliminated the need to
visually compare line graphs. Instead, they tried to find another peak at the
same x point numerically by reading off the tool-tips and avoided the need to
interact with multiple VIRs.

3. Interaction costs from participants’ interface choices

Another indicator of interaction costs is participants’ active choice to use only
one VIR in a multiple-VIR interface to avoid coordinating between the multiple
VIRs. As shown in Table 4.2, participants could explicitly convert a multiple-
VIR into a single-VIR interface in 2 of the 19 studies, and in Hornbæk et al.’s
(2002) study on map navigation, the researcher recorded active pane use.

In Hornbæk’s study on reading electronic documents, participants could ex-
pand all the document sections at once by selecting the pop-up menu item
“expand all” in the embedded interface (Hornbæk and Frokjær 2001; Hornbæk
et al. 2003). Six out of 20 participants chose to do this in one or more of the
tasks. On average, they expanded 90% of the sections, thus effectively using the
embedded interface as a hiVIR interface.

In Hornbæk et al.’s (2002) study on map navigation, 45% of participants did
not actively use the low-VIR view in the separate interface, even though 80%
of participants reported preference for having the extra low-VIR view.

In Lam et al.’s (2007) study on visual search and comparison of line graphs,
participants could expand all initially compressed graphs in their embedded or
their separate interface by a key press, thus effectively turning the multiple-VIR
interface into a high-VIR interface. Their participants actively switched to the
hiVIR interface in 58% of the trials.

We suspect this desire to use only a single VIR when given a multiple-VIR
interface is more prevalent than reported. In many cases, participants were not
provided with a simple mechanism to convert from the multiple-VIR interface
to its single-VIR counterparts, while in other cases, sole use of one window
in the separate interface could not be discerned without detailed interaction
recordings such as eye-tracking records. Using multiple-VIR interfaces as single-
VIR interfaces may explain some studies’ inability to distinguish hiVIR interface
and their multiple-VIR counterparts, for example in Lam et al. (2007), our
overview-use study detailed in Chapter 6.
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4.3.2 Consideration 2: single-level task-relevant data

may not be suited for multiple-VIR displays

Multiple-VIR Effect Paper with single-VIR data
No benefits B. Baudisch et al. (2004)

J. Lam et al. (2007)
Adverse effects F. Hornbæk et al. (2002)
Mixed effects E. Hornbæk et al. (2003)
Excluded I. Lam and Baudisch (2005)

Table 4.3: Five papers that had single-level data and included a single-VIR
interface for analysis comparison. In these cases, most multiple-VIR interfaces
supported the same or worse performances than their single high-VIR counter-
parts.

The number of VIRs provided by the interface should reflect the levels of
organization in the data as required by the task. Otherwise, users may need
to pay the cost of coordinating between different VIRs without the benefits of
rich information at every VIR. Among the seven studies reviewed that included
a single-VIR interface, five of them used at least one set of single-level data
(Table 4.3). Two studies failed to show performance benefits of multiple-VIR
interface for single-level data in cases where the tasks required detailed informa-
tion not provided by the low-VIR display alone. Hornbæk et al.’s (2002) study
showed adverse effects in using multiple-VIR interfaces for single-level data.
Hornbæk et al.’s (2003) study on online documents showed mixed results, as
task nature affected the levels of data required, and consequently, interface use.
We excluded Lam and Baudisch’s (2005) study in this discussion as their hiVIR
interface had almost nine times the number of pixels than their multiple-VIR
interfaces, making direct comparisons difficult.

Baudisch et al.’s (2004) study on information searches showed a lack of ben-
efit in using multiple-VIR interface for single-level data when the task could not
be performed based on information showed on the low VIR alone. Their study
interfaces displayed web documents with guaranteed legible keywords which
constituted their low-VIR displays. When the task only required reading the
keywords, as in their Outdated task, their multiple-VIR interfaces outperformed
their high-VIR browser, probably because the low-VIR displays concentrated
task-relevant information in smaller display spaces. In contrast, when the task
required reading surrounding text which may be too small to be legible, as in the
Analysis task, having the extra low-VIR display did not result in performance

60



Chapter 4. A Study-based Guide to Multiple-VIR Interface Designs

benefits for the single-level document data.
The situation is similar in Lam et al.’s (2007) study on visual-target search on

a line-graph collection. Their multiple-VIR interfaces only showed performance
benefits over their hiVIR interface when the visual targets could be directly
identified on the low-VIR display, for example, in their Max task. Otherwise,
having the extra low VIR did not seem to enhance participant performance since
their data was essentially single-leveled.

Hornbæk et al.’s (2002) study on map navigation illustrates the adverse
effects of displaying single-level data using a multiple-VIR interface. Despite
having a similar number of objects, area occupied by the geographical state
object, and information density on the maps, there were surprisingly large dif-
ferences in usability and navigation patterns between the two study-map trials.
The Washington-map trials had better performance time, accuracy and subjec-
tive satisfaction than the Montana-map trials. The researchers explained these
differences by differences in map content and the number of organization levels:
the Washington map had three levels of county, city, and landmark, while the
Montana map was single-leveled with weak navigation cues at low zoom levels.
As a result, unlike the multiple-level Washington map, the single-level Montana
map data was not suitable for the multiple-VIR temporal interface had produced
poorer performance results.

Hornbæk et al.’s online document study showed mixed results, which illus-
trated how task nature could affect the levels of data required, and how that
difference could affect interface effectiveness (Hornbæk and Frokjær 2001; Horn-
bæk et al. 2003). In their question-answering task, participants were slower
without being more accurate in their answers if they were given an additional
low-VIR view. Based on reading patterns, Hornbæk and Frokjær suggested that
the slower reading times were due to the attention-grabbing low-VIR view in
the separate interface, which led participants to further explore the documents
perhaps unnecessarily. In contrast, in the essay-writing task where participants
were required to summarize the documents, having the extra low-VIR overview
displaying data structure as section and subsection headers resulted in better
quality essays without any time penalty when compared to the hiVIR interface.
In other words, when the task required single-level answers, as in the question-
answering task, having an extra low-VIR display had a time cost; when the
task required multiple-level answers, as in the essay-writing task, the low-VIR
display produced higher quality results.
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4.3.3 Summary of considerations in choosing between a

single or a multiple-VIR interface

In general, the amount of interaction efforts required to coordinate the multiple
VIRs is non-trivial and should be considered. We found that when adding
VIRs to the high-VIR display did not add task-relevant information, as in the
case of using multiple VIRs to display single-level data, costs incurred in VIR
coordination were typically not justified.

4.4 Decision 2: How to Create the Low VIRs?

Once the designer decided on taking the multiple-VIR approach, the next step in
the process is to create the low-VIR display. Creating the low-VIR display in a
multiple-VIR interface is a non-trivial task, especially when the amount of data
involved is large. Study results suggest a delicate balance between displaying
enough visual information for the low-VIR display to be useful and showing
irrelevant resolution or information that becomes distracting. In Section 4.4.1,
we discuss the adverse effect of displaying more levels of VIRs than supported
by the data and required by the task. Section 4.4.2 discusses the related topic
of displaying too much information on the low-VIR display.

Given the space constraints, designers usually need to find less space-intensive
visual encodings for the data or reduce the number of data displayed on the low-
VIR display. Section 4.4.3 discusses cases where the researchers had gone too far
in their visual-encoding abstraction as their study participants could no longer
use the visual information on the low VIRs. Section 4.4.4 looks at the trade-
offs in using a priori automatic filtering to selectively show data on low-VIR
displays.

Given all these considerations, we round up the discussion in Section 4.4.5
by re-examining the roles of low VIRs to help ground low-VIR designs. Study
results suggest a more limited set of low-VIR roles than proposed in literature.
While we found that study results supported the use of low VIR as navigational
shortcuts to move within the data and to provide overall data structure, we failed
to find supports to the common beliefs of using low VIR to aid orientation or
to provide meaning for comparative interpretation of an individual data value.
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4.4.1 Consideration 1: having too many visual

resolutions may hinder performance

In general, the number of visual resolutions supported by the interface should
reflect the levels of organization in the data. Otherwise, users may need to pay
the cost of coordinating between the different VIRs without the benefit of rich
information at each level. In cases where the extra VIRs were not useful for the
task at hand, the irrelevant information could be distracting. These extra VIRs
may at best be ignored, and at worst, may harm task performance.

Of the 19 studies reviewed, four looked at compound multiple-VIR inter-
faces when an additional low-VIR view was added to an already multiple-VIR
interface (Table 4.4).

Effect Paper with compound
multiple-VIR interface

Low-VIR view added to

No benefits A. Baudisch et al. (2002) temporal zoom plus pan
(z+p) display to create
their overview plus detail
(o+d) interface

K. Nekrasovski et al. (2006) temporal Pan&Zoom and
their embedded Rubber
Sheet Navigation inter-
faces

Adverse effects F. Hornbæk et al. (2002) temporal zoomable inter-
face

Excluded G. Hornbæk and Hertzum
(2007)

embedded fisheye menu

Table 4.4: Four papers that had at least one compound multiple-VIR interface,
created by adding an additional low-VIR view was to a multiple-VIR interface.

Since Hornbæk and Hertzum’s (2007) study did not include an interface
that was only embedded without the low-VIR overview, we could not discern
the effects of having an additional low-VIR view and thus excluded it from
this discussion. For the other three studies, perhaps because the multiple-VIR
interfaces already displayed all the meaningful and task-relevant visual informa-
tion levels supported by the data, having the additional low-VIR view did not
enhance or even degrade participant performance.

Two studies showed a lack of benefit in providing additional low-VIR views
(Table 4.4). Participants in Baudisch et al.’s (2002) study obtained similar per-
formances using the overview plus detail (o+d) interface and their zoom plus
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pan (z+p) interface. The researchers reported that participants kept the tem-
poral view zoomed to 100% magnification for tracing, thus effectively reduced
the temporal component of the interface to a single-VIR display, and used the
compound multiple-VIR interface as a separate interface (low-VIR + temporal
used as high-VIR).

In Nekrasovski et al.’s (2006) study on large trees and visual comparison
tasks, the overall tree view in the low-VIR overview provided task-relevant lo-
cation cues. However, the information was not unique and necessary as the
high-VIR view also provided a similar visual cue. As a result, the study failed
to show performance benefits in having an extra low-VIR view in their interfaces
even though participants reported reduced physical demand.

Hornbæk et al.’s (2002) study on map navigation suggested performance hin-
derance when an interface provided irrelevant levels of resolutions. One of their
study interfaces was a temporal interface with an added low-VIR overview. They
reported that participants who actively used the low-VIR overview had higher
performance time, possibly because of the mental and motor efforts required in
integrating the low- and high-VIR windows. Such costs were not compensated
by richer information displays as the temporal interface already contained all
the task-relevant visual resolutions and may have reduced, or even eliminated,
the need for a separate overview (p. 381).

In some cases, study results indirectly suggested adverse effects on perfor-
mance when the interfaces provided irrelevant VIRs. For example, in Plumlee
and Ware’s (2006) study that required matching three-dimensional object clus-
ters, their temporal interface had many magnification levels that neither helped
participants to locate candidate objects, nor were detailed enough for visual
matching. Given that participants needed to memorize cluster objects between
temporal view switching with the temporal interface, the extra zooming levels
may have rendered the tasks harder. This extra cognitive load may explain
the relatively small number of items participants could handle before the oppo-
nent separate interface supported better performance, when compared to results
obtained in Saraiya et al. (2005).

Similarly, in Baudisch et al.’s (2002) study on static visual path-finding tasks
and dynamic obstacle-avoidance tasks, their temporal interface and their sepa-
rate interface seemed to have included more VIRs than their embedded interface.
While the special setup in their embedded interface undoubtedly contributed to
the superior participant performances, we did wonder if the extra VIRs may
have distracted participants in the other two interface trials.
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4.4.2 Consideration 2: having too much information on

the low-VIR display may hinder performance

While it may be tempting to provide more rather than less information on the
low-VIR display, study results suggest that the extra information may harm task
performance. None of the 19 reviewed studies included low-VIR item density
as a factor. However, we obtained indirect evidence by comparing between
multiple-VIR interfaces that display different amounts of visual information in
their low-VIR displays, and by comparing between low- and high-VIR displays
for visual search tasks that only required the low-VIR displays.

As shown in Table 4.5, 15 of the studies included at least two multiple-
VIR interfaces. Of the 15 studies, 11 showed similar amounts of information
on the low-VIR displays and could not be used to understand the effects of
task-irrelevant information. We also excluded Hornbæk’s electronic document
study since their low-VIR displays showed different kinds, rather than different
amounts, of information (Hornbæk and Frokjær 2001; Hornbæk et al. 2003).
We excluded Plaisant et al.’s (2002) study since it was unclear from the paper
the number of items initially shown in their embedded SpaceTree interface.

Amount of Low-
VIR Info

Papers

Similar (excluded) A. Baudisch et al. (2002)
B. Baudisch et al. (2004)
C. Bederson et al. (2004)
D. Gutwin and Skopik (2003)
F. Hornbæk et al. (2002)
J. Lam et al. (2007)
K. Nekrasovski et al. (2006)
O. Plumlee and Ware (2006)
Q. Schafer and Bowman (2003)
R. Schaffer et al. (1996)
S. Shi et al. (2005)

Different G. Hornbæk and Hertzum (2007)
M. Pirolli et al. (2003)

Excluded E. Hornbæk and Frokjær (2001);
Hornbæk et al. (2003)

N. Plaisant et al. (2002)

Table 4.5: Fifteen papers that included at least two multiple-VIR interfaces.
We compared the amount of information displayed on the different low-VIRs to
understand the effects of task-irrelevant information.
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Our discussion here therefore focuses on the two studies that displayed sim-
ilar kinds of information, but at different amounts, on their low-VIR displays:

1. Pirolli et al.’s (2003) study compared the separate file browser with the
embedded hyperbolic tree browser. While the paper did not explicitly
compare display capacities of the two low-VIRs, we estimated display
volume based on paper figures. The low-VIR view of the separate file
browser displayed about 30 items. In contrast, the capacity of the low-
VIR region of the embedded hyperbolic tree browser was at least two orders
of magnitude larger.

2. Hornbæk and Hertzum’s (2007) study compared the temporal cascading
menu to two embedded menu designs based on the Fisheye menu (Bederson
2000). While the lowest VIR of their temporal cascading menu only showed
a list of alphabets, their embedded fisheye menus showed all menu items
in font sizes based on relative distances from the focus.

In both of these cases, the researchers advised against putting too much
visual information on the display. Pirolli et al. (2003) argued against the as-
sumption of “ ‘squeezing’ more information into the display ‘squeezes’ more
information into the mind” (p. 51) since visual attention and visual search in-
teract in complex ways. In fact, their study showed detrimental effects of display
crowding. Pirolli et al. (2003) quantified information relevance as information
scent. For their tree data set, they developed an Accuracy of Scent score, which
was related to “(a) the ability of users to discriminate the information scent
associated with different subtrees to explore and (b) the correctness of those
choices with respect to the task.” (p. 31). Their study found that their em-
bedded hyperbolic tree browser interface led to slower performance times when
compared to their temporal file browser under low information scent, possibly
because their embedded interface displayed irrelevant information that was dis-
tracting.

Hornbæk and Hertzum (2007) came to a similar conclusion in their study on
displaying menus with large numbers of items: “designers of fisheye and focus
+ context interfaces should consider giving up the widespread idea that the
context region must show the entire information space” (p. 28). We excluded
their temporal cascading menu results in this discussion since their separate and
their embedded interfaces had severe usability problems, and were therefore not
comparable to the temporal results. We therefore focused on the two embedded
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interfaces and compared between them instead. Their Multifocus menu dis-
played larger numbers of readable menu items than the Fisheye menu, but had
lower coverage of the data set. Eye-tracking results indicated that participants
made more use of context and transition regions in the Multifocus menu than
with the Fisheye menu. The researchers thus suggested dispensing with the
unreadable, and therefore inaccessible, transition regions in the Fisheye menu
(p. 26).

Task Answer Loca-
tion

Papers

low VIR B. Baudisch et al. (2004)
I. Lam and Baudisch (2005)
J. Lam et al. (2007)
L. North and Shneiderman (2000)
P. Saraiya et al. (2005)

Both high VIR and E. Hornbæk and Frokjær (2001);
low VIR Hornbæk et al. (2003)

H. Jakobsen and Hornbæk (2006)

Table 4.6: Seven papers that included a hiVIR and a multiple-VIR interface,
classified by the locations from which participants could find answers to the
tasks.

This situation is analogous to tasks where answers are apparent from the
low-VIR display, and extra information in the hiVIR interface is therefore irrel-
evant. As shown in Table 4.6, seven of the reviewed studies included a hiVIR and
a multiple-VIR interface. Five of them included tasks that could be answered
using the low-VIR displays alone. We therefore attempted to understand effects
of displaying unnecessary information by comparing participant performances
between their multiple-VIR interfaces, where participants were likely to have
consulted mainly the low-VIR displays, and their hiVIR interfaces, where par-
ticipants needed to sieve through irrelevant information to locate task answers.
However, except in the case of Lam et al. (2007) and North and Shneiderman
(2000) where a loVIR interface was also studied, our findings were speculations
as we could not be certain that participants focused on the low-VIR displays in
the multiple-VIR interfaces.

In Baudisch et al.’s (2004) study on information searches on web documents,
their Outdated task required participants to check if the web documents con-
tained all four semantically highlighted keywords. In other words, the detailed
readable content of the web documents displayed in their hiVIR interface was
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irrelevant to the Outdated task. Since their separate and their embedded in-
terfaces concentrated these task-relevant semantic highlights in their low-VIR
displays, the two multiple-VIR interfaces outperformed their hiVIR interface
for this task.

In Lam and Baudisch’s (2005) study on information search on webpages,
their PDA-sized temporal interfaces, when rendered on desktop, supported equal
performance as their desktop counterpart, even though the hiVIR interface had
nine times more display space showing completely readable information. The re-
searchers suggested that the extra information on the desktop display may have
distracted participants and caused unnecessary searching and reading, which
may have resulted in lack of performance benefits of having a larger display.

In Lam et al.’s (2007) study on visual target search in a large line-graph
collection, one of the tasks involved finding the highest point in the data. The
loVIR interface alone was adequate for the task, and not surprisingly, interfaces
that included a low-VIR display were found to support better performance than
their hiVIR interface. Observation data suggested that about half of the partic-
ipants did not use the high-VIR display in the multiple-VIR interfaces for this
task.

In North and Shneiderman’s (2000) study on visual information search, in-
terfaces that were equipped with a low-VIR view (i.e., their loVIR and separate
interfaces) were found to be superior to the hiVIR interface for tasks that could
be answered based on information on these low-VIR views alone.

Similarly Saraiya et al. (2005) found that their low-VIR, or single attribute,
display was most helpful to analyze graphs at a particular time point, as “mul-
tiple attributes can get cluttered due to the amount of information being visu-
alized simultaneously” (p. 231).

In short, instead of using physical item density as a measurement of space-use
efficiency, a perhaps more useful consideration is the density of useful informa-
tion on the display, which is arguably task or even subtask specific.

4.4.3 Consideration 3: displaying information is not

sufficient; information has to be perceivable

The mere presence of information on the screen is not sufficient; the information
needs to be perceivable to be usable. Text on the low-VIR display may need to
be readable to be useful. As shown in Table 4.7, seven of the 19 studies reviewed
looked at text data. Four studies included unreadable text in their interfaces,
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while two had only readable text. We excluded Bederson et al.’s (2004) study
as both of their interfaces, the embedded DateLens and the temporal Pocket PC
Calendar, used symbols to replace text in case of inadequate display area.

Text Readability Papers
Some unreadable B. Baudisch et al. (2004)

G. Hornbæk and Hertzum (2007)
H. Jakobsen and Hornbæk (2006)
I. Lam and Baudisch (2005)

Only readable text E. Hornbæk and Frokjær (2001);
Hornbæk et al. (2003)

L. North and Shneiderman (2000)
Excluded C. Bederson et al. (2004)

Table 4.7: Seven papers that looked at text data, classified by the readability
of the included text.

Study results showed that unreadable text displayed on low VIRs were inef-
fective shortcuts to high-VIR details, as single hiVIR displays resulted in similar
participant performance despite displaying the information in a larger screen
area and thus, having a larger search space.

In Baudisch et al.’s (2004) study on information searches on web documents,
both of their multiple-VIR interfaces showed unreadable text except for a few
keywords. When the task required reading neighborhood texts to these read-
able keywords, as in their Analysis task, the multiple-VIR interfaces failed to
demonstrate performance benefits over the traditional hiVIR browser.

In Hornbæk and Hertzum’s (2007) study on displaying large numbers of
menu items, their embedded Fisheye menu displayed unreadable items at the
extreme ends in the low-VIR regions. Eye-tracking results indicated that par-
ticipants made very little use of low-VIR regions, thus suggesting their ineffec-
tiveness (p. 26).

Jakobsen and Hornbæk’s (2006) study looked at displaying program code
using an embedded fisheye interface which displayed unreadable text in the low-
VIR regions. The embedded interface showed time cost over the hiVIR interface
in a task that involved counting conditional and loop statements, as participants
spent more time in the embedded interface to find closing braces of a loop control
structures that were unreadable in the low-VIR regions. The researchers thus
suggested that interfaces should display readable text to allow direct use of the
low-VIR view information (p. 385).

Lam and Baudisch’s (2005) study reported similar findings. Their temporal
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Thumbnail interface had unreadable low-VIR text, but their temporal Summary
Thumbnail contained only readable low-VIR text. They found that participants
using the Thumbnail interface had 2.5 times more zooming events, and when
zoomed in, horizontally scrolled almost 4 times more, suggesting the ineffective-
ness of the unreadable low-VIR text.

For graphical visual signals, two studies reported effects of showing insuffi-
cient details on the low-VIR display (Hornbæk et al. 2002; Lam et al. 2007). In
Hornbæk et al.’s (2002) study on map navigation, the geographic map informa-
tion provided by the low-VIR overviews may not have been sufficiently detailed
for the study tasks, for example, to find a neighboring location given a starting
point, to compare the location or size of two map objects, or to find two largest
map object given a geographic boundary. For the Washington-map trials, hav-
ing an extra low-VIR overview had time and recall accuracy costs, suggesting
the burden of “switching between the detail and the overview window required
mental effort and time moving the mouse” (p. 382). Indeed, “tasks solved with
active use of the overview were solved 20% slower than tasks where the overview
window was not actively used” (p. 380), possibly due to the insufficient infor-
mation on the low-VIR overview that led to the large number of transitions
between the overview and the detail window. Despite 80% indicated subjective
preference for having the extra view, only 55% of participants actively used the
low-VIR view.

Lam et al. (2007) qualified perceptual requirements for their low-VIR display
as visual complexity and visual span. The study looked at displaying a large
collection of line graphs for visual search and visual compare tasks, and found
that in order for the low-VIR view to be usable, the signal had to be visually
simple and limited to a small horizontal area. For example, in the task that
required finding the highest peak in the data collection, the visual signals on
the low-VIR displays were simple narrow peaks and could easily be found. In
contrast, three-peak signals in their Shape task were complex and were less
discernable in the low-VIR views. As a result, participants resorted to the the
high-VIR views for these three-peak signals.

In short, designers need to provide enough details for visual objects on low-
VIR displays to be usable. For text, the display objects should be readable if the
tasks required understanding text content. For graphical objects, the criteria
are less clearly defined.
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4.4.4 Consideration 4: a priori automatic filtering may

be a double-edged sword

Papers Filtering Effect(s)
B. Baudisch et al. (2004) pos
H. Jakobsen and Hornbæk (2006) pos and neg
E. Hornbæk and Frokjær (2001); neg

Hornbæk et al. (2003)

Table 4.8: Four papers implemented a priori automatic filtering. pos = positive
effects observed; neg = negative effects observed.

Designers often can only display a subset of the data on the low-VIR dis-
plays. One selection approach is based on Furnas’s (1986) degree-of-interest
function using a priori knowledge of data relevance with respect to the focus
datum. Jakobsen and Hornbæk (2006) further differentiated the distance term
in the function into semantic and syntactic distances to implement an embedded
interface for source code. As seen in Table 4.8, of the three studies that im-
plemented a priori automatic filtering, two suggested that automatic filtering
could enhance task performance as the low-VIR displays concentrated useful in-
formation and reduced distractors. However, in two studies, some participants
were confused by the selective filtering and became disoriented.

Instead of seeing filtering as a workaround to the display-size challenge and
as a liability, there is evidence to suggest that filtering in itself can enhance task
performance. When filtering selects task-relevant information for the low-VIR
display, such intelligence avoids tedious manual searching and navigation in the
high-VIR view, and possibly also avoids distractions by irrelevant information.

In Baudisch et al.’s (2004) study on information searches on webpages, their
multiple-VIR interfaces semantically highlighted and preserved readability of
keywords relevant to the tasks. These keywords were concentrated in smaller
display spaces by reducing font sizes of surrounding texts. Such interfaces re-
sulted in better participant performances as long as they still provided task-
required layout information. For example, participants were faster when using
either of their multiple-VIR interfaces for the Outdated task, and when using
their web-column preserving embedded interface for the Product-choice task.

In Jakobsen and Hornbæk’s (2006) study on displaying program source code,
automatic and semantically selected readable context in their embedded interface
avoided the need to manually search for function declarations in the entire source
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code. This advantage manifested in faster performance times in tasks where
participants were required to search for information contained in the function
declarations throughout the entire source code.

However, automatic filtering may be a double-edged sword, as filtering may
result in disorientation and distrust of the automatic selection algorithm. In
Hornbæk’s study on reading electronic documents (Hornbæk and Frokjær 2001;
Hornbæk et al. 2003), their embedded interface preserved readability only for the
most important part of the document, with content importance determined by
the interface a priori. Participants expressed distrust, both in their satisfaction
feedback where they rated the embedded interface as confusing, and in their
comments indicating that they “did not like to depend on an algorithm to
determine which parts of the documents should be readable” (p. 142).

This problem may be worse with semantic filtering, where object visibility
depends on the semantic relatedness of the object to the focus datum, rather
than the geometric distance between screen displays. Selection of displayable
context based on syntactic distance between the data point and the focus is
arguably easier to predict than semantic selection. Consequently, it may be
easier for users to understand and trust filtering algorithms based on syntactic
distance only. Also, since context information is updated when the focal point
changes, it may be more confusing to navigate with semantic-context updates, as
pointer navigation is conceptually geometric rather than semantic. In Jakobsen
and Hornbæk’s (2006) study on program source code visualization, low-VIR
regions replaced scrolling in the hiVIR interface and only displayed semantically-
relevant source code based on focus. Participants were confused about the
semantic algorithm that caused program lines to be shown and highlighted in
the context area (p. 385).

Another problem of automatic filtering is that the selection may affect the
amount of time users spent on different parts of the data. In Hornbæk’s study
on reading electronic documents (Hornbæk and Frokjær 2001; Hornbæk et al.
2003), the researchers found that participants spent approximately 30% less
time on the initially collapsed sections displayed on their embedded interface
than when displayed in full on the other interfaces.

In short, while a priori filtering may concentrate task-relevant information
on low-VIR displays, selective filtering may incur user distrust and confusion,
and may even affect how users explore the displayed data.
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4.4.5 Consideration 5: the roles of the low-VIR displays

may be more limited than proposed in literature

While the high-VIR display enables users to perform detail work, low-VIR roles
are harder to verify. We therefore looked at four proposed uses of the low-VIR
display based on published literature, and found that study results support only
proposed claims for separate interfaces: low-VIR provides navigation shortcuts
and overall data structure. We were unable to find strong support for low-
VIR in embedded interfaces to aid orientation or to provide meaning for data
comparison.

Supported: low-VIR view provides navigation shortcuts

Information showed in the low-VIR region or view can facilitate navigation by
providing long-distance links, thus “decreasing the traversal diameter of the
structure” in navigation (Furnas 2006). Coordinations between the low- and
the high-VIR views enable users to directly select targets on low VIR displays
for detail exploration. For example, North and Shneiderman (2000) found that
low-VIR view of a list of geographic states acted as hyperlinks for the high-VIR
detail census data.

Another way that low VIR assists navigation is by providing a map of avail-
able paths (Card et al. 1999). An example is the low-VIR overview in the sep-
arate interface in Hornbæk et al.’s (2003) online document study that showed
section and subsection headers. For graphical displays, Baudisch et al.’s (2002)
study found that participants used the low-VIR overview to navigate to targets
and performed the detail work in the hiVIR display.

Low VIR can also be useful for refinding. In Hornbæk et al.’s study on
electronic-document reading, reading pattern analysis showed that participants
“used the overview pane to directly jump back to previously visited targets”
and “the overview pane supports [sic] helps reader memorize important docu-
ment positions” (p. 145) and resulted in participant preference and satisfaction,
even though this apparent navigation advantage failed to materialize as time
performance benefits (Hornbæk and Frokjær 2001; Hornbæk et al. 2003).

Supported: low-VIR view provides overall data structure

Low VIR can provide a data structure that may not be apparent in higher VIRs.
For example, Hornbæk et al.’s study on reading electronic documents found that
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document section and subsection headers shown on the low-VIR view of their
separate interface “may indirectly have helped subjects to organize and recall
text” (p. 144), and led to higher quality essay without any time penalty.

Open: low-VIR region aids orientation

When the information space contains little or no information for which we can
base our navigational decisions, the problem of “desert fog” occurs (Jul and
Furnas 1998). Global context in embedded displays has been proposed to help
users orient (Nigay and Vernier 1998), perhaps by providing visual support for
working memory as the display gives evidence of where to go next (Card et al.
1999).

While we did not find evidence to study this role of the embedded low-VIR
region, results from Hornbæk et al.’s (2002) study on map navigation may shed
some lights on the topic.

Results from Hornbæk et al.’s (2002) study suggested that visual cues in
data aided navigation. In their study, the Washington map contained rich visual
cues for navigation. Participants were faster in navigation tasks performed using
their temporal interface with the Washington map without the low-VIR view,
suggesting that the map contained visual objects that aided navigation. In
contrast, participants using the Montana map made a smaller number of scale
changes when the low-VIR display was present, suggesting that the map itself
did not contain enough visual objects for effective navigation, and participants
needed the guidance of the low-VIR overview.

If visual objects displayed in low-VIR regions of embedded interfaces act
similarly to navigational cues in the Washington map, it would be likely that
low-VIR regions can aid orientation.

Open: low-VIR region provides data meaning

It is believed that data value is only meaningful when interpreted in relation to
surrounding entities, and “the surrounding entities at different scales of aggre-
gation exert a semantic influence on any given item of interest” (Furnas 2006).
Again, we did not find embedded results to study this low-VIR region role. How-
ever, Saraiya et al.’s (2005) study on displaying time-series data as nodes in a
graph may provide some understanding.

Saraiya et al.’s (2005) study included a hiVIR interface that showed all 10
time points simultaneously and a temporal interface that showed one data point
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at a time. Even though participants made more errors overall when using the
hiVIR interface, thus suggesting having surrounding entities may be detrimental
rather than helpful, a closer look at individual tasks showed mixed results.

We focused on tasks that involved all time points as they were more likely to
involve comparative interpretations. The study reported the temporal interface
supported faster task time in finding the topology trend of a larger graph and
in searching for outlier time points. These two results suggested that despite
having to identify trends or detect outliers, context provided in the hiVIR in-
terface was detrimental rather than beneficial, possibly due to visual clutter.
On the other hand, participants achieved better performance results with the
hiVIR interface for the two tasks that involved finding outlier nodes and groups,
and did not exhibit any performance differences for tasks that involved finding
time trends.

Given the mixed results from Saraiya et al.’s (2005) study, we were unable
to offer any insights into the role of low-VIR regions in providing data meaning
for comparison.

4.4.6 Summary of considerations in low-VIR creations

Creating low-VIR displays is the second step in our decision tree (Figure 4.1).
The first consideration is to determine the number of VIRs needed. Study results
suggested that the number of VIRs in an interface should match the number of
levels in the displayed data, as extra VIRs may hinder performance. Similarly,
the low-VIR overview should only display task-relevant information, as extra
information may be distracting. Information displayed should be perceivable
in order to be useful. For text, readability is an important consideration; for
graphical objects, the definition is less clear. Oftentimes, there are too many
items in the data than what can be accommodated on the output device. Even
though a priori selection of display data is an attractive solution, study results
have found that doing so could lead to user confusion and distrust.

4.5 Decision 3: Simultaneous or Temporal

Displays of the Multiple VIRs

The third decision in the process of creating a multiple-VIR interface is on
VIR arrangements. For the designer, it is a choice between showing the VIRs
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simultaneously or one at a time, as in zooming techniques.
A well-known problem with zooming is that when the user zooms in on a

focus, all contextual information is lost. Loss of context can be a considerable
usability obstacle, as users need to integrate all information over time, an ac-
tivity that requires memory to keep track of the temporal sequence and their
orientations within that sequence (Herman et al. 2000; Furnas 2006). To al-
leviate these problems, a set of techniques collectively called focus + context
were developed. Indeed, Card et al. (1999) stated the first premise of focus +
context visualization as that “the user needs both overview (context) and detail
information (focus) simultaneously” (p. 307). Another problem of zooming is
that it “‘uses up’ the temporal dimension—making it poor for giving a focus +
context rendering of a dynamic, animated world” (Furnas 2006).

Although this reasoning appears to be logical, empirical study results did
not consistently support using simultaneous VIR displays: study results sug-
gested that the temporal interface was surprisingly good for most tasks. We
identified two situations where the simultaneous-VIR display provided perfor-
mance benefits: when the answer to the problem involved information from all

the available VIRs (Section 4.5.1), and when the different VIRs provided clues
for the task (Section 4.5.2). Otherwise, temporal switching seemed adequate.

4.5.1 Consideration 1: tasks with single-level answers

may not benefit from simultaneous VIR displays

In general, we found that simultaneous-VIR display was best suited for tasks
that required multi-level answers. We focused on 10 of the 19 studies as they in-
cluded a temporal and at least one simultaneous-display interface for comparison
(Table 4.9). We excluded Hornbæk et al.’s (2002) study in this discussion since
their separate interface, the zoomable interface with an overview, was effectively
used as just a temporal interface most of the time.

Three of these 10 studies had at least one task that required multi-level
answers, and all showed performance benefits in using their simultaneous-display
interfaces for those tasks compared to their temporal interfaces.

In Bederson et al.’s (2004) study, the embedded DateLens interface was found
to be more effective than the temporal Pocket PC interface in tasks that involved
counting events within a 3-month time period in the calendar, for example, in
counting scheduled events or appointment conflicts.

In Plaisant et al.’s (2002) tree browsing study, the SpaceTree embedded in-
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Papers MA
SA

MC SC SB
A. Baudisch et al. (2002) x
C. Bederson et al. (2004) x x x
G. Hornbæk and Hertzum (2007) x x x
K. Nekrasovski et al. (2006) x x
M. Pirolli et al. (2003) x
N. Plaisant et al. (2002) x x
O. Plumlee and Ware (2006) x
R. Schaffer et al. (1996) x x x
S. Shi et al. (2005) x
F. Hornbæk et al. (2002)(ex)

Table 4.9: Ten papers that included a temporal and at least one simultaneous-
display interface. MA = Multiple-level answers; SA = Single-level answers; MC
= Multiple-level clues; SC = Single-level clues; SB = Single-VIR interface better
supported tasks; ex = excluded from review.

terface trials were faster than the temporal Explorer interface on average and
more accurate in a task that required listing all the ancestors of a node.

In Schaffer et al.’s (1996) re-routing task, participants were required to find
an alternative route to connect two points in the network that were disconnected,
and the route spanned all levels in the hierarchical network. The embedded
interface supported faster task completion times and required only half the
number of zooming actions when compared to the temporal interface. The
advantage of the embedded interface could be its display of the ancestral nodes
along with the children nodes at the lowest level of the hierarchy, since all of
which were needed to find an alternative route.

On the other hand, the temporal interface seemed to offer better support for
tasks with single-level answers, unless the clues required to reach the answers
were also multi-level, as discussed in the next section.

4.5.2 Consideration 2: tasks with single-level

information scent may not benefit from the

simultaneous display of different visual resolutions

For tasks with single-level answers, simultaneous-VIR display was still helpful
if the clues to the tasks spanned multiple data levels. As shown in Table 4.9,
five of the nine included studies with multi-level clues to single-level answers,
and all except the Hornbæk and Hertzum (2007) study demonstrated benefits
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in using simultaneous-VIR displays.
In Baudisch et al.’s (2002) study, their multiple-VIR interfaces supported

equal or better performances than their temporal interface in the route-finding
and connection-verification tasks. Even though the answer could be obtained
in the high-VIR view alone, both tasks required global relative locations in the
low VIR and detail information in the high VIR.

Pirolli et al. (2003) looked at a similar phenomenon called information scent.
Their study suggested that the embedded hyperbolic tree interface may support
faster task time than the temporal file explorer interface at high-scent tasks.
In their embedded hyperbolic interface, participants could see more of the hi-
erarchical structure in a single view and traversed tree levels faster. Under
high-scent conditions where ancestor nodes provided clues to task answers, this
feature could be advantageous. In contrast, under low information scent con-
ditions, participants examined more tree nodes when using the embedded than
the temporal interface, and resulted in slower task times.

Plaisant et al. (2002) reported that the embedded SpaceTree supported equal
or better task times in the first-time tree node finding tasks than the temporal
Explorer interface. Even though the researchers did not provide enough task
instructions for us to judge if the the task provided multiple-level clues, the
researchers did mention providing hints to participants that seemed to span
multiple levels: “To avoid measuring users’ knowledge about the nodes they
were asked to find (e.g kangaroos) we provided hints to users (e.g. kangaroos
are mammals and marsupials) without giving them the entire path to follow
(e.g. we didn’t give out the well known step such as animals).” (p. 62).

In Plumlee and Ware’s (2006) study, the task required matching complex
clusters of three-dimensional objects, and clues to the answers were present in
both the low-VIR view, showing the location of the candidate targets, and in the
high-VIR view, showing the details required in visual matching. Their separate
interface was found to better support the task when the total number of objects
per cluster was above five items, in which case participants could no longer hold
all the clues in their short-term memory when using the temporal interface.

One possible exception to this hypothesis is Hornbæk and Hertzum’s (2007)
study. The researchers looked at the usability of fisheye menus showing 100 and
292 items. The study found that known-item search tasks were solved faster and
more accurately with the temporal cascading-menu interface. However, due to
the various implementation-dependent usability issues with the simultaneous-
VIR interfaces, we could not discern relative interface effectiveness based on
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VIR arrangement alone, and we therefore excluded it from our analysis.
Taking Considerations 1 and 2 together, we concluded that tasks with single-

level answers and single-level clues would not benefit from simultaneous display
of the different visual resolutions. Indeed, that seemed to be the case based on
study results, even for the tasks that required object comparisons. As long as
participants could keep task-required information in their short-term memory,
the temporal interface seemed adequate, and at times, even resulted in better
participant performances and feedback.

As shown in Table 4.9, five of the nine included studies had at least one task
that required single-level answers and provided single-level clues. All except the
Shi et al.’s (2005) study results supported this general conclusion. We excluded
Hornbæk and Hertzum’s (2007) visual searches in menus in this discussions due
to the nontrivial usability issues with their simultaneous-VIR interfaces.

Bederson et al.’s (2004) study showed that the temporal Pocket PC was
more appropriate for simple calendar tasks that involved checking start dates
of pre-scheduled activities and tasks that spanned short-time periods.

In Nekrasovski et al.’s (2006) study, where the task was to compare topolog-
ical distances between colored nodes in a large tree, their results showed that
their temporal interface outperformed their embedded interface, even though the
task required comparison between objects. Indeed, their temporal interface was
rated by participants as being less mentally demanding and easier to navigate.

In Schaffer et al.’s (1996) study, even though the embedded interface sup-
ported faster task times than temporal in rerouting within a hierarchical net-
work, participants did not seem to need simultaneous-VIR display to locate
broken links at the lowest network level, as indicated by the lack of perfor-
mance differences between the temporal and the embedded interface trials for
this link-location task.

The exception is Shi et al.’s (2005) study, where researchers found that their
embedded interface supported faster task times than the temporal interface. In
Shi et al.’s (2005) case, there may be a speed-accuracy tradeoff: the researchers
observed that in some cases, their participants ignored potential targets that
occupied a small amount of space and missed the small targets in less than
3.75% of the trials. Even though the researchers did not report task error
rates, they reported that this phenomenon may have a more severe and adverse
impact on their embedded than on their temporal interface trials. Also, there
were participants who gave up when using the embedded interface, but they only
timed-out in the temporal trials.
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In short, simultaneous-VIR display is appropriate for multi-level answers or
single-level answers found by multi-level clues. Otherwise, the temporal interface
seemed adequate.

4.5.3 Considerations in choosing between temporal

switching or simultaneous display of the VIRs

In general, simultaneous VIR display, as in embedded or separate interfaces,
requires more complex interactions, while temporal interfaces can be taxing on
the user’s memory. Study results suggested that temporal switching was more
suitable for tasks that did not involve multi-level answers, or did not provide
multi-level clues to single-level answers.

4.6 Decision 4: How to Spatially Arrange the

Visual Information Resolutions, Embedded

or Separate?

The last step in our decision tree is to decide between the two spatial arrange-
ments of simultaneous-VIR display: the interface can embed the different VIRs
within the same window or show them as separate views. Proponents of the
embed approach argued that the different VIRs should be integrated into a
single dynamic display, much as in human vision (Card et al. 1999; Furnas
2006). View integration is believed to facilitate visual search, as it provides an
overview of the whole display which “gives cues (including overall structure)
that improve the probability of searching the right part of the space” (Pirolli
et al. 2003, p. 21), and integrated views of data is argued to “support and im-
prove perception and evaluation of complex situations by not forcing the analyst
to perceptually and cognitively integrate multiple separate elements” (Thomas
and Cook 2005, p. 83). Also, it is believed that when information is broken
into two displays (e.g., legends for a graph, or overview + detail), visual search
and working memory consequences degrade performance as users need to look
back and forth between the two displays (Card et al. 1999; Pirolli et al. 2003).
On the other hand, spatial embedding frequently involves distortion, an issue
discussed in Section 4.6.1.

The choice between these two spatial arrangements is unclear based on em-
pirical study results. Oftentimes, perceived functions of the two interfaces bi-
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Embedded vs. separate Papers
Unable to compare B. Baudisch et al. (2004)

E. Hornbæk and Frokjær (2001);
Hornbæk et al. (2003)

K. Nekrasovski et al. (2006)
No difference G. Hornbæk and Hertzum (2007)

J. Lam et al. (2007)
Q. Schafer and Bowman (2003)

embedded better A. Baudisch et al. (2002)
D. Gutwin and Fedak (2004)(ex)

Table 4.10: Eight papers that included both embedded and separate interfaces,
classified by participant performances. ex = excluded from analysis.

ased study data and task selections. For example, studies tended to use trees
or graphs for node finding to study embedded interfaces (e.g., Plaisant et al.
2002; Pirolli et al. 2003; and Shi et al. 2005) and spatial navigation for sepa-
rate displays (e.g., North and Shneiderman 2000 and Plumlee and Ware 2006).
As a result, the issue of spatial arrangement was frequently confounded in our
reviewed studies.

As shown in Table 4.10, 8 of the 19 studies included both embedded and
separate interfaces. We found it difficult to directly compare between the two
simultaneous displays in three of the studies. For the remaining five studies,
three did not find significant performance differences. Only Baudisch et al.
(2002) and Gutwin and Fedak’s (2004) studies demonstrated superior perfor-
mance support of their embedded interfaces. In the case of Baudisch et al. (2002)
the performance differences were possibly due to the unique implementation of
their interface, while Gutwin and Fedak’s (2004) results were possibly due to
comparatively complex interactions required in their separate interfaces.

Mixed results in our reviewed studies, as shown in Table 4.10, may reflect
the different tradeoffs in these interfaces. Also, in some cases, the benefit of
providing multiple VIRs may be so large that the spatial arrangement may not
matter (Tory et al. 2006, p. 12).

Of the three studies that we decided to be incomparable with the other
five, two of them were excluded due to intentional implementation differences
based on common perceived use of the two spatial arrangements: low-VIR view
in the separate interface to display data overview, and low-VIR regions in the
embedded interface to show background and supporting information. The first
is Baudisch et al.’s (2004) study on web document search. Their embedded
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interface was designed to favour row discrimination and their separate interface
favoured for column discrimination, thus adding another factor that influenced
study results.

Hornbæk et al.’s study showed different kinds of information in their two
multiple-VIR interfaces (Hornbæk and Frokjær 2001; Hornbæk et al. 2003).
The low-VIR view of their separate interface provided document section and
subsection headers and was optimal for showing overall structure in text doc-
uments and for encouraging detail explorations. In contrast, their embedded
interface showed a priori determined text significant to the focal area, which
promoted rapid document reading at the cost of accuracy.

The last study in the incomparable group did not intend to study spa-
tial arrangement despite including both separate and embedded interfaces. In
Nekrasovski et al.’s (2006) study on large tree displays, the goal of their separate
interface was to investigate the use of an extra low-VIR view. Consequently,
neither of their separate interfaces (temporal with overview and embedded with
overview) could be directly compared with their embedded interface to discern
effects of spatial arrangements.

In the five cases where direct comparison was possible, three studies did not
find performance differences between the two simultaneous interfaces. The two
exceptions were Baudisch et al. (2002) and Gutwin and Fedak’s (2004) studies.

Even though Gutwin and Fedak’s (2004) study on steering tasks showed
significant results, we believe their results may be confounded by the relatively
complex interactions required in their separate interfaces. The study included
three embedded fisheye displays and two separate displays. In a series of two-
dimensional steering tasks where participants were required to move a pointer
along a defined path, the study found that the embedded interfaces supported
better time and accuracy performances over the separate interface at all display
magnifications. The researchers thus concluded that “the fact that fisheyes
show[ed] the entire steering task in one window clearly benefited performance”
(p. 207).

However, we believe a number of factors were involved in addition to the dif-
ferent VIR spatial arrangements. The first factor was differing effective steering
path widths and lengths between interfaces. Of the five study interfaces, only
one of the separate interfaces, the Panning-view, had an increased travel length
at higher magnifications. All other interfaces had constant control/display ratios
over all magnifications. As for the Radar-view separate interface, participants
interacted with the low-VIR miniature view instead of the magnified high-VIR
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view, thus the actual steering path width was effectively constant over all mag-
nifications.

We also found that interaction complexity differed greatly among the five
interfaces. Their Panning-view separate interface had more complex panning
interactions than the other interfaces, especially at higher levels of magnification
of the steering path. The Panning-view separate interface required two mouse
actions, mouse drag for panning and mouse move for steering, while the Radar-
view separate interface required only mouse-drag on the miniature low-VIR
view. In contrast, the embedded interfaces required only a single mouse action to
shift the focal point and magnify the underlying path. This type of interaction,
however, has the disadvantage of magnification-motion effect, where objects in
the magnifier appear to move in the opposite direction to the motion of the
lens, and is easier to overshoot the motion and slip off the side of the lens. We
considered this motion effect as a third factor in the study.

Given the complex interplay of at least three factors that seemed to be
implementation specific, we failed to extract general conclusions on VIR spatial
arrangement based on Gutwin and Fedak (2004) study.

Baudisch et al.’s (2002) study looked at three tasks that required informa-
tion from all VIRs: a static route-finding task, a static connection-verification
taks, and a dynamic obstacle-avoidance task. Study results indicated that the
embedded interface better supported all of the tasks and was preferred by par-
ticipants. Their unique embedded interface implementation avoided many of the
usability pitfalls in embedding high-VIR regions into low-VIR displays, which
may explain its superior participant performance: first, the location for the
high-VIR region was fixed, thus potentially avoiding disorientation with a mo-
bile focus in respect to the context area and the associated complex interactions,
and second, distortion was not used in the system. Instead, the researchers used
different hardware display resolutions for the two different VIRs. In contrast,
their separate interface seemed more interactively complicated than the usual
implementation, requiring panning in both low- and high-VIR views and zoom-
ing in the high-VIR view. Nonetheless, we believe their study demonstrated an
effective use of their embedded interface over their separate interface.

We conclude that there is not sufficient evidence to derive design guidelines
in choosing between the two simultaneous displays, as it is difficult to draw
conclusions based only on Baudisch et al.’s (2002) study.
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4.6.1 The issue of distortion

One of the potential costs in embedding multiple VIRs within the same window
is distortion. Based on Furnas’s (1986) fisheye views and on studies of attention,
Card et al. (1999) justified distortion since “the user’s interest in detail seems
to fall away from the object of attention in a systematic way and that display
space might be proportioned to user attention”. Also, Card et al. (1999) rea-
soned that “it may be possible to create better cost structures of induced detail
in combination with the information in focus, dynamically varying the detail
in parts of the display as the user’s attention changes [...] Focus and context
visualization techniques are ‘attention-warped’ displays, meaning that they at-
tempt to use more of the display resource to correspond to interest of the user’s
attention” (p. 307).

Even though distortion is believed to be justified, it is still useful to examine
the costs. The first problem is that distortion may not be noticed by users and
be misinterpreted (Zanella et al. 2002), especially when the layout is not familiar
to the user or is sparse (Carpendale et al. 1997). Even when users recognize the
distortion, distance and angle estimations may be more difficult and inaccurate
when the space is distorted (Carpendale et al. 1997), except perhaps in con-
strained cases such as bifocal or modified fisheye distortions (Mountjoy 2001).
Also, users may have difficulties understanding the distorted image to associate
the components before and after the transformation (Carpendale et al. 1997), or
in identifying link orientation in the hyperbolic browser (Lamping et al. 1995).

To our knowledge, only three published studies measured effects of distortion
directly and systematically. Lau et al. (2004) found that a nonlinear polar fish-
eye transformation had a significant time cost in visual search, with performance
slowed by a factor of almost three under large distortions. In terms of visual
memory costs, our laboratory experiment, reported in Chapter 5, found image
recognition took longer and was less accurate at high fisheye transformation
levels. Skopik and Gutwin (2005) reported a time penalty without compromis-
ing accuracy on refinding nodes in a highly-linked graph when the graph was
transformed by a polar fisheye transformation.

It was difficult to tease out the effects of distortion based on the 19 papers
we reviewed here, since none of the studies specifically looked at distortion as
a factor. We could therefore only rely on observations reported in the papers
to obtain insights. As shown in Table 4.11, 14 studies included an embedded
interface, and 12 implemented distortion. The two exceptions were Baudisch
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Papers
Distortion Effects

None Text Grid pos neg
A. Baudisch et al. (2002) x
B. Baudisch et al. (2004) x x
C. Bederson et al. (2004) x x
D. Gutwin and Skopik (2003)(ex) x
E. Hornbæk and Frokjær (2001) x x
G. Hornbæk and Hertzum (2007)(ex) x x
H. Jakobsen and Hornbæk (2006) x x
J. Lam et al. (2007) x
K. Nekrasovski et al. (2006) x
M. Pirolli et al. (2003) x
N. Plaisant et al. (2002) x
Q. Schafer and Bowman (2003) x
R. Schaffer et al. (1996) x x
S. Shi et al. (2005) x x

Table 4.11: Fourteen papers that included at least one embedded interface. pos
= Performance benefits demonstrated; neg = Problems reported; ex = excluded
from review.

et al. (2002) and Lam et al. (2007). Baudisch et al. (2002) took a hardware
approach and implemented their embedded interface with two different pixel
resolutions and Lam et al. (2007) used two distinct visual encodings to represent
the same data in two VIRs.

Interestingly, not all 12 studies reported usability or performance problems
with visual distortion. In fact, seven studies reported performance benefits in
using their distortable interfaces. We excluded Gutwin and Skopik (2003) in
this analysis as we could not tease out the effects of distortion based on study
results due to the large number of factors involved in the study, as discussed
earlier in this section. The remaining six studies that demonstrated positive
effects of distortion involved either text or grid-based distortions, suggesting
that constrained and predictable distortions were well tolerated.

Five studies reported problems attributed to distortion, and all involved com-
paratively more drastic and elastic distortion techniques than text or grid-based
distortions. We also excluded Hornbæk and Hertzum (2007) in our analysis
since, even though the researchers reported usability problems with their vari-
ous embedded and separate interfaces, it is unclear how distortion contributed
to these problems. We therefore focused our discussion on the remaining four
studies to further understand distortion costs.
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Nekrasovski et al.’s (2006) embedded interface implemented Rubber-Sheet
Navigation that allowed users to stretch or squish rectilinear focus areas as
though the data set was laid out on a rubber sheet with its borders nailed down
(Sarkar et al. 2003). The researchers attributed the relatively poor performance
of their embedded interface to the disorienting effects of distortion (p. 18).

Plaisant et al.’s (2002) study found that their participants took longer to
refind previously-visited nodes in a tree using the embedded hyperbolic and
SpaceTree interfaces than with the traditional temporal Microsoft Explorer file
browser. Among the two distortion interfaces, participants demonstrated bet-
ter performance with SpaceTree than with the hyperbolic tree browser, which
involved more drastic distortions. This result was predicted by the researchers
as in SpaceTree, “the layout remains more consistent, [thus] allowing users to
remember where the nodes they had already clicked on were going to appear,
while in the hyperbolic browser, a node could appear anywhere, depending on
the location of the focus point” (p. 62).

Pirolli et al.’s (2003) study also compared between a temporal file browser
and the embedded hyperbolic tree browser. The researchers found that the
hyperbolic tree browser supported better performance only for tasks with high-
information scent. Even though the researchers did not explicitly report prob-
lems related to distortion, they suggested providing landmarks to aid navigation
in the embedded hyperbolic tree browser, thus indicating potential interaction
costs in hyperbolic distortions.

Schafer and Bowman’s (2003) embedded interface implemented the radar
fisheye view on maps. Their study reported both positive and negative effects
of distortion. On the positive side, if noticed, the distortion enhanced awareness
to the viewport in a collaborative traffic and sign positioning task using a map.
However, users may not notice the distortion as it may not be caused by their
direct action since the task was collaborative.

In short, while we believe interfaces that implement distortions were gen-
erally more difficult to use, constrained and predictable distortions were found
to be better tolerated and may tip the tradeoff between showing more informa-
tion simultaneously on the display and the risk of causing disorientation and
confusion.
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4.6.2 Considerations in spatially arranging the various

VIRs

There are tradeoffs in using either of the two simultaneous displays, embedded
and separate. Embedded interfaces tend to implement distortion, which may be
difficult for participants to understand and may involve difficult interactions.
For separate interfaces, view coordination has been found to be difficult. Study
results regarding this question were mixed.

4.7 Summary: Design Recommendations

We summarize our findings as three recommendations to designers in creating
multiple-VIR interfaces.

4.7.1 Provide the same number of VIRs as the levels of

organization in the data

Furnas argued for the need to provide more than two VIRs in his 2006 paper:

By presenting only two levels, focus and context, these differ from the

richer range of trading off one against the other represented in the canon-

ical FE-DOI. This difference must ultimately prove problematic for truly

large worlds where there is important structure at many scales. There the

user will need more than one layer of context.

In the same paper, he also argued that the levels of resolutions can be deter-
mined based on the scale bandwidth of the presentation technology and scale
range of the information world (Furnas 2006, p. 1003).

Looking at the question from a different angle, study results suggested that
the effectiveness in providing multiple VIRs, especially simultaneous display of
different VIRs, was contingent upon the the number of organization levels in the
data and the information needs of the task. In fact, we found that having extra
VIRs may actually impede task performance, especially in temporal interfaces
where users coordinate between the different VIRs using short-term memory.
we believe that interface should therefore provide one VIR per data level.
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4.7.2 Provide relevant, sufficient, and necessary

information in the low-VIR displays to support

context use

While the high VIRs should support detail work demanded by the tasks at hand,
study results suggested that low-VIR views in separate interfaces were used in
two ways: in navigation where they provided short-cuts to jump to different
parts of the data; and in mental data organization if they displayed overall data
structure. To be effective, designers need to include only sufficient, relevant, and
necessary information in the low-VIR views. This finding is in accordance with
Norman’s (1993) Appropriateness Principle, where he stated that the visual
representation should provide neither more or less information that is needed
for the task at hand since extra information displayed may be distracting and
render the task more difficult. In the case of multiple-VIR interfaces, displaying
an inappropriate amount of information may tip the balance as the value of
the display may not be sufficient to overcome the costs of having the extra
visual resolutions. The amount of detail for each visual object displayed on
low-VIR views is likely to be more than previously assumed in our community,
judging from the number of ineffective low-VIR views created for the reviewed
studies. For text documents, readability may be a requirement, as suggested
in Jakobsen and Hornbæk (2006): the design should “saturate the context area
with readable information” in building interfaces to display program source code
(p. 386), and in Hornbæk and Hertzum (2007): “making the context region of
the [fisheye menu] interfaces more informative by including more readable or
otherwise useful information” (p. 28). For graphical displays, studies on visual
search (e.g., Tullis 1985) and Lam et al.’s (2007) study provided guidelines,
for example, visual signals should be simple and of narrow visual spans to be
accessible, but the criteria still remain unclear.

4.7.3 Simultaneously display VIRs for multi-level

answers or multi-level clues

Selecting the correct visualization technique to display data is important due to
the inherent tradeoffs in the temporal, separate, and embedded techniques. While
most temporal implementations offer familiar panning and zooming interactions,
these interfaces require users to keep information in their short-term memories.
Simultaneous-VIR displays, on the other hand, often require more complex and
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unfamiliar interactions such as view coordinations. Based on study results, we
concluded that if the task or subtask needs information from multiple levels,
either as part of the answer to the task or as clues leading to the answer, the
interface should show multiple levels simultaneously. Otherwise, the temporal
technique should be more suitable due to its simpler interface and more familiar
interactions.

4.7.4 Open question: how should multiple VIRs be

displayed simultaneously?

Unfortunately, we are unable to suggest guidelines in displaying multiple VIRs
simultaneously, either as embedded or as separate displays, due to the difficulties
in obtaining direct interface comparisons based on our set of reviewed studies.

4.8 Summary: Methodology Recommendations

Despite being able to use most of the study results in our analysis, we encoun-
tered difficulties in interpreting selective study results and had to exclude them
from our analysis. Part of our difficulty may be due to differences between our
goals and those of the reviewed studies: we aimed to tease out factors that af-
fect visualization use instead of overall interface effectiveness. While evaluating
visualization using experimental-simulation studies has been argued to be dif-
ficult due to the lack of standardized tasks, effective measurements to capture
interface use, and ecologically validity (Plaisant 2004), we believe the method
can be improved even without data and task repositories, novel measurements,
or abandoning the experimental strategy for field strategy. To identify areas
that could be improved upon, we looked at the four main scenarios that led to
result exclusion in our summary synthesis:

1. Study interfaces were not comparable at the individual factor level, such
as visual elements, information content and amount displayed, level of
organization displayed, and interaction complexity;

2. Measurements were not sensitive enough to capture usage patterns, which
were needed to understand factors at play in visualization use;

3. Studies investigated multiple interface-use factors, making it difficult to
isolate effects of each;
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4. Studies did not report sufficient details for our analysis, since we wished to
extract effects of selective design factors in interface use instead of overall
system or technique effectiveness.

We therefore argue that by using comparable study interfaces, capturing
usage patterns in addition to overall performance measures, isolating interface-
use factors, and by reporting more study details, we can increase consistency
among experimental-simulation studies and increase their utility, since study
results will then be more amenable to meta-analysis.

4.8.1 Use comparable interfaces

In order to understand factors influencing interface use, studies should identify
possible factors at play, and if possible, vary one experimental factor at a time, as
in factorial designs. For visual design, some factors include the interfaces’ basic
visual elements such as the number of views and the use of image distortion,
the amount and type of information displayed, and the number of levels in the
displayed data. For interaction, study designers should consider the required
number of input devices, the types of action required, and the number of displays
on which the action is applied.

Basic visual elements

While it is understandable that interfaces in empirical studies may be dramat-
ically different in appearance, they should be comparable in their basic visual
elements whenever possible to allow for direct comparison. For example, in
Baudisch et al.’s (2004) study on visual searches on webpages, they included
two interfaces that showed web documents at two levels of detail simultane-
ously. The separate interface had a scrollable detail page and an low-VIR view
that showed the entire webpage by compressing all elements equally. The em-
bedded interface was a non-scrollable browser that showed the entire webpage
by differentially compressing pertinent versus peripheral content in order to
keep the pertinent text readable. On the surface, the two interfaces were ideal
candidates for studying the effects of spatial arrangement of the low- and the
high-VIR components: in the separate interface, the two components were ar-
ranged as separate views; in the embedded interface, they were embedded into
a single view.

However, there was another factor at play that affected performance results.
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Since their interfaces displayed readable words pertinent to their study tasks
as highlighted popouts, the spatial association between the original web docu-
ments and these popout words became important. Unfortunately, association
by row was found to be more difficult in their embedded interface than by col-
umn, as their focus + context implementation selectively distorted the vertical
dimension. On the other hand, their separate implementation proportionally
reduced both vertical (row) and horizontal (column) dimensions. Their study
results reflected the interfaces’ ability to associate popouts with document rows
and columns: their embedded interface better supported a task that did not
require row-specific information (the Product Choice task), but not for row-
dependent tasks (e.g., the Co-occurrence task). The separate interface results
showed opposite trends.

Since Baudisch et al.’s (2004) study aimed to evaluate overall effectiveness of
their novel embedded interface relative to two existing techniques, both the vi-
sual components’ spatial arrangement and the row-column association with the
highlighted popouts were part of their interface design and should be evaluated
together. However, when we tried to tease out the effect of spatial arrange-
ment to extract general design guidelines, we could not to isolate the effect and
therefore could not include their study results in our analysis.

We encountered similar problems in analyzing Bederson et al.’s (2004) study
on PDA-size calendar use. Their study looked at two interfaces: the Pocket
PC calendar that provided a single level of detail per view (day, week, month,
or year), and the DateLens interface that used a Table Lens-like distortion
technique to show multiple levels of details simultaneously. Again, the study
seemed to compare the effects of providing separate views one at a time, or
embedding them in a single view.

Their study looked at a variety of calendar tasks that involved searching for
appointments, navigation and counting scheduled events, and scheduling given
constraints. While their study did not find an overall time effect, the researchers
found a task effect and thus divided the tasks into simple and complex tasks
based on task-completion time. The study concluded that the DateLens trials
were faster in complex tasks, while the Pocket PC trials were faster in simple
tasks.

On closer inspection, we realized that while their DateLens interface provided
a day, week, month, and year view, it also provided a three-month and a six-
month view, with the three-month view being the default in the study. On the
other hand, the Pocket PC interface did not seem to have a corresponding three-
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month overview. If that were the case, since three of their six complex tasks
(tasks 5, 10, 11) required scheduling and counting events within three-month
periods, we could not determine if the benefits of the DateLens interface in these
tasks came from providing a three-month overview, or from providing multiple
levels of details in the same view. Again, our need to understand performance
contribution from individual factors forced us to exclude these results from our
analysis.

Information content

We encountered difficulties in direct comparison of interfaces with different in-
formation displayed, as the interfaces were often used for different purposes.
One example is Hornbæk et al.’s study on online document reading (Hornbæk
and Frokjær 2001; Hornbæk et al. 2003).

Their study looked at two interfaces that provided multiple levels of data
simultaneously. The low-VIR view in their separate interface showed document
header and subheaders and acted as a table of contents. Their embedded inter-
face showed context based on a degree-of-interest algorithm, thus the content
was dynamic based on the focal point of the document. Not surprisingly, par-
ticipants used the two interfaces differently. Reading patterns indicated that
when using the embedded interface, participants spent more time in the ini-
tial orientation mode, but less time in the linear read-through mode, suggest-
ing that the embedded interface shortened navigation time by supporting an
overview-oriented reading style. In contrast, reading patterns in the separate
interface was found to be less predictable and “shaped by situation-dependent
inspiration and associations”, and “the overview pane grabs subjects’ attention,
and thereby leads them to explorations that strictly speaking are unnecessary”
(p. 144), probably because display was similar to a table of contents. Study
results reflected the different information content displayed in these low-VIR
displays. Compared to the embedded interface, participants who used the sep-
arate interface produced better results in the essay tasks at the expense of
time, and the study failed to find differences between the two interfaces for the
question-answering tasks. While the different information content was arguably
part of the interface design, we could not incorporate results from this study
in our analysis as we could not separate out visual spatial effects from those of
displaying different kinds of information in the low-VIR displays.
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Levels of display

The total amount and levels of information provided by the interface is also
important, as extra information or levels may be detrimental to performance.
One example is Plumlee and Ware’s (2006) study on visual memory in zoom-
ing and multiple windows. Their temporal interface had a continuous-zoom
mechanism that showed intermediate levels of detail that did not seem to be
present in the separate interface, which seemed to have only two levels based on
the researchers’ descriptions. Their study task required participants to match
complex clusters of three-dimensional objects. To do so, participants needed to
first locate clusters at the low-zoom level and match cluster components at the
high-zoom level. Intermediate-zoom levels did not seem to carry task-relevant
information as the clusters themselves were not visible given the textured back-
grounds.

Plumlee and Ware (2006) stated that participants needed 1.5 seconds to go
through a magnification change of at least 30 times between the lowest and
highest zoom levels. During this time, participants needed to keep track of the
components in various objects in their short-term memory. We wondered if hav-
ing the extra levels of detail in their temporal interface unnecessarily degraded
participants’ visual memories and made the interface less usable. This extra cog-
nitive load may explain the relatively small number of items participants could
handle before the opponent separate interface became more appropriate for the
task, in contrast to the results of a 2005 study on graph visualization by Saraiya
et al. (2005). Saraiya et al.’s (2005) Single-Attribute temporal interface sup-
ported better performance than their Multiple-Attribute hiVIR interface even
when the task involved a 50-node graph, each node with 10 time points. Due
to the differing levels of data displayed in the two study interfaces, we excluded
Plumlee and Ware’s (2006) study from our analysis to understand the conditions
in which simultaneous display of multiple data levels is beneficial.

Similarly, Baudisch et al. (2002) studied static visual path-finding tasks and
dynamic obstacle-avoidance task using three interfaces each providing multiple
levels of details. Their zoom and pan temporal interface and their overview plus
detail separate interface seemed to support more levels of detail than their focus
plus context embedded interface, which had two levels only. Their embedded
trials were faster than the temporal and the separate trials for the static visual
path finding tasks, and were more accurate in the dynamic obstacle-avoidance
task. While the special hardware setup in their embedded interface undoubtedly
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contributed to the superior participant performance, we wondered if the extra
resolutions may have distracted participants in the other two interface trials,
even though we did include this study in our analysis of simultaneous displays
of multiple levels of detail as we believe the difference in the number of display
level was small.

Levels in data

Since researchers have argued that the interface should only display a different
data resolution if it is meaningful to the task at hand (e.g., Furnas 2006), the
number of displayed data levels is an important consideration. For example,
in Hornbæk et al.’s (2002) study on map navigation, there were surprisingly
large differences in usability and navigation patterns between the two study
maps, despite being similar in terms of the number of objects, area occupied by
the geographical state object and information density. The maps differed by the
number of levels of organization: the Washington map had three levels of county,
city, and landmark, while the Montana map was single-leveled. Perhaps for this
reason, the study failed to find differences in participant performance when using
the two study interfaces with the Montana map, but their participants were
faster in a navigation task and more accurate in the memory tasks using just
the temporal interface without an overview with the Washington map. We took
advantage of this unintended data-level difference to examine how interfaces
with multiple levels of display data support single-leveled data. These fortuitous
opportunities for re-analysis were, however, rare.

Interaction complexity

In some cases, interaction style may be a factor in the study, and in others,
unintended differences in interaction complexities among the interfaces studied
may not be avoidable. Nonetheless, interaction complexity differences make
comparison difficult, as seen in Hornbæk and Hertzum’s (2007) study on fisheye
menus.

In their 2007 study, Hornbæk and Hertzum’s (2007) intention was to study
the visual design and use of fisheye menus (Hornbæk and Hertzum 2007). They
had four interfaces: a traditional cascading menu (temporal), the Fisheye menu
as described by Bederson (2000) (embedded), the Overview menu (separate), and
the Multifocus menu (embedded). The separate and the embedded Multifocus
interfaces were both based on Bederson et al.’s (2004) Fisheye menu, and all
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three simultaneous-VIR interfaces implemented the focus-lock interaction to
aid menu-item selection. The separate interface did not implement distortion,
and showed a portion of the menu items based on mouse position along the
menu, showing the field-of-view in the low-VIR view. The embedded Multifocus
interface showed important menu items in readable fonts, and did not have an
index of letters as in the embedded Fisheye or the separate interfaces.

Surprisingly, their temporal interface outperformed all other simultaneous-
VIR interfaces. The researchers suggested that one possible reason was the
relatively simple navigation in the temporal interface: their participants en-
countered obvious and severe difficulties in using the focus-lock mode in the
other interfaces. While the researchers successfully identified a usability prob-
lem in the Bederson et al.’s (2004) Fisheye menu, we could not conclude if the
visual designs of the other three simultaneous-VIR interfaces were truly inferior
to the temporal interface that showed one VIR at a time.

Ensure comparable interface with follow-up studies

Our recommendation to use comparable interface can be difficult to implement.
One challenge is to identify study elements prior to the study to ensure com-
parability. For example, in Hornbæk’s et al.’s study on map navigation, the
researchers did try to use comparable maps (Hornbæk and Frokjær 2001; Horn-
bæk, Frokjaer, and Plaisant 2003). Differences between the two study maps
were only apparent after the study.

Another difficulty in adhering to these suggestions may be due to a conflict
of evaluation goals: the goals of the original designs were to compare between
systems at the overall-performance level, while our goal was to extract the effects
of interface-use factors in systems. It is therefore difficult to modify original
study designs without changing these goals, since the systems themselves are
complex and are frequently incomparable at the interface-factor level.

In both cases, we believe follow-up studies are needed. Follow-up studies,
either performed by the original researchers or by third parties, can take ad-
vantage of the knowledge gained in original studies or system-level studies, such
as correcting mistakes made in original studies as in using different levels in
data or different levels in interfaces. System-level evaluations can be used as a
vehicle to identify factors, perhaps by detailed observations of how participants
interact with the systems. These factors can then be studied in more detail and
in isolation in subsequent studies. For example, Baudisch et al.’s (2004) Fishnet
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interface study identified at least two factors, the visual components’ spatial ar-
rangement and the row-column association with the highlighted popouts, which
can be studied in isolation with appropriate study designs.

4.8.2 Capture usage patterns

In most reviewed studies, the main measurements were performance time, accu-
racy, and subjective preferences. While these measurements provided valuable
information on overall interface effectiveness, efficiency and user acceptance,
they may not be sensitive enough to illuminate factors involved in interface use
and to tease out design tradeoffs, especially when the study failed to find overall
performance differences between the interfaces.

While most reviewed studies reported experimenter observations on partic-
ipant strategy and comments to interpret performance results, only 5 of the
19 studies reported usage patterns, constructed either based on eye-tracking
records or navigation action logs (Table 4.2).

We found these five studies to be most useful in our analysis. For example,
Hornbæk et al.’s (2003) study on online document reading used progression
maps to investigate reading patterns. Progression maps showed visible parts
of the document during the reading process. The researchers interpreted study
results using reading patterns derived from these progression maps and provided
a richer understanding of how the study interfaces were used. For example,
their reading pattern explains the longer performance time in the question-
answering task trials using the separate interface: “further explorations were
often initiated by clicking on the overview pane”, and “further exploration [of
the displayed documents] happen[ed] because of the visual appearance of the
overview and because of the navigation possibility afforded by the ability to
click the overview pane”. They therefore concluded that “the overview pane
grabs subjects’ attention, and thereby leads them to explorations that strictly
speaking are unnecessary” (p. 144).

In another of their studies, Hornbæk and Hertzum (2007) looked at fisheye
menu use. Despite not finding performance differences between their simultane-
ous-VIR interfaces, eye-tracking results showed interesting insights into how
the interfaces were used: their participants used the low-VIR regions more fre-
quently in the embedded Multifocus interface trials, possibly due to the readable
information included. The researchers were therefore able to conclude based on
usage pattern that designs should make “the context region of the [fisheye menu]
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interfaces more informative by including more readable or otherwise useful in-
formation” (p. 28).

Capture usage patterns with observations

We found that usage patterns provided rich insights in interface use regardless
of statistical results. We therefore recommend recording and reporting detailed
but non-intrusively collected usage patterns in study, from simple observations
to detailed interactivity and eye-gaze logs.

4.8.3 Isolate interface factors

Information visualization systems are complex interfaces that typically involve
visual encoding and interaction, and for some implementations, view coordina-
tion and image transformation. While simply identifying such factors is proba-
bly sufficient to evaluate system effectiveness, studying overall effects may ob-
scure contributions from each factor, a difficulty we encountered during our
analysis to draw design guidelines based on these factors.

That was the case when we looked at Gutwin and Skopik’s (2003) study
on two-dimensional steering, where at least three factors were at play. Their
study looked at five separate and two embedded interfaces. In addition to the
different spatial arrangements of the different levels of details in their interfaces,
there were also different effective steering path widths and lengths and different
interaction styles. Section 4.5 discusses potential factors in this study in detail.

Another type of difficulty we encountered in our analysis was to tease out
usability factors involved in the embedded techniques. While showing all data
as a single view in context may provide benefits, these techniques often require
more complex interactions and image distortion, which has been shown to incur
costs in orientation (Carpendale et al. 1997) and visual memory (Lam et al.
2006). Ideally, we would like to be able to study each of these factors in isola-
tion. However, we were only marginally successful in teasing out the effects of
distortion, as our study set had embedded interfaces that implemented different
types and degrees of distortion. For example, Baudisch et al.’s (2002) study
implemented their embedded interface with a hardware approach, using differ-
ent pixel density in their displays to recreate the two regions, thus avoiding the
need for distortion in their interface. Their study found performance benefits
in all their tasks using their embedded display. In contrast, studies that imple-
mented drastic and elastic distortion techniques reported null or mixed results,
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along with observed usability problems, for example the Rubber Sheet Naviga-
tion (Sarkar et al. 2003) in Nekrasovski et al.’s (2006) study, the Hyperbolic
Tree browser in Plaisant et al. (2002) and Pirolli et al.’s (2003) studies, and the
fisheye projections in Schafer and Bowman (2003). Despite this insight, our dis-
tortion classification is still rough, both in terms of classifying distortion types
and performance effects. Section 4.6.1 further discusses distortion in embedded
interfaces.

Isolate interface factors with follow-up studies

As in the case of using comparable interfaces, it may not always be possible
to identify all relevant interface factors at experimental design. In addition,
conducting fully-crossed experiments with a large number of factors may be too
expensive. We therefore also recommend conducting follow-up studies to focus
on a selected subset of the identified factors.

4.8.4 Report study details

One of the frustrations we had while analyzing our study set stemmed from
the lack of details in study reporting. Indeed, Chen and Yu (2000) encountered
similar problems in their meta-analysis. Since their meta-analysis synthesized
significance levels and effect sizes, they had to exclude many more studies than
in our qualitative analysis. Based on their experience, Chen and Yu recom-
mended four standardizations in empirical studies: testing information, task
taxonomy (for visual information retrieval, data exploration, and data analysis
tasks), cognitive ability tests, and levels of details in reporting statistical results.
They also asked for better clarity in visual-spatial properties descriptions and
more focus on task-feature binding in studies. The researchers concluded that
“it is crucial to conduct empirical studies concerning information visualization
systematically within a comparable reference framework” (p. 864).

In addition to supporting Chen and Yu’s (2000) recommendations, we have
two further recommendations. We advocate reporting full task instructions. We
also advocate documenting interface interactions with video, or even making the
interface prototype software and trial experiments available for download. Al-
lowing others to see or experience the exact instructions and interface behaviours
seen by study participants would help reproducibility and clarify study proce-
dures for later meta-analysis.
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Although nine of the 19 reviewed papers provided detailed descriptions of the
study tasks, only five provided actual task instructions. Since interface use can
be severely affected by task nature such as the levels of detail required in task
answers, it was difficult to analyze study results when the publications did not
provide the written task instructions given to participants before the trials and
any verbal hints given during the trials. For example, in our analysis, we needed
to ascertain the factors that led to successful use of simultaneous-VIR displays.
One possibility was when task instructions provided clues that span multiple
data levels. Since we attempted to reinterpret the results based on different
criteria, we encountered difficulties when the study did not provide enough task
instructions for us to be certain if the task instructions provided multiple-level
clues, for example in Plaisant et al.’s (2002) SpaceTree study where we had to
guess based on study observations.

Even providing detailed task instructions may still be inadequate in some
cases. For example, in Pirolli et al.’s (2003) preliminary task analysis study,
their tasks were measured for information scent. Even though the researchers
did provide a list of tasks, they did not cross-match the list with information
scent scores, making it difficult for us to later associate task nature, information
scent score, and study results. We therefore assumed the instructions of high
information scent tasks provided useful clues at multiple levels of the tree.

For studies where interaction plays a pivotal role in study results, text de-
scriptions of the interaction, no matter how detailed and carefully constructed,
seem inadequate. One example is Hornbæk and Hertzum’s (2007) study on
the use of fisheye menu, where the focus-lock interaction was found to be one
of the major usability problems. Despite the researchers’ well-constructed de-
scriptions, we did not fully understand the interaction until we tried the online
fisheye menu prototype kindly provided by Bederson1.

Report study details with online resources

We understand the strict page limits for research papers in many venues has
required authors to make draconian choices in the amount of detail reported.
Even without the page limits, such choices should be guided by the study goals
and paper emphasis to ensure readability, as it is impossible to predict how
study results may be used in future analysis. We therefore recommend that
researchers provide study details as electronic supplementary materials in pub-

1http://www.cs.umd.edu/hcil/fisheyemenu/
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lication venues that support archival availability of such materials, or as infor-
mation posted on laboratory websites.

4.9 Limitations of Study

While we attempted to provide a comprehensive systematic review in the use and
design of multiple-VIR interfaces, we were necessarily limited by our method,
our own knowledge and time to include all relevant studies in our review. Sec-
tion 4.1 discusses limitations in our methodology. Also, our synthesis was based
entirely on the publications. In many cases, the goals of these reports were
to directly compare interfaces as a whole, especially when one or more of the
interfaces were novel. Given our goal to understand interface use, we often had
to read the publications from a different perspective, and consequently, we may
have misread or incorrectly inferred information from these publications.

4.10 Summary of Results and Implications for

Design

We analyzed 19 existing multiple-VIR interface studies to extract design guide-
lines, and cast our findings into a four-point decision tree: (1) When are multiple
VIRs useful? (2) How to create the low-VIR display? (3) Should the VIRs be
displayed simultaneously? (4) Should the VIRs be embedded, or separated?
We recommended that VIR and data levels should match, and low VIRs should
only display task-relevant information. Simultaneous display of the different
VIRs, rather than temporal switching between them, is suitable for tasks with
multi-level answers, or task that provided multiple-level clues.

We identified two areas for further investigation in this thesis: the question
of low-VIR display creation, and the issue of simultaneous-VIR display. We
investigated these questions with the next three studies: two laboratory studies
and a field evaluation. For completeness, we have included study results from
the two laboratory studies in this review. The next two chapters report study
details: Chapter 5 reports our laboratory experiment on visual memory costs in
geometric transformation, discussed in this review in the context of distortion in
Section 4.6.1; Chapter 6 reports our experimental-simulation study on overview
use with single-level data, denoted in this review as Lam et al. (2007) and
discussed in various sections as one of the studies analyzed. Our field evaluation
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continued our evaluation into overview use and simultaneous-VIR arrangement,
and is reported in Chapter 8 after the discussion on the design of the study tool
in Chapter 7.
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Chapter 5

Laboratory Experiment:

Visual Memory Costs of

Image Transformations

The second study in this thesis further investigated issues of overview creation
and spatial arrangements of visual resolutions discussed in the summary syn-
thesis (Chapter 4).

Geometric transformations such as scaling, rotation, rectangular fisheye, and
polar fisheye transformations are widely used in creating the low-VIR displays in
multiple-VIR interfaces. Scaling, for example, has been used to create thumb-
nails for documents and rotation in graph navigation (e.g., Yee et al. 2002).
Both fisheye transformations are often implemented in embedded interfaces, ex-
amples include rectangular fisheye transformations to realize text or grid-based
distortions such as DateLens (Bederson et al. 2004) and polar fisheye transfor-
mations used in focus + context map applications such as those used in Schafer
and Bowman’s (2003) study. Section 4.6.1 discusses the various types of distor-
tion implemented in embedded interfaces in more details.

Despite their wide-spread uses, there is a danger that the transformed images
may be too distorted to remain recognizable. Unfortunately, the effects of these
transformations on performance are largely unknown, as seen in our summary
synthesis. Several design guidelines have been suggested to transform images
with minimal disruption. These guidelines include:

• Maintain orthogonal ordering (left-right, up-down ordering), proximity
(distance relationships between objects) and topology (inside-outside re-
lationships) of the original image (Misue et al. 1995);

• Use visual cues to support the user’s comprehension of geometric distor-
tion (Carpendale et al. 1997). Background grids have been suggested as
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the most effective of these (Zanella et al. 2002), as used in EPT (Carpen-
dale et al. 1997).

• Use animation to retain the relationships among components displayed
during transformation, and to avoid reassimilating the new display (Robert-
son et al. 1989). Many visualizations involving geometric transformation
follow this principle, with earlier adopters being Pad++ (Bederson and
Hollan 1994) and Table Lens (Rao and Card 1994).

While these guidelines may provide designers with some hints for handling
geometric transformations, they are based mostly on casual experience, and are
not detailed or quantitative enough for actual implementation. Clearly, different
types of geometric transformations and different degrees of transformation incur
different amounts of perceptual cost. Knowing these costs would help designers
gauge cost-benefit tradeoffs in their applications. Quantifying the effectiveness
of various techniques suggested by these guidelines to mitigate transformation
costs would be also helpful. For example, since smooth animation may impose
a heavy computational load, it would be useful to determine the largest trans-
formation “jump” we can perceptually tolerate. Also, the presence of grids may
create visual noise instead of being beneficial.

Extending earlier studies on geometric transformations and visual search
(Rensink 2004; Lau et al. 2004), the goal of this work was to better under-
stand and quantify the effects of two-dimensional geometric transformations on
visual memory to guide interface and visualization design. In this study, we
presented the first measurements of the effects of four types of geometric trans-
formation on visual memory: scaling, rotation, rectangular fisheye, and polar
fisheye transformations. These transformations were applied to automatically
generated abstract images consisting of dots and connecting lines. Based on
these results, we defined a no-cost zone boundary for each transformation type,
after which task time and accuracy degraded. Based on our results, we refined
two of the design guidelines mentioned above: Misue et al.’s (1995) orthogonal
ordering requirement and the use of background grids to mitigate costs incurred
by transformation (Zanella et al. 2002).

5.1 Experiments

We conducted ten experiments to investigate the effects of geometric trans-
formations on visual memory. Two additional experiments were conducted as
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follow-up experiments. All experiments used a within-subject design. In each
experiment, we considered only a single factor, the transformation type, looking
at five levels of transformation degree. Each transformation level was blocked,
with the order of level presentation partially counterbalanced across participants
using the ordering listed in Appendix C.4.

Each level was tested using two phases, each with eight trials. In the learn-
ing phase, participants were presented with eight stimuli in sequence. In the
recognition phase, they were shown another set of eight stimuli, 50% of which
were shown in the learning phase. For each stimulus, participants were asked
to determine whether it had been shown in the learning phase. Baseline per-
formance was measured in terms of response time and accuracy obtained using
untransformed test stimuli. This baseline was then compared with results of
the transformed trials.

5.1.1 Transformations

We investigated four types of transformations to abstract images consisting of
dots connected by lines: scaling, rotation, rectangular fisheye and polar fish-
eye. We also examined the effects of grid presence and grid type. Ten initial
experiments were carried out:

• Scaling (1, 0.5, 0.33, 0.25, 0.2x reduction factor)

Exp 1. no grid

Exp 2. rectangular grid

• Rotation (0, 30, 45, 60, 90 degrees clockwise rotation)

Exp 3. no grid

Exp 4. rectangular grid

• Rectangular fisheye (0, 0.5, 1, 2, 3 transformation factor)

Exp 5. no grid

Exp 6. rectangular grid

Exp 7. polar grid

• Polar fisheye (0, 0.5, 1, 2, 3 transformation factor)

Exp 8. no grid
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Figure 5.1: Sample stimuli for expt 2, the scaling transformation with rectan-
gular background grids, darkened for printing purposes. Expt 1 used similar
stimuli without background grids.

Exp 9. rectangular grid

Exp 10. polar grid

The choice of transformation ranges was based on two considerations. For
scaling, there was a limit to which we could reduce stimuli size without severely
compromising perceivable detail. Otherwise, we used pilot results to determine
the start of performance degradation induced by the transformations. Based on
our results, we extended two of the experiments: (1) experiment 4-ext: rotation
with a rectangular-grid to study a wider range of rotations: 0, 90, 120, 150, 180,
and (2) experiment 10-ext: polar fisheye with a polar grid to study the effects
of transforming the sizes of the dot, and drawing the connecting lines in various
coordinate systems. We did not include the translation transformation as it had
previously been found to be robust in visual search tasks to at least 2 degrees
of visual angle (Rensink 2004).

5.1.2 Stimuli

All experimental stimuli were randomly generated abstract images consisting
of dots connected by lines. We chose to use abstract rather than photorealistic
images in part to avoid semantic effects, such as the verbal effect found by Gold-
stein and Chance (1971), where recognition accuracy was considerably lower for
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Figure 5.2: Sample stimuli for expt 4 and 4-ext, the rotation transformation
with rectangular background grids, darkened for printing purposes. Expt 3
used similar stimuli for up to 90 degrees rotation without background grids.
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Figure 5.3: Sample stimuli for rectangular-grid fisheye rectangular experiment
(expt 6), along with the maximally distorted image for the polar-grid variety
(expt 7). Expt 5 used similar stimuli without background grids. Grids have
been darkened for printing purposes.
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objects difficult to name. Moreover, in the domain of information visualization,
data is typically represented in abstract form. Our stimuli were similar to two-
dimensional network graphs, but we believe these results generalize to many
different encodings of information.

All original stimuli had a resolution of 300x300 pixels to ensure that all levels
of transformations would fit onto the display screen. In the grid experiments,
we filled the entire screen with the corresponding grid. We used a different set of
images for each experiment, but the same experimental set for all participants.
All images were generated in the same manner for consistency. Each consisted of
15 dots connected by lines. The number of dots was determined in pilot studies
to optimize image memorability. The locations of the dots were randomly gen-
erated. The algorithm only guaranteed non-collision but not constant density
of the dots.

Pilot studies showed that the task was too difficult if we only provided the
dots. Lines were therefore added to link the dots to enhance stimuli memora-
bility, similar to lines drawn between stars in astronomical constellations. The
algorithm that added the lines did not guarantee that all the dots were joined
as a single unit, but it did ensure all of the dots were connected to at least
one other dot, namely, its nearest neighbour. The algorithm minimized line
crossing, but did not control the number of topological features, for example
loops.

When grids were added to the images, the thickness of the connecting lines
was increased to two pixels to better distinguish the dot-line foreground from
the grid background.

For the fisheye transformation experiments, we used a transformation func-
tion, taken from Leung and Apperley (1994):

T (x) =
(d + 1)x
(dx + 1)

(5.1)

where T (x) is the transformed value given input x, and d is the transformation
factor. A larger d value leads to a higher degree of distortion.

Figures 5.1 to 5.4 show a series of stimuli showing all the transformation
types and levels. Additional stimuli used in the experiment are included in
Appendix C.3.
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Figure 5.4: Polar fisheye transformations sample stimuli. First two rows show
sample stimuli for the polar fisheye transformation with rectangular-grid in expt
9. Expt 8 used similar stimuli without background grids. The third row shows
one example stimulus used in expt 10, transformed at the maximum transforma-
tion factor with a polar-grid. Stimuli in the last row were used for expt 10-ext.
Grids have been darkened for printing purposes.
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5.1.3 Participants

A different group of 20 participants was tested in each of the 12 experiments.
All were university students with normal or corrected-to-normal vision. Their
ages ranged from 18 to 34 years.

5.1.4 Protocol

For each of the 12 experiments, all 20 participants completed trials on all five
levels of the test transformation, and the order of appearance of the levels
were partially counterbalanced among the participants. The actual presentation
orders used are listed in Appendix C.4. Each experiment had a separate pool
of stimuli. The stimulus was randomly selected from a pool of 50 and each only
appeared once in the experiment for each participant to avoid learning effects,
but the same pool was used for all participants in each experiment. Prior to the
actual experiment, participants were shown samples of original and transformed
images to help them understand the transformation.

Each transformation-level session consisted of two phases: learning and
recognition. In the learning phase, participants were asked to study eight un-
transformed images; each was displayed for 12 seconds and followed by a 2.5-
second blank screen before the next image appeared. Participants were told they
would need to recognize those images later on in the experiment, and that some
of these images might be transformed in a manner similar to sample images
shown during the training session. In the recognition phase, eight transformed
images were shown to participants in sequence. Half of these had been shown
in the learning phase in their original form. The participants’ task was there-
fore to indicate whether they had seen the images in the learning phase. Task
instructions presented to participants are included in Appendix C.2.

Prior to the experiment, participants were trained on the task using un-
transformed images in both the learning and the recognition phase. They were
required to obtain at least 80% accuracy before starting the actual study.

Each experiment typically took 30 minutes. Participants were compensated
for their time with five dollars. Based on our pilot experience, in order to do
well on the tasks, participants needed to pay close attention to the test images
during the learning phase. As an added incentive, we informed participants that
high-accuracy scores would result in additional five-dollar bonuses.
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5.2 Data Analysis and Result Summaries

Experiment
No-cost zone

Time Accuracy Combined
1. Scaling: no-grid ≥ 0.2x ≥ 0.2x ≥ 0.2x
2. Scaling: rect-grid ≥ 0.2x ≥ 0.2x ≥ 0.2x
3. Rotation: no-grid 45◦ 45◦? 45◦

4-ext. Rotation: rect-grid 60◦ 60◦ 60◦

5. Rect Fisheye: no-grid d = 1 d = 1 d = 1
6. Rect Fisheye: rect-grid d = 2 d = 2 d = 2
7. Rect Fisheye: polar-grid d = 2? d = 2 d = 2
8. Polar Fisheye: no-grid d = 1? d = 1 d = 1
9. Polar Fisheye: rect-grid d = 2 d = 2 d = 2
10. Polar Fisheye: polar-grid d = 2? d = 2? d = 2

Table 5.1: Summary of experimental results: no-cost zones. A no-cost zone
is the largest degree of transformation that can be compensated for without
incurring a cost in performance. The combined result is the minimum of the
time and accuracy results. Note that results from expt 10-ext are not included
since they are inconclusive.

Experiment Tx Level
Performance Cost

Time(s) Accuracy(%)
1. Scaling: no-grid none none none
2. Scaling: rect-grid none none none
3. Rotation: no-grid 60◦ 5.4 (3.4) 69 (88)
4-ext. Rotation: rect-grid 90◦ 5.9 (4.1) 75 (88)
5. Rect Fisheye: no-grid d = 2 5.2 (4.6) 50 (88)
6. Rect Fisheye: rect-grid d = 3 3.9 (2.8) 75 (88)
7. Rect Fisheye: polar-grid d = 3 5.5 (3.5) 75 (94)
8. Polar Fisheye: no-grid d = 2 4.7 (3.7) 75 (94)
9. Polar Fisheye: rect-grid d = 3 5.6 (3.5) 75 (88)
10. Polar Fisheye: polar-grid d = 3 5.6 (3.8) 75 (88)

Table 5.2: Summary of experimental results: performance cost at the transfor-
mation levels just outside the no-cost zones, as shown in the Tx Level column.
Baseline values are in parentheses for comparison. Italicized results are cases
where the boundaries were estimated based on observed trends instead of sta-
tistical analyses. Note that results from expt 10-ext are not included since they
are inconclusive.

We recorded two performance measures: response time and accuracy. Re-
sponse time was defined as the period from which the image was shown during
the recognition phase, to the time when a response was made. Accuracy was
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the percentage of answers that correctly identified whether the images had been
shown in the learning phase. Blind guessing would lead to 50% accuracy, since
half of the images shown in the recognition phase were present in the learning
phase.

For the analysis of response times, we used a repeated measure single-factor
Analysis of Variance (ANOVA) with transformation type as the factor for each
experiment. We used the Greenhouse-Geisser adjustment and marked the re-
sults as adjusted if the sphericity assumptions were violated. Post-hoc analyses
were performed for statistically significant results with Bonferroni correction
and marked as corrected. For the accuracy results, we used the Friedman test
for the initial analyses, and the Mann-Whitney test for post-hoc analyses. Only
significant results are reported for the post-hoc analyses.

For each experiment, we mapped out a no-cost zone beyond which the per-
formance began to degrade, as indicated by measurably higher response times
and lower accuracy rates when compared to performance on untransformed im-
ages based on statistical analyses. Limitations of our no-cost zone definition are
further discussed in Section 5.5.

Due to the large number of experiments, we summarized our results in Ta-
ble 5.1. For cases where boundaries were not established by statistical analy-
ses, we provided estimates based on result trends and marked them by a ‘?’.
Table 5.2 lists the results immediately outside of the identified no-cost zones.
Corresponding baseline values were provided in parentheses for comparison.

As the tables indicate, visual memory was robust against many forms of
transformations to a large extent. Scaling did not impact performance down to
a reduction factor of at least 0.2x. Rotation did not seem to affect performance
up to 45 degrees and both fisheye transformations had little effect on time or
accuracy up to d = 1. The presence of grids generally extended these boundaries.

5.3 Detailed Results and Statistics

We now provide the detailed experimental results and data analyses for each of
the four transformation types. For readability, details of the ANOVA and the
post-hoc analysis results are listed in Appendices C.5.1 and C.5.2 respectively.
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5.3.1 Scaling transformation

Figure 5.5 shows the results. Results showed no significant differences be-
tween the five levels, with or without adding grids to the images: time/no-grid:
F(2.3, 43.2) = 0.67, p = .54, adjusted; accuracy/no-grid: χ2(4, N=20) = 2.01;
time/rect-grid: F(4, 76) = .60, p = .67; accuracy/rect-grid: χ2(4, N=20) = 3.15,
p = .53. Scaling over the ranges studied was not found to impact performance,
and further reduction of stimuli would render them to small too discern details.

5.3.2 Rotation transformation

Figure 5.6 shows the results. For the no-grid experiment, we found a marginal
main effect in response time (F(1.9, 35.8) = 2.92, p = .070). Post-hoc analysis
indicated that performance degradation was measurable beginning at 60 degrees,
at which participants took 5.4 s compared to the 3.4 s baseline. We also found
a marginal main effect in accuracy (χ2(4, N=20) = 8.75, p = .070) but could
not identify a clear no-cost boundary.

For the rectangular-grid experiment, we failed to find a main effect in both
time (F(2.6, 49.7) = 1.33; p = .27, adjusted) and accuracy (χ2(4, N=20) = 7.16,
p = .13), thus we were unable to locate no-cost zone boundaries based on these
results.

Since we found relatively little performance degradation in the rectangular-
grid results, we extended the range of rotation to cover 0, 90, 120, 150, and 180
degrees in expt 4-ext. In order to keep our five-level design, we did not revisit
30, 45, and 60 degree rotations in expt 4-ext, but we did include the 90-degree
rotation condition as a reference point to compare with expt 4. The results are
shown in Figure 5.6 as “Rectangular Grid Ext”. In expt 4-ext, we obtained
similar results for 0 and 90-degree conditions as in expt 4, albeit the 90-degree
result was 8% higher numerically, but not significantly different. Unlike the case
in expt 4, we found a main effect in response time (F(4, 76) = 5.05, p = .001)
in expt 4-ext.

Post-hoc analysis indicated both the 90-degree and the 180-degree rotation
trials were significantly slower at 5.9 s compared to the 4.1 s baseline. We also
found a main effect in accuracy (χ2(4, N=20) = 14.95, p = .005). Post-hoc
analysis indicated the transformed trials were 14% less accurate than baseline.
These results therefore suggested a no-cost boundary of 60 degrees. To de-
termine the improvement provided by the rectangular grid, we compared the
accuracy between the non-grid and grid trials from 30 to 90 degrees. Accu-
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Figure 5.5: Results for the scaling experiments with N = 20. Response time
data points are averages with 95% confidence interval bars. Accuracy results
are medians with quartiles.
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racy for the grid results were higher than their non-grid counterpart by 10%
(two-tailed Mann Whitney test, p = .03). This increase in accuracy was not
accompanied by an increase in time, thus ruling out any time-accuracy tradeoff.

5.3.3 Rectangular fisheye transformation

Figure 5.7 shows the results. For the no-grid experiment, we found a marginal
main effect in response time (F(1.9, 36.2) = 2.83, p = .074, adjusted). It took
0.6 s longer for d = 2 and d = 3 trials than the 4.6 s baseline. We also found
a main effect in accuracy (χ2(4, N=20) = 43.80, p < .001) and the d = 2 and
d = 3 trials were 33% less accurate than the rest of the trials. Using the one-
sample z-test, we found that the accuracy for the d = 2 and d = 3 trials were
at chance (Z(N=40) = 1.44; p = .15). These results indicated a clear no-cost
zone boundary at d = 1.

For the rectangular-grid experiment, we found a marginal main effect in time
(F(2.78, 52.9) = 2.63; p = .063, adjusted). Post-hoc analysis indicated that d

= 3 trials were slower at 3.9 s when compared to the 2.8 s baseline, indicating
a no-cost time boundary at d = 2. There was a strong effect in accuracy (χ2(4,
N=20) = 18.34, p = .001), with baseline and d = 1 trials being 15% more
accurate than for d = 3, indicating a no-cost accuracy boundary at d = 2.

For the polar-grid experiment, the main effect in time was also marginal
(F(4, 68) = 3.32; p = .051, adjusted), with a marginal time degradation at d =
3 (p = .077, corrected). While the task accuracy main effect remained, it was
much smaller (χ2(4, N=19) = 10.4, p = .034), with a no-cost accuracy boundary
at d = 2.

5.3.4 Polar fisheye transformation

Figure 5.8 shows the results. We failed to find a main effect in time for the
no-grid experiment (F(1.82, 34.5)=2.3; p = .12, adjusted). There was, however,
a main effect in accuracy (χ2(4, N=20) = 17.16, p = .002), with d = 2 and d = 3
trials being 20% less accurate than baseline, thus indicating a no-cost accuracy
boundary at d = 1. A one-sample z-test analysis indicated that performance at
d = 2 and d = 3 had not degraded to chance (Z(N=40) = 8.23; p < .001).

For the polar-grid experiment, we found a main effect in time (F(4, 76) =
6.08, p = < .001). Post-hoc analysis indicated d = 3 trials were 1.7 s slower
than baseline and d = 1 trials, which took 4 s on average. This indicated a time
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Figure 5.6: Results for the rotation experiments with N = 20. Response time
data points are averages with 95% confidence interval bars. Accuracy results
are medians with quartiles.
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Figure 5.7: Results for the rectangular fisheye experiments with N = 20. Re-
sponse time data points are averages with 95% confidence interval bars. Accu-
racy results are medians with quartiles.
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no-cost zone boundary at d = 2. We failed to find a main effect in accuracy
(χ2(4, N=20) = 6.92, p = .14).

For the rectangular-grid experiment, we found a main effect in time (F(4, 76)
= 4.32, p = .003). Post-hoc analysis indicated d = 3 trials were slower by 1.8 s
than the 3.8 s baseline and d = 1 trials, thus indicating a no-cost time boundary
at d = 2. We also found an accuracy main effect (χ2(4, N=20) = 11.27, p =
.024). Post-hoc analysis indicated d = 3 trials were 12% less accurate than
baseline, thus indicating a no-cost accuracy boundary at d = 2.

Despite extending the no-cost boundaries from d = 1 to 2, the presence of
either polar or rectangular grids on polar fisheye transformed images did not
substantially improve accuracy. This pattern was in stark contrast to that found
in the rectangular fisheye experiments and suggests that there is something
unusual about the polar fisheye transformation.

One possibility involves the shape of the lines connecting the dots. In exper-
iment 10, the connecting lines were straight. If straight lines were less natural
in the polar transformed images than in their rectangular counterparts, then
this unnaturalness may have contributed to the lack of benefit of grids in the
polar trials.

To test our hypothesis, we extended the polar fisheye experiment to look at
line shape in experiment 10-ext, where the straight lines in the original images
were drawn based on either a polar coordinate system (polar-line), a rectangular
coordinate system (rect-line), or a mirror image of the ones drawn in the polar
coordinate system (antipolar-line). The last case was included to tease out any
potentially adverse effects induced by an unnatural transformation on the lines.
Theoretically, transformation can be applied globally to the surrounding space,
or locally to the objects in the space. In experiment 10, we assumed that space
was transformed without affecting the sizes or shapes of the dots and the lines,
as if they were pinned on the surface instead of completely adhered to the surface
of transformation.

The only exception was in scaling, where we had to transform the dot size to
avoid collision. To determine if this might account for the polar fisheye results,
we also included a case where we transformed the size of the dots and keeping
the lines in the rectangular coordinate system (scaled-dot) We failed to find a
main effect in time (F(2.4, 45.5) = 2.09, p = .13), but did find a main effect in
accuracy (χ2(4, N=20) = 15.7, p = .003). Post-hoc analysis indicated that our
participants made significantly more errors in the polar-line trials than base-line,
and the accuracy was at chance (Z(N=20) = 1.45; p = .15).
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Examples of these transformations are shown in the last row of Figure 5.4,
and Figure 5.9 shows the results. In essence, the pattern found for the polar
fisheye results does not appear to be due to the scaling of the dots, nor the
shape of the lines connecting them. Instead, it appears to be that the polar
fisheye transformation may simply be better suited to visual memory.

5.4 Discussion

Our results were used to map out no-cost zones in all the transformation types
studied. We first compare our results to Lau et al.’s (2004) investigations, which
were complementary to ours and studied visual search instead of visual memory.
We then examine our results in the context of two design guidelines for using
image transformations in interfaces: the use of background grids to mitigate
perceptual costs incurred by image transformations (Zanella et al. 2002), and
preserving horizontal/vertical ordering, proximity, and topology to minimize
transformation-incurred disruptions (Misue et al. 1995).

5.4.1 Effects of image transformations

We compare our study result with those of Lau et al.’s (2004) investigations of
perceptual costs in geometric transformations measured in visual search tasks
to locate the figure “T” amongst a population of “L” figures. Both ours and Lau
et al.’s (2004) study results suggested that invariance was possible for all geo-
metric transformations for up to a point. Interestingly, this invariance appeared
to be more extensive in recognition than search tasks. For example, search task
performance degraded after a 50% reduction, while memory task performance
remained unaffected even at 20% of the original size. Participants could also
tolerate a larger degree in rotation (memory: 45◦; search: 17◦), and a larger
amount of polar fisheye transformation (memory: d = 1; search: d = 0.5)2.

While we applied the transformations to dot locations in most of our exper-
iments, we found interesting results when we applied the polar fisheye transfor-
mation to dot sizes, and drew the connecting lines based on different coordinate
systems. Contrary to our intuition, trials using images with lines drawn based
on the polar coordinate system were the least accurate and equivalent to blind
guessing, while corresponding trials with supposedly unnatural mirror images of

2The Lau et al. (2004) experiments used a different fisheye polar transformation function
with a transformation factor c. A c value of 1.2 can be roughly translated to our d = 0.5.
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Figure 5.8: Results for the polar fisheye experiments with N = 20. Time data
points are averages with 95% confidence interval bars. Accuracy results are
medians with quartiles.
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Figure 5.9: Results for the extended polar fisheye experiment with N = 20.
Time data points are averages with 95% confidence interval bars. Accuracy
results are medians with quartiles. orig = original image; scaled-dot = dot
sizes transformed; antipolar-line = lines drawn as the mirror image in the polar
coordinate system; polar-line = lines drawn in the polar coordinate system;
rect-line = lines drawn in the rectangular coordinate system.

these lines exhibited better performance. These results suggest that distinctive
local structure, rather than global consistency, was a more important factor in
memorability. At large distortions, the lines in the polar-line images formed
similarly rounded shapes, while corresponding antipolar-line images produced
figures with enough acute angles to remain distinguishable, despite their blatant
incongruity with the underlying transformation and with the coordinate system.

5.4.2 Effects of grids

In the design guidelines listed at the beginning of this chapter, Zanella et al.
(2002) suggested using background grids to mitigate perceptual costs incurred
by image transformations. We found that for visual memory, adding grids to
the images appeared to help in two ways:

1. No-cost zone extension. The presence of either rectangular or polar grid
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generally pushed the no-cost zone boundaries to higher levels. For exam-
ple, the combined no-cost zone boundary for the fisheye transformations
were increased from d = 1 to d = 2, and the rotation boundary was pushed
from 45 to 60 degrees.

2. Accuracy improvement. Grids were found to improve accuracy. For rota-
tion, participants were 10% more accurate in grid trials without spending
extra time in the task, thus ruling out potential time-accuracy tradeoffs.
In the case of rectangular fisheye transformation, we found that partici-
pants’ accuracy improved from chance to baseline at d = 2, and to 75%
at d = 3, again without time compensation. Interestingly, we failed to
observe substantial improvement by adding grids to polar fisheye trans-
formed images. Here, the grids appeared to simply elevate response times
slightly, echoing the results for visual search (Lau et al. 2004).

To understand the apparent lack of performance improvement in polar tri-
als, and to obtain further insights to the different transformation types and
their interactions with grids, we revisited the design guidelines described at the
beginning of the chapter.

5.4.3 Revisiting design guidelines

Design guidelines discussed at the beginning of the chapter were based mostly
on design experiences and were mostly abstract. In this section, we explain our
results based on Misue et al.’s (1995) guidelines to provide concrete examples,
and suggest refinement on preserving orthogonal ordering based on our results.

Misue et al. (1995) suggested that horizontal/vertical ordering, proximity,
and topology should be maintained to minimize disruptions incurred by image
transformations. Scaling preserves all three; the limit of this transformation
seems to be how far can one reduce the image before the details can no longer be
perceived. This finding is consistent with the common interface design practice
of using scaled-down versions of images to represent full-resolution file contents,
especially when the file content is visually salient, as in the cases of most image
files and graphically intense web pages. Indeed, various forms of thumbnails
have been suggested for small-screen devices to avoid the laborious reauthoring
of desktop-sized web pages for small screens (Woodruff et al. 2001; Wobbrock
et al. 2002).

The rotation transformation violates horizontal/vertical ordering but main-
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tains proximity and topology. Interestingly, rectangular grids fail to improve
performance starting at a 90-degree rotation. Since our images did not have
a clear up-down axis, this limit may be due to our inability to recognize the
main vertical axis and the up direction in the image. Having a rectangular
grid may help re-orientation, but only if the information provided by the grid is
unambiguous. For example, the grid looked the same for 0, 90 or 180-degree ro-
tations, and similarly for 30 or 120-degree and 60 or 150-degree rotations. Taken
together, our results suggest a refinement to Misue et al.’s (1995) guideline on
maintaining orthogonal ordering: transformation should preserve an orthogonal
relationship between principal axes with a clear up and down.

For both fisheye transformations, proximity is violated while preserving hor-
izontal/vertical ordering and topology. In that case, the perceptual challenge
is to discern the relative distance between objects in the image. The polar
fisheye transformation seemed to be much better tolerated than its rectangular
counterpart, as accuracy was maintained at 75% even outside the no-cost zone
in the polar case while corresponding rectangular trials showed chance perfor-
mance. This result was not expected, as the polar transformation’s rounded
appearance does not look natural on a rectangular screen (Leung and Apperley
1994); among other things, it bends horizontal and vertical lines. Nonetheless,
the polar fisheye transformation is generally preferred over its rectangular coun-
terpart in map applications, since the distortion may be perceived as consistent
with the effect of distorting a planar map onto a hemisphere, and the trans-
formation preserves the angle of the original image (Skopik and Brown 1992;
Churcher et al. 1997). The polar fisheye transformation may also be more fa-
miliar than rectangular, as the effect resembles that produced by the ultra-wide
angle fisheye lens used in photography.

The number of transformation parameters and their degree of integration
may further explain the smaller degree of degradation observed in our polar
fisheye trials. In the rectangular case, the width and height are transformed
separately. Rectangles that are the same distance from the focus point may
not have the same size and shape. Objects may thus be distorted with different
aspect ratios based on their horizontal and vertical distances, which may impose
a higher mental load (Bartram et al. 1995). In contrast, the polar fisheye trans-
formation only distorts radial distances, and may not incur the same problem
as the rectangular case.

This issue may also explain the different effects we observed in our fisheye
transformation trials. In the rectangular fisheye trials, adding a polar or rectan-
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gular grid improved accuracy from chance to 75% without time compensation.
In contrast, neither a rectangular nor a polar grid improved performance in
the corresponding polar fisheye trials. One possibility is that the grid, rectan-
gular or polar, provided a powerful visual cue encoding standard distances in
transformed images that helped to offset the difficulty in distance estimation
when the image was distorted, as in the rectangular fisheye case. Since distance
transformation is integrated in polar fisheye transformations, distance estima-
tion may not be as difficult as in the rectangular case, thus nullifying potential
benefits brought about by adding a grid.

Visual cues may also be used to aid recognition of objects. Researchers have
investigated how the boundary of a scene affects target location after learn-
ing (Hartly et al. 2004), and how view-point changes affect scene recognition
(Christou et al. 2003).

Smooth animation is another technique believed to alleviate the disruptive
effects of image transformations (Robertson et al. 1989; Bederson and Bolt-
man 1999). Similar to previous work on visual search (Rensink 2004; Lau et al.
2004), our current results suggest that the visual system could compensate for
relatively large jumps in transformations. Both visual search and visual mem-
ory have thus been ruled out as valid reasons for requiring smooth animation.
Nevertheless, the need for such animation may arise from some other consider-
ations, and so further investigations are needed before advocating relaxing that
design guideline.

5.5 Limitations of Study

Our study is limited in two aspects: the definition of no-cost zones and the
choice of geometric transformation types.

5.5.1 Definition of no-cost zones

The main motivation behind defining no-cost zone for each transformation type
is to connect to and enable comparison with Lau et al.’s (2004) study results.
Lau et al.’s (2004) study also investigated perceptual costs of geometric trans-
formations but in visual search tasks, and is therefore complementary to our
study. However, the definition of no-cost zone is limited. For this study, we de-
fined the boundary of no-cost zone as the first level of transformation at which
we could measure performance degradation. Our identified boundaries were
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therefore limited by at least two factors: our ability to find statistically signif-
icant performance differences between different levels in our experiment, and
the number of levels we tested in our experiments. It can be argued that our
inability to detect performance differences between experimental levels could
be due to lack of experimental power instead of true absence of performance
degradation, even though our marginally significant cases had medium to large
effect sizes (Appendix C.5.1).

5.5.2 Transformation type

In this work we adopted the view that geometric transformations simply af-
fected object locations within a space. An equally valid view is to consider
transformation on the space itself and the objects embedded within it. That
view corresponds to transforming dot sizes and line shapes in addition to dot
locations, so visual cues providing more information about how the space has
transformed could improve performance. We briefly studied this issue in our
extended study on polar fisheye transformation in experiment 10-ext, where we
looked at effects of transforming dot sizes and their connecting lines drawn in
various coordinate systems. Our results suggest that memorability may depend
more upon local image structure than on global consistency with the underly-
ing transformation and coordinate system. Further investigations are needed to
establish this conclusion more firmly.

Our experiments looked at how a single and uniform transformation affects
visual memory. In real-life situations, images may transform by parts and inde-
pendently. It would be interesting to compare our results with those obtained
using multiple transformations on a single image. We suspect the perceptual
limits for multiple transformations will be much smaller than those established
in our current set of experiments.

We decided on a small number of dots in the stimuli to create an acceptable
level of task difficulty, but scalability is of interest. It would be interesting to
see if the total number of dots in the stimuli would impact visual memory in
similar ways if the stimuli contain local features that are individually salient
and memorable. Also, in most information visualization interfaces, the whole
purpose of fisheye transformation is to create space for new information to
be displayed, instead of creating a large empty space as in our fisheye stimuli
(Figures 5.3 and 5.4). We suspect having new information added to the stimuli
would further reduce no-cost zone boundaries defined in this study.
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5.6 Summary of Results and Implications for

Design

We examined the effects of four different types of transformations on visual
memory: scaling, rotation, rectangular fisheye, and polar fisheye. We found
no-cost zones in all of the transformation types that exceed those found in
Lau et al.’s (2004) work on visual search. We also found substantial benefits
in applying grids to images for all of our transformation types except for polar
fisheye. Our work therefore quantified the limits of our visual memory in coping
with geometric transformations, and validated the use of grids as a visual cue
to aid recognition of images.

The main contributions of our study are to provide empirical evidence to
verify, exemplify, and to refine design guidelines that were based mostly on de-
sign experience and are abstract. Two main design implications drawn from
study results are a refinement on Misue et al.’s (1995) guideline on orthogo-
nal ordering where we suggested providing a clear up-down direction indicator
may be sufficient, and the effectiveness of background grids to mitigate visual
memory costs in geometric transformations.

Even though this study systematically quantifies visual memory costs of two-
dimensional geometric transformations, it is difficult to apply the no-cost zone
boundary values directly to interface design. First, in addition to our study
limitation in the correct identification of no-cost zone boundaries as discussed
in Section 5.5.1, these boundaries were determined based on collected task com-
pletion time and accuracy only. It is therefore unclear if other costs such as
cognitive load may play important roles in task performance. Second, the ab-
stract task of image recognition is difficult to extend to real-life tasks, as we are
not sure how visual recognition affects visualization use in real-world systems
such as multiple-VIR interfaces, even though common sense informs us that
it has to be an important factor. For example, it is unclear if recognition of
a transformed image guarantees usability of the transformed image. In other
words, it may not be the case where image recognition implies that the user
can identify individual nodes, or the relationships between nodes, in a trans-
formed image of a network. For these reasons, direct application of no-cost zone
boundary values in design is difficult.

To study interfaces under more realistic and applicable situations, we mod-
eled our next study using the experimental-simulation strategy frequently used
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in human-computer interaction and information visualization studies. Our study
first identified perceptual requirements for effective overview use in pilot inves-
tigations, and then examined these effects in detail in the actual study.
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Experimental-Simulation

Study: Overview Use in

Multiple Visual Information

Resolution Interfaces

The third study in this thesis looked at overview use in multiple visual informa-
tion resolution (VIR) interfaces with fully-interactive interfaces, scenario-based
tasks, and recorded detailed observations. The goal of the study is to understand
overview use in multiple-VIR display. More specifically, we studied perceptual
requirements of overview graphical objects that permitted users to select areas
of interest for further examinations in high-VIR displays, and examined how
different spatial arrangements of the VIRs can support overview use.

We studied four interfaces: low VIR, high VIR, and two multiple-VIR inter-
faces where high and low VIRs were available in separate regions or embedded
together. Our study data were unordered collections of line graphs synthetically
created for specific visual characteristics at low and high VIRs. At low VIRs, we
used colour encoding of the y-dimension to create a heatmap-like strip. At high
VIRs, we used height coding in conjunction with colour for y-values to show a
more traditional plot. To better study interface preferences, our participants
could use any combination of VIRs in the multiple-VIR interfaces.

We found that in cases where our two perceptual requirements, visual sim-
plicity and narrow visual span, were not met, participants using our multiple-
VIR interfaces did not obtain better time and accuracy performance over the
high-VIR interface, even when the multiple-VIR interfaces offered obvious ben-
efits such as visually associating detailed plots with strips in a complex-target
matching task, or side-by-side display in a visual comparison task. In fact, we
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were intrigued to find that at least 20% of participants chose to forego these
benefits and devoted the entire interface to the high-VIR display. We conjecture
that our results reflect the high interaction costs of multiple-VIR interfaces and
the surprisingly stringent target visual requirements to enable effective overview
use in multiple-VIR interfaces.

6.1 User Study Design

We took a different approach in this study since we had considerable difficulty
in extending the visual-memory experiment results to design. While perceptual
studies collect important information about our visual system, building results
obtained from abstract tasks with static images into design guidelines for vi-
sualization is a challenging and long process, especially when visualization use
is complex and dynamic, and our understanding of human vision, memory and
cognition is still incomplete. Also, the complexity of both our visual system
and visualization use make it difficult to isolate and identify factors to build
models of interface use, and perceptual studies are not optimal in discovering
new factors.

In designing our experimental-simulation study, we took what we believed
to be the strengths of our visual-memory experiment and perceptual studies in
general: rigorous experimental design with established protocols and tasks. We
therefore took care to develop study tasks based on published task taxonomies
(Section 6.1.1), used synthetic data to control visual features (Section 6.1.2),
and used comparable visual elements to encode the data (Section 6.1.3). To
better observe true interface use, we modified standard study design by allowing
our participants to decide on interface use: our interfaces provided a simple
mechanism to switch between interface modes, and our participants could use
either single-VIR mode in all of the multiple-VIR trials. This study design
choice resulted in interesting insights into interface use.

We studied four interfaces: two single-VIR (LoVIR, HiVIR) as compari-
son baselines, and two multiple-VIR (Embedded, Separate). We had four vi-
sual search and compare tasks, and collected three types of data: performance
measurements as time and error rates; detailed observations of participant be-
haviours and strategies; and participant feedback from subjective question-
naires.
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6.1.1 Study tasks

We developed four study tasks based on operations in published taxonomies for
task diversity and generalizability, such as locate, identify, compare, associate,
distinguish, rank, cluster, correlate, and categorize (Amar et al. 2005; Roth
and Mattis 1990; Tory and Möller 2004; Wehrend and Lewis 1990). We used a
scenario of monitoring and managing electric power in a control room to develop
concrete examples of these abstract operations. We first piloted with 12 tasks
listed in Table 6.1.

Based on pilot results and Tullis’s (1985) work on display characteristics
described in the Related Work chapter (Section 3.1.1), we identified two target
characteristics that affected high- and low-VIR view use: visual complexity and
visual span. Complexity referred to the number of peaks in the target, where
simple targets had a single peak and complex ones had multiple peaks. Targets
were considered local when they spanned less than 2 degrees of visual angle, or
2 cm of horizonal display width at a viewing distance of 55 cm. Otherwise, they
were considered as dispersed.

Other display characteristics considered, but not further studied, include
overall visual organization in the display, studied in question 8 and 10, and
visual uniqueness of line graphs, studied in questions 1, 3, 5, 6, 7, and 11 in
Table 6.1.

We selected four of the original twelve pilot tasks to address different aspects
of these perceptual criteria, which were questions 2, 4, 9, and 12 in Table 6.1.
In addition, visual instructions were also provided for participants to control
for individual differences in visual analytical skills. Table 6.2 presents the task
code names, and the domain instructions. Appendix D.2.2 contains all task
instructions displayed on the study software.

Table 6.3 summarizes task characteristics based on the two study perceptual
requirements.

6.1.2 Study data

We found in our pilot studies that data characteristics greatly influenced par-
ticipant strategies. We therefore used synthetic data to ensure contrasting data
characteristics, and developed tight criteria to create the study data collections.

Each data collection contains several data groups: original feature to match
and search target, distractor, and background. To avoid target pop-out by
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Operation
Class

Task Instruction

1 distinguish Does location 107’s power consumption profile differ
from the rest of the locations monitored?

2 find extremum
(vertical)

Which location has the highest power surge for the
time period shown on the screen?

3 correlate A fault occurred at 6:00, and resulted in a temporary
power surge. Which location is affected the earliest?

4 find extremum
(horizontal)

Which location has the most number of power surges?

5 compute derived
value (standard
deviation)

Which location has the most stable power consump-
tion profile?

6 compute derived
value (average)

Which location has the highest power consumption
overall?

7 find anomalies Identify the unique power consumption profile in this
collection.

8 characterize dis-
tribution

The power stations are sorted by longitude of their
location vertically, with top of the screen being the
top of the country. Is the highest power consumers in
the top, middle, or lower 3rd of the country?

9 correlate A fault happened at location <x> at 6:00, causing
a similar power surge in another location afterwards.
Which one?

10 correlate + cate-
gorize

The following recording consists of recording of an en-
tire year. Given power consumption increases with
decreasing temperature, and Winter is the coldest
season, which season do you think is at the beginning
of the recording (Spring, Summer, Fall, Winter)?

11 filter + catego-
rize

The recording is taken from a power control room in
the UK during a football match on TV. It is known
that UK citizens tend have a habit of making tea dur-
ing breaks, thus causing power surges. Which loca-
tion did not receive the broadcast?

12 compare Find the power profile that is the same as that of
location <x>.

Table 6.1: Instructions for the twelve pilot study tasks, along with their opera-
tions.

colour or position, and to control task difficulty and visual diversity, we created
two distractor and five background populations, each containing 19 or 20 time
series with characteristic patterns of peaks. Examples of these populations are
given later on in the section so as to discuss them in the context of study tasks.

131



Chapter 6. Overview Use in Multiple-VIR Interfaces

Domain Instruction Visual Instruction
Max: Which location has the
highest power surge for the time
period shown on the screen?

Look for the brightest spot. You can
mouse over and read the power off the
tool-tip. Also notice the maximum
power scale is shown above.

Most: Which location has the
most number of power surges?

None needed.

Shape: A fault happened at lo-
cation <x> at 6:00, causing a
similar power surge in another lo-
cation afterwards. Which one?

Look for a power surge of a similar shape
as the one at location <x> at 6:00.

Compare: Find the power profile
that is the same as that of loca-
tion <x>.

All the profiles are exactly the same, ex-
cept time-shifted by different amounts.
The power surges of location <x> are in
the middle of each column.

Table 6.2: Instructions for the four study tasks.

Task Complexity Span Comparison
Max simple local no
Most complex dispersed no
Shape complex local yes
Compare simple local yes

Table 6.3: Summary of study task and data characteristics.

Each peak was created using a Gaussian function with a specified mean that
translates to peak location, and variability that translates to peak width. The
peak was scaled to the required height. In addition, we added a random noise of
up to 2 pixels in absolute value to better mimic real-life data (Kincaid and Lam
2006). Figure 6.1 shows the targets and distractors for the Max task, Figure 6.2
for the most task; Figure 6.3 for the Shape task, and Figure 6.4 for the Compare
task. The parameters used were determined based on pilot results.

For the Max task, the target peak was 10% higher, or 6% brighter on screen,
than the distractor peaks and was at least 20% higher than the background
peaks, as shown in Figure 6.1. For the Most task, the target line graph had six
peaks of varying widths and heights at random x-positions, while the distractor
line graphs had four peaks and the background graphs had three peaks or less,
as shown in Figure 6.2. For the Shape task, the target and distractors were
peak clusters of three narrow peaks with similar widths and different heights of
low, medium and high. As shown in Figures 6.3 and 6.5, four configurations
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were created: (a) high-low-high, (b) low-high-low, (c) low-medium-high, and (d)
high-medium-low. For the Compare task, all line graphs had the same three-
peak configuration, but horizontally shifted by ±10, ±20, or ±30 pixels from
the target, as shown in Figure 6.4. As a result, participants could use any of
the peaks in the three-peak line graphs for comparison.

For each task, we generated a collection of 140 line graphs, each with 800
data points, for a total of 112,000 data points. These numbers were determined
by the horizontal and vertical resolution of the display area, so that the entire
collection could be visible without scrolling in LoVIR.

6.1.3 Interfaces

We used two visual elements to show xy-data, inspired by the Line Graph Ex-
plorer system (Kincaid and Lam 2006) that uses analogous but visibly different
visual encodings for low- and high-VIR views. Both elements encoded the x-
dimension in the same way, but their encodings of the y-data value differed:

1. Strip encoded the y-data with colour as a low-VIR strip of 6 pixels in
height:

2. Plot doubly encoded the y-data with both colour and vertical spatial po-
sition as a high-VIR plot of 45 pixels in height:

Colour encoding was achieved by mapping y-value to saturation and bright-
ness in the HSB space. To maximize line-graph detail perceivability, we mapped
the normalized y-value y to saturation s and brightness level b using a sigmoidal
function:

s =
2

1 + e−4(1−y)
− 1; b =

2
1 + e−4y

− 1 (6.1)

Using these two visual elements, we built the four interfaces shown in Fig-
ure 6.1: (a) LoVIR, (b) HiVIR, (c) Embedded and (d) Separate. The display area
for all the interfaces was 872 x 880 pixels. LoVIR showed the data collection
using only the strips, while the HiVIR interface displayed only the plots.

Both Embedded and Separate provided strips and plots, showing only strips
initially. In Embedded, left clicking on a strip added or removed a corresponding
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plot directly below, with the pair bounded by a one-pixel perimeter box to
visually reinforce the association.

In Separate, left clicking on a strip added or removed the corresponding plot
in the bottom panel, and marked or unmarked both the strip and the plot with
separate perimeter boxes. The lower-plot window automatically resized with
newly added plots and took up screen area from the upper-strip window for
up to half the screen height, after which the sizes of both windows remained
constant, and the lower-plot window accommodated newly added plots with
vertical scrolling. Users could inactivate the automatic panel resizing by man-
ually dragging the panel divider. Dragging the panel all the way to the top or
the bottom of the screen allowed users to manually transform Separate to either
HiVIR or LoVIR.

All interfaces had a panel on the far left to display the strip/plot numbers as
text strings for plots or as graphical bars for strips, as shown in Figures 6.6, D.1,
and D.2. Positions and states of the number displays were linked with those of
the corresponding strips/plots.

Common interactions

For consistency, we standardized a number of interactions, adding only slight
interface-specific adaptations.

• Scrolling. A scrollbar supported vertical scrolling when display height
exceeded panel height. LoVIR never required scrolling while HiVIR always
did. Embedded and Separate became scrollable once a plot was added.
Both the top and the bottom panels were separately scrollable in Separate.
None of the interfaces required horizontal scrolling.

• Mouse-click marking. A left click toggle-marked a strip/plot. In LoVIR,
Embedded, and Separate, the mark was a one-pixel box surrounding the
entire strip in the low-VIR view. In HiVIR, we marked by coloring the
plot background, because perimeter marking was not salient in the visu-
ally noisy plots. An example of highlighted plot background is shown in
Figure 6.6 for plot 110.

• Key-press global action. For the single-VIR interfaces, participants could
mark all strips/plots with the O key, and unmark them with the ESC key.
For the multiple-VIR interfaces, pressing the O key added all plots to the
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Figure 6.1: Main study panel showing Max task data: (a) LoVIR, (b) HiVIR,
(c) Embedded, and (d) Separate. The targets are circled in cyan, and one of the
distractors are circled in yellow.

high-VIR view in Separate, or opened all plots within Embedded. Pressing
Esc restored the initial low-VIR view.

• Mouseover highlighting. For all the interfaces, a red one-pixel box ap-
peared around the strip/plot perimeter on mouseover to provide visual
feedback of the strip/plot in focus. In Separate, the strip-plot pair was
highlighted for visual linking. Figures 6.1 and 6.6 show mouseover high-
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Figure 6.2: Main study panel showing Most task data: (a) LoVIR, (b) HiVIR,
(c) Embedded, and (d) Separate. The targets are annotated with arrows in
cyan. The rest of the line graphs are distractors.

lighting.

• Mouseover tool-tips. For all the interfaces, mouseover triggered a tool-tip
to immediately appear, displaying the x- and the y-value of the data point
under the cursor and the strip/plot number of that row.

136



Chapter 6. Overview Use in Multiple-VIR Interfaces

Figure 6.3: Main study panel showing Shape task data: (a) LoVIR, (b) HiVIR,
(c) Embedded, and (d) Separate. The targets are circled in cyan, and one of the
distractors are circled in yellow.

6.1.4 Participants

24 participants, 15 of them female, were recruited using an online reservation
system. The average age of participants was 26 years and ranged between
19 to 40 years. Most were university students, with less than half from the
Department of Computer Science.
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Figure 6.4: Main study panel showing Compare task data: (a) LoVIR, (b)
HiVIR, (c) Embedded, and (d) Separate. The targets are annotated with arrows
in cyan. The rest of the line graphs are distractors.

6.1.5 Material

The study was conducted on a desktop machine with a 3.2GHz Intel P4 CPU,
1.5 GB of RAM, and Java 1.5.0 06, using a 19-inch LCD display with 1280 x
1024 pixels.
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Figure 6.5: Sample targets for the Shape task. Four three-peak targets were
created for the study: (a) high-low-high, (b) low-high-low, (c) low-medium-
high, and (d) high-medium-low.

Figure 6.6: The HiRes study interface showing Most task data. The full display
window had a narrow region on the far left with strip/plot numbers, and then
a main panel in the middle whose contents depended on the interface. The far
right panel contained study instructions: on top, information on visual encoding
and available interface interactions; beneath that, task instructions, as provided
in Table 6.2; on the bottom, the Show Data and Answer Ready buttons.
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6.1.6 Study design and protocol

The study was a within-subject, two-factor design with interface and task being
the two factors, each with four levels. All four interfaces were tested against the
four tasks. Each task had four isomorphic data sets, one for each trial. The order
of presentation of the interfaces was counter-balanced between participants.
Task ordering was randomized, and data ordering was fixed to avoid repeats in
interface/data pairing between participants.

Figure 6.7: Experimental protocol for this study.

As depicted in Figure 6.7, the experiment consisted of four interface sessions,
with one training and one actual task for each of the four interface/task com-
binations. Training for all four tasks preceded actual tasks for each interface
session. The experimenter began by explaining the compact visual encoding
used in the low-VIR views. Participants were then told about the structure of
the study. They were encouraged to try out interface features and to explore
new strategies for the different interfaces during training, as strategies devel-
oped for one interface might not be appropriate for another. Appendix D.2.1
contains the script for the verbal instructions. Since the correct answers were
obvious when found, participants were not explicitly told to optimize for speed
or accuracy.

The entire display window is shown in Figure 6.6 showing the HiVIR in-
terface for the Most task. Figures D.1 and D.2 in Appendix D.2 shows the
Embedded and the Separate interfaces respectively. For each task, participants
first read the instructions in the right-hand panel of the study interface. When
ready, they would press the Show Data button to display the data using the
session interface. Once an answer was found, participants pressed the Answer

Ready button to enter the answer in a dialogue box. Appendix D.2.2 contains
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all the instructions displayed in the experimental software interface.
For each interface/task combination, we allotted at least 10 minutes for

participants to complete each training task. At the end of the 10 minutes, they
had the option to end the training and be told the answer, or to continue the
training. On average, participants took (3 ± 2) minutes to finish the training
tasks, with similar averaged time over the four tasks. In terms of interfaces,
the Separate training trials took four minutes on average, which was one to two
minutes longer than the rest. Actual tasks had five-minute time limits, after
which participants had to proceed to the next task without being informed of
the correct answer. Breaks were allowed in between tasks, and there was a
mandatory five-minute break after two interface sessions.

For each task, the experimenter observed participant mouse actions, verbal
comments, and non-verbal signals including large-scale eye movement and signs
of frustration. These observations were recorded as textual narrations in real
time. For example: “Look for target in low-res. Press O to switch to high-
res. Scan and scroll from top. Found answer, visual check without using tool-
tip”. We used these observations to help us interpret our performance time and
accuracy results. We also developed a coding scheme for two kinds of usage
behaviours:

• Interface mode used to locate final answer. The three categories were
LoVIR mode, HiVIR mode, and both. The observation, only recorded for
the two multiple-VIR interfaces, was later corroborated by the electroni-
cally recorded log of user actions.

• Answer confirmation method. The two categories were visual comparison,
and tool-tip/numeric confirmation, differentiated based on back-and-
forth tool-tip activations of the target and the candidate line graphs.

• Visual search mode. This observation was only collected for the LoVIR
interface. The two categories were serial search, where the participant
systematically inspected one strip at a time and in sequence, and visual

spotting, where they surveyed the entire display simultaneously. Due to
the narrow strips in LoVIR, serial search required the visual guide provided
by the mouseover framing box, as shown in 6.1(a). For visual spotting,
participants simply gazed at the display without any mouse interactions.

After the four interface sessions, participants filled out two questionnaires.
The first questionnaire solicited subjective ratings of the four interfaces over
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the four tasks, while the second solicited the four interfaces’ ease of use with a
five-point rating scale (Table 6.4). The actual questionnaires used in the study
are included in Appendix D.3. The entire study took about two hours, and
participants were compensated with CDN $20.

Code Question
find data It is easy to find the data using the display.
compare
data

It is easy to compare between data using the display.

navigate It is easy to navigate within the display.
disorient It is easy to get disoriented using the display.
remember It is easy to remember individual power profiles using the display.
fun It is easy to fun and enjoyable using the display.
effort It requires a lot of effort to use the display.
frustrating It is frustrating to use the display.
confidence I have confidence in my answer when using the display.

Table 6.4: Five-point rating questions to solicit ease of use ratings for the four
interfaces.

Study hypotheses

We developed three study hypotheses based on pilot observations and our beliefs
about multiple-VIR interface use. H1 aimed to establish boundaries of our two
selected perceptual requirements:

H1 The targets should be simple and span a limited region for a single low-
VIR display to be usable. We believed that the LoVIR interface would
be the most efficient for the Max task, where the visual target satisfied
both criteria; insufficient but usable for Shape task, where the target was
complex; and would be unusable for the Most task, where both criteria
were violated.

In cases where the visual requirements were not completely satisfied, we
hypothesized that selective display of high-VIR plots would mitigate the ad-
verse effects of the lost perceivability, especially when the interface obviously
supported the task. More specifically, our hypotheses were:

H2 When the targets were visually complex and could not be easily detected
in the strips, embedded display of high VIR plots alongside the low-VIR
strips would prime the search by promoting the learning of the unfamiliar
and abstract strip.
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In other words, the Embedded interface would better support the Shape
task than the HiVIR or the Separate interfaces, as the Embedded interface
put the corresponding plots right underneath the strips.

H3 When the targets were visually simple but similar to the distractors, precise
identification of these targets using the low-VIR view would be difficult.
However, users should still be able to select rough matches from the low-
VIR view. The interface that displayed these potential matches in high
VIR that allowed side-by-side comparisons would better support the task.

In other words, the Separate interface would better support the Compare
task than the HiVIR or the Embedded interfaces.

6.1.7 Study design choices

As discussed at the beginning of the chapter, this study aimed to understand if
users could still select regions of interests on low-VIR overviews that contained
visual signals that did not fully comply with our two identified perceptual re-
quirements: simple target with narrow visual span. Our goal of filling specific
gaps in our understanding of multiple-VIR interface use led to eight main design
choices.

1. Synthetic data. To create multiple isomorphic data sets with tight control
over the visual characteristics of target, distractor and background graphs,
we chose to generate synthetic data with real-world data characteristics.

2. Unordered data. While we used the visual encoding of the Line Graph Ex-
plorer system to build our interfaces (Kincaid and Lam 2006), we specifi-
cally avoided providing its sorting or clustering capabilities for two reasons.
First, we wanted to focus on visual search and comparison based solely on
visual qualities of individual targets, instead of the larger context. Pilot
results showed that when the line graph collections as a whole showed
larger trends, for instance clusters, the display was treated as a whole
and participants did not selectively view individual line graphs in detail.
Second, the power of reordering and clustering is already well understood
(Kincaid and Lam 2006; Rao and Card 1994).

3. Task domain and visual instructions. To control for individual differ-
ences in visual analytical skills between participants, we provided specific
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domain task instructions on control room monitoring and the visual op-
eration on the encoded data. Our scenario provided a concrete unifying
story, but did not require any specific expertise on the part of participants.

4. On-the-fly interface switching. To observe our participants’ interface choices
as another indicator of interface effectiveness, we allowed our participants
to switch to either VIR of the multiple-VIR interfaces at any point, even
though we provided an automatic mechanism to allocate screen space be-
tween the two VIRs.

5. Only two discrete VIRs. Some previous multiple-VIR interface studies
have found that distortion-based interaction across a continuous range of
VIRs can decrease performance and satisfaction (e.g., Nekrasovski et al.
2006). In this study, we choose to focus on the issue of spatial arrangement
of separating low-VIR regions from, versus embedding them within, high-
VIR regions. We thus used only two discrete VIRs, as in systems like
TableLens (Rao and Card 1994), to avoid conflating the question of spatial
arrangement with that of distortion. Distortion was studied in Chapter 5,
where we measured visual memory costs of geometric transformations.

6. Same platform and screen area across interfaces. A common platform en-
sured consistent visual encoding, common interaction, and identical dis-
play areas.

7. The full data set is simultaneously visible from the low-VIR interface to
be used as an overview. Our data set size was therefore limited to the
display capability of the low-VIR view, which was 140 line graphs.

As a result of the last three design choices, vertical scrolling was needed
when users chose to display plots.

6.2 Study Results

In this section, we present performance results for the actual tasks as time
and error counts, coded observations, and subjective questionnaire results. We
used the original interface grouping for all the results even when participants
switched to single-mode use in the multiple-VIR interface trials. In a separate
analysis, we did not find significant differences between the single-mode use and
the multiple-mode use populations in the multiple-VIR interface trials.
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Discussions of hypotheses are delayed to Section 6.3.

6.2.1 Performance time and error results

Performance time was defined as the period from which the participant pressed
the Show Data button to the time when he pressed the Answer Ready but-
ton. We analyzed the time results using repeated measure two-factor Analysis
of Variance (ANOVA) with interface and task as the two factors. When the
sphericity assumption was violated, we used the Greenhouse-Geisser adjust-
ment and marked the results as adjusted. Post-hoc analyses were performed
with Bonferroni correction, and we report significant post-hoc results only.

Figure 6.8 shows the time results. Main effects of interface (F(3, 69) = 5.97,
p = .001), task (F(3, 69) = 34.45, p < .0001), as well as interaction between the
two (F(9, 207) = 11.20, p < .0001, adjusted) were found. For interface, post-
hoc analysis indicated LoVIR trials were slower than Embedded or Separate. For
task, all except the Most and the Shape results were different. For interface-
task interaction, HiVIR/Max tasks were almost 3.5 times slower than the rest
of the interfaces for the Max task. LoVIR/Most was almost 2 times slower than
HiVIR/Most, Embedded/Most, and Separate/Most. LoVIR/Shape was 1.7 times
slower than HiVIR/Shape, Embedded/Shape, and Separate/Shape.

Error measures were binary for each task: 1 when the participant provided
an incorrect answer and 0 otherwise. We first analyzed the data using the
Friedman test, and used the Mann-Whitney test with appropriate corrections
for post-hoc analysis. We report significant results only. Figure 6.9 shows er-
ror results for each interface/task condition. Results showed that LoVIR/Most
trials had 7 errors compared to the perfect scores of HiVIR/Most and Em-
bedded/Most, and LoVIR/Shape trials had 6 errors compared to the perfect
scores of Embedded/Shape and Separate/Shape. Along with the time results
in Figure 6.8, we concluded that none of the interface/task results exhibited
time-accuracy tradeoff: tasks that took longer also had more errors.

6.2.2 Observations

We quantified our observations by classifying each trial into one of the encoded
categories. For multiple-VIR interfaces, we based our counts on the interface
mode used at the time where participants found the answers, and the count
results are shown in Table 6.5. For all the interfaces, the methods for answer
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confirmation are summarized in Table 6.6. For the LoVIR interface, the visual
search modes used to locate the visual targets are shown in Table 6.7.

Task LoVIR HiVIR Both LoVIR HiVIR Both
Separate Embedded

Max 14 0 10 9 0 15
Most 0 23 1 0 21 3
Shape 0 13 11 0 14 10
Compare 1 4 19 0 7 17

Table 6.5: Coded behaviour: Interface mode use for the two multiple-VIR in-
terfaces.

Task Vis Tip Vis Tip Vis Tip Vis Tip
LoVIR HiVIR Separate Embedded

Max 7 17 0 24 7 17 4 20
Most 24 0 24 0 24 0 24 0
Shape 18 6 19 5 22 2 19 5
Compare 3 21 2 22 13 11 2 22

Table 6.6: Coded behaviour: Answer confirmation mode: Vis = visual confir-
mation; Tip = Numeric read off tool-tips.

Task Search Spot Task Search Spot
Max 2 22 Most 21 3
Shape 13 11 Compare 22 2

Table 6.7: Coded behaviour: Visual search mode use for the LoVIR interface:
Search = Serial Search; Spot = Visual Spotting.

6.2.3 Subjective preference and questionnaire results

When asked to select the preferred interface overall, participants preferred both
multiple-VIR interfaces over LoVIR, and Separate over HiVIR (χ2(3, N = 14)
= 15.00, p = .002). None preferred LoVIR.

We also solicited two sets of subjective participant feedback with question-
naires. Results were first analyzed using the Friedman test, and the Mann-
Whitney test was used for post-hoc analysis. The first questionnaire solicited
subjective ratings of the four interfaces over the four tasks, as shown in Fig-
ure 6.10. To normalize the data, we divided the score for each interface by the
sum of the scores for the task. Our results showed that LoVIR was preferred

146



Chapter 6. Overview Use in Multiple-VIR Interfaces

Figure 6.8: Averaged time results by task and interface. Error bars show 95%
confidence level. (N = 24)

Figure 6.9: Total error results categorized by task and interface. (N = 24)
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Figure 6.10: Subjective ratings for the four interfaces for each task. Error bars
show 95% confidence intervals. (N = 24)

Figure 6.11: Subjective questionnaire results to solicit ease of use ratings for
the four interfaces. Error bars are 95% confidence intervals. (N = 24)
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for the Max task, while HiVIR was thought to be most useful in the Most task.
For the Shape and the Compare tasks, both HiVIR and Separate were preferred
over LoVIR.

We also obtained feedback on the interfaces’ ease of use with a five-point
rating scale. The questions are listed in Table 6.4, and the actual questionnaire
used in the study is included in Appendix D.3. All except the navigate question
produced significant results. As seen from Figure 6.11, LoVIR scored poorest in
all the questions with significant findings, reflecting our participants’ frustration
with the interface. Only the find data question differentiated the other three
interfaces: our participants found it easier to find data using Separate than
LoVIR or HiVIR.

6.3 Discussion

We investigated whether established perceptual requirements for low VIR could
be relaxed in multiple-VIR interfaces when selective data are shown at high
VIR. With the Max, the Shape, and Most tasks, we studied the two percep-
tual requirements and showed that visual targets needed to be simple and span
a limited visual angle to be reliably detected on the low-VIR overviews, thus
confirming H1. Surprisingly, the merits of our multiple-VIR interfaces did not
seem to relax these requirements based on participant interface choice and ob-
jective performances, thus we were unable to prove H2 or H3. We now discuss
our three hypotheses in more detail, along with a more general discussion on
multiple-VIR interface use.

6.3.1 H1: True. The low-VIR view alone is sufficient if

the target is simple and spans a limited visual angle

For the visual complexity requirement, we compared the Shape to the Max task.
The Shape task targets had three peaks, which were displayed as three bands
with different colour intensities in the low-VIR view (Figures 6.3 and 6.5). Since
these tri-band targets were more visually complex than the single bands in the
Max task, our participants could not easily find the targets in the low-VIR
view. When forced to rely on the low-VIR view, as in the LoVIR/Shape tasks,
we observed that 13 out of 24 participants resorted to serial search to locate the
target. Even when the targets were found, some participants could not confirm
their answers visually and needed to crosscheck the y-values using the tool-tips.
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Not surprisingly, our participants made more errors, took longer and assigned
LoVIR the lowest subjective rating for the task.

In contrast, the LoVIR interface was effective for the Max task, where the
majority of our participants (22 out of 24) could find the targets without resort-
ing to serial search. Indeed, 63% of participants considered the overview mode
to be sufficient and preferred LoVIR for this task. On occasions where the plots
were also available, participants only used them to confirm their answers. In
short, the low-VIR view is extremely effective for the Max task.

The difference in results were large and surprising given the small difference
in the two sets of visual targets. We believe that even though the three-peak
targets in the Shape task were distinctive, the complex structure may be too
difficult for participants to process in the low-VIR view. Nonetheless, about
half of our participants (21 out of 48 times) used both VIRs for target search in
the multiple-VIR trials even though the rest bypassed the initial low-VIR view
and switched to the high-VIR view.

The visual span boundary was established using the Most task and the
Max task. Our Most task results show the extreme difficulty in using the low-
VIR strip when the target spans a wide horizontal region. Unlike the case
of the Shape trials, even serial searching in the low-VIR became difficult for
participants in the Most trials, which required counting the number of peaks
in each line graph. Participants almost always used the high-VIR plots for the
Most task in the multiple-VIR tasks (45 out of 48 times), LoVIR/Most tasks
were on average 89% slower and more erroneous than the HiVIR/Most tasks,
and 91% preferred HiVIR for the task. This lopsided preference is worth noting
since participants were performing the same serial-search operation using either
the strips or the plots. One reason may be that counting peaks is arguably
a detailed visual task that requires foveal vision. In order to count the peaks,
participants would need to move their eyes along the strip to focus on individual
peaks. Despite the visual aid provided by the framing highlight box, participants
could not successfully fix their gaze on the desired strip, and frequently misread
values from strips above or below the intended target. As a result, the low-VIR
view was effectively unusable for the Most task due the dispersed nature of the
targets. Interestingly, adding spaces between line graphs seems to add visual
noise rather than to help guide visual scan. Line Graph Explorer (Kincaid
and Lam 2006), the visualization system that initially presented the strip and
plot visual encodings, has an option where users can add darkly coloured blank
spaces between line graphs. Our early testers for the system found the blank
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spaces too visually jarring, and preferred to use the interface without them. Our
result in this study is similar to Tullis’ model indicating a positive correlation
between target visual angle and search time (Tullis 1985), and we believe that
the situation would be similar for long vertical targets.

6.3.2 H2: False. Embedding high-VIR plots in low-VIR

strips did not enhance complex-target matching

We have established that the complex targets used in the Shape task could
not be easily found by most of our participants, but they could still be serially
searched. We now discuss if placing the more comprehensive and familiar plot
alongside the unfamiliar and abstract tri-band strip would facilitate learning
and prime visual search, enough to at least allow participants to narrow their
search space by selecting a set of potential candidate line graphs for detailed
examination.

We concluded that H2 was not supported since we did not detect any per-
formance differences between the Embedded, Separate and HiVIR trials for the
Shape task. The close proximity of the strip and the plot provided by the Em-
bedded interface did not seem to have been sufficient for our participants to learn
the less familiar colour strips to prime the visual search. In fact, having the ex-
tra overviews did not seem to provide any performance benefits, regardless of
the spatial arrangement of the two VIRs.

Our observations helped to interpret our performance results: half of our
participants in the multiple-VIR interface trials switched to the high-VIR mode
to complete the tasks, suggesting that selectively providing high-VIR plots did
not seem to provide enough detail for the task. To us, the switch was perplexing,
as participants would have to memorize the visual target and scan six full screens
to perform the task. This strategy turned out to be difficult for at least two of
them, as they missed the targets in their first scan, and had to rescan the entire
six screens to find the targets.

One possible explanation of the switching may be the visually different en-
codings of the VIRs. We attempted to minimize the effect of the difference by
visually linking the two encodings with smooth animation in the Embedded in-
terface, and also by instructing our participants with sample line graphs shown
at the beginning of the training sessions. During the design of the visual encod-
ings, we experimented with filling in the area beneath the line graphs, but that
reduced the perceivability of the high-VIR encoding. Even though we could not
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discount the different encodings as a factor that hindered the use of the Embed-
ded interface without further investigation, we believe our participants’ choice
of switching to the high-VIR display was based more on the interaction costs of
the multiple-VIR interfaces. We will further discuss participants’ choice at the
end of the discussion, since it is not isolated to the Shape task.

6.3.3 H3: False. Providing side-by-side visual

comparison with selective detailed plots did not

enhance simple but similar target matching

Our last hypothesis studied whether providing obvious support for the task
would relax the target perceptual requirements. We base our discussion on the
results of the Compare task, where our participants were required to match
the simple single-peak target that only differed from the distractors by a small
horizontal shift.

Our results did not support H3, as we found that participants were equally
slow and error prone for all four interfaces in this task. In other words, we
did not detect performance benefits provided by the extra overview of both
multiple-VIR interfaces, or even by the side-by-side comparison capability of
the Separate interface.

Our observations provided insights to the performance results: our partici-
pants derived a successful strategy to work with the single-VIR interfaces. In
the HiVIR interface, for example, participants took advantage of the mouse
wheel and scrolled vertically up and down with the cursor fixed horizontally at
the horizontal point where the target peaked. As a result, all they needed to do
was to find another peak at the same horizontal point numerically by reading
off the tool-tips, thus avoiding the need to directly and visually compare the
plots themselves. A similar strategy was used in the LoVIR/Compare trials.
Instead of using the mouse wheel, which was not available as the interface was
not scrollable, participants tried to keep the horizontal position of the mouse
constant while mousing vertically up and down.

Due to the success of the strategy, a few participants voluntarily switched
to the high-VIR plots for the Compare task. We saw this happen in 4 out of 24
cases for the Separate trials, and 7 out of 24 cases for the Embedded trials. One
participant in the Separate/Compare trial even chose to use the low-VIR view
exclusively for the task, a surprising choice given our H1 findings.

We did observe evidence to suggest the merits of using the Separate interface
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in its intended form. For the 20 participants that used both the strips and
the plots for the task, 13 found the side-by-side comparison sufficient and did
not crosscheck between the originals and the target peaks by reading off the
numeric values from the tool-tips. In contrast, with the Embedded interface,
only two participants relied on visual crosschecking without tool-tips. Perhaps
that is why our participants preferred the Separate interface for the Compare
task along with the HiVIR interface, even though we could not detect any
performance benefits.

6.3.4 Interaction complexity and spatial arrangements

Our results suggest a surprisingly conservative set of visual requirements for the
overviews to be usable in a multiple-VIR setting: our participants reliably used
the low-VIR displays only when the target was simple and spanned a narrow
visual angle. Any deviation from that composition, as in a three-peak target,
severely reduced the usefulness of the low-VIR displays.

Given the fragility of the low-VIR interface, it is therefore of great interest
to see if selective displays of high-VIR details could compensate for some of the
lost perceivability, or offer enough benefits to tolerate the loss. In short, will
participants take advantage of the low-VIR interfaces to reduce the search space
by first selecting a handful of potential candidates for further examination in
detail? Even for tasks that seemed to be suitable for the multiple-VIR interfaces,
at least 20% of our participants used only the high-VIR displays when given the
choice of a multiple-VIR interface. Granted, using the high-VIR view alone may
be impossible rather than simply difficult if a dramatically larger amount of data
were used, for example, millions of points rather than the 112,000 used in our
study. We did, however, observe considerable difficulties in using the high-VIR
displays, and the need for seemingly elaborate strategies to enable their use.

We believe this interesting choice was due to the cost of interface interaction
complexity, which may also explain the lack of performance benefits over the
optimal single-VIR interface for each task. Although seemingly tedious and
laborious, using the high-VIR plots has a low cognitive load: the only navigation
available is scrolling, a relatively passive exercise, and the answer will usually be
apparent sooner or later. In contrast, navigation in a multiple-VIR interface is
complex, as it involves active selection of potential target candidates, an action
that requires mental and visual concentration that may render decision making
more difficult than when given less choices (Schwartz 2004). It also requires
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the physical effort in clicking on a relatively narrow strip and potentially the
physical effort of scrolling. In our case, having only two VIRs may have made
the target more difficult to select in low VIR. An alternative implementation
would be to allow opening of a group of line graphs adjacent to the selected
target, each opened at an intermediate VIR that gradually bridge between the
two extreme cases. Nonetheless, we believe the rest of the costs would still
remain in this alternative implementation.

Switching from a multiple-VIR mode to a single VIR can thus provide an
easily perceived short-term benefit of lower cognitive load, despite potentially
increasing the total time required to complete the task. Our study training for
users required them to demonstrate proficiency in the use of all four interfaces,
as is usual in single-session laboratory settings. We conjecture that users trained
to demonstrate proficiency in a multiple-VIR interface may still not have inter-
nalized confidence in its use: that is, may not have adequately understood the
longer-term cost of these short-term choices.

For the spatial arrangement of the VIRs, we did not detect differences in
participant performances between the embedded or separate ones. The differ-
ing costs of the multiple-VIR interfaces may explain the lack of demonstrated
differences. For example, embedding plots within the stacked strips can poten-
tially disrupt the overview effectiveness of the low-VIR view, as indicated some
of our participants’ quick successive opening and closing of the same plot in the
Embedded trials: open to see plot details, and close to better see the overview
for visual search. As for the Separate interface, we observed the well-known
problem of associating between separate views, where participants closed and
reopened the plots in the high-VIR view, one at a time, to re-associate them to
the strips.

Despite these costs, we did observe benefits in providing side-by-side compar-
isons in visual comparison tasks. When using the Separate interface, more par-
ticipants relied on visual crosschecking without tool-tip activations to confirm
their answers than in the Embedded trials. The merits of providing side-by-side
visual comparison may explain the subjective preference results. The Separate,
along with the HiVIR interface, were the preferred interfaces for the two vi-
sual comparison tasks, and overall, our participants found it easier to compare
between line graphs when using the Separate interface than either single-mode
interfaces.
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6.4 Limitations of Study

This work was a first attempt to look at the interplay between high and low
VIRs based on overview target perceivability. Obviously, a more systematic
study of other established perceptual requirements, such as item density and
grouping (Tullis 1985), is required to draw more precise conclusions. In addi-
tion, eye-tracking, instead of note-taking, should be used to allow more precise
and objective measurements of interface use. It would also be interesting to
separately test participants’ visual abilities, which might shed more light on
interface choice.

Despite our efforts to ensure diversity and generalizability, our work was
naturally limited by our visual encoding and interactions, interface, and study
design choices (Section 6.1.7). We also encountered challenges which may be
inherent to this study approach (Plaisant 2004). For example, our study failed
to find evidence to indicate multiple-VIR interface use for single-level data. Such
null results may indicate inappropriate choice of tasks, or insufficient training for
participants. My co-investigators and I took extra care in selecting study tasks:
we started with published task taxonomies, created sample tasks suitable for
our visual encoding, and reiteratively selected study tasks based on pilot results.
Even during pilots, we were aware that benefits in our Embedded interface may
not be fully realized in our set of study tasks. Even though we wondered if it
could be due to the simplistic nature of our tasks, we were unable to create a
more complex task that would truly test the use of the Embedded interface.

Another challenge encountered in this study was one of training. Insuffi-
cient training is frequently used to explain lack of use in complex, and often
novel, interfaces (e.g., Plaisant 2004). In our case, many of our participants,
from 20% to 96% depending on the task, switched to the high-VIR mode even
when we believed using the multiple-VIR counterparts should be beneficial. As
discussed in Section 6.3.4, we realized after the study that being able to demon-
strate proficient interface use does not necessarily guarantee effective use, as
participants may not adequately understand the benefits in using the interface
and internalize confidence in its use. Encountering difficulties with participant
training has also been the experience of Nekrasovski et al.’s (2006) study on
tree visualizations.
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6.5 Summary of Results and Implications for

Design

Using a set of contrasting visual targets displayed on two visual information
resolutions (VIRs), we started by establishing the criteria of two visual qualities
for an effective low-VIR view, namely that the target should be simple and
span a limited visual angle. When either of these boundaries were crossed,
multiple-VIR interfaces did not enhance visual search over using a single high-
VIR view, even though the multiple-VIR interfaces provided obvious benefits for
the tasks, for example, integrated VIRs in embedded and side-by-side comparison
in separate. We believe our results reflected the high cognitive costs in multiple-
VIR interaction such as view coordination in our Separate interface. Such costs
should be considered in interface design, especially in cases that lack obvious
benefits in using a multiple-VIR design, as in our case of displaying single-level
data. This issue was discussed in our summary synthesis in Section 4.4.

Perhaps because of these interaction costs, we did not find any performance
differences between the two simultaneous-VIR arrangements in our study, and
the issue remains an open research question. We discussed this issue in our
summary synthesis in Section 4.6, and will further discuss it in the last chapter
of this thesis in Section 9.1.3.
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Session Viewer Design

As mentioned in the Introduction chapter in Section 1.2.4, experimental strate-
gies are necessarily limited by the need to study isolated interface factors using
pre-defined, abstracted, and easily testable tasks performed by non-domain ex-
perts with questionable levels of motivation (Plaisant 2004). In our experimental-
simulation study of overview use in multiple visual information resolution (VIR)
interfaces, we attempted to alleviate some of these limitations by recording de-
tailed observations of participants’ interface choices and task strategies, which
turned out to provide more valuable insights into interface use than the quan-
titative measurements. However, as discussed in the limitations of the study
(Section 6.4), participant training and motivation, as well as study-task limita-
tions, could have hindered our study of interface use.

We believe we needed to evaluate a fully functional visualization system un-
der ecologically valid settings, such as with representative target users, who are
domain experts working on their own tasks using their own data. We therefore
continued our investigations in multiple-VIR interface use with a field evalua-
tion. Specifically, we continued our efforts to study the two research questions
identified in our summary synthesis: how to effectively create an overview and
how to arrange VIRs spatially.

The overview creation and use question was first reviewed in our summary
synthesis in Section 4.4 where we concluded that both providing too many data
points on individual low-VIR views may hinder user performance, and data
displayed also need to provide enough visual details to be useful. We verified
two perceptual requirements, visual complexity and visual span, of graphical
overview objects in our overview-use study in Chapter 6.

The question of VIR spatial arrangements was reviewed in our summary
synthesis in Section 4.6. Although we could not offer design guidelines regarding
the two approaches, our preliminary characterization of distortion usage for the
embedded approach was a conjecture that more drastic distortions may be less
tolerable than mild ones. The impact of distortion, or more generally geometric
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transformations, was the subject of our study in Chapter 5. We also further
examined VIR spatial arrangements in our overview-use study in Chapter 6,
where we noticed interaction costs for each of the approach.

In addition to continuing our investigations of these two research questions,
we also wanted to explore workplace requirements of visual analytic systems.

Our application domain is web session log analysis. We explained the ratio-
nale behind our choice, detailed background information on current practices
and problems in log analysis, along with the nature of session logs, in Sec-
tion 2.4.2. To better focus on studying interface use in the workplace, we de-
cided to implement our own software so that we could better tailor our test tool
to our participants’ data analysis needs. In addition, we could also incorporate
our design guidelines derived from our first three studies in our tool design, and
observe their impact on interface use in our field evaluation. In short, Session
Viewer plays a major role in this thesis as our test bed to examine our design
considerations in based on the first three evaluations in this thesis.

In this chapter, we detail our experience in building Session Viewer, a visual
analytic tool to support web session log analysis. In the Background chapter
(Chapter 2), we considered design implications and requirements based on the
nature of web session logs (Section 2.4.1), the task of exploratory data anal-
ysis (Section 2.1), and potential roles played by visualization in data analysis
(Section 2.2). We now continue our design-space exploration by considering our
target users’ existing analysis practices, workflow, and challenges encountered
in their analysis (Section 7.1). To ensure our design would meet users’ needs,
we invited two end-users to participate in the design of Session Viewer, and
obtained feedback from five target users (Section 7.2). Based on all these con-
siderations, we derived our design goals and implemented them as tool features
(Section 7.3).

The rest of this chapter details the visual components and interactivities in
the final design of Session Viewer (Section 7.4), followed by a use-case scenario
where we illustrate its use with an analysis performed on a set of web session log
data gathered from a large-scale user study conducted by a third-party company
(Section 7.5). Earlier versions of Session Viewer are presented in Section 7.6,
along with four design evolution themes concerning overview creations and panel
layouts.
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7.1 Target Users: Web Session Log Analysts

We designed Session Viewer for experienced web session log analysts. To ground
our designs, we first interviewed five analysts to understand their analysis goals,
tasks and workflows. Each analyst had at least five years of analytical experi-
ence with at least one year in session log analysis. The interviews were semi-
structured with an initial list of questions, but were largely driven by partici-
pants’ descriptions of their analysis processes illustrated with their tools. The
interviews were an hour long and were recorded.

The scripted interview questions were:

1. What are you trying to find when you analyze sessions? What are the
main goals?

2. How do you come up with analysis hypotheses?

3. How do you go about analyzing / examining the session logs? For example,
is there a protocol you follow?

4. Which aspects or properties of the logs are most important to your anal-
yses? For example, do you look only at aggregates (and if so, what); do
you look at individual sessions?

5. What kind of software tools do you generally use? Are they external or
in-house, or self-built?

6. How would you like a software tool to help in your analyses? What would
you like to be able to do?

Based on interview observations, we identified two analysis levels: detailed-
session and statistical-aggregate. Of the five analysts we interviewed, two were
detailed-session analysts, two were statistical-aggregate analysts, and one used
both methods. While both types of analyses aimed to understand usage be-
haviour, they had different needs and illustrated the scope of session log analy-
ses.

Detailed-session analysis aimed to understand usage behaviour by study-
ing sessions in detail. In other words, analysts looked at one session at a time,
following it event by event. The questions asked in detailed-session analyses were
specific, but tended to be open-ended. For example, one investigation by our
analyst was to understand the use of Boolean OR in queries. One of the goals in
detailed-session analysis was to develop metrics to measure intended task goals
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and searcher satisfaction based on event attributes that could be recorded with-
out searcher interventions, such as event action and duration. While searcher
goals and satisfaction are paramount in improving search engine quality, these
measures have to be provided directly by the searchers, and solicitation may
disrupt workflow during studies.

To develop these metrics, our analysts explored sessions so as to relate event
or session attributes to task nature or user satisfaction, usually gathered sepa-
rately based on explicit searcher feedback. Typically, our analysts looked at less
than 500 sessions per analysis. The moderate number was partly due to time
and effort constraints, but more importantly, most analysts could form satisfac-
tory hypotheses based on 100 to 200 pertinent sessions, for example, sessions
with advanced search when the analysts studied advanced search behaviours.
Statistical methods were sometimes used for further analyses.

Statistical-aggregate analysis also aimed to understand usage behaviour,
but at the aggregate level based on established metrics. Typically, analysts com-
pared different session populations resulted from experiments that investigated
effects of algorithm or graphical interface element modifications. One example
was to investigate effects of changes in search result presentations by the search
engine on click-through rate, which is a standard metric to measure the number
of searchers who clicked on individual links. Section 7.5 describes another ex-
ample as a use-case scenario where we compared populations from a user study
where participants performed different tasks.

7.2 Design Process

Session Viewer was developed using the user-centered design approach. We also
involved two target users at various stages of our design process. Initially, we
developed our first paper-based and interactive prototypes based on our un-
derstanding of the web session log data (Section 2.4.1), the general exploratory
data analysis task based on literature (Section 2.1), and specific task details and
analysis needs in web session log analysis obtained from interviews conducted to
gather design requirements (Section 7.1). During this initial stage of the design,
we sought feedback from an experienced detailed-session web session log ana-
lyst to iteratively improve our design. Our design was also guided by our own
experience in using Session Viewer to analyze an existing session log generated
by a large-scale user study, which we eventually used as a use-case scenario to
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illustrate the use of Session Viewer in log analysis (Section 7.5). The result of
this design stage was our first fully functional prototype, SV1 (Section 7.6.1).
This design stage lasted four months.

We tested SV1 with two target users. The first was the detailed-session
analyst who had been providing us with feedback throughout our initial designs,
and the second was a statistical-aggregate analyst who saw the prototype for
the first time at this stage. The result of this design stage was SV2, modified
from SV1 to support multiple session populations (Section 7.6.2). These two
users were also invited to participate in subsequent design discussions of Session
Viewer, and participated in the field evaluation for the final version. The field
evaluation is detailed in Chapter 8.

In addition to our two design collaborators, we also obtained feedback from
five target users for SV2. These sessions were informal observations where we be-
gan by briefing our testers with demonstrations and explanations of the various
visual elements and interactivities of Session Viewer, followed by observations of
users interacting with the software. Most of the time, our users used our sample
study logs in these testing sessions, which generally lasted about 30 minutes.
We also performed more in-depth and multiple-session testing with one selected
user of the five, who had specific requests to improve usability and to extend
functionality of the software. At the end of our second phrase of development,
we consulted a visual designer to improve interface visual quality by inspecting
the interface without using it in analysis. The second design phase lasted six
months.

Based on feedback from users and the visual designer, we modified SV2 to
create SV3 in two months. The total develop time for Session Viewer is therefore
a year (SV1: four months; SV2: six months; SV3: two months). This chapter
introduces SV3, and the next chapter details its field deployment (Chapter 8).

7.3 From Design Goals to Tool Features

This section explains design goals based on considerations of data object, ex-
ploratory data analysis task, and user needs. The section also highlights Session
Viewer tool features that realized these goals. Detailed descriptions of visual
components and interactivities in Session Viewer are delayed to Section 7.4.
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7.3.1 User-defined data objects

Session Viewer manages two base data types in web session logs: session and
event, each with its own list of attributes. Data objects in web session logs are
discussed in the Background chapter in Section 2.4.1.

To reiterate, an event in web session logs represents a user action such as
submitting a query to a search engine. Since each event object has a list of
attributes such as action, duration, and property, Session Viewers allows users
to define a list of event states to further categorize events in addition to
the default grouping by sessions. For example, users can define event states
based on event actions. A Search event, where the user submits a query to the
search engine, can be defined as (Event.action == SEARCH CLICK). Similarly, a
ResultClick event, where the user selects a link from the result page returned by
the search engine, can be defined as (Event.action == RESULT CLICK). More
examples of event states are discussed in the use-case scenario in Section 7.5.

Since each event is associated with a single session, users can define session

attributes based on event states. For example, the session attribute #Search
is defined as the total number of events belonging to the Search event state in
each session.

Since events are time ordered, users can define an usage pattern which com-
prises of a sequence of event states and represents a particular usage behaviour.
For example, denoting the Search event state as S and the ResultClick event
state as R, the event sequence of S→R→S→R→S may represent search explo-
ration. Section 7.4.5 further explains pattern matching in Session Viewer. More
examples of usage patterns are discussed in the use-case scenario in Section 7.5.

7.3.2 Main visualization panels

This section introduces the main visual components in Session Viewer. Fig-
ure 7.1 shows a schematic diagram of the interface, and Figure 7.2 shows a
screen capture. Session Viewer uses multiple coordinated views with standard
linked interactions to display several session populations side-by-side for visual
comparison.

Using our terminology for multiple visual information resolution (VIR) inter-
faces introduced in Section 1.1.1, Session Viewer is basically a separate interface
with each data level displayed as a different VIR. Each VIR is housed in a panel,
which are in turned grouped into panes. Interactions in Session Viewer link these
panels, and are explained in Section 7.4.4.
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Figure 7.1: A schematic diagram showing the multiple coordinated views in
Session Viewer. Each vertical view shows a population with three panes. Each
pane corresponds to a data level and contains one or more panels.

Session Viewer displays each population in a vertical view and shows the
data at three levels, each in a separate pane:

1. The Aggregate Pane corresponds to the session-population data level and
contains panels that display population statistics such as counts, distribu-
tions and annotations. Panels in this pane are low-VIR views that provide
aggregate-level overviews.

2. The Multiple Pane corresponds to the sessions data level and contains
two linked panels of session attributes and sessions as collections of events.
Panels in this pane are low-VIR views that provide sessions-level overviews.

3. The Detail Pane corresponds to the events data level and shows the logs
for a selected session in a table, with one row per event. The single panel
in this view is a high-VIR view that provides the highest level of detail
available for each event object.

Multiple levels of data for each session population are displayed as separate
views using the separate approach. For example, the Aggregate Pane acts as an
aggregated overview at the aggregate-level to the Multiple Pane session attribute
and sessions details. The Multiple Pane in turn acts as an sessions-level overview
to the Detail Pane, which shows event details for an user-selected session.

163



Chapter 7. Session Viewer Design

F
ig

ur
e

7.
2:

T
he

m
ai

n
sc

re
en

of
Se

ss
io

n
V

ie
w

er
sh

ow
in

g
us

er
st

ud
y

da
ta

.
Se

ss
io

n
V

ie
w

er
di

sp
la

ys
m

ul
ti

pl
e

se
ss

io
n

po
pu

la
ti

on
s

in
ve

rt
ic

al
vi

ew
s.

Fr
om

le
ft

to
ri

gh
t:

th
e

O
w

n-
T
as

k
po

pu
la

ti
on

w
he

re
pa

rt
ic

ip
an

ts
pe

rf
or

m
ed

th
ei

r
ow

n
se

lf-
cr

ea
te

d
ta

sk
s;

th
e

C
am

er
a-

T
as

k
po

pu
la

ti
on

w
it

h
se

ar
ch

es
fo

r
a

ca
m

er
a

fe
at

ur
e

gi
ve

n
th

e
br

an
d

an
d

m
od

el
;
an

d
th

e
W

at
ch

-T
as

k
po

pu
la

ti
on

w
it

h
se

ar
ch

es
to

lo
ca

te
a

w
at

ch
ba

se
d

on
gi

ve
n

cr
it

er
ia

.
Fo

r
ea

ch
po

pu
la

ti
on

,
th

e
se

ss
io

n
lo

gs
ar

e
sh

ow
n

in
th

e
A

gg
re

ga
te

,
th

e
M

ul
ti

pl
e

an
d

th
e

D
et

ai
l
P
an

es
.

164



Chapter 7. Session Viewer Design

7.3.3 From design goals to tool features

We set the main design goal for Session Viewer to support session log analysis
at both the statistical-aggregate and the detailed-session analysis levels and to
bridge between the two. Here we highlight the features designed to achieve this
goal.

1. Support analysis at the statistical-aggregate level

Even though statistical analysis leads to highly scalable, succinct, and compa-
rable numeric descriptions of populations, proper statistical analysis requires
matching data with methodological assumptions, which in turn requires under-
standing the data distributions. Also, rapid hypothesis testing is often difficult
in practice, as most statistics packages require non-trivial data regrouping and
formatting for different analyses. To address these concerns, Session Viewer:

• Provides statistical summaries. As shown in the Aggregate Pane in Fig-
ure 7.2, Session Viewer provides descriptive statistics as graphical plots
commonly used in log analysis, such as histograms to show session distribu-
tions based on session attributes (Figures 7.3 and 7.5), and a event-pattern
transition diagram to show the relative amount and transitions between
event sequences (Figure 7.6). Providing aggregate-level overviews helps
analysts identify subpopulations for exploration within Session Viewer or
make informed choices of statistical methods for further analysis. The
issue of developing aggregate-level overviews is further discussed in Sec-
tion 7.6.4 in association with discussions on design choices and evolution.

• Detects patterns. Session Viewer provides a sequence-matching feature
to locate usage patterns that is similar to regular-expression matching in
strings, such as the Unix command grep. In our case, the “alphabets”
are user-defined event states. Users can highlight sessions with specific
event state sequences in the Multiple Pane to visually and rapidly estimate
relative pattern prevalence for hypothesis testing. Section 7.4.5 further
explains pattern matching in Session Viewer. An example is shown in
Figure 7.15 and detailed in the use-case scenario in Section 7.5.

• Enables session population comparisons. The visual equivalent of compar-
ative statistics is visual comparison between populations. Session Viewer
provides side-by-side comparison of populations at all data levels, enabled
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Figure 7.3: Two histograms from the Histogram Panel of the Aggregate Pane
displaying statistical distributions of two session attributes: #Event, or total
number of events per session, and #Search, or total number of search events per
session. The histograms are constructed by merging corresponding histograms
from displayed session populations. Histogram bars are colour-coded by session
populations.

by shared scales in graphical plots across vertical views. For example, all
histograms in the Histogram Panel share the y-scales, as shown in Fig-
ure 7.3.

2. Support analysis at the detailed-session level

Detailed session analysis can yield insights unavailable from aggregate metrics.
However, analysts need to examine individual sessions, track events both within
a single session as well as between sessions, and coordinate between the event
webpages, the session logs, and their own annotations. Moreover, session se-
lection is difficult, since the nature of sessions is difficult to discern from logs,
especially when viewed as text similar to Figure 2.1. Oftentimes, detailed an-
alysts need to use keyword search offered by text-based applications to locate
interesting sessions. To address these issues, Session Viewer:

• Displays events in the context of sessions. As discussed in Section 2.3.1,
an individual datum is only meaningful in context. In the case of web
session log analysis, event contexts are adjacent events within a session
and the larger session population. Context in Session Viewer is provided
in a number of panes. Since events are time ordered and associated with
a particular session, they are always presented in sequence within their
sessions in both the Multiple and the Detail Panes. Each session is put in
the context of the larger population in the Multiple Pane based on session
attributes displayed as a series of bar charts similar to Table Lens (Rao
and Card 1994).

This requirement implies the need to display sessions at the level of events
for the sessions-level overview to be useful. One challenge here was to
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provide enough task-relevant information on these overviews to allow ef-
fective use, as discussed in Section 4.4 of our summary synthesis regarding
low-VIR creations. We also needed to provide sufficient visual details for
users to isolate interesting sessions, as found in our overview-use study
of perceptual requirements of graphical overview objects in Chapter 6.
The issue of overview creation is further discussed in the context of design
evolution in Section 7.6.3.

• Integrates analysis resources. The Aggregate Pane supports annotations
for each population and the Detail Pane provides direct links to event
webpages, as shown in Figure 7.4.

• Guides session selection for detailed analysis. Users can choose sessions by
event sequences. Session Viewer highlights sessions based on user-defined
event sequences defined in a pop-up dialogue box (Figure 7.12). Also, Ses-
sion Viewer displays session-attribute distributions that are reorderable.
The Multiple Pane in Figure 7.2 shows sessions reordered by total event
counts, and the analyst selected sessions with high event counts for de-
tailed study. The action is based on Bertin’s reorderable matrix (Bertin
1981), extended to multiple views to show multi-level data objects. The
Multiple Pane therefore provides multiple representations of the session
data to guide session selection for detailed analysis, a requirement of visu-
alizations to support exploratory data analysis discussed in Section 2.3.2.

The challenge here was to find an effective spatial layout for the differ-
ent panels. Our findings in the first three studies in this thesis suggested
that there were tradeoffs in using either the separate or the embedded ap-
proach: the separate approach may incur problems in view coordinations,
as found in the summary synthesis (Section 4.6) and the overview-use
study (Section 6.3.3), and distortions frequently implemented in the em-
bedded approach may incur perceptual costs, as found in the summary
synthesis (Section 4.6.1) and the laboratory experiment (Section 5). The
issue of panel layout is further discussed in the context of design evolution
in Section 7.6.6.
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Figure 7.4: Session Viewer integrates analysis resources by providing an Anno-
tation Panel for text entries and an Events Panel that links to an external web
browser. Double-clicking on a row in the Events Panel table displays a recreated
webpage based on event URL.

3. Bridge between the statistical-aggregate and the detailed-session

analysis levels

While most analysts we interviewed acknowledged limitations of specific analysis
methods, they also expressed difficulties in extending their practices to include
multiple data levels as most tools did not adequately support cross-level analysis.
For example, to better understand a particular aggregate metric in a statistical-
aggregate analysis, analysts would need to associate and examine individual
sessions with the selected metric values. Similarly, to guide session selection
in a detailed analysis, analysts would need to calculate and plot distributions
of relevant session attributes. Such data-processing steps are non-trivial and
distracting to the main analysis.

Session Viewer encourages multi-level analysis by displaying session logs at
three levels of detail. Using standard linked navigation and highlighting tech-
niques, users can quickly move up and down the data hierarchy in their analysis,
a requirement discussed in Section 2.3.3. For example in Session Viewer, click-
ing on the Transitions Panel in the Aggregate Pane (described below) highlights
sessions with the specified event-state transitions in the Multiple Pane. Users
can then select an individual session in the Multiple Pane to display event details
in the Details Pane.
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4. Connect to, rather than replicate, existing analysis tools

Instead of covering all aspects of data analysis, we envisioned Session Viewer
as part of a toolkit and focused on supporting data exploration and hypothesis
generation, or the exploratory data analysis step in data analysis as discussed
in Section 2.1. Due to our specific process coverage, Session Viewer needs to
connect with log sources and commercial statistics packages. To ease data trans-
fer, Session Viewer imports data from various log sources and exports them in
standardized formats.

7.4 Session Viewer: Visualization and

Interactions

We now describe the individual panels in Session Viewer organized in three
panes: Aggregate, Multiple, and Detail, as shown in Figure 7.2.

7.4.1 Aggregate Pane

This top pane has three panels showing population metrics and distributions:
the Histogram Panel, the Transitions Panel, and the Annotations Panel.

The Histogram Panel serves two purposes: (1) displays session attribute
counts and distributions, and (2) provides session filtering. Individual session
population histograms for each session attribute are merged into a single his-
togram, such as the event count attribute histogram in Figure 7.3. Each popu-
lation’s data are colour coded. For example, in Figures 7.3 and 7.5, the yellow
histogram bars belong to the Watch-Task population. Each histogram bar func-
tions as a toggle button to filter in or out sessions with the corresponding session
attribute values. Figure 7.5(b) shows the effect of filtering out sessions with less
than three events in the red Camera-Task population.

The Transitions Panel displays pattern transitions flowing clockwise (Fig-
ure 7.6). Event patterns are defined in a separate dialog box (Figure 7.12).
The following examples use the shorthand for Search (S) and ResultClick (R)
event states: SSS may suggest query refinement; SRSR may suggest methodical
result refinement; and SRRR may suggest result exploration. Arcs sharing the
same originating and destination states are bundled to avoid overlapping. The
Transitions Panel can be used to study usage behaviour transitions. For exam-
ple, Figure 7.6 suggests that searchers in the depicted population tended not to
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Figure 7.5: Histogram Panel. Individual histograms for each session attribute
are colour-coded and merged into a single display. Each histogram bar functions
as a toggle button to filter in or out corresponding sessions. (a) The original
unfiltered Camera-Task population (red) mostly had sessions with two or less
events. (b) The hollow red histogram bar indicates sessions with two or less
events have been filtered out, as seen in the Sessions Panel.

Figure 7.6: Transitions Panel. With S denoting a Search event state and R,
a ResultClick event state, the display shows transitions between the pattern
S→S→S, S→R→S→R, and S→R→R→R. The colours of the arcs are user-
defined and represent the originating patterns.

refine their queries once they were in the methodical result refinement mode, as
no transitions were found between SRSR, or the methodical result refinement
pattern, to SSS, or the query refinement pattern.

The Annotation Panel is a text box to allow for note-taking, as shown in
Figures 7.2 and 7.4.

7.4.2 Multiple Pane

The middle Multiple Pane has two panels that function as a unit, showing
individual sessions and attributes as indicated by the shared horizontal scroll-bar
in the schematic diagram in Figure 7.1. Each session occupies a unique vertical
lane spanning both panels, as seen in the orange highlight in the schematic
diagram in Figure 7.1 and in the screen capture in Figure 7.2.

The Session Attributes Panel shows user-selected attributes for each ses-
sion displayed in a Table Lens-like chart (Figure 7.10). Since the panel is used
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for displaying trends instead of directly reading off individual attribute values,
heights of as few as 10 pixels are acceptable for the bar charts.

Session attributes can be ordinal, such as the search counts, or categorical,
such as task outcome (success, failure, given-up). Session Viewer allows users
to mark sessions by clicking on the white space at the top of a session to place
an orange-oval marker (Figure 7.7). Session marking is recorded as the marker
session attribute and is therefore reorderable.

The Sessions Panel shows each session as a stack of colored rectangles (Fig-
ure 7.8). Each rectangle corresponds to an event colour-coded by an user-defined
event state. Time flows from top to bottom. Events at the top of the display
are therefore first events of the sessions, and events are displayed in time orders.
The rectangle height is either uniform, thus encoding the position of each event
(or event ordinal), to better display event sequences (Figure 7.8(a)), or encodes
event duration to highlight long events (Figure 7.8(b)). Sessions are aligned at
the start of the sessions by default, or aligned at a user-chosen common event.
Figure 7.8(c) shows two examples of aligning by the first occurrence of a search
event. The right-hand side sessions in Figure 7.8(c) has fewer events after the
common query than those in the left, suggesting a more effective query string.

Users can click to expand individual sessions into two-dimensional displays to
show usage behaviour, with the vertical dimension still encoding event ordinal or
time while the horizontal dimension encodes unique event URLs. For example,
Figure 7.9 shows three types of usage patterns. Vertical columns of event boxes
indicate webpages with the same URLs. Based on detail logs displayed in the
Events Pane, green columns of event boxes correspond to result pages returned
from a general search engine, Google, annotated as SS (Search-engine Searches).
Grey columns boxes correspond to result pages returned from site-specific search
engines such as amazon.com, annotated as TS (Third-party Searches). Diagonal
runs of event boxes represent a search behaviour where users continuously launch
new webpages, suggesting exploration and annotated as TE (True Explorations).

Users can drag and drop attribute names in the Session Attributes Panel
to reorder the sessions, and add or remove attributes displayed by checking or
unchecking a list of user-defined session attributes displayed on the far left panel
of Session Viewer (Figure 7.2).

The vertical display order of attribute names determines the horizontal sort
order of the sessions of both the Session Attributes and the Sessions Panels.
Figure 7.10 shows examples where session reordering can reveal correlations
between session attributes. The attributes of interest are two subjective feed-
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Figure 7.7: Session markers. (a) Users can flag a session by clicking on the
white space at the top of the session to place an orange-oval marker. (b) This
flag is recorded as the marker session attribute, which is reorderable.

back from the searchers who generated the logs: Task Outcome, which could be
Success, Failure, or Given-up; and Satisfaction Score, which was numerical and
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Figure 7.8: Sessions Panel. (a) Event view is the default, where each event
rectangle has the same height to better show transitions. (b) In the Time view,
the height of each rectangle encodes the event duration. (c) In the Aligned view,
sessions are aligned vertically at an user-chosen common event (indicated with
arrow annotations). Sessions without that event are filtered out.

ranged from one to seven.
Figure 7.10 shows two populations: top (a), and bottom (b1, b2). In Fig-

ure 7.10(a,b1), sessions with low Satisfaction Scores were highlighted in orange
and reordered by the Task Outcome, with Failure and Given-up sessions in the
far left. In Figure 7.10(a), the orange highlighting was concentrated on the left
side of the display, indicating a strong correlation between Task Outcome and
Satisfaction Score attributes in the top population. However, in Figure 7.10(b1),
we did not see that same correlation in the bottom population. Instead, we
noticed that #ResultClicks session attribute, or the total number events in a
session belonging to the ResultClick event state, may be correlated with task
outcome. Indeed, there were more red ResultClick events in the Sessions Panel
on the right side of the display, where sessions with the Success Task Outcome
clustered. To explore that correlation, we reordered the sessions by the #Re-
sultClicks session attribute: sessions with low ResultClick counts were on the
left in Figure 7.10(b2). Our hypothesis was confirmed since unsuccessful ses-
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Figure 7.9: Expanded sessions in the Sessions Panel showing three search pat-
terns: SS, Search-engine Searches; TS, Third-party Searches using third-party
online sites as search engines; and TE, True Explorations of search results.

sions (highlighted in orange) were clustered on the left with low ResultClick
counts.

7.4.3 Detail Pane

The low-level pane has a single panel, the Events Panel, that shows an in-
dividual session as a table (Figures 7.2 and 7.4). Each row shows an event,
with columns displaying attributes such as event ID, start time, duration, URL,
the specific query for Search events, and an embedded link to event webpage
displayed in a separate browser using the recorded event URL (Figure 7.4).

7.4.4 Interactions and view coordinations

Session Viewer uses linking and navigation techniques for view coordinations
(North and Shneiderman 1997), as shown in Figure 7.11. For example, as de-
picted in Figure 7.11(a), scrolling and reordering are limited to the Multiple
Pane, but filtering in both the Aggregate and Multiple Panes can be initiated
from Pattern-Matching or Session-Alignment actions, and from the Aggregate
Histogram bars (Figure 7.11(b)). Highlighting a session in the Sessions Panel
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Figure 7.10: Examples to show how the Session Attributes Panel reveals trends
and correlations. Top population: (a) Low satisfaction scores are highlighted
in orange. Sessions are reordered by Outcome and by Satisfaction. Since the
orange-highlighted sessions with low satisfaction scores cluster with the Fail-
ure and Given-up outcomes, the panel shows a high correlation between task
outcome and satisfaction score in this population. Bottom population: (b1)
Satisfaction score and task outcome are not correlated, as seen by the lack of
clustering of low satisfaction scores in the Failure and Given-up sessions. (b2)
Instead, we see the ResultClick event count correlates with task outcome, as
shown by the cluster of highlighted unsuccessful sessions with low ResultClick
counts on the left.

displays its events in the Events Panel and highlights the associated session in
the Session Attributes, as shown in Figure 7.11(c).

Figure 7.11: Interaction coordination scheme between the three data levels: (a)
Session reordering and scrolling is limited to the Multiple Pane; (b) Filtering is
initiated at the Aggregate level, or by the pattern-matching or session-alignment
feature, affecting the Aggregate and the Multiple Panes; (c) Selection and high-
lighting can be initiated at all data levels.
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7.4.5 Other tool features

Session Viewer provides three main tool features that produce session-analysis
views and are dialog-box driven: (1) pattern matching, (2) session alignment,
and (3) session population partitioning.

1. Pattern matching

Since events do not occur in isolation, Session Viewer offers pattern matching
by highlighting sessions with certain patterns of event-state sequences in the
Multiple Pane. Figure 7.15 shows two examples.

As discussed in Section 7.3.1, patterns are specific event-state sequences that
users can define in Session Viewer using a dialog box shown in Figure 7.12, and
pattern matching is similar to regular-expression matching in strings, such as
the Unix command grep. In our case, the “alphabets” are user-defined event
states.

Since a number of actions may be considered interchangeable, Session Viewer
allows an alternative event state for each element in the pattern. For example,
using event states Search (S), ResultClick (R), and NextPage (N), the topic
exploration pattern can be specified as S→R→S/N→R if the NextPage event
state is thought to be the same as the Search event state. Alternatively, users can
use a wild-card state to ignore intervening events between specified sequences.
Users can also specify time constraints at each step of the sequence. Session
Viewer will look for the next event sequence in the pattern and return a match
if the found event is within the specified time. Similar to the ‘+’ operator in
Unix-style regular-expression matching, each step in the defined event sequence
can be matched to a single event in the actual session sequence, or a group of
events with the same event state.

Further matching constraints are also available: Session Viewer can limit
matching to patterns starting at, or ending with, a landmark, such as the be-
ginning or the end of the session, a common search event, or events with atypical
durations (e.g., very long or short events). For example, to limit searches for
navigational pattern to sessions containing only the pattern, the first sequence
in the pattern should be at the beginning of the session, and the last pattern se-
quence at the end: S[Start]→R[End]. The use of pattern matching is illustrated
with the use-case scenario in Section 7.5.
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Figure 7.12: Pattern Matcher. (a) Session Viewer’s Pattern Matcher dialog
box. Users specify event sequences to be matched in the data using a tabu-
lar form-filling interface. For each event state, users can also limit the event
duration and the number of matches (similar to the “+” operation in regular-
expression matching). (b) A sample outcome of the matching, with matched
sessions highlighted in blue.

2. Session alignment

Session Viewer by default aligns all sessions based on first events in each session.
However, when the data contains a large number of sessions that have a search
event with the same query, it is often interesting to compare these sessions based
on that search event. Session Viewer provides a profile of queries used across
all search events in the data, and the total number of sessions containing those
searches. Once the user selects a query from the profile, Session Viewer displays
sessions that have at least one search event with the selected query, and aligns
these sessions at the first occurrence of this common search event. Figure 7.8(c)
shows two examples, where the common search events are squares highlighted
in green, annotated with arrows, and aligned in the y-dimension.
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3. Session population partitioning

Users can create new session populations from a larger population. Session
Viewer provides support for filtering to create new populations, and support for
saving and reloading saved populations.

7.4.6 Implementation details

Session Viewer was written in Java using the JRE 1.5.0 06 library and the
Java2D graphics library.

7.5 Use-Case Scenario: Exploring the

Relationships between Task Type and

Search Behaviour

To illustrate how Session Viewer can be used in web session log analysis, we now
describe a series of analyses performed on web logs gathered from an external
user study. Even though Session Viewer can be used on any session logs, we
showcase study data for the rich labels provided by the original logs, such as
task instructions, task outcome and user satisfaction.

The study was conducted separately from and before the development of
Session Viewer by an independent third-party company called Keynote Systems
Inc. (keynote.com). The study recruited close to 400 participants and generated
about 6,000 sessions grouped by three experimental factors: search engine type,
search domain (e.g., Image, News), and question variant. Question variant
includes three defined search tasks, plus one where participants were asked to
create their own tasks. A previous analysis grouped the sessions along the
three experimental factors and identified two main populations: sessions where
participants were given explicit instructions and those when they performed
their own tasks (Russell and Grimes 2007). We revisited the data and further
refined Russell and Grimes’s (2007) results. We focused on tasks with explicit
instructions. Inferring from task instructions, we found that different question
variants were of different task nature and were not isomorphic, as assumed in
Russell and Grimes’s (2007) analysis. We further found that task nature (e.g.,
Directed/closed information search and Locate, a taxonomy from Rose and
Levinson 2004) was reflected as usage patterns in logs and could be used to
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characterize session populations.
To customize Session Viewer for the study logs, we first defined a set of event

states based on actions: Search, ResultClick, and NextPage. We did not code
events unrelated to the search engine. We also defined a set of session attributes
such as Task Time, or the total time duration per session; #Event, or the total
number of events per session; and #Search, or the total Search event per session.

We then loaded two session populations with the same search engine and
domain, but of different question variants. The center view in Figure 7.13
shows the populations for this question variant, which we called the Camera-
Task population:

Assume you are looking for a digital camera and a friend suggested the

Nikon Coolpix 4600. Use <site> to search for information about the

Nikon Coolpix 4600. How many megapixels is the image resolution of a

Nikon Coolpix 4600 digital camera?

and the right-hand view is the population for this question variant, or the Watch-
Task population:

Assume you are looking for a man’s watch as a gift for a friend or family

member. Use <site> to search for a man’s watch that is water resistant

to 100 meters and under $100. What brand of watch did you choose?

We expected the populations to look similar as the tasks were supposedly
isomorphic, but they looked different at all data levels. More specifically, the
Camera-Task sessions were shorter and had fewer events than the Watch-Task
sessions. We could immediately see from the Sessions Panel of the Multiple
Pane that the Camera-Task sessions had fewer events (Figure 7.13). To better
understand the event-count distribution, we reordered the sessions by dragging
the #Events header in the Session Attributes Panel to the top (Figure 7.2).

However, since the total number of events per session may not correspond
to session time duration, we focused on the Histogram Panel in the Aggregate
Pane to check the distribution of the session attribute, Task Time. As seen from
Figure 7.14, most of the sessions in the red Camera-Task population were under
100 seconds, while the yellow Watch-Task sessions were longer and more widely
distributed.
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Figure 7.14: A histogram showing distributions of the session attribute, Task
Time. Most of the sessions in the red Camera-Task population were under
100 seconds, while the yellow Watch-Task sessions were relatively more widely
distributed.

These visual differences convinced us that the Camera and the Watch-Task
populations were different. We then focused on identifying the reasons behind
these differences, which led us to re-examine the task instructions to understand
the task goals. Even though both tasks aimed to find a commercial product,
they differed in nature: the Camera task directly looked for a property of a
specific object, while the Watch task required exploration as only the properties
of the object, rather than a specific identifier, were given. Using the framework
for search goals proposed by Rose and Levinson (2004), we classified the Camera
task as a Directed/closed informational search, whereas the Watch task is an
Informational Locate task.

Once we hypothesized the difference in task nature based on task instruc-
tions, we searched for usage patterns within the session populations to bet-
ter quantify task nature. Side-by-side visual comparison of the event state
sequences in the Sessions Panels gave us a lead: different search patterns would
be prevalent in session populations of different task types. We visually tested
this hypothesis using the event-sequence matching feature in Session Viewer.
Using S to denote a Search event and X to denote a non-search engine event, we
defined four usage patterns identified in earlier detailed session analyses, which
we further refined based on event-state sequences in the Sessions Panels:

1. Short Navigation: S[Start]→X[End], with the S event limited to first ses-
sion events and the X event to last events.

2. Topic Exploration: S→X→X→X→X

3. Methodical Results Exploration: S→X→S→X→S

4. Query Refinement : S→S→S→S

Using the pattern-matching dialog box (Figure 7.12), we defined these pat-
terns and highlighted the Short Navigation sessions in yellow and the Topic
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Figure 7.15: Sessions Panels for two task types. Short Navigation sessions
are highlighted in yellow, and those with the Topic Exploration pattern are
highlighted in aqua.

Exploration sessions in aqua. Figure 7.15 clearly shows that Short Navigation
searches were more prevalent in the Directed/closed Camera population, while
the Topic Exploration pattern was more common in the exploratory Locate
Watch population. Encouraged by the visual differences, we highlighted the
other search-behaviour patterns and observed similar results.

To test our visual finding on the entire study data, we manually labeled
all other question variants and repeated the analysis with an external statistics
package. As shown in Figure 7.16, our hypothesis was confirmed that task
nature, as inferred by task descriptions, was reflected in usage patterns. In
general, only 14% of the exploratory Locate-type tasks were Short Navigations
compared to 37% in Directed/closed-type tasks. List-type tasks and undirected
information searches were more similar in composition to Locate-type tasks than
to Directed/closed-type tasks. As in the previous analysis, we also concluded
that participants were more exploratory in their own tasks, as they were visually
more similar to the exploratory Watch tasks than the Directed/closed Camera
task at all data levels, as shown in Figure 7.2.

While the Methodical Results Exploration and Query Refinement patterns
were understandably present in exploratory sessions, we wondered what partic-
ipants were doing in those non-search-engine X events in the Topic Exploration
sessions. To answer that question, we selected longer and more involved Topic
Exploration sessions for detailed examination in the Events Panel.

To locate such sessions, we sorted the sessions again by the #Events at-
tribute, and then focused on the high end of the distribution in the Sessions
Panel. In Figure 7.2, we expanded the session with the largest event count
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Figure 7.16: Confirming a hypothesis formed by exploration in Session Viewer:
sessions of Directed/closed information tasks contain significantly more Short
Navigational patterns than sessions of Undirected, List, or Locate task types.

in the Watch-Task population in two-dimensional form to better study usage
behaviour. We found a strange pattern: the first half contained mostly non-
search-engine events colored in gray while the second half contained mostly
NextPage events colored in blue. In the first half, long sequences of events were
punctuated by green Search events in the same horizontal lane, meaning the
Search events had the same URL. To better understand this behaviour, we ex-
amined the individual events in the Events Panel and found two main search
strategies. In the first half of the session, the participant used the search en-
gine (Search events in green) to reach third-party websites such as amazon.com,
walgreen.com and shopping.msn.com, and searched within those shopping sites
(uncoded events in gray). In the second half, the participant used domain-
specific searches (Froogle) that involved mostly NextPage events in blue. We
were intrigued by the first half of the session, where participants used the search
engine as a launching pad for exploration within third-party websites.

To determine if the behaviour was unique to this participant, we expanded
several sessions and saw similar behaviours: search-engine searches (columns
of green boxes, annotated with SS) punctuated by third-party sites searches
(columns of gray boxes, annotated with TS) and true result explorations within
these sites (diagonal gray boxes, annotated with TE), as shown in Figure 7.9.
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This finding suggests a need to differentiate between this new Nested Search
pattern and true Topic Exploration.

In summary, Session Viewer’s side-by-side population comparison at multiple
levels allowed us to quickly spot differences between the Watch-Task and the
Camera-Task populations, which we had originally assumed to be the same.
The pattern-matching feature allowed us to quickly test a hypothesis that the
relative prevalence of different event sequences would be an important feature
for characterizing different session populations. Session reordering guided our
selection of interesting sessions for detail event-by-event examinations, where
we discovered the Nested Search usage pattern.

Our experience in using Session Viewer for web session log analysis was
positive. We further examined our design choices for Session Viewer and inves-
tigated visualization use in the workplace with a field evaluation conducted at
Google Inc., which is the subject of the next chapter.

7.6 Design Evolution

The design presented in Section 7.4 in this chapter is the third version of Ses-
sion Viewer, SV3. As described in Section 7.2, Session Viewer was developed
based on the user-centered and participatory design approaches. Initially, one
of Session Viewer’s target users, a detailed-session analyst, was involved in the
design of the first version (SV1). The addition of a statistical-aggregate analyst
to our design team resulted in the second version (SV2). Based on target users
feedback, we underwent a third round of design revisions before finalizing our
design as SV3.

In this section, we describe our design evolution focusing on major design
choices made during the process. We first explain SV1 (Section 7.6.1) and SV2
(Section 7.6.2) to ground our reflections on design evolution, and discuss four
major themes in the changes: (1) using a scrollable Multiple Pane to provide
sessions-level overview (Section 7.6.3); (2) providing visualizations for aggregate-
level overviews (Section 7.6.4); (3) taking the multiple-coordinated approach
to show multi-level data (Section 7.6.5); and (4) vertically stacking panels to
facilitate comparisons between session populations (Section 7.6.6). Reflections
on these choices based on our field evaluation observations are delayed until
Chapter 8.
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7.6.1 SV1: basic design

The first version, SV1, had a simple interface with only four panels: Session At-
tributes, Sessions, Events, and Dynamic Query (Figure 7.17). SV1 was designed
mainly for detailed-session analysis of a single session population.

SV1 had the basic design of the Multiple Pane in SV3 on the left of the inter-
face, with identical visualization and interactions as discussed in Section 7.4.2.

The right side of the interface housed two panes: Dynamic Query and Events.
The Events Pane of SV1 was similar to the Details Pane in SV3, as discussed in
Section 7.4.3, except it included a table of session attributes and corresponding
values at the top of the pane, in addition to the SV3 Events Panel.

The Dynamic Query Panel in SV1 was not included in SV3. The panel
displayed ranges or categories of session attributes for data filtering, modeled
after Hochheiser and Shneiderman’s (2003) dynamic query visualization. For
continuous session attributes, users could adjust the range of a session attribute
using a double-slider bar to control which sessions are displayed in the Sessions
Panel. For categorical session attributes, each category had a set of grey toggle
boxes labeled with category names and the number of displayed sessions cor-
responding to that category name. Users could include or exclude sessions in
selected categories by clicking on the boxes.

7.6.2 SV2: supporting multiple populations

Since SV1 only showed one session population, we often had to launch multiple
copies of SV1 to compare between session populations and to manually dissect
populations. Even with multiple monitors, we found the comparisons difficult as
it was difficult to arrange the all panels side-by-side. We therefore built the sec-
ond version, SV2, to better support comparisons of multiple session populations
at all data levels (Figure 7.18). As in SV3, SV2 had three panes: Aggregate,
Multiple, and Detail. The visualization and interactions were similar to those
in SV3 described in Chapter 7, except for the Aggregate Pane.

In SV2, the Aggregate Pane had four panels showing population metrics
and distributions: the State Transitions Panel, the State Counts Panel, the
Distribution/Filter Panel, and the Annotations Panel. While the Annotation
Panel was identical to the one in SV3 (Figure 7.4), the rest of the panels were
different.

The SV2 State Transitions Panel were visually identical to that in SV3 (Fig-
ure 7.6), except the transitions were based on event states instead of patterns.
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increase in non search 
engine events

ResultClicks

Figure 7.19: SV2 State Counts Panel was a bar chart with event ordinality
on the x-axis and event counts on the y-axis for all events (gray bars) and
individual event states (stacked and color-coded). Here, the later events were
predominantly non-search engine events, as indicated by the increasingly large
gap between the total event counts and coded event state counts.

SV2’s State Transitions Panel was originally designed to detect unexpected event
sequences and states, such as Search events after a long delay that may indicate
user goal change.

SV2’s State Counts Panel was a stacked bar chart with the x-axis being
session event ordinal and the y-axis as event state counts (Figure 7.19). The
panel was designed to monitor relative event state prevalence over the course
of the sessions. For example, Figure 7.19 shows that while some of the initial
decline in the green Search events was due to an increase in red ResultClick
events, later events were mostly uncoded non-search-engine events, suggesting
exploration.

The SV2 Distribution/Filter Panel evolved from SV1’s Dynamic Query Panel
and displayed ranges or categories of session attributes for data filtering (Fig-
ure 7.20). Users could filter continuous data using the double-slider bars. Fil-
tering was guided by the stripe graphs, or vertical lines on the SV1 Dynamic
Query slider bars which showed distributions. Median values were shown as pur-
ple vertical stripes and also as text on the right. As in SV1’s Dynamic Query
Panel, SV2’s Distribution/Filter Panel displayed categorical session attributes
as toggle buttons, which also provided categorical data filtering guided by the
button labels that showed the categories session counts.

We now discuss the rationale behind these changes in four design discussions.
The first two involve overview creation, and the last two involve spatial layout.
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Figure 7.20: SV2 Distribution/Filter Panel. The continuous attribute Task
Time was represented by a double-slider bar for filtering with the distribution
displayed as a stripe graph on the slider bar. The categorical attribute Task
Outcome was represented by a series of toggle buttons for filtering, with the
category name and counts as labels, and the counts encoded with luminance in
the button background.

7.6.3 Scrollable Multiple Pane and session partitioning

to provide sessions-level overview

The Multiple Pane provides sessions-level overview in Session Viewer. The
challenge in creating such an overview was to provide enough information for
analysts to select interesting sessions for further studies in the Events Panel,
without severely compromising display capacity. This is the classic challenge of
information visualization.

Our summary synthesis informed us that in order for low-VIR overviews to
be useful, we needed to provide sufficient task-relevant information (Section 4.4).
In our case, we decided that session logs analysis required details at the event
level. Also, we needed to display each event as simple visual objects, as guided
by our overview-use study results in Chapter 6.

These requirements severely limited the number of displayable sessions and
data dimensions. To understand the number of displayable sessions, we looked
at a duo 1920x1200-pixel monitor setup, which was typical for our participants.
If we were to encode each event by a single pixel, we could accommodate at
most 3840 sessions each with at most 1200 events. While this top limit may be
feasible visually, we needed a larger interaction target for our users to effectively
select sessions and events without resorting to additional magnification tools. In
fact, we found in our experience that we needed at least 5x5 pixels for each event
rectangle, thus reducing the number of visible sessions five-fold. The number
of data dimensions encoded on our event graphical object was also limited, as
our overview-use study found that visually-complex objects were difficult to
discern and use, even when the extra visual details were available at higher
VIRs (Section 6.3). As a result, we forewent the use of glyph-like visual objects
to increase the number of dimensions encoded, discussed in our Related Work
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Section 3.2.1.
Given that the amount of sessions under analysis could be in the order of

millions, we considered it impossible to display every event and their attributes
available in the data. In other words, we needed to selectively display sessions,
instead of displaying all available sessions. We also needed to selectively display
event attributes.

We considered two methods to automatically select sessions: to provide
scrolling in the Multiple Pane and and thus, only showed part of the Sessions-
Panel overview at any one time; or to cluster the sessions prior to display and
show sample sessions from each cluster as different populations. The latter ap-
proach was successfully applied to show time-series data by van Wijk and van
Selow (1999) and advocated by Keim et al. (2006).

In SV1, we decided on scrolling since our target users were detailed-session
analysts who tended to study hundreds of sessions in detail (Section 7.1). Also,
the layout of SV1 enabled users to devote a large screen area to the Multiple
Pane (Figure 7.17). Given that most of our target users had two 1920x1200-
pixel monitor setup in their workplace, our detailed-session analyst could display
most of his study sessions over the two screens.

In SV2, however, we needed to display multiple session populations. Even
over two wide screens, we frequently observed the need for both vertical and
horizontal scroll bars in the Multiple Pane. We thus revisited the design choice
for scrolling over clustering while designing SV2.

While we found the idea of clustering attractive, it was difficult to preprocess
our rich web session logs. Clustering criteria are likely to change with analysis fo-
cus. For example, in studying usage behaviours in queries using advanced search
features such as double quotes, the clusters may depend on the type of advanced
feature used. For analysis on modeling event transitions, the cluster feature may
be event-sequence transitions. Also, our summary synthesis informed us that
a priori data selection in overview creation may be a double-edged sword, as
increased display capability may come with costs in user confusion and mistrust
(Section 4.4.4).

Given this diversity, we decided against automatic session selection and al-
lowed scrolling in the Multiple Pane, even though our users cannot view all
sessions in the Multiple-Pane overview. Section 8.2.1 reflects on our choice of
scrolling over automatic session preprocessing based on field evaluation results,
which supported our decision.

In addition to filtering, we also implemented a means for users to manually
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manage sessions: by partitioning them into multiple session populations and
view them selectively, and by filtering uninterested sessions to focus analysis.
Session partitioning, discussed in Section 7.4.5, was introduced in SV2 and was
retained unchanged in SV3. Our field evaluation did not find uses of session
partitioning. Section 8.2.1 proposes a few explanations.

We took a similar approach in selecting event attributes for display: using
only colours of the displayed event objects encoded user-defined event states
that could be changed during analysis, and box length to encode event duration
or ordinal (Section 7.4.2; Figure 7.8). Section 8.2.1 comments on our choice
of encoding only one dimension, the event state, on the event graphical object
in addition to time or event ordinal. Our field evaluation results supported
our decision, as seen in the effectiveness of session selection by our analysts,
discussed in the context of the design choice of separate over embedded.

Issues in overview creation in multiple-VIR interface design are further dis-
cussed in Section 9.1.1 of the last chapter of this thesis as one of the open
research questions.

7.6.4 Visualizations to provide aggregate-level overviews

To support multiple-population analyses, we needed to develop aggregate visu-
alization to better facilitate population comparisons.

SV1 provided aggregate information in the Dynamic Query Panel to support
filtering, where the ranges of session attributes were shown numerically at the
far right and left of each slider bar, and visually by the length of the slider bar.
For categorical session attributes, SV1 showed the categories as boxes, labeled
with the category name and the number of sessions belonging to each category.

In designing SV2, we enriched SV1’s Dynamic Query Panel by adding stripe
graphs on the slider bars. The goal was to better guide session filtering by
showing session-attribute distributions, similar to the idea of scented widgets
(Willett et al. 2007). The result was SV2’s Filter/Distribution Panel. Unfor-
tunately, initial testing of these panels in SV2 with selected target users was
not encouraging. Even though they did use the Filter/Distribution Panel, most
testers were confused by the distribution stripe graphs since they were more
familiar with, and expected, histograms. In addition, interacting with the nar-
row dynamic-query slider bars was found to be difficult. In SV3, we therefore
converted SV2’s Filter/Distribution Panel to the Histogram Panel (Figure 7.3).
Our motivation was three-fold. First, histograms were more familiar to our
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target users; second, using histograms would allow us to use a consistent vi-
sual representation for both categorical and continuous session attributes; and
third, toggle-clicking on histogram bars was found to be physically simpler than
dragging slider bars. However, histogram bar filtering on continuous session
attributes is not precise, since each histogram bar usually represents a range of
values. Section 8.2.1 discusses our design choice of using histogram bars to show
aggregate session attribute distributions in the context of our field evaluation
result, where we found two of our seven study participants actively used the
histogram bars for session filtering.

We also added two aggregate visualizations in SV2: the State Transition
Panel and the State Counts Panel. These panels were based on basic popula-
tion statistical plots used in analyzing usability logs, such as state-transition
diagrams and event-count plots, as discussed in the Related Work Section 3.2.4.
However, initial user feedback was not positive: most of our testers ignored the
event-state transition and the event-count diagrams. One tester explained that
while in theory, event transitions could be very informative, there was too much
noise in raw logs for the State Transition Panel to reveal transitions patterns.
In SV3, we used the same visual representation to display pattern transitions
instead of event state transitions to work around the data-noise problem. Since
pattern definitions are more flexible, as Session Viewer allows wild-card and al-
ternative event states in pattern matching (Section 7.4.5), patterns have a better
chance to extract true usage behaviours. The choice to display pattern instead
of event state transitions is discussion in Section 8.2.1, where we speculate on
the lack of use of the Transitions Panel in our field evaluation.

In creating SV3, we discarded the State Counts Panel since our testers did
not find it useful.

7.6.5 Multiple coordinated view to show multi-level data

Since session log data is a multi-level data object at the population, session,
and event levels (Section 2.4.1), we displayed these levels as different visual
information resolutions, in accordance to our findings in our summary synthesis
(Section 4.3).

To bridge between the detailed-session and statistical-aggregate analysis lev-
els, we decided to display all data levels simultaneously to facilitate cross-level
activities such as reordering sessions in the Sessions Panel based on session at-
tributes displayed in the Session Attributes Panel. As discussed in our decision
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tree in our summary synthesis (Figure 4.1; Section 4.6), we had two choices to
display multiple levels of data simultaneously: embedded (putting all the levels
into a single view) or separate (showing them as separate views).

Embedded techniques provide fluid interchange of the high-detail focus and
background context in the same view, an advantage over the more commonly
used separate techniques, which tend to incur the problem of view coordination.
Integrating data views has also been argued to better support perception and
evaluation of complex situations by helping analysts to perceptually and cog-
nitively integrate multiple separate elements (Thomas and Cook 2005, p. 83).
In our original paper-prototype design, we used a one-dimensional fisheye view
with distortion in the vertical direction to display sessions in the Sessions Panel.
Unfortunately, image distortion is frequently required to achieve the multiple
visual information resolution in conventional displays. Using distortion in our
case would be inappropriate as our analysts needed to estimate event durations
based on displayed box length in the Sessions Panel, and distortion may make
distance judgement difficult (Carpendale et al. 1997). In addition, integrating
the various data levels in a single view in our case would be non-trivial, since
we believe data levels in the web log data object as too inter-linked to be em-
bedded in a single view using simple visual representations and interactions,
especially given our considerations in visual memory costs incurred by image
transformations (Chapter 5).

We therefore chose the multiple coordinated view approach to display the
various data panels as separate views. The last design choice discussion in
Section 8.2.1 reflects on our choice of taking the separate overview + detail
approach over the embedded focus + context alternative.

7.6.6 Vertically-stacking multiple panel views for

population comparisons

Session Viewer has a number of panels that are semantically related. Ideally,
these semantic relationships should also be visually depicted. At the session-
attributes level, the Session Attributes Panel is linked to the panel that provides
filtering based on session attributes, such as the Dynamic Query Panel in SV1,
the Distribution/Filter Panel in SV2, and the Histogram Panel in SV3. The
two panels in the Multiple Pane are linked at the sessions level, where the
session data are displayed in the Sessions Panel, the corresponding attributes
are displayed in the Session Attributes Panel. At the event level, both the
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Sessions Panel and the Events Panel display individual events.
It was easier to provide visual correlations between panels in SV1, since it

only supported single-population analyses. At the session-attribute level, the
Session Attributes Panel and the Dynamic Query Panel were aligned vertically
such that each horizontal row housed the same session attribute (Figure 7.17).
The Session Attribute Panel and the Sessions Panel were aligned horizontally
such that each session occupied an individual vertical lane. While the event
boxes in the Sessions Panel did not physically align with the event detail entries
in the Events Panel table, the two event representations were at least visually
congruent, where events were displayed in a linear order and the top event is at
the top of the display, and the two panels were vertically aligned.

In designing SV2, we needed to display multiple session populations and
considered three design alternatives: (1) display small multiples of SV1, (2)
display a free-style workspace using the sketch-book metaphor, and (3) displays
populations in vertical views for side-by-side population comparisons across all
data levels.

Showing multiple SV1-like displays has the advantage of preserving the spa-
tial layout of SV1, which intricately linked the four panels based on semantic
relationships between visual objects on the panels as described above. However,
comparing between populations would have been difficult and it would be diffi-
cult to compare between populations at all data levels. We thus abandoned the
idea.

In an earlier unimplemented paper-prototype design, we used the sketch-
book metaphor and envisioned a free-style workspace where users could drag
and drop interesting panels and directly annotate on the workspace. We even-
tually abandoned that design, as we believed users could better mentally process
the data if the same data panels were displayed for all populations and were
arranged to reflect the data hierarchy. Our decision was based on two design
principles. The first considered principle was the Naturalness Principle of Nor-
man (1993), where he stated that experiential cognition is most effective when
the represented information, in our case the three-level session log (population,
session, and event), is closely matched by the visual representation, in our case
the three-level panes (Aggregate, Multiple, and Details). The second design
principle we considered was Baldonado et al.’s (2000) rule of consistency in
their guidelines for multiple-view use in visualizations. We believed that since
in data explorations where analysis freely moves between different levels of de-
tail, having a consistent display would be cognitively less demanding and would
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allow the analyst to focus on the task at hand, rather than mentally organizing
the data displays.

We therefore stacked all the panels vertically and arranged session popula-
tions horizontally to facilitate side-by-side comparison, and implemented a rigid
layout to reduce cognitive load during analysis. These two choices have three
design implications:

1. Providing a rigid layout reduces user control, which may hinder tool use.
However, study observations did not provide evidence of this problem. The
first design-choice discussion in Section 8.2.3 covers the choice between
spatial consistency and user control.

2. While we kept the visual linking between the Session-Attributes and Ses-
sions Panels by showing data from each session in a different vertical lane,
we sacrificed SV1’s spatial association between the Session Attributes and
the Dynamic Query Panels. In SV2, we stacked the panels and put the
Distribution/Filter Panel, SV2’s version of the Dynamic Query Panel, on
top of the Session Attributes Panel to allow for side-by-side comparisons
between populations. This may render view coordination between the
Sessions Panel and the Events Panel more difficult, a difficulty we indeed
observed, as discussed in the design choice of taking the separate over the
embedded approach in presenting the different panels in Section 8.2.1.

3. In terms of space efficiency, we believed SV1 to be better suited for display-
ing a single session population on conventional landscape monitor setup,
as the Sessions Panel and the Events Panel, the two panels that prob-
ably required the most vertical space and should be displayed together,
were horizontally arranged. However, we believe SV3 is better suited for
multiple population analyses. Our beliefs were confirmed in the field eval-
uation. The design-choice discussion in Section 8.2.3 looks at effects of
our choice to vertically stack panels into views to facilitate comparisons
between session populations instead of displaying small multiples of SV1,
where we found that perhaps our decision had compromised using Session
Viewer for single-population analysis.
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Field Evaluation: Session

Viewer at Work

As shown in our use-case scenario in Section 7.5, our experience in using Session
Viewer for web session log analysis was positive and fruitful, as we discovered
new insights based on task type in characterizing session populations. However,
to better study design choices of Session Viewer and to discover deployment
issues, we needed to investigate its use in ecologically-valid settings where the
prototype could be used by a variety of analysts with diverse data and analysis
styles.

Also, as discussed in Section 7.6, we made four main design choices in cre-
ating Session Viewer: (1) allowing scrolling sessions-level overview in the Mul-
tiple Pane; (2) using histograms and a pattern transitions diagram to provide
aggregate-level overviews in the Aggregate Pane; (3) taking the multiple coor-
dinated views approach with separate techniques to show the multiple levels
of data; and (4) providing a fairly rigid panel layout with session populations
displayed as views. These decisions were made based in part on our knowledge
and experience gained in the first three studies, where we investigated various
aspects of using multiple visual information resolution interfaces to display data.
We needed to examine these choices.

We therefore conducted a field evaluation at Google Inc. The goal of the
study was therefore two-fold: (1) to evaluate our design choices in making Ses-
sion Viewer; and (2) to understand issues of visual analytic tool deployment in
the workplace.

Over a period of two months, we observed 20 hours of tool use by seven
web session log analysts. To ensure ecological validity and to keep participants
engaged and motivated, our participants used their own data performing their
own tasks in all of the training and actual study sessions.

We framed our findings as design themes:
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1. Design implications of real-world data:

(a) Tool needs to convey the gist of the data quickly. Data validation was
found to be integral in analysis given the complex and noisy real-
world data. We found that the scrollable overview and the separate
(overview + detail) visualization technique worked well here.

(b) Designers need to base data-field configurability on user skills. Since
web session logs have established data fields, we originally assumed
that Session Viewer could pre-configure data fields to ease tool setup
costs. However, our engineering-centric users preferred a completely
open interface to customize data-field definitions.

(c) Tool needs to support fluid data-view projections. Since data patterns
were seldom revealed in casual explorations with a few data views,
our participants had to constantly refine their analysis goals and
questions, each with a slightly different data view. We found that our
rigid layout did not hinder tool use and may have reduced cognitive
load during analysis.

2. Factors that lead to tool reception in the workplace:

(a) Tool needs to play a unique role in the analysis process. As a visual
analytic tool, Session Viewer supports a wide spectrum of data ex-
ploratory tasks, but plays a very specific and unique analysis role: it
provides a missing link between the detailed-session and statistical-
aggregate analysis approaches.

(b) Data transfer is not as crucial as assumed. To our surprise, idea
transfer, rather than direct data transfer, was the norm in our study.

(c) Tool power and complexity is a tradeoff. Even though Session Viewer’s
flexibility attracted users, tool power came with a cost of complexity
which may deter tool use for some users.

In this chapter, we illustrate each finding in the two design themes with
observations collected from the field evaluation, followed by a design guideline
derived from our observations. We also further explore each finding and de-
sign guideline pair in the context of design choices made during the creation of
Session Viewer, and deployment issues encountered in our study.
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8.1 Study

We collected data from interviews and think-aloud comments from participants
as they analyzed their data using Session Viewer. Participants were recruited
by e-mail invitations. Important requests from participants were implemented
during the study, which included bug fixes and enhanced flexibility of existing
tool features.

8.1.1 Participants

We recruited seven data analysts at Google Inc., three of them female, who
routinely analyze large data sets. Based on the seven pre-study and five inter-
views conducted earlier to solicit design requirements discussed in Section 7.1,
we identified two analysis approaches: detailed session and statistical aggregate.
Among our seven participants, coded as P1 to P7, P1 is a detailed-session ana-
lyst, P3 uses both methods, and the rest are statistical-aggregate analysts. Two
of our participants, P1 and P2, were involved in the design of Session Viewer,
as discussed in our design process section (Section 7.2). Our two participant-
designers and one of our participants were also previously interviewed, but were
re-interviewed for the study since their analysis practices may have evolved since
initial design a year prior.

Characteristics of the two analysis approaches found during Session Viewer
design were described earlier in Section 7.1. Our second round of interviews
yielded similar results. To reiterate:

Detailed-session analysis aims to answer specific but open-ended ques-
tions about usage behaviour, such as the use of Boolean OR in queries, or to
develop standard metrics to measure task nature and user satisfaction. This
description is based on four interviews.

Statistical-aggregate analysis also aims to understand usage behaviour,
but at the aggregate level by comparing and characterizing different session
populations based on established metrics. This description is based on eight
interviews.

P1 is a Research Scientist in the area of search quality, with a focus on
understanding user behaviours in web search. P1 is an experienced detailed-
session analyst with over 15 years of experience, with four years in usability logs
and two in web logs. Most of his analysis data came from field studies collected
with client-side logging with installed plug-ins on his searchers’ browsers. P1
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analyzes by examining the sessions event-by-event in an Excel spreadsheet to
look for usage patterns and to generate hypotheses. Once he feels confident with
a hypothesis, he uses SPSS and Visual Basic to calculate aggregate statistics.

P2 is a Software Engineer with broad analysis interests, but with most anal-
yses examining specific sessions as part of an experiment. One example of P2’s
experiments is to test for the effects of background colour of the sponsored
link display region on the Google result page. P2 is an experienced statistical-
aggregate analyst with over seven years of log-analysis experience, and four in
web session logs. Generally, P2 begins the analysis by first processing relevant
sessions into forms suitable for her custom-built scripts to calculate statistical
metrics such as click-through rate, which measures the number of users who
clicked on individual links on the general search result page. Metrics from dif-
ferent experimental populations are then compared to evaluate factor effects,
such as the different colours tested. In some cases, P2 may regroup or further
dissect populations to tease out distinctions.

P3 is a Software Engineer whose main analysis goal is to understand usage
behaviours in location-specific queries that involve Google maps. P3 has 10 years
of general analysis experience, with two years in logs and one year in session
logs. P3 describes his session log analysis as “monitoring-like”, aiming to find
and understand inappropriate map search result inclusions in the main search-
result page, and missing map results that should have been included. He uses
an internal tool for statistical-aggregate analysis, where he selects interesting
sessions with pre-defined filters, such as time stamp, and calculates metrics,
such as click-through rate. On occasions, P3 augments his statistical tools with
an in-house detailed-session analysis tool that displays session details to better
understand search behaviours. However, P3 feels that his sets of tools lack
coverage and are not well integrated to support his analytical needs.

P4 is a Software Engineer and an experienced statistical-aggregate analyst
with over 13 years of analysis experience, with three in logs and two in session
logs. His analysis goals are to observe behavioral differences between experi-
mental populations and to detect subpopulations. One such example is to vary
the type of advertisements shown on the search result page based on query key-
words. Since existing in-house tools do not fully support exploratory definitions
of subpopulations, P4’s team has built tools to allow more flexible regrouping
of sessions based on session attributes. P4 feels he needs to look at sessions at
a more detailed level to better understand search behaviour.

Both P5 and P6 are Quantitative Analysts who focus at the statistical-
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aggregate analysis level. The main goal of their analyses is to characterize and
understand search behaviour based on pre-defined metrics in experimental data,
for example, looking at click-through rates of advertisements displayed on search
result pages based on display positions and the total number of advertisements
shown on the page. P5 is more experienced with over eight years in general
analysis, and P6 is more junior, with about one year of experience. Both analysts
use in-house scripting, statistics, and graphing tools. P5 also uses R, a statistics
package, for data analysis.

P7 is a User Experience Researcher who has at least four year of analysis
experience with web session logs. The main goal of her analyses is to characterize
session populations by search behaviours. P7 is a statistical-aggregate analyst
and uses SPSS for data analysis. In her previous field study using session logs
collected with client-side logging, P7 characterized web usage behaviours of
various web information seeking tasks, such as browsing and fact finding, based
on dwell time, number of pages viewed, and the use of specific browser navigation
mechanisms (e.g., bookmarks and history).

8.1.2 Procedure

Participants used Session Viewer on their own tasks and data. Each study ses-
sion began with participants explaining their data and analysis goals. Partici-
pants were asked to verbally explain their actions during analysis. In addition,
we also prompted participants to clarify verbal comments and actions and to
provide reflective debrief summarizations at the end of the sessions. The study
had three stages:

1. Pre-evaluation interview : a one-hour semi-structured interview with one
experimenter to understand our participants’ current practices. The inter-
view covered topics such as routine analysis goals, processes and workflow,
and tool use. The script used for the pre-study interviews is included in
Appendix E.

2. Training : a one-hour one-on-one tutorial for each participant to learn to
use the tool. To ensure realism and analysis engagement, all participants
used their own data and tasks for the training sessions.

3. Actual analysis: two to eight one-hour data-analysis sessions with each
participant, with a median of two sessions. These sessions were conducted
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Participant(s) Number of Actual Sessions
P1 8
P2 + P4 1
P3 3
P4 + P5 2
P6 3
P7 1

Table 8.1: Number of actual sessions for each participant. Three sessions in-
volved two participants working together, while the rest had only one partici-
pant.

either bi-weekly or weekly depending on the participant’s availability. Par-
ticipants were asked to prepare analysis goals prior to the sessions. Since
we were interested in expert behaviour, the primary researcher was present
at all sessions to answer tool-related questions. Three sessions involved
two participants working together, while the rest had only one participant.
Table 8.1 shows the session count for each participant.

We conducted pre-study interviews before the training and actual analysis
sessions. The script for the interviews is included in Appendix E. All partici-
pants had access to the software outside of the study but their uses were not
monitored or recorded.

8.1.3 Setting and apparatus

Ideally, study sessions should take place in participants’ office to better reflect
actual working environments. However, we considered the think-aloud protocol
too disruptive to fellow coworkers in Google’s open working environment and
conducted all except P1’s sessions in a design office with a Pentium M 2.13GHz
laptop with 1 GB of RAM running Windows XP in a dual-monitor setup (Fig-
ure 8.1(b)). The left laptop monitor, with 1280x1024 pixels, was used mainly
to display recreated webpages in a separate web browser and Session Viewer
dialog boxes, such as the Pattern-Matching dialog box (Figure 7.12). The
1920x1200-pixel monitor displayed the main Session Viewer window.

Since P1 had a mostly vacant office, we conducted his sessions there us-
ing a 2.5GHz desktop with 2.0 GB of RAM running Linux RedHat and two
1920x1200-pixel monitors, as shown in Figure 8.1(a).
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Figure 8.1: Study setups. (a) P1 used two 1920x1200-pixel monitors for the
main Session Viewer window. (b) Other participants used a laptop/monitor
setup, with the main Session Viewer screen on the 1920x1200-pixel monitor,
and auxiliary windows, such as web browsers and Session Viewer dialog boxes,
on the 1280x1024-pixel laptop.

8.1.4 Data collection and analysis

All 18 sessions with Session Viewer in use were video recorded. Table 8.1 shows
session-count distribution for the seven participants. Our analysis focused pri-
marily on these video recordings.

The first step in our analysis was to code the qualitative video data. Given
our goal to discover tool-use patterns in data analysis, we decided to take a
more data-driven and open method instead of pre-developing a set of expected
behaviours as our coding scheme. Our approach was inspired by open and axial
codings in grounded theory (Strauss and Corbin 1998; Corbin and Strauss 2007)
and inductive coding in thematic analysis (Boyatzis 1998).

We first coded the video data into units of episodes. Episodes were mean-
ingful data analysis sequences performed by participants and typically began
with verbal statements from participants about analysis goals and ended with
participants’ reflections on the analyses. Since these analysis episodes were well
bounded, only the primary experimenter was involved in their extractions from
the video recordings. On average, we extracted two episodes from each study
session. For each episode, we identified three types of information:

1. Analysis: initial goals or hypotheses, analysis strategies, generated or re-
fined hypotheses during analysis sessions, observation or conclusions about
the data under analysis, and any action items resulted from the analy-
sis sessions. Examples include analysis goals (e.g., “I am interested in
advanced search behaviours”), strategies (e.g., “Let’s find sessions with
advanced search in them”), and observations of the data set (e.g., “A lot
of sessions with advanced search have ‘site:”’ and “Looks like people who
use ‘site:’ are good searchers”). This type of information was coded based
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on participants’ verbal comments;

2. Session Viewer use: panel or feature used during analysis such as high-
lighting sessions with “site:” use. This type of information was coded
based on observations of participants’ interactions with Session Viewer
and data displayed on Session Viewer;

3. Session Viewer feedback : participants’ comments on Session Viewer. We
further annotated this feedback as either impeding or facilitating our par-
ticipants’ analysis processes. This type of information was coded based
on participants’ verbal comments;

Once extracted, we assigned a code to each episode to describe the general
nature of the analysis based on the associated analysis-type information. These
codes were derived iteratively where we added, deleted, refined, or grouped
codes as we assigned them to episodes. The final set of codes were reported as
findings, where we only included major codes with at least three episodes with
more than two participants.

To facilitate discussion, we further grouped our findings into two design

themes: (1) implications in working with real-world data, and (2) factors that
seemed to determine our tool’s initial reception. For each finding, we also de-
rived more general design statements as guidelines.

For each finding, if the use-type information involved tool components fea-
tured in our design choices identified during our design evolution (Section 7.6),
we explored feedback-type information framed by our design choices. In cases
where the feedback-type information was related to tool deployment, we dis-
cussed them as deployment issues.

8.2 Design Theme 1: Working with

Real-World Data

In our previous analysis using Session Viewer described in the use-case scenario
in Section 7.5, we looked at a large-scale user study conducted by a third-party
company with over six thousand sessions. Even though the number of sessions
was large for detailed analysis, the data was clean, structured, and rich: data
were cleaned prior to the tool development, the sessions were grouped into
populations based on experimental factors, and we were provided with task
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descriptions and user feedback for each session. Our analysis therefore took
advantage of the structure and looked at populations grouped by experimental
conditions, arranged side-by-side in Session Viewer.

By contrast, our participants’ data were raw data from a variety of sources.
Entire data sets were on the order of one hundred thousand sessions for our
participants’ ongoing experimental data. Also, our participants may only have
had vague ideas about the data composition. From the visualization designer’s
point of view, to deal with noisy and large data sets, a visual analytic tool needs
to:

1. Convey the gist of the data, as data validation is an integral part of the
analytical process;

2. Gauge configurability of data fields on users’ technical skills, as technical
users would more likely augment existing data schema even in specialized
systems with established data schemas;

3. Provide fluid data-view projections, as data signals such as patterns or
outliers are difficult to find using a single data view.

8.2.1 Finding 1: data validation was integral in analysis

Due to data noise and size, our participants needed to select and process raw
data into formats supported by Session Viewer prior to the study sessions. Data
selection was arguably the first step of the analysis process for our participants.

All seven participants therefore started each study session with data valida-
tion based on their expectations, and usually detected unexpected data-parsing
problems within a minute. For example, in the first analysis session, P1 almost
immediately realized that there were unexpected duplicates in his data when he
saw the Sessions Panel in the Multiple Pane. As seen in Figure 8.2, the colour-
coded event sequences created distinctive visual patterns that made duplicates
easy to detect.

In addition to the Sessions Panel, three participants used the Histogram
Panel to obtain the gist of the data distribution. For example, in the second
analysis session, P1 realized that the sessions in the data were long sessions
since the histogram showed that most of them had at least 64 events and had
long session lengths. He later confirmed that the selection did indeed exclude
short sessions.
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Figure 8.2: One of P1’s screen showing duplicate sessions in his data. The
arrows mark some areas with duplicates, and the call-out shows a detailed view
of one of these areas, where the repeated sessions are highly salient.

In two other cases, participants needed more information to validate their
data. For example, P6 labeled search events by experimental treatments. The
first step of his analysis was to verify the relative distributions of the different
experimental groups. He defined a set of event states for the groups and used
the Pattern Matcher to highlight the corresponding sessions. To his surprise,
one of the experimental groups, group 3, was over-represented. He looked at
the Events Panel for group-3 search events, and wondered if his algorithm de-
faulted all search events to group 3, or if the library function he used to test for
the experimental condition was at fault. Returning to the Pattern Matcher to
highlight sessions with other group labels narrowed down his diagnosis, as he
found search events that were labeled group 2 and invalidated the first hypoth-
esis. After the study session, he checked the library function used in his parsing
script and found that the function had been updated since his last use. Instead
of checking if a session was actually included in the experimental group, the
function checked if a session were eligible for the experimental condition, thus
explaining the over-representation.

Guideline 1: convey the gist of the data

We found that the simple separate technique worked surprisingly well in data
validation. Both the salient colour pattern and the highlighted view in the
Sessions-Panel overview immediately revealed data-processing problems, such as
P1’s duplicates and P3’s mislabeled events. The linked Events Panel provided
event information that further helped with problem diagnosis.
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Design choice: scrollable overview over automatic session

preprocessing

One challenge we faced in conveying the gist of the data was in overview creation,
both at the sessions level and at the aggregate level. This section discusses our
design choice at the sessions level.

Providing effective overviews for session logs at the sessions level is a chal-
lenge due to the large number of sessions and the need to provide enough task-
relevant information for session selection and comparison, as suggested by find-
ings in our summary synthesis (Section 4.4). The overview also needs to provide
enough visual details for its graphical objects to be useful, even though users
can obtain more details in the high-VIR display, as seen in our overview-use
study (Chapter 6). As discussed in Section 7.6.3, our Sessions-Panel overview
requires scrolling, which in some sense has failed to provide an overview to the
entire data.

Interestingly, we did not observe impediments brought about by our incom-
plete overviews in the field evaluation. We believe that was partly due to the
way our participants used Session Viewer, and partly due to the provided session
reordering based on session attributes.

Most of our study participants were statistical-aggregate analysts that typ-
ically handled data sizes much larger than the amounts supported by Session
Viewer. Since Session Viewer could not load the entire data set, our partici-
pants therefore used Session Viewer as a tool to generate hypotheses or to verify
experimental settings instead of to draw conclusions on usage behaviours. In
short, they did not wish to perform exhaustive analysis on the data loaded on
Session Viewer, but rather aimed to find interesting ideas to be tested in the
entire data. As a result, obtaining a complete overview of the data in a sin-
gle glance was not essential, as long as they could find interesting sessions to
generate analysis leads.

Session Viewer provides session reordering to guide selection by session at-
tributes. Once the sessions were reordered, our participants tended to sample
sessions from the extreme ends of the distribution for sessions pertinent to the
analysis at hand. One common operation we saw in our study was to reorder
sessions by event-state count and to sample sessions at the high end of the dis-
tribution. For example, while studying advanced feature use in searches, P1
reordered sessions based on the number of advanced features used per session
and looked at sessions with large numbers of advanced feature use.
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Despite our initial success with our scrollable overview, the question of
overview creation for large data sets remains a challenging research area, which
will be discussed in more detail in Section 9.1.1.

Design choice: user data partitioning over automatic preprocessing

In our design, as discussed in Section 7.6.3, we decided against automatic pre-
processing to either select or cluster sessions to increase overview display ca-
pacity, since we found a priori preprocessing to be a double-edged sword in our
high-level synthesis (Section 4.4.4). Instead, we decided to provide data par-
titioning based on filtering for users to select pertinent sessions and to create
subpopulations.

To our surprise, we did not observe explicit subpopulation creation using
Session Viewer in our study, even though filtering was used to better focus anal-
ysis. In some cases, our participants had specific questions in mind while using
Session Viewer, and had pre-grouped the sessions based on their questions. A
common example was pre-grouping sessions by experimental conditions when
analyzing evaluation data. In other cases, we suspected our participants were
still inexperienced in using Session Viewer and preferred highlighting within sin-
gle populations using the pattern-matching feature, presented in Section 7.4.5,
instead of explicitly creating subpopulations. We could not tell if the lack of
population partitioning using Session Viewer was due to the lack of user need,
insufficient support of partitioning by the tool, or lack of tool experience in our
participants.

Design choice: aggregate overviews—histogram over stripe graphs;

pattern transitions over event-state transitions

Another major challenge in creating Session Viewer was to provide data overviews
at the aggregate level. As discussed in Section 7.6.4, we struggled to find effective
aggregate visualizations. In our design evolution, Session Viewer first displayed
session attribute distributions using stripe graphs in SV2, which was replaced
by histograms in SV3, since our target users were confused by the stripe graphs.
To show usage patterns in terms of event transitions, SV2 showed event-state
transitions, which was replaced by pattern transitions, as noise in data obscured
potential signals in the event-state transition diagram.

We observed in our field evaluation that our participants did use the SV3
Histogram Panel to get a sense of the data based on session attributes. How-
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ever, only two of our seven participants performed session filtering using the
Histogram bars.

On the other hand, none of our participants used the Transitions Panel. We
reasoned that since the Transitions Panel is probably the most abstract and
advanced feature in the tool, and since our participants were still learning the
more basic features in Session Viewer such as the Multiple and Detail Panes,
the lack of use of the Transitions Panel is understandable, as the panel was
mentioned during training but not emphasized. Nonetheless, such lack of use
may reflect on the relatively low utility of the panel. It therefore remains to
be seen if the pattern-transitions diagram, modified from the event-transitions
diagram in SV2, is useful in analysis.

In retrospect, our difficulty in creating useful aggregate visualizations in our
design of SV2 and SV3 is not surprising, as our target data is complex and noisy.
Indeed, six of our seven participants are statistical-aggregate analysts who are
trained to discover signals in their data. Signals that can be picked up by simple
aggregate visualizations, even with the power of linked multi-level data views
and fluid data projections, will most likely be found by established statistical
and data-mining methods such as clustering and principal components analysis.

Design choice: separate over embedded

One of the main choices in creating Session Viewer was to determine the best
way to show the different levels in web log data. As discussed in Section 7.6.5,
we adopted a conventional separate overview + detail design instead of the
embedded focus + context alternative, and created a multiple coordinated view
interface.

While it is not possible to evaluate our choice of separate over embedded
to display session populations and event details without studying an embed-
ded Sessions Panel counterpart, we found in our study that the simple separate
technique worked surprisingly well in data validation. The colour-coded events
create salient patterns, especially when the sessions are long and the data con-
tains duplicates, as in the case for P1 (Figure 8.2). Participants also found the
the Sessions-Panel overview highlighted with one event state useful for session
selections, as they could fluidly change the event state selected to look for in-
teresting sessions (Figure 8.3). We suspected that such visual pattern searching
would be harder if the overview were distorted. In fact, our participants pre-
ferred the uniform-sized event boxes in the unit-time view to the duration-coded
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boxes in the length-time view as the uniform boxes better show event transitions
(Figure 7.8).

On the other hand, we did observe difficulty in view coordination. For
example, our detailed-session participant P1, who frequently viewed sessions on
the Sessions Panel in the expanded form (Figure 7.15), often needed to use his
finger to help him relate events in the Events Panel with those in the Sessions
Panel, even though the events were visually linked by highlighting where the
selected (and highlighted) event in one panel were also highlighted in the other.
Gauging the tradeoffs between embedded and separate techniques is therefore
difficult, and the topic is further discussed in Section 9.1.3.

8.2.2 Finding 2: data-field needs were diverse

Session Viewer was designed for web session logs with established data fields
such as time stamp, duration, event action, and property. To simplify software
configuration, we fixed the event attribute fields. However, our technical users
added additional fields to the standard set to customize for their analysis tasks,
which was unexpected. For the study, we coped with this demand by adding two
unspecified string fields and three integer fields. Nonetheless, we were surprised
how aggressively two of our participants used these fields. For example, P4
coded experimental conditions applicable for each event as integer values. Given
the limited number of integer fields in our tool, he concatenated these values
into a string and used the string field instead. During the study sessions, P4
needed to refer back to his coding scheme to understand the overloaded string
field.

P2 also overloaded the unspecified fields. She encoded different parameters
in the integer field based on the event-action type. For example, if the event was
a web-result click, the integer field encoded the result’s display position on the
original search engine result page. For an advertisement click, the field encoded
the number of advertisements shown on the search result page. While such
overloading included more information for analysis, it also made event coloring
based on the integer field impossible, since event-state definitions in Session
Viewer did not allow conditional statements.

We recognized early in the tool design process that session attribute, event
state, and pattern definitions have to be user-defined. For ease of use, Ses-
sion Viewer solicits user input with simple form-filling dialog boxes such as the
Pattern Matcher (Figure 7.12). While we did consider a more open-ended in-
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put approach in our first prototype designs, we decided against the idea since
users would need to assume the burden to ensure syntactically and semantically
correct data definitions, which would greatly increase efforts required in con-
figuration. However, our participants and users outside of the study invariably
found the definitions restrictive and requested a more open-ended script-like
interface.

Guideline 2: gauge configurability of data fields on users’ technical

skills

Even though we understood that analytical tools should provide extensible data
definitions to accommodate diverse data-configuration needs, we learned that
the required flexibility would be more accurately gauged by considering target
users’ technical skills than by data schema, even in cases where the majority
of the data fields were well established. In our case, our engineering-oriented
participants were accustomed to defining their own data schema using script-like
interfaces, and therefore tended to customize their data configurations based on
the analysis at hand. Indeed, Bellamy et al. (2007) reported a similar finding
in their pilot deployment of a visualization to monitor compliance processes.

Deployment issue 2: provide simple setup or flexible data fields

The tradeoff in flexibility is the time cost in the initial setup, where users need
to compile configuration files for most of the data definitions in the tool. Our
study found that the decision to sacrifice data-field and attribute configurability
for ease of tool setup was incorrect. In retrospect, given the prevalence of script
use in analysis at Google Inc., a more open-ended interface would fit better
with their current practices. However, we did observe setup costs: the first
few minutes in the study sessions were usually spent on defining event states
and session attributes. Also, with an open-ended input interface, users would
assume the burden to ensure data definition correctness. We further discuss this
issue in Design Theme 2.

8.2.3 Finding 3: data signals were difficult to find

We found that our participants’ data were too noisy for analysts to find usage
patterns in casual explorations, especially when their analysis goals were too
general. Indeed, we found in our study that our participants were most suc-
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cessful when they had specific analysis questions in mind. P2’s goals were most
specific: she wanted to see if the filtering criteria she used to calculate session
statistics were correct. Since the raw data were very noisy, P2 needed to first
filter out meaningless sessions before calculating session and event metrics, for
example, session event count. In her analysis with us, she tested her filtering
criteria using selected sessions from different filter settings and examined them
in the Events Panel. Within a few minutes, she realized that one of her criteria
would incorrectly filter out meaningful short navigational sessions.

All other participants’ analysis goals were more open ended. For example,
P1 wanted to understand behaviours of searchers who used advanced search fea-
tures. For such open-ended analysis goals, analysts need to constantly refine the
analysis question, ideally into a form suitable for statistical analysis. In the case
of P1, he refined his question to look at sessions with the “site:” tag after seeing
a large number of search queries in his sample session population that used the
“site:” tag to limit the searches within specific domains. After quickly study-
ing such sessions, he was surprised by the searchers’ effectiveness and formed a
hypothesis: searchers who used “site:” in their queries were experienced users.

In contrast, six of the eight analysis sessions that started with vague in-
tentions were less successful, especially when analysts did not consciously and
continuously try to refine the original questions. For example, P6 looked at a
few sessions in the Events Panel without forming any hypotheses or questions.
While debriefing at end of the study session, P6 realized that he should have pre-
pared for the study session with more specific analysis questions. Similarly, P4
started his study session with the vague intention to “see how users behaved”.
After a few session-reordering operations, P4 ran out of ideas and turned to
his analysis collaborator P5, who provided specific questions that propelled the
analysis.

Even though successful analysis sessions tended to start with specific ques-
tions, we did observe unexpected discoveries. While pursuing a question from
P5 by examining sessions in the Detail pane, P4 found an inconsistency in his
event labeling. The discovery was unexpected. After the study session, P4
and his team further investigated the problem, fixed their experiment-labeling
algorithms, and reran the experiments. In short, we found that driving ques-
tions were needed to propel the analysis and to maintain focus and interest, but
having specific goals did not preclude incidental discoveries.
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Guideline 3: support fluid data view and hierarchy traversals

We saw that our participants were very fluid in their hypothesis generations and
testing as they constantly refine hypotheses based on data under study. Our
tool needs to support this quality of data explorations. For participants with
open-ended analysis goals, the need for fluid data-view projection was obvious
as participants needed to constantly refine the analysis question, as illustrated
by one of P1’s analyses where he constantly switched between the Multiple and
the Detail Panes. As seen in our study, analyses with specific goals could still be
very open ended. For example, since P2 did not know the nature of the filtered
items before the analysis, she carried out explorations that involved switching
between all three data levels to better characterize incorrect filtering.

Design choice: spatial consistency over user control

One of our design goals was to bridge between the statistical-aggregate and
the detailed-session analysis approaches (Section 7.3). To facilitate cross-level
analysis, we made the choice to adopt a relatively rigid spatial layout: while
users can selectively place session populations in the vertical views, the same
data panels are displayed for all populations in a fixed order. Our motivation
was to avoid the need for users to mentally organize the displayed data levels,
as discussed in Section 7.6.6. However, doing so may hinder tool use.

In our study, we found that the rigid layout did not seem to hinder tool
use, as our participants resized the panels to pick-and-choose the part of the
tool with which they felt comfortable and were relevant for the analysis at hand
as unused panels were resized to show only the panel titles. We observed that
our participants were very comfortable in using only a few panels. While all of
our participants used the more basic Multiple and Detail Panes, only selected
participants used the other panels: only two of our seven participants used the
Histogram Panel, and none used the Transitions Panel in the Aggregate pane.

Design choice: vertical views over small multiples

To facilitate comparisons between session populations, we decided to stack all
panels vertically and to show each population as a view (Section 7.6.6). In doing
so, we sacrificed some of the visual linking between semantically related panels
in SV1, such as the link between the Sessions and the Events Panels.

In our study, we did observe usability problems related to these concerns.
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One of these concerns was reported earlier in discussion of the view-coordination
problem in taking the separate design (Section 8.2.1), where one of our detailed-
session participants, P1, had trouble visually linking between expanded sessions
in the Sessions Panel and event details in the Events Panel despite linked visual
highlighting. Another problem observed was one of space use. Since most of our
participants’ monitor setups were in the landscape mode with wider horizontal
widths than vertical heights, a vertically stacked view may not be the most
efficient for single-population display since both the stacked colour boxes in the
Sessions Panel and the table in the Events Panel required vertical space. Indeed,
P1 jokingly called his monitor setup “vertically challenged”.

These observations made us wonder if we sacrificed the SV1 layout for single-
population analysis for multiple-population comparisons. While two of our seven
participants compared between session populations, the rest used Session Viewer
to display a single population.

8.2.4 Design Theme 1 summary: tool needs to be

flexible for real-world data

Even though this seems to be an obvious conclusion, we only realized the de-
gree of flexibility required of our tool during the study. For example, we were
surprised by our users’ requests to have a completely open-ended configuration
interface for data-field definitions, even though Session Viewer has a relatively
narrow target data and user set, and such flexibility will incur non-trivial ini-
tial parameter-configuration costs. In short, instead of gauging the need for
data-field flexibility based on data, our observations suggested estimates should
instead be based on the technical skill of users.

While we anticipated the need for fluid data-view projections to support
the exploratory nature of hypothesis generation and data analysis, we were sur-
prised by the difficulty in finding signals in our participants’ data even with
a visualization tool that, by and large, seemed to satisfy most of our partici-
pants’ required operations. Our observations suggested the strong need for tool
flexibility in data-view projection to support the fast mind-frame change in anal-
ysis, as we believe a visual analytical tool should not increase the already large
cognitive load in analysis. For example, the reorderable sessions-level overview,
coupled with the separate arrangement of panels, effectively supported the data-
validation step, which turned out to be an integral part of our participants’
analysis processes.
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For the same reason, we arrived at an opposite conclusion for panel layout:
we believe a rigid layout would be less cognitively demanding. We therefore
avoided the need to mentally organize the large number of panels in Session
Viewer by adopting a fixed and integrated layout: a three-level panel layout for
each population, and a vertical-view layout for each population. In doing so,
we may have compromised SV1’s visual linking between semantically related
panels.

8.3 Design Theme 2: Tool reception

Even though our tool was not polished and did not fully satisfy our participants’
analysis needs, we have received numerous affirmations of its usefulness. For ex-
ample, P4 volunteered to enhance Session Viewer to link to the actual webpage
viewed by his searchers, instead of a recreated webpage based on the logged
URL. P3 initiated a Windows laptop purchase to run Session Viewer, incor-
rectly assuming that the tool was Windows-specific since we used the Windows
environment for our study. While we understand new visualization tools some-
times give rise to short-term excitements, a phenomenon reported by González
and Kobsa (2003b), we are very positive about Session Viewer’s future since we
believe it uniquely fills a need in the analysis process.

From our observations, we identified three general factors that affected a
tool’s initial reception:

1. Tool should fill a unique role in the analysis process, even when it supports
a broad set of ill-defined tasks;

2. The need to integrate with existing tools depends on the analysis roles
played by the tool. In our case, it is not as crucial as we assumed at
design;

3. Tool power and flexibility lead to complexity, which we find to be a difficult
tradeoff.

8.3.1 Finding 1: gap in existing analysis-tool coverage

In our pre-study interviews, we noticed that there was a need for statistical-
aggregate analysts to take a more detailed look at sessions, either to fine-tune
experimental settings, or to obtain context to better interpret their statistical
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results. Unfortunately, most tools do not link the statistical-aggregate and the
detailed-analysis levels. This discontent with insufficient tool coverage is best
expressed by P4, who commented that it was worth the 10 hours of participation
time to learn about Session Viewer even though he may not gain interesting
data insights, as he feels that he needs to understand how searchers respond to
experimental treatments at a deeper level, or to understand “what are we really
doing to the searchers”.

P3 also expressed similar concerns. In a previous role where he conducted
animal-behavioural experiments, P3 worked with event sequences that provided
information not available from aggregate statistics. He therefore felt that his
web statistical analyses were incomplete as he was “unsure about what our
searchers are really doing”.

There is also a similar lack of tool support in detailed analysis, where the
missing piece is an overview. Session selection from text-based logs is difficult,
since the nature of sessions is difficult to discern. For example, P1 frequently
used the “Find” function to locate interesting sessions in spreadsheet applica-
tions he used to view raw session logs.

Guideline 1: fill unique role in analysis

Session Viewer bridges between the statistical-aggregate and detailed-session
analysis approaches by showing multiple data levels simultaneously. For statisti-
cal-aggregate analysts, being able to see session details is beneficial. For exam-
ple, P4 needed to automatically divide the logs into individual tasks in his exper-
iments. Originally, he believed a 30-minute period of inactivity would roughly
capture task transitions. Viewing the sessions in detail, P4 realized that the
30-minute criterion missed too many task transitions and needed fine-tuning.

Sometimes, even though the analyst is aware of the finding, seeing an actual
example deepens the understanding. For example, P3 found an extremely long
session where the searcher struggled in a task for over an hour. Even though P3
was aware of the problem that led to the difficult search, seeing the searcher’s
detailed event log infused an empathy in P3 that “promoted the problem to bug
level”.

For our detailed-session analyst, the problem was effective session selection.
P1 repeatedly expressed that it was much easier to isolate interesting sessions
with the coordinated Multiple-Pane overview and the Detail-Pane session-event
view using Session Viewer than with text-based software applications such as
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Figure 8.4: Two screen captures of P1’s data, showing how the expanded 2-
dimensional form of the sessions helped P1 quickly determine usage patterns in
his data. (a) The diagonal line indicates that the searcher never returned to
an earlier URL, which is in contrast to (b), where another searcher frequently
returned to the web result page and examined search results more thoroughly.

spreadsheets. In his analysis of queries with advanced-search features, P1 de-
fined a series of event states that corresponds to commonly used advanced search
features, such as the double quotes and the “site:” tag. With the highlighted
Sessions-Panel overviews (such as Figure 8.3), he could visually and quickly
locate sessions that had multiple advanced search queries to examine in the
Events Panel, and could switch between different search features fluidly, since
he could display most of his 1000 study sessions over two wide-screen monitors
(Figure 8.1(a)). He also found that he could quickly determine usage-behaviour
patterns in his searchers with the expanded 2-dimensional session view in the
Sessions Panel. Two examples are shown in Figure 8.4, where one of his searchers
always returned to an earlier URL, while another almost never did.

Deployment issue 1: Session Viewer plays a unique and crucial role

in log analysis

One of our design goals is to bridge between the statistical-aggregate and the
detailed-session analysis approaches (Section 7.3). Our study verified Session
Viewer’s effectiveness in this regard, as Session Viewer had demonstrated its
usefulness for both detailed-session and statistical-aggregate analysts in this
study.

We believe Session Viewer’s unique role in analyses made our participants
more forgiving of its kinks and inflexibility. Indeed, our participants were will-
ing to either work around tool deficiencies in their analyses, or in the case of P4,
had plans to extend the tool. In contrast, González and Kobsa’s (2003a) work-
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place study on InfoZoom demonstrated the opposite scenario. The researchers
explained the lack of tool use was in part due to “the fact that our subjects
already have robust software tools at hand to perform data analysis” (p. 96).
In other words, despite its demonstrated usefulness in data cleaning, InfoZoom
did not fulfill an unique and crucial role in its target users’ data analysis task,
where by and large, its target users’ data analyses were well established with
automated procedures. In our case, our target users were dissatisfied with their
existing tools and were actively seeking better tools to support their analyses.

8.3.2 Finding 2: data transfer is less crucial than

assumed

In a field evaluation to evaluate InfoZoom, González and Kobsa (2003a) reported
that InfoZoom’s failure in long-term adoption was in part due to integration
problems with users’ existing sets of analysis tools. Even though InfoZoom
offered benefits in data cleaning, their participants did not adapt the tool into
their daily routine as “the time saved on [data] cleaning was lost again when
they had to transfer the data to another system for further analysis” (p. 96).
Saraiya et al. (2006) also reported similar problems.

We found in our study that data transfer between Session Viewer and our
analysts’ existing tools was a less important issue than we originally anticipated.
During the initial design stage, we realized that Session Viewer could not cover
all aspects of web session log analysis and decided to provide standard formats
to ease data transfer (Section 7.3). However, none of our participants used
data exporting. Instead of data transfer, we observed numerous idea transfers.
Typically, our participants took simple point-form notes for their analysis dis-
coveries, similar to insights recorded in Saraiya et al.’s (2004) studies (Saraiya
et al. 2004; Saraiya et al. 2006). After the study sessions, our participants fur-
ther investigated these ideas with their usual tools and the entire data set. For
example, when P1 continued his analysis on advanced search behaviour from
a previous study session, we discussed the use of the “site:” tag in advanced
searches and he commented:

The thing I have noticed about “site:” is if somebody uses “site:” in

there, the rest of the query is correct. So it is only the very advanced

users. The prediction here is if you use “site:” and get it right, you get

everything right too. I did not know that before we started this [Session

Viewer study], so that’s kinda cool.
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Our experimenter then asked him where he gained this knowledge:

A couple of days ago when we were looking through this [advanced search

behaviour sessions], I just noticed that there were a lot of them [sessions

with the advanced search feature “site:”] in there, and thought, jeez that’s

odd. So what I did was over the weekend, I actually ran analysis. Session

Viewer inspired me to write a piece of code and I found that [confirmed the

prevalence of “site:” use in advanced search], and then I started extracting

that and thought, look at that, look at all those [sessions], and they [the

searches] are all correct. And then I wrote another piece of code which

validated that [hypothesis]. So it [Session Viewer] worked perfectly in

letting me look through the data very quickly, extracting a feature, and

then I wrote a subsequent piece of code that validated that hypothesis.

Even when the exploration did not result in hypotheses about the data,
our participants may still have taken away insights in usage behaviours. For
example, P3 hoped to extract behaviorial patterns from circuitous searches,
which generally indicates difficulties. Even though the analysis sessions seemed
to be fruitless explorations as P3 failed to locate good sample sessions with
complicated search paths, P3 nonetheless found the sessions useful as he realized
that his original mental model of usage behaviour was incorrect:

It is interesting that [...] the extent to which these sessions in which

people tumble for a long time before they go into local [map property] are

actually not that much. If they want to go in, they just go in. [...] You

get a few of these cases where people sort of realize that they are getting

closer, but that is [...] not true. People don’t [...] push hard necessarily.

The experience prompted him to consult with his colleagues who analyze
search refinements, so that he would be able to better select problem sessions:

For me, I think the next thing to do is try to learn more about what

people [in the company] are thinking about revisions [and] know about

statefulness. [...] So I am going to make a point to talk to somebody who

has worked with that stuff [...] and probably will end up pulling a new

one [set of sessions for the next analysis].

Guideline 2: tool’s integration needs depend on role

We believe that the need for data transfer from Session Viewer to our users’
typical analysis tools to be low, since our participants used the tool to under-
stand data rather than to form conclusions. Our observation may be unique for
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tools that support large-data exploration instead of problem detection, where
capturing the exact data for further analysis may be crucial.

Deployment issue 2: roles of Session Viewer in analysis

On the surface, our finding seems surprising as it contradicts InfoZoom González
and Kobsa’s (2003a) finding. Closer inspection reveals differences in our studies.
We believe our participants’ tasks differed from those reported in González and
Kobsa’s (2003a) study. In our case, the main goal of our participants’ analysis
with Session Viewer was data exploration rather than confirmation. In other
words, our participants’ goals were not to draw conclusions regarding the truth
or falsehood of hypotheses, but rather to investigate the factors at play, to
generate rough ideas about the data, and to provide preliminary evidence to
support their hunches. This process is in accordance with that of exploratory
data analysis (EDA) first advocated by Tukey (1977), and is discussed as one
of our design considerations in Section 2.1.

A common practice in EDA is to avoid testing rough hypotheses with the
same data that inspire them to avoid inflation of Type I error and overfitting
(Behrens 1997). Indeed, when possible, exploratory data analysts conduct EDA
on one data set to generate hypothesis and access the model on another in a
process called cross-validation (Behrens 1997). Given that the volume of our
participants’ data were too large to be displayed in whole, it is not surprising
that our participants only took the idea generated in the study sessions with
them, instead of needing to transfer the data they had already seen.

In contrast, the main goals of González and Kobsa’s participants seemed, on
the surface, to be confirmatory rather exploratory. Most of their data analyses
were performed using tools with routines and templates (González and Kobsa
2003b; González and Kobsa 2003a). Their participants only needed the visual-
ization tool, InfoZoom, when their routine tools broke down or were insufficient,
or for data cleaning and partitioning. It is the latter scenarios when data trans-
fer became important, as the cleaned or isolated data had to be fed back into
their participants’ routine analysis tools.

In short, we believe the difference in analysis goals and the availability of
data determine if data transfer would be an important consideration in tool
reception.
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8.3.3 Finding 3: tool power brought complexity

Even though Session Viewer is only one of the tools used in analysis, we in-
tentionally built a powerful and integrated tool as we did not wish to impede
analysis by having a limited set of operations. Our assumption was verified dur-
ing the 12 months of iterative design and implementation with selected target
users, as we received requests to provide more flexibility to our existing fea-
tures. For example, we originally only allowed event states to be defined based
on event-action type such as Search, ResultClick, and NextPage events. Based
on user feedback, we now allow any event attribute to be used, including event
action, property, duration, URL, and title.

The tradeoff is tool complexity. Even though our original state definitions
were limiting, they ensured a mutually exclusive set of states that simplified
event-colour coding. Otherwise, a single event may belong to multiple states.
A common example from our study was defining states by action types (search
click, web-result click) and event duration (long, short). Our participants were
inevitably confused when an event that satisfied a certain defined state was not
colored accordingly.

Having a powerful and flexible set of operations also makes it difficult for
users to develop an accurate mental model of the tool. In fact, we often had
to pause and think to translate our participants’ analysis requests into Session
Viewer operations during the study. Not surprisingly, it often took our study
participants a while to figure out if Session Viewer could support their session-
filtering needs. In fact, P3 called such translations “little puzzles to solve”.

We illustrate the difficulty in translating analysis needs to operations with
two examples. The first case shows a perfect fit between the analyst’s need and
Session Viewer’s features. In analyzing session logs with advanced searches, P1
wanted to colour-code events with advanced features. Since the URLs of the
search requests encoded the advanced feature used and Session Viewer provided
string matching for the URL data field, he could define event states based on
URL substrings.

In cases where the fit is not perfect, the translation can be tricky. For
example, P4 wanted to reorder sessions based on the number of searches before
an click event. Since session attribute counts looked at entire sessions, it was
not possible to translate P4’s request into Session Viewer operations. However,
a workaround was to reorder the sessions first by search event counts followed by
click counts, which at least clustered the sessions with large numbers of search
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and click events.
Tool richness may also be distracting. We found that our detailed-session

analysts were better at extracting patterns from the large amount of information
presented in the Detail Pane than our statistical-aggregate analysts, probably
because they were more experienced in dealing with session details and variabil-
ity.

Guideline 3: consider tool power and complexity as a tradeoff

We believe tool power and complexity is a difficult tradeoff, as on one hand, tool
power attracts users to investigate tool functionality and in our case, become
involved in tool design and development. On the other hand, we did observe
user apprehension, especially during their first introductions to Session Viewer
when they faced a large and complicated interface.

In retrospect, given the translation difficulty and tool complexity, we could
have built a set of tools, each with simple and well-defined operations, instead of
monolithic power tool. For example, P2 often uses simple UNIX commands in
her analysis. By piping multiple commands together, for example grep|uniq|wc
to get counts for unique words in a document, she can achieve most of her anal-
ysis goals without complex analysis software. Also, in the pre-study interview,
P3 commented that instead of an integrated tool, having a set of individual
tools, each simple and easy to use, would also be a good solution to his analysis
problems, as he could display them all on his screens and select the appropriate
tool to address different analysis needs.

Nonetheless, tool complexity may not be as deterring as it first seems, as we
observed that our participants were very comfortable in using only a few tool
features. While all of our participants used the more basic Multiple and Detail
Panes, only selected participants used the other panels: only P1 and P2 used
the Histogram Panel, only P3 used the session-alignment feature (Figure 7.8(c)),
and none used the Transitions Panel in the Aggregate Pane. The Transitions
Panel, which shows transitions between patterns, is probably the most abstract
and advanced in the tool, which may explain the lack of use when our partic-
ipants were still learning the more basic features. Since users can resize the
panels, to a point where only a single title bar is visible, they can pick-and-
choose the part of the tool with which they feel comfortable and is relevant for
the analysis at hand. For example, P1 frequently resized the screen to show only
the Detail Pane when he studied the session events, or to show only the Multiple
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Pane when he looked for trends and correlations between session attributes.

8.3.4 Design Theme 2 summary: unique tool role

determines reception

Even though it is premature to predict our tool’s future, we believe that since
Session Viewer fulfills a unique need in the analysis process, our target users
will use the tool. Given that our target population includes engineering-oriented
users, we also believe that some users may even tailor the tool to better suit their
analysis needs. In fact, one group at Google Inc. is adapting Session Viewer
to study usage behaviours in a three-dimensional modeling tool. While tool
complexity will deter some users, we assumed providing a powerful and flexible
tool would be more beneficial as users could pick and choose features based
on their analysis needs, but the tradeoff remains contentious. Contrary to our
previous design assumption, none of our participants requested data transfers.
Instead, our tool was used mostly to generate analysis ideas.

8.4 Limitations of Study

It is still too early to predict the long-term future of Session Viewer as a visual
analytic tool for web session log analysis. Due to time constraints and partici-
pant availability, we could only schedule two or three analysis sessions with most
of our participants for this study over a period of two months (Table 8.1). Com-
pounded with the fact that our participants’ were still learning to use Session
Viewer during the study, our observations and findings are thus biased towards
the early stages in data exploration and analysis.

Our study included two participants who were also involved in the tool design
discussions. We included their study sessions in our field evaluation as part of
our participatory design process (Section 7.2). While we recognize a potential for
biased results as our design collaborators may favour the tool, our observations
were geared towards tool use and usability problem identification rather than
subjective feedback, and in this discussion, our findings were used to identify
broader design implications rather than to validate Session Viewer. In fact, we
believe our design collaborators’ deeper understanding of the tool allowed them
to focus more on their analyses, which may arguably produce more realistic
tool-use behaviours. Nonetheless, we recognize the need for a greater pool of
participants with a larger number of study sessions to validate Session Viewer.

223



Chapter 8. Session Viewer at Work

Also, except for one of our participants (P1), we conducted all analysis
sessions at a design office instead of at participants’ work environments, even
though the analysis data and tasks were performed in the context of participants’
own work. Our choice was a workaround for constraints imposed by our field
environment. However, we recognize that our study setting, such as computer
display configurations, have likely influenced tool use.

Our observations and findings are necessarily limited to our study environ-
ment, our participants, and our chosen qualitative analysis method, even though
we attempted to tease out more general design guidelines by identifying con-
tributing factors that were particular to our test setting in this chapter. For that
reason, we believe while this study adds to existing knowledge in field evalua-
tions of information visualization systems, our conclusions should be considered
as deign or deployment considerations instead of claims.

8.5 Summary of Results and Implications for

Design

We conducted a field evaluation to observe web session log analysts interact with
Session Viewer. Over a period of two months, we observed 20 hours of tool use
with seven analyst participants whose analytical approaches range from detailed
session to statistical aggregate. In this study, we examined design choices made
during the creation of Session Viewer, along with discoveries of deployment
considerations of our prototype in the workplace.

In this chapter, we reported two design themes extracted from our observa-
tions: (1) design implications in working with real-world data, and (2) factors
that lead to initial tool reception. Based on our study findings, we recommend
that visualization tools designed to support large and complex data exploration
should (1) convey the gist of data to accommodate data validation, (2) provide
flexible data-field configurations based on users technical skills, and (3) provide
fluid data-view switches to support frequent mind-frame changes in exploratory
analyses.

As an example of visual analytic tools, we believe our tool’s eventual adop-
tion hinges on whether it provides a unique function in the analysis process, in
our case, bridging between the detailed-session and statistical-aggregate analysis
approaches. In terms of deployment considerations, we found that our tool needs
to provide a more flexible interface for data schema configuration to accommo-
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date the diverse needs of our analysts, especially when they are accustomed to
open-ended interfaces. We found that the ease of data transfer between our
tool and our analysts tool sets was less of a concern than in other visualization
systems (e.g., González and Kobsa 2003a), much to our surprise. We believe
that since the main use of the tool is to generate ideas for and validate findings
of statistical analysis, idea transfer is probably the norm. On the other hand,
we fear that tool complexity may deter some of our target users.

In terms of design choices, we validated the effectiveness of using a scrol-
lable sessions-level overview for getting the gist of the data, especially for data
validation. The question of overview creation is far from resolved and will be
further discussed in the next chapter in Section 9.1.1. We also found our choice
of using separate over embedded techniques was effective for session selections.
However, we did observe problems in view coordination during the field evalu-
ation. How to best arrange multiple visual information resolutions is thus far
from understood, and the issue will be discussed in Section 9.1.3.

Our efforts in creating aggregate visualization were less successful: while two
of our participants did use the Histogram Panel for filtering, the more abstract
Transitions Panel was largely ignored. In contrast, our decision to provide a
rigid layout did not seem to hinder tool use, even though we did observe screen
space use problems for one of our detailed-session analysts when performing
single-population analyses, suggesting a compromise between providing effective
layouts for multiple- verses single-population analyses.
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Open Questions,

Conclusions, and Future

Work

This chapter concludes the thesis by first looking at four open research ques-
tions in Section 9.1, and discussions on thesis contributions and future work in
Section 9.2.

9.1 Open Questions

This thesis touched on a vast number of topics. This section further discusses
four interesting research questions examined in this thesis: creation of overviews
for large data sets, roles of context in visualization systems, design choice of
spatial arrangements in presenting multiple visual information resolutions, and
challenges in evaluating visualization systems.

9.1.1 Creation of overviews

One of the few pieces of methodological guidance for designers of information
visualization systems is Shneiderman’s (1996) visual information-seeking mantra
of “overview first, zoom and filter, then details on demand” (p. 337). While
Shneiderman described the mantra as being descriptive and explanatory rather
than prescriptive, it has been widely used to guide or justify design decisions
(Craft and Carins 2005).

Assuming that Shneiderman’s (1996) top-down approach is appropriate for
exploratory data analysis, creating the overview remains a difficult problem,
especially given the increasingly large data set sizes that far exceed display
capacities. Even if all data points can fit onto the display screen, or screens as
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in the case of multiple-monitor settings, it may be beyond our ability to process
the displayed data, especially when the overview does not provide an emergent
structure.

In cases where the data itself has structures, the overview and other visual
information resolutions (VIR) in the display can model inherent data structures.
Our high-level summary synthesis on multiple-VIR design in Chapter 4 shows
evidence for that belief, which was also advocated by Furnas (2006). For most
hierarchical tree structures, there are fewer items in the higher levels, and the
designer will therefore have a much better chance in fitting all of the higher-
level data onto the overview. In short, visual designers can take advantage
of available domain knowledge crystallized as taxonomies, data categories, and
data structures.

For unstructured data, either because of lack of knowledge or lack of true
data structures, the approach to create overview is less clear. The overview-
use study in this thesis (Chapter 6) investigated this situation. Without the
structure, the only other means to display all of the data points is to reduce the
amount of details shown per datum. In the extreme, each dimension of each
data point is reduced to a single pixel, an approach taken by the pixel-based
visualizations such as VisDB (Keim and Kriegel 1994). While such approaches
provide very high-density displays, it is unclear if they are effective overviews.
In other words, designers may not be able to guarantee that users can find and
select regions of interest on the overview for further examination in the high-VIR
display.

Obviously, if the answer to the task can be obtained in the low-VIR display
alone, and the visual feature carrying that information is salient, or at least vis-
ible, the low-VIR overview will be useful. The real question is, what if only part
of the answer to the task is available on the overview, due to the inevitable de-
tail reduction required to create the overview? The overview-use study detailed
in Chapter 6 investigated whether a happy medium exists, where designers can
maximize the amount of data shown on the overview, but also provide details
on demand.

Unfortunately, our overview-use study failed to identify such a scenario
that is universally true for all of our participants. While we did observe the
“overview, zoom, details on demand” use in our multiple-VIR trials, at least
20% of our participants took the seemingly laborious route and used the high-
VIR display alone in our visual search and visual comparison tasks. We therefore
concluded that users need a lot of visual information on the overview to make
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the decision to demand details. For example, composite visual features, such
as our tri-band target shown in Figure 6.5, were found to be too difficult to
parse, as 56% of our participants switched over to the high-VIR display for the
task (Table 6.5). Given that the increase in data size outraces the increase in
display capacity, not to mention our own visual capacity, simple reduction of
visual details to fit all data points onto the overview screen cannot be a viable
long-term approach.

To address this challenge, Keim et al. (2006) modified Shneiderman’s (1996)
mantra to “analysis first, show the important, zoom, filter and analyze further,
detail on demand” (p. 16). In other words, the data is pre-processed using
automatic analysis methods to create an overview. The user can then work
with a data subset of reasonable size, and gradually build up insights in the
course of the analytical process. Keim et al.’s (2006) mantra is closer in spirit
to Hartwig and Dearing’s (1979) exploratory data analysis process, where both
recognized the difficulty, if not impossibility, to analyze the entire data at the
same time. Instead, analysts should study manageable subsets of the data and
build their analysis gradually.

Indeed, pre-processing has been used to address the large-data challenge.
For example, van Wijk and van Selow (1999) clustered a year’s worth of time-
series data of energy consumption by ECN employees and only displayed the
seven most significant clusters in the visualization. Their visualization allows
further analysis via user interactions, such as selecting an individual day from
the display calendar to view the corresponding detailed energy consumption
graph, looking for similar consumption patterns in other days, and refining the
number of clusters to obtain meaningful consumption patterns over the year.

While van Wijk and van Selow (1999) demonstrated a successful use of
clustering on one-dimensional time-series data in overview creation, such an
approach can be difficult to apply in multi-dimensional data. For example, in
the case of web session logs, clustering can be potentially performed on time
duration, event-sequence transition, any event-type counts, or a combination of
features.

A similar approach is to develop functions to extract the most salient pat-
terns and relationships from a data set and display them as a coherent abstrac-
tion of the exploration and analysis process. Analytic tools should therefore
filter out local details and random noise. Monmonier’s (1992) concept of sum-
mary graphics and DiBiase’s (1990) model maps emphasize giving up detail in
exchange for a useful abstraction as a key to effective synthesis. This philoso-

228



Chapter 9. Open Questions, Conclusions, and Future Work

phy in visualization creation is also advocated by Tufte in his books (e.g., Tufte
1983).

While it makes sense for the analytic tool to filter out local details and
noise or pre-grouped data into meaningful units before display, designers are
faced with the issue of user trust. This is particularly true when the relevance
metrics employed for filtering and clustering are opaque to the user (Woods
et al. 2002). Hornbæk and his colleagues have used a priori filtering in their
embedded interfaces evaluated in two studies (Hornbæk et al. 2003; Jakobsen
and Hornbæk 2006). In both studies, participants have voiced their distrust
and dismay at the hidden intelligence, as discussed our summary synthesis in
Section 4.4.4.

Even if the tool’s target users have learned through experience to trust its
intelligence, the question remains, how does the tool distinguish between inter-
esting patterns and local details? In his comments on current techniques to deal
with data overload, Woods et al. (2002) concluded that “systems that reduce
or filter available data are brittle in the face of context sensitivity” (p. 25). In
other words, domain and task contexts give meaning and relative importance
to individual data. In our field evaluation of Session Viewer (Chapter 8), we
saw that while some of our participants wanted to see average usage behaviours,
some looked for extreme cases to focus on problem searches not well supported
by the search engine. In short, outliers that are noise to one analyst may be the
focus of the analysis for another.

In addition to context sensitivity, data with non-obvious structures are dif-
ficult to summarize in any context. For example, session log analysis is still an
active area of research where researchers are trying to construct web metrics
(e.g., Dhyani et al. 2002), task taxonomies (e.g., Rose and Levinson 2004),
user characteristics such as levels of search expertise, and an understanding of
how these factors eventually influence usage patterns (e.g., user experience and
information search and re-access (Aula et al. 2005)). In the development of
Session Viewer, we struggled to provide high-level aggregate visualizations that
meaningfully sum up session population, as discussed in Section 7.6.4. In ret-
rospect, our difficulty probably reflects the lack of obvious ways to view the
complex data.

Given these challenges in visual information reduction to fit data onto a
overview, and challenges in pre-processing to extract main features in data,
we took a different approach to create the Sessions-Panel overview in Session
Viewer (Figure 7.2). While we did abstract individual session events to a box

229



Chapter 9. Open Questions, Conclusions, and Future Work

on the screen, we kept the size of the box at 5x5 pixels to make them physically
selectable without the need of magnifying tools. As a result, the Sessions-Panel
overview requires both vertical and horizontal scrolling with our participants’
data, as we observed in our field evaluation to study Session Viewer use in the
workplace (Chapter 8). In other words, our users can only see a subset of the
data even with the “overview”. To some information visualization researchers,
this choice contradicts the point of having an overview, which is to provide a
birdseye view of the entire data set.

Surprisingly, none of our participants mentioned this tool “defect” in our field
evaluation (Section 8.2.1). I believe this is due to the nature of the task and
the provision of session-attribute guided session reordering in Session Viewer.

As discussed in Section 2.1, unlike confirmatory analysis, the goals of ex-
ploratory data analysis is to understand data: to look for factors at play, form
rough ideas about their relationships, and to collect preliminary evidence to
justify the validity of these ideas (Behrens 1997). Perhaps for these goals, see-
ing the entire data set is less important than seeing the interesting parts of
it. Indeed, Hartwig and Dearing’s (1979) exploratory data analysis approach is
essentially bottom up, not top down. By providing session reordering based on
session attributes, users of Session Viewer can isolate the part of the data that is
of interest to them, with selection either based on domain knowledge and expe-
rience or found by experimentation. Session Viewer’s answer to the challenge of
context sensitivity of data is to provide fluid shifting of data views based on cri-
teria defined and controlled by users. In fact, we observed that despite loading
thousands of sessions per population, our participants only examined less than
50 per population in detail during the study sessions. Once they were satisfied
in their rough ideas, they moved on to another session population created to
address a different analysis task.

To summarize, creation of overview (in separate displays) or context (in
embedded displays) is central to multiple-VIR interface design and Shneider-
man’s (1996) visual information-seeking mantra. However, overview creation is
increasingly difficult due to large data size and complex but non-obvious data
structures. While several approaches exist, for example high-density display, vi-
sual information abstraction and a priori filtering or clustering, all approaches
at best involves substantial tradeoffs, and at worst, are questionable in their
effectiveness and long-term viability. We took the approach of coupling data
distribution with the overview. Even though our approach helps guide users to
the part of the overview that is of interest to them, it is still unclear if, and how,
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the incomplete overview impacts their analyses. The importance of an overview
in data analysis and the lack of satisfactory approach in its creation make this
an interesting research question.

9.1.2 The roles of context

While there is study evidence to support the proposed roles of overview in
separate displays, such as providing a table-of-content like map for navigation
and to convey overall structures, the roles of context in embedded displays, such
as orientation and provision of meaning, is less clear. This issue was discussed in
Section 4.4.5 of the chapter that details our summary synthesis of multiple-VIR
interface study results to extract design guidelines.

In fact, even the definition of context is not well established (Furnas 2006).
Since 1998, the JiangLab at Harvard University has been conducting experi-
ments to study a related phenomenon called contextual cueing, or, the process
in which our visual system uses global properties of an image to help the se-
lection, recognition and control of action by prioritizing objects and regions in
complex scenes (Chun and Jiang 1998, p. 30). In their experiments, context was
defined as:

• Spatial layout, or the location of target with respect to those of the dis-
tractor objects (Chun and Jiang 1998);

• Shape covariation, or the association of target and distractor shapes in
the display with varying locations (Chun and Jiang 1999), and

• Regularities in motion trajectories in dynamic visual environments (Chun
and Jiang 1999).

Study results indicate that context can be useful in two ways:

• Direct attention. Olson and Chun (2002) reported that context is impor-
tant in guiding attention to less familiar objects. If context is interpreted
as “features in a scene that do not change”, context can direct observers’
attention to unfamiliar objects if they have repeated exposure to the same
scene.

• Provide structure and coherence to objects. Biederman (1972) reported
that the meaningfulness of a scene facilitated perceptual processing of the
objects at an early stage. Chun and Jiang (1999) stated that the visual
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context of a scene facilitates recognition of objects relevant to that context.
Knowledge about our highly-structured visual world may serve to reduce
the large amount of uncertainty and complexity in the visual input.

Based on these study results, context seems to be important in our daily
lives, as it can guide attentional deployment and facilitates visual behaviours
such as visual search and object recognition, which are basic components of more
complex tasks like object location and navigation. However, context has to be
acquired before use. Studies found that context is implicitly learned, and what
we learn from the display depends on previous tasks performed using the display
(Jiang and Song 2004). Our visual system is surprisingly robust in transferring
learned context (Jiang and Wagner 2004; Jong and Jiang 2005). Even though
the learning is task dependent (Jiang and Song 2004), we have high capacities
for context learning with long retention time (Jiang et al. 2004).

While study results from cognitive psychology are interesting, the challenge
is to apply existing knowledge to visualization systems and user study designs.
In short, we as a community need to connect literature from another disci-
pline to ours, even though applying low-level findings to visualization system
design and evaluation is a challenge, as discussed in Section 5.6 when we de-
rived design guidelines from our visual-memory experiment. One example of
cross connection is in image transformation. Studies from the JiangLab suggest
that, even though our visual system is surprisingly robust in tolerating changes
in these contextual patterns, caution is advised to visualization designers as not
all transformations are equally well tolerated. For example, transformations like
scaling, displacement, and regrouping do not affect the transfer of contextual
learning, but topologies of the display should be preserved (Jiang and Wagner
2004). Jiang and Wagner’s (2004) finding thus corroborate with our low-level
visual-memory experiment results detailed in Chapter 5, and their conclusions
corroborate with guidelines proposed by Misue et al. (1995) to mitigate the
disorienting effect of image transformations.

Knowledge from another discipline can also benefit user study designs in
understanding interface use. Even though lower-level understanding of how our
visual system uses context in daily living should assist creation of tasks that can
benefit from a embedded visualization, we continue to have difficulties in finding
such tasks, as discussed in Section 6.4, where we discussed limitations of the
overview-use study. JiangLab’s study results suggest that context needs to be
learned implicitly, and context learned in one task type may not be transferable
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to another. For example, context learned in visual search tasks cannot be trans-
ferred to change detection tasks, and learning from change detection tasks only
moderately helps visual search tasks (Jiang and Song 2004). Since empirical
user studies to evaluate visualization techniques tend to use a different set of
data for each trial, participants often face new context at every trial. Without
revisiting the same context, potential benefits of contextual cueing may not be
realizable as performance benefits in interface use.

In summary, the roles of context in embedded displays remains an important
and interesting research question. At a deeper level, how to apply and connect
to knowledge from another discipline is perhaps a more difficult and broader
issue.

9.1.3 Spatial arrangements of the VIRs

One open question identified from our summary synthesis of multiple-VIR inter-
face design guidelines is one of spatial arrangements between the different VIRs
when displayed simultaneously (Section 4.6). Since we found that distortion,
frequently used in embedded systems, is disruptive to visual search and visual
memory (Chapter 5, and also Section 4.6.1), and since web log data have too
many data levels to be integrated into a single view, we have taken the separate
approach to design Session Viewer (Chapter 7).

However, even though the separate technique seemed to be effective in sup-
porting line-graph comparisons in our overview-use study (Chapter 6), and
in supporting data verification and session selection in Session Viewer (Sec-
tion 8.2.1), taking the separate approach is not without costs. We observed the
classic view-coordination problem in separate interfaces despite visual linking
and highlighting in both our overview-use study (Section 6.3.4) and in our field
evaluation (Section 8.2.1). In both cases, the problem occurred when the two
views were not spatially linked. In the overview-use study, the Separate inter-
face showed the low-VIR strip panel on top of the high-VIR plots. In Session
Viewer, the sessions in the Sessions Panel were also placed on top of the event-
detail table in the Events Panel. Since in both cases the visual objects (line
graphs and events) were arranged vertically, a possible improvement in the lay-
out may require putting the low- and the high-VIR views side-by-side such that
corresponding elements in both views can be aligned vertically, for example, as
in the first Session Viewer design (SV1, Section 7.6.1).

In general, perhaps interactive linking and brushing are not enough to resolve
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the view-coordination problem; we may also need to spatially associate graphical
elements in the separate views. However, this is mere speculation and the issue
of spatial arrangements in multiple-VIR design is still an open research question.

9.1.4 Evaluating information visualization

Evaluating information visualization systems and techniques is difficult (Plaisant
2004). To understand interface use, this thesis conducted a summary synthesis
(Chapter 4), a laboratory experiment (Chapter 5), a experimental-simulation
study (Chapter 6), and a field evaluation (Chapter 8).

In general, experimental strategies (laboratory experiment and experimental
simulation) are better suited to study visualization techniques than systems, as
these strategies tend to focus on a limited number of pre-defined factors each
with a small number of levels. To avoid confounds, experimenters need to isolate
interface visual and interactive elements, control data characteristics, and use
simple and generic tasks. Abstraction of tasks and data may have the advantage
to produce more generalizable results by looking at specific aspects of the tested
system with larger numbers of participants, and study results are potentially
amenable to high-level summary analyses or even meta-analyses, as discussed
in Section 4.8, where we discussed improvements on current study methods to
increase the utility of individual experimental-simulation studies.

At one extreme, experimentalists can abstract tasks to simple operations
such as visual search and measure human perceptions. In our laboratory exper-
iment in Chapter 5, we looked at two-dimensional geometric transformations
and measured its effect on visual memory. However, we had difficulties in ap-
plying our results to design, as the interplay between human visual perception
and visualization is complex, and our understanding of it is still incomplete for
us to isolate and identify factors to build models of interface use (Section 5.6).

In our experimental-simulation study in Chapter 6, we used fully interactive
interfaces and scenario-based tasks to gain insights that can be used to improve
on interface design before predictive models of interface use can be built in terms
of basic psychological measures (Section 6.5). However, to ensure generalizabil-
ity, we abstracted visual factors (Section 6.1.3), controlled data characteristics
(Section 6.1.2), and developed tasks based on taxonomies (Section 6.1.1). For
example, we only retained the strip and plot visual elements and corresponding
strip-plot switching interactions in our test interface, and removed all reordering
and clustering interactions from the original Line Graph Explorer interface (Kin-
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caid and Lam 2006) that implemented these visual encodings. However, such
abstractions may render the tested factors unrealistic and overly simplistic. For
example, our choice of task was limited by the need for objectively measurable
task outcomes, reasonable task performance time, and simplistic tasks that can
be performed by non-expert and quickly trained participants (Plaisant 2004).
The combination of simplistic tasks and insufficient participant motivation may
account for the lack of use of the multiple-VIR interfaces, as we believe our
participants may have failed to see the long-term benefits in learning to use the
more interactively complex interfaces (Section 6.3.4).

Also, the measurements, or dependent variables, in studies of experimen-
tal strategies are typically objective time and accuracy measurements. These
measurements, adopted from the field of experimental psychology, are now be-
ing questioned as being suitable to measure usability. For example, Hornbæk
(2006), after reviewing 180 studies selected from 587, suggests our community
should look at both objective and subjective measures, learnability, satisfaction,
and how these parameters develop over time. A bi-annual workshop called BE-
yond time and errors: novel evaLuation methods for Information Visualization
(BELIV) aims to find new measurements to quantify interface usability.

Measurements in studies of experimental strategies are generally fixed prior
to the experiment, making uncovering unexpected interface factors difficult, if
not impossible. The experimental-simulation study detailed in Chapter 6 illus-
trates this point. Our most interesting conclusions were drawn from observa-
tions of interface mode used by participants to locate their answers, instead of
from our dependent variables. We could only conjecture on the lack of use in
our multiple-VIR interface based on our recorded observations, not from our
objective time and accuracy measurements. Even though our statistical find-
ings may change if our challenges in task creation and training were resolved, I
believe the types of interface use problems observed during our study, such as
view coordination and decision making, will remain valid.

Limitations in study realism and factor discovery may render experimen-
tal strategies inappropriate to study visualization systems, since system use is
heavily influenced by context of use, such as working environment, user charac-
teristics (domain expertise, engagement/incentive, and individual differences),
task, and data. In interface use, there are many potentially important factors in-
volved, and some of them surprising and only identified after extensive piloting,
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much like Taleb’s (2007) Black Swans 3. For example, Reilly and Inkpen (2007)
unexpectedly found that study environments significantly affected visualization
effectiveness.

For these reasons, field experiments are more ecologically valid for system
evaluations. Longer-term studies provide more complete pictures of system use
(Shneiderman and Plaisant 2006), since true usage patterns can only emerge
over time, as found by González and Kobsa in their evaluations of InfoZoom
(González and Kobsa 2003b; González and Kobsa 2003a). Also, using the user’s
own data and task, rather than synthetic ones, provides a more realistic study
setting and ensures participant motivation and engagement, as found in Saraiya
et al.’s (2004) studies on analyzing micro-array data with various visualizations
(Saraiya et al. 2004; Saraiya et al. 2006).

The field evaluation conducted to understand how potential users use Ses-
sion Viewer revealed unexpected results that cannot be found using laboratory
experiments or experimental-simulation studies (Figure 1.2). As discussed in
Chapter 8, the study uncovered a stronger need of data-field configurability re-
quired in the software than expected, and a much weaker need for data transfer.

Perhaps because of the advantages of realistic settings and the ability to find
unexpected results, there is a steady increase in field experiments in human-
computer interaction research, from 7% in 1983 to 14% in 2006 (Barkhuus
and Rode 2007). Indeed, researchers have expressed discontent in experimental
strategies, and have suggested looking into more qualitative, exploratory, and
long-term evaluations (e.g., Plaisant 2004; Shneiderman and Plaisant 2006).
Nonetheless, field experiments are not without problems. For example, it is of-
ten difficult to generalize results obtained from field experiments, since they tend
to study specific systems in-depth under specific settings with only a handful of
participants.

In short, both experimental and field strategies have merits and problems,
and it remains an open research question to search for better evaluation meth-
ods to study interface use. My own unsubstantiated belief is that since both
the human-computer interaction and information visualization communities are
still developing effective metrics to quantify usability, our previous focus on
experimental strategies (Barkhuus and Rode 2007), especially on laboratory
experiments, is perhaps premature, as experimenters need more open ended,
observation based, and exploratory methods to discover and identify important

3According to Taleb, black swan is a large-impact, hard-to-predict, and rare event beyond
the realm of normal expectations
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factors in interface use before they can be quantified with quantitative methods.

9.2 Thesis Conclusions and Future Work

The larger goal of this thesis is to see how visualizations can be used to support
exploratory data analysis (EDA) of large data sets with complex structure.
The thesis begins by evaluating different aspects of multiple visual information
resolution (VIR) interface design in laboratory settings, then focuses on the
web session log analysis application domain to further investigate issues that
arise during the actual design, implementation, and deployment of visualization
systems in the workplace. The thesis ends by reflecting on four open research
questions in the use of multiple-VIR interfaces to support EDA of large data
sets.

For the evaluation aspects of the thesis, we employed a range of methods to
study multiple-VIR interface to examine our two research areas for the thesis:
(1) overview creation and use; and (2) VIR spatial arrangements.

The summary synthesis (Chapter 4) reviewed 19 multiple-VIR studies
to provide evidence for design decisions in creating a multiple-VIR interfaces,
a knowledge gap in both the information visualization and human-computer
interaction communities. In addition to extracting guidelines for multiple-VIR
interface design (Section 4.7), experience gained in conducting the summary
synthesis was crystallized as methodology guidelines to increase the utility of
experimental-simulation studies by making them more amenable to high-level
analysis (Section 4.8).

In terms of design recommendations, study results suggested that the num-
ber of VIRs in a system and the levels of organization in the supported data
should match, and low VIRs should only display task-relevant information as
extra information had been found to impede task performance. Simultaneous
display of the multiple VIRs was found to be suitable for tasks with multi-level
answers or clues to reach the answers. Otherwise, temporal switching of the
different VIRs was found to support better performance, possibly due to the
simpler and more familiar interface and interaction.

In terms of methodology recommendations, we recommended using compara-
ble study interfaces, capturing usage patterns in addition to overall performance
measures, isolating interface-use factors, and reporting more study details to
increase consistency among experimental-simulation studies and increase their
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utility in contributing to meta-analyses.
The visual-memory laboratory experiment (Chapter 5) systematically

measured the visual memory costs of two-dimensional geometric transformations
such as scaling, rotation, rectangular fisheye, and polar fisheye transformations.
Based on response time and accuracy results, we defined a no-cost zone for each
transformation type within which we did not detect performance degradations.
We found that the scaling transformation is well tolerated, as we could not
detect performance degrading within our experimental range. Among the two
fisheye transformations, the polar fisheye transformation was found to be bet-
ter tolerated than its rectangular counterparts. We verified two guidelines to
mitigate visual memory costs of the two-dimensional geometric transformations.
Misue et al.’s (1995) guideline to preserve orthogonal ordering in displays was
verified and refined to only providing an up-down direction, and the effectiveness
of background grids was verified.

The overview-use experimental-simulation study (Chapter 6) exam-
ined the assumption that users can select regions of interest to examine at higher
VIRs. We examined and refuted this assumption for single-level data and pro-
posed interaction costs as a factor. We found that that our participants would
reliably use the low-VIR overviews only when the visual targets were simple and
had small visual spans. Otherwise, at least 20% chose to use the high-VIR view
exclusively. We therefore concluded that use of multiple VIR for single-level data
is likely to be inappropriate, as scant benefits in having multiple VIRs cannot
compensate interaction costs, such as the need for making selection decisions
using the low-VIR display and view coordination in separate interfaces.

Our application contributions in this thesis is our design study of Ses-

sion Viewer. Session Viewer is our test bed to examine guidelines from the
first three laboratory evaluations in the thesis, where we tested the guidelines’
applicability in a concrete, mature, and fully functional visualization system,
tested in an ecologically-valid setting. We therefore chose the application do-
main of web session log analysis. After surveying the problem space of log data,
the exploratory data analysis task, and the specific needs of session analysts
at Google Inc., the target environment for Session Viewer, we proposed a vi-
sualization solution to bridge between the high-level statistical-aggregate and
the low-level detailed-session analysis styles, which was implemented as Session
Viewer, presented in Chapter 7.

We proposed and implemented a scrollable sessions-level overview augmented
by session attributes to address the overview creation question examined in our

238



Chapter 9. Open Questions, Conclusions, and Future Work

first three studies. We took the separate approach and display session data at
the aggregate, multiple, and detail levels. While the aggregate and detail levels
correspond to levels in existing analysis approaches, the middle multiple level
helps bridge between the two and facilitates cross-level analyses. To aid com-
parisons between session populations, we used the multiple coordinated view
approach to support side-by-side comparisons at all data levels.

Our Session Viewer field evaluation, detailed in Chapter 8, was the
fourth and last study in this thesis. Taking a qualitative approach, we obtained
findings based on 20 hours of observations with seven session analysts working
on their own data and tasks. We examined the impact our design choices (Sec-
tion 7.6) to test the validity of our design guidelines. We also identified two
main deployment issues of visual analytic tools in the workplace.

We summarize our findings as visual design choice and deployment consid-
erations:

1. Visual design choices:

• Scrollable overviews may be a viable solution to the challenge in
overview creation for large data sets with complex compositions when
users can discern data distribution to selectively view interesting por-
tion of the data, and when the goal of the analysis is to derive, rather
than confirm, hypotheses (Section 8.2.1);

• Our difficulties in creating effective aggregate visualizations to char-
acterize session populations reflect on the complex composition and
lack of obvious structure in our data, which support the need for
exploratory, rather than confirmatory, analysis (Section 7.6.4).

• The separate technique is indeed effective in supporting data verifi-
cation and session selection, even though our choice was based more
on the potential problems in using embedded techniques than on the
merits of using the separate approach (Section 8.2.1). Despite the
observed effectiveness of the separate approach in our study, it is still
unclear if separate techniques would be superior in displaying mul-
tiple data levels than embedded techniques, as we did not directly
study and compare the two approaches;

• While showing data panels in a fixed layout for all session popula-
tions can facilitate comparisons between populations and avoid user
confusion in visualization systems with multiple panels, rigid layout
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may result in suboptimal display for single-population analyses (Sec-
tion 8.2.3).

2. Deployment considerations:

• The required degree of flexibility in the configuration of data fields
and definitions can be more accurately gauged by the degree of tech-
nical skills of users, not by the degree of acceptance of existing data
schema, as more technical users tend to augment existing schema for
specific analysis tasks (Section 8.2.2);

• The need for data-transfer support is dependent on the analysis task.
In our case, our tool supports exploratory data analysis where our
study analysts used Session Viewer to generate ideas about the data
instead of to draw conclusions. As a result, idea transfer, instead of
data transfer, was the norm found in the study (Section 8.3.2).

In terms of future directions, it would be interesting to look at how interface
interactions impact multiple-VIR use. We identified interaction costs as an
important consideration in both our summary analysis (Section 4.3.1) and in
our overview-use study (Section 6.3.4). However, interaction has not been a
focus in the information visualization community. While Yi et al.’s (2007) user-
intent based classification of interactions in visualizations is a useful initial step,
we also need a common language to discuss interaction costs, and metrics to
quantify such costs and their impact on interface use.

Even though the thesis is coming to an end, Session Viewer is an ongoing
project at Google Inc. There are both short and long term developments for
Session Viewer, and plans to follow up with our study participants.

The short-term items are engineering work to make Session Viewer more ac-
cessible to our users. We plan to address the usability and design issues revealed
in our field evaluation. We plan to provide more flexible definitions of session
and event attributes, for example, to replace form-like dialog boxes (e.g., for
pattern sequences in Figure 7.12) with a script-like interface given our technical
target users. To address the issue with our limited data-field configurability, we
plan to adapt an open-ended configuration file instead of improving upon our
current hybrid of fixed data and open fields. These modifications will pave the
way to expanding Session Viewer to other computer-generated logs, for example
usability logs.
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There are also three major areas for longer term developments. The first
two may improve the scalability of Session Viewer. Even though it would be
very difficult to produce a visual analytics tool that can handle the amount of
data typically involved in statistical web session log analysis, Session Viewer
can take advantage of such analysis by displaying how the current displayed
populations compare to the larger data populations, much like how Session
Viewer places individual sessions in the context of its session population at
the Multiple data level. A more challenging, but potentially fruitful, approach
is to aggregate the sessions prior to display and informed users of clustering
operations performed so that they can modify the operations if needed. Tesone
and Goodall (2007) aggregated data prior to display to maximize user’s situation
awareness in massive data.

The second area for future development is to investigate how Session Viewer
may benefit from machine intelligence. Predefined aggregate statistical visu-
alizations, examples being the ones we implemented in the Aggregate Pane in
the second and third versions of Session Viewer, may be too simplistic to ad-
dress analysts’ needs. Automatic clustering in statistical analysis is still an open
area of research and user trust may be an issue, as discussed in Section 4.4.4.
However, I believe that visualizations may be able to help users customize clus-
tering algorithms (e.g., in Nam et al. 2007), which may improve both clustering
algorithms and visualizations.

The last area of future development is to increase the flexibility of display
panels. While I believe the fixed three-level data of Aggregate, Multiple and
Detail helps orient users and reduces cognitive load, panels within each data
level should be configurable. Ideally, Session Viewer should provide a list of
visualizations for each data level, and users can pick appropriate visualizations
for each task.

In terms of evaluation, even though our study spanned a period of two
months, it is still too early to conclude if our tool is successful. Since Session
Viewer is available inside Google Inc., we plan to follow up with our participants
in six months’ time to monitor long-term tool use.
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Appendix A

Previously Published or
In-Preparation Papers

The majority of work described in this thesis has either been published in con-
ference proceedings or journals, submitted, or is in preparation for publication.
Materials from published work are adapted and expanded in this thesis. Here
is a list of publications related to this thesis.

Published journal and conference papers:

1. Lam, H., T. Munzner, and R.A. Rensink (2006). The Invariance of Visual
Long-term Memory to Geometric Transformation. Journal of Vision 6
(6), 983a.

2. Lam, H., T. Munzner, and R.A. Rensink (2006). Effects of 2D Geo-
metric Transformations on Visual Memory. In the Proceedings of the
ACM 3rd Symposium on Applied Perception in Graphics and Visualization
(APGV’06), pp. 119–126.

3. Lam, H., T. Munzner, and R. Kincaid (2007). Overview Use in Multiple
Visual Information Resolution Interfaces. IEEE Transactions on Visual-
ization and Computer Graphics (TVCG) 13 (6), 1278–1283.

4. Lam, H., D. Russell, D. Tang, and T. Munzner (2007). Session Viewer: a
Visual Exploratory Analysis of Web Session Logs. In the proceedings of the
IEEE Symposium on Visual Analytics Science and Technology (VAST’07),
pp. 147–154.

5. Lam, H. and T. Munzner (2008). Increasing the Utility of Quantitative
Empirical Studies for Meta-analysis. In the Proceedings of the ACM CHI
Workshop on BEyond time and errors: novel evaluation methods for in-
formation visualization (BELIV’08), pp. 21–27.

Submitted journal paper:

1. Lam, H. and T. Munzner. A Study-Based Guide to Multiple Visual In-
formation Resolution Interface Designs.
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In-preparation journal paper:

1. Lam, H., D. Russell, D. Tang, and T. Munzner. Session Viewer: Visual
Exploratory Analysis of Web Session Logs.

The following includes a list of copyrighted work that has been reused or
further developed in this thesis:

1. Part of Chapter 4 is based on an earlier work “Increasing the Utility of
Quantitative Empirical Studies for Meta-analysis” to be published in the
Proceedings of the ACM CHI 2008 Workshop of BEyond time and errors:
novel evaLuation methods for Information Visualization c©ACM, 2008.

2. Chapter 5 is based on an earlier work “Effects of 2D Geometric Transfor-
mations on Visual Memory” published in the Proceedings of the ACM 3rd
Symposium on Applied Perception in Graphics and Visualization c©ACM,
2006. http://doi.acm.org/10.1145/1140491.1140515.

3. Chapter 6 is based on an earlier work “Overview Use in Multiple Visual
Information Resolution Interfaces” published in IEEE Transactions on
Visualization and Computer Graphics 13(6) c©IEEE, 2007.
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70583.

4. Chapter 7 is based on an earlier work “Session Viewer: a Visual Ex-
ploratory Analysis of Web Session Logs” published in the Proceedings
of the IEEE Symposium on Visual Analytics Science and Technology
c©IEEE, 2007. http://ieeexplore.ieee.org/10.1109/
VAST.2007.4389008.
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Appendix B

Summary Synthesis
Reviewed Studies

This appendix summarizes the key aspects of the multiple-VIR interface studies
reviewed in Chapter 4. We first summarize each study in Section B.1. In
Section B.2, we list study interfaces, tasks, data, and statistically significant
results for each study.

B.1 Study Summaries

A. Keeping Things in Context: A Comparative Evaluation of Focus Plus Context
Screens, Overviews, and Zooming (Baudisch et al. 2002)
This study compared three visualization techniques: (1) focus plus context screens:
wall-size low-resolution displays with an embedded high-resolution display region; (2)
overview plus detail; and zooming/panning to extract information from large static
documents and avoid collisions in a driving simulation.

B. Fishnet, a fisheye web browser with search term popouts: a comparative evaluation
with overview and linear view (Baudisch et al. 2004)
A user study that helps practitioners determine which visualization technique–fisheye
view, overview, or regular linear view-to pick for which type of visual search scenario
in viewing webpages on browsers.

C. DateLens: A Fisheye Calendar Interface for PDAs (Bederson et al. 2004)
This study compared between two types of calendar visualizations: DateLens and
Pocket PC 2002 calendar for both simple and complex tasks.

D. Fisheye Views are Good for Large Steering Tasks (Gutwin and Skopik 2003)
This study tested the effects of magnification and representation on user performance
in a basic pointing activity called steering–where a user moves a pointer along a pre-
defined path in the workspace. Researchers tested three types of fisheye at several
levels of distortion, and also compared the fisheyes with two non-distorting overview
+ detail techniques.

E. Reading of electronic documents: the usability of linear, fisheye and overview +
detail interfaces (Hornbæk and Frokjær 2001) and
Reading Patterns and Usability in Visualization of Electronic Documents (Hornbæk
et al. 2003)
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B.1. STUDY SUMMARIES

This study explored reading patterns and usability in visualizations of electronic doc-
uments using a fisheye, an overview + detail, and a linear interface with question
answering and essay tasks.

F. Navigation Patterns and Usability of Zoomable User Interfaces with and without
an Overview (Hornbæk et al. 2002)
This study compared zoomable user interfaces with and without an overview to un-
derstand the navigation patterns and usability of these interfaces using map data.

G. Untangling the Usability of Fisheye Menus (Hornbæk and Hertzum 2007)
This study investigated whether fisheye menus are useful as compared to the hier-
archical menu and two variant of the fisheye menu based on known-item search and
browsing tasks.

H. Evaluating a Fisheye View of Source Code (Jakobsen and Hornbæk 2006)
This study compared the usability of the fisheye view with a common, linear presen-
tation of program source code.

I. Summary Thumbnails: Readable Overviews for Small Screen Web Browsers (Lam
and Baudisch 2005)
The study compared Summary Thumbnails—thumbnail views enhanced with readable
text fragments—with thumbnails, single-column interface, and a desktop interface in
a number of web-informational search tasks.

J. Overview Use in Multiple Visual Information Resolution Interfaces (Lam et al.
2007)
The study looked at overview use in two multiple-VIR interfaces with high-VIR dis-
plays either embedded within, or separate from, the overviews using finding and match-
ing tasks.

K. An Evaluation of Pan and Zoom and Rubber Sheet Navigation (Nekrasovski et al.
2006)
This study evaluated two navigation techniques with and without an overview. The
techniques examined are conventional Pan and Zoom Navigation and Rubber Sheet
Navigation, a rectilinear Focus+Context technique.

L. Snap-together Visualization: Can Users Construct and Operate Coordinated Vi-
sualizations (North and Shneiderman 2000)
This study explored coordination construction and operation in Snap-together visual-
ization operating an overview-and-detail coordination, a detail-only and an uncoordi-
nated interface to display census data.

M. The Effects of Information Scent on Visual Search in the Hyperbolic Tree Browser
(Pirolli et al. 2003)
The paper presents two experiments that investigated the effect of information scent
(tasks with different Accuracy of Scent scores) on performance with the Hyperbolic
Tree Browser and the Microsoft Windows File Browser.
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B.2. STUDY INTERFACES, TASKS, DATA, AND RESULTS

N. SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution
and Empirical Evaluation (Plaisant et al. 2002)
The study compared SpaceTree–a novel tree browser with dynamic rescaling of branches
of the tree–with the hyperbolic tree browser and the Windows explorer in a series of
locate, refind, and topology-related tasks.

O. Zooming, Multiple Windows, and Visual Working Memory (Plumlee and Ware
2006)
The paper presents a theoretical model of performance that models the relative benefits
of these techniques when used by humans for completing a task involving comparisons
between widely separated groups of objects based on a user study of zooming and
multiple windows interfaces.

P. Visualization of Graphs with Associated Timeseries Data (Saraiya et al. 2005)
This study evaluated and ranked graph+timeseries visualization options based on
users’ performance time and accuracy of responses on predefined tasks.

Q. A Comparison of Traditional and Fisheye Radar View Techniques for Spatial
Collaboration (Schafer and Bowman 2003)
This study compared an enhanced design that uses fisheye techniques with a traditional
approach to radar views in spatial collaboration activities.

R. Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom
Methods (Schaffer et al. 1996)
This experiment compared two methods for viewing hierarchically clustered networks:
the traditional full-zoom techniques provide details of only the current level of the hier-
archy; and the fisheye views, generated by the variable-zoom algorithm, that provides
information about higher levels as well.

S. An Evaluation of Content Browsing Techniques for Hierarchical Space-Filling Vi-
sualizations (Shi et al. 2005)
The paper presents two experiments that compared a distortion algorithm based on
fisheye and continuous zooming techniques for browsing data in the TreeMap repre-
sentation with the drill-down method in browsing task with or without the need for
context.

B.2 Study Interfaces, Tasks, Data, and Results

Interfaces: We classified study interfaces based on the taxonomy used in the ar-
ticle, as hiVIR (H), temporal (T), separate (S), or embedded (E). We listed all the
categories to which the interface were categorized. For example, a zoomable interface
with an overview would be classified as “separate + temporal”, or “S+T”. We also
included the names of the interfaces if they were provided in the original study papers.

Significant Results: We listed the statistically significant time and accuracy results,
using the interface taxonomy of H, T, S, and E. Even though many studies reported
questionnaires and observations, we do not include them due to space constraints.

262
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A. Keeping Things in Context: A Comparative Evaluation of Focus Plus Context
Screens, Overviews, and Zooming (Baudisch et al. 2002)

Interfaces:

• T : z+p (Traditional pan-and-zoom)

• [S+T]: o+d (low-VIR window + a smaller temporal)

• E : f+c (Fixed high-res region with surrounded by low-res without distortion. Panning in-
teraction only.)

Task(s):

1. Static task: Find route in a map

2. Static task: Verify connection in a network

3. Dynamic task: Avoid collision in a computer-game like environment

Data:

• For static tasks: spatial map data

• For dynamic tasks: a computer-game like environment with a driving scene with falling
objects. Some of which were visible at low VIRs (i.e., the rocks), and some only at high
VIRs (i.e., the nails)

Significant Result(s):
Time:

• E < T (Find route; verify connection)

• E < [S + T ] (Find route; verify connection)

Accuracy:

• E > [S + T ] (Avoid collision)

B. Fishnet, a fisheye web browser with search term popouts: a comparative evalua-
tion with overview and linear view (Baudisch et al. 2004)

Interfaces:
(Note:all interfaces were augmented with semantic highlights of keywords in the documents, each
keyword highlighted with a different colour)

• H : Linear (Traditional browser interface with vertical scrolling)

• S : Overview (hiVIR plus a low-VIR view showing the entire webpage fitted vertically to a
fixed horizontal width)

• E : Fisheye (A non-scrollable browser with readable and non-readable texts, depending on
the user selection.)

Task(s):

1. Outdated: check if page contained all four search terms

2. Product choice: find cheapest notebook with four features

3. Co-occurrence: check if page contained any paragraphs that contained both search terms

4. Analysis: check how many times Mrs. Clinton was mentioned, with “Clinton” being the
search term

Data: Web documents

Significant Result(s):
Time:

• S < H (Outdated)

• E < H (Outdated, Product choice)

• E < S (Product choice)

• H < E (Co-occurrence)

Accuracy:

• E > H > S (Co-occurrence)
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C. DateLens: A Fisheye Calendar Interface for PDAs (Bederson et al. 2004)

Interfaces:

• T : Pocket PC (Default Pocket PC calendar, providing separate day, week, month and year
views)

• E : DateLens (A Table Lens-like distortion that can show multiple levels of details simulta-
neously, with the default configured as a 3-month view)

Task(s):

1. Searching: find the start and/or end dates of appointments

2. Navigation and Counting: navigate to particular appointments or monthly views, and count
pre-defined activities

3. Scheduling: schedule an event of various time spans

Data: Calendar data

Significant Result(s):
Time:

• T < E(Check schedule, Count Mondays/Sundays in a month, Find the closest free Satur-
day night/Sunday)

• E < T (Count conflicts/free days in a 3-month period, Find freest/busiest two-week period
in the next three months, Find a start date for a specific activity, Find freest half-day in
a month)

Percent completed task:

• E > T , except for two tasks to find schedule details about specific activities

D. Fisheye Views are Good for Large Steering Tasks (Gutwin and Skopik 2003)

Interfaces:

• (E1)Sarker-and-Brown fisheye

• (E2)Round-lens fisheye

• (E3)Flat-lens fisheye

• (S1)Panning view

• (S2)Radar view

Task(s): 2D-steering task that required participants to move a pointer along a path that is defined
by objects in a visual workspace. In order to perform the task, participants needed to use the
high-VIR view for accurate steering, and the low-VIR view to pan around.

Data: Abstract 2D paths: horizontal, diagonal, step, curve

Significant Result(s):
Time:

• E ≤ S (at all magnification levels)

Accuracy:

• E ≥ S (at all magnification levels)

E. Reading of electronic documents: the usability of linear, fisheye and overview +
detail interfaces (Hornbæk and Frokjær 2001) and
Reading Patterns and Usability in Visualization of Electronic Documents (Hornbæk
et al. 2003)

Interfaces:

• H : Linear(Traditional vertically scrollable interface)

• S : Overview+Detail (hiVIR plus a low-VIR overview of the entire document, reduced by
1:17 in size on average, and coordinated with the high-VIR view. In the low-VIR view,
only the section and subsection headers of the document were readable, with the rest of the
document shrunk to fit within the available space.)
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• E : Fisheye (Non-scrollable browser with only the most important part of the document was
readable. The relative importance determined by the interface a priori. Participants could
expand or collapse different parts of the documents by a mouse click.)

Task(s):

1. Essay: read a document, from memory: (a) write 1-page essay, stating the main theses and
ideas of the documents; (b) answer 6 incidental-learning questions

2. Question-answering: answer 6 questions

Data:Electronic text documents

Significant Result(s):
Time:

• E < H (Essay)

• E < S (Essay)

• H < E (Question-answering)

Effectiveness:

• S > H (Essay: Author’s grading)

• S > E (Essay: Author’s grading, Essay: # correct incidental-learning questions)

• H > E (Essay: # correct incidental-learning questions)

F. Navigation Patterns and Usability of Zoomable User Interfaces with and without
an Overview (Hornbæk et al. 2002)

Interfaces:

• T : Zoomable User Interface (ZUI) (Displayed a map, zoomable at 20 scale levels)

• [S+T]: ZUI with Overview (Temporal plus a low-VIR view that was one-sixteenth the size
of the zoomable window)

Task(s):

1. Navigation: find a well-defined map object

2. Browsing: scan a large area, possibly the entire map for objects of a certain type

3. Label cities and counties: write down as many objects within the a map area from memory

4. Recognize cities: circle all cities within a county and cross out cities that were believed to
be outside of the county

Data: Geographical map:

• Washington map: 3 levels (county, city and landmark)

• Montana map: single level

Significant Result(s):
Time:

• T < [S + T ] (Navigation)

Accuracy:

• T > [S + T ] (Washington map: Label cities and counties, Recognize cities)

G. Untangling the Usability of Fisheye Menus (Hornbæk and Hertzum 2007)

Interfaces:

• T : Hierarchial menu (Traditional cascading menu. For the smaller data set, the menu had
two VIRs. For the larger data set, the menu had three VIRs, or two submenus.)

• S : (A low-VIR pane showing an index of letters of the items included in the menu, and a
high-VIR pane showing menu items. The portion of the items showed was determined by
the mouse position relative to length of the menu)

• [E+S]: Fisheye (The low-VIR pane showed an index of letters of the menu items. The
high-VIR pane showed all the menu items, with a regular font-sized region surrounded by
decreasing font sizes. At the two extreme ends, the items were unreadable.)

• E : Multi-focus (Showed two types of high-VIR regions: the mouse-selected menu items, and
those that were determined to be significant based on a priori importance).
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Task(s):

1. Known-item search

2. Browsing

Data:

• alphabetical data with 100 items

• categorical data with 292 items (4x8x8)

Significant Result(s):
Time:

• T < all interfaces (Known-item search)

Accuracy:

• T > all interfaces (Known-item search)

H. Evaluating a Fisheye View of Source Code (Jakobsen and Hornbæk 2006)

Interfaces:

• H : Linear (Vertically scrollable and displayed all the program lines)

• E : Fisheye (No vertical scrolling, but selectively displaying semantically relevant parts of the
source code based on the lines displayed in the focal region. The selection was determined
by a modified version of Furnas’ degree-of-interest function (Furnas 1986), where semantic
distance was also considered along with syntactic distance and a priori significance.)

Task(s):

1. One-step navigation

2. Two-step navigation

3. Determine field encapsulation

4. Determine delocalization

5. Determine control structure

Data: Program source code

Significant Result(s):
Time:

• E < H (Two-step navigation: 15%, Determine delocalization: 30%)

I. Summary Thumbnails: Readable Overviews for Small Screen Web Browsers (Lam
and Baudisch 2005)

Interfaces:

• T : Summary Thumbnail / Thumbnail (Scaled-down image of the original webpage fitted to
the width of the PDA screen, with or without preserving the readability of the text)

• H : Desktop (Original, unscaled desktop-sized webpage)

Task(s): Information searches

Data: Web documents

Significant Result(s): No significant differences in performance time or task accuracy

J. Overview Use in Multiple Visual Information Resolution Interfaces (Lam et al.
2007)

Interfaces:

• H : hiVIR (Stacked line graph plots, encoding the x and the y line graph values with space,
and the y-values doubly encoded with colour.)

• S : separate (Low-VIR interface with strips that encode the y-values of the line graph data
with colour alone. Mouse-click on strip displays high-VIR plots in a separate panel.)

• E : embedded (Low-VIR regions of strips. Mouse-click on strip displays high-VIR plots in
place.)
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Task(s):

1. Find highest point

2. Find most number of peaks in line graph

3. Match a small region of line graph

4. Match entire line graph

Data: 140 line graphs, each with 800 data points

Significant Result(s):
Time:

• S < H (Find highest point)

• E < H (Find highest point)

K. An Evaluation of Pan and Zoom and Rubber Sheet Navigation (Nekrasovski et al.
2006)

Interfaces:

• T : PNZ (The traditional pan and zoom interface augmented with a visual cue to indicate
the location of the target branch as coloring of the node regardless of the allotted screen
presence)

• E : RSN (Implemented the Rubber Sheet Navigation (Sarkar et al. 2003), augmented with a
Halo-like arc served as the visual cue (Baudisch and Rosenholtz 2003), as the actual target
may be off screen)

• [T+S], [E+S]: PNZ+OV, RNS+OV (Add low-VIR overview in addition to their temporal
or to their embedded views)

Task(s): Compare the topological distances between colored nodes in a large tree and determine
which of the distances was smaller

Data: Large trees

Significant Result(s):
Time:

• T < E

• [T + S] < [E + S]

L. Snap-together visualization: can users construct and operate coordinated visual-
izations (North and Shneiderman 2000)

Interfaces:

• H : detail-only (Displayed census information grouped by geographic states)

• S : coordination / no-coordination (hiVIR plus a low-VIR pane that displayed an alphabetical
list of states included in the census)

Task(s):

1. Coverage: answer present or absent of objects

2. Overview patterns

3. Visual / nominal lookup

4. Compare two or five items

5. Search for target value

6. Scan all

Data: United States census data

Significant Result(s):
Time:

• S(±coord) < H (Coverage, Overview patterns)

• S(+coord) < H|S(−coord) (Nominal lookup, Compare, Search, Scan)
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M. The Effects of Information Scent on Visual Search in the Hyperbolic Tree Browser
(Pirolli et al. 2003)

Interfaces:

• T : Microsoft File Browser

• E : Hyperbolic tree browser (Lamping et al. 1995)

Task(s):

1. Information Retrieval: simple, complex

2. Comparison: local, global

Data: CHI’97 BrowseOff tree, except trimming it to four levels with 1436 nodes, and 66 nodes at
the lowest level

Significant Result(s):
Time:

• E < T (High-scent tasks)

• T < E (Low-scent tasks)

N. SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution
and Empirical Evaluation (Plaisant et al. 2002)

Interfaces:

• T : Microsoft Explorer file browser

• Ehyperbolic: Hyperbolic tree browser (Lamping et al. 1995) (Lays out a tree based on a
non-Euclidian hyperbolic plane)

• EspaceT ree: SpaceTree (Dynamically rescales the tree branches for the available screen space,
preserves ancestral nodes but elides the rest into a triangular icon)

Task(s):

1. Node searches

2. Search of previously visited nodes

3. Topology questions

Data: CHI’97 BrowseOff tree with over 7000 nodes

Significant Result(s):
Time:

• T < Ehyperbolic (Node searches: 1 out of 3 tasks)

• EspaceT ree < T (Node searches: 1 out of 3 tasks)

• T < Ehyperbolic (Refind previously visited nodes)

• EspaceT ree < Ehyperbolic (Refind of previously visited nodes)

• T < EspaceT ree (Refind of previously visited nodes)

• EspaceT ree < T (Topology: list all ancestor nodes)

• Ehyperbolic < EspaceT ree (Topology: local topology)

Accuracy:

• EspaceT ree > Ehyperbolic > T (Refind of previously visited nodes, Topology: overview)

O. Zooming, Multiple Windows, and Visual Working Memory (Plumlee and Ware
2006)

Interfaces:

• T : Zooming (Continuous zoom mechanism)

• S : Multiple Windows (Two VIRs: up to two high-VIR windows selected from a low-VIR
view. The targets were clusters of 3-D geometric objects. Their low-VIR view showed only
the location of the candidate targets, but not the details. At the intermediate levels, the
target locations and details were camouflaged by the textured background. The highest VIR
presented enough target details for the visual comparison)
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Task(s): Multiscale comparison task to find a cluster that matched the sample set of 3D objects.

Data: Six targets, each a cluster of 3D geometric objects with 1 to 7 items, each item taken
from five possible shapes

Significant Result(s):
Time:

• T < S (sets with one or two items)

• S < T (sets with five or seven items)

Accuracy:

• S < T

P. Visualization of Graphs with Associated Timeseries Data (Saraiya et al. 2005)

Interfaces:

• H : Multiple-Attribute Single-View (MS) (Displayed all 10 time points simultaneously as
simple glyphs, representing the nodes of the graph)

• T : Single-Attribute Single-View (SS) (Displayed the value of the time points as colour of
the nodes, linked with a user-controlled slider bar to view the other nine time points)

Task(s):
1 time point:

• Read value, search node

2 time points:

• Determine change in values

10 time points:

• Determine time trend, topology trend

• Search time point, search trend

• Identify a outlier group

Data: 50-node graph, each node showing a timeseries with 10 time points

Significant Result(s):
Time:

• T < H (Topology trend,)

• H < T (Outlier, Search time point)

Accuracy:

• T ≥ H (all tasks except Outlier)

• H > T (Outlier)

Q. A Comparison of Traditional and Fisheye Radar View Techniques for Spatial Col-
laboration (Schafer and Bowman 2003)

Interfaces:

• S : Traditional (Contained a low-VIR view linked to a high-VIR view)

• E : Fisheye (Fisheye low-VIR view coupled with a high-VIR view)

Task(s): Collaborative traffic and road-sign positioning. 2 participants, each with partial informa-
tion to position signs

Data: Map

Significant Result(s): Participants required less verbal communications with E than S
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R. Navigating Hierarchically Clustered Networks through Fisheye and Full-Zoom
Methods (Schaffer et al. 1996)

Interfaces:

• T : Full-Zoom (Displayed children nodes of a single parent at the same level)

• E : Fisheye (Displayed the same children nodes along with all the ancestral nodes acting as
context)

Task(s): Find and repair a broken telephone line in the network by rerouting a connection between
two endpoints of the network that contained the break

Data: Hierarchical network of 154 nodes with 39 clusters

Significant Result(s):
Time:

• E < T (Repair)

S. An Evaluation of Content Browsing Techniques for Hierarchical Space-Filling Vi-
sualizations (Shi et al. 2005)

Interfaces:

• T : Drill-Down (Traditional TreeMap display, where the display showed only nodes from the
same level of the same branch of the tree)

• E : Distortion (Retained all the ancestral levels of the displayed nodes, using distortion to
fit all the nodes in the display)

Task(s):

1. Browsing: find an image

2. Browsing with Context: find target based on its neighboring images and their interrelations,
or context, defined as “a set of images spatially and hierarchically related in a certain con-
figuration” (p. 86) This context was held constant for all trials, and involved multiple levels
of the tree

Data:
2 hierarchies, both had 30 different images and >300 files of other formats

• Deep: 6 levels, <=3 subdirectories/level

• Wide: 3 levels, <=6 subdirectories/level

Significant Result(s):
Time:

• E < T (Browsing: 65% faster with wide, 156% faster with deep; Browsing with Context:
61% faster with wide, 84% faster with deep)

Effectiveness:

• E > T (gave up)

• T > E (timed out)
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Appendix C

Visual-Memory Experiment
Materials

This appendix includes materials for the laboratory experiment of the thesis
detailed in Chapter 5, including the informed consent, participant instructions
given during the study, sample experimental stimuli used in the study, experi-
mental design of presentation ordering, and detailed analysis results.

C.1 Informed Consent
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C.2 Participant Instructions

Instructions were incorporated into the experiment software and were displayed
at various point during the experiment. Before the experiment, participants
were briefed about the overall procedure and shown samples of original and
transformed images for the type of transformations tested.

Instructions for the learning phase for both the training and the
actual block

You will be shown 8 images for 12 seconds each, one after another. The images
consist of a number of dots on the screen joined by lines. Your task is to study
the images carefully so that you can recall them later on in the experiment. This
memory task is difficult, so please take the time to study the images carefully.

Instructions for the recognition phase for both the training block
using untransformed images

You will be shown 8 images, half of which you have already seen in the previous
part. For each image, please press the “A” key if you have seen it in the last
block, or the “L” key if you haven’t.

Instructions for the recognition phase for both the training block
using both untransformed and transformed images

You will be shown 8 images, half of which you have already seen in the pre-
vious part. Some of the images may be transformed as shown to you by the
experimenter, but will still be considered as the “have been seen”.

For each image, please press the “A” key if you have seen it in the last part,
or the “L” key if you haven’t.

C.3 Sample Experimental Stimuli

20 images actually used in the study are included to provide a better sense of
the experimental stimuli:
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C.4 Experimental Design

For each transformation type, we tested five levels of transformation degree
(denoted as 1, 2, 3, and 4), with the first level being the zero transformation
baseline (denoted as 0). To fully counterbalance the presentation order of the
five levels for each experiments, we need to recruit 5!, or 120, participants for
each experiment. Since we only recruited 20 participants for each experiment,
we could only partially counterbalance our presentation order as follows:

(0, 1, 2, 3, 4), (1, 3, 4, 2, 0), (2, 0, 3, 4, 1), (3, 4, 0, 1, 2), (4, 2, 1, 0, 3),
(0, 2, 1, 4, 3), (2, 4, 3, 1, 0), (1, 0, 4, 3, 2), (4, 3, 0, 2, 1), (3, 1, 2, 0, 4),
(0, 3, 4, 1, 2), (3, 1, 2, 4, 0), (4, 0, 1, 2, 3), (1, 2, 0, 3, 4), (2, 4, 3, 0, 1),
(0, 4, 3, 2, 1), (4, 2, 1, 3, 0), (3, 0, 2, 1, 4), (2, 1, 0, 4, 3), (1, 3, 4, 0, 2)

C.5 Experimental Result Analysis

C.5.1 Single-factor ANOVA results

This section shows results of the single-factor repeated measure ANOVA for
the 10 experiments plus the two follow up studies reported in Chapter 5. For
all tables in this section, Sum Sq denotes Type III Sum of Squares; df denotes
Degree of freedom; Mean Sq denotes Mean Square; and a * denotes a situation
where the Greenhouse-Geisser adjustment was applied. The partial eta squared
(η2

p) was also included as an estimate of effect size. Time values are expressed
in milliseconds.

Source Grid Sum Sq df Mean Sq F p-value η2
p

Scale* 5.36E6 2.28 2.35E6 0.67 0.54 0.03
Error (Scale)* 1.53E8 43.24 3.54E6
Scale R 2.50E6 4 6.24E5 0.60 0.67 0.03
Error (Scale) R 7.95E7 76 1.05E6

Table C.1: ANOVA time results for the scaling experiments. Scale = Scaling
Transformation; R = rectangular grid.
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Source Grid Sum Sq df Mean Sq F p-value η2
p

Rotate* 4.39E7 1.88 2.33E7 2.92 0.07 0.13
Error (Rotate)* 2.86E8 35.78 7.80E6
Rotate* R 1.57E7 2.61 5.99E6 1.33 0.28 0.07
Error (Rotate)* R 2.23E8 49.67 4.49E6
Rotate Ext R 5.27E7 4 1.31E7 5.05 0.001 0.21
Error (Rotate Ext) R 1.98E8 76 2.60E6

Table C.2: ANOVA time results for the rotation experiments. Rotate = Rota-
tion Transformation; Rotate Ext = Rotation Transformation extended experi-
ment.

Source Grid Sum Sq df Mean Sq F p-value η2
p

RFish* 3.46E7 1.90 1.82E7 2.84 0.07 0.13
Error (RFish)* 2.32E8 36.17 6.41E6
RFish* R 1.67E7 2.78 6.01E6 2.63 0.06 0.12
Error (RFish)* R 1.21E8 52.89 2.28E6
RFish* P 5.83E7 1.87 3.11E7 3.32 0.05 0.15
Error (RFish)* P 3.34E8 35.53 9.39E6

Table C.3: ANOVA time results for the rectangular fisheye experiments. RFish
= Rectangular Fisheye Transformation; R = rectangular grid; P = polar grid.

Source Grid Sum Sq df Mean Sq F p-value η2
p

PFish* 2.44E7 1.82 1.34E7 2.34 0.12 0.11
Error (PFish)* 1.97E8 34.51 5.73E6
PFish R 5.32E7 4 1.33E7 4.32 0.003 0.19
Error (PFish) R 2.34E8 76 3.08E6
PFish P 4.45E7 4 1.11E7 6.08 <0.0001 0.24
Error (PFish) P 1.39E8 76 1.83E6

Table C.4: ANOVA time results for the polar fisheye experiments. PFish =
Polar Fisheye Transformation; R = rectangular grid; P = polar grid.
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C.5.2 Post-hoc analysis results

The following table lists all statistically significant pairwise comparison post-
hoc analysis of the repeated-measure ANOVA time results in Appendix C.5.1.
Both the significance levels and the 95% confidence intervals were adjusted for
multiple comparisons using the Bonferroni correction. Time values are expressed
in milliseconds.

Level 1 Level 2 Mean Diff Std Error Sig 95% CI
Rotate 0 Rotate 60 -1946 482 .007 -3476 — -415
Rotate 0 Rotate 90 -1455 440 .037 -2850 — -60
Rotate 0 R Rotate 90 R -1823 559 .041 -3596 — -50
Rotate 0 R Rotate 180 R -1788 433 .006 -3164 — -410
RFish 0.5 RFish 2 -1315 411 .048 -2621 — -9
RFish 0.5 RFish 3 -1449 418 .026 -2776 — -123
RFish 0 R RFish 3 R -1087 334 .041 -2146 — -29
PFish 0 R PFish 3 R -2128 617 .027 -4086 — -172
PFish 0 P PFish 3 P -1838 380 .001 -3043 — 633
PFish 1 P PFish 3 P -1087 418 .004 -3134 — 480

Table C.5: Statistically significant pairwise comparisons of time results. Mean
Diff = difference between Level 1 and Level 2; Std Error = Standard Error; Sig
= The mean difference is significant at the .05 level; 95% CI = 95% confidence
interval for the difference with lower and upper bounds. RFish = Rectangular
Fisheye Transformation; PFish = Polar Fisheye Transformation; R = rectangu-
lar grid; P = polar grid.
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Appendix D

Overview-Use Study
Materials

This appendix includes materials for the experimental-simulation study of the
thesis detailed in Chapter 6, including the informed consent, participant in-
structions given prior and during the study, and the questionnaire to solicit
participants’ subjective feedback on the interfaces at the end of the study.

D.1 Informed Consent
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D.2 Participant Instructions

Two types of instructions were provided to participants for the study: verbal
instructions to brief participants about the study, and written instructions in-
corporated into the experimental software interface.

D.2.1 Verbal briefing instructions

The first is verbal instructions given prior to the study to brief participants about
the overall study procedure and show them samples of two visual encodings used
in the study. The script used in this briefing is as follows:

You will be working with a collection of 140 xy-plots, or what we call power
profiles using four different interfaces. Each plot has a number of power surges,
which are essentially peaks in the xy-plot. There are two ways to display these
graphs. I will show you some examples (show the following picture):

(Pointing to Example 1, the detail graph) Here is one example of a xy-plot.
You can see the baseline (point to the flat portion), and some peaks above the
baseline (point to the peaks). We call these peaks power surges, and they can
be of different heights and widths. The thin strip above the detail graph is the
compressed version (point to the overview graph). We call that the overview
mode. Instead of showing the heights of the peaks by vertical space and colour,
we use only colour. You will see a scale for the colour coding for each task.

(Pointing to Example 2, 3, and 4, double peak) Sometimes the peaks run
into each other. If you were asked to count them, they count as 2 peaks.

Any questions so far? (Let participant study the examples)
So you will be answering a bunch of questions based on the data presented

as these graphs, sometimes in the detail mode, sometimes in the overview mode,
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and sometimes, in both. For each interface, you will first be trained with four
tasks, and repeat those four tasks again for the actual study. You will repeat
the same four tasks in all the other interfaces. So in all, you do the same four
tasks four times. There will be a 5-minute break at mid-point.

Each interface is slightly different. You will have the chance to play and
study with each interface and find the best way to do the tasks during the
training sessions. I will be helping you during the training session, just ask me
if you have any questions.

I will be taking notes on how you solve the tasks during the actual study to
collect some observations. Just don’t mind me.

D.2.2 Instructions on the study software interface

Instructions were incorporated into the study software. As shown in Figures D.1
and D.2, the far right panels showed task instructions for each trial. The top of
the panel showed information on visual encoding and available interface inter-
actions. Beneath that showed task instructions, as provided in Table 6.2. On
the bottom showed study control buttons: Show Data and Answer Ready.

Figure D.1: Experimental software interface showing the Embedded interface
displaying data for the Shape task.
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Figure D.2: Experimental software interface showing the Separate interface dis-
playing data for the Compare task.

Written instructions were displayed at various points during the study as
pop-up dialog boxes.

Instructions at the start of the study

You are an electric power management engineer in a control room. Your task is
to monitor power consumptions of 140 locations in the area. For each location,
the power consumption is shown as a time-power graph. Each graph consists of
a number of power surges as peaks of various heights and widths. Sometimes,
these peaks may overlap.

There are 4 training and 4 actual task(s) for each of the 4 interfaces in this
study. The description of each task and the question you need to answer is
displayed on the right hand panel of the screen. Once you understand the task,
please click the ‘Show data’ button to display the data you need to answer the
question. This will start the clock for the trial. You have a time limit of 10
minutes for each training trial, and 5 minutes for each actual trial.
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Instructions for the start of each training block

Please take the time to try out all the above interactions and experiment differ-
ent ways to find the answer during the 4 training trial(s). This experimentation
will save you time in the long run.

[interface-specific instructions in Section D.2.2]
When you have the answer, please click the ‘Answer ready’ button to display

the answer box. This will stop the clock for the trial. Enter the answer, and
press ‘Next’ for the next trial.

There is one and only one unique and obvious answer for each task. Please
press ‘OK’ to start the training.

Instructions for the four interface blocks

1. For the HiVIR interface, the line graphs will ONLY be displayed in the
overview mode. Individual time-power graphs are displayed as thin strips,
with the power levels colour coded.

The available interactions are as follows:

• Left mouse click: mark/unmark graph

• ‘ESC’ button press: ummark all previously marked graphs

• ‘O’ button press: mark all graphs

• Mouse hover: highlight the entire graph and show a tool-tip with
< location >;< time >;< power >

2. For the LoVIR interface, the line graphs will ONLY be displayed in the
detail mode. Power levels are encoded both by space and colour.

The available interactions are as follows:

• Left mouse click: mark/unmark graph

• ‘ESC’ button press: ummark all previously marked graphs

• ‘O’ button press: mark all graphs

• Mouse hover: highlight the entire graph and show a tool-tip with
“< location >;< time >;< power >”

3. For the Embedded interface, the line graphs will first be displayed in the
overview mode. Individual time-power graphs are displayed as thin strips,
with the power levels colour coded. In the detail mode, power levels are
encoded both by space and colour. You have the option of displaying just
in the overview mode, or in both the overview and the detail modes, with
the overview graph stacked on top of the detail graph.

The available interactions are as follows:

• Left mouse click on an overview graph: open/close detail graph

• Left mouse click on a detail graph: close detail graph
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• ‘ESC’ button press: close all previously opened detail graphs

• ‘O’ button press: open all detail graphs

• Mouse hover (overview/detail graph): highlight the entire graph and
show a tool-tip with “< location >;< time >;< power >”

4. For the Separate interface, the line graphs will first be displayed in the
overview mode. Individual time-power graphs are displayed as thin strips,
with the power levels colour coded. In the detail mode, power levels are
encoded both by space and colour. You have the option of displaying just
in the overview mode, or in both the overview and the detail modes, each
in their own resizable panel.

The available interactions are as follows:

• Left mouse click on an overview graph: open/close detail graph in
the bottom panel

• Left mouse click on a detail graph: close detail graph in the bottom
panel

• ‘ESC’ button press: close all previously opened detail graphs

• ‘O’ button press: open all detail graphs

• Mouse hover (overview/detail graph): highlight the entire graph and
show a tool-tip with “< location >;< time >;< power >”

• Mouse drag over overview/detail panel division line: resize overview/detail
panels.

Instructions at the end of each training block / start of actual block

You have completed the training session. If you are comfortable with the inter-
face and the task, please press the OK button to start the actual experiment.
Otherwise, please contact the experimenter for additional training.

Instructions at the end of the study

Congratulations! You have completed the study. Please fill out the question-
naire. Thank you for your time!
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D.3 Participant Questionnaires
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Appendix E

Session Viewer Field
Evaluation Materials

This appendix contains two interview scripts for the Session Viewer field evalu-
ation detailed in Chapter 8.

E.1 Pre-Session Interview Script

I’m going to ask you to think back to the last session logs you analyzed. (give
a minute)

1. To start, let’s talk about [Why do you look at logs / What are you trying
to find when you analyze sessions / What are the main goals of your
analysis?]Are those typical goals for you? (how so? how not?)

(a) What is it about the logs that make you use them?Which aspects /
properties of the logs are most important to your analyses?

(b) How do you go about analyzing / examining the session logs?

(c) Is there a process you follow? Can you describe it? Show me? [may
mix in with #4]

2. How do you come up with analysis questions? Hypotheses? How do you
confirm your hypotheses?

3. Do you tend to look at aggregates or individual sessions?

4. Which software tools do you generally use for log analysis?

(a) Are they commercial software? Google software? or self-built?Can
you show that to me?

5. Do you often use those tools? Which other tools do you use and why?
Are they effective?

E.2 Post-Session Interview Script

Reflecting on the analysis you just did...
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1. What did you find / learn about your data?How do these findings compare
to those you normally find?

2. How does using Session Viewer compare to the tools that you normally
use?

(a) How does the scope/levels of the data you examined using Session
Viewer differ than with your usual sets of tools?

3. Do you think about your data differently when using Session Viewer?

4. Do you ask different questions / form different hypotheses when using
Session Viewer?

5. In the analyses you just did, in what ways did Session Viewer aid your
analytic precesses? And ways in which it impeded them?

(a) Which panels / features of Session Viewer best/least supported your
analysis? Why?

6. In terms of those panels/feature not found to be useful, are there circum-
stances under which you could see yourself using them? Which?

290



Appendix F

UBC Research Ethics
Board Certificates

This appendix includes all Certificates of Approval for the research conducted
in this thesis administrated by the UBC Research Ethics Board.
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