
A Common Model for Ubiquitous Computing

by

Michael Anthony Blackstock

B.A.Sc., The University of British Columbia, 1991
M.Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

October, 2008

c© Michael Anthony Blackstock 2008

ii

Abstract

Ubiquitous computing (ubicomp) is a compelling vision for how people will in-

teract with multiple computer systems in the course of theirdaily lives. To date,

practitioners have created a variety of infrastructures, middleware and toolkits to

provide the flexibility, ease of programming and the necessary coordination of dis-

tributed software and hardware components in physical spaces.

However, to-date no one approach has been adopted as a default or de-facto

standard. Consequently the field risks losing momentum as fragmentation occurs.

In particular, the goal of ubiquitous deployments may stallas groups deploy and

trial incompatible point solutions in specific locations. In their defense, researchers

in the field argue that it is too early to standardize and that room is needed to explore

specialized domain-specific solutions.

In the absence of an agreed upon set of standards, we argue that the community

must consider a methodology that allows systems to evolve and specialize, while

at the same time allowing the development of portable applications and integrated

deployments that work between between sites.

To address this we studied the programming models of many commercial and

research ubicomp systems. Through this survey we gained an understanding of

the shared abstractions required in a core programming model suitable for both

application portability and systems integration.

Based on this study we designed an extensible core model called the Ubicomp

Abstract iii

Common Model (UCM) to describe a representative sample of ubiquitous systems

to date. The UCM is instantiated in a flexible and extensible platform called the

Ubicomp Integration Framework (UIF) to adapt ubicomp systems to this model.

Through application development and integration experience with a composite

campus environment, we provide strong evidence that this model is adequate for

application development and that the complexity of developing adapters to several

representative systems is not onerous. The performance overhead introduced by

introducing the centralized UIF between applications and an integrated system is

reasonable. Through careful analysis and the use of well understood approaches

to integration, this thesis demonstrates the value of our methodology thatdirectly

leverages the significant contributions of past research inour quest for ubicomp

application and systems interoperability.

iv

Table of Contents

Abstract . ii

Table of Contents . iv

List of Tables . x

List of Figures . xi

List of Programs . xiii

Glossary . xiv

Acknowledgements . xvii

1 Introduction and Motivation . 1

1.1 Challenges . 5

1.2 Integration Approach . 6

1.3 Ubicomp Programming Models 8

1.4 Research Focus . 9

1.5 Thesis Outline . 12

2 Survey and Analysis of Ubiquitous Systems. 14

2.1 Categories of Ubicomp Systems 16

2.1.1 Abstraction levels . 16

Table of Contents v

2.1.2 Scale of Deployment . 18

2.1.3 Organization . 20

2.2 Component Composition Systems 20

2.2.1 Commercial Systems and Standards 22

2.2.2 Appliance Data Services 23

2.2.3 SpeakEasy/Obje . 24

2.2.4 Equip Component Toolkit 25

2.2.5 PCOM . 25

2.2.6 Reflective Middleware for Mobile Computing (ReMMoC) 26

2.2.7 Discussion . 26

2.3 Context Frameworks . 27

2.3.1 ParcTab . 27

2.3.2 The Context Toolkit . 29

2.3.3 One.world . 29

2.3.4 Sentient Objects . 30

2.3.5 Java Context Aware Framework 31

2.3.6 Discussion . 31

2.4 Smart Space Systems . 32

2.4.1 iROS . 32

2.4.2 Sentient Computing . 34

2.4.3 InConcert/Easy Living 34

2.4.4 Gaia . 35

2.4.5 Ontology Based Systems 36

2.4.6 Discussion . 37

2.5 Wide Area Systems . 37

2.5.1 Cooltown . 38

2.5.2 Context Fabric . 40

Table of Contents vi

2.5.3 Nexus . 40

2.5.4 Aura . 41

2.5.5 ActiveCampus . 42

2.5.6 Web Services for Ambient Intelligence (WSAMI) 42

2.5.7 Discussion . 43

2.6 Common Abstractions Derived from the Survey44

2.7 Conclusions . 46

3 The Ubicomp Common Model . 48

3.1 Common Model Requirements 48

3.2 Existing Systems’ Abstractions 51

3.2.1 Core Abstractions to a Common Model 54

3.3 The Ubicomp Common Model Design 56

3.3.1 Environment State . 59

3.3.2 Environment Meta-state 60

3.3.3 Environment Implementation 61

3.3.4 Summary . 63

3.3.5 Model Example . 63

3.4 Model Discussion . 65

3.4.1 Portability . 65

3.4.2 Specialization . 65

3.4.3 Introspection . 66

3.4.4 Mapping to existing systems abstractions 66

3.5 Access Control and Security . 68

3.5.1 Security Example . 72

3.6 Use Cases for an Executable UCM 76

3.6.1 Design/Integration Time Use Cases 76

Table of Contents vii

3.6.2 Run Time Use Cases . 77

3.7 Summary . 79

4 The Ubicomp Integration Framework 81

4.1 Analysis and Approach . 81

4.1.1 Analogy to Enterprise Application Integration 82

4.1.2 Environment Model Management 85

4.1.3 Cross-Domain Interaction 87

4.2 Implementation Overview . 88

4.3 Façade . 92

4.4 Environment Composition Logic 96

4.4.1 Environment and Entity Interaction 96

4.4.2 Application and Subscription Management 99

4.5 Model and Reasoning . 101

4.6 Component Container . 103

4.7 Message Broker: AdapterManager 105

4.8 Adapters . 106

4.8.1 Adapter Framework . 108

4.9 Summary . 110

5 Evaluation: An Integrated Campus Environment 112

5.1 Applications . 113

5.1.1 PlaceMedia . 114

5.1.2 Lab Monitor . 116

5.1.3 Environment Browser 118

5.2 System Integration . 119

5.2.1 Campus Composite Environment Model 119

Table of Contents viii

5.3 Adapter Design and Implementation 120

5.3.1 Equip Component Toolkit Adapter 121

5.3.2 Context Toolkit Adapter 122

5.3.3 iROS Adapter . 126

5.3.4 MUSEcap Adapter . 128

5.3.5 Adapter Implementation Summary 130

5.3.6 Adapter Design Process 131

5.4 Evaluation . 134

5.4.1 Application Development 134

5.4.2 Adapter Complexity . 135

5.4.3 Performance . 135

5.4.4 The UIF as a Stand Alone System 141

5.5 Lessons Learned . 141

5.6 Summary . 145

6 Conclusions and Future Work . 147

6.1 Lessons Learned . 149

6.1.1 A Common Model for Ubiquitous Computing is Useful

and Practical . 149

6.1.2 Unifying Environment Model is the Key to Integration .. 150

6.1.3 Entity Types and Relationships are Important Subclasses

of Context . 150

6.1.4 Systems Share Several Common Event Types 150

6.1.5 Applications are Both Consumers and Producers 151

6.1.6 Summary . 151

6.2 Future Work . 152

6.2.1 Enhancing and Specializing the UCM 152

Table of Contents ix

6.2.2 Security . 152

6.2.3 Improved Scalability . 153

6.2.4 Improved Application Interface 153

6.2.5 Applications as Components 154

6.3 In Conclusion . 154

Bibliography . 155

x

List of Tables

2.1 Summary of Surveyed Component Composition Systems. 21

2.2 Summary of Surveyed Context Frameworks. 28

2.3 Summary of Smart Space Systems. 33

2.4 Summary of Wide Area Systems. 39

2.5 Summary of the Abstractions Used by Ubicomp Systems. 45

5.1 ECT Adapter UCM Abstractions 122

5.2 Context Toolkit Adapter UCM Abstractions123

5.3 UCM Abstractions Mapped to the iROS System 127

5.4 UCM Abstractions Mapped to the MUSEcap System 129

5.5 Adapter Implementations by UCM Abstraction131

5.6 Components of UIF Overhead 137

5.7 Query Time as (Static) Model Size Increases 139

xi

List of Figures

1.1 Ubicomp deployments under a common model. 3

2.1 Ubicomp systems surveyed by scale and abstraction level. 19

3.1 Smart campus . 55

3.2 Notation . 57

3.3 The three aspects of the Ubicomp Common Model 58

3.4 Environment State abstractions and relationships. 59

3.5 Environment Meta-State abstractions and relationships. 61

3.6 Environment Implementation abstractions and relationships. . . . 62

3.7 Key objects and relationships of the UCM.63

3.8 Example State, Meta-State and Implementation aspects.. 64

3.9 Access control property associated with capabilities.. 69

3.10 Example of AC properties used to mark security domains.. . . . 70

3.11 Access control and security example. 73

3.12 Example of capabilities restricted by UIA personal group. 74

4.1 Ubicomp Integration Framework Architecture. 89

4.2 High level interaction between UIF subsystems. 90

4.3 Key classes of Environment Composition Logic. 97

4.4 Sequence diagram for Facade.callService(). 98

List of Figures xii

4.5 Key classes and interfaces of Component Container subsystem. . . 104

4.6 Key classes of the Adapter framework. 108

5.1 Composite campus environment deployment.113

5.2 PlaceMedia user interface. 115

5.3 Lab Monitor application user interface. 117

5.4 Environment Browser user interface.118

5.5 Composite environment model. 120

5.6 Average latency vs. number of active polling applications. 136

5.7 Latency of queries when model changes. 138

5.8 Time required to update a model after a change. 140

xiii

List of Programs

3.1 Example Environment State RDF fragment. 60

3.2 Example Environment Meta-State RDF fragment. 62

4.1 AdapterListener interface. 106

4.2 Adapter interface. 107

5.1 Component description for a Context Source. 125

xiv

Glossary

Adapter Software component that maps heterogeneous data, interfaces and pro-

tocols to a common model and data format. 83

AdapterManager The UIFMessage Brokerimplementation that mediates inter-

action messages between the UIF and its adapters. 99

Component Container UIF subsystem that hosts “native” UCM components in-

stantiated by the system. 89

Context Widget A Context Toolkit software component that provides access to

context information in their operating environment. Applications can query

their state or subscribe to context changes[34]. 29

DataObject UIF internal object used as a generic data structure designed for mar-

shaling to SOAP and integrated systems. 93

DataspaceA data sharing service similar to a tuplespace used in the EQUIP Com-

ponent Toolkit (ECT) to relay events and share state betweensoftware com-

ponents [46]. 25

Discoverer A Context Toolkit software component used by applications to locate

components such as Context Widgets and Aggregators that areof interest to

them based on the attributes (e.g., location, username) it is interested in.[34].

29

Glossary xv

Enterprise JavaBeansA component model for component transaction monitors.

There are three types of server-side components called enterprise beans: en-

tity, session and message-driven beans1. 115

Entity Aggregator A Context Toolkit software component that is acts as a medi-

ator between applications and Context Widgets. It is responsible for all of

the context about a particular entity (person, place or thing).[34]. 29

Environment Composition Logic (ECL) UIF subsystem that dispatches calls to

integrated ubicomp systems and maintains event subscriptions for applica-

tions. 89

Event Heap A tuplespace based coordination system used in iROS where tuples

are calledevents, and contain certain mandatory fields for sequencing and

garbage collection [64]. 33

Façade In the Façade design pattern [44], thefaçadeis an object that provides

a simplified interface to a larger body of code. In the UbicompIntegration

Framework, the Façade is a Java object exposed using Web Services that

provides a single interface to an integrated ubicomp environment. 81

ICrafter A service infrastructure for the iROS system that includes service aggre-

gation and user interface creation and selection [82]. 53

Java 2 Enterprise Edition Version of the Java Platform used for the development

and deployment of enterprise applications [97]. The latestversion of this

system is now simply called Java Platform, Enterprise Edition (Java EE)

[98]. 92

1[75] pp 23-24

Glossary xvi

JavaBeansA software technology for building reusable Java components called

“beans”. Beans are Java classes that follow a convention fornaming, con-

struction and behavior for reuse and manipulation visuallyin a builder tool

[96]. 25

Message Broker A software intermediary that broker’s messages between inte-

grated systems. 6

Model and ReasonerUIF subsystem that maintains the current environment model

including the UCM itself, specializations of the UCM, entity instances, static

context values, capabilities, component descriptions andtheir relationships

using a knowledge base and associated reasoning engine. 89

OWL Web Ontology Language. 56

RDF Resource Description Framework. 10

Session BeanA type of server-side component used in Java-based component

transaction monitors typically used to implement application logic. See also

Enterprise Javabean2. 128

2[75]

xvii

Acknowledgements

This work would not have been possible without the help, encouragement and fi-

nancial support of my supervisors Dr. Rodger Lea and Dr. Charles ’Buck’ Krasic.

It is difficult for me to overstate my appreciation to Dr. Lea.After first meeting he

quickly become not only a good friend but a mentor, helping mefocus my thesis

research, providing valuable feedback and by introducing me to other researchers

in the ubiquitous and pervasive systems community.

I wish to thank Dr. Krasic for taking me on as his first PhD student. I am

grateful for his open door policy, for the time that he spent with me brainstorming,

challenging my ideas, for his feedback and support both academically and career-

wise.

Thank you to the National Sciences and Engineering ResearchCouncil of

Canada for their finanical support for my first two years of study, and for the Uni-

versity of British Columbia University Graduate Fellowship program for my third

year.

I’d also like to thank all of my friends and colleagues. WhileI can’t thank

everyone, I must single out a few people: Kan Cai, Matt Finke,Tony Tang, Aiman

Erbad, Nicole Arksey, Phillip Jeffrey, Meghan Deutcher, Rock Leung, Nels An-

derson, Vincent Tsao, Crystal Giesbrecht, and Gavin Tian for their collaboration

and feedback. Thank you to Dr. Adrian Friday for his help organizing Ubisys and

CMPPC workshops, and for his feedback during his visit to MAGIC and for his

Acknowledgements xviii

hospitality during my visits to Lancaster.

I cannot finish without saying how grateful I am to my family for their encour-

agement and support. I dedicate this thesis to my beautiful wife Kim, my sons

Danny and Marcus, and to my parents.

1

Chapter 1

Introduction and Motivation

Ubiquitous computing (ubicomp) is a compelling vision for how computing re-

sources will become an integral part of our daily lives [108]. In future living and

working environments, such as our homes [25], schools [49],meeting rooms [83]

and hospitals [16], sensors and services embedded in an environment can be used

by applications hosted on portable devices such as laptop computers, smart phones,

personal entertainment devices, or in the environment itself.

To support this vision, a variety of middleware, toolkits, and operating systems

have been created. Over time, these innovative and pioneering systems have ma-

tured to address many research issues both unique to ubiquitous computing and/or

inherited from distributed systems. These include such issues as hiding the hetero-

geneity of underlying infrastructures, scalability, dependability, security, privacy,

spontaneous interoperation, mobility, context awareness, context management, ap-

plication mobility, and human computer interface issues [32]. While this com-

pelling vision has inspired much research in all of these areas, after more than 15

years ubicomp systems have (mostly) been confined to lab prototypes and relatively

limited deployments. Many reasons have been cited for this lack of deployment

[33]. In some cases it can be difficult to persuade others to use a non-standard

technology; perhaps there is a perception that, as researchprototypes, software

quality and ongoing support from their creators will be questionable [95]. That

said, even when researchers have attempted to leverage openinfrastructure and

Chapter 1. Introduction and Motivation 2

middleware standards such as the Open Systems Gateway Initiative (OSGi) [80] or

Web protocols (e.g. [68]) ubicomp systems still have not been widely adopted.

Without agreed apon standards, or even a set of best practices on how to build

ubicomp systems, designers have primarily focused on supporting applications and

user access within single administrative or network domains. This has led to ‘is-

lands’ of ubicomp installations specialized for specific applications, physical lo-

cations and devices. Unless a solution can be found, the lackof standards or a

common platform will continue to be an impediment to the widespread adoption

of ubicomp systems in the ‘real world’.

To bridge islands of existing and future ubicomp deployments, we propose the

development of acommon modelfor ubicomp systems that facilitates a mapping

to existing ubicomp systems’ programming models. This willallow developers to

create new applications, assured that a suitable intermediary or gateway will allow

their application to run on existing systems. It will also support the development

of cross domain applications, allowing developers to bridge islands of ubicomp

deployments. Furthermore, we argue that the development ofa common model is

a first step toward standardization of ubicomp deployments and the establishment

of a common reference platform.

The current deployment situation for many ubicomp systems is illustrated in

Figure 1.1 (a). Application 1 and 2 are dependent on ubicomp environments A

and B respectively. These applications can only access environment resources that

they are designed for, and only (typically) within the same administrative and net-

work domain. With a common model and supporting infrastructure, applications

can make use of environment resources across domain boundaries, independent of

location and ubicomp system used as shown in Figure 1.1 (b). Moreover, disparate

ubicomp systems can be integrated under a single integratedenvironment model

as shown. Environments can be composed to integrate environment resources such

Chapter 1. Introduction and Motivation 3

Environment A Environment B

Application 1 Application 2

Domain Boundary

(a) Existing ubicomp deployments

Common Model and
Integration System

Adapter BAdapter A

Environment A Environment B

Application 3 Application 4

(b) Integrated deployments

Figure 1.1: Current and future integrated ubicomp deployments under a com-
mon model.

as smart meeting rooms, and classrooms across larger physical locations such as a

cities, campuses or buildings or across branch locations ofa company.

The question then arises, if a common model for ubicomp is needed for appli-

cation portability and systems interoperability, why one has not been proposed by

the research community? To understand these issues, the author helped organize

two workshops: Systems Support for Ubiquitous Computing (Ubisys) at Ubicomp

2006, and Common Models and Patterns for Pervasive Computing (CMPPC 2007)

at Pervasive 2007.

Several submissions and discussions at Ubisys ’06 were focused on common

abstractions, and models toward interoperability and portability supported by sys-

tems and tools[70]. At CMPPC 2007, participants agreed thatmanyexistingsys-

tems can serve as examples for techniques, best practices and design patterns for

ubicomp1. Both of these workshops helped shape this thesis, especially the dis-

1seehttp://www.ubisys.org/index.php/Main/CmppcResults

Chapter 1. Introduction and Motivation 4

cussions on patterns, techniques and guidelines at CMPPC2. We have begun to

document the collective experience of the ubicomp and pervasive systems com-

munity into an online resource3. In one area of this community portal we have

documented specific patterns and techniques such as the use of Event Brokers, Web

services, andentity aggregationused in a variety of systems and captured in our

work [20–23, 40].

While consensus on a programming model is recognized an important long

term goal, this workshop participation highlighted the fact that agreement on one

is far from straightforward for two reasons. One is that the field continues to evolve.

Researchers are still exploring not only implementation issues, but the abstractions

and programming models for ubicomp applications themselves (e.g. [14, 48, 56]).

While creating a reference platform is eventually achievable, we feel it is imprac-

tical to settle on one while new abstractions and implementations continue to be

explored. Furthermore, we argue that even in the long term, the use of the same

programming model and supporting middleware platform in all smart spaces is

not realistic as there will always be cases where systems specialized for specific

applications and locations will be deployed in particular environments.

Given these observations, it is clear that there willalwaysbe a variety of ubi-

comp platforms and hence, there is a need to develop a methodology that supports

the integration of specialized platforms as they evolve. This will allow developers

to continue to create environment-specific applications, while others can create in-

tegrated ubicomp deployments, and applications that are portable between sites and

administrative domains. Such an approach will ensure systems developers can con-

tinue to evolve their platforms while supporting a growing application developer

community. However, the development of such a methodology is not straightfor-

2seehttp://www.ubisys.org/index.php/Main/PatternsTechniquesGuidelines
3http://www.ubisys.org

Chapter 1. Introduction and Motivation 5

ward, and there are several technical and non-technical challenges to address.

1.1 Challenges

Unlike systems deployed within a single domain, services used between organiza-

tions over the wide area Internet are exposed and managed carefully by adminis-

trators. Maintaining autonomy and ensuring underlying services are accessed in a

secure manner by authorized users is therefore critical.

It is also important to provide a mechanism for resolving protocol and inter-

face mismatches between systems. In closed environments, this is easily resolved

by using the same types of hardware, or by wrapping devices and software ser-

vices using the same middleware. Previous efforts to address this have included

the use of device-hosted middleware that expose a single interface for service dis-

covery and binding mapped to various service architectures[43, 45] or middleware

that advocates a generic set of interfaces for the rapid assembly of components

[47, 76]. While these approaches suffice when integrating individual services and

components, they are not feasible when entire middleware systems with a variety

of APIs and programming models must be integrated.

Another problem is that ubicomp systems to date support a range of abstraction

levels. Some systems exposehigh levelabstractions such as explicitenvironment

models(e.g. [11, 25]) while others support simpler component or service abstrac-

tions (e.g. [47]). Systems have been designed to support a range of deployments

from small scale, ad hoc, single task-oriented configurations of devices [76], to

large scale integrated campus environments [49]. A system that integrates these

systems must be able to “understand” not only a simple component or service ab-

straction, but higher level concepts exposed by existing ubicomp APIs such as

physicalentities(people, places, things),context[35] andenvironments.

Chapter 1. Introduction and Motivation 6

Since ubicomp environments are highly dynamic, any supporting system must

be self organizing to some degree. An integration platform must be able to adapt to

the addition and removal of resources exposed by a variety ofinternal middleware

platforms.

Finally, users should be able to access computing resourcesaround them using

a variety of personal computing devices such as PDAs, personal music players or

mobile phones using a wide variety of client software such asmobile browsers and

custom clients.

1.2 Integration Approach

To begin to address these challenges, we can look toward progress in other domains

such as enterprise application integration (EAI). The development of distributed

enterprise applications has been supported by the rapid evolution of middleware

technology. This technology has moved from supporting single-tier mainframe

applications, to distributed object technologies such as Common Object Request

Broker Architecture (CORBA) [79], and eventually to the useof message brokers

to integrate complete heterogeneous applications across an organization.

Similarly, designers of ubicomp environment systems have leveraged tradi-

tional middleware technologies to address issues such as device and service in-

terface heterogeneity. Like many ubicomp systems, enterprise systems have also

been restricted for use in single local area networks for various reasons. While

architectures based on distributed objects and message brokers have proved effec-

tive in integrating applications in a single network, they have not been effective

betweenenterprises and network domains. One of the biggest problems in achiev-

ing inter-enterprise integration has been the lack of standards at the middleware

and component levels. To address this, the enterprise integration community has

Chapter 1. Introduction and Motivation 7

turned toward the use of Web technologies.

The Web emerged initially as a technology for sharing information across the

Internet. With the introduction of Web services, however, it has also become a

medium for application integration. More specifically, Webservices have been es-

tablished as a way to expose the functionality of an information system (or group

of systems) to applications in other companies, across network and administrative

domains. Web service standards have already made significant progress toward re-

solving the limitations of conventional middleware platforms. Standardization in

key areas needed for cross-domain interoperation have included an interface defi-

nition language [105], wide-area service discovery [2] andprotocols for tunneling

procedure calls within HTTP requests and responses [104]. Web services address

a specific purpose: to expose functionality in an information system and make it

discoverable and accessible over the wide area Internet in acontrolled manner.

Conceptually Web services arewrappersto encapsulate one or more applications

with a unique interface available across the Internet.

When we compare the evolution of ubiquitous computing environments with

that of enterprise application integration, they have followed a similar trend. Ini-

tially, small scale ubicomp research projects assumed homogeneous interfaces to

sensors and actuators, and processing related to the environment and the applica-

tion has been blurred. To minimize the amount of programmingrequired to create

new applications, researchers have recognized the need to support heterogeneous

device interfaces, and have provided middleware services to isolate application-

specific logic from issues related to device heterogeneity,location, protocols, and

non-application specific processing of sensor (context) information.

More recently, service-oriented architectures such as Universal Plug and Play

[74] and OSGi [80] have been leveraged for even greater modularity and extensi-

bility within an environment [51]. While the use of standardprotocols and service

Chapter 1. Introduction and Motivation 8

oriented architectures such as those supported by Web services are necessary first

steps toward cross domain interaction, they are not sufficient for application porta-

bility and ubicomp system interoperability. Now that internal middleware for ubi-

comp environments has matured for single domains, deployment of interoperable

systems that reach across domains will require appropriateexternalmiddleware

and a common programming model for ubicomp. To achieve this,we must also

consider the higher level abstractions and programming models exposed by ubi-

comp systems so far.

1.3 Ubicomp Programming Models

Many ubicomp systems to date have focused on providing an easily understood

programming model to access sensors, services and other environment resources

(e.g. [11, 36]). Others have focused on service or device interoperability (e.g.

[47, 74, 76]) or large scale infrastructures for sharing context information [58, 77].

Designers have focused on addressing the requirements specific application do-

mains such as collaboration, or locations such as meeting rooms and the home. We

maintain that there is such diversity in the deployment objectives and approach of

an individual system that no one system is suitable for both application portability

and integration of other systems.

One issue is that a given system does not consider the varietyof programming

models thatother systems expose for effective interoperability and integration.

Rather, they aim to provide a homogeneous interface to the variety of services,

sensors and actuators in a single environment. If the chosenintegration platform’s

programming model provides low level abstractions, it may not leveragemany of

the higher level capabilities available to application developers by an underlying

system. Conversely, if the integrated programming model istoo high level, it may

Chapter 1. Introduction and Motivation 9

not be able tocompensatefor the missing abstractions in an integrated system.

For example, the ParcTab system maintained a set of variables aggregated by

environment serversrepresenting entities such as people, places or groups [91].

Similarly, the Context Toolkit usedEntity Aggregatorsto provide a ‘one stop shop’

for context data about an entity [36]. These systems both made it easier for appli-

cations to find relevant context by aggregating informationaround entity compo-

nents. Both iROS [83] and Gaia [87] systems highlight the value of a multi-device

publish-subscribeeventinfrastructure for smart spaces. Applications can listen for,

and produce events to interact with multiple devices. Both of these systems provide

well understood and useful abstractions for application development, however, we

maintain that it is not straightforward to use the ContextToolkit to expose the capa-

bilities of the EventHeap that iROS applications expect – there is no central event

producer in the system. Nor is it an easy task for the iROS system to provide a way

for applications to find and query an entity aggregator component – none is defined

explicitly in the iROS programming model. A new system designed for abstrac-

tion mapping is required. The abstractions this system supports must be based on

a thorough analysis of these important systems and others.

1.4 Research Focus

While there are many challenges in creating a common model that lends itself to

application portability and interoperability between systems, our research focuses

on the following:

• The design of an extensible core model for adequately describing a repre-

sentative subset of existing ubiquitous computing environments deployed to

date. This model must lend itself to application portability and interoperabil-

Chapter 1. Introduction and Motivation 10

ity between different environment domains such as the home,the office and

public places.

• Providing a flexible and extensible platform to adapt representative systems

to this model. This includes systems that support small to large scale deploy-

ments, those that expose a range of programming abstractions not specific to

ubicomp like services and components to more ubicomp-specific abstrac-

tions like context and entities.

The foundation of this work is the design of the Ubicomp Common Model

(UCM), a programming model that aims to unify the abstractions of a variety of ex-

isting ubicomp systems. We describe the UCM using Semantic Web languages: the

Web Ontology Language (OWL) [102] built on the Resource Description Frame-

work (RDF) [101]. With such a model, we hypothesized that an integration system

can be designed to map a single API to the interfaces of existing systems with ad-

equate coverage of the underlying functionality. The design of the UCM is based

on the following assumptions:

1. The programming models of ubicomp systems deployed to date share certain

programming abstractions specific to the ubicomp domain.

2. These abstractions can form the basis for a core programming model suitable

for the development ofinteroperable applicationsthat can make use of some

subset of the functionality of any underlying ubicomp system.

3. This core programming model can be used to unify the programming models

and capabilities of more than one system intocompositeenvironments.

To validate these claims, we conducted an extensive survey and analysis of

existing commercial and research ubicomp systems. Based onthis analysis we

Chapter 1. Introduction and Motivation 11

identified the abstractions that recur in the programming models of several sys-

tems: environment models, entities, context, entity relationships, services, events

anddata. These abstractions formed the basis for the design of the UCM, a core

model for ubicomp systems.

To evaluate the UCM, we developed an integration platform called the Ubi-

comp Integration Framework (UIF). The UIF is a flexible and extensiblemeta-

middleware platform based on Web services standards used tointegrate ubicomp

systems using the UCM and expose its capabilities to applications across network

and administrative domains. With this system we can providean API for applica-

tion interoperability and portability while allowing underlying systems to continue

to specialize and evolve.

This thesis provides details of our analysis and design of the UCM, the design

and implementation of the UIF, and evaluation of both for application development

and integration with several representative systems. The thesis for this dissertation

is as follows:

The identification of common abstractions used by existing ubicomp

systems contributes to a core common model for integrated ubiquitous

computing environments suitable forbothapplication interoperability

and mapping to existing ubicomp systems’ interfaces.

The primary contributions of this thesis are:

1. A comprehensive survey of existing systems categorizingsystems in terms

of their level of abstractionandscale of deploymenthighlighting the com-

mon abstractions used by these systems exploited in the design of a common

model for ubiquitous computing.

2. The design of a core model for ubiquitous computing calledthe Ubicomp

Chapter 1. Introduction and Motivation 12

Common Model shown to unify the exposed abstractions of several repre-

sentative ubicomp systems.

3. A demonstration of the feasibility of using the UCM to map to the abstrac-

tions of several representative systems.

4. Confirmation that this model is adequate for application development.

Our secondary contributions include:

1. A novel meta-middleware architecture and implementation for integrating

more than one ubicomp system under a common model.

2. The use of an integrated knowledge base and reasoning to describe and main-

tain an integrated ubicomp environment composed of more than one ubi-

comp system.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we present a

comprehensive survey and analysis of representative ubiquitous systems. Based on

this survey we identify the common programming abstractions used as the basis

for the UCM design. In Chapter 3 we present the design of the Ubicomp Com-

mon Model including the three key aspects of the model: the Environment State,

Meta-state and Implementation. In Chapter 4 we describe thedesign and imple-

mentation of the Ubicomp Integration Framework, used to evaluate the UCM by

providing a single environment model and associated API to four underlying sys-

tems [36, 40, 47, 83]. Our evaluation and discussion is presented in Chapter 5

where we discuss the development of several prototype applications, integration

Chapter 1. Introduction and Motivation 13

adapters and performance of the UIF. We conclude the dissertation in Chapter 6

with a discussion of lessons learned and future work.

14

Chapter 2

Survey and Analysis of

Ubiquitous Systems

The design of a common model for ubicomp suitable for integration depends on an

understanding of existing systems’ programming abstractions. As in any software

engineering task, the use of abstraction in a ubicomp systemhas two main benefits.

Firstly, it helps manage complexity for developers by exposing important aspects

of a system hiding unimportant details. Secondly, it separates aspects of a system

that are common to all from those specific to a particular implementation. In this

chapter we survey a broad range of representative ubicomp systems to highlight

the individual programming abstractions they expose to application developers.

Based on this survey, we then derive a set of abstractions that occur across several

systems, giving names and examples for each. These abstractions are the basis of

the Ubicomp Common Model presented in Chapter 3.

When we survey the wide variety of systems, we note that finding the most

appropriate programming model is not straightforward: there are often tradeoffs

related to finding the “right” level of abstraction. For easeof application develop-

ment, “high level” abstractions can relieve the developer from having to deal with

certain implementation details, but for broad applicability it is often more feasible

to expose “low level” abstractions that expose more detailsto the developer.

For example, some ubicomp systems expose distributed components or ser-

Chapter 2. Survey and Analysis of Ubiquitous Systems 15

vices to applications, what we consider “low level” abstractions. Developers create

applications by composing these building blocks by variousmeans. This includes

the use of generic interfaces and mobile code [76], linking compatible component

properties [47], or through the use of standard interface definitions [74]. Other

systems provide higher level abstractions that more closely reflect the overlap of

physical and digital space in an effort to make programming pervasive spaces more

intuitive. To do this, systems will often associate relevant information and services

with physical or virtualentitiessuch as people, places, and things. These entity

abstractions often act as aggregators or containers for relevant information from

sensors and inference services calledcontext. Context may include the user’s cur-

rent location and activity, the sound and lighting levels ina room, the online status

of a printer, or the names of people in a group for example.

The most appropriate programming model may also depend on the scaleof

a typical deployment. In smaller scale deployments, where the aim is to support

simple tasks, a programming model consisting of compositions of service abstrac-

tions is often suitable. In room to building-scale deployments with more concur-

rent users and applications, programmers can benefit from the use of higher level

abstractions such as explicitenvironment modelsthat hide individual component

implementations. In even larger scale deployments such as auniversity campus,

exposing every projector, light switch, media player, large screen display, camera,

and thermostat does not scale for user interfaces, applications or integrators. Fur-

thermore, wide area communications can be slow and expensive. Consequently,

wide area systems tend to aggregate functionality around coarser grained entities,

even whole environments federated using wide area protocols.

In this chapter we survey and analyse existing systems to identify and name

the abstractions that occur regularly in their programmingmodels to derive the

core abstractions for a common model for ubicomp. The remainder of this chapter

Chapter 2. Survey and Analysis of Ubiquitous Systems 16

is organized as follows. In Section 2.1 we define our categorization of ubicomp

system. In Sections 2.2 to 2.5 we describe each system by category. In Section

2.6 we discuss the programming abstractions typically exposed in each category

and then group these to present our derived set of common abstractions across

categories. We conclude this chapter in Section 2.7.

2.1 Categories of Ubicomp Systems

Given the diverse research targets and approaches to systems design, grouping the

broad range of ubicomp systems deployed so far can be challenging. For the pur-

pose of this survey, we have gathered systems into four categories as follows:

• Component Composition Systems: generally lower level abstractions and

smaller scale deployments

• Context Frameworks: medium level abstractions/mid scale environments

• Smart Space Systems: higher level abstractions/mid scale environments

• Wide Area Systems: low to high level abstractions/large scale deployments

or cross domain access

These categories were derived by rating systems in terms of two dimensions:

the level of abstractiona system exposes and thescaleof a typical deployment,

both defined next.

2.1.1 Abstraction levels

To create these four categories we first rated systems in terms of level of abstraction

to group systems with similar programming models. We point out that our use of

Chapter 2. Survey and Analysis of Ubiquitous Systems 17

the phrase “level of abstraction” does not indicate the quality or applicability of

one system over another, but rather its intended purpose andsimilarity between

systems’ programming models. Our definition of abstractionlevels including some

examples are defined as follows .

• Service and Component Compositions (low). Systems that provide a ser-

vice oriented architecture or component abstraction are considered to expose

“low level” abstractions. Some of these systems will support the composition

of components and services. Example systems include several commercial

standards like UPnP [74] and research systems such as SpeakEasy/Obje [76].

• Entities and Context (medium). We consider systems that provide abstrac-

tions including the notion of a person, place or thing (i.e. physical or virtual

entities), and context to expose “medium level” abstractions. Systems at this

level often build on distributed services and component architectures. Exam-

ples include the Context Toolkit [36] and the Java Context Aware Framework

(JCAF) [15].

• Explicit Detailed Environment Models (high). For our survey we rate sys-

tems as having a “high level” of abstraction when they provide an interface

to an explicit model of the physical environment. The systemmay include

centralized servers for event brokering and data storage. The environment

model may include both mobile and fixed entities like places,tables, walls

and relationships. Example projects include Sentient Computing [54], the

Nexus project [57] and ontology based systems (e.g. [28, 51]). With an

explicit and centralized model it is possible for the supporting system to rea-

son about the situation as a whole, removing the need for applications to

maintain their own model of the current physical and run timeenvironment.

Chapter 2. Survey and Analysis of Ubiquitous Systems 18

2.1.2 Scale of Deployment

To categorize systems we also consider thescaleof deployment targeted by the

designers. Some systems, for example, focus on the composition of devices for

a single mobile user, or only a few users. A given component configuration will

generally support only only a few simple tasks at a time. Other systems aim to inte-

grate several applications, services, devices for all of the users in a room. Medium

scale systems tend to support tens of users, in a meeting roomfor example, and

many applications at once. Larger scale systems, designed for wide area deploy-

ments and infrastructures with many users and applications, target campuses, cities

or the world. To summarize:

• Small scale. Sub room, single or few users e.g. on a broadcast network for

one (mobile) or a small number of users. This includes ADS, PCOM and the

ZeroConfig standards for example.

• Mid scale. Room, building, floor, single servers, tens of users, several appli-

cations. Systems include those that use servers such as iROSand the Context

Toolkit.

• Large scale. Campus, city, global, wide area networks, federated servers,

wide area protocols for many applications and thousands to millions of users.

Systems here include Cooltown and ActiveCampus.

When we place systems along both the abstraction level and scale axes, as

shown in Figure 2.1 we note that there is some correlation between these two di-

mensions. Smaller scale systems tend to use service composition (low level) ab-

stractions since they are often concerned with composing individual components

corresponding to devices or software services. When the number of devices, users,

and applications increases in medium scale (room-building) systems we see a trend

Chapter 2. Survey and Analysis of Ubiquitous Systems 19

to provide context and entity (medium level) abstractions that aggregate software

services and shared state around objects of interest such aspeople, places and

things - medium level abstractions. Finally, larger systems scale to even more

users and applications; the abstractions exposed in largerscale systems tend to

range from medium to high level explicit environments.

Interestingly, while there is some correlation between scale and abstraction

level, there are examples in the Smart Space and Wide Area Systems categorise

that show these dimensions are orthogonal: medium scale systems with high level

abstractions (e.g. EasyLiving [25]) and large scale systems that provide medium

level abstractions (e.g. Cooltown [68]). Based on their approximate location in the

scale/abstraction space, we grouped systems into the four system categories used

in the body of this survey as shown.

Explicit
Environments

(High)

Service
Compositions

(Low)

Sub room Campus- Global

SpeakEasyECT

Sentient
Computing

Context
Toolkit

Nexus

ConFAB

ActiveCampus

JiniUPnP

iROS

Room-Floor- Building

Gaia

Easy
Living

Aura

PCOM

Cooltown
Sentient
Objects

one.world

Context
and Entities
(Medium)

Ontology
Systems

JCAF

Scale of Deployment

ReMMoC

ZeroConfig

OSGi

ParcTab

Component
Composition
Systems

Context
Frameworks

Smart Space
Systems

Wide Area
Systems

WSAMI

 Abstraction
Level

Figure 2.1: Ubicomp systems surveyed placed in terms of scale and abstrac-
tion level.

Chapter 2. Survey and Analysis of Ubiquitous Systems 20

2.1.3 Organization

In the following four sections we present representative systems in each category:

Component Composition Systems, Context Frameworks, SmartSpace Systems,

and Wide Area Systems in rough chronological order. This notonly gives a sense

of the features of a category, but also of the evolution of abstractions within that

category as research progressed. Where a system can be considered to be in more

than one category we have placed it in the section where it shared the most fea-

tures of other systems. In each section we begin by providinga table with a row

for each system, summarizing the purpose of its design (e.g.programmability or

interoperability or both), its scale, abstractions, and key references. This is fol-

lowed by a description of the system with attention to the programming model and

abstractions it exposes. To respect the significant contributions of these projects,

we describe the abstractions of each system using the names used by the designers

in each subsystem. We then summarize the important abstractions shared across

several systems in a final subsection at the end.

2.2 Component Composition Systems

The first section of our survey presents systems generally used in smaller scale

ubicomp environments that provide a “lower level” abstraction for component reg-

istration, discovery, communications and composition. Unlike other categories of

systems in this survey, several commercially used systems belong here: Jini, Uni-

versal Plug and Play (UPnP), and Zero Configuration Networking (ZeroConf) are

discussed in Section 2.2.1. These systems can be used directly for ubicomp ap-

plication development since they were designed for a changing distributed execu-

tion environment. Another commercial standard presented in Section 2.2.1 is the

Chapter 2. Survey and Analysis of Ubiquitous Systems 21

Open Systems Gateway Initiative (OSGi), which provides a centralized, dynami-

cally extensible execution environment. The Appliance Data Services (ADS) sys-

tem (2.2.2), SpeakEasy (2.2.3), the Equip Component Toolkit (2.2.4), and PCOM

research systems (2.2.5) all compose software components,often corresponding to

devices in an environment. ADS and PCOM compose services automatically while

SpeakEasy and ECT allow end users to compose device components for data trans-

formation, display and storage. The Reflective Middleware for Mobile Computing

(2.2.6) system provides a single API for several distributed component systems.

The systems surveyed in this section are summarized in Table2.1.

Table 2.1: Summary of Surveyed Component Composition Systems.
System Purpose Scale Abstractions Refs
Jini Interoperability Small-medium:

lookup services
Object registration, dis-
covery, services, events,
transactions

[106]

UPnP Interoperability, sim-
ple device networking

Small-medium:
broadcast net-
work

Device registration, dis-
covery, services, state,
events

[74]

ZeroConfig Interoperability, sim-
ple networking

Small-medium:
broadcast net-
work

Service registration, dis-
covery

[13, 29]

OSGi Dynamically extensi-
ble service host plat-
form

Medium: room-
house

Bundle (object collections)
registration, discovery,
services, state, events

[80]

Appliance
Data
Services

Task based compo-
sition of services for
data transformation/-
transfer

Small: collection
of devices

Tasks as sequences of
service executions on
data hosted in infrastruc-
ture

[60]

SpeakEasy/
Obje

End user composition
of devices/compo-
nents for data transfer

Small: collection
of devices

Objects with generic in-
terfaces for data transfer,
grouping, metadata and
UI

[76]

Equip Com-
ponent
Toolkit

Easy end user
composition of com-
ponents for control
and data processing

Small: collection
of devices

Components contained in
a DataSpace linked using
compatible properties/s-
tate

[47, 61]

PCOM Automatic and dy-
namic composition of
services

Small-medium:
broadcast net-
work

Services composed dy-
namically using depen-
dency contracts

[17, 18]

ReMMoC Interoperability with
various service in-
frastructures

Small-medium::
broadcast net-
work

Abstract service discov-
ery, reflection and interac-
tion interface

[45]

Chapter 2. Survey and Analysis of Ubiquitous Systems 22

2.2.1 Commercial Systems and Standards

Commercial systems described in this section have been developed to create ap-

plications that can dynamically adapt to a changing networkenvironment: a key

requirement for ubicomp. Most expose the ability to communicate with individual

software components that may come and go to get and change state, subscribe to

events, and call services.

Jini . Jini was designed to provide a way for distributed objects to find each

other and work together on a network. Its use of mobile code and support for dy-

namic service registration and discovery make it an obviousstarting point for ubi-

comp systems. A fixedLookup Serviceis deployed on a network for lease-based

component registration and lookup. A client will typicallysearch for a Lookup Ser-

vice using multicast, then find the service it needs using a template-based search.

The proxy code needed to communicate with the service is downloaded from the

Lookup Service to communicate with it directly. Clients canregister for asyn-

chronous event notifications by registering their own remote service interface.

Universal Plug and Play (UPnP). The purpose of UPnP is to make it easy

to set up and configure networked devices such as printers, Internet gateways and

consumer electronics without the need for specialized servers or other infrastruc-

ture. There are three building blocks of a UPnP system: aDeviceis a container

for services and other nested devices,Servicesare units of control consisting of

state variables, implementations of actions, and an event server implementation,

to publish events to subscribers when its state changes. Finally, applications as

Control Pointsdiscover and control other devices by invoking services, subscrib-

ing to events, and getting device and service descriptions.A protocol is used for

devices to announce themselves and for control points to findresources, no dis-

covery server is needed; every control point maintains information on the devices

Chapter 2. Survey and Analysis of Ubiquitous Systems 23

available to minimize traffic.

Zero Configuration Networking (Zeroconf). Zeroconf, also known as Bon-

jour and Rendezvous [13] is a collection of standard and proposals used by Apple

for dynamic discovery of devices and services on IP networks. These specifica-

tions include dynamic link local addressing, multicast domain name system (DNS)

for use in small networks such as the home, where there is no conventional unicast

DNS server, DNS based service discovery, DNS related notifications, and proto-

cols for printing and file sharing. Unlike Jini and UPnP, Bonjour does not include

specific mechanisms and protocols for service interaction,applications use any

protocol on top of TCP or UDP.

OSGi. The Open Services Gateway Initiative Alliance defines a Java based

platform that defines a dynamic life cycle model for modules calledbundles, which

can be remotely installed and started without rebooting thesystem. It also includes

a service registry to detect the addition and removal of services for applications to

act accordingly. Many layers are built on this core including services for logging,

administration, security, and integration with systems such as UPnP. Although it

was originally designed for service gateways, it is now usedin a wide range of

applications such as integrated development environments, enterprise application

servers, cars and mobile phones.

2.2.2 Appliance Data Services

The designers of ADS [60] recognized that the use of distributed services and de-

vices such as those supported by Jini or UPnP often revolves around moving data

from one to another. Unfortunately, in some cases, this taskcan be unexpectedly

difficult. ADS addresses this problem by allowing developers to define tasks such

as “move photos from camera to online photo album”. ADS applications are a

Chapter 2. Survey and Analysis of Ubiquitous Systems 24

composition of services that operate on data or content supplied by devices. The

framework consists of three components:Data Receive, Application Controland

Service Execution. Data is received from a device, and put into the infrastructure,

a shared data store, by the Data Receive components. Application Control compo-

nents determine the task to perform by looking at a user id andrequested command

to find a matching template listing the services required. The Execution Compo-

nent executes services in turn to operate on the data supplied in the receive stage

or output by a previous service as defined by control template. A key abstraction

introduced by ADS is the notion of a service composition theycall anapplication

and the support fordataas an abstraction in the system passed between services.

2.2.3 SpeakEasy/Obje

Speakeasy researchers decided to take a different approachfrom ADS to moving

data between devices. Unlike the ADS system, SpeakEasy allows end usersto

opportunistically assemble devices for data exchange, even when the devices do

not support the same data protocols [76]. Unlike ADS which relied on compatible

service interfaces for composition, the system uses mobileJava code to translate

potentially incompatible data streams between componentsand to supply inter-

faces for end user control. Every component, typically corresponding to a physical

device or software service on a local network, exposes one ormore of a small set

of generic interfaces. These interfaces are used to (1) transfer data, (2) group re-

lated components together (3) reveal and use metadata aboutthe component, and

(4) allow end user control with a user interface. SpeakEasy component interfaces

allowed end users to easily compose and control devices for data transfer and pro-

cessing.

Chapter 2. Survey and Analysis of Ubiquitous Systems 25

2.2.4 Equip Component Toolkit

While components in Speakeasy communicate with each other directly using generic

interfaces, the Equip Component Toolkit exploits the use ofa shared, distributed

Dataspaceto create component compositions. The Dataspace contains references

to software components such as JavaBeans, the current valueof their properties,

and links between compatible properties. Applications arecreated by “wiring

up” compatible properties, so that when the value of one property in a compo-

nent changes, its value is relayed to the property in anothercomponent. End users

and developers can instantiate and configure components in the Dataspace using

a graphical editor such as the supplied GraphEditor, or the Jigsaw puzzle editor

[61]. A key advantage of the system is the ability for components to interoperate

by connecting properties; no common service API or mobile code is required.

2.2.5 PCOM

In mobile applications, the services available in an environment may come and go

over time. To use a commercial system like Jini or UPnP, applications must adapt

themselves to the changing resources they need at run time. Another approach is

for a system like PCOM to relieve applications from this responsibility. PCOM was

designed to adapt automatically to changing protocols, andthe services available.

It assembles service hierarchies dynamically based on application-programmer de-

fined service dependency contracts. Application programmers provide service re-

quirements (events and service interfaces) in advance. PCOM then creates a hierar-

chy of services dynamically to fulfill the contracts using the current and changing

service execution environment. Application programmers can use built-in PCOM

adaptation mechanisms or provide their own strategies to reselect or discontinue

required components at run time as the environment changes.

Chapter 2. Survey and Analysis of Ubiquitous Systems 26

2.2.6 Reflective Middleware for Mobile Computing (ReMMoC)

Similar to PCOM, ReMMoC addresses the problem of clients finding and making

use of appropriate services in ubiquitous computing environments. However, un-

like PCOM, ReMMoC makes use of existing service infrastructures directly. In

such environments, different service discovery protocolsmay exist such as Jini,

UPnP or ZeroConf. In addition, different interaction protocols such as Simple

Object Access Protocol (SOAP), or Common Request Broker (CORBA) Internet

Inter-Orb Protocol (IIOP) may be used. The ReMMoC mobile device middle-

ware uses a pluggable component architecture to address both service discovery

and interaction heterogeneity. A generic service lookup interface hides the details

of different service discovery protocols. A generic binding abstraction, based on

Web Service Definition Language (WSDL) allows for the abstract definition of any

service independent of the underlying service provider.

2.2.7 Discussion

Systems in this category revolve around the use of distributed components exposed

using a service abstraction. The ReMMoC system provided a generic service API

for systems such as UPnP and Jini. Several systems in this category also provide

access to component state or properties, and asynchronous events or service call-

backs. In several of these systems, applications are considered to be compositions

of components composed or connected to perform some task. For example, ECT

developers can compose components using a Dataspace that encapsulates all com-

ponents and their property links in a deployment. PCOM composes services auto-

matically and dynamically as the execution environment of an application changes,

without centralized infrastructure. The ADS system introduced a data abstraction

to pass between services in predefined compositions. SpeakEasy users compose

Chapter 2. Survey and Analysis of Ubiquitous Systems 27

devices on the fly to transfer and process data. To summarize,these systems typi-

cally support the composition of components that exposeservice, state, events, and

dataor stateabstractions.

2.3 Context Frameworks

This category lists those systems designed to make use ofcontext. Dey defined

context as “any information that can be used to characterizethe situation of en-

tities (i.e. whether a person, place or object) that are considered relevant to the

user and an application. . . ” [35]. In the simplest sense, context is some state as-

sociated with a physical or electronic entity. Many of the systems here such as

ParcTab (Section 2.3.1), the Context Toolkit (2.3.2), and the Java Context Aware

Framework (2.3.5), include abstractions to aggregate suchinformation about peo-

ple, places or things. Several systems such as Sentient Objects (2.3.4) can infer

higher level context information such as user activity and the local weather con-

ditions from raw sensor data, external information sourcescombined with lower

level context information such as location and time. For thepurpose of this sur-

vey, we considerentitiesandcontextabstractions exposed by these systems to be

“medium” level ubicomp abstractions. The systems listed inTable 2.2 are typically

designed for larger installations than Component Composition Systems since they

often aggregate information and the capabilities of individual components.

2.3.1 ParcTab

ParcTab was a pioneering ubicomp system that leveraged the Remote Procedure

Call (RPC) model for distributed middleware to allow applications hosted on work-

stations to interact with users with mobile devices. In later work, Schilit et al. [91]

highlighted the need for dynamic customization as a key concept common to ubi-

Chapter 2. Survey and Analysis of Ubiquitous Systems 28

Table 2.2: Summary of Surveyed Context Frameworks.
System Purpose Scale Abstractions Key Refs
ParcTab Application cus-

tomization using state
about users and
locations

Medium: multiple
rooms

User agents and sensors
supply state to Environ-
ment Servers correspond-
ing to entities: users and
locations

[90, 91]

Context
Toolkit

Easy context aware
application develop-
ment

Medium: multiple
rooms

Discoverer for component
lookup/registration, wid-
gets that support context
query, events, interpreters
and entity aggregators

[36]

one.world App. changing ex-
ecution environment,
sharing data between
devices

Small: broadcast
network

Environments, contain
data and components
(typically associated with
entities), asynchronous
events for all communica-
tions

[48]

Sentient Ob-
jects

Context-aware appli-
cation development in
ad hoc network envi-
ronments

Small-Medium:
ad hoc networks

Distributed sentient ob-
jects (typically associated
with entities). Event
based communication,
framework for context
reasoning, interpretation,
& aggregation

[19]

Java Con-
text Aware
Framework

Standardize Java
context aware appli-
cation APIs

Medium: dis-
tributed servers

Entities associated with
context items that may
also be other entities.

[15]

comp applications. They describe a system made up of a collection of environment

serverseach corresponding to users, places, workgroups and other entities. Each

environment server maintained a set of names and values corresponding to some

relevant information about the physical or computational run time environment.

A user agentupdated environment servers on behalf of the user it served.Ap-

plications typically monitored for changes in the environment by subscribing to

variable changes on environment servers. An application could subscribe to the

environment server for a group of users, and to the servers corresponding to the

locations of these users for example. The servers used by a given application could

change over time as a users location changes. An important abstraction from this

early work is the environment server corresponding to a place, user, group or other

entity. These servers aggregated relevant state about an entity called context in

Chapter 2. Survey and Analysis of Ubiquitous Systems 29

follow on systems.

2.3.2 The Context Toolkit

The Context Toolkit aimed to provide a set of abstractions for the rapid develop-

ment of context aware applications. A typical deployment contained a number of

self describing distributed components on a LAN that supplycontext (e.g. sensor

data) and/or services to applications. These components register with a central-

ized Discovererwhich maintains information for lookup by applications or other

components. The component types includedContext Widgetswhich can be queried

directly or subscribed to using asynchronous events,Context Interpretersused to

translate one form of context to another, for example from anRFID tag reading to

a user name.Entity Aggregatorcomponents were used to aggregate context and

services around an entity: a person, place or object.Services, typically imple-

mented by Context Widgets were exposed to interact with software services and

actuators. Recognizing that applications still had to do a lot of work to find and

interact with the various component types provided by the toolkit, the system was

extended to provide a higher level,situationabstraction: a collection of relevant

context queries (called the situation) in a single interface that deals with multiple

components. The Context Toolkit situation abstraction forshadows the ability to

model whole environments demonstrated by Smart Space Systems in Section 2.4.

2.3.3 One.world

One.world was designed for ad hoc composition and data sharing between appli-

cations and devices in a changing execution environment. Toaddress this need,

the designers argue that data and functional abstractions,unlike objects in object

oriented systems that combine these abstractions, should be separated to facilitate

Chapter 2. Survey and Analysis of Ubiquitous Systems 30

data sharing, searching and filtering. To establish this separation, they created an

environmentabstraction as a way of structuring and composing applications. En-

vironments serve as storage for shared data using tuples, and containers for appli-

cation components and other environments in a hierarchicalfashion. Components

in an environment communicate with each other using asynchronous events. Gen-

erally, environments correspond to entities such as people, places or objects and

can migrate from one device to another as a user moves for example. Like ParcTab

environment servers, and Context Toolkit Entity Aggregators, one.worlds environ-

ment abstraction acts as both a container and aggregator forrelated entity state and

functionality.

2.3.4 Sentient Objects

The Sentient Object Model was developed for context-aware application develop-

ment in ad hoc network environments. Like one.world, the designers anticipated

a degree of mobility, and resilience to changes in connectivity between compo-

nents. This model defines abstractions for sensors and actuators and a framework

for creatingSentient Objects. Sentient objects retrieve information about their envi-

ronment from each other using event-based communications [19], or directly from

sensors. Sentient Objects work independently, and proactively try to achieve goals

and anticipate problems. A framework for creating SentientObjects makes it easier

for developers obtain, aggregate and interpret context information received by the

object. This framework includes probabilistic reasoning capabilities to interpret

raw sensor data, and to derive higher level context from lower level sub contexts in

a hierarchical fashion. An entity such as a person, place or thing typically corre-

sponds to one or a group of sentient objects in a deployment.

Chapter 2. Survey and Analysis of Ubiquitous Systems 31

2.3.5 Java Context Aware Framework

The Java Context Aware Framework (JCAF) is a more recent system used for con-

text aware application development. Inspired by previous work like the Context

Toolkit, a deployment consists of context services that receive, manage, store and

distribute context information for one or more entities. The programming model

for a context serviceconsists ofentitiesassociated withcontext itemsusing a con-

text relation. Context items may also be other entities so that useful entity relation-

ships can be established. Context clients typically accessentities and their context

using a context service, by registering interest in events associated with specific

context to receive notifications, or querying for a context value at any time. Clients

can also be suppliers (calledcontext monitors) or consumers (context actuators)

of context information from context services which aggregate the context for one

or more entities. JCAF’s programming model refines the high level abstractions

found in other frameworks consisting of event based asynchronous communica-

tions, entities, context, and entity relationships as a specialization of context.

2.3.6 Discussion

The systems in this category support the development ofcontext awareapplica-

tions: applications that use relevant information about the user and their situation.

These systems often contain and/or aggregate access to relevant information about

people, places and things around anentityabstraction. ParcTab designers call these

entity aggregatorsEnvironment Servers; they areEntity Aggregatorsin the Context

Toolkit, Environmentsin one.world,Sentient Objects. Context servicescontain en-

tities in the JCAF programming model. Several systems allowapplications outside

of the framework to query for context on demand, and subscribe to changes in con-

text values. Sentient Objects and one.world host applications within their entity

Chapter 2. Survey and Analysis of Ubiquitous Systems 32

containers (i.e. sentient objects or environments). In some cases context values

can be other entities, hinting at an important specialization of context we callentity

relationshipsfound to be valuable in Wide Area systems described in Section 2.5.

To summarize, the systems in this category build on Component Compositions to

introduce entity aggregations, and context abstractions to application developers.

2.4 Smart Space Systems

In this section we consider the systems listed in Table 2.3 that typically provide a

higher level of abstraction than Context Frameworks. Generally, the scale of de-

ployment in this category are comparable to those in ContextFrameworks: single

rooms, or buildings. The core of both the iROS (Section 2.4.1) system and Gaia

(2.4.4) is a centralized event broker to move messages between distributed com-

ponents. Other core components in Gaia and iROS were createdfor data storage

and transformation, shared environment state and services. InConcert/EasyLiving

(2.4.3) and Sentient Computing (2.4.2) efforts focused on providing a detailed envi-

ronment model to applications to customize interaction based on the user’s absolute

and relative location to other objects and people. We also consider ontology-based

systems in this category in Section 2.4.5. The use of ontologies and a knowledge

base in these systems allows the semantics of objects such asentities, relation-

ships and context values to be standardized for interoperability. Information in the

knowledge base can be processed using standard semantic webreasoning systems

to infer new context values and trigger application services.

2.4.1 iROS

iROS aimed to make it easier to create applications for a specific class of smart

space: meeting rooms. In these scenarios it is important to support multi-device

Chapter 2. Survey and Analysis of Ubiquitous Systems 33

Table 2.3: Summary of Smart Space Systems.
System Purpose Scale Abstractions Key Refs
iROS Meeting room appli-

cation development
Medium:
room

Centralized Event Heap,
shared state, ICrafter services,
Data Heap for storage and
transformation

[42, 63, 83]

Sentient
Comput-
ing

Easy location-aware
programming

Medium:
floor

Detailed environment model
containing entities, absolute
and relative location facts, and
location events

[11, 54]

InConcert/
EasyLiv-
ing

Dynamic cross device
(screens) user inter-
faces based on loca-
tion

Medium:
house

Detailed environment model
containing fixed and mobile
entities and their geometric re-
lationships.

[25]

Gaia General purpose
smart space operat-
ing system

Medium:
room-floor

Centralized event broker, data
store, service infrastructure,
space/presence repository,
and context inference service

[87]

Ontology-
based:
SoCAM,
CML,
Gaia,
CoBrA

Easy context aware
smart space applica-
tion development and
implementation inde-
pendent model

Medium:
room-floor

Entities and context in an ex-
ecutable knowledge base, ap-
plication execution chosen or
triggered using rules.

SoCAM [51]
CoBrA [28]
Gaia [85]
CML [55, 56]

interactions where users can move between a portable devicesuch as a PDA or

Tablet PC to one or more large wall-mounted displays. Recognizing the value of

the eventabstraction in interactive desktop applications, the mainsubsystem of

iROS is the centralizedEvent Heap. Using the Event Heap, any device can pro-

duce events, and any number of event consumers can listen, enabling group com-

munications and multi-device interaction. TheState Managersubsystem makes

use of the Event Heap to maintain shared state of devices, andsoftware compo-

nents in the room. Shared state includes published service descriptions used by

the ICrafter subsystem [82]. ICrafter provides a service discovery and interaction

interface similar to the Context Toolkit Discoverer and Service components. The

Data Heapwas used for storing content and documents, and meta-data associated

with this content. Notably, this system also provided data-format transformation

services for applications to make it easier to view and manipulate content on a wide

Chapter 2. Survey and Analysis of Ubiquitous Systems 34

range of devices. To summarize, all of the devices in a room use centralized servers

for event communications, shared state and data storage.

2.4.2 Sentient Computing

Unlike iROS, the Sentient Computing platform was designed to provide an explicit

model of the physical environment for applications. The system provides a very

fine grained location system [107], and a detailed data modelof space for event

based applications. To build and maintain this model, components calledresource

monitorsandspatial monitorsare used. The detailed environment model describes

the entities (people, places, and things) and possible waysof interacting with them.

Applications are provided with an API for location-aware programming providing

both absolute and relative location facts, such as “the useris at (x,y) facing di-

rection (angle)”, or “the person (Bob) is standing in front of workstation (Xyz)”.

Sentient Computing highlights the value of an explicit, accurate and dynamic en-

vironment model to ease application development. Another important distinction

from Component Composition Systems and some Context Frameworks is that ap-

plications need not access components that implement or maintain the model since

the system itself effectively hides these concerns.

2.4.3 InConcert/Easy Living

EasyLiving designers focused on supporting user interaction across multiple de-

vices including mobile devices and large screen displays inthe home. Like Sen-

tient Computing, the InConcert middleware provides a explicit environment model

to enable applications to dynamically assemble a user interface across multiple

devices. Knowing a user’s location and orientation allows the system to choose

which display to use for information, and which speakers to use for music or voice

Chapter 2. Survey and Analysis of Ubiquitous Systems 35

responses. Within this environment model, objects in the physical world are associ-

ated with each other using geometric entity relationships calledmeasurements. As

in Sentient Computing, and Gaia discussed next, software tracks mobile objects to

maintain the model so that these relationships are kept current. Developers make

use of the geometry model and service descriptions to adapt their user interface

to the current situation. Maintaining the measurements using the geometry model

is a key enabler for EasyLiving applications that must take into consideration the

spatial relationships between devices and end users in the environment.

2.4.4 Gaia

Gaia aimed to apply and extend approaches proven in systems like iROS and

Sentient Computing to domains such as the home, the office, and the car. Like

iROS’ Event Heap, a centralized event broker called theEvent Managerprovides

a publish-subscribe mechanism for services, applicationsand components. The

Space RepositoryandPresence Servicesubsystems store and track tracks the phys-

ical location of entities, such as people and devices and software components for

applications. A general purposeContext Servicetracks other context such as sound,

temperature and weather. This subsystem supports the use offirst order logic to in-

fer higher level context from sensor data. AContext File Systemallows users to

associate content with different contexts such as time, place, and user presence. Fi-

nally anApplication Frameworkmade it easier for application developers to make

use of the various Gaia subsystems and distributed components. Since interacting

with multiple devices can be challenging, the notion of an “Application Session”

was created for end users to contain the applications and data associated with that

user when they enter the space.

Chapter 2. Survey and Analysis of Ubiquitous Systems 36

2.4.5 Ontology Based Systems

Several systems in this survey demonstrate that that application code can be reused

with the consistent use of an interface to a given smart space. However, to address

application portability and interoperability between smart spaces, it is not only

important to share the same interface, but also the same semantics for context types,

and service interfaces. In ontology-based context-aware systems such as SoCAM

[51] and the Context Broker Architecture (CoBrA) [28], context is modeled with a

model called an ontology, a formal description of concepts in a particular domain.

Gaia was also extended to use ontologies for context reasoning [85] about entities

and components in the system. The Context Modelling Language (CML) [55,

56] is a graphical notation developed to assist developers to design and explore

the context requirements of applications independent of the infrastructure used.

While the CML does not use sematic web notations or technologies such as the

Web Ontology Language (OWL) [102], it does relate attributes to physical and

conceptual entities such as users, and devices. CML also permits designers to

specify context quality and dependencies between context information.

In ontology-based systems, logical expressions using facts in the knowledge

base can define situation abstractions similar that in the Context Toolkit, inferring

higher level context from lower level facts in the environment model. The use

of an ontology provides a way to share common understanding of concepts in an

environment and facilitates the use of an executable model in a knowledge base.

An executable model with a general purpose reasoning enginecan also be used to

infer higher level context and new entity relationships from facts in the model, or

to alter application behavior and execute specific serviceswhen certain situations

exists.

Chapter 2. Survey and Analysis of Ubiquitous Systems 37

2.4.6 Discussion

Smart Space Systems aim to provide even more comprehensive support for ap-

plication development in specific places such as meeting rooms, and the home.

Typically these systems coordinate multiple mobile devices, users, and large fixed

displays: inter-device interaction is a critical requirement. iROS and Gaia central-

ize communications between components to broadcast and intercept the value of

eventsas a key abstraction for smart spaces. Several systems such as EasyLiving

and Sentient Computing introduce the notion of a comprehensive and expliciten-

vironment model. Ontology based systems maintain information about contained

entities, their relationships to one another, and current context values in a central

knowledge base. All of the systems provide mechanisms to call servicesindepen-

dent of their underlying implementation and location in thesmart space. iROS and

Gaia both provide comprehensivedata and content storageand transformation ser-

vices for applications. To summarize, smart space systems highlight the value of

cross-device interaction events, explicit environment models and centralized data

and data transformation services for application developers in their programming

models.

2.5 Wide Area Systems

The systems listed in Table 2.4 coordinate larger scale environments containing

many users and applications potentially across smart spaces. The cross-physical,

-network and -administrative domain requirements for suchsystems means that

many of the communications protocols used in other categories are not appropriate;

the systems here use protocols such as HTTP and Web Services rather than local

network broadcast for example. Security and privacy are also a consideration in this

Chapter 2. Survey and Analysis of Ubiquitous Systems 38

category. Since the number of computing resources in large scale environments can

be high, and communications can be expensive in terms of latency and bandwidth,

there is often a need to provide coarser grained abstractions than software com-

ponents, individual devices and services in this class of systems. Typically these

systems will aggregate information and services associated with entities: people,

places and things, or environments as a whole as in Context Frameworks or Smart

Space Systems. The first system we describe in Section 2.5.1,Cooltown, leveraged

the well understood distributed document model of the web tointegrate the phys-

ical world with the online world. The Context Fabric (2.5.2)aimed to provide a

privacy sensitive context infrastructure by linking distributed Infospaces containing

context about entities. Active Campus (2.5.5) provided integrated large scale ubi-

comp environment containing many services to potentially thousands of users on

a university campus. The Nexus (2.5.3) system designers federate environments,

while Aura (2.5.4) aimed to support migration of high level user tasks between

smart spaces by marshalling the services there. Web Servicefor Ambient Intelli-

gence (WSAMI) in Section 2.5.6 is unique in that it composes wide area services

taking a similar approach to Component Composition Systems.

2.5.1 Cooltown

The World Wide Web introduced a model for distributed computing where infor-

mation is organized into documents identified by uniform resource locators (URL)

linked to other documents elsewhere in the world. Cooltown leverages this sim-

ple and effective model for ubicomp by providing a software layer to integrate the

physical environment with the web [68]. People, places and things in the world

each have their own web presence, software running on a server that provides a

web user interface to an entity. The web presence of a user is related to other

Chapter 2. Survey and Analysis of Ubiquitous Systems 39

Table 2.4: Summary of Wide Area Systems.
System Purpose Scale Abstractions Key Refs
CoolTown Leverage WWW to in-

tegrate physical world
with online world

Large Web presence servers corre-
sponding to entities (people,
places, objects) linked to each
other

[68]

Context Fab-
ric

Context infrastructure
for privacy sensitive
applications

Large Network of Infospaces typically
corresponding to entities con-
taining instrinsic and extrinsic
context (entity relationships)

[58, 59]

Nexus Infrastructure for
spatial-aware appli-
cations

Large Network of Augmented Ar-
eas containing entities (objects
of interest) in an Augmented
World. Location queries and
events.

[57, 77]

Aura User/task migra-
tion between smart
spaces, and changing
devices

Multiple-
smart
spaces

Task abstraction to marshal
end-user services (Suppliers)
in the environment based on
context information in an Envi-
ronment Manager

[94]

Active Cam-
pus

Address tradeoffs
between extensibility
and integration in
large scale ubicomp

Large: cam-
pus

Two layer environment model
associating entities with ser-
vices and context. Entity Mod-
eling layer deals with static re-
lationships, Situation Modeling
layer with dynamic context and
relationships.

[49, 50]

WSAMI Situation aware web
services composition

Large: inde-
pendent of
location

Web services composed dy-
namically using dependency
and QoS requirements.

[3, 62]

entities such as places, or objects nearby using dynamic weblinks corresponding

to directed entity-entity relationships. These relationships may includecontains,

next-to, or carried-by for example; they may be reciprocal or one-way relation-

ships to protect user privacy. Users typically interact with one web presence at a

time, starting with their personal (user) web presence; sensors are used to discover

new entities and dynamically create entity links. For example, when a person en-

ters a room, the users web presence is linked to the rooms web presence when an

infrared beacon is detected by a mobile device carried by theuser. Users (and ap-

plications) may follow the links to take advantage of functionality (applications)

hosted by the rooms web presence. A key abstraction for Cooltown is the notion

of entity relationshipscorresponding to web links used by users and applications

Chapter 2. Survey and Analysis of Ubiquitous Systems 40

hosted on web servers to adapt to a changing environment.

2.5.2 Context Fabric

The Context Fabric was proposed as an infrastructure for context storage and man-

agement. When collected and distributed in a shared infrastructure, privacy of

context information such as location and activity is a vitalconcern for end users.

To address this, context can be manipulated (e.g. aggregated or anonymized) as

it enters or leaves the system to manage the privacy requirements. The Context

Fabric is a network of servers containingInfoSpacescorresponding to entities such

as people, places and things. An InfoSpace contains contextabout the entity it

handles, bothintrinsic context, information about the entity itself, andextrinsic

context, relationships between entities. Applications can also use the InfoSpace

to store service descriptions. A client library simplifies querying by supporting

on demand, periodic and subscription based queries on InfoSpace data. The Con-

text Fabric is similar to several systems in the Context Frameworks category and

Cootown in that it aggregates context data in Infospaces corresponding to entities.

Infospaces aggregate context about entities, and relate them to one another, similar

to Cooltown web links.

2.5.3 Nexus

Nexus is a generic wide area infrastructure for location andspatial-aware applica-

tions [57]. The designers aimed to provide a model of regionsof the physical world

calledAugmented Areassimilar in concept to the explicit environments in Smart

Space Systems such as EasyLiving or Sentient Computing. Both physical and vir-

tual objects of interestexist in Augmented Areas accessible through the platform.

An object of interest may also be a proxy for an end user. Furthermore, Augmented

Chapter 2. Survey and Analysis of Ubiquitous Systems 41

Areas can be federated in a globalAugmented Worldrelated to one another by con-

tainment and relative distance relationships. Since all Augmented Areas use the

same Nexus interface, applications can easily move betweenAugmented Areas us-

ing a handoff mechanism. An important attribute for objectsin an Area is location

determined using an Active Badge or GPS for example. Like Sentient Comput-

ing, the system supports location events triggered by changes in location such as

entering areas or proximity to other users, but aims to unifysuch smart space ca-

pabilities for larger scale deployments. Nexus demonstrates that federating smart

spaces is another approach to addressing scalability and smart space integration.

2.5.4 Aura

In the Aura system, user mobility between ubiquitous computing environments is

supported with an abstraction called a user’s personalaura that encapsulates the

users current task. Similar to the notion of an Application Session in Gaia, the aura

or task is defined as the information and services (applications) required by a user

at a given time. Once the users task is transferred to an instance of the system,

the hub of the system, called theTask Managermarshals resources in the current

environment to support that task. Services are hosted by components calledSuppli-

erswhich register with the Task Manager. A service hosted by a Supplier may be

a display device, a text editor, storage server or drawing application for example.

Like Gaia’s Space Repository, Aura’sEnvironment Managermanages information

related to the physical environment. Aura uses aContext Observerto watch the

environment for end user activity, to report this information to the Environment

Manager. When the user moves from one environment to another, that user’s Aura

can be migrated to the Task Manager at the new location to continue their current

task. Each Aura system provides an environment model for task execution and

Chapter 2. Survey and Analysis of Ubiquitous Systems 42

demonstrated that the use of a common platform in multiple smart spaces makes it

possible to for users seamlessly move between environments, migrating data and

applications on their behalf.

2.5.5 ActiveCampus

Like Cooltown, Active Campus services are presented as web pages, however, the

goals of this system are quite different. This project aimedto address the trade-

offs between easily providing new services, while maintaining the integration of

these services in an large (campus) scale environment [49].The centralized Ac-

tiveCampus architecture consists of several layers. In thetop layer, mobile devices

communicate with anEnvironment Proxywhich marshals data between the ser-

vices on the device and the ActiveCampus system. TheSituation Modelinglayer

in the server synthesizes the situation of entities from multiple information sources

(mobile devices and other sensors). Finally, theEntity Modelinglayer of the server

represents entities in several forms for access by other services and presentation on

a browser, and stores static relationships among these entities. In this system we

again see an explicit environment model containing entities, entity relationships

and entity-related context. Unlike Context Frameworks andSmart Space Systems,

however, ActiveCampus was designed to scale to larger environments and more

users by making use of a layered architecture.

2.5.6 Web Services for Ambient Intelligence (WSAMI)

WSAMI [62], part of the Ozone project [3], is a middleware that leverages Web

Services standards to deploy and compose web services dynamically on wireless

networks and mobile devices. The use of Web Services enablesavailability in

most environments, and potentially across network domains. WSAMI uses anam-

Chapter 2. Survey and Analysis of Ubiquitous Systems 43

ing&discoveryservice that supports naming, service discovery and lookupin both

local and wide area networks. Like PCOM and other Component Composition

Systems described in Section 2.2, this work focuses on dynamic distributed ser-

vice composition. Unlike these systems, however the designers targeted wide area

web service composition. Novel aspects of this work included the customization of

the network links for performance and security. Services are specified using stan-

dard WSDL. These specifications are then referred to in WSAMIspecifications

which include the required services that an application needs.

2.5.7 Discussion

We find that systems in the wide area category tend to borrow abstractions from

the other three. For example, WSAMI exposes and composes services directly

like others in the Component Composition category. The Context Fabric exposes

entities and context, like other Context Frameworks. The Nexus system federates

whole environments calledAugmented Areassimilar in concept to the environment

models exposed by Smart Space Systems.

For greater scalability large scale systems will often distribute storage process-

ing among multiple servers. Several systems here distribute work among servers

that proxy physical or virtual entities in the real world. These servers will of-

ten expose relationships between servers that correspond to their proxied entity’s

real world relationships. The Context Fabric, for example,aggregates information

about entities in Infospaces, relating them to each other using extrinsic context.

Similarly, Cooltown aggregates services and relevant information about entities

using separate web servers, relating them to each other using hypertext links.

Unlike other systems, the Active Campus system addresses scalability by sep-

arating the concerns of managing an integrated environmentmodel into separate

Chapter 2. Survey and Analysis of Ubiquitous Systems 44

layers on a single server. Aura is also unique in that it supports user migration

between environments by migrating information about a users current task to be

transferred from one smart space to the other.

2.6 Common Abstractions Derived from the Survey

Based on this survey, two things become evident: one is that we have a wealth

of experience to draw from when designing new ubicomp systems. Secondly, we

see that certain high level concepts are shared by several systems, in some cases,

under different names. Systems in all categories, for example, supplyservicesto

applications; functionality exposed using an interface registered with the system.

Systems in all categories support application callbacks oreventsfor notification

when something about the state of a device, entity or the environment changes.

Context Frameworks tend to aggregate components and information around anen-

tity abstraction to avoid the need to communicate with multiple components to find

context, relevant information about that entity [36]. Several smart space systems

illustrate the value of a centralized and explicitenvironment modelcontaining de-

tailed information about entities, context and relationships. Several component

compositions expose adata abstraction and certain smart space systems support

data orcontentstorage. We note that Wide Area Systems surveyed here often use

real world relationshipsbetween entities: people, places, things, and whole en-

vironments to link servers representing these entities. This allows applications to

easily find and use relevant context and services, avoids unecessary communica-

tions to individual components, and lends itself to greaterscalability by distribut-

ing storage and processing of context information. Table 2.5 indicates when one of

these abstraction appears in a given system.

Chapter 2. Survey and Analysis of Ubiquitous Systems 45

Table 2.5: Summary of the scale, level of abstraction and abstractionsused.
Here we indicate whether an abstraction is supported (✓), not supported
(✕) or partially/implicitly supported (P).

System Abstraction Scale Env. Entities Context Entity Services Events Data /
Level Model Rel. Content

Jini L S Pa ✕ Pb ✕ ✓ ✓ ✕

UPnP L S Pa Pc Pb ✕ ✓ ✓ ✕

ZeroConfig L S Pa ✕ ✕ ✕ ✕ ✕ ✕

OSGi L S-M Pa ✕ Pb ✕ ✓ ✓ ✕

ADS L S Pa ✕ ✕ ✕ ✓ ✕ ✓

SpeakEasy
/Obje

L S Pa Pc Pb ✕ ✕ ✕ ✓

ECT L S Pd ✕ ✕ ✕ ✕ ✓ ✕

PCOM L S ✕ ✕ ✕ ✕ ✓ ✓ ✕

ReMMoC L S ✕ ✕ ✕ ✕ ✓ ✕ ✕

ParcTab M M ✕ ✓ ✓ ✕ ✕ ✓ ✕

Context
Toolkit

M M Pa ✓ ✓ P ✓ ✓ Pe

one.world M M ✕f ✓ ✓ Pg ✕ ✓ ✓

Sentient
Objects

M M Ph ✓ ✓ Pi ✓ ✓ ✕

JCAF M M ✕ ✓ ✓ ✓ ✓ ✓ ✕

iROS H M Pj Pk ✓ ✕ ✓ ✓ ✓

Sentient
Computing

H M ✓ ✓ ✓ ✓ ✓ ✓ ✕

EasyLiving H M ✓ ✓ ✓ ✓ P ✓ ✕

Gaia H M ✓ ✓ ✓ ✕ ✓ ✓ ✓

Ontology
Systems

H M ✓ ✓ ✓ ✓ Pl ✓ ✕

CoolTown M L ✕ ✓ Pm ✓ P P P
Context
Fabric

M L ✕ ✓ ✓ ✓ ✕ ✓ ✕

Nexus H L ✓ ✓ ✓ ✓ ✓ ✓ ✕

Aura H M-L ✓ P ✓ ✕ ✓ P ✓

Active
Campus

H L ✓ ✓ ✓ ✓ ✓ P P

WSAMI L H ✕ ✕ ✕ ✕ ✓ ✓ ✕

aa component/service or device registry
bcomponent state as context
cDevices only
dDataspace
edata or content treated as context
falthough called anenvironment, typically corresponds to an individualentity
genvironment/entity containment relationships
hthe ad hoc network
i implicit in event subscriptions between objects
jEvent heap, service registry
kembedded in event fields
lsome ontology-based systems

mwithin web presence server

Chapter 2. Survey and Analysis of Ubiquitous Systems 46

2.7 Conclusions

In this chapter we presented a survey of twenty one representative research sys-

tems, and four commercial standards used for ubicomp application development.

To consider related systems together, we grouped systems into four categories:

Component Composition Systems, Context Frameworks, SmartSpace Systems,

and Wide Area Systems. These categories were created by placing systems in a

space defined by two dimensions: the typicalscaleof deployment targeted by their

designers, and thelevel of abstractionthey support. We defined three abstraction

levels: services and components (low), entities and context (medium), and explicit

environment models (high). By considering groups of systems in this space it be-

comes evident that there is some correspondence between thescale, and the level

of abstraction that system exposes. Small scale systems tend to expose simpler

service/component abstractions while larger scale systems provide additional ab-

straction layers, alleviating the need for applications tofind individual components

and model physical environments themselves. We noted also that some systems

demonstrate that these dimensions are also orthogonal. Smart Space Systems tend

to provide explicit environment models (high level abstractions) to medium scale

deployments (e.g. [11]), while some large scale systems provide entity and con-

text (medium level) abstractions (e.g. [59]), or service and component composition

(low level) abstractions (e.g. [62]). Finally, we derived aset of common abstrac-

tions exposed by several systems. These include anenvironment model, entities,

context, entity relationships, services, eventsanddataor content. We present these

common abstractions in more detail in the next chapter.

Based on this survey, it is evident that there are tradeoffs between interoperabil-

ity, scale of a typical deployment, and the level of interactivity or domain-specific

capabilities that influences the programming abstractionschosen. With the wealth

Chapter 2. Survey and Analysis of Ubiquitous Systems 47

of experimentation and deployment experience so far, we cannow begin to un-

derstand these tradeoffs and address some the challenges the ubicomp community

faces related to interoperability. Armed with the set of common abstractions iden-

tified here, we have a solid foundation for the design of a common programming

model for ubicomp. In the next chapter we continue our analysis starting with the

common abstractions we identified in this survey and describe the design of the

Ubicomp Common Model.

48

Chapter 3

The Ubicomp Common Model

In the previous chapter we identified several categories of ubicomp systems, and

summarized the core abstractions shared across categories. In this chapter we con-

tinue our analysis in Section 3.1 by highlighting several requirements for a interop-

erable model for ubiquitous systems. We then review the abstractions identified in

Chapter 2 in Section 3.2 with examples, and present the Ubicomp Common Model

design consisting of three related aspects: the Environment State, Meta State and

Implementation providing examples of each in Section 3.3. In Section 3.4 we re-

flect on how the UCM addresses several requirements presented in Section 3.1. In

Section 3.5 we discuss how the UCM could be extended to support the integration

of different security domains and access control mechanisms. Section 3.6 outlines

use cases for anexecutableUCM that can be queried and reasoned with. Finally

we summarize the Chapter in Section 4.9.

3.1 Common Model Requirements

To drive our analysis, we envision scenarios where applications hosted on mobile

phones connected to wide area networks interact with publicubicomp environ-

ments such as shopping malls and museums. We anticipate thatapplication servers

hosted outside of a ubicomp environment’s network domain will need to make use

of resources there. This can occur across a large universitycampus or between

organizations to link smart meeting rooms for example. Based on our survey of

Chapter 3. The Ubicomp Common Model 49

systems in Chapter 2, our own integration experience described in Chapter 5, and

our deployment of other ubicomp systems [39, 40] we highlight the following re-

quirements for the design of a common model for ubicomp:

Application Portability. An interoperable model should support a level of

application portability between different environmenttypessuch as the home, the

office and public places.

Environment Specialization.While portability is important, a common model

must support specialization for different domains. A specialization may include

subclasses of core entity types, service interfaces, context and event types specific

to a location and its use. This will allow general purpose applications to work

between locations while allowing deployments to provide location and domain-

specific resources.

Introspection. To support both portability and specialization, A common

model must supportintrospection, exposing not only the current environment state

(entities and context information), but also its currentcapabilitiessuch as the types

of context and service interfaces available. This will allow applications to query

and adapt to the the environment and the facilities that are available.

Separate Implementation. The model should separate exposed abstractions

such asentitiesandcontextfrom implementation abstractions such as distributed

componentsandservers. This separation of concerns will allow implementation

independence, and dynamic binding of components to entities without application

involvement. Available components can come and go, and change depending on

the current context. By separating the implementation fromexposed abstractions a

supporting system can be designed to adapt to change.

Straightforward Mapping to Existing Systems. For ease of integration, a

common model should lend itself to a relatively straightforward mapping to a va-

riety of existing systems’ abstractions. The model should support the integration

Chapter 3. The Ubicomp Common Model 50

of different categories of ubicomp systems: Component Compositions, Context

Frameworks, Smart Spaces, and Wide Area Systems as described in Chapter 2.

This means there should be support for a wide variety of abstraction levels and

scales of deployment. The model must find the right tradeoff between being suit-

ably generic across a wide range of systems but semanticallyclose enough to spe-

cific systems to take advantage of their unique capabilities.

Access Control and Security.When applications interact with environment

resources across network domains (e.g. [41, 93]), or in unadministered ad hoc

connections such as Bluetooth, access control and securityissues are important

considerations. In these scenarios, we cannot rely on a network administrator of a

private deployment to ensure all of the applications in an environment are autho-

rized and secure as the designers of closed ubicomp systems have. As a minimum,

an intermediary that exposes resources outside the domain must provide access

control to previously assumed private or closed deployments.

Executable Model.We also claim that that an integration model should beex-

ecutable, that is, have the ability to be queried and reasoned with by applications.

Support for flexible queries will allow applications to discover entities and associ-

ated services, and allow applications to determine whethertheir requirements can

be satisfied. Support for reasoning will allow an integration platform to maintain

the exposed model as its composition changes, simplify integration tasks, provide

missing general purpose capabilities such as context inference, and establishing

relationships between entities and components.

There remain many open research challenges in ubicomp such as the various

dimensions of scalability, dependability, security, privacy, context management,

application mobility and HCI that in some cases affect the programming model

of ubicomp systems. However, until there is some consensus in whether or how

these issues are exposed to application developers, it is likely too early to address

Chapter 3. The Ubicomp Common Model 51

them all in the design of common programming model; however,we acknowledge

that change must be anticipated in our core model design by ensuring it can be

extended with new abstractions, and provide an example of this in Section 3.5. Of

course, the addition of new abstractions will likely require additional interfaces to

an implementation (i.e. in an integration gateway or standalone system).

A key challenge is to find the right balance between interoperability and suit-

ability for cross domain access as outlined while maintaining as much of the func-

tionality of a given underlying ubicomp system. This will necessitate the provision

of a new layer of abstraction on top of the native one. Of course, the introduction

of a new programming modelcan make application development more difficult,

especially if it doesn’t match the problem at hand. Just as different programming

languages and supporting libraries support some application domains better than

others, we expect that different environment models will need to coexist. Since we

do not expect all local ubicomp applications to require cross-domain interaction,

we need not replace an existing set of abstractions and associated APIs for native

application development; we can provide an interoperable model as an alternative

suitable for the basic needs of portable applications and cross domain access. To

address these requirements we must base our model on the common abstractions

of existing systems reviewed in the next section.

3.2 Existing Systems’ Abstractions

To derive the UCM model we based our core abstractions on the analysis of rep-

resentative systems presented in Chapter 2. We found the following core abstrac-

tions were shared across systems in all four categories, Component Composition

Systems, Context Frameworks, Smart Space Systems and Wide Area Systems:

Environment Model. An environment model is an abstraction that contains the

Chapter 3. The Ubicomp Common Model 52

current state of the environment for application access. This abstraction is

most evident (and comprehensive) in smart space systems, containing enti-

ties, context values, and entity relationships. There are other examples of

this abstraction in every category however. In component composition sys-

tems, and in some Context Frameworks, for example, this abstraction can

be considered a component registry or lookup service. We canconsider the

Jini Lookup Service and the Context Toolkit Discovers to be simple environ-

ment models for example. The ECTDataspaceis an environment model that

contains components and links between component properties. The Nexus

infrastructure federates their environment models, whileActive Campus en-

capsulates their environment model using a centralized integration server

containing information about entities and integrated services.

Entity. An entity abstraction is used in several systems to represent or proxya

person, place or thing in an environment: either physical orvirtual. Exam-

ples of implementations include the ParcTabEnvironment Server, the Con-

text Toolkit Entity Aggregator, a CooltownWeb Presence, and one.world

Environmentabstraction. In many Smart Space Systems, the exposed envi-

ronment model will contain entity abstractions, context, and relationships.

Context. Most Context Frameworks in this survey exposecontextas informa-

tion related to an entity. Applications may query for this information, or

register to be notified when context data changes. In some cases, the entity

abstraction in a system such as a server or distributed component is used

to aggregate context data or the components that supply context such as sen-

sors. Again, the use of context is most evident in most of the Context Frame-

works surveyed, and in some Wide Area Systems such as the Context Fabric

infrastructure.

Chapter 3. The Ubicomp Common Model 53

Entity Relationship. Several systems make use of a specialized form of context

we call anentity relationshipto mirror the relationships between physical

objects, places and people in the real world. These include location-based

relationships: a user iscontained-ina place, objects arenear each other.

Relationships may include ownership, a userownsa device, or social rela-

tionships such as friendship or community group relationships. Entity rela-

tionships, are evident in Cooltown, JCAF, the Context Fabric, to some extent

in one.world, and the Context Toolkit.

Service. The notion of a service, functionality exposed through an interface, is

at the core of most of the Component Composition Systems listed here. It

is also supported either implicitly by the underlying middleware, or explic-

itly in a service framework supplied by a system. For example, the iROS

ICrafter subsystem supports RPC semantics for services implemented using

the Event Heap. Similarly Context Toolkit Widgets can implement services

with remote procedure call semantics.

Event. The iROS and Gaia systems highlighted the value of a centralized event

broker at the core of a smart space system for loose coupling between ap-

plications and devices. Virtually all other systems including Context Frame-

works such as one.world support events as a key communications primitive

for components in ubicomp. To avoid polling, events are usedto communi-

cate important changes in device state, context values, andrelationships in

an environment.

Data or Content. Finally, we note that several systems, particularly in the Com-

ponent Composition and Smart Space categories, support content or data as

a separate abstraction. The Appliance Data Services systemfor example

Chapter 3. The Ubicomp Common Model 54

stores data in the infrastructure to allow device services to transfer it from

service to service. Both iROS and Gaia have centralized datastorage and

transformation services to make it easy to share data between software ser-

vices and end users in a smart space. In some systems and deployments data

or content is considered an entity, whereas in others, it is treated as con-

text. For example, content stored in the Gaia Data Manager oriROS Data

Heap is treated like other objects in the system, stored in the infrastructure

and passed between services. The data itself may have context meta-data

containing information about who created it, its title and current version. In

other systems, content is treated as context. The Context Toolkit application

called the Conference Assistant [37], the system treats presentation content

and questions as context for example.

3.2.1 Core Abstractions to a Common Model

As a concrete example of how these core abstractions can be used to model a

ubiquitous computing environment, we describe a “smart” campus as illustrated in

Figure 3.1. Buidings contain classrooms containing students equipped with lap-

tops, smart phones or other mobile devices. Each classroom includes a projector

that can be used for presentations. The projector can signalwhen a slide changes

so that users can follow the presentation on their laptops ormobile devices. Users

can communicate with each other using messaging, and locatetheir friends in the

campus.

In this environment the (static) location of buildings, classrooms should be

made available to applications. We anticipate that the dynamic location of users

(coordinates), their identity, online status and social relationships will also be im-

portant to certain applications.

Chapter 3. The Ubicomp Common Model 55

Classroom

Campus

Figure 3.1: Smart campus including buildings and classrooms.

We can model this environment using the abstractions outlined as follows:

• Environment. The environment is a campus that hosts various entities, re-

lated to other entities, services, context and content.

• Entities. The campus environment hosts entities such as buildings, class-

room places, users, and projectors.

• Context. Buildings, classrooms and users all have location context.Users

have presence context (e.g. online, offline, busy).

• Entity relationships. Buildings and classrooms have static containment re-

lationships. Users can befriendswith one another, and can becontained in

a classroom or a building.

• Services.In this environment, messages can be sent to users, and presenta-

tions can be made on projectors using appropriate service interfaces.

• Events. To keep in sync with the presentation, the projectors send events

when a slide has changed.

Chapter 3. The Ubicomp Common Model 56

• Content. A projector will have a presentation associated with it while it is

being used in the classroom.

To implement the smart campus, we need a variety of software and hardware

componentsto be used. An instant messaging system can provide messaging and

friend management services for example. A PC can be used to drive the projector,

and a location sensor in each classroom can sense the entry and exit of each user.

These available computing resources will directly affect the capabilitiesexposed

by the environment model. Because of this, it is important toexpose these capa-

bilities to applications so that they can adapt to their availability (or absence). By

considering the three aspects of an environment: itsstateincluding entities, their

relationships and and their current context values, itsmeta-state, the current capa-

bilities of entities, and theimplementationof this model, we designed the Ubicomp

Common Model described next.

3.3 The Ubicomp Common Model Design

The Ubicomp Common Model is anentity-centricmodel for ubiquitous computing

systems. It is entity centric in that all of a ubicomp’s computing resources are

related to one or more entities: e.g. people, places, things, and other physical and

virtual concepts. The definition of an entity depends on the UCM specialization.

To describe the UCM we used the Web Ontology Language (OWL) [102] along

with a set of rules for use in a general purpose reasoning engine [1].

OWL is an ontology language built on the Resource Description Framework

(RDF) [101]. Over time RDF has come to be used as a general way of modelling

information and used as the basis for ontology languages such as OWL. RDF is

based upon the idea of making statements aboutresourcestypically named by a

Uniform Resource Identifier (URI). RDF statements typically provide meta-data

Chapter 3. The Ubicomp Common Model 57

about those resources in the form of subject-predicate-object expressions, called

triples. A collection of RDF triples intrinsically form a graph. In this chapter we

use graphs to highlight the key concepts and relationships in the UCM as shown

in Figure 3.2. Specifically we use elipses to represent OWL classes, labelled lines

with arrows to represent OWLproperties, subclasses and subproperties as shown.

A rounded rectangle is used to represent properties that arealso properties of a

class, and rectangles for literal values (numbers and strings). In the RDF snippets

in this chapter we use the XML serialization format.

ClassA ClassBpropertyA

SubclassC

subpropertyC

propertyB

Literal

property

property

Figure 3.2: Notation used to highlight classes, properties and relationships in
the UCM.

To address the requirements and scenarios highlighted in previous sections, we

considered three related aspects of an environment called the Environment State,

theEnvironment Meta-Stateand theEnvironment Implementationas shown in Fig-

ure 3.3. TheEnvironment Stateaspect consists of entities, entity relationships, and

the currentstateof those entities: current context values and content for example.

The Environment Meta-State consists of entitycapabilities: the types and quality

of events, services, context and content an entity exposes are linked to the entities

in the state aspect by theexposesproperty, (and subproperties). This aspect is nec-

essary for application introspection. Both the Environment State and Meta-State

are exposed to applications to query the current context values, entity relationships,

and capabilities of an environment. Finally, theEnvironment Implementationas-

Chapter 3. The Ubicomp Common Model 58

pect links entity instances by anaggregationproperty to the specific components

that supply the services, context and events for a given entity. Together these as-

pects form the Ubicomp Common Model core.

Entities

Entity Relationships

Context

Service Interfaces

Context Types

Event Types

Services

ContextSources

EventSources

Environment State Environment Meta-State

Implementation

exposes

hasContext

hasEvent

implements

hasContext

hasEvent

aggregates

Exposed

Environment

Model

Internal

Implementation

Model

Figure 3.3: The three aspects of the Ubicomp Common Model

The three aspects of the UCM depend on one another and typically change over

time. In a typical environment entities and components are added and remove and

context values change. The Meta-State depends on the current Implementation,

since the exposed capabilities of an entity will depend on the components aggre-

gated by it. The current Environment State aspect depends onthe Meta-State since

the entities, relationships and context values of an entitywill depend on its capabil-

ities. In some cases, the components associated with a givenentity will depend on

the current situation; that is, the Implementation aspect will depend on the Envi-

ronment State. This can occur, for example, when a mobile user changes locations,

or the device they are currently using. A messaging service may change from an

instant messaging implementation to SMS when the user leaves the office. The lo-

cation context source may change from a GPS-based infrastructure for outdoor use

to a wifi-based location sensor when indoors. We elaborate further on each aspect

in the following subsections.

Chapter 3. The Ubicomp Common Model 59

Entity

Environment

hosts

associatedWith
position

temperature
containedIn

holds

ContextValue

hasContent

Content

contextAttribute

property

sub-property

subclass

StringValue IntValue

Location

state

Figure 3.4: Environment State abstractions and relationships.

3.3.1 Environment State

The Environment State consists of entities modeled by the supporting system, the

relationships between entities and their current context values. Context values are

related to entities by context attributes. Context values need not be simple primitive

types such as strings and integers, but may also be more complex data structures.

These data structures could indicate a range of values, or anindication of timeliness

and accuracy. The key abstractions and their relationshipsin the Environment State

are shown in Figure 3.4.

TheEnvironmentobject serves as the root entity of an environment and hosts

other Entities and subclasses of Entities such as places, people and devices. In

a supporting system context values can be retrieved by requesting the value of

the associated context attribute or in an event data structure when an event is re-

ceived. ThecontextAttributeproperty andContextValueobject may be specialized

as shown to support different data types. Entities may also havecontentassociated

with them as shown by thehasContentrelationship with a Content object.

The UCM does not define all possible context types or quality of context;

rather, it is a core ontology intended for specialization byan integrator or standards

Chapter 3. The Ubicomp Common Model 60

Program 3.1 Example Environment State RDF fragment.
<campus:CampusBuilding rdf:ID="coffeeShop">

<location:location>
<location:Position>
<ucm:name>position</ucm:name>
<ucm:javaType rdf:datatype="&xsd;string">

ca.ubc.cs.uif.prototype.types.WorldPosition
</ucm:javaType>
<location:latitude rdf:datatype="&xsd;double">

49.260537157736785</location:latitude>
<location:longitude rdf:datatype="&xsd;double">

-123.24801921844482</location:longitude>
<ucm:time rdf:datatype="&xsd;long">0</ucm:time>

</location:Position>
</location:location>
<ucm:containedIn rdf:resource="&campus;ubcCampus"/>

</campus:CampusBuilding>

group to define the context types for a specific environment orapplication domain.

The interpretation of a given ContextValue will depend on the specialization of the

UCM model for a given domain such as a campus, home, office or classroom. A

fragment of Environment State RDF is shown in Program 3.1. The prefixes are

a short form of the various namespaces used:ucm is the core UCM namespace,

location is the namespace for a simple location ontology that extendsthe UCM,

andcampusis the namespace for a campus instance of the UCM. This example

describes acoffeeShopwith static location context, and a staticcontainedInrela-

tionship with theubcCampusplace. ThecoffeeShophas a static contextcampus-

Location: a data structure containing latitude and longitude properties.

3.3.2 Environment Meta-state

The Environment Meta-State aspect is required to support introspection. It as-

sociates entities with theircapabilities: the types and quality of events, services,

context and content an entity supports as shown in Figure 3.5.

Chapter 3. The Ubicomp Common Model 61

Entity

ServiceInterfaceEventType ContextType

exposes

contextAttribute

ServiceDescription

description

usesContextAttribute

usesContextValue
ContextValue

ContextQuality

contextQuality

Capability
property

sub-property

subclass

property (as object)

Figure 3.5: Environment Meta-State abstractions and relationships.

When an entity has context associated with it, the entityexposesaContextType

capability. AContextTypespecifies the context attributes to use to retrieve a Con-

textValue (usesContextAttribute) and may include other properties to specify the

ContextValue and quality of this context as shown. Similarly, entities may expose

ServiceInterfaces. Clients of the model can then call these services as specified

in a ServiceDescription. ServiceDescriptions can be specialized to support stan-

dard service descriptions such as Web Services DescriptionLanguage (WSDL)

[105] or others. The type of events that may be fired by an entity is specified

using anEventTypeobject. The RDF fragment in Program 3.2 indicates that the

CampusUserentity bob exposes thepointLocationcontext type, the event type

contextChangeEvent, and theMessageServiceinterface.

3.3.3 Environment Implementation

To avoid dealing with a plethora of sensors, actuators, services, and software com-

ponents, ubicomp systems typically expose a variety of distributed components,

protocols or related APIs which we callcomponents. The role of these compo-

Chapter 3. The Ubicomp Common Model 62

Program 3.2 Example Environment Meta-State RDF fragment.
<campus:CampusUser rdf:ID="bob">

<rdfs:label>Bob Smith</rdfs:label>
<ucm:containedIn rdf:resource="#campusPlace"/>
<ucm:exposes rdf:resource="&ucm;pointLocation"/>
<ucm:exposes rdf:resource="&ucm;contextChangedEvent"/>
<ucm:exposes rdf:resource="&campus;MessageService"/>

</campus:CampusUser>

Component

Service EventSource

ContextSource

EntityHandler

Entity

aggregates property

sub-property

subclass

implements

fires

hasContext

ContextType

EventTypeServiceInterface

Figure 3.6: Environment Implementation abstractions and relationships.

nents are captured in theImplementationaspect of the UCM as shown in Figure

3.6. Here we show that components are aggregated by an entityinstance and form

a class hierarchy. Service componentsimplementa ServiceInterface, EventSource

componentsfire EventTypes, andContextSources have aContextType. These com-

ponent abstractions can be used to map the common model to corresponding APIs

in an existing system to invoke services, retrieve context or fire events. When an en-

tity aggregates a component, the following rule ensures that that entity exposes the

types and interfaces that component implements in the Environment Meta-State.

[aggregateComponent: (?entity ucm:exposes ?capability) <-
(?entity ucm:aggregates ?component)
(?component ucm:implementsCapability ?capability)
(?component rdf:type ucm:Component)]

Chapter 3. The Ubicomp Common Model 63

This rule depends on the fact thatimplements, fires andhasContextare sub-

properties ofimplementsCapability.

Entity

associatedWith

location

temperature

containedIn

owns

ContextValue
contextAttribute

state

exposes

Component

aggregates

ServiceInterface

EventType

ContextType

Capability

hasContext

fires

Service EventSource

ContextSource

StringValue

IntValue

Location

Environment State Environment Meta State

Environment

Implementation

property

sub-property

subclass

implements
Capability

Figure 3.7: Key objects and relationships of the UCM.

3.3.4 Summary

The three aspects of the Environment model and how they relate to one other

through an entity is summarized in Figure 3.7. The State, Meta-State and Imple-

mentation aspects are all related to an entity instance. Furthermore, entities may

be related to each other by entity relationships.

3.3.5 Model Example

An simple example of the model is illustrated in Figure 3.8. Aperson entityper-

sonBobis shown to hold a mobile phonebobsMobilePhone. In the current Envi-

ronment State, this phone has a location calledphonePositioncontaining the lon-

gitude and latitude of the device. In the current Meta-State, bobsMobilePhone

Chapter 3. The Ubicomp Common Model 64

personBob

bobMobilePhone

mobileMsg

Service

outdoorPosition

Source

holds

aggregates

aggregates
hasContext

OutdoorLocation

Type

MessageService

Interface

implements

phonePosition

usesAttribute

location

exposes
hasContext

Environment State

Meta-State

Implementation

Figure 3.8: Model example illustrating State, Meta-State and Implementation
aspects.

is shown to expose aMessageServiceInterfaceand has theOutdoorLocationType

of context available for applications. TheOutdoorLocationTypeuses thelocation

attribute as shown. In the current Implementation,bobsMobilePhoneenitity ag-

gregates themobileMsgService Servicecomponent and theoutdoorPositionSource

ContextSourcecomponent. ThemobileMsgServiceimplements theMessageServi-

ceInterfacetype, and theoutdoorPositionSource hasContext OutdoorLocationType

as shown. The component aggregation rule ensures thatbobsMobilePhoneex-

poses the sameMessageServiceInterface ServiceInterfaceandOutdoorLocation-

Type ContextTypeto applications.

In this example, themobileMsgServiceandoutDoorPositionSourceimplemen-

tation components would be supplied by integrated systems.For example, a Con-

text Toolkit Widget could be mapped to theoutdoorPositionSourcecomponent of

the UCM, while an SMS service could be mapped to themobileMsgService.

Chapter 3. The Ubicomp Common Model 65

3.4 Model Discussion

In this section, we discuss how the UCM addresses the requirements outlined in

Section 3.1, specifically how it supports application portability, environment spe-

cialization, introspection and mapping to existing systems.

3.4.1 Portability

When a system is adapted to the core UCM as described, some degree of interoper-

ability is possible. Applications can browse an environment by entity relationships,

and display the types of context and services associated with these entities for ex-

ample. Applications can identify entities, context, services and events. However,

a higher degree of interoperability is only possible only when applications share a

deeper semantic understanding of entities and their associated resources with the

supporting infrastructure. To address this we propose the use ofEnvironment Pro-

filesdescribed next.

3.4.2 Specialization

To support specialization,Environment Profilesspecialize the core model for spe-

cific environment types. Profiles will contain the specific classes of entities, ser-

vices, context, events, content and their possible relationships for a given environ-

ment type. A home profile, for example, can consist of typicalplace entities in

the home such as kitchens and living rooms, device types suchas appliances, and

home entertainment systems. Home context and services can include temperature,

lighting controls and room-resolution location sensors. An application interacting

with the home environment can then “turn the lights on in a room” when a user

arrives by specifying the expected lighting service associated with a room. Sim-

ilarly a museum profile could define displays, visitors, galleries, display content,

Chapter 3. The Ubicomp Common Model 66

visitor location, and interests. Profiles may be extended further by an integrator to

provide extensions specific to a deployment, at the possibleexpense of interoper-

ability. Through the use of a specialized core model, and supporting infrastructure

to map this model to existing systems we argue that it is possible for applications

hosted outside of an environments local domain to interoperate with an environ-

ments resources independent of the ubicomp middleware used.

3.4.3 Introspection

The Meta-State aspect of the model supports introspection for applications to de-

termine whether its requirements can be met by the environment. An entity can

be queried for the context types, service interfaces and event types it currently

supports. The environment as a whole can be queried for the entities that match a

given criterion such as current context values, entity types, and the types of context,

events and services exposed.

3.4.4 Mapping to existing systems abstractions

Since the UCM design is based on a thorough analysis of existing systems, our

modelshouldlend itself to a straightforward mapping to a subset of thesesystems.

The separation of the Implementation aspect from the exposed State and Meta

State lends itself to a straightforward mapping assuming there is a correspondence

between the component types of the UCM Implementation aspect and those of an

integrated system.

For example, theContextSourceis similar in concept to a Context Widget in

the Context Toolkit, providing the capability to query and subscribe to context

changes. TheEventSourcecomponent can be used to describe the iROS Event

Heap, providing the capability to subsribe to and receive arbitrary events. UCM

Chapter 3. The Ubicomp Common Model 67

Servicescan be used to describe service oriented systems interfaces. When a sys-

tem such as Cooltown, or Parc TAB provides servers that aggregate context and

services around entities, theEntityHandlercan be used to describe these compo-

nents in the UCM. Since an instance of the UCM describes an explicit environment

model, adapters for smart space systems such as Sentient Computing and EasyLiv-

ing can keep their model in sync with the UCM by adding and removing static and

dynamic entities and relationships as they change.

Furthermore, the separation of Implementation concerns allows a supporting

system to vary component aggregations independently of theexposed capabilities.

This allows more than one system component to provide capabilities to a single

entity, or many entities to make use of a single component in an underlying sys-

tem. An implementation of the UCM may change entity-component aggregations

depending on the situation.

The key to integration is the use ofadapterswhich will supply an instance

of the UCM with descriptions of the components and entities of the integrated

system as they are added and removed. The adapter will also delegate method calls

from UCM applications to the integrated system’s as appropriate by maintaining

a mapping of UCM component descriptions to the underlying system capabilities.

The use of adapters for integration is discussed further in Chapter 4.

Assuming the Implementation aspect is used to map existing systems abstrac-

tions to a common model, at best we should expect to mirror the“native” environ-

ment programming model presented by a given system. In some cases, however,

we may need to present the UCM as analternativeprogramming model, one that is

either higher level or lower level than the native model. Thetradeoffs in providing

the UCM as an alternative programming model for existing systems is explored

further in Chapter 5 by creating applications that make use of several concurrently

integrated ubicomp systems.

Chapter 3. The Ubicomp Common Model 68

3.5 Access Control and Security

As ubiquitous computing systems become more widely deployed, the need to pro-

tect access to computing resources such as sensors and actuators becomes more

necessary. Sensors can record movement, activities and other information about

users in areas that can threaten user’s privacy. With the useof a common model

for ubicomp we can anticipate the need to provide access control for previously

assumed private or closed ubicomp deployments.

Recent research in the areas of security and privacy have explored the use

of new metaphors for ubicomp security (e.g. virtual walls [67]) and the use of

lightweight authentication approaches for resource constrained devices such as that

used in Bluetooth [86] and the Unmanaged Internet Architecture (UIA) [41].

To highlight the UCM’s extensibility, we describe how the UCM (Environment

Meta State) could be extended to support anaccess controlabstraction used to

represent both security domain and access control mechanism. We then provide

an example of how this model extension could be supported in afuture integration

platform. We chose the Unmanaged Internet Architecture [41] in our example

since it uses a novel peer to peer authorization mechanism, includes device group

management and can serve as a secure base communications platform for other

ubicomp systems (e.g. MyNet [66]).

In the UCM, an application accesses thecapabilitiesof an an associated entity.

Note that we use the termcapabilitiesas introduced earlier in this chapter, in the

UCM sense, recognizing that this is not the same ascapabilities in a capability-

based operating system1. Recall that in the UCM, capabilities are the super class

of ServiceInterfaces, ContextTypes, and EventType as shown in Figure 3.7. For

1In capability-based systems capabilities are defined as unforgeable references to objects that
allow access to well defined operations on operating system objects such as files and devices.

Chapter 3. The Ubicomp Common Model 69

Entity exposes Capability

property

subclass

Component

aggregates

AccessControlrestricts

implements

OutOfBand

Introduction

UserName

Password
SharedKey

Figure 3.9: Access control property associated with capabilities.

example, in the home there may be a UCM capability (ServiceInterface) that allows

an application to control the lights in a room (entity). While UCM capabilities are

also references to computing resources, they are not unforgeable, and represent

only thepotentialuse of an integrated computing resource: access is by no means

guaranteed. In the remainder of this section we use the termcapability to refer to

aUCM capabilityand not a security capability.

In a UCM deployment, computing resources in a ubicomp systemare typically

provided by one or more underlying systems’ adapters by adding UCM compo-

nentsto the model. UCM Componentsimplementcapabilities. When a component

is aggregatedby one or more entities, these entitiesexposethese capabilities as

shown in Figure 3.9. UCM applications access computing resources by interacting

with entity capabilities.

Here we assume that the computing resources accessible by anapplication are

controlled as a group in a single administrative, network domain, perhaps within

virtual walls [67], or individually (e.g. using Bluetooth). We can expect that the

credentials required for an application to access resources in a ubicomp system can

vary from something as simple as a PIN, a user-readable string of words (used for

out of band authentication [41]), or a public key.

To illustrate how the core UCM can be extended to model both security do-

Chapter 3. The Ubicomp Common Model 70

personBob

deviceAccessControl roomAccessControl

restricts

outdoorLocation

Type
messageService

restricts

exposes hasContext

meetingRoom

activityType

hasContext

contains

restricts

lightingService

exposes

restricts

Device Security

Domain

Room Security

Domain

Figure 3.10: Example of AC properties used to mark security domains.

mains and access control required to interact with computing resources in a ubi-

comp system, we can add a new core abstraction we call anaccess control(AC).

We say that an ACrestrictscapabilities as shown in Figure 3.9. When a capability

is restrictedwith an AC property, this indicates that the capability is a member of

a security domain (such as a LAN, a server or individual device like a laptop) that

may require participation by the UCM application in an access control mechanism

(e.g. an out of band introduction, PIN, public key). In this way, entity capabilities

in the UCM are grouped by domain and access control type as illustrated in Figure

3.10.

In the model example illustrated in Figure 3.10, the entity personBob has two

capabilities, one (a ContextType) is used to retrieve Bob’slocation (outdoorLoca-

tionType), another (a ServiceInterface) allows applications to send SMS messages

to Bob (messageService). Another capability allows us to retrieve Bob’s current

Chapter 3. The Ubicomp Common Model 71

activity (activityType). A ServiceInterface of the room entity (meetingRoom) al-

lows applications to control the lighting (lightingService). Access to the outdoor-

Location and messageService are controlled by Bob’s device, whereas the activi-

tySource and lightingService are controlled by a ubicomp system installed in the

meeting room. To indicate this, the messageService and outdoorLocation are re-

stricted by an AC instance calleddeviceAccessControl; the activityType and light-

ingService are restricted by theroomAccessControlas shown. Note that there is not

necessarily a correspondence between how entities group capabilities and security

domains marked by an AC instance.

By associating access control instances with capabilities, and subclassing a

core AC abstraction class as shown in Figure 3.9 we can extendthe UCM to include

information about both the security domains and access control mechanisms used

in integrated systems.

Using this extension to the UCM it should be possible to limitthe access and

visibility of specific integrated resources to UCM applications. For example, each

UCM application may have an associated access control list.When the model is

queried in an integration platform like the UIF described inChapter 4, this list

can be checked against the capability AC restriction to either hide or expose the

capability for that application. The use of AC abstractionsin an executable model

may also be used by a supporting system to reason about security domains at run

time, adjusting security domains depending on the context of certain entities for

example.

Note that neither capabilities nor their associated AC identifiers are used as the

credentials needed to access a system’s resources. ACs represent a security domain

and the mechanism required in the UCM. We expect to rely on theunderlying

system to ensure that a UCM intermediary authenticated and secured within their

security domain(s).

Chapter 3. The Ubicomp Common Model 72

3.5.1 Security Example

As an example of the use of the access control abstraction, wediscuss how the

Unmanaged Internet Architecture (UIA) [41] security domain and access control

mechanisms could be supported by a UCM implementation. Thismay be necessary

when the user wishes to access personal devices such as a mobile phone from a

UCM application.

The UIA is a peer-to-peer connectivity architecture where each user is the ad-

ministrator of his or herpersonal groupcontaining their mobile and personal de-

vices. Users can “merge multiple UIA devices to form a personal group, after

which the devices work together to offer secure access to anydevice in the group

from any other.”[41]. Similarly, users can createshared groupsto share access of

their personal devices with others. When a user wants to add anew device to a

group, the UIA finds other devices in the group (e.g. one discovered on a wireless

LAN or via social network). The user then selects “IntroduceDevices” on the new

device and one already in the group to start anintroductionprocess. Anintroduc-

tion keyconsisting of three words chosen randomly from a dictionaryis shown on

the display of both devices. Users then choose the other device’s introduction key

from a list of three other random keys to complete the introduction. If a matching

key is not found, the procedure is aborted. The user ensures that the introduction

key of the other device is correct since it is highly unlikelythat an impersonator on

the wireless LAN will supply another random key that matches. Other aspects of

the UIA security mechanisms are discussed in [41]

In a typical UCM deployment, UCM applications will be proxied by an inter-

mediary such as the UIF platform and adapter described in Chapters 4 and 5. To

access devices in a UIA personal group, an adapter must become a member of that

group using the UIA introduction process as shown in Figure 3.11.

Chapter 3. The Ubicomp Common Model 73

UIF

Adapter

Application

Firewall

LAN

Device

Device
UIA Personal Group

introduction

Device

Figure 3.11: Access control and security example: introducing a UIF adapter
into a UIA personal group.

To do this, capabilities discovered in the LAN by an integration system adapter

(as described in Chapter 4) are marked (i.e.restricted) with an AC instance that

represents a UIA group. The type of the AC instance is used to indicate that an

“out of band” introduction process is required. An example of this is shown in

Figure 3.12. Bob has two capabilities supplied by his mobilephone restricted by

the uiaPersonalGroup. The uiaPersonalGroup is an instanceof an OutOfBandIn-

troduction AC abstraction as shown.

PlaceMedia is a web application that displays the positionsof friends and

places of interest on a Google map [40] as described in Section 5.1.1. For a UCM

application such as PlaceMedia to interact with a capability, the integration system

(UIF) delegates calls to an adapter as described in Chapter 4. The adapter then pro-

cesses the call by marshalling the request and response to and from the integrated

system.

For example, the PlaceMedia application would like to retrieve the position of

Chapter 3. The Ubicomp Common Model 74

personBob

uiaPersonalGroup

outdoorLocation

Type
messageService

restricts

exposes
hasContext

restricts

rdf:type

OutOfBand

Introduction

AccessControlUIA Personal

Group

property

subclass

Figure 3.12: Example of capabilities restricted by UIA personal group.

the user to display on a map. This could be done by accessing a user’s mobile

phone which is a member of the user’s UIA personal group. To dothis, the UIF

delegates the location (context) request to the UIA adapter. The UIA adapter can

then delegate the call to a UIA device to process the request.

When the adapter is not yet a member of the UIA personal group the phone

belongs to, the UIA adapter will need to be introduced to the device. To do this, the

adapter can trigger the UIA introduction process and returna “challenge” response

to the UIF. The response will include public information needed by a PlaceMedia

user to complete the introduction. The UIAintroduction keyof the adapter can be

included in the challenge.

If the adapter host is near the mobile phone, the standard UIAintroduction user

interface can be used on both the adapter and the phone to complete the adapter-

phone introduction.

For situations when the PlaceMedia user is not near the mobile phone, Place-

Media can display the adapter’s introduction key supplied with the challenge re-

sponse. The introduction between the adapter and the mobiledevice can then be

Chapter 3. The Ubicomp Common Model 75

completed remotely by the PlaceMedia user and the mobile phone owner by voice,

SMS or email to ensure the introduction keys match [41]. Whenboth users de-

termines that the intoduction key is correct, PlaceMedia can continue the process

by making an “authentication” call with the remote introduction key to signal the

adapter to complete its side of the introduction process. The mobile phone user can

complete his or her side using the standard UIA interface.

Once authenticated, future requests to the mobile phone in the UIA personal

group will now succeed since the adapter is now an introducedmember of the UIA

personal group. As described in [41], the owner of the personal group can revoke

the adapter’s membership at any time; the adapter will need to be introduced again

to access the mobile phone.

To support other authentication mechanisms, other (public) information can

be provided in an authentication challenge and/or responsein the same way. For

example, public keys carried with an end user device such as amobile phone as in

the Instant Matchmaker [93] can provide the necessary credentials when a UCM

application is challenged for access to a resource. Of course, integration with the

integrated systems’ access control mechanism assumes there is an API, or code is

available2 to allow an adapter to trigger the introduction process and retrieve the

introduction key displayed in the dialogs as described.

Our treatment of this example is deliberately informal and is meant only to

illustrate how a given security framework like the UIA may besupported by the

UCM access control extensions and an integration system. Werecognize that given

a specific security framework, an implementation may require a thorough and for-

mal analysis to ensure all security requirements are satisfied. However, from our

initial investigation and as described above, we are optimistic that the UCM is able

to gracefully support a meta level security model that maps naturally to underlying

2see http://pdos.csail.mit.edu/uia/

Chapter 3. The Ubicomp Common Model 76

security models as implemented by existing systems.

3.6 Use Cases for an Executable UCM

To use the UCM for creating and maintaining an integrated ubicomp environment,

it must be instantiated in a supporting sytem. By expressingthe UCM explicitly us-

ing semantic web languages such as the Web Ontology Language(OWL) [102] and

the Resource Definition Framework (RDF) [101] it is possiblefor such a system to

store, query and infer new information about an integrated ubicomp environment

using Semantic Web tools and libraries such as the Jena Semantic Web Framework

[1] in an integrated system. In this section we summarize several environment

design/integration time (static), and run time use cases for for anexecutableUCM.

3.6.1 Design/Integration Time Use Cases

At environment design time, the UCM expressed as an ontologycan be used to

describe the initial state and static aspects of the environment model. This includes

the following:

Static environment model descriptions.In any environment there are static

entities such as rooms, furniture, and fixed devices. The UCMcan be used to

describe these entities and their static context such as thelocation of fixed objects

or the name and email address of a user. Important static relationships such as

relative location can also be described. For example, a printer is containedIna

room, and a meeting room isnextToan office.

Interface semantics and context quality.Even when a component exposes

the same interface, the behavior or quality of its service may vary from one imple-

mentation to another. A GPS location sensor may provide location accuracy of 5m

outdoors whereas an indoor location sensor may provide onlyroom level accuracy.

Chapter 3. The Ubicomp Common Model 77

Semantic descriptions can make the quality and semantics ofan interface explicit

to applications so that they know when they can and should be applied.

Component configuration information. In a supporting system such as the

UIF described in the next chapter, components in the system may be implemented

by native Java classes or by integrated ubicomp middleware.In the UCM, abinding

property of a component is used to associate a component in the model with a native

Java class implementation, while anadapterproperty associates the component

with integrated middleware.

Initial entity-component dependencies.A physical entity such as a device

will often have services, context or events associated withit. The aggregation re-

lationship between entities and implementation components establishes the initial

link between the conceptual or exposed model of an environment and its imple-

mentation components.

3.6.2 Run Time Use Cases

A challenge for any ubicomp system is in managing the dynamicaspects of an

environment for applications. In our system, the UCM used with an associated

reasoning engine can be used to maintain the exposed model and associated com-

ponents as their composition changes. We have explored the following run time

use cases for an executable UCM:

Entity Composition. When new entities such as mobile users and their en-

vironment arrive and leave the environment, associated information about these

entities can be added or removed from the model. A reasoning engine can then

associate these new entities with the appropriate components, types and service

interfaces.

Context Inference.Ontology-based systems such as [27, 51] have shown that

Chapter 3. The Ubicomp Common Model 78

it is possible to use an integrated reasoning engine to inferhigher level context from

lower level context information. Cooltown [68] and other systems have demon-

strated the value of entity relationships for service discovery and other use cases.

A reasoning engine with appropriate rules can be used to infer such relationships

from lower level context information. For example, the following rule establishes

the near relationship when one entity is within 50 metres of another.

[(?entity1 ucm:near ?entity2) <-
(?entity1 ucm:location ?position1)
(?entity2 ucm:location ?position2)
notEqual(?entity1, ?entity2)
inRange(?position1, ?position2, 50)]

Dynamic component call/message dispatch.At run time, an environment

model described using the UCM can be queried to determine thecomponent that

currently supplies the requested service or context which may depend on the cur-

rent situation. For example, one context source may be used to determine a user’s

location indoors and another outdoors. The following rule will aggregate a context

source (csIndoorPositionSource) for providing indoor position information only

when a Person entity iscontainedInthecsBuildingplace.

[(?entity ucm:aggregates campus:csIndoorPositionSource) <-
(?entity rdf:type ucm:Person)
(?entity ucm:containedIn campus:csBuilding)]

Entity classification and discovery.A client of the system or internal compo-

nent may need to find the entities in the environment that match a certain criteria

such as its type, the service interfaces, or context types they provide. Similarly,

clients or components may need to know the interfaces or context supported by a

given entity.

Situation events.With an integrated model of an environment, it is possible to

query or be notified when a certain situation exists in the environment as a whole.

Chapter 3. The Ubicomp Common Model 79

For example, one can query whether there is more than one userentity contained

in a meeting room. This may be used by an application to infer that a meeting may

be starting to call appropriate services.

Security. If the model is executable, the capabilities accessible (e.g. associated

with access control properties as described in Section 3.5)by UCM applications

can change depending on the context of various entities suchas users location in

the model, permitting context-based security mechanisms.Of course there are a

number of assumptions such as the integrity of context that are critical for consid-

eration in the use of the UCM in these scenarios.

3.7 Summary

In this chapter we presented the requirements for a common programming model

for ubicomp based on core abstractions shared by several representative ubicomp

systems surveyed in Chapter 2. These shared abstractions are anenvironment

model, entities, entity relationships, context, services, eventsanddata or content.

Using a simple example we demonstrated how these abstractions can be used to

model an environment leading to the the design of the UbicompCommon Model.

The UCM is an entity-centric model consisting of three related aspects: the En-

vironment State containing context and entity relationships, Meta-State containing

entity capabilities such as context types and service interfaces, and Implementa-

tion containing implementation components such as contextsources and services.

We discussed the UCM’s suitability for meeting several requirements of a common

model: application portability, specialization for different environments, introspec-

tion, its suitability for adaptation to existing systems, and extensibility to support

emerging security mechanisms. Finally we presented use cases for anexecutable

UCM in a supporting system such as the Ubicomp Integration Framework (UIF).

Chapter 3. The Ubicomp Common Model 80

The UIF used to evaluate the UCM’s suitability for ubicomp systems integration is

described next.

81

Chapter 4

The Ubicomp Integration

Framework

In this chapter we present the Ubicomp Integration Framework (UIF), a meta-

middleware platform that uses the UCM for both application development and

ubicomp system integration. Its primary use is to expose thefunctionality of ex-

isting ubicomp systems in a controlled and unified manner. In this way the UIF

can then be considered a sophisticatedwrapperor Façade[44] that encapsulates

one or more ubicomp system with a service interface. In reality the UIF is more

complex than its role implies since it provides a composite model of an integrated

environment, and so contains much of the functionality of other ubicomp middle-

ware platforms. In this chapter we describe the architecture and implementation

of the UIF system and associated adapter framework in some detail. Readers who

are more interested in the use of the UCM for application and adapter development

than the UIF implementation details may prefer to skip much of this chapter and

instead turn to the summary in Section 4.9.

4.1 Analysis and Approach

The UIF is used to assess the feasibility of using the UCM to unify the program-

ming model of existing ubicomp systems for both applicationportability and sys-

Chapter 4. The Ubicomp Integration Framework 82

tems interoperability. In the next Chapter (5), we describeour experience using the

UCM in the UIF to unify the abstractions of four representative systems to manage

a compositeenvironment model. This composite model can then be accessed by

application developers using a single API.

To accomplish this, we require software to map the various data formats, in-

terfaces and protocols of underlying systems to a common protocol, effectively

presenting a homogeneous view of the integrated underlyingubicomp systems to

the integration framework. Unlike other ubicomp systems that also provide a ho-

mogenous execution environment for applications such as those in discussed in

Chapter 2 and others (e.g. [72] and more recently [14]), we aim to accomplish

the same goal by integratingexistingubicomp systems, accessing as much of their

functionality using their existing APIs. This will demonstrate the feasibility of us-

ing the UCM to integrate systems and how well the UCM is able tocapture the

abstractions of representative systems.

4.1.1 Analogy to Enterprise Application Integration

In the Enterprise Application Domain (EAI), integrators face similar problems

when attempting to integrate diverse applications in a business. Unlike the EAI

domain however, our main focus is not to integrate applications, but middleware

systems that coordinate computing resources. Because of this, several well un-

derstood (and often less arduous approaches) to enterpriseintegration cannot be

applied directly.

For example, in some cases, enterprise applications are integrated at thepre-

sentationor user interface level [71, 88]. This can be done by screen scraping the

integrated application, or combining the user interfaces into a web portal. The ad-

vantage of this approach for the integrator is that it is relatively easy to accomplish,

Chapter 4. The Ubicomp Integration Framework 83

but it often means that there is strong coupling between the integrated application

or interface and the integrated system. This approach is notfeasible for our task

since several ubicomp systems we aim to integrate do not always have a presenta-

tion layer or user interface. Another enterprise integration approach is to integrate

the data held by applications. This may involve data replication, federating data,

or the use of interfaces that provide access to the data in integrated applications.

This approach is sub optimal for our integration task since we need to access not

only the changing environment model and state of an integrated system, but also

the functionality of those systems.

Finally, enterprise integrators have used afunctional integration model that al-

low potentially new applications to invoke existing functionality from new applica-

tions [88]. This is done using the available APIs to the integrated applications. To

ensure we are leveraging the programming abstractions provided by an integrated

ubicomp system through its APIs, and to validate our integration model, this is the

approach (necessarily) taken in our integration task for evaluating the UCM.

Within the functional integration model, an integration can ensure data con-

sistency across applications, coordinate actions across integrated applications, and

use well defined service interfaces (called a service oriented [71] or plug and play

integration [88]). In our task, we similar goals in that we aim to ensure that as-

pects of the composite environment model held in an integrated system are kept in

sync with that of the integrated ubicomp system’s model (data consistency). We

also aim to use existing systems in a coordinated manner to add new functionality

(e.g. applications, composite services, inferred contextand entity relationships) in

the integration framework itself. Enterprise integratorstypically useadaptersfor

wrapping applications in a well defined interface [12, 71, 88]. A different adapter

is typically required for each integrated application. Forintegrating ubicomp sys-

tems, we take a similar approach, providing an adapter for each type of system we

Chapter 4. The Ubicomp Integration Framework 84

aim to integrate. In our case we use the same interface for alladapters.

Although not all EAI approaches can be directly applied to ubicomp systems

integration, we were influenced by well known EAI methodologies and more recent

enterprise middleware implementations using ontologies (e.g. [78]). An important

step during analysis for EAI is to determine the high level “business entities” in

an enterprise leading to the identification of the componentinterfaces needed for

integration [88]. In the EAI domain the basis for identifying entities is often the

various functions in an enterprise such as R&D, Production,Marketing, Sales, Dis-

tribution, Service, Accounting, and Personnel. In EAI as inubicomp, there are also

cross functional entities likepeopleand organizations. In the ubicomp integra-

tion domain, our basis for identifying entities and components are the abstractions

present in representative ubicomp systems (e.g. context, events, services, content)

and the physical world (people, places, things, their relationships) as described in

Chapters 2 and 3. Unlike typical enterprise applications, ubicomp systems are gen-

erally cross functional in the sense that they are (typically) designed to support a

variety of applications.

In both the EAI and ubicomp domains, the semantics of the various abstrac-

tions must be consistent for cohesion in a unified programming model for new

application developers. Because of this, many working in the EAI domain have

begun to use ontologies “to provide a shared and common understanding of data

(and in some cases, services and processes) that exists within an application inte-

gration problem domain”1. While recognizing that there are differences between

the abstractions of an enterprise integration and ubicomp,we also employ ontolo-

gies. In a typical EAI deployment, however, the available functionality and its

relationship to business entities is often fixed at design time. In an integrated ubi-

comp environment, the available functionality and entities will change dynamically

1[71] pp 394

Chapter 4. The Ubicomp Integration Framework 85

as discussed in Section 3.6.2. Because of this, we need facilities to for managing a

integration model that can be changed at runtime by adapters, applications and by

the integration framework itself.

4.1.2 Environment Model Management

Since our goal is to unify these systems in acompositeenvironment model, we also

need a way to manage this model (i.e., an instance of the UCM).The UIF model

subsystem will provide the rest of the integration framework with the information

needed to correctly select and make use of an underlying system to satisfy a given

application request.

In a composite ubicomp environment, multiple integrated ubicomp systems

will typically be involved in context provisioning or in theimplementation of in-

tegrated services. The underlying services and sensors used by an application at

a given time may also depend on the situation. For example, inan indoor envi-

ronment, location information may be provided by a Context Toolkit widget, but

when the user is outdoors, location may be provided by wide area mobile phone in-

frastructure. We need an approach that allows an integratorto coordinate both the

static and dynamic aspects of an integrated environment model. More specifically,

we need an approach that provides the integration frameworkwith the knowledge

of the static and dynamic relationships between computing resources such as soft-

ware services and sensors, and people, places and things.

We can satisfy this requirement by instantiating the UCM directly in the inte-

gration system itself. This will also satisfy a requirementfor our model highlighted

in Section 3.1, that is, for the model to beexecutable, i.e., queried and reasoned

with by the system. Applications will query the model to discover entities and their

capabilities for interaction and to determine whether their requirements can be sat-

Chapter 4. The Ubicomp Integration Framework 86

isfied. Direct support for reasoning in the integration platform will also allow the

system to satisfy the run time use cases presented in Section3.6.2 such as entity

composition, context interpretation or inference, and dynamic call dispatch.

Initially we considered meeting these objectives using a relational database

such as MySQL [8] or another data store. After some initial prototype work how-

ever, we decided to make use of semantic web technologies to manage our integra-

tion model. This decision was based on four factors.

1. We first considered theflexibility that the use of semantic web technologies

offers in terms of modeling, query (e.g. using SPARQL [103])and reasoning

support, gaining an understanding through prototypes and experimentation.

2. We noted theincreasing breadth and depth of tools availableto create, and

manage ontologies and models that use OWL and RDF. Design tools such as

the Protg ontology editor [9] and plug ins for the popular Eclipse IDE [4, 6]

are available for ontology design. Frameworks and toolkits[24, 73], high

performance knowledge bases [53, 110] and reasoning engines [52, 92] are

also available.

3. Since we aimed to integrate existing ubiquitous systems using application

servers we also consideredrecent enterprise middleware approachescalled

Ontology Driven Architectures(ODA) [78, 100]. ODAs use an integrated

knowledge base and reasoning to ease the development and management of

applications hosted by enterprise application servers.

4. The use of Semantic web technologies has emerged asa well established ap-

proach to managing context and configurations in ubiquitoussystemsas

demonstrated by Gaia [84], the Context Broker Architecture(CoBrA) [26–

28], the Service Oriented Context Aware Middleware (SoCAM)[51] and

Chapter 4. The Ubicomp Integration Framework 87

others [30, 99].

Based on these considerations, we decided to make use of semantic web tech-

nologies and an Ontology Driven Architecture to assist in the configuration and run

time maintenance of the composite environment model managed by the UIF. An

instance of the Ubicomp Common Model (UCM) is created by an integrator using

to specify the static configuration of the environment. The desired response to dy-

namic run-time changes such as the addition of new entities and components are

described using rules executed by an integrated reasoning engine [1] that maintains

both the exposed aspects of the model (Environment State andMeta State) and the

implementation as the composition of the environment changes.

4.1.3 Cross-Domain Interaction

Since we aim to support access to ubicomp systems from applications outside of

the administrative domain where an integrated ubicomp system is deployed, we

provide a standards-based Web Service interface to the UIF.The use of Web Ser-

vices makes the UIF accessible and potentially discoverable on the Web through

firewalls and across wide area networks. With a standards-based wide area se-

curity framework [81] Web Services can be accessed in a secure manner. Other

mobile and ubiquitous systems such as ReMMoC [45] and WSAMI [62] as well as

commercial systems such as UPnP [74] have proven the value ofproviding a Web

Service abstraction around individual environment resources. While these systems

have demonstrated that the use of Web Service is a workable solution in some

cases, our aim is more ambitious: unlike these systems, we aim to wrapwhole

systemsthat expose higher level abstractions such asenvironment models, entities

and relationships, as discussed in Chapter 2, not just individual components or

services.

Chapter 4. The Ubicomp Integration Framework 88

While the use of other protocols is possible, there are several benefits to the use

of Web Services [109]. They are relatively simple to use withapplication servers,

especially with the variety of tools and frameworks available for virtually all pro-

gramming languages today. Based on industry standards, they have been widely

adopted for cross-domain communications. Web Services promote loose coupling,

since only the service and connection is described, independent of the implemen-

tation at either end. They are self describing and discoverable on the Internet.

Finally, while HTTP is often the transport used, other transports can be supported

by a given Web Service for more efficient internal communications over private

networks. However, despite the numerous benefits there are some drawbacks to

the use of Web Services, particularly in the area of performance. Scenarios like

ours will incur overhead since the Web Service tools transform method calls to

and from XML-based SOAP messages. Furthermore, our integration system will

necessarily add an additional layer on existing systems forrouting method calls.

However, through the careful application of Web Services best practices [31], we

believe that the benefits of using Web Services outweigh these cost. In the follow-

ing sections we describe the implementation of the UIF including our use of Web

Services in more detail.

4.2 Implementation Overview

The UIF is a tiered enterprise server application as shown inFigure 4.1. The system

performs three essential functions:

1. It serves as a repository for knowledge about a composite environment model.

This “knowledge” consists of information contributed directly by an integra-

tor, by ubicomp system adapters at run time, or deduced by an integrated

reasoning engine and integration rules.

Chapter 4. The Ubicomp Integration Framework 89

Application

Web Services Facade

Message Broker

iROS

Adapter

CTK

Adapter

ECT

Adapter

Environment Composition

Logic

Native Component

Container

Model and

Reasoner
Model

Store

Domain

Boundary

iROS Components CTK Components ECT Components

Ubicomp

Integration

Framework

Distributed

Adapters

Application Application

Figure 4.1: Ubicomp Integration Framework Architecture.

2. The UIF dispatches method calls from applications to the appropriate (dis-

tributed) adapter or internal components based on the raw and inferred data

in this repository.

3. The system manages event subscriptions for clients of thecomposite model,

ensuring subscriptions to asynchronous events are propagated correctly and

maintained as long as the corresponding integration adapter is available.

Figure 4.2 illustrates the typical interactions between UIF subsystems when an

application requests context for an entity. First, the application makes a call to

the Façade Web Service to get context (1). This is delegatedto the Environment

Composition Logic (ECL) (2) which makes a request to the Model and Reasoner

subsystem (3) to get the component information that handlesthe specified entity

and context attribute (4). Based on this information, the ECL then queries a native

component hosted by the Native Component Container for the context value (A.5)

Chapter 4. The Ubicomp Integration Framework 90

Application

Web Services Facade

Message Broker

Environment

Composition

Logic

Native Component

Container

Model and

Reasoner
Model

Store

2. get context for

entity, attribute

1. get context value for entity,

attribute

3. get component for

entity, attribute

4. context source

component information

UIF hosted by application server

A.6 context value

A.7, B.11

context value

A.8, B.12

context value

B.5 get context

value from adapter

component
B.10

context value

CTK

Adapter

B.6 get context

value from adapter

component

CTK Component

B.7 get context

valueB.8 context value

B.9 context value

A.5 get context

value from native

component

Distributed Adapters

Applications outside domain

Figure 4.2: High level interaction between UIF subsystems.

or forwards it to the Message Broker (B.5). If a native component handles the

request, the context value is returned to the application (A.6, 7, 8). If it is handled

by an integrated system, the Message Broker forwards the request to a distributed

adapter (B.6), in this case the Context Toolkit (CTK) adapter. The adapter then

makes the query to its component (B.7) and the context value supplied is returned

to the application (B.8, 9, 10, 11, 12). Note that it is also possible for (static)

context to be maintained in the model. In this case, the ECL will query the model

for the context value (not shown).

The Façade subsystem provides a SOAP-based [104] Web Service interface to

applications for cross domain interoperability. As described, calls to the Façade are

Chapter 4. The Ubicomp Integration Framework 91

delegated to the Environment Composition Logic (ECL) subsystem. The ECL is

not only responsible for dispatching queries, but also for maintaining subscriptions

to asynchronous events.

The Model and Reasoner subsystem maintains the current environment model

including the UCM itself, specializations of the UCM, entity instances, static con-

text values, capabilities, component descriptions and their relationships. Queries

for entities based on their types, capabilities and static context are handled directly

by the Model subsystem since this information is maintainedin its knowledge base.

Based on rules supplied with the UCM and an integrator, an integrated reasoning

engine can establish new relationships depending on entitytypes and context values

when components or entities are added or removed from the model by an adapter

or an application.

The Native Component Container hosts internal “native” UCMcomponents in-

stantiated by the system either on start up, or when first accessed by an application.

A typical use of a native component by an integrator is to provide a composite ser-

vice, or a specialized context inference capability for theintegrated environment.

For example, in the case where user entities aggregate an SMSmessaging service,

an integrator can create a new service to send SMS messages tofriends of a user,

or users contained in a certain building or room. This new broadcast service makes

use of the SMS messaging services of an integrated system. Similarly, an integrator

could create a simple context source that provides the number of users in a room

by counting the entities contained in that space.

Method calls destined for an adapter are dispatched by the Message Broker as

described. Distributed adapters transform the method callto and from the inte-

grated system’s data structures and APIs as needed.

To support asynchronous events, applications supply subscription parameters

specific to the event type. The adapter associated forwards the subscription to the

Chapter 4. The Ubicomp Integration Framework 92

native system and maintains an internal mapping to the underlying system sub-

scription. Later, when an event is signalled by the integrated ubicomp system, its

adapter marshals the event data to a common UIFEntityEvent data structure,

and sends it to the UIF. The ECL looks up the associated subscriber and queues the

event for application retrieval.

The UIF was implemented using the JBoss [7] Java 2 EnterpriseEdition (J2EE)

[97, 98] server, a fairly standard platform for enterprise application development.

The UIF consists of approximately 7800 lines of Java code andother components.

The UIF Model subsystem wraps a Resource Description Framework (RDF) store

and general purpose rule-based reasoning engine supplied with the Jena Semantic

Web Framework [1]. The initial model of the environment consists of the UCM

and environment-specific ontology loaded when the system starts. Static entity,

context and component descriptions are also loaded at startup, along with default

rules supplied by an integrator. Our prototype deployment described in Chapter

5 consisted of 535 RDF triples and 278 rules. The Broker communicates with

Adapters using Remote Method Invocation (RMI) [38] so they can be distributed

in an integrated environment. The adapter framework and implementations are

approximately another 3000 lines of Java code. In the following subsections we

describe each subsystem in more detail followed by a discussion of our adapter

framework.

4.3 Façade

To implement the UIF Façade Web Service we have used both theAxis [10] and

JBossWS [5] Web Service frameworks. These frameworks can provide server and

client side code to marshal method calls to and from SOAP, andgenerate WSDL

from an supplied Java class or interface. Using tools supplied with either of these

Chapter 4. The Ubicomp Integration Framework 93

frameworks we generated the appropriate server side deployment files and WSDL

for the Façade interface.

One challenge specific to our integration task, however, is the need for a generic

data type that is flexible enough to support complex service parameters, event data

and context information while making it easy to marshal to SOAP by different

Web Services frameworks, not only for Java applications butother languages such

as C# and C++. While we could have considered the use of RDF as adata ex-

change format, we did not want to force application developers to include an RDF

parser. We required a data structure that can be marshaled easily to and from the

various data formats needed by an integrated system, and to and from the RDF-

based knowledge base and reasoning system in the UIF. To accomplish this we

created theDataObject data structure and associated utility classes for convert-

ing any data structure to and from native Java and RDF. Fieldsin a DataOb-

ject are strings (names, values), integers (type) or nested DataObjects to support

complex data structures and arrays; it should be a straightforward task to provide

DataObject converters for other languages. Applications typically exchange data

with the Façade Web Service usingContextValue andEventSubscription data

structures that use theDataObject where a generic data structure is needed.

There are four categories of Façade methods:

• Application authentication. The system must be able to authenticate ap-

plications that are allowed to make use of the integrated environment. In

the UIF, an application must log in with its client id before it can access the

model. The following methods of the Façade interface are inthis category.

// Application authentication
public String login(String clientId,
String password) throws RemoteException;

public void logOut(String clientId) throws RemoteException;

Chapter 4. The Ubicomp Integration Framework 94

• Model Composition. Methods in this category allow an application to add

and remove entities such as users, objects, places and otherentities to the

model. These include the following methods:

// Model composition
public String addEntity(String clientId,
EntityInfo eInfo) throws RemoteException;

public void removeEntity(String clientId,
String entityId) throws RemoteException;

• Entity Interaction . These methods support interaction with the entity’s ca-

pabilities: getting current context values, entity relationships, content, call-

ing services, subscribing to and retrieving events.

// content
public String getContent(String clientId,
String entityId, String contentAttr) throws RemoteException;

// events
public EntityEvent[] getEvents(String clientId, int timeout)

throws RemoteException;
public void subscribe(
String clientId,
EventSubscription[] eventSubs, String eventListener)

throws RemoteException;
public void unsubscribe(
String clientId, int subId) throws RemoteException;

public int addSubscription(String clientId,
EventSubscription eventSub)

throws RemoteException;
public void unsubscribeAll(String clientId)

throws RemoteException;
public EventSubscription[] getSubscriptions(
String clientId) throws RemoteException;

// relationships
public String[] getRelatedEntities(String clientId,
String entityId, String relationship) throws RemoteException;

public void addEntityRelationship(
String clientId, String entityId,
String otherEntityId, String relationship)

Chapter 4. The Ubicomp Integration Framework 95

throws RemoteException;

// services
public DataObject callService(
String clientId, String entityId, String serviceType,
int serviceId, String methodName, DataObject[] parms)

throws RemoteException;

// context
public ContextValue getContextValue(
String clientId, String entityId, String attribute)

throws RemoteException;
public void setContextValue(
String clientId, String entityId, String attribute,
ContextValue context)

throws RemoteException;

• Introspection and Capabilities Finally, methods in the last category sup-

port finding entities by (RDF) type, or using a SPARQL [103] select clause,

and discovering the current context attributes, service interfaces and events

exposed by an entity.

// Introspection and capabilities
public String[] findEntities(
String clientId, String selectWhere) throws RemoteException;

public String[] findEntitiesByType(
String clientId, String entityType) throws RemoteException;

public String getEntityDescription(
String clientId, String entityId) throws RemoteException;

public String[] getContextAttributes(
String clientId, String entityId) throws RemoteException;

public String[] getImplementedServices(
String clientId, String entityId, String serviceType)

throws RemoteException;
public String[] getEventsFired(
String clientId, String entityId) throws RemoteException;

To access objects in other subsystems, the Façade methods access static meth-

ods in theUIF object as shown in Figure 4.3. Note that while applications may be

permitted to add new entities, or set context, they can’t themselves access, add or

Chapter 4. The Ubicomp Integration Framework 96

remove newcomponentsinto the system. This is the role ofadapters, described in

Section 4.8. Methods in all four categories of the Façade are delegated to objects

in the Environment Composition Logic described next.

4.4 Environment Composition Logic

The Environment Composition Logic subsystem contains three key interfaces – the

Environment, Entity, and theClientManager as shown in Figure 4.3.Envi-

ronment andEntity objects handle all access to the model, integrated systems

and components, while theClientManager manages application authentication

and subscriptions to asynchronous events.

4.4.1 Environment and Entity Interaction

A Façade call that interacts with the environment as a whole, such asfindEntities

or addEntity, will delegate to an instance ofEnvironment. This call will then

query the Model and Reasoning subsystem described in Section 4.5.

A Façade call that interacts with a single entity, using methods such asget-

ContextAttributes or callService, will first bind an Entity to a resource id in the

model. Binding associates the Entity with a resource in the model encapsulated

by aModelEntity object. The Façade then calls methods on the Entity instance,

which in turn queries the model through theModelEntity. Wrapping the model in

interfaces in this fashion allows our queries and model implementations to change

without affecting the ECL.

To interact with a component (either hosted by the UIF or in anunderlying sys-

tem) theEntity object will first query the Model for the component that handles

the request (i.e., an event subscription, service call, or context query). TheEn-

tity method then delegates the request to either a Native Component, or the Mes-

Chapter 4. The Ubicomp Integration Framework 97

UIF

ECL::Environment

-ontEntity : ModelEntity

ECL::Entity ECL::ClientManager

-subscriptions

-eventQueue

ECL::ClientSession

«interface»

Model::ModelEntity

1

-ontEntity

1

-_1

1

-clientManager_1

1

«instantiate» «instantiate»

1
-clientSessions

*

«interface»

Model::IntegrationModel

«uses»

«interface»

Model::ModelComponent

«uses»

Facade

«uses»

«uses»
«uses» «uses»

Figure 4.3: Key classes of Environment Composition Logic.

Chapter 4. The Ubicomp Integration Framework 98

Facade UIF Entity ModelEntity ModelComponent AdapterManager

getEntity(id)

new Entity(id)

IntegrationModel

getEntity(id)

ModelEntity

callService

getServiceImplementations

getAdapterName

invoke(adapterName, componentId, entityId, ...)

RemoteAdapter

invokeService(componentId, entityId, ...)

adapterName

modelComponent

Message1

Web Services

Facade

Environment

Composition Logic Model Broker and Adapters

RMI

callService(entityId, interface, params)

Application

Figure 4.4: Sequence diagram for Facade.callService().

sage Broker. A simplified sequence diagram for the FaçadecallService method is

shown in Figure 4.4.

In addition to illustrating the message flow, this diagram highlights potential

sources of overhead incurred when introducing the UIF between an application

and an integrated system. We incur overhead from the Web Service library when

it marshals the SOAP call to the corresponding Java method. Another potential

delay is incurred when the Environment Composition Logic queries the Integra-

tion Model. Before it is finally handled by a native ubicomp system, it must be

delegated by the Broker, and processed by the appropriate remote adapter. These

sources of overhead are discussed in more detail in Chapter 5, Section 5.4.3.

Chapter 4. The Ubicomp Integration Framework 99

4.4.2 Application and Subscription Management

The UIFClientManager shown in Figure 4.3 handles application authentication

and subscriptions to asynchronous events. From our experience, managing sub-

scriptions for an integrated environment is not trivial since a single composite

model event may be signalled by multiple event sources in more than one sys-

tem. Furthermore, applications must be informed when an event source associated

with one or more subscriptions is no longer available.

When an application logs in using the Façade, the client id is validated, and

a newClientSession object is created.ClientSessions contain a list of event

subscriptions and a queue of events for application retrieval as shown in Figure

4.3.

When an application subscribes to an event, anEventSubscription is added

to theClientSession. An EventSubscription contains a unique subscription id,

the application client identifier, entity identifier, the event name and a subscription

data structure specific to that event type. One event supported by the MUSEcap

system [40] (discussed in Section 5.3.4) called anearEventis fired when users

are near particular places or other users. In this case, thenearEventsubscription

data contains entity ids, and the distance between the entities that causes the event

to fire. The subscription is then delegated to the appropriate Entity object and

aggregatedEventSourcecomponent(s) using the same pattern as the service call

example in Figure 4.4.

If the subscription is destined for an integrated system, the subscription is for-

warded to the appropriate adapter by the Message Broker. Since a distributed

adapter may fail, our Message Broker called theAdapterManager maintains an

adapter-subscription mapping in case an adapter is shut down or fails. When this

occurs, theAdapterManager sends an event to theClientSession (and asso-

Chapter 4. The Ubicomp Integration Framework 100

ciated application) indicating that the subscription has expired. If an individual

EventSourcein an integrated system is shut down, it is the responsibility of the

adapter to signal to the UIF on its behalf. The UIF will then signal application

subscribers that the event capability of that entity has been removed.

Note that, in some cases, multipleEventSources may supply the same named

EventTypecapability. This is the case when an entity exposes an event such as

contextUpdatewhich is signalled whenany context value changes. In this case

a single event subscription to acontextUpdateevent must be dispatched to more

than one event source, potentially implemented in multiplesystems. Because of

this, event subscriptions are reference counted in the UIF.They can be removed

from aClientSession only when there are no remaining event sources holding the

subscription.

When anAdapter signals an event on behalf of an integrated system, it sup-

plies the client id of the subscribing application, and anEntityEvent data struc-

ture that includes the subscription id, the event name, the entity id of the entity

that exposes the event and the event-specific data. The client id is used to look up

theClientSession object in the ClientManager so that the event can be relayed to

the application. An application supplies a subscription idto unsubscribe from an

event. The unsubscribe call is dispatched to theAdapterManager, removed from

its adapter-subscription list, then forwarded to the appropriateAdapter.

To summarize, TheClientManager component of the Environment Composi-

tion Logic authenticates applications and tracks their subscriptions to events. Over-

all the Environment Composition Logic is responsible for querying the Model and

Reasoner to delegate calls, including event subscriptions, to the appropriate inte-

grated system.

Chapter 4. The Ubicomp Integration Framework 101

4.5 Model and Reasoning

The Model and Reasoner subsystem manages the current environment model in-

cluding all entities, their capabilities and aggregated components. It typically in-

cludes some static context values, in particular those thatare not supplied by any

adapter or internal component, but may be useful to applications. This includes

the static relationships between locations and their coordinates for example. We

elected to store entities, components, and static entity relationships and context in

the model; dynamic entity relationships and context requests are delegated to an

adapter. With many entities and rapidly changing context, we found that it was

not practical to retrieve or cache current context values inthe integrated model for

entity discovery. The core of our model is implemented usingthe Jena semantic

web framework [1]. We integrated the general purpose reasoning engine supplied

with Jena into the UIF.

Upon start up, the current model can be loaded into RAM from a standard

relational database, or from RDF files supplied by an integrator. The RDF contains

the UCM core model, specializations of the model for particular environments or

required features, and static instance data such as static locations, users, objects,

and fixed components. Once the knowledge base is loaded, rules to support the

UCM and custom rules supplied by an integrator are then read into the system.

Custom rules may be used to automatically aggregate certainfixed components

with certain entities. For example, a server currently supplies user identity and

presence information for users in the model; context sources for these capabilities

are automatically associated withCampusUserentity types using the following

rules:

all CampusUsers have presence context
[userPresence: (?entity ucm:aggregates pmedia:presenceSource)<-

(?entity rdf:type campus:CampusUser)]

Chapter 4. The Ubicomp Integration Framework 102

all CampusUsers have position context
[userPosition: (?entity ucm:aggregates pmedia:positionSource)<-

(?entity rdf:type campus:CampusUser)]

Our initial model implementation wrapped a single Jena inference model: a

data model wrapped with a reasoning engine and associated rules. Unfortunately,

the reasoner supplied with the framework is not thread safe,so that all queries and

changes to the model must be serialized. For small prototypemodels, we found

performance to be adequate, but with larger models we neededanother approach.

While it should be possible to improve performance by reducing the number of

rules and triples in the model to only those required by our application, we wanted

to maintain the flexibility of the Jena reasoner and use OWL asmuch as possible.

To address this we created anIntegrationModel implementation that maintains

two cached query models. One is available for queries at all times, while the other

is updated in the background when a change is made. Once all changes have been

processed, the background model is then swapped in and used for queries. Using

this implementation, both queries and changes are fast, however, changes to the

model are not returned in queries until some time after a change is made.

We wrapped all queries to the model using three interfaces: the Integration-

Model, ModelEntity andModelComponent. Wrapping the integration model

in these interfaces allowed us to change not only the integration model as described

previously, but also the queries used without changes to other parts of the platform.

An IntegrationModel is responsible for model initialization and model composi-

tion using methods to add and remove entities and components. It contains meth-

ods to find entities by type, or for maximum flexibility, queryfor entities using a

SPARQL [103] clause.

Together these interfaces provide the ECL with the knowledge required to dis-

Chapter 4. The Ubicomp Integration Framework 103

patch method calls to the right adapter and/or associated UCM components. Com-

ponents by be handled by an Adapter as described in Section 4.8 or by native UIF

components described next.

4.6 Component Container

The native Component Container subsystem is a simple micro-container for UCM

components implemented by an integrator. Such components can provide compos-

ite services, or custom context sources that make use of one or more integrated

ubicomp systems, or services only available to the integration platform.

The key classes and interfaces for the Native Component subsystem are shown

in Figure 4.5. TheComponentFactory provides methods to instantiate compo-

nents by providing the component identifier and the Java class for the component,

both from the UCM. (The Java class is the value of abinding UCM Component

property.)

TheComponentRegistry encapsulates a mapping from UCMcomponentId

toComponent objects for lookup by other parts of the system. Native components

implement a Component interface, or one of its derived interfaces:ServiceHan-

dler, ContextSource, EventSource, EntityHandler andEnvironment. Each

of these corresponds to a UCM component type, other than theEnvironment.

The Environment is a special component that will receiveaddEntity and re-

moveEntity method calls from the Façade to handle adding and removing entities

to the model that are not handled by a supporting system and somust be added or

removed by the UIF itself. As their names imply,ServiceHandler implements a

method to invoke its services, aContextSource supports context queries by pro-

viding an attribute. AContextSource is also anEventSource that signals events

to objects that implementEntityEventListener interface. Note thatClientSes-

Chapter 4. The Ubicomp Integration Framework 104

+getComponent() : Component

+registerComponent()

+removeComponent()

Container::ComponentRegistry

+createComponent() : Component

Container::ComponentFactory

«interface»

Container::ContextSource

«interface»

Container::Component

«interface»

Container::EventSource

«interface»

Container::Environment

«interface»

Container::ServiceHandler

«interface»

Container::EntityHandler

1

-components
*

«instantiate»

Figure 4.5: Key classes and interfaces of Component Container subsystem.

sion objects in the ECL are also Components managed by the Container. They

implement theEntityEventListener interface so they can receive events from

both Adapter-hosted components and native UIF components in the Container.

One composite service we have implemented provides a broadcast message

service associated with a place that calls individual message services for those

userscontainedIna place. Another provides the capability to track users’ locations

supplied by GPS-equipped PDAs. Other native components mayprovide custom

context inference services, or integration with components exposed using Web Ser-

vices outside the UIF.

A native component implements one of the above interfaces, typically by spe-

cializing one of several abstract classes supplied with thesystem such asAbstract-

ContextSource andAbstractServiceHandler. The components register them-

selves by providing their unique identifiers, their Java binding class and whether

Chapter 4. The Ubicomp Integration Framework 105

the component should be instantiated on start up or on demand. An example native

component declaration follows:

<campus:CampusPositionSource rdf:ID="positionSource">
<ucm:binding>ca.ubc.cs.uif.prototype.PositionContextSource
</ucm:binding>
<ucm:onStartup>true</ucm:onStartup>
<ucm:hasContextType rdf:resource="&ucm;pointLocation"/>
<ucm:firesEventType rdf:resource="&ucm;contextChangedEvent"/>

</campus:CampusPositionSource>

The positionSourcenative component implements a Web Service to receive

GPS coordinate updates from PDAs in the field. The UCM id of this native com-

ponent ispositionSource. Its Java binding is thePositionContextSource class.

The onStartupproperty is true, indicating that it should be instantiatedwhen the

system starts up. It exposes apointLocationcontext type, and acontextChangedE-

ventevent type.

To summarize, the Container subsystem contains UCM components imple-

mented within the UIF by an integrator. These components canprovide composite

services or custom context sources for example either making use of an integrated

system or providing new functionality not anticipated by anintegrated system. Like

components supplied by an integrated system, Container-hosted components are

also registered with the Model and Reasoner subsystem.

4.7 Message Broker: AdapterManager

The AdapterManager object in the UIF is our message broker responsible for

managing adapters and forwarding method calls using Java Remote Method In-

vocation (RMI) [38]. TheAdapterManager is also responsible for maintaining

adapter leases and tracking event subscriptions for adapters in case an Adapter

shuts down. Remote Adapters first register with the AdapterManager, using the

Chapter 4. The Ubicomp Integration Framework 106

adapterStarted() method of AdapterListener shown in Program 4.1. Once an

adapter is registered with the system, theAdapterManager dispatches method

calls destined to Components associated with it. Adapters add and remove entities

and components from the model depending on the integrated system as described

in the next section.

4.8 Adapters

Key to our approach to integration is the use ofadapterswhich sit between the UIF

and an underlying ubicomp system. The Adapter interface shown in Program 4.2 is

designed to encapsulate the functionality of an existing ubicomp system. Adapters

ensure the integration framework holds the exposed entities and capabilities of the

integrated system, maintain mappings between components,event subscriptions

and entity identifiers, and marshal method calls to and from the integrated ubicomp

system on demand. Adapters initiate a connection with the UIF by calling the

adapterStarted method of the AdapterListener interface shown in Program 4.1.

Program 4.1 AdapterListener interface.
public interface AdapterListener extends Remote {

void adapterStarted(String adapterName, Adapter adapter);
void fireEvent(String adapterName, String sourceId,
String subscriberId,EntityEvent event);
String addEntity(EntityInfo eInfo);
void removeEntity(String entityId);
String addComponent(ComponentInfo cInfo);
void removeComponent(String componentId);

}

The add/removeComponent and add/removeEntity methods are called

by Adapters to add and remove entities and components to the model as they are

discovered in an integrated system. Aggregation links between entities and com-

Chapter 4. The Ubicomp Integration Framework 107

ponents may be established by the adapter in the ComponentInfo data structure, or

specified in an integration rule installed in the framework.Adapters signal events

by calling the AdapterListenerfireEvent method.

Program 4.2 Adapter interface.
public interface Adapter extends Remote {

boolean start(boolean reset);
void stop();
boolean check();
ContextValue getContextValue(

String componentID, String entityId, String attribute);
void setContextValue(

String componentID,String entityId, String attribute,
ContextValue value);

DataObject invoke(
String componentId, String entityId, String serviceType,
String methodName, DataObject[] inArgs);

int[] subscribe(
String componentId, String subscriberId,
EventSubscription[] eventSubs);

public void unsubscribe(
String componentId, String subscriberId,
EventSubscription[] eventSubs);

String[] getRelatedEntities(
String componentId, String id, String relationship);

void addEntityRelationship(
String componentId, String id, String entityId,
String relationship);

public void addEntity(EntityInfo info);
public void removeEntity(String entityId);

}

Several method calls support direct interaction with the underlying system and

correspond directly to those in the interaction calls of theFaçade. Note that these

method calls include a component id used to identify the particular component:

EntityHandler, Service, ContextSource or EventSource, inthe underlying system.

Two Adapter method calls,addEntity andremoveEntity are called when an

Chapter 4. The Ubicomp Integration Framework 108

application adds or removes an entity from the model. This can occur when an

application registers a new user with the model, or when a newplace of interest is

added for example. The new entity information is broadcast to all adapters in case

they need to update their native model with this new information.

4.8.1 Adapter Framework

To facilitate adapter development, we created a lightweight adapter framework.

The key objects of this framework are shown in Figure 4.6.

BaseAdapter

ComponentMap

ComponentRecord

ComponentMarshaller

SubscriptionMapConcreteAdapter

1

-subs

*

1

-components

*

1

-component*

1
-marshaller

*

SubscriptionRecord

1

-sub*

1

-marshaller

*

Adapter

NativeSystem

Figure 4.6: Key classes of the Adapter framework.

The adapter framework consists of theBaseAdapter abstract class which han-

dles set up of a remote RMI-based adapter, and initial registration with the UIF. A

ComponentMap containsComponentRecords indexed by native component id

and UCM id. A ComponentRecord includes a ComponentMarshaler which mar-

shals data to and from the native system format.

Chapter 4. The Ubicomp Integration Framework 109

Fixed components such as the iROSEvent Heapare added to the model when

the adapter starts up using theaddComponent call. Dynamic components such

as Context ToolkitWidgetsare added to the composite model when the adapter

receives an event from the native system. Since some systemsdo not support such

events, some adapters will poll for newly discovered components.

When an application makes a synchronous entity interactioncall, the Adapter

looks up theComponentRecord based on the UCM component id supplied. It

then gets theComponentMarshaler with that record, uses it to marshal the data

and then makes a native system call. TheComponentMarshaler is subclassed

to perform the necessary data and protocol marshaling on a per-system, and if

necessary, a per-component basis.

To maintain subscriptions for asynchronous events, an adapter typically uses

a SubscriptionMap. This maintains a mapping of UIF subscriberId and compo-

nentId to native event subscriptions. When a new subscription is received, the

subscription data is marshaled to the native system subscription, a nativesub-

scribe call is made and a newSubscriptionRecord is added to the map. Like a

ComponentRecord, theSubcriptionRecord contains aComponentMarshaler

for the native event source. When an event is received by the integrated system,

the Adapter looks up the correspondingSubscriptionRecord. The associated

ComponentMarshaler is then used to marshal the event data structure to a UIF

EntityEvent data structure. The AdapterListenerfireEvent call is then made to

the UIF to forward to the waitingClientSession and associated UIF applica-

tion. Since the same UIF subscription may correspond to a subscription to mul-

tiple components on the same system, the UIF will supply a subscription for each

subscriptionId-componentId pair; theSubscriptionMap will maintain a record

for each subscription-component pair.

Using the adapter interfaces and framework described here,we implemented

Chapter 4. The Ubicomp Integration Framework 110

a prototype deployment that emulates an campus-scale ubicomp environment by

integrating four existing systems [36, 40, 47, 83] described in the next chapter.

4.9 Summary

In this chapter we presented the Ubicomp Integration Framework, a platform for

ubicomp systems integration used to evaluate the UCM. We described each sub-

system of the UIF including the Façade Web Service, Environment Composi-

tion Logic, Model and Reasoning subsystem, Component Container, Broker and

Adapter Framework.

To summarize, the UIF manages an environment model repository containing

an instance of the UCM. The model repository is queried to dispatch method calls

to the appropriate adapter or internal components. In addition, the UIF manages

subscriptions for internal or integrated event sources forapplications of the in-

tegrated environment model. For example, to query for context about an entity

(referring to the UIF architecture diagram in Figure 4.1) anapplication will make

a Web Service call to the Façade. This will be delegated to the Environment Com-

position Logic (ECL) subsystem. The ECL queries the knowledge base hosted by

the Model and Reasoning subsystem for the component that supplies the requested

context. If the context request can be satisfied by the Model and Reasoning sub-

system directly (e.g., static context) the context is returned directly. If not, the

ECL examines the component properties to determine whetherthe query should be

handled by an internal UIF component in the Native ComponentContainer, or an

integrated system dispatched by the Message Broker. If it isdestined for an inte-

grated system, the request is dispatched to the appropriateadapter and marshaled

to the system-specific API or protocol. The query response isthen returned to the

application in the reverse direction. Service calls and event subscriptions follow a

Chapter 4. The Ubicomp Integration Framework 111

similar call pattern.

In the next chapter we present our experience in creating thecomposite envi-

ronment shown in Figure 5.1 to evaluate the UCM and the UIF supporting system.

112

Chapter 5

Evaluation: An Integrated

Campus Environment

To evaluate the Ubicomp Common Model and our approach to ubicomp systems

integration we considered three key questions:

1. Can our model be used to support applications that make useof multiple

underlying ubicomp environments each with their own different abstractions

and programming models?

2. Is our model flexible enough to support all four classes of ubicomp systems

identified in Chapter 2:Component Compositions, Context Frameworks,

Smart Space Systems, andWide Area Systems.

3. While meeting our first two requirements, can our model be implemented

such that it still offers both adequate performance and is practical for appli-

cation development?

To answer these questions we describe our experience integrating a set of four

ubicomp systems into a composite environment for application development. The

prototype deployment illustrated in Figure 5.1 was createdby integrating the Equip

Component Toolkit (ECT) [47] developed at the University ofNottingham, a Com-

ponent Composition System, the Context Toolkit (CTK) [36] developed at Geor-

gia Tech, a Context Framework, iROS [83] developed at Stanford, a Smart Space

Chapter 5. Evaluation: An Integrated Campus Environment 113

System, and the MUSEcap platform [40] developed at the University of British

Columbia, a Wide Area System. MUSEcap is a system designed for campus scale

deployments similar to Active Campus [49]. In this deployment the UIF acts as an

intermediary between all four ubicomp systems as shown.

Campus Environment

Lab Environment Meeting Room

UIF

MUSEcap

Adapter

PlaceMedia

Server

Context Toolkit

Adapter

Temperature

Widget

ECT Adapter iROS Adapter

EventHeap

Server

MultiBrowser

Enterprise

JavaBeans

SoundLevel

Widget

Discoverer

In/Out Widget

Dataspace

WebCam

Sensors

LabMonitor

Application
PlaceMedia

Application

Environment

Browser

MultiBrowser

Data

Web Services Facade

Integrated

Model

RMI Adapter Broker

Figure 5.1: Composite campus environment deployment.

5.1 Applications

To exercise our composite environment we developed three prototype applications:

PlaceMedia, the Lab Monitor, and the Environment Browser. Rather than inventing

our own unique applications, we aimed to support applications inspired by previous

work, particularly those used with the systems we integrated.

Each application was developed for a specific purpose. The PlaceMedia ap-

Chapter 5. Evaluation: An Integrated Campus Environment 114

plication described in Section 5.1.1 was used primarily forrapid development and

testing of the UCM, UIF and adapter interfaces. The Lab Monitor application in

Section 5.1.2 was designed to exercise the capabilities of acomposite environment

as a whole, making use of four integrated systems simultaneously. Finally, the En-

vironment Browser (Section 5.1.3) was developed primarilyas a tool for testing

and debugging the integrated environment. Each application is described in more

detail here.

5.1.1 PlaceMedia

PlaceMedia was created for rapid development of the UIF and adapter subsystems.

To accomplish this, the dependency between the PlaceMedia application and the

MUSEcap platform was broken by inserting the UIF system between the applica-

tion and the MUSEcap platform. This way we ensured that the application APIs

were adequate for at least one application, and the Adapter API was sufficient to

integrate the MUSEcap system.

PlaceMedia, modelled after the Active Campus Explorer application [50], al-

lows users to see their own location and the location of theirfriends on a campus

map as they roam around. They can communicate with each other, and see the

locations of interesting landmarks nearby. PlaceMedia users can see their own lo-

cation and the location and on line status (presence) of friends using a map-based

interface. They can also placemedia markerscontaining text, images or video clips

at places of interest and subscribe to alerts that let them know when they are near

another user or media marker. Users communicate with each other using a built-in

instant messaging facility.

Location and presence is updated periodically by an agent application running

on PDAs or Tablet PCs. Location is derived using wifi signal strength [69] or

Chapter 5. Evaluation: An Integrated Campus Environment 115

Figure 5.2: PlaceMedia user interface.

provided directly by small Bluetooth GPS units. The web based application user

interface was implemented using the Google Web Toolkit1 and the Google Maps

API2 to display locations and media markers. Since the PlaceMedia application

was originally designed to use the MUSEcap platform directly using an Enterprise

JavaBeans [75] API, we created an UIF adapter for MUSEcap, and modified the

PlaceMedia application to use the UIF Façade web services API. This allowed

us to insert the UIF and composite model between the PlaceMedia application

and MUSEcap platform for development and testing of both interfaces. The user

1seehttp://code.google.com/webtoolkit/
2seehttp://code.google.com/apis/maps/

Chapter 5. Evaluation: An Integrated Campus Environment 116

interface for the tablet PC version of the application is shown in Figure 5.2.

5.1.2 Lab Monitor

The “Lab Monitor” application was designed to exercise the capabilities of a com-

posite environment as a whole, making use of four integratedsystems simultane-

ously. This required integration with three additional existing ubicomp systems as

described in Section 5.3.

The features of Lab Monitor were inspired by the Context Toolkit In/Out Box

and the iRoom Multibrowse [65] applications. The Lab Monitor user interface,

shown in Figure 5.3, performs two primary functions. First,it monitors our lab

by providing information about who is present (left pane), the current sound and

lighting levels (bottom pane), and allows users to take a photo of the lab as shown

in Figure 5.3(a). This allows remote users to see who is present and whether there

is a meeting going on, for example. Secondly, it allows usersto share web pages

with others by broadcasting URLs to other Lab Monitor applications as shown in

Figure 5.3(b). The LabMontitor application makes use of features from each of

the four underlying systems. User identity is supplied by the UBC MUSEcap sys-

tem. User presence in the room is supplied by an In/Out widgetfrom the Context

Toolkit (CTK) using an RFID sensor. Sound and light levels are also supplied by

CTK widgets and appropriate sensors. To share web pages withother users, the

UIF broadcasts URLs using the iROS Event Heap. A web camera iscontrolled by

an integrated Equip Component Toolkit component. This integration was accom-

plished using four adapter implementations described in Section 5.3.

Chapter 5. Evaluation: An Integrated Campus Environment 117

ECT camera control

MUSEcap and Context Toolkit user

and place context

(a) Lab Monitor Photo tab

iROS events for multibrowsing

(b) Lab Monitor Multibrowse tab

Figure 5.3: Lab Monitor application user interface. The indicated systems
provide different capabilities to the application.

Chapter 5. Evaluation: An Integrated Campus Environment 118

Figure 5.4: Environment Browser user interface.

5.1.3 Environment Browser

To interactively explore the contents and capabilities of the integrated environment

model, the Environment Browser is supplied with the UIF system. While this ap-

plication was designed more as an administrative and development tool, it also

serves as a demonstration of how an application can browse and interact with an

environment, independent of the types of hosted entities and associated capabili-

ties.

Chapter 5. Evaluation: An Integrated Campus Environment 119

The Environment Browser is a web application where each pagecorresponds

to an entity in the model (person, place or thing). The page contains links cor-

responding to the current context, entity relationships, and events associated with

that entity. Users can navigate to other entities followingentity relationship links,

retrieve current context values, call services and subscribe to events associated with

entities. The user interface of the Environment Explorer isshown in Figure 5.4.

5.2 System Integration

We tested our applications using a composite Campus environment composed of

four integrated systems [36, 40, 47, 63]. In this section we describe this composite

model and the design and implementation of each adapter.

5.2.1 Campus Composite Environment Model

The composite model in our prototype integration deployment is summarized in

Figure 5.5. It consists of a rootEnvironmententity which hosts a staticCampus

entity. By doing this, the model anticipates incorporatingother places outside the

campus. The Campus containsUsersandPlaceMarkerentities dynamically sup-

plied by the MUSEcap system. The campus also contains a static MAGIC Lab

entity, and aMeeting Roomplace entity as shown. Users may befriendswith each

other and may becontained ineither the Campus or the MAGIC Lab.

Capabilities such as context, services and events are associated with users

and place markers. User capabilities are supplied by MUSEcap and the Context

Toolkit. The MAGIC Lab contexts sound level and temperatureare supplied by

the Context Toolkit; the photo service is supplied by an ECT component. Meeting

Room capabilities for sending URLs to the browser services and subscribing to

and sending interaction events are supplied by the iROS system. Note that these

Chapter 5. Evaluation: An Integrated Campus Environment 120

Friend

Relationship

Environment

Campus

UsersPlaceMarkers

MAGIC Lab

Meeting

RoomContained In

Contains/Contained In

Contained In

Contained In

Location

Identification

Contained In

Magic Lab

Devices

Browser

Service

Interaction

Event Service

exposes exposes

exposes
exposes

Contained Inexposes

exposes

Sound

Level

Temperature

Photo

Service
Interaction

Event

exposes

exposes

Contained In exposes exposes

exposes

Chat Service

exposes

hosts

Friends

Figure 5.5: Composite environment model including entities and key capa-
bilities.

capabilities will only appear when the underlying adapter,system and components

are available.

Each adapter design and implementation is described next.

5.3 Adapter Design and Implementation

For each adapter in this section, we provide a table that mapsthe UCM core ab-

stractions (environment, entities, context, services, event, content) to facilities in

the integrated system. We then highlight key implementation decisions that in-

formed our general adapter design process and integration lessons learned. Fol-

lowing a description of our adapters, we summarize the adapter design process,

outlining the steps required by an integrator to integrate aubicomp system using

the UCM with the UIF.

Chapter 5. Evaluation: An Integrated Campus Environment 121

5.3.1 Equip Component Toolkit Adapter

The Equip Component Toolkit is a platform which aims to support the rapid de-

velopment of ubiquitous computing experiences. ECTcomponents(typically im-

plemented using JavaBeans [96]) are used to interact with devices, or may be soft-

ware only components for processing. Components define named properties used

to control their operation or read their current state. For example, the Camera

Component has antriggerImageCaptureproperty and animageLocationproperty.

When the value of thetrigger property is changed, the URL for an image captured

by the camera can be retrieved using theimageLocation.

Components are managed within local component containers which may be

coordinated in a distributeddataspaceinstallation [46, 61]. Components may be

combined by linking shared properties with similar types toone another so that

property changes are propagated between the two installations [47]. A key advan-

tage of using the ECT dataspace and property links as a coordination mechanism

is that components can be combined very easily without knowledge of a specific

toolkit API. Table 5.1 summarizes how the UCM core abstractions map to a typical

ECT deployment.

Design and Implementation

To make use of components in an ECT installation, we created an Adapter compo-

nent that interacts with the dataspace as a whole, monitoring and interacting with

any component, property and links in the space. The Adapter is notified when new

components are discovered or removed and it interacts with ECT components on

behalf of UIF applications.

In our prototype adapter integrated a web cam ECT component;other compo-

nents can be integrated in a similar manner. When a componentof the type Camera

Chapter 5. Evaluation: An Integrated Campus Environment 122

Table 5.1: ECT Adapter UCM Abstractions
Abstraction Implementation
Environment
Model

Dataspace containing components that publish properties, named,
typed values. These component properties may be linked to other
component properties with the same type.

Entities Not supported directly.
Entity
Relationships

Not supported directly.

Context Properties of components can be considered or used as context
values.

Services Services are not supported directly, but a component’s property
values can be set, and then a trigger property is changed.

Events Property change events may be monitored.
Data/ Content Not supported directly, implicit in some components properties. For

example, the URL of the last photo taken by the web camera com-
ponent is in a property.

is discovered, a UCM Service description is added to the model. This service in-

cludestakePhoto andgetLastPhoto methods. When thetakePhoto method is

called in the UIF service, this changes the value of thetriggerImageCaptureprop-

erty of the ECT camera component. This causes a photo to be taken. The photo

URL is saved in the CameraimageLocationproperty. When thegetLastPhoto

method is called this value is read from the component property and returned to

the UIF application.

5.3.2 Context Toolkit Adapter

The Context Toolkit (CTK) is a well known system that introduced the notion of

reusableContext Widgetsthat supply applications with a wide variety of context

[36]. Widgets encapsulate sources of context such as sensors or context interpreters

and related services. A typical CTK deployment can be mappedto core UCM

abstractions as summarized in Table 5.2.

Chapter 5. Evaluation: An Integrated Campus Environment 123

Table 5.2: Context Toolkit Adapter UCM Abstractions
Abstraction Implementation
Environment
Model

A Discoverer component tracks CTK components available to ap-
plications. The resources available to an application may come and
go as components in the environment are started and stopped.

Entities Entities are often handled explicitly by context aggregators that ag-
gregate context about a certain entity such as a user, place or ac-
tivity. Attributes of a widget may specify the static locations or user
that the context or services potentially apply to. Similarly dynamic
context values can represent entities such as users and locations.

Entity
Relationships

Entity relationships are not supported as a first class abstraction in
the CTK, however, certain widgets can associate entities such as
places and users. For example the in/out widget associates users
with the place that the widget serves.

Context Context supported by the toolkit include simple context values for
the ambient sound level, lighting and temperature level in a room.

Services Context widgets can also support associated services. For exam-
ple a light widget could also support lighting control.

Events A common event in the toolkit is support for context changes. Ap-
plications can subscribe to these events, specifying the context at-
tributes they wish to monitor.

Data/ Content Content is often treated as context in the context toolkit. For ex-
ample, Questions, and presentation content in the Conference As-
sistant are context associated with a Presentation room or activity
[37].

Design and Implementation

We focused on integrating a deployment of the CTK by accessing its Discoverer

and certain context widgets directly. Since the source codeavailable on Source-

forge3 did not support our sensor hardware4, or was unavailable, we re-implemented

several widgets described in Context Toolkit publicationsourselves [34, 36]. Specif-

ically we implemented a light sensing, ambient sound level,and temperature sens-

ing widget and a ‘presence’ widget [89] that sends events when an RFID tag is

passed over a reader. An in/out widget was also implemented making use of the

3http://contexttoolkit.sourceforge.net/
4http://www.phidgets.com/

Chapter 5. Evaluation: An Integrated Campus Environment 124

presence widget and an Interpreter component to track the state of certain users

when they enter or leave a room by waving the RFID over the reader. Since

CTK components may come and go at any time, the CTK adapter subscribes to

the Discoverer component, indicating the components that it can integrate into the

composite environment. When a supported component is discovered, its RDF de-

scription is injected into the composite model by the adapter, and a mapping from

the UCM component id to a CTK identifier is maintained.

For simple widgets such as sound, light and temperature sensors, the compo-

nent mapping from a Context Widget to a UCMContextSource, and associated

data marshaling in the adapter was straightforward. Mapping the capabilities of

the in/out widget presents some unique challenges, however, since it supports the

containment relationship between a room and a few users equipped with RFID

tags. Since the in/out adapter only applies to certain usersin our composite model

(i.e., only those with RFID tags), we had the CTK adapter supply the entities ag-

gregated by this component explicitly when the component description is added to

the system. To make it easy for applications to find users thatcan becontained

in a specific room, we marked these users aspmedia:MeetingUsers in the model.

The RDFroomLocationSourcecomponent describing the in/out widget is shown

in Program 5.3.2 including descriptions of the users of typepmedia:MeetingUser

that have RFID tags.

Our in/out widget supports queries for the relationshipuser contained-in place,

but not the inverse relationshipplace contains users. Because of this, the corre-

sponding UCM component is aggregated by user entities, butnot place entities.

The in/out widget can signal events when a user enters or leaves the room.

The event data supplied when this occurs contains the user identifier and in/out

state. Since the event is related to the place not an individual user, this event is

best aggregated by the room it serves. As a result we used two UCM component

Chapter 5. Evaluation: An Integrated Campus Environment 125

Program 5.1Component description for the roomLocationSource ContextSource.
<ucm:ContextSource rdf:ID=’roomLocationSource’>

<ucm:adapter>contextToolkit</ucm:adapter>
<ucm:hasContextType rdf:resource=’ucm;containedInType’ />
<ucm:aggregator rdf:resource=’&pmedia;mike’/>
<ucm:aggregator rdf:resource=’&pmedia;rodger’/>
<ucm:aggregator rdf:resource=’&pmedia;nicole’/>
. . .

</ucm:ContextSource>

<rdf:Description rdf:about=’&pmedia;mike’>
<rdf:type rdf:resource=’&meeting;MeetingUser’/>

</rdf:Description>
<rdf:Description rdf:about=’&pmedia;rodger’>

<rdf:type rdf:resource=’&meeting;MeetingUser’/>
</rdf:Description>
<rdf:Description rdf:about=’&pmedia;nicole’>

<rdf:type rdf:resource=’&meeting;MeetingUser’/>
</rdf:Description>

descriptions for the CTK in/out widget, a context source andevent source for a

single CTK component. The first exposed thecontained-inrelationship, handling

relationship queries for user entities; the second exposeda relationship-changed

event handling subscriptions to these events for the place.There need not be a one

to one correspondence between UCM component descriptions and the components

of an integrated system.

CTK widgets support the same event type for almost all widgets: the UPDATE

event signalled when context changes. When an entity in the model aggregates

context from several CTK widgets, a single UIF subscriptionfor context changes

must therefore be propagated to several CTK components. Consequently, there is

not necessarily a one to one correspondence between UIF subscriptions and CTK

subscriptions.

Chapter 5. Evaluation: An Integrated Campus Environment 126

5.3.3 iROS Adapter

The iROS meta-operating system was constructed to support experiments around

interaction with large screen displays in interactive workspaces [63]. Several pro-

totype versions of the installation called the iRoom were set up. From this experi-

ence researchers at Stanford identified some of the most important characteristics

of an interactive workspace infrastructure [83]. A key subsystem underlying many

of the other iROS facilities is the Event Heap [64]. This provides a coordination

mechanism that decouples applications and services from one another, allowing

the system as a whole to be more stable. On top of the Event Heap, several other

general purpose facilities are available. The ICrafter service infrastructure pro-

vides service discovery and interaction layered over the Event Heap, and the Data

Heap provides a facility for storage of files associated witha place, independent

of how they are stored. Arbitrary meta data associated with content in the Data

Heap can be used by applications directly or by the Data Heap itself to transform

data from one format to another. In Table 5.3 we outline the mapping from the UIF

abstractions to facilities in iROS.

Design and Implementation

For this integration task we focused on integrating a representative ICrafter service,

and support for the Event Heap coordination facility to ensure the UCM provides

adequate coverage of these capabilities. One application and ICrafter service sup-

plied with the iROS installation is the Multibrowse application andButler service.

The Butler is used to control applications like Internet Explorer on a PC. Multi-

browse allows Internet Explorer users in the workspace to send links to other PCs

in the workspace to share URLs. We described the ICrafter Butler service using

a UCM URLServiceservice interface that implements asendURL method. With

Chapter 5. Evaluation: An Integrated Campus Environment 127

Table 5.3: UCM Abstractions Mapped to the iROS System
Abstraction Implementation
Environment
Model

The ICrafter subsystem models the environment as a set of re-
sources such as application services, components and associated
state. The Data Heap contains relevant content and associated
meta data. The Event Heap is used as a communications mecha-
nism.

Entities Entities information, such as devices, users, groups, are found in
Event Heap event fields, which may be associated with ICrafter ser-
vices and state.

Entity
Relationships

Not supported directly, but group membership can be inferred from
information in Event fields (group, user). ICrafter service descrip-
tions can include location of services.

Context Variables in the state space. For example, a light switch state
Services ICrafter services
Events Events are a first class abstraction in the iROS system. Arbitrary

events can be produced or consumed by an iROS client application
or subsystem.

Data/Content The data heap provides storage for content.

this service integrated, UIF applications, like iROS Multibrowse, can open Inter-

net Explorer to display a URL on any iROS equipped PC. Initially it was unclear

whether this service should be aggregated by auser entity, or adeviceentity in

the room. Since the device name is included in the service description, and there

is no way of knowing from iROS who the current user of a PC is, wedecided to

introduce a laptop device entity into the environment when aButler/URLService

is added to the model.

To explore the suitability of the UCM in supporting the core capabilities of

the Event Heap, we needed a strategy to both receive and send events. To ac-

complish this, we described the Event Heap as a single UCM component with

two capabilities. The first is ameeting:InteractionEventServicethat allows ap-

plications to inject arbitrary events into the Event Heap. The second is themeet-

ing:InteractionEventTypewith the event namemeeting:interactionEventto support

subscription to arbitrary event heap events. Our current implementation is limited

Chapter 5. Evaluation: An Integrated Campus Environment 128

to subscribing to events by thetypefield only, but could be extended to support

templates as in the Event Heap API. These capabilities are exposed by the meeting

room when the component corresponding to the iROS adapter starts up. With this

capability we were able to support the broadcasting and receiving of URLs to share

web pages in our Lab Monitor application through the Event Heap like other iROS

applications.

5.3.4 MUSEcap Adapter

The MUSEcap system was developed at UBC to facilitate the development of

campus-scale ubiquitous computing applications. Like thePlaceMedia application

described previously, MUSEcap was also used for rapid UCM and UIF develop-

ment, in this case, for the adapter interfaces outlined in Section 4.8. MUSEcap

interfaces are exposed as a type of Enterprise JavaBean called aSession Bean.

Session Beans are a type of server-side component used in Java-based transaction

monitors typically used to implement application logic. Asin previous system

adapters, we first mapped the core UCM abstractions to a typical MUSEcap de-

ployment as summarized in Table 5.4.

Design and Implementation

In integrating MUSEcap, we aimed to leverage its facilitiesto manage users and

their context between indoor campus locations. Another unique facility offered by

MUSEcap was its ability to add (register) and remove entities such as people and

places called Place Markers to an environment model and fire events when users

are near places of interest or other users.

To integrate these capabilities, we created entity types and capability descrip-

tions for the context, event types and service interfaces exposed by MUSEcap APIs.

Chapter 5. Evaluation: An Integrated Campus Environment 129

Table 5.4: UCM Abstractions Mapped to the MUSEcap System
Abstraction Implementation
Environment
Model

The MUSEcap environment model is implemented using a
database. This database is wrapped by several service interfaces
(Session Beans) to access information about users and markers,
their relationships and context.

Entities Entities supported include users and media markers, or places
marked with a latitude and longitude. User entities can be added
by the application when new users register, and marker entities can
be added by users.

Entity
Relationships

Users are related to each other using a ‘Roster’ in the database
indicating that the first user in the table is a friend with the sec-
ond. Users may also ‘own’ media markers, indicating that the user
created a marker for others to see.

Context Context supported includes user location updated by agent appli-
cations running on PDAs or Tablet PCs. Context also includes
user identity, and presence information such as ‘on line’, ‘off line’
or ‘away’. Marker context includes its location, and identity. In
PlaceMedia, content such as text, or an image or video can be
associated with a marker. We also consider this marker context.

Services Users in the system can send messages to each other. We con-
sider this to be a service associated with those users.

Events The system can alert applications when users are within a certain
range of each other, or when a user is in range of a marker. Event
subscriptions specify the two users, or the user and marker and the
range. Events are signaled only once when they are in range.

Data/ Content Content such as text, images or video can be associated with a
marker. We consider marker content as a form of context.

Since all components of MUSEcap are available as long as the server is running,

static component information is provided in the configuration files loaded by the

UIF on start up. Several rules were supplied to associate MUSEcap components to

Place Marker and User entity types. For example, one rule specifies that if an en-

tity is a pmedia:CampusUser, it aggregates thePositionSourcecomponent. Since

the PostionSource exposes alocationContextType, allpmedia:CampusUsersalso

expose the ability to retrieve their location.

When the UIF calls the adapterstart method, the MUSEcap adapter updates

Chapter 5. Evaluation: An Integrated Campus Environment 130

the UIF with the entities (users and markers) and their static context values, cre-

ating unique UCM ids for each entity. A mapping from UCM entity identifiers to

MUSEcap identifiers is maintained by the adapter using a database. When new

users or markers are added, the UIF model is updated, and new mappings are cre-

ated. To interact with the system, the UIF supplies the UCM entity id and compo-

nent id. In the adapter, the component id is used to determinethe method to call in

the MUSEcap API.

Unlike other integrated systems, MUSEcap supports the ability to add or re-

move new users and places to the composite model. To make use of this feature,

UIF applications such as PlaceMedia will calladdEntity or removeEntity us-

ing the Façade Web Services interface. Unlike other methods that are targeted to

specific systems, these method calls are then relayed toall Adapters in case they

need to add/remove these entities to/from their native environment model. When

the MUSEcap adapter is called, the UIF entity data structureis transformed to

MUSEcap data, and the appropriate calls are made to the MUSEcap API.

Finally, since the MUSEcap platform assumes applications periodically poll

for events, the MUSEcap adapter, taking on the role of an application on behalf of

all UIF applications polls fornearevents once a subscription is received from any

UIF application.

5.3.5 Adapter Implementation Summary

Table 5.5 summarizes the adapter functionality we implemented as described pre-

viously, categorized by the UCM abstractions.

Clearly we did not attempt to map all of the available functionality of the cho-

sen platforms. Rather, our efforts focused on exercising our UCM abstractions

to gain a better understanding of the integration development process, abstraction

Chapter 5. Evaluation: An Integrated Campus Environment 131

Table 5.5: Adapter Implementations by UCM Abstraction
System/
Abstraction

Context
Toolkit

Equip
Component
Toolkit

iROS MUSEcap

Environment
Model

Discoverer Equip Datas-
pace

ICrafter sub
system, and
EventHeap

SessionBean
interface to
database

Entities Static loca-
tions, users

Implied place
(lab) where
components
are located

Host device in
ICrafter service
description

Place markers,
users

Entity
Relation-
ships

InOutWidget
relates places
to users.

Not supported Host device
contained-in
the meeting
room

User friends,
place marker
ownership

Context User location,
user presence,
room sound,
light level,
temperature

Component
properties (not
implemented)

iROS State
API (not imple-
mented)

User location,
user identity,
presence,
place marker
location

Services Context Widget
Services (not
implemented)s

Camera Ser-
vice

Browser ser-
vice, inter-
action event
service

Chat service

Events Relationship
changed, con-
text changed

Property
changes (not
implemented)

Interaction
event

User or place
marker Near
event

Data/
Content

(Not sup-
ported)

Get photo ser-
vice method

DataHeap (Not
implemented)

Place marker
content

mappings and trade offs such as adapter complexity vs performance, which we

report on in Section 5.4.

5.3.6 Adapter Design Process

From our application development and integration experience we have derived a

design process for integrating ubicomp systems using the UCM into a single com-

posite model. This process consists of six steps as follows.

Chapter 5. Evaluation: An Integrated Campus Environment 132

1. Determine the application-environment interaction points. Interaction

points for integration may be an API, protocol, message format, data store, or

other abstraction hosted by distributed components or central servers. While

locating these interaction points seems like a straightforward step, in some

cases, the integrated system’s resources may not be designed for easy exter-

nal application integration. For example, in ECT or iROS theapplication is

assumed to be a component or a composition of components in the system

itself. In this case, it may be possible to access integratedcomponents in-

directly using the coordinating system such as the ECT data space or iROS

Event Heap.

2. Decide on the environment capabilities to expose to outsideapplications.

Considerations in this step of course begin with the capabilities available in

the ubicomp system deployment to integrate. Capabilities correspond to the

sensors, actuators, software services, and context sources available. To avoid

unnecessary integration work, an integrator should consider the functionality

required by applications of a composite environment where interoperability

is most important. Generally, only a subset of the system’s capabilities needs

to be exposed to applications using the UCM.

3. “Find” the missing or implicit entities in the model and associate ca-

pabilities with these entities. In this step, we make anyimplicit entities,

people, places, and thingsexplicit in the composite model. In some cases,

entities are already explicit in a system. For example, the MUSEcap inter-

faces exposeuser andplace markerentities directly. In other cases, enti-

ties are only implied. For example, since the camera ECT component itself

provides no information about the physical entities it is associated with an

integrator may introduce a cameradeviceentity to integrate an ECT camera

Chapter 5. Evaluation: An Integrated Campus Environment 133

component. This is necessary since the ECT camera software component

itself provides no information about the physical entity (camera or place)

it is associated with. Once we’ve made entities explicit in the model, we

must associate the integrated systems’ capabilities with these entities. The

ECT camera service is associated with the camera device; an instance of the

iROS Multibrowse shared browser service is associated witha laptop device.

Similarly, the Event Heap and a temperature Context ToolkitWidget can be

associated withplaceentities.

4. Encapsulate interaction points of the integrated system inUCM com-

ponent abstractions. In some cases, there may be an obvious mapping

between a UCM component and an integrated system interaction point. For

example, a CTK widget maps naturally to a UCM context source;similarly,

an ICrafter service maps to a UCM service component. In othercases, it

may be beneficial to create a UCM component abstraction wherenone ex-

ists. For example, the Event Heap is considered to be a central coordination

mechanism. To allow applications to inject arbitrary events into the Event

Heap, it is described as a component withServiceInterfaceandEventType

capabilities. The service interface provides a method to inject events, the

event type allows outside applications to subscribe to interaction events.

5. Create rules or explicit aggregation relationships. To associate compo-

nents and their implemented capabilities to adapters, aggregation relation-

ships can be added to the model directly when components are discovered,

or can be inferred by rules that link entities to components based on type or

static context stored in the model. An integrator can use either technique.

6. Implement the Adapter. The last step is to implement the adapter. In our

Chapter 5. Evaluation: An Integrated Campus Environment 134

prototype work, we attempted to leverage code from a previously developed

adapter in new ones. Over time we recognized that common facilities of an

adapter emerged that could be used in an adapter framework asdiscussed in

Section 4.8.1.

5.4 Evaluation

In this section, we address the three questions posed at the beginning of this chapter.

First, we comment on our experience in using the UIF to build applications that use

multiple ubicomp systems at the same time. We then discuss adapter complexity

to get a handle on the flexibility of our model in supporting the four systems we

integrated, each from a different category of ubicomp system as outlined in Chapter

2. We then measure the performance of the system as a whole, tounderstand the

feasibility of our approach. Finally we make some observations on the use of the

UIF as a stand alone system for application development.

5.4.1 Application Development

Our experience in using a single API to interact with multiple systems has several

advantages. Developers need only learn and use one set of abstractions, and only

one API instead of four or more. This should reduce the learning curve and in-

crease the portability of applications. However, these benefits come at a cost: the

performance overhead associated with the use of meta-middleware like the UIF

and the development of flexible adapters to maintain the integrated model and mar-

shal method calls to and from the integrated systems. In a typical deployment, we

expect that UCM application developers will be largely isolated from the cost of

implementing adapters since they can be created independently.

Chapter 5. Evaluation: An Integrated Campus Environment 135

5.4.2 Adapter Complexity

To evaluate how well our UCM abstractions capture those of anunderlying sys-

tem we considered the complexity of adapter development. Wefound that the

process of developing became easier with more experience and as previous imple-

mentations were refactored for greater reuse. We estimate that the time required

to integrate basic functionality (less than 6 components) of a Java-based system

was about 2 weeks. This development time depends on the programming model

and API, the documentation available, and the capabilitiesto be integrated. Our

first adapter for MUSEcap was created without any shared codeand is about 1200

lines of code. The CTK, iROS and ECT adapters share about 400 lines of code,

and added about 850, 1050 and 550 lines of additional code respectively. Overall

we found that the UCM abstractions provided adequate coverage of the underlying

systems’ capabilities: adapters were straightforward to develop. In future work

we intend to gather more evidence to support both conclusions with a wider study

involving additional systems and integrators as the platform is made available to

other research groups.

5.4.3 Performance

Next, we considered the performance and the overhead of the integration frame-

work. Applications such as PlaceMedia and the LabMonitor will poll the UIF for

new context values, or to retrieve events using the web services interface. They

then call services, send events or set context based on events received or user in-

put. To gain insight on the system’s responsiveness to application requests, we

measured the average time taken to get context supplied by the Context Toolkit,

to call a service supplied by ECT or send an iROS event at different (aggregate)

request frequencies. To do this we created simple simulatedapplications that poll

Chapter 5. Evaluation: An Integrated Campus Environment 136

once per second, then varied the number of these polling applications between 5

and 80. We then measured the average latency of the synchronous web service

calls made through the UIF to three integrated systems, the Context Toolkit, ECT

and iROS. The results are summarized in Figure 5.6.

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80

Number of Active Polling Applications

L
a
te
n
c
y CTK

ECT

iROS

Figure 5.6: Average latency (ms) vs. number of active polling applications
(once per second).

In our deployment we hosted iROS, ECT and the CTK on a single 2.13 GHz

Pentium Core Duo system with 1 GB RAM, the MUSEcap platform and the UIF in

a second 3.4 GHz Pentium D with 2 GB RAM. Simulated applications were run on

a tablet PC with 1GB of RAM and a 1.5 GHz Pentium M processor; all machines

were on the same LAN. The model consists of 535 data triples; the general purpose

rule-based reasoner uses 278 rules. These tests represent abest case response time;

before each test we restarted the system and did not change the model. The system

was primed with a light test to cache query results. At higherapplication loads

(60-80), we found that the server response time increases toover one second; ap-

plications are making requests faster than the server can respond. Overall we found

that the system response is less than 100ms for loads of up to 40 or 50 applications

polling once per second.

We then examined the overhead of the UIF system in some detailby instru-

Chapter 5. Evaluation: An Integrated Campus Environment 137

Table 5.6: Components of UIF overhead for a call to an ECT component
through the UIF framework. These average values are based on3000
samples taken at about 20 per second.

Component Average time (ms) Overall Distribution
Web to Logic Tier 1.096982 3.39%
ECL subsystem 0.491013 1.52%
Model Query 0.955580 2.95%
RMI Broker 2.576806 7.97%
Native ECT call 0.010512 0.03%
Internal time taken 5.130892 15.86%
Web Servicesa 27.214260 84.14%
Total Latency 32.345150 100.00%

acalculated by subtracting the measured average internal
time from the latency measured by the application

menting key subsystems in the framework and measuring the average time taken

for an application to call an ECT service through the UIF. As Table 5.6 indicates,

we found that the largest component of overhead was related to the use of the web

services middleware and network latency taking more than 84% of the average

time taken. Internally our system contributed just over 5 msto the average time

taken to execute a call; most of this time was used by the RMI adapter request and

adapter marshaling.

Finally we considered the responsiveness of the UIF while undergoing changes

to the model managed by the Jena general purpose rule-based reasoning engine

[1]. The composite model changes when applications add new users to the model,

or when components are added or removed by an adapter, for example. In this

experiment, summarized in Figure 5.7, one application addsthen removes a place

entity to and from the model every 10 seconds. We measured thelatency of a

getContext made every 2 seconds call from 10 other applications. The latency of

the first few calls after a model change increases to more than1 second then falls

Chapter 5. Evaluation: An Integrated Campus Environment 138

back to under 100ms as shown. After model changes, queries tothe model become

the largest component of overhead.

Latency (ms)

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140

Time (s)

L
a
te
n
c
y
 (
m
s
)

Figure 5.7: Model changes trigger forward reasoning, which causes context
requests to wait for more than a second until the reasoner hascompleted
forward reasoning and the write lock is released.

This raised some concerns about the overall scalability of our approach, and in

particular the use of an integrated general purpose reasoning engine in our system.

To explore how the query and forward reasoning time varies with the model size we

conducted two experiments. We first measured the average query time of astatic

model with various model sizes. For this experiment, we added user entities to

our model, then measured the average time required to get thecontext source and

associated adapter name associated with a specified entity and context attribute.

Our results are summarized in Table 5.7. Overall, we found that the average query

time for astaticmodel did not change significantly as the model size increased.

Figure 5.7 showed that subsequent queries are delayed untilthe model is fin-

ished updating. This raised some performance concerns. As the size of the model

increases, does this delay increase? To answer this question we measured the time

taken to complete a request after changes as the model size increases. Our results

are summarized in Figure 5.8. The top line indicates the timetaken to complete a

Chapter 5. Evaluation: An Integrated Campus Environment 139

Table 5.7: Query Time as (Static) Model Size Increases

Users Model Size Time (ms)
10 580 0.516
50 1020 0.500
100 1570 0.516
200 2670 0.547
300 3770 0.750
400 4870 0.578
500 5970 0.781
600 7070 0.609

change to the model, while the bottom line is the time taken tocomplete a query

once an update to the model is complete. Changing the model can take several sec-

onds, and varies linearly with the size of the model, whereasthe query time, once

a change is complete, is very fast and relatively invariant as the number of triples

increases.

Since we expect model changes to occur when new components and entities

are added and removed, and in some cases when context is addedto the model for

reasoning, this will add significant time to application queries that must wait for

changes to complete. To address this, we decided to use a “double buffer” scheme

to maintain two models in the UIF. One model containing all raw and deduced

data is for fast queries (called the query model), while the other is used to collect

changes to the model (called the change model). When a changeis made to the

change model, the system starts reasoning in a background thread by querying

the change model for all deduced facts. Once this query is complete, a new query

model containing the raw data and deduced facts from the change model is created.

At an appropriate time, this new query model containing new data is swapped in

replacing the previous query model.

Using this approach both queries and changes to the model arefast, however,

Chapter 5. Evaluation: An Integrated Campus Environment 140

changes to the model will not be reflected in subsequent queries until after a new

query model is generated. With large models this can take several seconds as il-

lustrated in Figure 5.8. We found this acceptable for our deployments, but aim to

explore other ways to optimize our model implementation in future work.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000
Number of Triples

C
h

an
g

e
T

im
e

(m
s)

Figure 5.8: Time required to update a model after a change.

Performance Implications

On one hand, we found that theinternal performance of the system was adequate,

but the overall performance factoring in the cost of web services middleware, pos-

sible wide area network latency, and the use of an “off the shelf” reasoning engine

may seem discouraging. However, with some additional optimizations these issues

can be readily addressed. We found that with a suitable modelcaching scheme

and the use of background reasoning it was possible to trade off query and model

change times for freshness of the environment model. By choosing light-weight

protocols, and by providing APIs to batch more than one context or service call

at once, the cost of web services calls can be reduced. Based on our experience

with web-based UCM/UIF applications, we have found that a single server-based

Chapter 5. Evaluation: An Integrated Campus Environment 141

application can serve multiple users in a single UIF application, reducing the load

on the integrated model.

5.4.4 The UIF as a Stand Alone System

For effective integration of a wide variety of systems ranging from Component

Compositions to Smart Spaces, it was necessary to support abstractions of an un-

derlying system, but to compensate formissingabstractions. To this end, some

of the missing functionality of an underlying system can be implemented directly

using the UIF. For example, an integrator can add static entities and relationships

found to be useful abstractions but missing from systems such as ECT or only

implicitly supported in iROS event fields. “Native” UCM services can broadcast

messages to users by calling single users messaging services. Our experience has

demonstrated that a system designed around the core abstractions of the UCM

may not only serve as an integration platform, but could serve as the basis for a

reference ubicomp system implementation. We aim to explorethis possibility in

collaboration with other practitioners in the ubicomp systems community.

5.5 Lessons Learned

Based on the integration experience described in this chapter, we discuss our find-

ings with respect to the use of the core Ubicomp Common Model that we believe

will be useful for both ubicomp systems developers and integrators.

A comprehensive and flexible environment model aids application resource dis-

covery. It is important for an environment model to not only contain components

(as in the ECT Dataspace, or the CTK Discoverer) but also entities, relationships,

context, and entity capabilities. These abstractions in a model provide a closer

Chapter 5. Evaluation: An Integrated Campus Environment 142

mapping between the “real world” and the digital world coordinated by the ubi-

comp system making it easier to find relevant computing resources.

Maintaining consistency between a composite model and integrated systems’

is challenging.Keeping a composite environment model in the integration system

that to some extent mirrors all or parts of the environment model of integrated

systems allowed us to unify the the computing resources of more than one system

in a consistent and unified manner. This benefits the application developer since

they need not concern themselves with how capabilities are provisioned. Moreover

since certain abstractions in the UCM such as entities and relationships may be

missing or only implicitly supported in an underlying system, this approach allows

us to compensate for missing abstractions in an integratingsystem.

That said, we found that it can be challenging to maintain consistency between

an underlying system’s model and the composite model. In ourdeployment we de-

cided to store all entities, components, static relationships and context in the model,

and delegate dynamic relationship and context requests to the underlying system.

This limits the ability for applications to discover entities by context and relation-

ships. Furthermore, without this information the UIF is unable to infer higher

level context and new relationships. While an integrator could configure the UIF

to subscribe to context changes or poll for context values periodically, this would

force the reasoning subsystem to work continuously to infernew relationships and

context values unnecessarily, raising a scalability and performance concern.

To address this we considered delegating discovery requests to the native sys-

tem. However, this would not only require a common query language to interpret

these requests, but also a mechanism to translate these queries to environment dis-

covery requests in the native system. Similarly, results from native discovery re-

quests would need to be collected and interpreted by the integration system, which

would require knowledge of the integrated model to interpret them correctly. These

Chapter 5. Evaluation: An Integrated Campus Environment 143

challenges remain an open issue for future research.

An entity abstraction is a natural way to aggregate capabilities: context, ser-

vice interfaces, events, but there is not a one to one correspondence between en-

tities and components.Based on our experience and others (e.g., [36, 68, 90]) we

have found that it is natural to aggregate capabilities suchas service interfaces,

context and events types around entities, however we found that there is not a one-

to-one relationship between entities andcomponents, the implementations of these

capabilities. More than one entity will often aggregate a component, inheriting its

capabilities. For example, a single InOut CTK context widget is associated with

both the place entity and the user entities that are tracked.These n-to-n relation-

ships can present challenges for managing event subscriptions where a single UCM

event may be supplied by multiple components.

Make entity relationships explicit as they are an importantsubclass of context.

The Cooltown system highlighted the use of entity relationships to create web links

between related entities allowing users to browse their changing environment [68].

We found that it was valuable to make these relationships explicit in our integrated

model. Entity relationships implicit in iROS event fields orContext Toolkit context

values made it easy to find devices in a meeting room or the users in the lab, for

example.

Entity type is an important subclass of context.The use of ontologies allowed

us to easily classify all entities in the system not only as people, places, and things,

but also thetypesof people (lab users, students), places (media markers, build-

ings), and things (laptops, printers). We found that it was natural to aggregate

components with certain types of entities. For example, we could aggregate an

outdoor location context source with all students, but onlyaggregate the indoor

presence widget with lab users.

Applications are not only consumers of resources, they alsomanipulate the

Chapter 5. Evaluation: An Integrated Campus Environment 144

model directly. While most systems manage context derived from sensors in the

environment, we have found that it is common for applications to not only consume

such context, but produce it. For effective integration, application-supplied context

must be propagated to the underlying system for use by nativeapplications. Appli-

cations are also a source of events; the Lab Monitor application, like Multibrowse

[65], can send user interaction events to other UIF applications and iROS services.

We found that some applications will also add and remove entities such as places

of interest, or newly registered users to an integrated model.

Most ubicomp systems share a common set of events.While several systems

have highlighted the importance of event abstractions [83,87], we have also found

that several systems share certain event types. Context Tookit updateevents, like

ECT component property changes, are signaled when context values change. When

new components are added or removed from a system, the environment model

(e.g., Discovery subsystem, Dataspace) will signal applications in case they rely

on their capabilities. So far we have found the following high level event types to

be common between systems:context/relationship changed, entity added/removed,

capability changed. Based on our experience, the consistent implementation of

these canonical events will reduce the need for applications to poll for changes

allowing applications to more readily respond to changes inthe environment.

In general we found that the core UCM abstractions are a superset of the sys-

tems’ we integrated. This is not surprising since we attempted to develop unified

abstractions based on these systems and others. While we found few abstraction

mismatches, we did find it necessary to compensate formissingabstractions such

as entities and entity relationships either in the adapter implementation or the UIF

system configuration.

From this experience we came to realize that there are a rangeof approaches to

environment integration: One is to compensate for missing abstractions in under-

Chapter 5. Evaluation: An Integrated Campus Environment 145

lying system(s) as we did. Another is to provide informationabout the integrated

system’s capabilities without any compensation for missing abstractions. In the

former case, the integration system can provide information about implied enti-

ties, interpret context data to create and maintain missingentity relationships, and

support composite services. In the latter case, the integration system can simply

provide a mechanism for accessing the existing capabilities of an underlying sys-

tem. An integrator may elect to compensate for some missing abstractions such as

static entities but not others. In a sense, our Adapter framework provides a mech-

anism for exposing system capabilities without (much) compensation for missing

abstractions.

Since our aim is to support the full range of integration approaches since we

integrate several systems with varying capabilities into asingle composite environ-

ment, a flexible model for ubicomp environments such as the UCM is required.

5.6 Summary

In this chapter we presented our evaluation of the Ubicomp Common Model. We

focused our evaluation efforts on three areas:

• Application Development. This experience helped us understand whether

our model can be used to support applications that make use of(potentially)

several ubicomp environments with varying abstraction levels. We found

that the model adequately supported application development, and allowed

us to use a single API with more than one system. The experience also

highlighted the cost of integration, in both building adapters, and the design

and configuration of a composite environment model when using multiple

systems.

Chapter 5. Evaluation: An Integrated Campus Environment 146

• Adapter Complexity. To gain an in depth understanding of the flexibility

of our model, we created adapters for four representative systems, each from

a different class of ubicomp system as outlined in Chapter 2.Overall we

found that it was possible to create adapters that provided adequate coverage

for each systems’s capabilities and that these adapters were straightforward

to develop.

• Performance. To assess the feasibility of the UIF as an integration plat-

form that uses the UCM for environment integration, we measured the per-

formance of the system under both steady state and dynamic environment

conditions. In the steady state, we found performance adequate. We then

presented an approach to address performance in changing models using a

“double buffering” scheme to trade off model freshness for fast query times.

Based on this evaluation experience we discussed some of thelessons learned

related to the use of certain UCM abstractions and implementation challenges that

can inform the design of future integration systems and ubicomp platforms. In the

next chapter we conclude this thesis and discuss future work.

147

Chapter 6

Conclusions and Future Work

In this thesis we have presented the analysis and design of a core model for ubiq-

uitous computing systems called the Ubicomp Common Model. This model was

designed to allow application developers to bridge across avariety of existing ubi-

comp platforms. To do this, it must adequately describe ubiquitous computing

environments in a manner that lends itself to both application portability, special-

ization to different environment domains, and adaptation to a variety of systems.

The UCM design was based on the comprehensive survey of ubicomp systems

presented in Chapter 2. From this survey we found that the variety of ubicomp

systems abstractions are influenced by the scale of ubicomp deployment and the

tradeoffs between making coordinated environments easy toprogram (high level

abstractions) and broad applicability (low level service/component abstractions).

We also identified the common abstractions used across systems: anenvironment

model, entities, context, entity relationships, services, eventsanddataor content.

In chapter 3 we outlined several requirements for a common model for ubi-

comp and the design of the UCM based on the common abstractions identified in

our survey. A key challenge addressed by this model is in finding the right balance

between interoperability and suitability for cross domainaccess while maintain-

ing much of the flexibility of a given underlying ubicomp system. Based on the

abstractions identified in Chapter 2 described the UCM design in some detail pre-

senting the three related aspects of the model: the Environment State, Meta State

Chapter 6. Conclusions and Future Work 148

and Implementation.

The Environment State consists of entities modeled by the supporting system,

the relationships between entities and their current context values. The Environ-

ment Meta-State aspect is required to support introspection and associates entities

with their capabilities: the types and quality of events, services, context and con-

tent they support. Finally, the Implementation aspect capturescomponentabstrac-

tions aggregated by entities that provide the services, events, context, relationships

and content in an integrated system. We then outline how the UCM addresses the

outlined requirements, provided an example of how it can be extended to support

security domains and access control, and provided use casesfor aexecutablemodel

of the UCM used in a supporting system like the Ubicomp Integration Framework

(UIF).

In chapter four we described the UIF: ametamiddleware system used to eval-

uate the feasibility of the UCM for both application development and systems in-

tegration. We describe the design and implementation of each subsystem in some

detail including a description of the use of a integrated knowledge base and reason-

ing subsystem andadapters. The key to our integration approach is to encapsulate

integrated system using an Adapter interface. Adapters provide the UIF with infor-

mation about the resources in the integrated system and handle interaction with the

system initiated by UCM applications, converting UIF protocols and data struc-

tures to and from those of the native system.

Finally in Chapter 5 we outlined our application and integration experience

deploying a composite ubicomp environment that integratedfour representative

ubicomp systems. From this experience we described our adapter design process

and comment on the system’s suitability for Application development, integration,

performance and suitability as a stand alone system for ubicomp development. We

then outlined some lessons learned related to the use of the UCM in this deploy-

Chapter 6. Conclusions and Future Work 149

ment.

6.1 Lessons Learned

Based on the experience and analysis reported in the previous chapters, we discuss

our key findings related to the use of the Ubicomp Common Modelfor ubicomp

systems integration.

6.1.1 A Common Model for Ubiquitous Computing is Useful and

Practical

There will always be a variety of ubicomp systems that support various levels of

abstraction, and scale. Certain systems will be specialized for different application

domains, and continue to track research advances in systems, software engineer-

ing and middleware. Despite continuous evolution and the wide variety of systems

and application domains for ubicomp systems, we have shown that it is practical

to derive a common model for both application portability and systems integration.

We have also shown how to instantiate this model in ameta-middlewareplatform

for systems integration by composing environments. While there are clear trade-

offs in our approach to interoperability in terms of costs ofintegration in building

adapters and configuring a composite environment, performance, and access to the

underlying capabilities of the integrated systems, our investigation has shown that

these costs are manageable. Clearly our approach of integrating diverse systems

using the Ubicomp Common Model is feasible, especially considering the benefits

of application portability and interoperability.

Chapter 6. Conclusions and Future Work 150

6.1.2 Unifying Environment Model is the Key to Integration

Our work has shown that it is feasible for the Ubicomp Common Model and a sup-

porting system to describe and support an environment modelthat unifies those of

a few representative underlying integrated systems. This can be accomplished by

replicating key resources and relationships such as entities components and aggre-

gation relationships as in the UIF. We believe that this approach, i.e. providing a

unified model in the integration system, is the key to effective integration for two

reasons. First, because it exposes a unified and consistent view of the environment

facilitating application development and portability. Second, it allows an integra-

tor to compensate for missing abstractions in an integratedsystem which is critical

when attempting to integrate systems that expose lower level abstractions such as

service and component compositions with others that exposeexplicit environment

models.

6.1.3 Entity Types and Relationships are Important Subclasses of

Context

Based on our analysis of other systems and experience we identified two important

subclasses of context that have been shown to be valuable forresource discovery

and integration.Entity relationshipsallow an application to more easily find en-

tities and their associated resources. The use of entitytypesalso makes resource

discovery easier, and enables integration rules to identify entities for the establish-

ment of entity-aggregation-component relationships.

6.1.4 Systems Share Several Common Event Types

We found that several systems share certain types of common events. These in-

cluded context changed, entity relationship changed, entity added/removed, and

Chapter 6. Conclusions and Future Work 151

capability changed. Based on our experience, the consistent use of these canoni-

cal events increases application portability and reduces the need for applications to

poll for changes in the environment.

6.1.5 Applications are Both Consumers and Producers

From our experience we have gained some insight into the dualrole of an applica-

tion in an integrated ubicomp environment. An application is not only a consumer

of computing resources (e.g. finding entities, receiving events, retrieving context

values, calling services), but also a producer. In the producer role, the applica-

tion itself is a source of events, content, context and service implementations for

other applications in the environment. While we supported this role to some ex-

tent through interfaces to set context values, relationships, add and remove entities,

in future implementations a general purpose web services interface to the Imple-

mentation aspect of the UCM may be provided so that UCM applications can also

register their resources with an integrated environment.

6.1.6 Summary

To summarize, we have shown that our approach and model is suitable for integrat-

ing a range of representative systems. Although not exhaustive, the systems chosen

for composite model integration and application development represent each cat-

egory of system as presented in Chapter 2: Component Compositions, Context

Frameworks, Smart Spaces, and Wide Area Systems. Of course while this does

not mean we can supportall systems, it does indicate that our approach is suitable

for a wide range of ubicomp systems to date.

Through the careful analysis of a wide range of ubicomp systems, we have

identified the abstractions shared by these systems, and made use of this taxon-

Chapter 6. Conclusions and Future Work 152

omy in the design of the Ubicomp Common Model. Our integration and deploy-

ment experience has informed the design of the UCM, highlighting the advantages

and challenges of maintaining a composite environment model, important forms of

context and events, and the dual role of an application.

6.2 Future Work

In future work we aim to advance the design of the UCM through continued anal-

ysis and practical integration experience. We see opportunities for enhancing and

formalizing of the Ubicomp Common Model and continued exploration of the ubi-

comp systems integration design and implementation space.From our explorations

described in this dissertation we believe that a dual approach based on analysis and

practical experience is the best way forward.

6.2.1 Enhancing and Specializing the UCM

Based on our integration experience we see opportunities toformalize certain as-

pects of the core model, and in particular the common event, context and entity

types used across systems. We would also like to further explore the development

of Environment Profiles: specializations of the UCM for certain application and

environment domains, perhaps consisting of groups of overlapping ontologies for

context, entity types, services suitable for the home, office, and other places.

6.2.2 Security

As discussed in Section 3.5, addressing security challenges will be a challenge that

needs to be addressed for cross domain ubicomp deployments (e.g. [41, 93]). In an

integration platform like the UIF, we must ensure access to computing resources

are protected either individually or in groups that may not correspond to physical

Chapter 6. Conclusions and Future Work 153

entities, geographical or network boundaries. Future integration platforms must

support a variety of access control mechanisms, from traditional name, password

and shared keys to more lightweight mechanisms that supportmore spontaneous

interactions involving the application directly.

6.2.3 Improved Scalability

We see opportunities to address scalability concerns in a composite (integrated)

environment through optimization of the reasoning subsystem. Approaches in-

clude the use of faster general purpose reasoners, special purpose reasoners tuned

to our knowledge base, and more efficient model representations in the integration

systems. Furthermore, we believe that it may be possible to federate or cluster inte-

gration systems to share the work of providing access to a composite model across

several servers.

6.2.4 Improved Application Interface

With the development of Web 2.0 applications and the use of dynamic web pages

and Asynchronous Javascript and XML (AJAX) techniques we see the increasing

use of domain specific HTTP and XML protocols rather than SOAP-based web

services. Based on recent experience with other platforms [39] we believe that

such protocol for integrated ubicomp environments may be a better fit than Web

Services standards in some situations.

Our experience also highlighted the cost of cross domain interaction. To make

the most of each web service call we believe it is important toprovide interfaces

that lend themselves to batch processing. This may include interfaces to get all

of the context associated with an entity, or subscribe to alluser entities in a given

place for example.

Chapter 6. Conclusions and Future Work 154

6.2.5 Applications as Components

Finally, we believe that the environment interface should be extended or compli-

mented with an interface that supports the dual role of an application as both a

producer and consumer of computing resources. While the Facade interface does

well in supporting the consumer role, additional interfaces are required to support

applications as producers of context, services, content and events.

6.3 In Conclusion

In this work we leveraged the considerable experience in developing ubicomp sys-

tems to date to find some common ground for application portability and systems

interoperability in ubicomp through the design of the Ubicomp Common Model.

The feasibility of using the core UCM was tested using the Ubicomp Integra-

tion Framework to integrate representative systems under acomposite environment

model. Our hope is that systems designers will continue to “climb on the shoul-

ders of giants” in their quest for ubicomp systems interoperability and portability

required for applications to be truly ubiquitous.

155

Bibliography

[1] Jena, a semantic web framework for Java.
http://jena.sourceforge.net/. last checked: 9-June-2008.

[2] Universal Description, Discovery and Integration Version 2 OASIS
Standard.http://http:
//www.oasis-open.org/specs/index.php#uddiv3.0.2.
last checked: 9-June-2008.

[3] OZONE - new technologies and services for emerging nomadic societies.
http://www.hitech-projects.com/euprojects/ozone/,
2004. last checked: 9-June-2008.

[4] SWeDE: Semantic Web Development Environment.
http://owl-eclipse.projects.semwebcentral.org/,
2005. last checked: 11-June-2008.

[5] JBoss web services.http://www.jboss.org/jbossws/, 2007. last
checked: 9-June-2008.

[6] Eclipse.org Home Page.http://www.eclipse.org/, 2008. last
checked: 11-June-2008.

[7] JBoss home page.http://www.jboss.com/, 2008. last checked:
9-June-2008.

[8] MySQL Home Page.http://www.mysql.com/, 2008. last checked:
9-June-2008.

[9] The Protégé ontology editor and knowledge acquisition system.
http://protege.stanford.edu, 2008. last checked:
11-June-2008.

[10] WebServices - Axis.http://ws.apache.org/axis/, 2008. last
checked: 9-June-2008.

Bibliography 156

[11] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and
A. Hopper. Implementing a sentient computing system.IEEE Computer,
34(8):50–56, 2001.

[12] Gustavo Alonso.Web services : concepts, architectures and applications.
Data-centric systems and applications. Springer, Berlin ;New York, 2004.

[13] Apple, Inc. Networking - Bonjour.
http://developer.apple.com/networking/bonjour/,
2007. last checked: 9-June-2008.

[14] Mark Assad, David Carmichael, Judy Kay, and Bob Kummerfeld.
PersonisAD: Distributed, active, scrutable model framework for
context-aware services. InPervasive Computing (Pervasive 2007), pages
55–72, Toronto, Canada, 2007.

[15] Jakob E. Bardram. The Java Context Awareness Framework(JCAF) - a
service infrastructure and programming framework for context-aware
applications. InPervasive Computing and Communications (PerCom
2005), pages 98–115, Munich, Germany, 2005. Springer.

[16] Jakob E. Bardram, Thomas R. Hansen, Martin Mogensen, and Mads
Soegaard. Experiences from real-world deployment of context-aware
technologies in a hospital environment. InUbiquitous Computing
(UbiComp 2006), pages 369–386, Orange County, CA, 2006.

[17] C. Becker, G. Schiele, H. Gubbles, and K. Rothermel. BASE - a
micro-broker-based middleware for pervasive computing. In Pervasive
Computing and Communications (PerCom 2003), pages 443–451, Fort
Worth, USA, 2003.

[18] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
PCOM - a component system for pervasive computing. InPervasive
Computing and Communications (PerCom 2004), pages 67–76,
Washington, DC, USA, 2004.

[19] Gregory Biegel and Vinny Cahill. A framework for developing mobile,
context-aware applications. InPervasive Computing and Communications
(PerCom 2004), pages 361–365, 2004.

[20] Michael Blackstock, Rodger Lea, and Charles Krasic. Toward a shared
model for wide area interoperability of ubiquitous computing
environments. InSystem Support for Ubiquitous Computing (Ubisys)

Bibliography 157

Workshop at Ubiquitous Computing (UbiComp 2006), Newport Beach,
CA, 2006.

[21] Michael Blackstock, Rodger Lea, and Charles Krasic. Toward wide area
interaction with ubiquitous computing environments. InEuropean
Conference on Smart Sensing and Context (EuroSSC 2006), Enschede, The
Netherlands, 2006.

[22] Michael Blackstock, Rodger Lea, and Charles Krasic. Adapting ubicomp
systems to a common model. InCommon Models and Patterns for
Pervasive Computing Workshop (CMPPC) at Pervasive 2007, Toronto,
Canada, 2007.

[23] Michael Blackstock, Rodger Lea, and Charles Krasic. Managing an
integrated ubicomp environment using ontologies and reasoning. In
Context Management and Reasoning (CoMoRea) Workshop at Pervasive
Computing and Communications (PerCom 2007), New York, 2007.

[24] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A
generic architecture for storing and querying RDF and RDF schema. In
The Semantic Web ISWC 2002, pages 54–68. Springer Berlin / Heidelberg,
2002.

[25] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A.
Shafer. Easyliving: Technologies for intelligent environments. In
Proceedings of the 2nd international symposium on Handheldand
Ubiquitous Computing, Bristol, UK, 2000. Springer-Verlag. 743885 12-29.

[26] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard ontology for
ubiquitous and pervasive applications. InInternational Conference on
Mobile and Ubiquitous Systems: Networking and Services, Boston, MA,
2004.

[27] Harry Chen, Tim Finin, and Anupam Joshi. An ontology forcontext-aware
pervasive computing environments.Knowledge Engineering Review,
18(3):197–207, 2003.

[28] Harry Chen, Tim Finin, Anupam Joshi, Lalana Kagal, Filip Perich, and
Dipanjan Chakraborty. Intelligent agents meet the semantic web in smart
spaces.IEEE Internet Computing, 8(6):69–79, 2004.

[29] Stuart Cheshire. Zero configuration networking (Zeroconf).
http://www.zeroconf.org/, 2007. last checked: 9-June-2008.

Bibliography 158

[30] Eleni Christopoulou and Achilles Kameas. GAS Ontology: An ontology
for collaboration among ubiquitous computing devices.International
Journal of Human-Computer Studies, 62(5):664–685, 2005.

[31] Roger L. Costello. Web services best practice, summary3.
http://lists.xml.org/archives/xml-dev/200201/
msg00477.html, January 2002. last checked: 9-June-2008.

[32] Cristiano Andr da Costa, Adenauer Corra Yamin, and Cludio
Fernando Resin Geyer. Toward a general software infrastructure for
ubiquitous computing.IEEE Pervasive Computing, 7(1):64–73, 2008.

[33] Nigel Davies and Hans-Werner Gellersen. Beyond prototypes: Challenges
in deploying ubiquitous systems.IEEE Pervasive Computing, 1(1):26–35,
2002.

[34] Anind K. Dey. Providing Architectural Support for Building Context-Aware
Applications. Phd thesis, Georgia Institute of Technology, 2000.

[35] Anind K. Dey and Gregory D. Abowd. Toward a better understanding of
context and context-awareness. InCHI 2000 Workshop on the What, Who,
Where, When, and How of Context-Awareness, The Hague, The
Netherlands, April 2000.

[36] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyping of
context-aware applictions.Human-Computer Interaction (HCI) Journal,
16(2-4):97–166, 2001.

[37] Anind K. Dey, Daniel Salber, Gregory D. Abowd, and Masayasu Futakawa.
The Conference Assistant: Combining context-awareness with wearable
computing. InProceedings of the 3rd International Symposium on
Wearable Computers, pages 114–128, Dublin, Ireland, 1999.

[38] T.B. Downing.Java RMI: Remote Method Invocation. IDG Books
Worldwide, Inc. Foster City, CA, USA, 1998.

[39] Aiman Erbad, Michael Blackstock, Adrian Friday, Rodger Lea, and Jalal
Al-Muhtadi. MAGIC Broker: A middleware toolkit for interactive public
displays. InMiddleware Support for Pervasive Computing (PerWare)
Workshop at Pervasive Computing and Communications (PerCom 2008),
pages 509–514, Hong Kong, March 2008.

Bibliography 159

[40] Matthias Finke, Michael Blackstock, and Rodger Lea. Deployment
experience toward core abstractions for context aware applications. In2nd
European Conference on Smart Sensing and Context (EuroSSC), Kendal,
UK, 2007. Springer.

[41] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans
Kaashoek, and Robert Morris. Persistent personal names forglobally
connected mobile devices. InProceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’06), Seattle,
Washington, November 2006.

[42] A. Fox, A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. Integrating
information appliances into an interactive workspace.IEEE Computer
Graphics and Applications, 20(3):54–65, 2000.

[43] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink. Supporting
service discovery, querying and interaction in ubiquitouscomputing
environments.Wireless Networks, 10(6):631–641, 2004.

[44] Erich Gamma.Design patterns : elements of reusable object-oriented
software. Addison-Wesley professional computing series. Addison-Wesley,
Reading, Mass., 1995. Erich Gamma ... [et al.]. ill. ; 25 cm.

[45] Paul Grace, Gordon S. Blair, and Sam Samuel. A reflectiveframework for
discovery and interaction in heterogeneous mobile environments.
SIGMOBILE Mob. Comput. Commun. Rev., 9(1):2–14, 2005.

[46] Chris Greenhalgh. EQUIP: a software platform for distributed interactive
systems. Technical Report 02-002, Mixed Reality Laboratory, University
of Nottingham, 2002.

[47] Chris Greenhalgh, Shahram Izadi, James Mathrick, Jan Humble, and Ian
Taylor. ECT: a toolkit to support rapid construction of ubicomp
environments. InSystem Support for Ubiquitous Computing (Ubisys)
Workshop at Ubiquitous Computing (UbiComp 2004), Nottingham, UK,
2004. Springer.

[48] R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, T. Anderson,
B. Bershad, G. Boriello, S. Gribble, and D. Wetherall. System support for
pervasive applications.ACM Transactions on Computer Systems,
22(4):421–486, 2004.

Bibliography 160

[49] William G. Griswold, Robert Boyer, Steven W. Brown, andTan Minh
Truong. A component architecture for an extensible, highlyintegrated
context-aware computing infrastructure. InICSE ’03: Proceedings of the
25th International Conference on Software Engineering, pages 363–372,
Washington, DC, USA, 2003. IEEE.

[50] William G. Griswold, Patricia Shanahan, Steven W. Brown, Robert Boyer,
Matt Ratto, R. Benjamin Shapiro, and Tan Minh Truong. ActiveCampus:
Experiments in community-oriented ubiquitous computing.Computer,
37:73–81, 2004.

[51] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an OSGi-based
infrastructure for context-aware applications.IEEE Pervasive Computing,
3(4):66–74, October-December 2004.

[52] V. Haarslev and R. Möller. Racer: A Core Inference Engine for the
Semantic Web.Proceedings of the 2nd International Workshop on
Evaluation of Ontology-based Tools, pages 27–36, 2003.

[53] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Storage.Proceedings
of the 1st International Workshop on Practical and ScalableSemantic
Systems (PSSS03), pages 1–20, 2003.

[54] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, andPaul Webster.
The anatomy of a context-aware application. InMobiCom ’99, pages
59–68, New York, NY, USA, 1999. ACM.

[55] Karen Henricksen and Jadwiga Indulska. A software engineering
framework for context-aware pervasive computing. InPervasive
Computing and Communications (PerCom 2004), page 77, Los Alamitos,
CA, USA, 2004. IEEE.

[56] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling
context information in pervasive computing systems. InPervasive
Computing (Pervasive 2002), Zurich, Switzerland, 2002. Springer.

[57] Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Rothermel, and
Markus Schwehm. Next century challenges: Nexus: an open global
infrastructure for spatial-aware applications. InMobiCom ’99, pages
249–255, New York, NY, USA, 1999. ACM.

[58] J. I. Hong and J. A. Landay. An architecture for privacy-sensitive
ubiquitous computing. InMoble Systems, Applications and Services
(MobiSys 2004), Boston, MA, USA, 2004.

Bibliography 161

[59] Jason I. Hong. Context Fabric: Infrastructure supportfor context aware
systems. InCHI ’02 extended abstracts on Human factors in computing
systems, Minneapolis, Minnesota, USA, 2001. ACM.

[60] A. Huang, B. Ling, J. Barton, and A. Fox. Making computers disappear:
Appliance Data Services. InMobiCom ’01, Rome, Italy, 2001.

[61] Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Petter Akesson,
Boriana Koleva, Tom Rodden, and Par Hansson. Playing with the bits -
user-configuration of ubiquitous domestic environments. In UbiComp
2003, Seattle, WA, USA, 2003.

[62] Valrie Issarny, Daniele Sacchetti, Ferda Tartanoglu,Francoise Sailhan,
Rafik Chibout, Nicole Levy, and Angel Talamona. Developing ambient
intelligence systems: A solution based on web services.Automated
Software Engineering, 12(1):101–137, 2005.

[63] B. Johanson, B. Johanson, A. Fox, and T. Winograd. The interactive
workspaces project: experiences with ubiquitous computing rooms.IEEE
Pervasive Computing, 1(2):67–74, 2002.

[64] Brad Johanson and Armando Fox. The Event Heap: A coordination
infrastructure for interactive workspaces. InProceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applications. IEEE
Computer Society, 2002. 837560 83.

[65] Brad Johanson, Shankar Ponnekanti, Caesar Sengupta, and Armando Fox.
Multibrowsing: Moving web content across multiple displays. In
Ubiquitous Computing (Ubicomp 2001), pages 346–353, London, UK,
2001. Springer-Verlag.

[66] Dimitris N. Kalofonos, Zoe Antoniou, Franklin D. Reynolds, Max
Van-Kleek, Jacob Strauss, and Paul Wisner. MyNet: A platform for secure
P2P personal and social networking services.PerCom 2008, 0:135–146,
2008.

[67] Apu Kapadia, Tristan Henderson, Jeffrey J. Fielding, and David Kotz.
Virtual Walls: Protecting digital privacy in pervasive environments. In
Pervasive Computing (Pervasive 2007), pages 162–179, Toronto, Canada,
May 2007 2007. Springer.

[68] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, et al. People, Places, Things:

Bibliography 162

Web Presence for the Real World. InMobile Computing Systems and
Applications Workshop, Monterey, CA, December 2000. IEEE Computer
Society.

[69] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, et al. Place Lab: Device
Positioning Using Radio Beacons in the Wild. InPervasive Computing
(Pervasive (2005), volume 3468, pages 116–133. Springer, 2005.

[70] Rodger Lea and Michael Blackstock. Ubisys 2006 workshop report.
http://www.magic.ubc.ca/ubisys/overview.htm, 2006.
last checked: 9-June-2008.

[71] David S. Linthicum.Next Generation Application Integration.
Addison-Wesley Information Technology Series. Addison-Wesley, 2003.

[72] S. Maffioletti and B. Hirsbrunner. Ubidev: An homogeneous environment
for ubiquitous interactive devices. InPervasive Computing (Pervasive
2002), pages 28–38, August 2002.

[73] B. McBride. Jena: a semantic web toolkit.Internet Computing, IEEE,
6(6):55–59, Nov/Dec 2002.

[74] Microsoft. Understanding Universal Plug and Play: A white paper.
http://www.upnp.org/download/UPNP_
UnderstandingUPNP.doc, 2000. last checked: 9-June-2008.

[75] Richard Monson-Haefel.Enterprise JavaBeans. O’Reilly, 3rd edition,
2001.

[76] Mark W. Newman, Jana Z. Sedivy, Christine M. Neuwirth, W. Keith
Edwards, Jason I. Hong, Shahram Izadi, Karen Marcelo, and Trevor F
Smith. Challenge: Recombinant computing and the Speakeasyapproach.
In Mobicom ’02, 2002.

[77] Daniela Nicklas, Matthias Grobmann, Thomas Schwarz, and Steffen Volz.
A model based, open architecture for mobile, spatially aware applications.
In SSTD 2001: Proceedings of the 7th International Symposium on Spatial
and Temporal Databases, Redondo Beach, CA, USA, 2001. Springer.

[78] Daniel Oberle, Andreas Eberhart, Steffen Staab, Raphael Volz, and
In Hans-Arno Jacobsen. Developing and managing software components in
an ontology-based application server. InMiddleware 2004,

Bibliography 163

ACM/IFIP/USENIX 5th International Middleware Conference, volume
3231 ofLNCS, pages 459–478, Toronto, Ontario, Canada, 2004. Springer.

[79] Object Management Group (OMG).The Common Object Request Broker:
Architecture and Specification, Version 2.6.1, May 2002.

[80] Open Services Gateway Initiative Alliance. OSGi Home Page.
http://www.osgi.org/, 2008. last checked: 9-June-2008.

[81] Organization for the Advancement of Structured Information Standards.
OASIS Web Services Security (WSS) TC.
http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss, 2008. last checked: 27-Sept-2008.

[82] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd. ICrafter: A service framework for ubiquitous computing
environments. InUbiComp ’01: Proceedings of the 3rd international
conference on Ubiquitous Computing, pages 56–75, London, UK, 2001.
Springer.

[83] S.R. Ponnekanti, S.R. Ponnekanti, B. Johanson, E. Kiciman, and A. Fox.
Portability, extensibility and robustness in iROS. In B. Johanson, editor,
Pervasive Computing and Communications (PerCom 2003), pages 11–19,
2003.

[84] A. Ranganathan, R.E. McGrath, R.H. Campbell, and M.D. Mickunas.
Ontologies in a pervasive computing environment. InProceedings of the
IJCAI-03 Workshop on Ontologies and Distributed Systems, volume 71,
Acapulco, Mexico, 2003.

[85] Anand Ranganathan and Roy H. Campbell. A middleware for
context-aware agents in ubiquitous computing environments. In
Middleware 2003, volume 2672/2003, pages 143–161. Springer Berlin /
Heidelberg, 2003.

[86] Hans Gellersen Rene Mayrhofer. Shake well before use: Authentication
based on accelerometer data. InPervasive Computing (Pervasive 2007),
pages 144–161, Toronto, Canada, 2007. Springer.

[87] Manuel Roman, Christopher Hess, Renato Cerqueira, Anand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware platform for
active spaces.SIGMOBILE Mob. Comput. Commun. Rev., 6(4):65–67,
2002.

Bibliography 164

[88] W.A. Ruh, W.J. Brown, and F.X. Maginnis.Enterprise Application
Integration: A Tech Brief. John Wiley & Sons, Inc. New York, NY, USA,
2001.

[89] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context
Toolkit: Aiding the development of context-enabled applications. InCHI,
pages 434–441, 1999.

[90] Bill N. Schilit, Norman Adams, Rich Gold, Michael Tso, and Roy Want.
The PARCTAB mobile computing system. InFourth Workshop on
Workstation Operating Systems (WWOS-IV), pages 34–39, Napa, CA,
USA, 1993. IEEE.

[91] Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. Customizing
mobile applications. InUSENIX Symposium on Mobile and
Location-Independent Computing, 1993.

[92] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL DL reasoner.Journal of Web
Semantics, 5(2):51–53, 2007.

[93] DK Smetters, D. Balfanz, G. Durfee, T.F. Smith, and K. Lee. Instant
Matchmaking: Simple and Secure Integrated Ubiquitous Computing
Environments. InUbiquitous Computing (Ubicomp 2006), volume 4206,
page 477, Orange County, CA, Sept. 17-21, 2006 2006. Springer.

[94] J. Pedro Sousa and David Garlan. Aura: an architecturalframework for
user mobility in ubiquitous computing environments. InProceedings of the
3rd IEEE/IFIP Conference on Software Architecture. Kluwer, B.V., 2002.

[95] Oliver Storz, Adrian Friday, and Nigel Davies. Towards“ubiquitous”
ubiquitous computing: an alliance with the grid. InSystem Support for
Ubiquitous Computing (Ubisys) Workshop at Ubiquitous Computing
(UbiComp 2003), Seattle, 2003.

[96] Sun Microsystems. The JavaBeans specification.
http://java.sun.com/javase/technologies/desktop/
javabeans/docs/spec.html, 1997. last checked: 9-June-2008.

[97] Sun Microsystems. Java 2 Platform, Enterprise Edition(J2EE) Overview.
http://java.sun.com/j2ee/overview.html, 2008. last
checked: 9-June-2008.

Bibliography 165

[98] Sun Microsystems. Java Enterprise Edition at a Glance.
http://java.sun.com/javaee/, 2008. last checked: 9-June-2008.

[99] Joo Geok Tan, Daqing Zhang, Xiaohang Wang, and Heng SengCheng.
Enhancing semantic spaces with event-driven context interpretation. In
Pervasive Computing (Pervasive 2005), volume 3468/2005, pages 80–97,
Munich, Germany, 2005. Springer. 3468.

[100] Phil Tetlow, Jeff Z. Pan, Daniel Oberle, Evan Wallace,Michael Uschold,
and Elisa Kendall. Ontology driven architectures and potential uses of the
semantic web in systems and software engineering.
http://www.w3.org/2001/sw/BestPractices/SE/ODA/,
2006. last checked: 9-June-2008.

[101] W3C. Resource Description Framework.http://www.w3.org/RDF/,
2004. last checked: 9-June-2008.

[102] W3C. Web Ontology Language (OWL) overview.
http://www.w3.org/TR/owl-features/, 2004. last checked:
9-June-2008.

[103] W3C. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2005. last
checked: 9-June-2008.

[104] W3C. SOAP version 1.2 part 0: Primer (second edition).
http://www.w3.org/TR/soap12-part0/, 2007. last checked:
9-June-2008.

[105] W3C. Web Services Description Language (WSDL) version 2.0 part 0:
Primer.http://www.w3.org/TR/wsdl20-primer/, June 2007.
last checked: 9-June-2008.

[106] J. Waldo. The Jini architecture for network-centric computing.
Communications of the ACM, 47(7):76–82, 1999.

[107] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The Active
Badge location system.ACM Transactions on Information Systems,
10(1):91–102, 1992.

[108] Mark Weiser. The computer for the 21st century.Scientific American,
265(9):94–104, 1991.

Bibliography 166

[109] Lawrence Wilkes. ROI - the costs and benefits of web services and service
oriented architecture.
http://roadmap.cbdiforum.com/reports/roi/, 2008. last
checked: 9-June-2008.

[110] D. Wood, P. Gearon, and T. Adams. Kowari: A Platform forSemantic Web
Storage and Analysis.Proceedings of the 14th International WWW
Conference, 2005.

