A Common Model for Ubiquitous Computing

by

Michael Anthony Blackstock

B.A.Sc., The University of British Columbia, 1991
M.Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
in
The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia
October, 2008
(© Michael Anthony Blackstock 2008

Abstract

Ubiquitous computing (ubicomp) is a compelling vision favwhpeople will in-

teract with multiple computer systems in the course of tdaity lives. To date,
practitioners have created a variety of infrastructureisidiaware and toolkits to
provide the flexibility, ease of programming and the neagssaordination of dis-
tributed software and hardware components in physicalespac

However, to-date no one approach has been adopted as at defdelfacto
standard. Consequently the field risks losing momentumaggrfentation occurs.
In particular, the goal of ubiquitous deployments may saligroups deploy and
trial incompatible point solutions in specific locations.their defense, researchers
in the field argue that it is too early to standardize and thatris needed to explore
specialized domain-specific solutions.

In the absence of an agreed upon set of standards, we argtigeticammunity
must consider a methodology that allows systems to evoldespacialize, while
at the same time allowing the development of portable agitins and integrated
deployments that work between between sites.

To address this we studied the programming models of manymaoial and
research ubicomp systems. Through this survey we gaineda@erstanding of
the shared abstractions required in a core programming Insodable for both
application portability and systems integration.

Based on this study we designed an extensible core modetldakk Ubicomp

Abstract ili

Common Model (UCM) to describe a representative sample igitbus systems
to date. The UCM is instantiated in a flexible and extensilidgfgrm called the
Ubicomp Integration Framework (UIF) to adapt ubicomp systdo this model.
Through application development and integration expegeamith a composite
campus environment, we provide strong evidence that thidefrie adequate for
application development and that the complexity of devielpdapters to several
representative systems is not onerous. The performanceadt introduced by
introducing the centralized UIF between applications améhgegrated system is
reasonable. Through careful analysis and the use of weltrstmbd approaches
to integration, this thesis demonstrates the value of ouhoda®logy thatdirectly
leverages the significant contributions of past researabumquest for ubicomp

application and systems interoperability.

Table of Contents

Abstract
TableofContents
Listof Tables
Listof Figures e
Listof Programs e
Glossary e e
Acknowledgements

1 Introduction and Motivation
1.1 Challenges
1.2 Integration Approach
1.3 Ubicomp Programming Models
14 ResearchFocus

1.5 ThesisOutline

2 Survey and Analysis of Ubiquitous Systems.
2.1 Categories of Ubicomp Systems

2.1.1 Abstractionlevels

Xi

Xiii

Xiv

Table of Contents v

2.2

2.3

2.4

2.5

2.1.2 ScaleofDeployment 18
2.1.3 Organization, 20
Component Composition Systems 20
2.2.1 Commercial Systems and Standards 22
2.2.2 Appliance DataServices 23
2.2.3 SpeakEasy/Obje 24
2.2.4 Equip ComponentToolkit 25
225 PCOM 25
2.2.6 Reflective Middleware for Mobile Computing (ReMMoC) 6 2
2.2.7 Discussion 26
Context Frameworks 27
231 ParcTab 27
2.3.2 TheContextToolkit 29
233 Oneworld 29
2.3.4 SentientObjects 30
2.3.5 Java Context Aware Framework 31
2.3.6 Discussion 31
SmartSpace Systems oo 32
241 ROS 32
2.4.2 SentientComputing, 34
243 InConcert/Easy Living 34
244 Gaia ... e 35
245 OntologyBased Systems 36
24.6 Discussion 37
Wide Area Systems 37
251 Cooltown 38

252 ContextFabric, 40

Table of Contents Vi

253 Nexus 40
254 Aura ... 41
255 ActiveCampus 42
2.5.6 Web Services for Ambient Intelligence (WSAMI) 42
257 DISCUSSION 43
2.6 Common Abstractions Derived from the Survey 44
27 Conclusions 46
The Ubicomp CommonModel 48
3.1 Common Model Requirements 48
3.2 Existing Systems’ Abstractions 51
3.2.1 Core Abstractions to a Common Model 54
3.3 The Ubicomp Common Model Design 56
3.3.1 EnvironmentState 59
3.3.2 Environment Meta-state 60
3.3.3 Environment Implementation 61
3.34 Summary ... e e e 63
3.35 ModelExample 63
3.4 ModelDiscussion 65
3.41 Portability 0 65
3.4.2 Specialization, 65
3.4.3 Introspection 66
3.4.4 Mapping to existing systems abstractions 6 6
3.5 AccessControland Security 68
3.5.1 SecurityExample 72
3.6 Use Cases for an Executable UCM 76
3.6.1 Design/integration Time UseCases 76

Table of Contents Vii

3.6.2 RunTimeUseCases 77
3.7 Summary ... e e 79
The Ubicomp Integration Framework 81
4.1 Analysisand Approach 81
4.1.1 Analogy to Enterprise Application Integration 82
4.1.2 Environment Model Management 85
4.1.3 Cross-Domain Interaction 87
4.2 Implementation Overview 88
43 Facade 92
4.4 Environment CompositionLogic 96
4.4.1 Environment and Entity Interaction 96
4.4.2 Application and Subscription Management 99
45 ModelandReasoning 101
4.6 ComponentContainero... 103
4.7 Message Broker: AdapterManager 105
4.8 Adapters 106
4.8.1 Adapter Framework 108
4.9 Summary e e e 110
Evaluation: An Integrated Campus Environment 112
5.1 Applications 113
511 PlaceMedia 114
5.1.2 LabMonitor 116
5.1.3 EnvironmentBrowser 118
5.2 Systemlintegration, 119

5.2.1 Campus Composite Environment Model 119

Table of Contents Viii

5.3 Adapter Design and Implementation 012
5.3.1 Equip Component Toolkit Adapter 121
5.3.2 Context Toolkit Adapter 122
5.3.3 iROSAdapter 126
5.3.4 MUSEcapAdapter, 128
5.3.5 Adapter Implementation Summary 130
5.3.6 Adapter DesignProcess 131

54 Evaluation 134
5.4.1 Application Development 134
5.4.2 Adapter Complexity 135
543 Performance, 135
5.44 TheUlFasaStand AloneSystem 141

55 LessonslLearned 141

56 Summary e e 145

Conclusions and Future Work 147

6.1 LessonslLearned 149

6.1.1 A Common Model for Ubiquitous Computing is Useful

and Practical 149
6.1.2 Unifying Environment Model is the Key to Integration. . 150
6.1.3 Entity Types and Relationships are Important Subekas

ofContext, 150

6.1.4 Systems Share Several Common Event Types 150
6.1.5 Applications are Both Consumers and Producers . .. 51 1
6.1.6 Summary 151
6.2 FutureWork 152

6.2.1 Enhancing and Specializingthe UCM 152

Table of Contents iX

6.2.2 Security e e 152
6.2.3 Improved Scalability 153
6.2.4 Improved Application Interface 153
6.2.5 Applications as Components 154
6.3 InConclusion 154

Bibliography 155

List of Tables

2.1
2.2
2.3
2.4
2.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Summary of Surveyed Component Composition Systems. 21
Summary of Surveyed Context Frameworks. 8 2
Summary of Smart Space Systems. 33
Summary of Wide Area Systems. 39
Summary of the Abstractions Used by Ubicomp Systems. . . . 45
ECT Adapter UCM Abstractions 122
Context Toolkit Adapter UCM Abstractions 123
UCM Abstractions Mapped to the iROS System 7 12
UCM Abstractions Mapped to the MUSEcap System 9 12
Adapter Implementations by UCM Abstraction 131
Components of UIFOverhead 137

Query Time as (Static) Model Size Increases 139

List of Figures

11

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4

Ubicomp deployments under a common model.
Ubicomp systems surveyed by scale and abstraction level . .

Smartcampus

Notation

The three aspects of the Ubicomp Common Model

Environment State abstractions and relationships.
Environment Meta-State abstractions and relatiosship.
Environment Implementation abstractions and relatigrs.

Key objects and relationships ofthe UCM.
Example State, Meta-State and Implementation aspects.. . .
Access control property associated with capabilities.
Example of AC properties used to mark security domains. . .
Access control and security example.

Example of capabilities restricted by UIA personalugro.

Ubicomp Integration Framework Architecture.
High level interaction between UIF subsystems.
Key classes of Environment Composition Logic.

Sequence diagram for Facade.callService().

Xi

. 3

19

61

89
90
97

List of Figures Xii

4.5
4.6

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8

Key classes and interfaces of Component Container stdmsy . . 104

Key classes of the Adapter framework. 081
Composite campus environment deployment. 113
PlaceMedia userinterface. 115
Lab Monitor application user interface. 117
Environment Browser user interface. 118
Composite environmentmodel. 120
Average latency vs. number of active polling appligagio 136
Latency of queries when modelchanges. 38 1

Time required to update a model afterachange. 140

Xiii

List of Programs

3.1
3.2

4.1
4.2

5.1

Example Environment State RDF fragment.| 0O 6
Example Environment Meta-State RDF fragment. 62
AdapterListenerinterface. 610
Adapterinterface. oo 107

Component description for a Context Source. 125

Xiv

Glossary

Adapter Software component that maps heterogeneous data, irgsréaa pro-

tocols to a common model and data format. 83

AdapterManager The UIF Message Brokeimplementation that mediates inter-

action messages between the UIF and its adapters. 99

Component Container UIF subsystem that hosts “native” UCM components in-

stantiated by the system. 89

Context Widget A Context Toolkit software component that provides access t
context information in their operating environment. Applions can query

their state or subscribe to context changes[34]. 29

DataObject UIF internal object used as a generic data structure desigmenar-

shaling to SOAP and integrated systems. 93

Dataspace A data sharing service similar to a tuplespace used in thelP@dm-
ponent Toolkit (ECT) to relay events and share state betweftware com-

ponents [46]. 25

Discoverer A Context Toolkit software component used by applicatianbotate
components such as Context Widgets and Aggregators thaf amerest to
them based on the attributes (e.g., location, usernansinitarested in.[34].

29

Glossary XV

Enterprise JavaBeans A component model for component transaction monitors.
There are three types of server-side components calletpeisibeans: en-

tity, session and message-driven bearkl5

Entity Aggregator A Context Toolkit software component that is acts as a medi-
ator between applications and Context Widgets. It is resipés for all of

the context about a particular entity (person, place oighjg4]. 29

Environment Composition Logic (ECL) UIF subsystem that dispatches calls to
integrated ubicomp systems and maintains event subsaripfor applica-

tions. 89

Event Heap A tuplespace based coordination system used in iROS whpelestu
are calledevents and contain certain mandatory fields for sequencing and

garbage collection [64]. 33

Facade In the Facade design pattern [44], tfagadeis an object that provides
a simplified interface to a larger body of code. In the Ubicdmiegration
Framework, the Facade is a Java object exposed using Welktðat

provides a single interface to an integrated ubicomp enuient. 81

ICrafter A service infrastructure for the iROS system that includesise aggre-

gation and user interface creation and selection [82]. 53

Java 2 Enterprise Edition Version of the Java Platform used for the development
and deployment of enterprise applications [97]. The latession of this
system is now simply called Java Platform, Enterprise Bui{Java EE)
[98]. 92

1[75] pp 23-24

Glossary XVi

JavaBeans A software technology for building reusable Java companeatied
“beans”. Beans are Java classes that follow a conventionduoting, con-
struction and behavior for reuse and manipulation visuallg builder tool

[96]. 25

Message Broker A software intermediary that broker's messages between int

grated systems. 6

Model and Reasoner UIF subsystem that maintains the current environment model
including the UCM itself, specializations of the UCM, entihstances, static
context values, capabilities, component descriptionsthan relationships

using a knowledge base and associated reasoning engine. 89
OWL Web Ontology Language. 56
RDF Resource Description Framework. 10

Session BeanA type of server-side component used in Java-based componen
transaction monitors typically used to implement appiaatogic. See also

Enterprise Javabean 128

2[75]

XVii

Acknowledgements

This work would not have been possible without the help, aregement and fi-
nancial support of my supervisors Dr. Rodger Lea and Dr. IEgaBuck’ Krasic.
It is difficult for me to overstate my appreciation to Dr. Lefter first meeting he
quickly become not only a good friend but a mentor, helpingfaoeis my thesis
research, providing valuable feedback and by introduciegaerother researchers
in the ubiquitous and pervasive systems community.

| wish to thank Dr. Krasic for taking me on as his first PhD stutdel am
grateful for his open door policy, for the time that he speithuwne brainstorming,
challenging my ideas, for his feedback and support botheanazhlly and career-
wise.

Thank you to the National Sciences and Engineering Reseaoticil of
Canada for their finanical support for my first two years oflgiiand for the Uni-
versity of British Columbia University Graduate Fellowgtgrogram for my third
year.

I'd also like to thank all of my friends and colleagues. WHilean't thank
everyone, | must single out a few people: Kan Cai, Matt Fiffleay Tang, Aiman
Erbad, Nicole Arksey, Phillip Jeffrey, Meghan DeutchercRaeung, Nels An-
derson, Vincent Tsao, Crystal Giesbrecht, and Gavin Tianhieir collaboration
and feedback. Thank you to Dr. Adrian Friday for his help aigmg Ubisys and
CMPPC workshops, and for his feedback during his visit to M@@&nd for his

Acknowledgements Xviii

hospitality during my visits to Lancaster.
| cannot finish without saying how grateful | am to my family fbeir encour-
agement and support. | dedicate this thesis to my beautifiel im, my sons

Danny and Marcus, and to my parents.

Chapter 1

Introduction and Motivation

Ubiquitous computing (ubicomp) is a compelling vision fawh computing re-
sources will become an integral part of our daily lives [108] future living and
working environments, such as our homes [25], schools @@kting rooms [83]
and hospitals [16], sensors and services embedded in amemeént can be used
by applications hosted on portable devices such as laptopuaters, smart phones,
personal entertainment devices, or in the environmerif.itse

To support this vision, a variety of middleware, toolkitadaoperating systems
have been created. Over time, these innovative and pionesystems have ma-
tured to address many research issues both unique to wigubmputing and/or
inherited from distributed systems. These include suakesas hiding the hetero-
geneity of underlying infrastructures, scalability, degability, security, privacy,
spontaneous interoperation, mobility, context awargrasgext management, ap-
plication mobility, and human computer interface issuez].[3While this com-
pelling vision has inspired much research in all of thesagrafter more than 15
years ubicomp systems have (mostly) been confined to labtppeats and relatively
limited deployments. Many reasons have been cited for #uk bf deployment
[33]. In some cases it can be difficult to persuade others ¢oauson-standard
technology; perhaps there is a perception that, as resgaotbtypes, software
guality and ongoing support from their creators will be dioemble [95]. That

said, even when researchers have attempted to leverageirdstructure and

Chapter 1. Introduction and Motivation 2

middleware standards such as the Open Systems Gatewayivei{OSGi) [80] or
Web protocols (e.g. [68]) ubicomp systems still have notbewlely adopted.

Without agreed apon standards, or even a set of best potickow to build
ubicomp systems, designers have primarily focused on stipg@pplications and
user access within single administrative or network domairhis has led to ‘is-
lands’ of ubicomp installations specialized for specifiplagations, physical lo-
cations and devices. Unless a solution can be found, thedaskandards or a
common platform will continue to be an impediment to the wlead adoption
of ubicomp systems in the ‘real world'.

To bridge islands of existing and future ubicomp deployreewe propose the
development of &zommon modefior ubicomp systems that facilitates a mapping
to existing ubicomp systems’ programming models. This alllbw developers to
create new applications, assured that a suitable inteemedi gateway will allow
their application to run on existing systems. It will alsgpart the development
of cross domain applications, allowing developers to lwidkjands of ubicomp
deployments. Furthermore, we argue that the developmemtommon model is
a first step toward standardization of ubicomp deploymentsthe establishment
of a common reference platform.

The current deployment situation for many ubicomp systegriustrated in
Figure 1.1 (a). Application 1 and 2 are dependent on ubiconyraments A
and B respectively. These applications can only accessoamuient resources that
they are designed for, and only (typically) within the sardmmistrative and net-
work domain. With a common model and supporting infrastiest applications
can make use of environment resources across domain bis)dadependent of
location and ubicomp system used as shown in Figure 1.1 (bjeder, disparate
ubicomp systems can be integrated under a single integes&tbnment model

as shown. Environments can be composed to integrate emamtiresources such

Chapter 1. Introduction and Motivation 3

Application 3 Application 4
Domain Boundary

Common Model and
Application 2 Integration System

Adapter A }[Adapter B
S

Environment B :
Environment B

(a) Existing ubicomp deployments (b) Integrated deployments

Figure 1.1: Current and future integrated ubicomp deployments undena ¢
mon model.

as smart meeting rooms, and classrooms across larger ghlggiations such as a
cities, campuses or buildings or across branch locatioascofmpany.

The question then arises, if a common model for ubicomp isedéor appli-
cation portability and systems interoperability, why omes Imot been proposed by
the research community? To understand these issues, tnar énieiped organize
two workshops: Systems Support for Ubiquitous Computingigys) at Ubicomp
2006, and Common Models and Patterns for Pervasive Congp{@isPPC 2007)
at Pervasive 2007.

Several submissions and discussions at Ubisys '06 wereséacan common
abstractions, and models toward interoperability andghdity supported by sys-
tems and tools[70]. At CMPPC 2007, participants agreedrtiaty existingsys-
tems can serve as examples for techniques, best practidedeaign patterns for

ubicomg. Both of these workshops helped shape this thesis, espyettial dis-

Iseeht t p: / / ww. ubi sys. or g/ i ndex. php/ Mai n/ CnppcResul t's

Chapter 1. Introduction and Motivation 4

cussions on patterns, techniques and guidelines at CMIPRE have begun to
document the collective experience of the ubicomp and pemasystems com-
munity into an online resourée In one area of this community portal we have
documented specific patterns and techniques such as thé legerd BrokersWeb
services andentity aggregatiorused in a variety of systems and captured in our
work [20-23, 40].

While consensus on a programming model is recognized anrtargoong
term goal, this workshop participation highlighted thetfdmat agreement on one
is far from straightforward for two reasons. One is that thklfcontinues to evolve.
Researchers are still exploring not only implementatisnes, but the abstractions
and programming models for ubicomp applications themsdleay. [14, 48, 56]).
While creating a reference platform is eventually achiéyalve feel it is imprac-
tical to settle on one while new abstractions and implentemis continue to be
explored. Furthermore, we argue that even in the long témmuse of the same
programming model and supporting middleware platform Insalart spaces is
not realistic as there will always be cases where systentdatized for specific
applications and locations will be deployed in particulavieonments.

Given these observations, it is clear that there aliNaysbe a variety of ubi-
comp platforms and hence, there is a need to develop a métigydihat supports
the integration of specialized platforms as they evolvas Will allow developers
to continue to create environment-specific applicatiorts|erothers can create in-
tegrated ubicomp deployments, and applications that atalge between sites and
administrative domains. Such an approach will ensure sysstievelopers can con-
tinue to evolve their platforms while supporting a growirgpbcation developer

community. However, the development of such a methodolegyot straightfor-

2seeht t p: / / www. ubi sys. or g/ i ndex. php/ Mai n/ Pat t er nsTechni quesGui del i nes
Shtt p: / / www. ubi sys. org

Chapter 1. Introduction and Motivation 5

ward, and there are several technical and non-techniclénbas to address.

1.1 Challenges

Unlike systems deployed within a single domain, serviceslumetween organiza-
tions over the wide area Internet are exposed and managefilbaby adminis-
trators. Maintaining autonomy and ensuring underlyingises are accessed in a
secure manner by authorized users is therefore critical.

It is also important to provide a mechanism for resolvingt@ecol and inter-
face mismatches between systems. In closed environméigss easily resolved
by using the same types of hardware, or by wrapping devicdssafiware ser-
vices using the same middleware. Previous efforts to addhés have included
the use of device-hosted middleware that expose a singlgfane for service dis-
covery and binding mapped to various service architec{di&s45] or middleware
that advocates a generic set of interfaces for the rapicdvddgeof components
[47, 76]. While these approaches suffice when integratidgidual services and
components, they are not feasible when entire middlewastesys with a variety
of APIs and programming models must be integrated.

Another problem is that ubicomp systems to date supportgerahabstraction
levels. Some systems expdsigh levelabstractions such as expligtvironment
models(e.g. [11, 25]) while others support simpler component ovise abstrac-
tions (e.g. [47]). Systems have been designed to supporige raf deployments
from small scale, ad hoc, single task-oriented configunatiof devices [76], to
large scale integrated campus environments [49]. A systernhimtegrates these
systems must be able to “understand” not only a simple coewttoor service ab-
straction, but higher level concepts exposed by existingamyp APIs such as

physicalentities(people, places, thingsjpntext[35] andenvironments

Chapter 1. Introduction and Motivation 6

Since ubicomp environments are highly dynamic, any supmpgystem must
be self organizing to some degree. An integration platforastbe able to adapt to
the addition and removal of resources exposed by a varigtyterhal middleware
platforms.

Finally, users should be able to access computing resoaroasd them using
a variety of personal computing devices such as PDAs, palsousic players or
mobile phones using a wide variety of client software sucimaiile browsers and

custom clients.

1.2 Integration Approach

To begin to address these challenges, we can look towardga®m other domains
such as enterprise application integration (EAI). The tgwmaent of distributed
enterprise applications has been supported by the rapidtiero of middleware
technology. This technology has moved from supporting Ieitigr mainframe
applications, to distributed object technologies such asi@on Object Request
Broker Architecture (CORBA) [79], and eventually to the udanessage brokers
to integrate complete heterogeneous applications acrosgyanization.

Similarly, designers of ubicomp environment systems hawverbhged tradi-
tional middleware technologies to address issues suchvisedand service in-
terface heterogeneity. Like many ubicomp systems, ensergystems have also
been restricted for use in single local area networks folouarreasons. While
architectures based on distributed objects and messagerbizave proved effec-
tive in integrating applications in a single network, thegvé not been effective
betweerenterprises and network domains. One of the biggest prabilemchiev-
ing inter-enterprise integration has been the lack of stedwlat the middleware

and component levels. To address this, the enterpriseratieg community has

Chapter 1. Introduction and Motivation 7

turned toward the use of Web technologies.

The Web emerged initially as a technology for sharing infation across the
Internet. With the introduction of Web services, howevehas also become a
medium for application integration. More specifically, Wadyvices have been es-
tablished as a way to expose the functionality of an inforomasystem (or group
of systems) to applications in other companies, acrossanktand administrative
domains. Web service standards have already made significzgress toward re-
solving the limitations of conventional middleware platfs. Standardization in
key areas needed for cross-domain interoperation havadiedlan interface defi-
nition language [105], wide-area service discovery [2] pratocols for tunneling
procedure calls within HTTP requests and responses [10éh $&rvices address
a specific purpose: to expose functionality in an informatgstem and make it
discoverable and accessible over the wide area Internetconaolled manner.
Conceptually Web services angappersto encapsulate one or more applications
with a unigue interface available across the Internet.

When we compare the evolution of ubiquitous computing emvirents with
that of enterprise application integration, they haveole#d a similar trend. Ini-
tially, small scale ubicomp research projects assumed pgememus interfaces to
sensors and actuators, and processing related to the mmért and the applica-
tion has been blurred. To minimize the amount of programmaugiired to create
new applications, researchers have recognized the neegpors heterogeneous
device interfaces, and have provided middleware servizésotate application-
specific logic from issues related to device heterogenlitgtion, protocols, and
non-application specific processing of sensor (contexdymation.

More recently, service-oriented architectures such agsdisal Plug and Play
[74] and OSGi [80] have been leveraged for even greater raotjuand extensi-

bility within an environment [51]. While the use of standgmabtocols and service

Chapter 1. Introduction and Motivation 8

oriented architectures such as those supported by Welrssrare necessary first
steps toward cross domain interaction, they are not suitiéte application porta-
bility and ubicomp system interoperability. Now that imter middleware for ubi-
comp environments has matured for single domains, deployofenteroperable
systems that reach across domains will require appropeietrnal middleware
and a common programming model for ubicomp. To achieve #ésmust also
consider the higher level abstractions and programmingetscgkposed by ubi-

comp systems so far.

1.3 Ubicomp Programming Models

Many ubicomp systems to date have focused on providing aty easlerstood
programming model to access sensors, services and othieorenent resources
(e.g. [11, 36]). Others have focused on service or deviceroperability (e.g.
[47, 74, 76]) or large scale infrastructures for sharingteshinformation [58, 77].
Designers have focused on addressing the requirementsicgplication do-
mains such as collaboration, or locations such as meetorgs@nd the home. We
maintain that there is such diversity in the deployment ctbjes and approach of
an individual system that no one system is suitable for bpglieation portability
and integration of other systems.

One issue is that a given system does not consider the vafiptpgramming
models thatother systems expose for effective interoperability and integna
Rather, they aim to provide a homogeneous interface to thetyaof services,
sensors and actuators in a single environment. If the chiogegration platform’s
programming model provides low level abstractions, it mayleveragemany of
the higher level capabilities available to application elepers by an underlying

system. Conversely, if the integrated programming modelashigh level, it may

Chapter 1. Introduction and Motivation 9

not be able tawompensatéor the missing abstractions in an integrated system.
For example, the ParcTab system maintained a set of vasialigregated by
environment serversepresenting entities such as people, places or groups [91]
Similarly, the Context Toolkit useBntity Aggregatorgo provide a ‘one stop shop’
for context data about an entity [36]. These systems bothentaghsier for appli-
cations to find relevant context by aggregating informatoound entity compo-
nents. Both iIROS [83] and Gaia [87] systems highlight the@alf a multi-device
publish-subscribeventinfrastructure for smart spaces. Applications can listen f
and produce events to interact with multiple devices. Bothe@se systems provide
well understood and useful abstractions for applicatioretigpment, however, we
maintain that it is not straightforward to use the ContegtKi to expose the capa-
bilities of the EventHeap that iROS applications expecterdhis no central event
producer in the system. Nor is it an easy task for the iROSry$b provide a way
for applications to find and query an entity aggregator camepd— none is defined
explicitly in the iROS programming model. A new system dasig) for abstrac-
tion mapping is required. The abstractions this system@uppnust be based on

a thorough analysis of these important systems and others.

1.4 Research Focus

While there are many challenges in creating a common modelehds itself to
application portability and interoperability betweentgyss, our research focuses

on the following:

e The design of an extensible core model for adequately desgra repre-
sentative subset of existing ubiquitous computing envirents deployed to

date. This model must lend itself to application portapiind interoperabil-

Chapter 1. Introduction and Motivation 10

ity between different environment domains such as the htmeepffice and

public places.

e Providing a flexible and extensible platform to adapt repnéetive systems
to this model. This includes systems that support smallrgelacale deploy-
ments, those that expose a range of programming abstractairspecific to
ubicomp like services and components to more ubicomp-Bpestrac-

tions like context and entities.

The foundation of this work is the design of the Ubicomp Comnhdodel
(UCM), a programming model that aims to unify the abstrangiof a variety of ex-
isting ubicomp systems. We describe the UCM using Semarglz Mhguages: the
Web Ontology Language (OWL) [102] built on the Resource Eipson Frame-
work (RDF) [101]. With such a model, we hypothesized thatraegration system
can be designed to map a single API to the interfaces of egisystems with ad-
equate coverage of the underlying functionality. The desifjthe UCM is based

on the following assumptions:

1. The programming models of ubicomp systems deployed tosietre certain

programming abstractions specific to the ubicomp domain.

2. These abstractions can form the basis for a core progragnmadel suitable
for the development dhteroperable applicationthat can make use of some

subset of the functionality of any underlying ubicomp sgste

3. This core programming model can be used to unify the progriag models

and capabilities of more than one system iobopositeenvironments.

To validate these claims, we conducted an extensive sumvdyanalysis of

existing commercial and research ubicomp systems. Basabi®mnalysis we

Chapter 1. Introduction and Motivation 11

identified the abstractions that recur in the programmingleisof several sys-
tems: environment model®ntities context entity relationshipsservices events

anddata These abstractions formed the basis for the design of thd,dCcore

model for ubicomp systems.

To evaluate the UCM, we developed an integration platforitedahe Ubi-
comp Integration Framework (UIF). The UIF is a flexible andeesible meta
middleware platform based on Web services standards usatetpate ubicomp
systems using the UCM and expose its capabilities to apjgitaacross network
and administrative domains. With this system we can prozitéPI for applica-
tion interoperability and portability while allowing undging systems to continue
to specialize and evolve.

This thesis provides details of our analysis and designefi@M, the design
and implementation of the UIF, and evaluation of both forlmpgion development
and integration with several representative systems. figm4 for this dissertation

is as follows:

The identification of common abstractions used by existlrigamp
systems contributes to a core common model for integrateplitbus
computing environments suitable flooth application interoperability

and mapping to existing ubicomp systems’ interfaces.

The primary contributions of this thesis are:

1. A comprehensive survey of existing systems categorigisgems in terms
of their level of abstractiorandscale of deploymertiighlighting the com-
mon abstractions used by these systems exploited in thgrdesa common

model for ubiquitous computing.

2. The design of a core model for ubiquitous computing called Ubicomp

Chapter 1. Introduction and Motivation 12

Common Model shown to unify the exposed abstractions ofraévepre-

sentative ubicomp systems.

3. A demonstration of the feasibility of using the UCM to maphe abstrac-

tions of several representative systems.
4. Confirmation that this model is adequate for applicatiemetbpment.
Our secondary contributions include:

1. A novel meta-middleware architecture and implementatar integrating

more than one ubicomp system under a common model.

2. The use of an integrated knowledge base and reasoningdolzand main-
tain an integrated ubicomp environment composed of mone tmee ubi-

comp system.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In @ap we present a
comprehensive survey and analysis of representative idugusystems. Based on
this survey we identify the common programming abstrastiosed as the basis
for the UCM design. In Chapter 3 we present the design of thieddiipp Com-
mon Model including the three key aspects of the model: thar&mment State,
Meta-state and Implementation. In Chapter 4 we describelélsggn and imple-
mentation of the Ubicomp Integration Framework, used tduata the UCM by
providing a single environment model and associated APbto tinderlying sys-
tems [36, 40, 47, 83]. Our evaluation and discussion is ptedein Chapter 5

where we discuss the development of several prototype capiolhs, integration

Chapter 1. Introduction and Motivation 13

adapters and performance of the UIF. We conclude the digigertin Chapter 6

with a discussion of lessons learned and future work.

14

Chapter 2

Survey and Analysis of

Ubiquitous Systems

The design of a common model for ubicomp suitable for intégmadepends on an
understanding of existing systems’ programming abstyasti As in any software
engineering task, the use of abstraction in a ubicomp systentwo main benefits.
Firstly, it helps manage complexity for developers by exppsmportant aspects
of a system hiding unimportant details. Secondly, it sejparaspects of a system
that are common to all from those specific to a particular @ngntation. In this
chapter we survey a broad range of representative ubicostprag to highlight
the individual programming abstractions they expose tdiegimn developers.
Based on this survey, we then derive a set of abstraction®dtlar across several
systems, giving hames and examples for each. These alwwigate the basis of
the Ubicomp Common Model presented in Chapter 3.

When we survey the wide variety of systems, we note that fgntlre most
appropriate programming model is not straightforward:réhare often tradeoffs
related to finding the “right” level of abstraction. For eadepplication develop-
ment, “high level” abstractions can relieve the developemfhaving to deal with
certain implementation details, but for broad applicapili is often more feasible
to expose “low level” abstractions that expose more detaitae developer.

For example, some ubicomp systems expose distributed cmnpor ser-

Chapter 2. Survey and Analysis of Ubiquitous Systems 15

vices to applications, what we consider “low level” absti@ts. Developers create
applications by composing these building blocks by varimeans. This includes
the use of generic interfaces and mobile code [76], linkiogngatible component
properties [47], or through the use of standard interfadaitiens [74]. Other
systems provide higher level abstractions that more glasdlect the overlap of
physical and digital space in an effort to make programmisygsive spaces more
intuitive. To do this, systems will often associate relévaformation and services
with physical or virtualentitiessuch as people, places, and things. These entity
abstractions often act as aggregators or containers fevamd information from
sensors and inference services caltedtext Context may include the user’s cur-
rent location and activity, the sound and lighting levelairoom, the online status
of a printer, or the names of people in a group for example.

The most appropriate programming model may also depend eoactile of
a typical deployment. In smaller scale deployments, whieeeaim is to support
simple tasks, a programming model consisting of compastaf service abstrac-
tions is often suitable. In room to building-scale deploywtsewith more concur-
rent users and applications, programmers can benefit fremgé of higher level
abstractions such as explighvironment modelthat hide individual component
implementations. In even larger scale deployments suchussvarsity campus,
exposing every projector, light switch, media player, éasgreen display, camera,
and thermostat does not scale for user interfaces, applicabr integrators. Fur-
thermore, wide area communications can be slow and exgen€ionsequently,
wide area systems tend to aggregate functionality arouagseograined entities,
even whole environments federated using wide area praocol

In this chapter we survey and analyse existing systems taifgeand name
the abstractions that occur regularly in their programnmmgdels to derive the

core abstractions for a common model for ubicomp. The redeaiaf this chapter

Chapter 2. Survey and Analysis of Ubiquitous Systems 16

is organized as follows. In Section 2.1 we define our categban of ubicomp
system. In Sections 2.2 to 2.5 we describe each system bgocgteln Section
2.6 we discuss the programming abstractions typically sg@dn each category
and then group these to present our derived set of commoraetishs across

categories. We conclude this chapter in Section 2.7.

2.1 Categories of Ubicomp Systems

Given the diverse research targets and approaches to sydesign, grouping the
broad range of ubicomp systems deployed so far can be chaitenFor the pur-

pose of this survey, we have gathered systems into four @adsgas follows:

Component Composition Systemsgenerally lower level abstractions and

smaller scale deployments

Context Frameworks: medium level abstractions/mid scale environments

Smart Space Systemshigher level abstractions/mid scale environments

Wide Area Systems low to high level abstractions/large scale deployments

or cross domain access

These categories were derived by rating systems in termsaflimensions:
the level of abstractiora system exposes and thealeof a typical deployment,

both defined next.

2.1.1 Abstraction levels

To create these four categories we first rated systems irst@filevel of abstraction

to group systems with similar programming models. We poutttbat our use of

Chapter 2. Survey and Analysis of Ubiquitous Systems 17

the phrase “level of abstraction” does not indicate the iuak applicability of
one system over another, but rather its intended purposesiamildrity between
systems’ programming models. Our definition of abstradiéeels including some

examples are defined as follows .

e Service and Component Compositions (low)Systems that provide a ser-
vice oriented architecture or component abstraction amsidered to expose
“low level” abstractions. Some of these systems will suptiee composition
of components and services. Example systems include $egeranercial

standards like UPnP [74] and research systems such as Sysy@®ibje [76].

e Entities and Context (medium). We consider systems that provide abstrac-
tions including the notion of a person, place or thing (ileygcal or virtual
entities), and context to expose “medium level” abstrastidsystems at this
level often build on distributed services and componerttigectures. Exam-
ples include the Context Toolkit [36] and the Java ContexafenFramework

(JCAF) [15].

e Explicit Detailed Environment Models (high). For our survey we rate sys-
tems as having a “high level” of abstraction when they prewaa interface
to an explicit model of the physical environment. The systeay include
centralized servers for event brokering and data storage. efvironment
model may include both mobile and fixed entities like pla¢ables, walls
and relationships. Example projects include Sentient Gaimg [54], the
Nexus project [57] and ontology based systems (e.g. [28. 5djith an
explicit and centralized model it is possible for the supipgrsystem to rea-
son about the situation as a whole, removing the need foiicapipins to

maintain their own model of the current physical and run teneironment.

Chapter 2. Survey and Analysis of Ubiquitous Systems 18

2.1.2 Scale of Deployment

To categorize systems we also consider shale of deployment targeted by the
designers. Some systems, for example, focus on the congposit devices for
a single mobile user, or only a few users. A given componenfigoration will
generally support only only a few simple tasks at a time. Oglgstems aim to inte-
grate several applications, services, devices for all@lters in a room. Medium
scale systems tend to support tens of users, in a meeting fiamoexample, and
many applications at once. Larger scale systems, desigmeside area deploy-
ments and infrastructures with many users and applicattarget campuses, cities

or the world. To summarize:

e Small scale Sub room, single or few users e.g. on a broadcast network for

one (mobile) or a small number of users. This includes ADSDRIGnd the

ZeroConfig standards for example.

e Mid scale. Room, building, floor, single servers, tens of users, stegpli-
cations. Systems include those that use servers such asiiR{tBe Context

Toolkit.

e Large scale Campus, city, global, wide area networks, federated sgrve
wide area protocols for many applications and thousandslioms of users.

Systems here include Cooltown and ActiveCampus.

When we place systems along both the abstraction level aald sxes, as
shown in Figure 2.1 we note that there is some correlatiowdxst these two di-
mensions. Smaller scale systems tend to use service cdropd$ow level) ab-
stractions since they are often concerned with composidiyidual components
corresponding to devices or software services. When théauof devices, users,

and applications increases in medium scale (room-buijdipgtems we see a trend

Chapter 2. Survey and Analysis of Ubiquitous Systems 19

to provide context and entity (medium level) abstractidrest aggregate software
services and shared state around objects of interest supbogde, places and
things - medium level abstractions. Finally, larger systesnale to even more
users and applications; the abstractions exposed in lagde systems tend to
range from medium to high level explicit environments.

Interestingly, while there is some correlation betweerlesead abstraction
level, there are examples in the Smart Space and Wide ArdarS8y<ategorise
that show these dimensions are orthogonal: medium scaensysvith high level
abstractions (e.g. EasyLiving [25]) and large scale systHmat provide medium
level abstractions (e.g. Cooltown [68]). Based on theirapinate location in the
scale/abstraction space, we grouped systems into the yetans categories used

in the body of this survey as shown.

Explicit
Environments B
(High)
Abstraction Ontology . Wide Area i
Level Systems ActiveCampu
“ Context -
Contex Toolkit ConFAB
and Entitie e \ Cooltown
(Medium) F5=E
WSAMI
Service -
Compositiors
(Low) UPnP Jini
) |g
Sub room Room: Floor Building Campus Global

Scale of Deployment

Figure 2.1: Ubicomp systems surveyed placed in terms of scale and abstra
tion level.

Chapter 2. Survey and Analysis of Ubiquitous Systems 20

2.1.3 Organization

In the following four sections we present representativ&ens in each category:
Component Composition Systems, Context Frameworks, S8pate Systems,
and Wide Area Systems in rough chronological order. Thisonbt gives a sense
of the features of a category, but also of the evolution ofrab8ons within that

category as research progressed. Where a system can bdeceddio be in more
than one category we have placed it in the section where iedhithe most fea-
tures of other systems. In each section we begin by providitaple with a row

for each system, summarizing the purpose of its design (gagrammability or

interoperability or both), its scale, abstractions, ang teferences. This is fol-
lowed by a description of the system with attention to thegmonming model and
abstractions it exposes. To respect the significant canioiis of these projects,
we describe the abstractions of each system using the nased$y the designers
in each subsystem. We then summarize the important abstracthared across

several systems in a final subsection at the end.

2.2 Component Composition Systems

The first section of our survey presents systems generaflg irs smaller scale
ubicomp environments that provide a “lower level” absti@cfor component reg-
istration, discovery, communications and compositionlikénother categories of
systems in this survey, several commercially used systatasitp here: Jini, Uni-
versal Plug and Play (UPnP), and Zero Configuration NetmgrkZeroConf) are
discussed in Section 2.2.1. These systems can be usedydfaectbicomp ap-

plication development since they were designed for a cigndistributed execu-

tion environment. Another commercial standard preseméseiction 2.2.1 is the

Chapter 2. Survey and Analysis of Ubiquitous Systems 21

Open Systems Gateway Initiative (OSGi), which providesraredéized, dynami-
cally extensible execution environment. The Applianceals¢rvices (ADS) sys-
tem (2.2.2), SpeakEasy (2.2.3), the Equip Component Tio@k2.4), and PCOM
research systems (2.2.5) all compose software comporuétas,corresponding to
devices in an environment. ADS and PCOM compose servicesmatically while
SpeakEasy and ECT allow end users to compose device contpdoedata trans-
formation, display and storage. The Reflective MiddlewareMobile Computing
(2.2.6) system provides a single API for several distridutemponent systems.

The systems surveyed in this section are summarized in Bable

Table 2.1: Summary of Surveyed Component Composition Systems.

System Purpose Scale Abstractions Refs
Jini Interoperability Small-medium: Object registration, dis- | [106]
lookup services covery, services, events,
transactions
UPnP Interoperability, sim- | Small-medium: Device registration, dis- | [74]
ple device networking | broadcast net- | covery, services, state,
work events
ZeroConfig Interoperability, sim- | Small-medium: Service registration, dis- | [13, 29]
ple networking broadcast net- | covery
work
OSGi Dynamically extensi- | Medium: room- | Bundle (object collections) | [80]
ble service host plat- | house registration, discovery,
form services, state, events
Appliance Task based compo- | Small: collection | Tasks as sequences of | [60]
Data sition of services for | of devices service executions on
Services data transformation/- data hosted in infrastruc-
transfer ture
SpeakEasy/ End user composition | Small: collection | Objects with generic in- | [76]
Obje of devices/compo- | of devices terfaces for data transfer,
nents for data transfer grouping, metadata and
Ul
Equip Com- | Easy end user | Small: collection | Components contained in | [47, 61]
ponent composition of com- | of devices a DataSpace linked using
Toolkit ponents for control compatible properties/s-
and data processing tate
PCOM Automatic and dy- | Small-medium: Services composed dy- | [17, 18]
namic composition of | broadcast net- | namically using depen-
services work dency contracts
ReMMoC Interoperability with | Small-medium:: Abstract service discov- | [45]
various service in- | broadcast net- | ery, reflection and interac-
frastructures work tion interface

Chapter 2. Survey and Analysis of Ubiquitous Systems 22

2.2.1 Commercial Systems and Standards

Commercial systems described in this section have beerdogeebto create ap-
plications that can dynamically adapt to a changing netvesrkironment: a key
requirement for ubicomp. Most expose the ability to commata with individual
software components that may come and go to get and charigesthscribe to
events, and call services.

Jini. Jini was designed to provide a way for distributed objectfirtd each
other and work together on a network. Its use of mobile codksaipport for dy-
namic service registration and discovery make it an obvitading point for ubi-
comp systems. A fixedookup Servicés deployed on a network for lease-based
component registration and lookup. A client will typicadigarch for a Lookup Ser-
vice using multicast, then find the service it needs usingreplate-based search.
The proxy code needed to communicate with the service is haded from the
Lookup Service to communicate with it directly. Clients aagister for asyn-
chronous event notifications by registering their own rensarvice interface.

Universal Plug and Play (UPnP) The purpose of UPnP is to make it easy
to set up and configure networked devices such as printeesnét gateways and
consumer electronics without the need for specializedeserr other infrastruc-
ture. There are three building blocks of a UPnP systerewiceis a container
for services and other nested devic8grvicesare units of control consisting of
state variables, implementations of actions, and an evwmesimplementation,
to publish events to subscribers when its state changesallyriapplications as
Control Pointsdiscover and control other devices by invoking servicebssrib-
ing to events, and getting device and service descriptidngrotocol is used for
devices to announce themselves and for control points torésdurces, no dis-

covery server is needed; every control point maintainsrmédion on the devices

Chapter 2. Survey and Analysis of Ubiquitous Systems 23

available to minimize traffic.

Zero Configuration Networking (Zeroconf). Zeroconf, also known as Bon-
jour and Rendezvous [13] is a collection of standard andgwals used by Apple
for dynamic discovery of devices and services on IP netwoilksese specifica-
tions include dynamic link local addressing, multicast déimmame system (DNS)
for use in small networks such as the home, where there isme&ntonal unicast
DNS server, DNS based service discovery, DNS related ratiifics, and proto-
cols for printing and file sharing. Unlike Jini and UPnP, Bouj does not include
specific mechanisms and protocols for service interactuplications use any
protocol on top of TCP or UDP.

OSGi. The Open Services Gateway Initiative Alliance defines a Jmsed
platform that defines a dynamic life cycle model for modulaiéecl bundles which
can be remotely installed and started without rebootingistem. It also includes
a service registry to detect the addition and removal ofisesfor applications to
act accordingly. Many layers are built on this core inclgds®rvices for logging,
administration, security, and integration with systemshsas UPnP. Although it
was originally designed for service gateways, it is now used wide range of
applications such as integrated development environmentsrprise application

servers, cars and mobile phones.

2.2.2 Appliance Data Services

The designers of ADS [60] recognized that the use of digithservices and de-
vices such as those supported by Jini or UPnP often revoheemid moving data
from one to another. Unfortunately, in some cases, this ¢askbe unexpectedly
difficult. ADS addresses this problem by allowing develepter define tasks such

as “move photos from camera to online photo alboum”. ADS appilbns are a

Chapter 2. Survey and Analysis of Ubiquitous Systems 24

composition of services that operate on data or contentliegppy devices. The
framework consists of three componenBata ReceiveApplication Controland
Service ExecutianData is received from a device, and put into the infrastmegt
a shared data store, by the Data Receive components. Ajmti€2ontrol compo-
nents determine the task to perform by looking at a user ideagested command
to find a matching template listing the services requirede ERecution Compo-
nent executes services in turn to operate on the data sdpplibe receive stage
or output by a previous service as defined by control templatkey abstraction
introduced by ADS is the notion of a service composition tbaly anapplication

and the support fodataas an abstraction in the system passed between services.

2.2.3 SpeakEasy/Obje

Speakeasy researchers decided to take a different appiroacADS to moving
data between devices. Unlike the ADS system, SpeakEasysafind usergo
opportunistically assemble devices for data exchangey edeen the devices do
not support the same data protocols [76]. Unlike ADS whidiedeon compatible
service interfaces for compaosition, the system uses mdbiWa code to translate
potentially incompatible data streams between comporamisto supply inter-
faces for end user control. Every component, typicallyegponding to a physical
device or software service on a local network, exposes omeooe of a small set
of generic interfaces. These interfaces are used to (13faadata, (2) group re-
lated components together (3) reveal and use metadata tdgocomponent, and
(4) allow end user control with a user interface. SpeakEasyponent interfaces
allowed end users to easily compose and control devicesatartthnsfer and pro-

cessing.

Chapter 2. Survey and Analysis of Ubiquitous Systems 25

2.2.4 Equip Component Toolkit

While components in Speakeasy communicate with each oitleetlgt using generic
interfaces, the Equip Component Toolkit exploits the usa ehared, distributed
Dataspacdo create component compositions. The Dataspace contgremnces
to software components such as JavaBeans, the currentofalbeir properties,
and links between compatible properties. Applications @eated by “wiring
up” compatible properties, so that when the value of one gntgpin a compo-
nent changes, its value is relayed to the property in anatbmiponent. End users
and developers can instantiate and configure componente iDataspace using
a graphical editor such as the supplied GraphEditor, or i@ puzzle editor
[61]. A key advantage of the system is the ability for compuado interoperate

by connecting properties; no common service API or mobildeds required.

2.25 PCOM

In mobile applications, the services available in an emritent may come and go
over time. To use a commercial system like Jini or UPnP, apfiins must adapt
themselves to the changing resources they need at run timethér approach is
for a system like PCOM to relieve applications from this msgbility. PCOM was

designed to adapt automatically to changing protocols,tia@dervices available.
It assembles service hierarchies dynamically based oficatiph-programmer de-
fined service dependency contracts. Application prograrameovide service re-
guirements (events and service interfaces) in advance MPBén creates a hierar-
chy of services dynamically to fulfill the contracts using tturrent and changing
service execution environment. Application programmaeirs ase built-in PCOM

adaptation mechanisms or provide their own strategiess@leet or discontinue

required components at run time as the environment changes.

Chapter 2. Survey and Analysis of Ubiquitous Systems 26

2.2.6 Reflective Middleware for Mobile Computing (ReMMoC)

Similar to PCOM, ReMMoC addresses the problem of clientsirdimeénd making
use of appropriate services in ubiquitous computing enwrents. However, un-
like PCOM, ReMMoC makes use of existing service infrastites directly. In
such environments, different service discovery protocods/ exist such as Jini,
UPNP or ZeroConf. In addition, different interaction prts such as Simple
Object Access Protocol (SOAP), or Common Request BrokerRBA) Internet
Inter-Orb Protocol (IIOP) may be used. The ReMMoC mobileickevmiddle-
ware uses a pluggable component architecture to addrelsssentice discovery
and interaction heterogeneity. A generic service lookterface hides the details
of different service discovery protocols. A generic birglabstraction, based on
Web Service Definition Language (WSDL) allows for the alagtdefinition of any

service independent of the underlying service provider.

2.2.7 Discussion

Systems in this category revolve around the use of disgtbhabmponents exposed
using a service abstraction. The ReMMoC system providechargeservice API
for systems such as UPnP and Jini. Several systems in tléigarstalso provide
access to component state or properties, and asynchrovents er service call-
backs. In several of these systems, applications are @masido be compositions
of components composed or connected to perform some taslexemple, ECT
developers can compose components using a Dataspacedhptelates all com-
ponents and their property links in a deployment. PCOM caapaervices auto-
matically and dynamically as the execution environmentadgplication changes,
without centralized infrastructure. The ADS system introed a data abstraction

to pass between services in predefined compositions. Spegpkisers compose

Chapter 2. Survey and Analysis of Ubiquitous Systems 27

devices on the fly to transfer and process data. To summaénzse systems typi-
cally support the composition of components that exgeseice state eventsand

dataor stateabstractions.

2.3 Context Frameworks

This category lists those systems designed to make useréxt Dey defined
context as “any information that can be used to charactéhigesituation of en-
tities (i.e. whether a person, place or object) that areidensd relevant to the
user and an application...” [35]. In the simplest sensetextns some state as-
sociated with a physical or electronic entity. Many of thateyns here such as
ParcTab (Section 2.3.1), the Context Toolkit (2.3.2), drllava Context Aware
Framework (2.3.5), include abstractions to aggregate siohmation about peo-
ple, places or things. Several systems such as Sentientt®i3.4) can infer
higher level context information such as user activity amel lbcal weather con-
ditions from raw sensor data, external information sou@sbined with lower
level context information such as location and time. Forghgose of this sur-
vey, we consideentitiesand contextabstractions exposed by these systems to be
“medium” level ubicomp abstractions. The systems listethble 2.2 are typically
designed for larger installations than Component Comiposystems since they

often aggregate information and the capabilities of irdlial components.

2.3.1 ParcTab

ParcTab was a pioneering ubicomp system that leveragedahmte® Procedure
Call (RPC) model for distributed middleware to allow apptions hosted on work-
stations to interact with users with mobile devices. Inrlaterk, Schilit et al. [91]

highlighted the need for dynamic customization as a key gghcommon to ubi-

Chapter 2. Survey and Analysis of Ubiquitous Systems

28

Table 2.2: Summary of Surveyed Context Frameworks.

System Purpose Scale Abstractions Key Refs
ParcTab Application cus- | Medium: multiple | User agents and sensors | [90, 91]
tomization using state | rooms supply state to Environ-
about users and ment Servers correspond-
locations ing to entities: users and
locations
Context Easy context aware | Medium: multiple | Discoverer for component | [36]
Toolkit application develop- | rooms lookup/registration, wid-
ment gets that support context
query, events, interpreters
and entity aggregators
one.world App. changing ex- | Small: broadcast | Environments, contain | [48]
ecution environment, | network data and components
sharing data between (typically associated with
devices entities), asynchronous
events for all communica-
tions
Sentient Ob- | Context-aware appli- | Small-Medium: Distributed sentient ob- | [19]
jects cation developmentin | ad hoc networks jects (typically associated
ad hoc network envi- with entities). Event
ronments based communication,
framework for context
reasoning, interpretation,
& aggregation
Java Con- | Standardize Java | Medium: dis- | Entities associated with | [15]
text Aware | context aware appli- | tributed servers context items that may
Framework cation APIs also be other entities.

comp applications. They describe a system made up of a tiolieaf environment

serverseach corresponding to users, places, workgroups and attiteg Each

environment server maintained a set of names and valuesspomding to some

relevant information about the physical or computational time environment.

A user agentupdated environment servers on behalf of the user it serdgs.

plications typically monitored for changes in the enviramnhby subscribing to

variable changes on environment servers. An applicatiaidcsubscribe to the

environment server for a group of users, and to the serverssponding to the

locations of these users for example. The servers used ga gpplication could

change over time as a users location changes. An importattaation from this

early work is the environment server corresponding to agplaser, group or other

entity. These servers aggregated relevant state abouttiy @adled contextin

Chapter 2. Survey and Analysis of Ubiquitous Systems 29

follow on systems.

2.3.2 The Context Toolkit

The Context Toolkit aimed to provide a set of abstractionstlie rapid develop-
ment of context aware applications. A typical deploymenitaimed a number of
self describing distributed components on a LAN that sugplytext (e.g. sensor
data) and/or services to applications. These componegistee with a central-
ized Discovererwhich maintains information for lookup by applications dher
components. The component types inclu@smtext Widgetsrhich can be queried
directly or subscribed to using asynchronous evetits)text Interpretersised to
translate one form of context to another, for example fronR&ID tag reading to
a user nameEntity Aggregatorcomponents were used to aggregate context and
services around an entity: a person, place or obj&#rvices typically imple-
mented by Context Widgets were exposed to interact withwswé services and
actuators. Recognizing that applications still had to dotaof work to find and
interact with the various component types provided by tlodkit the system was
extended to provide a higher levaifuation abstraction: a collection of relevant
context queries (called the situation) in a single integfttat deals with multiple
components. The Context Toolkit situation abstractiorsiiadows the ability to

model whole environments demonstrated by Smart SpacerSy#teSection 2.4.

2.3.3 One.world

One.world was designed for ad hoc composition and datarghbatween appli-
cations and devices in a changing execution environmentadtivess this need,
the designers argue that data and functional abstractimtike objects in object

oriented systems that combine these abstractions, shewddpgarated to facilitate

Chapter 2. Survey and Analysis of Ubiquitous Systems 30

data sharing, searching and filtering. To establish thisrsgjon, they created an
environmentbstraction as a way of structuring and composing appbicati En-
vironments serve as storage for shared data using tupleés,catiainers for appli-
cation components and other environments in a hierarcfashion. Components
in an environment communicate with each other using aspnclus events. Gen-
erally, environments correspond to entities such as peptdees or objects and
can migrate from one device to another as a user moves forgaahike ParcTab
environment servers, and Context Toolkit Entity Aggregatone.worlds environ-
ment abstraction acts as both a container and aggregateldited entity state and

functionality.

2.3.4 Sentient Objects

The Sentient Object Model was developed for context-awppdiGation develop-
ment in ad hoc network environments. Like one.world, thegiess anticipated
a degree of mobility, and resilience to changes in connigctbetween compo-
nents. This model defines abstractions for sensors andtaictiaand a framework
for creatingSentient ObjectsSentient objects retrieve information about their envi-
ronment from each other using event-based communicati®jsdr directly from
sensors. Sentient Objects work independently, and puafctiry to achieve goals
and anticipate problems. A framework for creating Seni@jects makes it easier
for developers obtain, aggregate and interpret contegtnmdition received by the
object. This framework includes probabilistic reasonitgabilities to interpret
raw sensor data, and to derive higher level context from tdeweel sub contexts in
a hierarchical fashion. An entity such as a person, placaiog typically corre-

sponds to one or a group of sentient objects in a deployment.

Chapter 2. Survey and Analysis of Ubiquitous Systems 31

2.3.5 Java Context Aware Framework

The Java Context Aware Framework (JCAF) is a more recen¢isygsed for con-
text aware application development. Inspired by previooskwike the Context
Toolkit, a deployment consists of context services thatike; manage, store and
distribute context information for one or more entities.eTprogramming model
for acontext serviceonsists oentitiesassociated witltontext itemsising a con-
text relation. Context items may also be other entities abukeful entity relation-
ships can be established. Context clients typically acertises and their context
using a context service, by registering interest in evest®@ated with specific
context to receive notifications, or querying for a conteatie at any time. Clients
can also be suppliers (callamntext monitorsor consumersgontext actuators
of context information from context services which aggteghe context for one
or more entities. JCAF’s programming model refines the haylell abstractions
found in other frameworks consisting of event based asymdus communica-

tions, entities, context, and entity relationships as &igfization of context.

2.3.6 Discussion

The systems in this category support the developmebofext awareapplica-
tions: applications that use relevant information aboatubker and their situation.
These systems often contain and/or aggregate accessvanteigformation about
people, places and things aroundemtityabstraction. ParcTab designers call these
entity aggregatorEnvironment Servershey areEntity Aggregatorsn the Context
Toolkit, Environmentsn one.world,Sentient ObjectsContext servicesontain en-
tities in the JCAF programming model. Several systems adlpplications outside

of the framework to query for context on demand, and subsddlthanges in con-

text values. Sentient Objects and one.world host apphicativithin their entity

Chapter 2. Survey and Analysis of Ubiquitous Systems 32

containers (i.e. sentient objects or environments). Inesgases context values
can be other entities, hinting at an important speciabizatif context we calkentity
relationshipsfound to be valuable in Wide Area systems described in Se&ib.
To summarize, the systems in this category build on Compga@empositions to

introduce entity aggregations, and context abstractiompplication developers.

2.4 Smart Space Systems

In this section we consider the systems listed in Table 2a8tipically provide a
higher level of abstraction than Context Frameworks. Gadlyetthe scale of de-
ployment in this category are comparable to those in Corfteineworks: single
rooms, or buildings. The core of both the iIROS (Section 2.dystem and Gaia
(2.4.4) is a centralized event broker to move messages batdistributed com-
ponents. Other core components in Gaia and iROS were créatedta storage
and transformation, shared environment state and senlic€®ncert/EasyLiving
(2.4.3) and Sentient Computing (2.4.2) efforts focusedromiding a detailed envi-
ronment model to applications to customize interactioretias the user’s absolute
and relative location to other objects and people. We alssider ontology-based
systems in this category in Section 2.4.5. The use of oniedognd a knowledge
base in these systems allows the semantics of objects suehtitiss, relation-
ships and context values to be standardized for interopgyaimformation in the
knowledge base can be processed using standard semantieagelning systems

to infer new context values and trigger application semvice

2.4.1 IROS

iIROS aimed to make it easier to create applications for aifipetass of smart

space: meeting rooms. In these scenarios it is importarigpast multi-device

Chapter 2. Survey and Analysis of Ubiquitous Systems 33

Table 2.3: Summary of Smart Space Systems.

System Purpose Scale Abstractions Key Refs
iROS Meeting room appli- | Medium: Centralized Event Heap, | [42, 63, 83]
cation development room shared state, ICrafter services,
Data Heap for storage and
transformation
Sentient Easy location-aware | Medium: Detailed environment model | [11, 54]
Comput- | programming floor containing entities, absolute
ing and relative location facts, and
location events
InConcert// Dynamic cross device | Medium: Detailed environment model | [25]
EasyLiv- | (screens) user inter- | house containing fixed and mobile
ing faces based on loca- entities and their geometric re-
tion lationships.
Gaia General purpose | Medium: Centralized event broker, data | [87]
smart space operat- room-floor store, service infrastructure,
ing system space/presence repository,
and context inference service
Ontology-| Easy context aware | Medium: Entities and context in an ex- | SoCAM [51]
based: smart space applica- | room-floor ecutable knowledge base, ap- | CoBrA [28]
SoCAM, tion development and plication execution chosen or | Gaia [85]
CML, implementation inde- triggered using rules. CML [55, 56]
Gaia, pendent model
CoBrA

interactions where users can move between a portable dswateas a PDA or
Tablet PC to one or more large wall-mounted displays. Razoynthe value of
the eventabstraction in interactive desktop applications, the nsaibsystem of
iROS is the centralize&Event Heap Using the Event Heap, any device can pro-
duce events, and any number of event consumers can listablirengroup com-
munications and multi-device interaction. TBéate Managesubsystem makes
use of the Event Heap to maintain shared state of devicessa@tsare compo-
nents in the room. Shared state includes published sereiserigtions used by
the ICrafter subsystem [82]. ICrafter provides a service discovery atetaction
interface similar to the Context Toolkit Discoverer and\&@¥ components. The
Data Heapwas used for storing content and documents, and meta-daieiaed
with this content. Notably, this system also provided dataat transformation

services for applications to make it easier to view and maatp content on a wide

Chapter 2. Survey and Analysis of Ubiquitous Systems 34

range of devices. To summarize, all of the devices in a roatastralized servers

for event communications, shared state and data storage.

2.4.2 Sentient Computing

Unlike iROS, the Sentient Computing platform was desiggattvide an explicit
model of the physical environment for applications. Thetesysprovides a very
fine grained location system [107], and a detailed data mofdspace for event
based applications. To build and maintain this model, camepts calledesource
monitorsandspatial monitorsare used. The detailed environment model describes
the entities (people, places, and things) and possible ofaggeracting with them.
Applications are provided with an API for location-awar@gramming providing
both absolute and relative location facts, such as “the issat ,y) facing di-
rection @ngle”, or “the person Bob) is standing in front of workstationX(y2".
Sentient Computing highlights the value of an explicit,lmate and dynamic en-
vironment model to ease application development. Anotmgortant distinction
from Component Composition Systems and some Context Frarksvs that ap-
plications need not access components that implement oitamaithe model since

the system itself effectively hides these concerns.

2.4.3 InConcert/Easy Living

EasyLiving designers focused on supporting user intemacicross multiple de-
vices including mobile devices and large screen displayhdérhome. Like Sen-
tient Computing, the InConcert middleware provides a expéinvironment model
to enable applications to dynamically assemble a userfateracross multiple
devices. Knowing a user’s location and orientation alloles $ystem to choose

which display to use for information, and which speakerss® for music or voice

Chapter 2. Survey and Analysis of Ubiquitous Systems 35

responses. Within this environment model, objects in thsigal world are associ-
ated with each other using geometric entity relationshgled measurementsAs

in Sentient Computing, and Gaia discussed next, softwackdrmobile objects to
maintain the model so that these relationships are kepérurDevelopers make
use of the geometry model and service descriptions to atiaptuser interface
to the current situation. Maintaining the measurementsguttie geometry model
is a key enabler for EasyLiving applications that must talke consideration the

spatial relationships between devices and end users imifi@ement.

2.4.4 Gaia

Gaia aimed to apply and extend approaches proven in sysieemsRIOS and
Sentient Computing to domains such as the home, the officktlemcar. Like
iROS’ Event Heap, a centralized event broker calledBkent Manageprovides

a publish-subscribe mechanism for services, applicat&orns components. The
Space RepositogndPresence Servicaubsystems store and track tracks the phys-
ical location of entities, such as people and devices arttvamé components for
applications. A general purpoS®mntext Servic&racks other context such as sound,
temperature and weather. This subsystem supports the {isg ofder logic to in-

fer higher level context from sensor data. Gontext File Systerallows users to
associate content with different contexts such as timegpknd user presence. Fi-
nally anApplication Frameworknade it easier for application developers to make
use of the various Gaia subsystems and distributed comsnr®imce interacting
with multiple devices can be challenging, the notion of apgfcation Session”
was created for end users to contain the applications amadagabciated with that

user when they enter the space.

Chapter 2. Survey and Analysis of Ubiquitous Systems 36

2.4.5 Ontology Based Systems

Several systems in this survey demonstrate that that agipliccode can be reused
with the consistent use of an interface to a given smart spdoeever, to address
application portability and interoperability between strgpaces, it is not only
important to share the same interface, but also the samentiesi@r context types,
and service interfaces. In ontology-based context-awgtsis such as SOCAM
[51] and the Context Broker Architecture (CoBrA) [28], cexitis modeled with a
model called an ontology, a formal description of concepta particular domain.
Gaia was also extended to use ontologies for context raag@®b] about entities
and components in the system. The Context Modelling Larngy&iML) [55,
56] is a graphical notation developed to assist develogedesign and explore
the context requirements of applications independent efirtfrastructure used.
While the CML does not use sematic web notations or techmegoguch as the
Web Ontology Language (OWL) [102], it does relate attrisute physical and
conceptual entities such as users, and devices. CML alsnitgedesigners to
specify context quality and dependencies between contéxation.

In ontology-based systems, logical expressions using facthe knowledge
base can define situation abstractions similar that in theteXb Toolkit, inferring
higher level context from lower level facts in the enviromhenodel. The use
of an ontology provides a way to share common understandiegrcepts in an
environment and facilitates the use of an executable modalknowledge base.
An executable model with a general purpose reasoning ergm&lso be used to
infer higher level context and new entity relationshipsirtacts in the model, or
to alter application behavior and execute specific servidesn certain situations

exists.

Chapter 2. Survey and Analysis of Ubiquitous Systems 37

2.4.6 Discussion

Smart Space Systems aim to provide even more comprehengipers for ap-
plication development in specific places such as meetingnsp@nd the home.
Typically these systems coordinate multiple mobile desjieesers, and large fixed
displays: inter-device interaction is a critical requiksath iROS and Gaia central-
ize communications between components to broadcast agidept the value of
eventsas a key abstraction for smart spaces. Several systems sisgLiving
and Sentient Computing introduce the notion of a comprebhersd expliciten-
vironment model Ontology based systems maintain information about coethi
entities, their relationships to one another, and currentext values in a central
knowledge base. All of the systems provide mechanisms tsealicesndepen-
dent of their underlying implementation and location in $ineart space. iROS and
Gaia both provide comprehensiglata and content storagend transformation ser-
vices for applications. To summarize, smart space systéghdidght the value of
cross-device interaction events, explicit environmentiet® and centralized data
and data transformation services for application devetopetheir programming

models.

2.5 Wide Area Systems

The systems listed in Table 2.4 coordinate larger scaler@mvients containing
many users and applications potentially across smart spddee cross-physical,
-network and -administrative domain requirements for ssjgtems means that
many of the communications protocols used in other categatie not appropriate;
the systems here use protocols such as HTTP and Web Seratbes than local

network broadcast for example. Security and privacy aeatonsideration in this

Chapter 2. Survey and Analysis of Ubiquitous Systems 38

category. Since the number of computing resources in laxge snvironments can
be high, and communications can be expensive in terms oidatend bandwidth,
there is often a need to provide coarser grained abstractitan software com-
ponents, individual devices and services in this class stesys. Typically these
systems will aggregate information and services assatiatth entities: people,
places and things, or environments as a whole as in Contartdworks or Smart
Space Systems. The first system we describe in Section £&cltown, leveraged
the well understood distributed document model of the weahtegrate the phys-
ical world with the online world. The Context Fabric (2.5&ned to provide a
privacy sensitive context infrastructure by linking distited Infospaces containing
context about entities. Active Campus (2.5.5) providedgraited large scale ubi-
comp environment containing many services to potentiflbusands of users on
a university campus. The Nexus (2.5.3) system designeesdtenvironments,
while Aura (2.5.4) aimed to support migration of high leveku tasks between
smart spaces by marshalling the services there. Web Sdoridanbient Intelli-
gence (WSAMI) in Section 2.5.6 is unique in that it composédevarea services

taking a similar approach to Component Composition Systems

2.5.1 Cooltown

The World Wide Web introduced a model for distributed conmmutvhere infor-
mation is organized into documents identified by unifornotese locators (URL)
linked to other documents elsewhere in the world. Cooltoguelages this sim-
ple and effective model for ubicomp by providing a softwarger to integrate the
physical environment with the web [68]. People, places &yt in the world
each have their own web presence, software running on arsbateprovides a

web user interface to an entity. The web presence of a useldated to other

Chapter 2. Survey and Analysis of Ubiquitous Systems

39

Table 2.4: Summary of Wide Area Systems.

System Purpose Scale Abstractions Key Refs
CoolTown Leverage WWW to in- | Large Web presence servers corre- | [68]
tegrate physical world sponding to entities (people,
with online world places, objects) linked to each
other
Context Fab- | Context infrastructure | Large Network of Infospaces typically | [58, 59]
ric for privacy sensitive corresponding to entities con-
applications taining instrinsic and extrinsic
context (entity relationships)
Nexus Infrastructure for | Large Network of Augmented Ar- | [57, 77]
spatial-aware appli- eas containing entities (objects
cations of interest) in an Augmented
World. Location queries and
events.
Aura User/task migra- | Multiple- Task abstraction to marshal | [94]
tion between smart | smart end-user services (Suppliers)
spaces, and changing | spaces in the environment based on
devices context information in an Envi-
ronment Manager
Active Cam- | Address tradeoffs | Large: cam- | Two layer environment model | [49, 50]
pus between extensibility | pus associating entities with ser-
and integration in vices and context. Entity Mod-
large scale ubicomp eling layer deals with static re-
lationships, Situation Modeling
layer with dynamic context and
relationships.
WSAMI Situation aware web | Large: inde- | Web services composed dy- | [3, 62]
services composition pendent of | namically using dependency
location and QoS requirements.

entities such as places, or objects nearby using dynamidimkebcorresponding
to directed entity-entity relationships. These relatiops may includecontains
next-tq or carried-by for example; they may be reciprocal or one-way relation-
ships to protect user privacy. Users typically interacthvahe web presence at a
time, starting with their personal (user) web presences@arare used to discover
new entities and dynamically create entity links. For exEnwhen a person en-
ters a room, the users web presence is linked to the rooms resbrze when an
infrared beacon is detected by a mobile device carried byiske Users (and ap-
plications) may follow the links to take advantage of fuantlity (applications)
hosted by the rooms web presence. A key abstraction for Geolis the notion

of entity relationshipscorresponding to web links used by users and applications

Chapter 2. Survey and Analysis of Ubiquitous Systems 40

hosted on web servers to adapt to a changing environment.

2.5.2 Context Fabric

The Context Fabric was proposed as an infrastructure fdegbstorage and man-
agement. When collected and distributed in a shared infictste, privacy of

context information such as location and activity is a vitahcern for end users.
To address this, context can be manipulated (e.g. aggregatanonymized) as
it enters or leaves the system to manage the privacy regeitn The Context
Fabric is a network of servers containihndoSpacegorresponding to entities such
as people, places and things. An InfoSpace contains coabsxt the entity it

handles, bothntrinsic context, information about the entity itself, aedtrinsic

context, relationships between entities. Applications akso use the InfoSpace
to store service descriptions. A client library simplifiegseqying by supporting

on demand, periodic and subscription based queries onpafesSdata. The Con-
text Fabric is similar to several systems in the Context enaarks category and
Cootown in that it aggregates context data in Infospacagsponding to entities.
Infospaces aggregate context about entities, and relate tthh one another, similar

to Cooltown web links.

2.5.3 Nexus

Nexus is a generic wide area infrastructure for location spratial-aware applica-
tions [57]. The designers aimed to provide a model of regidiise physical world
called Augmented Areasimilar in concept to the explicit environments in Smart
Space Systems such as EasyLiving or Sentient Computing. Boytsical and vir-
tual objects of intereséxist in Augmented Areas accessible through the platform.

An object of interest may also be a proxy for an end user. Eurtbre, Augmented

Chapter 2. Survey and Analysis of Ubiquitous Systems 41

Areas can be federated in a gloBalgmented Worldelated to one another by con-
tainment and relative distance relationships. Since afirAented Areas use the
same Nexus interface, applications can easily move bet#vegmented Areas us-
ing a handoff mechanism. An important attribute for objectan Area is location

determined using an Active Badge or GPS for example. Likei&snComput-

ing, the system supports location events triggered by admimyglocation such as
entering areas or proximity to other users, but aims to uslfgh smart space ca-
pabilities for larger scale deployments. Nexus demoresrttat federating smart

spaces is another approach to addressing scalability aad space integration.

2.5.4 Aura

In the Aura system, user mobility between ubiquitous cotimguénvironments is
supported with an abstraction called a user's persaned that encapsulates the
users current task. Similar to the notion of an Applicati@s$on in Gaia, the aura
or taskis defined as the information and services (applicatiorgplired by a user
at a given time. Once the users task is transferred to amiestaf the system,
the hub of the system, called thask Managemarshals resources in the current
environment to support that task. Services are hosted bponeants calleGuppli-
erswhich register with the Task Manager. A service hosted by gper may be
a display device, a text editor, storage server or drawimgiegtion for example.
Like Gaia’'s Space Repository, Aurd&vironment Managemanages information
related to the physical environment. Aura useSantext Observeto watch the
environment for end user activity, to report this inforratito the Environment
Manager. When the user moves from one environment to andtfmuser’s Aura
can be migrated to the Task Manager at the new location toncantheir current

task. Each Aura system provides an environment model fér éascution and

Chapter 2. Survey and Analysis of Ubiquitous Systems 42

demonstrated that the use of a common platform in multiplersspaces makes it
possible to for users seamlessly move between environmangsating data and

applications on their behalf.

2.5.5 ActiveCampus

Like Cooltown, Active Campus services are presented as \agbgy however, the
goals of this system are quite different. This project airteedddress the trade-
offs between easily providing new services, while maintgrthe integration of
these services in an large (campus) scale environment [A8. centralized Ac-
tiveCampus architecture consists of several layers. litojidayer, mobile devices
communicate with afEnvironment Proxywhich marshals data between the ser-
vices on the device and the ActiveCampus system. Siheation Modelingayer
in the server synthesizes the situation of entities frontipialinformation sources
(mobile devices and other sensors). Finally,Emtity Modelinglayer of the server
represents entities in several forms for access by otheicesrand presentation on
a browser, and stores static relationships among thedéesntin this system we
again see an explicit environment model containing estitentity relationships
and entity-related context. Unlike Context Frameworks &nthrt Space Systems,
however, ActiveCampus was designed to scale to larger @mwvients and more

users by making use of a layered architecture.

2.5.6 Web Services for Ambient Intelligence (WSAMI)

WSAMI [62], part of the Ozone project [3], is a middleware ttheverages Web
Services standards to deploy and compose web services thallgnon wireless
networks and mobile devices. The use of Web Services enalkbakbility in

most environments, and potentially across network dom&ifiSAMI uses anam-

Chapter 2. Survey and Analysis of Ubiquitous Systems 43

ing&discoveryservice that supports naming, service discovery and loakibpth
local and wide area networks. Like PCOM and other Componemhgdsition
Systems described in Section 2.2, this work focuses on digndistributed ser-
vice composition. Unlike these systems, however the desigiargeted wide area
web service composition. Novel aspects of this work inctltifiee customization of
the network links for performance and security. Servicesspecified using stan-
dard WSDL. These specifications are then referred to in WSAp&cifications

which include the required services that an applicatiordsee

2.5.7 Discussion

We find that systems in the wide area category tend to borr@trattions from
the other three. For example, WSAMI exposes and composegeaerdirectly
like others in the Component Composition category. The &drfabric exposes
entities and context, like other Context Frameworks. Theudesystem federates
whole environments calleBlugmented Areasimilar in concept to the environment
models exposed by Smart Space Systems.

For greater scalability large scale systems will oftenritiste storage process-
ing among multiple servers. Several systems here distritmark among servers
that proxy physical or virtual entities in the real world. ede servers will of-
ten expose relationships between servers that correspatheit proxied entity's
real world relationships. The Context Fabric, for examplggregates information
about entities in Infospaces, relating them to each othmguextrinsic context.
Similarly, Cooltown aggregates services and relevantrin&tion about entities
using separate web servers, relating them to each othay kigpertext links.

Unlike other systems, the Active Campus system addresa&sbdity by sep-

arating the concerns of managing an integrated environmelel into separate

Chapter 2. Survey and Analysis of Ubiquitous Systems 44

layers on a single server. Aura is also unique in that it stppgser migration
between environments by migrating information about asusearrent task to be

transferred from one smart space to the other.

2.6 Common Abstractions Derived from the Survey

Based on this survey, two things become evident: one is tieabhave a wealth

of experience to draw from when designing new ubicomp systeédecondly, we
see that certain high level concepts are shared by sevestainsy, in some cases,
under different names. Systems in all categories, for el@nsppplyservicesto
applications; functionality exposed using an interfaggistered with the system.
Systems in all categories support application callbackeventsfor notification
when something about the state of a device, entity or the@mwient changes.
Context Frameworks tend to aggregate components and iafanmaround aen-

tity abstraction to avoid the need to communicate with multiplagonents to find
context relevant information about that entity [36]. Several shspace systems
illustrate the value of a centralized and expligitvironment modeatontaining de-
tailed information about entities, context and relatiopsh Several component
compositions expose @ata abstraction and certain smart space systems support
data orcontentstorage. We note that Wide Area Systems surveyed here aften u
real world relationshipsbetween entities: people, places, things, and whole en-
vironments to link servers representing these entitiess alflows applications to
easily find and use relevant context and services, avoidsessary communica-
tions to individual components, and lends itself to greatedability by distribut-

ing storage and processing of context information. Talderitlicates when one of

these abstraction appears in a given system.

Chapter 2. Survey and Analysis of Ubiquitous Systems

45

Table 2.5: Summary of the scale, level of abstraction and abstractigesl.
Here we indicate whether an abstraction is suppotigdrfot supported
(O) or partially/implicitly supported (P).

System Abstraction | Scale Env. Entities | Context | Entity | Services | Events Data /
Level Model Rel. Content
Jini L s pa] pP O O O O
UPnP L S pa pc pP | | | |
ZeroConfig L S p2 [B] [B] O O [B] [
OSGi L S-M pa a pP 0 0 0 0
ADS L S pa O O d d O d
SpeakEas L S pa pe pb]] 0]
/Obje
ECT L S pd]] O O O O
PCOM L S O O O d d d d
ReMMoC L S O O O d d O d
ParcTab M M O O O g g g g
Context M M pa O O P 0 0 pe
Toolkit
one.world M M ar a a pY 0 0 0
Sentient M M pn]] P' O O O
Objects
JCAF M M]]]] O O O
iROS H M P! pX a 0 0 0 0
Sentient H M O O O O g g g
Computing
EasyLiving H M O O O O P ad ad
Gaia H M]]] [H] [H] [H] [H]
Ontology H M 0 0 0 0 P!]]
Systems
CoolTown M L [B] [B] pm [B] P P P
Context M L O O O O g g g
Fabric
Nexus H L O O O O ad ad ad
Aura H M-L O P O ad ad P ad
Active H L O O O O ad P P
Campus
WSAMI L H O O O d d d d

8a component/service or device registry

bcomponent state as context

®Devices only
dDataspace

€data or content treated as context

falthough called aenvironmenttypically corresponds to an individuahtity
Yenvironment/entity containment relationships

hthe ad hoc network

limplicit in event subscriptions between objects

IEvent heap, service registry
kembedded in event fields

Isome ontology-based systems

Mwithin web presence server

Chapter 2. Survey and Analysis of Ubiquitous Systems 46

2.7 Conclusions

In this chapter we presented a survey of twenty one reprasantresearch sys-
tems, and four commercial standards used for ubicomp atiglic development.
To consider related systems together, we grouped systemgounr categories:
Component Composition Systems, Context Frameworks, S8pate Systems,
and Wide Area Systems. These categories were created bpgpigstems in a
space defined by two dimensions: the typwedleof deployment targeted by their
designers, and thievel of abstractiorthey support. We defined three abstraction
levels: services and components (low), entities and coteedium), and explicit
environment models (high). By considering groups of systémthis space it be-
comes evident that there is some correspondence betwesndleg and the level
of abstraction that system exposes. Small scale systerdstdesxpose simpler
service/component abstractions while larger scale systovide additional ab-
straction layers, alleviating the need for applicationrid individual components
and model physical environments themselves. We noted latgosbme systems
demonstrate that these dimensions are also orthogonatt Spece Systems tend
to provide explicit environment models (high level abdii@ts) to medium scale
deployments (e.g. [11]), while some large scale systemggeaentity and con-
text (medium level) abstractions (e.g. [59]), or servicd aamponent composition
(low level) abstractions (e.g. [62]). Finally, we derivedet of common abstrac-
tions exposed by several systems. These includengimonment modgkntities
context entity relationshipsserviceseventsanddataor content We present these
common abstractions in more detail in the next chapter.

Based on this survey, itis evident that there are tradeetisden interoperabil-
ity, scale of a typical deployment, and the level of inteikdigt or domain-specific

capabilities that influences the programming abstractobesen. With the wealth

Chapter 2. Survey and Analysis of Ubiquitous Systems 47

of experimentation and deployment experience so far, wencanbegin to un-
derstand these tradeoffs and address some the challemgelsitbmp community
faces related to interoperability. Armed with the set of coom abstractions iden-
tified here, we have a solid foundation for the design of a comprogramming
model for ubicomp. In the next chapter we continue our amalgtarting with the
common abstractions we identified in this survey and desdfie design of the

Ubicomp Common Model.

48

Chapter 3

The Ubicomp Common Model

In the previous chapter we identified several categoriesbmfomp systems, and
summarized the core abstractions shared across catedaribs chapter we con-
tinue our analysis in Section 3.1 by highlighting severglieements for a interop-
erable model for ubiquitous systems. We then review theatifins identified in
Chapter 2 in Section 3.2 with examples, and present the ipd@ommon Model
design consisting of three related aspects: the Enviroh®ee, Meta State and
Implementation providing examples of each in Section 313Séction 3.4 we re-
flect on how the UCM addresses several requirements prelsengection 3.1. In
Section 3.5 we discuss how the UCM could be extended to sufigmtegration
of different security domains and access control mechamniSaction 3.6 outlines
use cases for aexecutabldJCM that can be queried and reasoned with. Finally

we summarize the Chapter in Section 4.9.

3.1 Common Model Requirements

To drive our analysis, we envision scenarios where apjicathosted on mobile
phones connected to wide area networks interact with pulilicomp environ-

ments such as shopping malls and museums. We anticipatepiiadation servers
hosted outside of a ubicomp environment’s network domalhneied to make use
of resources there. This can occur across a large univargitpus or between

organizations to link smart meeting rooms for example. Base our survey of

Chapter 3. The Ubicomp Common Model 49

systems in Chapter 2, our own integration experience destiin Chapter 5, and
our deployment of other ubicomp systems [39, 40] we highltbk following re-
guirements for the design of a common model for ubicomp:

Application Portability. An interoperable model should support a level of
application portability between different environméypessuch as the home, the
office and public places.

Environment Specialization. While portability is important, a common model
must support specialization for different domains. A sakzation may include
subclasses of core entity types, service interfaces, xoate event types specific
to a location and its use. This will allow general purposeliappons to work
between locations while allowing deployments to provideatlin and domain-
specific resources.

Introspection. To support both portability and specialization, A common
model must supporhtrospection exposing not only the current environment state
(entities and context information), but also its curreapabilitiessuch as the types
of context and service interfaces available. This willallapplications to query
and adapt to the the environment and the facilities that\zaiahle.

Separate Implementation. The model should separate exposed abstractions
such asentitiesand contextfrom implementation abstractions such as distributed
componentandservers This separation of concerns will allow implementation
independence, and dynamic binding of components to entitithout application
involvement. Available components can come and go, andgehdepending on
the current context. By separating the implementation feaposed abstractions a
supporting system can be designed to adapt to change.

Straightforward Mapping to Existing Systems. For ease of integration, a
common model should lend itself to a relatively straightfard mapping to a va-

riety of existing systems’ abstractions. The model shoulgpsrt the integration

Chapter 3. The Ubicomp Common Model 50

of different categories of ubicomp systems: Component CGisitipns, Context

Frameworks, Smart Spaces, and Wide Area Systems as delsarilizhapter 2.

This means there should be support for a wide variety of attstn levels and
scales of deployment. The model must find the right tradesifivben being suit-
ably generic across a wide range of systems but semantaa#ig enough to spe-
cific systems to take advantage of their unique capabilities

Access Control and Security. When applications interact with environment
resources across network domains (e.g. [41, 93]), or in mivastered ad hoc
connections such as Bluetooth, access control and sedssitgs are important
considerations. In these scenarios, we cannot rely on eonewdministrator of a
private deployment to ensure all of the applications in arirenment are autho-
rized and secure as the designers of closed ubicomp systmsAs a minimum,
an intermediary that exposes resources outside the domash provide access
control to previously assumed private or closed deployment

Executable Model.We also claim that that an integration model shouldke
ecutable that is, have the ability to be queried and reasoned withppjications.
Support for flexible queries will allow applications to diser entities and associ-
ated services, and allow applications to determine whettedr requirements can
be satisfied. Support for reasoning will allow an integmatmatform to maintain
the exposed model as its composition changes, simplifgiat®n tasks, provide
missing general purpose capabilities such as contexteinée;, and establishing
relationships between entities and components.

There remain many open research challenges in ubicomp suitte a/arious
dimensions of scalability, dependability, security, pdy, context management,
application mobility and HCI that in some cases affect thegpgmming model
of ubicomp systems. However, until there is some consemsugéether or how

these issues are exposed to application developers, kel koo early to address

Chapter 3. The Ubicomp Common Model 51

them all in the design of common programming model; howeveracknowledge
that change must be anticipated in our core model design syriag it can be
extended with new abstractions, and provide an exampldaoirtsection 3.5. Of
course, the addition of new abstractions will likely reguadditional interfaces to
an implementation (i.e. in an integration gateway or sthomgasystem).

A key challenge is to find the right balance between interalpiéty and suit-
ability for cross domain access as outlined while maintgras much of the func-
tionality of a given underlying ubicomp system. This willoessitate the provision
of a new layer of abstraction on top of the native one. Of amulfse introduction
of a new programming modelan make application development more difficult,
especially if it doesn’t match the problem at hand. Just #isrdint programming
languages and supporting libraries support some apglicatbmains better than
others, we expect that different environment models widldhto coexist. Since we
do not expect all local ubicomp applications to require srdemain interaction,
we need not replace an existing set of abstractions andiassb@PIs for native
application development; we can provide an interoperalddahas an alternative
suitable for the basic needs of portable applications aasisclomain access. To
address these requirements we must base our model on theoroairstractions

of existing systems reviewed in the next section.

3.2 Existing Systems’ Abstractions

To derive the UCM model we based our core abstractions onrthlysis of rep-
resentative systems presented in Chapter 2. We found tlogviiogy core abstrac-
tions were shared across systems in all four categories,pGoemt Composition

Systems, Context Frameworks, Smart Space Systems and WédeSfstems:

Environment Model. An environment model is an abstraction that contains the

Chapter 3. The Ubicomp Common Model 52

current state of the environment for application accesds @bstraction is
most evident (and comprehensive) in smart space systemigimiog enti-
ties, context values, and entity relationships. There #reraexamples of
this abstraction in every category however. In componentpmsition sys-
tems, and in some Context Frameworks, for example, thigaaiigtn can
be considered a component registry or lookup service. Wegasider the
Jini Lookup Service and the Context Toolkit Discovers to ingpte environ-
ment models for example. The E@ataspacas an environment model that
contains components and links between component properfiee Nexus
infrastructure federates their environment models, whddgve Campus en-
capsulates their environment model using a centralizesiation server

containing information about entities and integrated ises:

Entity. An entity abstraction is used in several systems to represent or [@oxy
person, place or thing in an environment: either physicalinal. Exam-
ples of implementations include the ParcEtwvironment Serveithe Con-

text Toolkit Entity Aggregator a CooltownWeb Presenceand one.world

Environmentabstraction. In many Smart Space Systems, the exposed envi-

ronment model will contain entity abstractions, conter aelationships.

Context. Most Context Frameworks in this survey expasmtextas informa-
tion related to an entity. Applications may query for thisommation, or
register to be notified when context data changes. In sonesctege entity
abstraction in a system such as a server or distributed coampas used
to aggregate context data or the components that supplgxtanich as sen-
sors. Again, the use of context is most evident in most of thiet€xt Frame-
works surveyed, and in some Wide Area Systems such as thex@ ébric

infrastructure.

Chapter 3. The Ubicomp Common Model 53

Entity Relationship. Several systems make use of a specialized form of context
we call anentity relationshipto mirror the relationships between physical
objects, places and people in the real world. These inclodatibn-based
relationships: a user isontained-ina place, objects arsear each other.
Relationships may include ownership, a usemsa device, or social rela-
tionships such as friendship or community group relatigmshEntity rela-
tionships, are evident in Cooltown, JCAF, the Context Fato some extent

in one.world, and the Context Toolkit.

Service. The notion of a service, functionality exposed through darface, is
at the core of most of the Component Composition Systenedlisere. It
is also supported either implicitly by the underlying mieldare, or explic-
itly in a service framework supplied by a system. For examgile iROS
ICrafter subsystem supports RPC semantics for serviceleimgmted using
the Event Heap. Similarly Context Toolkit Widgets can immént services

with remote procedure call semantics.

Event. The iROS and Gaia systems highlighted the value of a cerddhlevent
broker at the core of a smart space system for loose coupéhgeen ap-
plications and devices. Virtually all other systems inahgdContext Frame-
works such as one.world support events as a key commumegpiomitive
for components in ubicomp. To avoid polling, events are usesbmmuni-
cate important changes in device state, context valuesreationships in

an environment.

Data or Content. Finally, we note that several systems, particularly in tloen©
ponent Composition and Smart Space categories, suppddntar data as

a separate abstraction. The Appliance Data Services syfsteexample

Chapter 3. The Ubicomp Common Model 54

stores data in the infrastructure to allow device servioesansfer it from
service to service. Both iROS and Gaia have centralized statage and
transformation services to make it easy to share data betaaevare ser-
vices and end users in a smart space. In some systems angrdepts data
or content is considered an entity, whereas in others, iteistéd as con-
text. For example, content stored in the Gaia Data ManagiR@$% Data
Heap is treated like other objects in the system, storedarirtfiastructure
and passed between services. The data itself may have tomx-data
containing information about who created it, its title amglrent version. In
other systems, content is treated as context. The ContektiTapplication

called the Conference Assistant [37], the system treatseptation content

and guestions as context for example.

3.2.1 Core Abstractions to a Common Model

As a concrete example of how these core abstractions candoktasmodel a
ubiquitous computing environment, we describe a “smantijpas as illustrated in
Figure 3.1. Buidings contain classrooms containing sttedequipped with lap-
tops, smart phones or other mobile devices. Each classmdodes a projector
that can be used for presentations. The projector can sigmah a slide changes
so that users can follow the presentation on their laptopsaiyile devices. Users
can communicate with each other using messaging, and ltegitefriends in the
campus.

In this environment the (static) location of buildings, sdeooms should be
made available to applications. We anticipate that the iiyndocation of users
(coordinates), their identity, online status and socikdtienships will also be im-

portant to certain applications.

Chapter 3. The Ubicomp Common Model 55

Figure 3.1: Smart campus including buildings and classrooms.

We can model this environment using the abstractions @adtlas follows:

Environment. The environment is a campus that hosts various entities, re-

lated to other entities, services, context and content.

Entities. The campus environment hosts entities such as buildingss-cl

room places, users, and projectors.

Context. Buildings, classrooms and users all have location contdgers

have presence context (e.g. online, offline, busy).

Entity relationships. Buildings and classrooms have static containment re-
lationships. Users can daendswith one another, and can lsentained in

a classroom or a building.

Services.In this environment, messages can be sent to users, andhiarese

tions can be made on projectors using appropriate serviedanes.

Events. To keep in sync with the presentation, the projectors serdtsv

when a slide has changed.

Chapter 3. The Ubicomp Common Model 56

e Content. A projector will have a presentation associated with it whilis

being used in the classroom.

To implement the smart campus, we need a variety of softwadehardware
componentso be used. An instant messaging system can provide megsaigih
friend management services for example. A PC can be usedstte projector,
and a location sensor in each classroom can sense the edtexiaf each user.
These available computing resources will directly afféetdapabilities exposed
by the environment model. Because of this, it is importargxXpose these capa-
bilities to applications so that they can adapt to their laldity (or absence). By
considering the three aspects of an environmentstéeincluding entities, their
relationships and and their current context valuesnigsa-statethe current capa-
bilities of entities, and thenplementatiorof this model, we designed the Ubicomp

Common Model described next.

3.3 The Ubicomp Common Model Design

The Ubicomp Common Model is antity-centricmodel for ubiquitous computing
systems. It is entity centric in that all of a ubicomp’s cortipg resources are
related to one or more entities: e.g. people, places, thanys other physical and
virtual concepts. The definition of an entity depends on ti@MJspecialization.
To describe the UCM we used the Web Ontology Language (OWQ2][&long
with a set of rules for use in a general purpose reasoningnerjdy].

OWL is an ontology language built on the Resource Descripicamework
(RDF) [101]. Over time RDF has come to be used as a general vanpdelling
information and used as the basis for ontology languages asi®©OWL. RDF is
based upon the idea of making statements aesgurcestypically named by a

Uniform Resource Identifier (URI). RDF statements typicadtovide meta-data

Chapter 3. The Ubicomp Common Model 57

about those resources in the form of subject-predicateedblgxpressions, called
triples. A collection of RDF triples intrinsically form a graph. lhis chapter we
use graphs to highlight the key concepts and relationshipse UCM as shown
in Figure 3.2. Specifically we use elipses to represent OVikssds, labelled lines
with arrows to represent OWproperties subclasses and subproperties as shown.
A rounded rectangle is used to represent properties thatlsoeproperties of a
class, and rectangles for literal values (numbers andgsiririn the RDF snippets

in this chapter we use the XML serialization format.

pro?ertyA @ properb propery

[préperty

D

Figure 3.2: Notation used to highlight classes, properties and reiakips in
the UCM.

To address the requirements and scenarios highlightedingus sections, we
considered three related aspects of an environment céiésrivironment State
the Environment Meta-Statend theEnvironment Implementaticas shown in Fig-
ure 3.3. TheeEnvironment Stataspect consists of entities, entity relationships, and
the currenttateof those entities: current context values and content farmgle.
The Environment Meta-State consists of entigpabilities the types and quality
of events, services, context and content an entity expasdinked to the entities
in the state aspect by texposeproperty, (and subproperties). This aspect is nec-
essary for application introspection. Both the Environtrietate and Meta-State
are exposed to applications to query the current contexegakntity relationships,

and capabilities of an environment. Finally, thavironment Implementatioas-

Chapter 3. The Ubicomp Common Model 58

pect links entity instances by aggregationproperty to the specific components
that supply the services, context and events for a giveyerfibgether these as-

pects form the Ubicomp Common Model core.

Environment State Environment Meta-State

Exposed
Environment
Model

Service Interfaces
Context Types
Event Types

Entities
Entity Relationships
Context

exposes
hasContext
hasEvent

implements:
hasContext
hasEvent

aggregates

Services
ContextSources
EventSources

Internal
Implementation
Model

Implementation

Figure 3.3: The three aspects of the Ubicomp Common Model

The three aspects of the UCM depend on one another and tygbainge over
time. In a typical environment entities and components doked and remove and
context values change. The Meta-State depends on the timplementation,
since the exposed capabilities of an entity will depend encibmponents aggre-
gated by it. The current Environment State aspect depentledvieta-State since
the entities, relationships and context values of an enfiitydepend on its capabil-
ities. In some cases, the components associated with a gitiy will depend on
the current situation; that is, the Implementation aspelttdepend on the Envi-
ronment State. This can occur, for example, when a mobilealsmges locations,
or the device they are currently using. A messaging serviag change from an
instant messaging implementation to SMS when the userdaheeoffice. The lo-
cation context source may change from a GPS-based infcagteufor outdoor use
to a wifi-based location sensor when indoors. We elaborathduon each aspect

in the following subsections.

Chapter 3. The Ubicomp Common Model 59

@ ———p property

— ——m sub-property
——> subclass
hosts

contextAttrlbut
assomatedWlth
i - position
con
hasContent —» temperature
'——> holds

Figure 3.4: Environment State abstractions and relationships.

ContextValue

3.3.1 Environment State

The Environment State consists of entities modeled by thpating system, the
relationships between entities and their current contaktes. Context values are
related to entities by context attributes. Context valuesdmot be simple primitive
types such as strings and integers, but may also be more epmala structures.
These data structures could indicate a range of values,iodaation of timeliness
and accuracy. The key abstractions and their relationghipe Environment State
are shown in Figure 3.4.

The Environmentobject serves as the root entity of an environment and hosts
other Entities and subclasses of Entities such as placeplgand devices. In
a supporting system context values can be retrieved by séggethe value of
the associated context attribute or in an event data steigthen an event is re-
ceived. ThecontextAttributeproperty andContextValueobject may be specialized
as shown to support different data types. Entities may asedontentassociated
with them as shown by thieasContentelationship with a Content object.

The UCM does not define all possible context types or qualitgamtext;

rather, it is a core ontology intended for specializatiorahyntegrator or standards

Chapter 3. The Ubicomp Common Model 60

Program 3.1 Example Environment State RDF fragment.
<canpus: CanpusBui | di ng rdf: | D="cof f eeShop" >
<l ocation: | ocation>
<l ocati on: Posi ti on>
<ucm nane>posi ti on</ ucm name>
<ucm j avaType rdf: datatype="&xsd; string">
ca.ubc.cs.uif.prototype.types. Wrl dPosition
</ucm javaType>
<l ocation:latitude rdf: datatype="&xsd; doubl e">
49. 260537157736785</ 1 ocati on: | atitude>
<l ocation: | ongitude rdf:datatype="&xsd; doubl e" >
-123.24801921844482</ | ocati on: | ongi t ude>
<ucmtine rdf:datatype="&xsd; | ong">0</ucmtine>
</l ocation: Position>
</l ocation:location>
<ucm cont ai nedl n rdf:resource="&canpus; ubcCanpus"/ >
</ canpus: CampusBui | di ng>

group to define the context types for a specific environmeapptication domain.
The interpretation of a given ContextValue will depend amspecialization of the
UCM model for a given domain such as a campus, home, officeagss@om. A
fragment of Environment State RDF is shown in Program 3.1e piefixes are

a short form of the various namespaces usginis the core UCM namespace,
location is the namespace for a simple location ontology that extémel&JCM,
and campusis the namespace for a campus instance of the UCM. This erampl
describes @offeeShopvith static location context, and a stationtainedinrela-
tionship with theubcCampusgplace. ThecoffeeShophas a static contextampus-

Location a data structure containing latitude and longitude pribger

3.3.2 Environment Meta-state

The Environment Meta-State aspect is required to supptndsipection. It as-
sociates entities with thegapabilities the types and quality of events, services,

context and content an entity supports as shown in Figure 3.5

Chapter 3. The Ubicomp Common Model 61

(" property (as object)

——» property
— ——# sub-property
—1I> subclass

contextAttribute
usesContextAttribute
ContextValue

ContextType
ContextQuality

» exposes Capability

AVAAYS

usesContextValue

Servicelnterface

description

ServiceDescription

contextQuality

Figure 3.5: Environment Meta-State abstractions and relationships.

When an entity has context associated with it, the elfgoses ContextType
capability. AContextTypespecifies the context attributes to use to retrieve a Con-
textValue (isesContextAttribuyeand may include other properties to specify the
ContextValue and quality of this context as shown. Simylaghtities may expose
Servicelnterface Clients of the model can then call these services as sgmkcifi
in a ServiceDescription ServiceDescription can be specialized to support stan-
dard service descriptions such as Web Services Descriptimguage (WSDL)
[105] or others. The type of events that may be fired by anyertispecified
using anEventTypeobject. The RDF fragment in Program 3.2 indicates that the
CampusUseentity bob exposes theointLocationcontext type, the event type

contextChangeEvenand theMessageServicaterface.

3.3.3 Environment Implementation

To avoid dealing with a plethora of sensors, actuators jsesyand software com-
ponents, ubicomp systems typically expose a variety ofidiged components,

protocols or related APIs which we calbmponents The role of these compo-

Chapter 3. The Ubicomp Common Model 62

Program 3.2 Example Environment Meta-State RDF fragment.
<canpus: CanpusUser rdf:|D="bob">

<rdfs: | abel >Bob Smith</rdfs:|abel >

<ucm cont ai nedl n rdf:resource="#canpusPl ace"/ >

<ucm exposes rdf:resource="&ucm poi nt Locati on"/>

<ucm exposes rdf:resource="&ucm cont ext ChangedEvent"/ >

<ucm exposes rdf:resource="&canpus; MessageServi ce"/ >
</ canpus: CanmpusUser >

——p property
———# sub-property
—> subclass

aggregates

7 R

Servicelnterface

implements

hasContext
ContextSource ContextType
V4

EntityHandler

Figure 3.6: Environment Implementation abstractions and relatigrshi

nents are captured in timplementatioraspect of the UCM as shown in Figure
3.6. Here we show that components are aggregated by an ieistéynce and form
a class hierarchy. Service componemgplementa ServicelnterfaceEventSource
componentdire EventTypesandContextSource have a&ContextTypeThese com-
ponent abstractions can be used to map the common modelkré&sponding APIs
in an existing system to invoke services, retrieve contefit@events. When an en-
tity aggregates a component, the following rule ensurestiiad entity exposes the

types and interfaces that component implements in the &mvient Meta-State.

[aggr egat eConponent: (?entity ucm exposes ?capability) <-
(?7entity ucm aggregates ?conponent)
(?component ucm i npl enentsCapability ?capability)
(?component rdf:type ucm Conponent)]

Chapter 3. The Ubicomp Common Model 63

This rule depends on the fact thatplementsfires and hasContexiare sub-

properties ofmplementsCapability

associatedWith

Environment State

i~ location
- temperature

Low state

ContextType

Capability

——p property
——— 1 sub-property
—> subclass

Environment
Implementation

ContextSource

Figure 3.7: Key objects and relationships of the UCM.

3.3.4 Summary

The three aspects of the Environment model and how theyerétabne other
through an entity is summarized in Figure 3.7. The State aMBttite and Imple-
mentation aspects are all related to an entity instanceth&umore, entities may

be related to each other by entity relationships.

3.3.5 Model Example

An simple example of the model is illustrated in Figure 3.8péxson entityper-
sonBobis shown to hold a mobile phortmbsMobilePhoneln the current Envi-
ronment State, this phone has a location caiednePositiorcontaining the lon-

gitude and latitude of the device. In the current Meta-StasMobilePhone

Chapter 3. The Ubicomp Common Model 64

holds

Environment State

bobMobilePhone

location

phonePosition

exposes
VMlessageService
Interface

implements hasContext
aggregates

mobileMsg outdoorPosition
Service Source

Figure 3.8: Model example illustrating State, Meta-State and Impleiatgm
aspects.

hasContext usesAttribute

OutdoorLocation
Type

Meta-State

Implementation

is shown to expose BMlessageServicelnterfa@d has thé@utdoorLocationType
of context available for applications. Ti@utdoorLocationTypeises thdocation
attribute as shown. In the current ImplementatibnbsMobilePhonesnitity ag-
gregates thenobileMsgService Serviceamponent and theutdoorPositionSource
ContextSourceomponent. ThenobileMsgServicenplements théMlessageServi-
celnterfaceype, and th@utdoorPositionSource hasContext OutdoorLocationType
as shown. The component aggregation rule ensuresbtitzgMobilePhoneex-
poses the samklessageServicelnterface Servicelnterfacel OutdoorLocation-
Type ContextTypto applications.

In this example, thenobileMsgServicandoutDoorPositionSourcénplemen-
tation components would be supplied by integrated systémsexample, a Con-
text Toolkit Widget could be mapped to tleaitdoorPositionSourceomponent of

the UCM, while an SMS service could be mapped tortiabileMsgService

Chapter 3. The Ubicomp Common Model 65

3.4 Model Discussion

In this section, we discuss how the UCM addresses the reqgeirts outlined in
Section 3.1, specifically how it supports application ploiliy, environment spe-

cialization, introspection and mapping to existing sysem

3.4.1 Portability

When a system is adapted to the core UCM as described, somezdggnteroper-
ability is possible. Applications can browse an environtrigrentity relationships,
and display the types of context and services associatédthése entities for ex-
ample. Applications can identify entities, context, seeg and events. However,
a higher degree of interoperability is only possible onlyewlapplications share a
deeper semantic understanding of entities and their agsdciesources with the
supporting infrastructure. To address this we propose skeotEnvironment Pro-

filesdescribed next.

3.4.2 Specialization

To support specializatiorEnvironment Profilespecialize the core model for spe-
cific environment types. Profiles will contain the specifiasdes of entities, ser-
vices, context, events, content and their possible raislips for a given environ-
ment type. A home profile, for example, can consist of typplace entities in
the home such as kitchens and living rooms, device typesasieppliances, and
home entertainment systems. Home context and servicescandé temperature,
lighting controls and room-resolution location sensors. application interacting
with the home environment can then “turn the lights on in awmbavhen a user
arrives by specifying the expected lighting service asgedi with a room. Sim-

ilarly a museum profile could define displays, visitors, gjadls, display content,

Chapter 3. The Ubicomp Common Model 66

visitor location, and interests. Profiles may be extendeithéu by an integrator to
provide extensions specific to a deployment, at the poseigense of interoper-
ability. Through the use of a specialized core model, angauing infrastructure
to map this model to existing systems we argue that it is plesgor applications
hosted outside of an environments local domain to inteaipewith an environ-

ments resources independent of the ubicomp middleware used

3.4.3 Introspection

The Meta-State aspect of the model supports introspeatioadplications to de-
termine whether its requirements can be met by the enviraohm&n entity can
be queried for the context types, service interfaces andtayees it currently
supports. The environment as a whole can be queried for titeesrithat match a
given criterion such as current context values, entitysypead the types of context,

events and services exposed.

3.4.4 Mapping to existing systems abstractions

Since the UCM design is based on a thorough analysis of egistystems, our
modelshouldlend itself to a straightforward mapping to a subset of thystems.
The separation of the Implementation aspect from the exp&tate and Meta
State lends itself to a straightforward mapping assumieggtis a correspondence
between the component types of the UCM Implementation agpetthose of an
integrated system.

For example, th&ontextSourcés similar in concept to a Context Widget in
the Context Toolkit, providing the capability to query andbscribe to context
changes. Thé&ventSourcecomponent can be used to describe the iROS Event

Heap, providing the capability to subsribe to and receiNgtrary events. UCM

Chapter 3. The Ubicomp Common Model 67

Servicescan be used to describe service oriented systems interfédesn a sys-
tem such as Cooltown, or Parc TAB provides servers that ggtgecontext and
services around entities, thentityHandlercan be used to describe these compo-
nents in the UCM. Since an instance of the UCM describes dic@égnvironment
model, adapters for smart space systems such as Sentiepu@ogrand EasyLiv-
ing can keep their model in sync with the UCM by adding and nénmpstatic and
dynamic entities and relationships as they change.

Furthermore, the separation of Implementation concerogvala supporting
system to vary component aggregations independently afxpesed capabilities.
This allows more than one system component to provide ckipedito a single
entity, or many entities to make use of a single componentiaralerlying sys-
tem. An implementation of the UCM may change entity-compbraggregations
depending on the situation.

The key to integration is the use aflapterswhich will supply an instance
of the UCM with descriptions of the components and entitieshe integrated
system as they are added and removed. The adapter will désgatke method calls
from UCM applications to the integrated system’s as appatgiby maintaining
a mapping of UCM component descriptions to the underlyirgjesy capabilities.
The use of adapters for integration is discussed furthehaptr 4.

Assuming the Implementation aspect is used to map exisyisigiss abstrac-
tions to a common model, at best we should expect to mirrofrtative” environ-
ment programming model presented by a given system. In saseschowever,
we may need to present the UCM asadiernativeprogramming model, one that is
either higher level or lower level than the native model. Taeeoffs in providing
the UCM as an alternative programming model for existingesys is explored
further in Chapter 5 by creating applications that make @iseweral concurrently

integrated ubicomp systems.

Chapter 3. The Ubicomp Common Model 68

3.5 Access Control and Security

As ubiquitous computing systems become more widely deplay® need to pro-
tect access to computing resources such as sensors antbictecomes more
necessary. Sensors can record movement, activities apd ioformation about
users in areas that can threaten user’s privacy. With the@luaecommon model
for ubicomp we can anticipate the need to provide accessatdot previously
assumed private or closed ubicomp deployments.

Recent research in the areas of security and privacy haveregpthe use
of new metaphors for ubicomp security (e.g. virtual wallg]jéand the use of
lightweight authentication approaches for resource caim&d devices such as that
used in Bluetooth [86] and the Unmanaged Internet ArchitecUIA) [41].

To highlight the UCM'’s extensibility, we describe how the MGEnvironment
Meta State) could be extended to supportagaess controhbstraction used to
represent both security domain and access control mechani¢e then provide
an example of how this model extension could be supportedutuge integration
platform. We chose the Unmanaged Internet Architecturd idbur example
since it uses a novel peer to peer authorization mechanmsudes device group
management and can serve as a secure base communicatitbosypfar other
ubicomp systems (e.g. MyNet [66]).

In the UCM, an application accesses ttapabilitiesof an an associated entity.
Note that we use the tergapabilitiesas introduced earlier in this chapter, in the
UCM sense, recognizing that this is not the sameasabilitiesin a capability-
based operating systémRecall that in the UCM, capabilities are the super class

of Servicelnterfaces, ContextTypes, and EventType as showigure 3.7. For

Lin capability-based systems capabilities are defined asrgedible references to objects that
allow access to well defined operations on operating systgetts such as files and devices.

Chapter 3. The Ubicomp Common Model 69

—— property
—> subclass

AccessControl

exposes$ Capability -4—restrict:

aggregates implements

OutOfBand UserName
Introduction Sieeley

Figure 3.9: Access control property associated with capabilities.

example, in the home there may be a UCM capability (Serviedirce) that allows

an application to control the lights in a room (entity). VhidCM capabilities are
also references to computing resources, they are not w#blkg, and represent
only thepotentialuse of an integrated computing resource: access is by nosmean
guaranteed. In the remainder of this section we use the¢apability to refer to
aUCM capabilityand not a security capability.

In a UCM deployment, computing resources in a ubicomp systentypically
provided by one or more underlying systems’ adapters byngddiCM compo-
nentsto the model. UCM Componenisiplementapabilities. When a component
is aggregatedby one or more entities, these entitiegposethese capabilities as
shown in Figure 3.9. UCM applications access computingumess by interacting
with entity capabilities.

Here we assume that the computing resources accessibleapphoation are
controlled as a group in a single administrative, networkdim, perhaps within
virtual walls [67], or individually (e.g. using Bluetooth)Me can expect that the
credentials required for an application to access resstuincg ubicomp system can
vary from something as simple as a PIN, a user-readablaysifimords (used for
out of band authentication [41]), or a public key.

To illustrate how the core UCM can be extended to model bothrgg do-

Chapter 3. The Ubicomp Common Model 70

exposes

contains

€XPOSeS npasContext

outdoorLocation
messageService
Type

restricts restricts restricts

lightingService

Device Security

. hasContext
Domai

activityType

deviceAccessContro) roomAccessControl

Figure 3.10: Example of AC properties used to mark security domains.

mains and access control required to interact with comgutesources in a ubi-
comp system, we can add a new core abstraction we cateass contro{AC).
We say that an ACestrictscapabilities as shown in Figure 3.9. When a capability
is restrictedwith an AC property, this indicates that the capability is emfer of
a security domain (such as a LAN, a server or individual delile a laptop) that
may require participation by the UCM application in an ascasntrol mechanism
(e.g. an out of band introduction, PIN, public key). In thiaywentity capabilities
in the UCM are grouped by domain and access control typeussriited in Figure
3.10.

In the model example illustrated in Figure 3.10, the entgyspnBob has two
capabilities, one (a ContextType) is used to retrieve Blaration (outdoorLoca-
tionType), another (a Servicelnterface) allows appl@aito send SMS messages

to Bob (messageService). Another capability allows us tieere Bob’s current

Chapter 3. The Ubicomp Common Model 71

activity (activityType). A Servicelnterface of the roomtiy (meetingRoom) al-
lows applications to control the lighting (lightingSergjc Access to the outdoor-
Location and messageService are controlled by Bob’s devibereas the activi-
tySource and lightingService are controlled by a ubicongiesy installed in the
meeting room. To indicate this, the messageService andoritdcation are re-
stricted by an AC instance callettviceAccessContrahe activityType and light-
ingService are restricted by th@omAccessContras shown. Note that there is not
necessarily a correspondence between how entities graidiies and security
domains marked by an AC instance.

By associating access control instances with capabjlisesl subclassing a
core AC abstraction class as shown in Figure 3.9 we can eterldCM to include
information about both the security domains and accessaanechanisms used
in integrated systems.

Using this extension to the UCM it should be possible to lithé access and
visibility of specific integrated resources to UCM applioas. For example, each
UCM application may have an associated access controlW$ten the model is
queried in an integration platform like the UIF describedGhapter 4, this list
can be checked against the capability AC restriction toeeittide or expose the
capability for that application. The use of AC abstractionan executable model
may also be used by a supporting system to reason abouttgedmmains at run
time, adjusting security domains depending on the contkEgedain entities for
example.

Note that neither capabilities nor their associated ACtiflers are used as the
credentials needed to access a system’s resources. A€seapa security domain
and the mechanism required in the UCM. We expect to rely orutiderlying
system to ensure that a UCM intermediary authenticated exwarad within their

security domain(s).

Chapter 3. The Ubicomp Common Model 72

3.5.1 Security Example

As an example of the use of the access control abstractiordiseess how the
Unmanaged Internet Architecture (UIA) [41] security domand access control
mechanisms could be supported by a UCM implementation. mhisbe necessary
when the user wishes to access personal devices such as la plufme from a
UCM application.

The UIA is a peer-to-peer connectivity architecture whexeheuser is the ad-
ministrator of his or hepersonal groupcontaining their mobile and personal de-
vices. Users can “merge multiple UIA devices to form a peasaroup, after
which the devices work together to offer secure access taawige in the group
from any other.”[41]. Similarly, users can createared groupgo share access of
their personal devices with others. When a user wants to aulvadevice to a
group, the UIA finds other devices in the group (e.g. one @ on a wireless
LAN or via social network). The user then selects “Introdevices” on the new
device and one already in the group to startraroductionprocess. Arintroduc-
tion keyconsisting of three words chosen randomly from a dictionsushown on
the display of both devices. Users then choose the othec@svntroduction key
from a list of three other random keys to complete the intatidn. If a matching
key is not found, the procedure is aborted. The user ensoagshie introduction
key of the other device is correct since it is highly unlikétat an impersonator on
the wireless LAN will supply another random key that match®gher aspects of
the UIA security mechanisms are discussed in [41]

In a typical UCM deployment, UCM applications will be prodiby an inter-
mediary such as the UIF platform and adapter described ipt€read and 5. To
access devices in a UIA personal group, an adapter must leegonember of that

group using the UIA introduction process as shown in Figuid.3

Chapter 3. The Ubicomp Common Model 73

Application

UIF

Firewall

LAN \
[

Adapter

introduction
——— |- ——————-
|

Figure 3.11: Access control and security example: introducing a UIF satap
into a UIA personal group.

To do this, capabilities discovered in the LAN by an integmasystem adapter
(as described in Chapter 4) are marked (iestricted with an AC instance that
represents a UIA group. The type of the AC instance is usedditate that an
“out of band” introduction process is required. An examplehis is shown in
Figure 3.12. Bob has two capabilities supplied by his mopiiene restricted by
the uiaPersonalGroup. The uiaPersonalGroup is an instzree OutOfBandin-
troduction AC abstraction as shown.

PlaceMedia is a web application that displays the positiohfiends and
places of interest on a Google map [40] as described in $e6thhl. For a UCM
application such as PlaceMedia to interact with a capgpilie integration system
(UIF) delegates calls to an adapter as described in Chapléredadapter then pro-
cesses the call by marshalling the request and response fooam the integrated
system.

For example, the PlaceMedia application would like to es&ithe position of

Chapter 3. The Ubicomp Common Model 74

——» property
—> subclass

AccessControl

personBob

UIA Personal
Group

messageService

exposes

outdoorlLocation
Type

restricts restricts

OutOfBand
Introduction

rdf:type

uiaPersonalGroup

Figure 3.12: Example of capabilities restricted by UIA personal group.

the user to display on a map. This could be done by accessirsgra umobile
phone which is a member of the user's UIA personal group. Tthido the UIF
delegates the location (context) request to the UIA adaptee UIA adapter can
then delegate the call to a UIA device to process the request.

When the adapter is not yet a member of the UIA personal groegphone
belongs to, the UIA adapter will need to be introduced to #néak. To do this, the
adapter can trigger the UIA introduction process and reduichallenge” response
to the UIF. The response will include public information deé by a PlaceMedia
user to complete the introduction. The Uidtroduction keyof the adapter can be
included in the challenge.

If the adapter host is near the mobile phone, the standardntiidduction user
interface can be used on both the adapter and the phone tdetertie adapter-
phone introduction.

For situations when the PlaceMedia user is not near the mphibne, Place-
Media can display the adapter’s introduction key supplieith the challenge re-

sponse. The introduction between the adapter and the ndbiiee can then be

Chapter 3. The Ubicomp Common Model 75

completed remotely by the PlaceMedia user and the mobilagobener by voice,

SMS or email to ensure the introduction keys match [41]. Wbeth users de-

termines that the intoduction key is correct, PlaceMedmamtinue the process
by making an “authentication” call with the remote introdan key to signal the

adapter to complete its side of the introduction process.ibbile phone user can
complete his or her side using the standard UIA interface.

Once authenticated, future requests to the mobile phoneeitUtA personal
group will now succeed since the adapter is now an introduoehber of the UIA
personal group. As described in [41], the owner of the pexisgroup can revoke
the adapter's membership at any time; the adapter will neée introduced again
to access the mobile phone.

To support other authentication mechanisms, other (pubiformation can
be provided in an authentication challenge and/or responges same way. For
example, public keys carried with an end user device suchasbéle phone as in
the Instant Matchmaker [93] can provide the necessary ntiede when a UCM
application is challenged for access to a resource. Of epurtegration with the
integrated systems’ access control mechanism assumesistar API, or code is
availablé to allow an adapter to trigger the introduction process atdeve the
introduction key displayed in the dialogs as described.

Our treatment of this example is deliberately informal amdnieant only to
illustrate how a given security framework like the UIA may $epported by the
UCM access control extensions and an integration systenretdgnize that given
a specific security framework, an implementation may regaithorough and for-
mal analysis to ensure all security requirements are satisfiowever, from our
initial investigation and as described above, we are optimihat the UCM is able

to gracefully support a meta level security model that magsnally to underlying

2see http://pdos.csail.mit.edu/uia/

Chapter 3. The Ubicomp Common Model 76

security models as implemented by existing systems.

3.6 Use Cases for an Executable UCM

To use the UCM for creating and maintaining an integratedarhp environment,
it must be instantiated in a supporting sytem. By expressiad CM explicitly us-

ing semantic web languages such as the Web Ontology Lan¢G&gk) [102] and

the Resource Definition Framework (RDF) [101] it is possiblesuch a system to
store, query and infer new information about an integrat@damp environment
using Semantic Web tools and libraries such as the Jena Sedab Framework
[1] in an integrated system. In this section we summarizersg\environment

design/integration time (static), and run time use case®f@nexecutabldJCM.

3.6.1 Design/Integration Time Use Cases

At environment design time, the UCM expressed as an ontobagybe used to
describe the initial state and static aspects of the enwiesrt model. This includes
the following:

Static environment model descriptions.In any environment there are static
entities such as rooms, furniture, and fixed devices. The Wah be used to
describe these entities and their static context such dsthéon of fixed objects
or the name and email address of a user. Important statittoredhips such as
relative location can also be described. For example, dqpria containedina
room, and a meeting room iextToan office.

Interface semantics and context quality. Even when a component exposes
the same interface, the behavior or quality of its servicg waay from one imple-
mentation to another. A GPS location sensor may providditmtaccuracy of 5m

outdoors whereas an indoor location sensor may providerooiy level accuracy.

Chapter 3. The Ubicomp Common Model 77

Semantic descriptions can make the quality and semantias ofterface explicit
to applications so that they know when they can and shoulgpleal.

Component configuration information. In a supporting system such as the
UIF described in the next chapter, components in the systaynb@a implemented
by native Java classes or by integrated ubicomp middleviratbe UCM, abinding
property of a component is used to associate a componerd imakel with a native
Java class implementation, while adapterproperty associates the component
with integrated middleware.

Initial entity-component dependencies. A physical entity such as a device
will often have services, context or events associated Wvithhe aggregation re-
lationship between entities and implementation companestablishes the initial
link between the conceptual or exposed model of an envirohraed its imple-

mentation components.

3.6.2 Run Time Use Cases

A challenge for any ubicomp system is in managing the dynaasfects of an
environment for applications. In our system, the UCM usethwin associated
reasoning engine can be used to maintain the exposed matlekaaciated com-
ponents as their composition changes. We have exploredlioging run time
use cases for an executable UCM:

Entity Composition. When new entities such as mobile users and their en-
vironment arrive and leave the environment, associataatrimdtion about these
entities can be added or removed from the model. A reasomg@e can then
associate these new entities with the appropriate companpes and service
interfaces.

Context Inference. Ontology-based systems such as [27, 51] have shown that

Chapter 3. The Ubicomp Common Model 78

itis possible to use an integrated reasoning engine tolimgéer level context from
lower level context information. Cooltown [68] and otheis®ms have demon-
strated the value of entity relationships for service discp and other use cases.
A reasoning engine with appropriate rules can be used to sufeh relationships
from lower level context information. For example, the doling rule establishes

the near relationship when one entity is within 50 metresotlaer.

[(?entityl ucm near ?entity2) <-
(?entityl ucm|l ocation ?positionl)
(?entity2 ucm |l ocati on ?position2)
not Equal (?entityl, ?entity?2)

i nRange(?positionl, ?position2, 50)]

Dynamic component call/message dispatchAt run time, an environment
model described using the UCM can be queried to determinedimponent that
currently supplies the requested service or context whial depend on the cur-
rent situation. For example, one context source may be asdetérmine a user’s
location indoors and another outdoors. The following ruik aggregate a context
source ¢sIndoorPositionSourgefor providing indoor position information only

when a Person entity iontainedinthe csBuildingplace.

[(?entity ucm aggregat es canpus: csl ndoor Posi ti onSource) <-
(?entity rdf:type ucm Person)
(?entity ucm contai nedl n canpus: csBui |l di ng)]

Entity classification and discovery.A client of the system or internal compo-
nent may need to find the entities in the environment that Imatcertain criteria
such as its type, the service interfaces, or context types phovide. Similarly,
clients or components may need to know the interfaces oegbstipported by a
given entity.

Situation events.With an integrated model of an environment, it is possible to

query or be notified when a certain situation exists in therenment as a whole.

Chapter 3. The Ubicomp Common Model 79

For example, one can query whether there is more than oneensgr contained
in a meeting room. This may be used by an application to itigr& meeting may
be starting to call appropriate services.

Security. If the model is executable, the capabilities accessibe @ssociated
with access control properties as described in Sectiont8.3)CM applications
can change depending on the context of various entities asictsers location in
the model, permitting context-based security mechanisdfscourse there are a
number of assumptions such as the integrity of context tleati@tical for consid-

eration in the use of the UCM in these scenarios.

3.7 Summary

In this chapter we presented the requirements for a comnmagraanming model
for ubicomp based on core abstractions shared by severalsemygative ubicomp
systems surveyed in Chapter 2. These shared abstractiensnanvironment
mode] entities entity relationshipscontext services eventsanddata or content
Using a simple example we demonstrated how these abstraatam be used to
model an environment leading to the the design of the UbicG@mmmon Model.
The UCM is an entity-centric model consisting of three mllabspects: the En-
vironment State containing context and entity relatiopshMeta-State containing
entity capabilities such as context types and servicefades, and Implementa-
tion containing implementation components such as cosaxtces and services.
We discussed the UCM'’s suitability for meeting several nenents of a common
model: application portability, specialization for difémt environments, introspec-
tion, its suitability for adaptation to existing systemagaxtensibility to support
emerging security mechanisms. Finally we presented uss das anexecutable

UCM in a supporting system such as the Ubicomp Integrati@miework (UIF).

Chapter 3. The Ubicomp Common Model 80

The UIF used to evaluate the UCM's suitability for ubicomgtgyns integration is

described next.

81

Chapter 4

The Ubicomp Integration

Framework

In this chapter we present the Ubicomp Integration FramkewbiF), a meta
middleware platform that uses the UCM for both applicati@velopment and
ubicomp system integration. Its primary use is to exposeduhetionality of ex-
isting ubicomp systems in a controlled and unified manner. In thig tha UIF
can then be considered a sophisticat@dpper or Facade[44] that encapsulates
one or more ubicomp system with a service interface. Intyetiie UIF is more
complex than its role implies since it provides a compositeleh of an integrated
environment, and so contains much of the functionality 6eotubicomp middle-
ware platforms. In this chapter we describe the architecturd implementation
of the UIF system and associated adapter framework in sotad.deeaders who
are more interested in the use of the UCM for application alapeer development
than the UIF implementation details may prefer to skip mutcthis chapter and

instead turn to the summary in Section 4.9.

4.1 Analysis and Approach

The UIF is used to assess the feasibility of using the UCM iéyuhe program-

ming model of existing ubicomp systems for both applicapantability and sys-

Chapter 4. The Ubicomp Integration Framework 82

tems interoperability. In the next Chapter (5), we descoitbeexperience using the
UCM in the UIF to unify the abstractions of four represem@asystems to manage
a compositeenvironment model. This composite model can then be aatdsse
application developers using a single API.

To accomplish this, we require software to map the varioda ttamats, in-
terfaces and protocols of underlying systems to a commotogut effectively
presenting a homogeneous view of the integrated underlyimgpomp systems to
the integration framework. Unlike other ubicomp systens #iso provide a ho-
mogenous execution environment for applications such esetin discussed in
Chapter 2 and others (e.g. [72] and more recently [14]), wre tai accomplish
the same goal by integratirexistingubicomp systems, accessing as much of their
functionality using their existing APls. This will demorate the feasibility of us-
ing the UCM to integrate systems and how well the UCM is ableapture the

abstractions of representative systems.

4.1.1 Analogy to Enterprise Application Integration

In the Enterprise Application Domain (EAI), integratorcdasimilar problems
when attempting to integrate diverse applications in anass. Unlike the EAI
domain however, our main focus is not to integrate appbeeti but middleware
systems that coordinate computing resources. Becauseasofstveral well un-
derstood (and often less arduous approaches) to entenpigggation cannot be
applied directly.

For example, in some cases, enterprise applications agrated at there-
sentationor user interface level [71, 88]. This can be done by scrempst the
integrated application, or combining the user interfacés & web portal. The ad-

vantage of this approach for the integrator is that it isthegty easy to accomplish,

Chapter 4. The Ubicomp Integration Framework 83

but it often means that there is strong coupling betweenntegiated application

or interface and the integrated system. This approach igeastble for our task

since several ubicomp systems we aim to integrate do noyalhave a presenta-
tion layer or user interface. Another enterprise integraipproach is to integrate
the dataheld by applications. This may involve data replicatiordefi@ting data,

or the use of interfaces that provide access to the dataeqgritied applications.
This approach is sub optimal for our integration task sineeneed to access not
only the changing environment model and state of an intedraystem, but also
the functionality of those systems.

Finally, enterprise integrators have usefdilactionalintegration model that al-
low potentially new applications to invoke existing furmetality from new applica-
tions [88]. This is done using the available APIs to the iréed applications. To
ensure we are leveraging the programming abstractionsdaem¥by an integrated
ubicomp system through its APIs, and to validate our intégmamodel, this is the
approach (necessarily) taken in our integration task falumating the UCM.

Within the functional integration model, an integratiomaansure data con-
sistency across applications, coordinate actions acntsgrated applications, and
use well defined service interfaces (called a service aikftl] or plug and play
integration [88]). In our task, we similar goals in that wenaio ensure that as-
pects of the composite environment model held in an intedraystem are kept in
sync with that of the integrated ubicomp system’s modelg@dainsistency). We
also aim to use existing systems in a coordinated mannerdto@d functionality
(e.g. applications, composite services, inferred cordagtentity relationships) in
the integration framework itself. Enterprise integrattyqsically useadaptersfor
wrapping applications in a well defined interface [12, 71], @8different adapter
is typically required for each integrated application. Faegrating ubicomp sys-

tems, we take a similar approach, providing an adapter fn gge of system we

Chapter 4. The Ubicomp Integration Framework 84

aim to integrate. In our case we use the same interface fadapters.

Although not all EAl approaches can be directly applied tcoimp systems
integration, we were influenced by well known EAI method@sgand more recent
enterprise middleware implementations using ontologees. (78]). An important
step during analysis for EAI is to determine the high levalsimess entities” in
an enterprise leading to the identification of the compotimetfaces needed for
integration [88]. In the EAI domain the basis for identifgientities is often the
various functions in an enterprise such as R&D, Produchtarketing, Sales, Dis-
tribution, Service, Accounting, and Personnel. In EAI aghicomp, there are also
cross functional entities likpeopleand organizations In the ubicomp integra-
tion domain, our basis for identifying entities and compasere the abstractions
present in representative ubicomp systems (e.g. contei® services, content)
and the physical world (people, places, things, their imahips) as described in
Chapters 2 and 3. Unlike typical enterprise applicatiobg;amp systems are gen-
erally cross functional in the sense that they are (typitalesigned to support a
variety of applications.

In both the EAI and ubicomp domains, the semantics of theouarabstrac-
tions must be consistent for cohesion in a unified progrargmiodel for new
application developers. Because of this, many working eEAlI domain have
begun to use ontologies “to provide a shared and common staaeling of data
(and in some cases, services and processes) that exists antlpplication inte-
gration problem domaift. While recognizing that there are differences between
the abstractions of an enterprise integration and ubicemeplso employ ontolo-
gies. In a typical EAI deployment, however, the availablactionality and its
relationship to business entities is often fixed at desigretiln an integrated ubi-

comp environment, the available functionality and ergitgll change dynamically

1[71] pp 394

Chapter 4. The Ubicomp Integration Framework 85

as discussed in Section 3.6.2. Because of this, we neeiéscib for managing a
integration model that can be changed at runtime by ada@ppdications and by

the integration framework itself.

4.1.2 Environment Model Management

Since our goal is to unify these systems itoanpositeenvironment model, we also
need a way to manage this model (i.e., an instance of the UTM).UIF model
subsystem will provide the rest of the integration framdwwith the information
needed to correctly select and make use of an underlyingmaytst satisfy a given
application request.

In a composite ubicomp environment, multiple integrateicainp systems
will typically be involved in context provisioning or in thenplementation of in-
tegrated services. The underlying services and sensogshysan application at
a given time may also depend on the situation. For examplanimdoor envi-
ronment, location information may be provided by a ConteoalKit widget, but
when the user is outdoors, location may be provided by wida arobile phone in-
frastructure. We need an approach that allows an integratwoordinate both the
static and dynamic aspects of an integrated environmenembtbre specifically,
we need an approach that provides the integration framewithkthe knowledge
of the static and dynamic relationships between computisgurces such as soft-
ware services and sensors, and people, places and things.

We can satisfy this requirement by instantiating the UCMdliy in the inte-
gration system itself. This will also satisfy a requiremiamtour model highlighted
in Section 3.1, that is, for the model to bgecutablei.e., queried and reasoned
with by the system. Applications will query the model to diger entities and their

capabilities for interaction and to determine whetherrtheguirements can be sat-

Chapter 4. The Ubicomp Integration Framework 86

isfied. Direct support for reasoning in the integration folath will also allow the
system to satisfy the run time use cases presented in S&6dhsuch as entity
composition, context interpretation or inference, andayit call dispatch.
Initially we considered meeting these objectives usinglatimnal database
such as MySQL [8] or another data store. After some initiakqiype work how-
ever, we decided to make use of semantic web technologieaage our integra-

tion model. This decision was based on four factors.

1. We first considered thigexibility that the use of semantic web technologies
offers in terms of modeling, query (e.g. using SPARQL [1G8{)l reasoning

support, gaining an understanding through prototypes aperenentation.

2. We noted thincreasing breadth and depth of tools availabldo create, and
manage ontologies and models that use OWL and RDF. Desitggioch as
the Protg ontology editor [9] and plug ins for the popularifgsd IDE [4, 6]
are available for ontology design. Frameworks and tool@dts 73], high
performance knowledge bases [53, 110] and reasoning enfie92] are

also available.

3. Since we aimed to integrate existing ubiquitous systesirsguapplication
servers we also considersztent enterprise middleware approachesalled
Ontology Driven ArchitectureODA) [78, 100]. ODAs use an integrated
knowledge base and reasoning to ease the development armdjenaent of

applications hosted by enterprise application servers.

4. The use of Semantic web technologies has emerged/all established ap-
proach to managing context and configurations in ubiquitousystemsas
demonstrated by Gaia [84], the Context Broker Architec(@eBrA) [26—
28], the Service Oriented Context Aware Middleware (SoCABW] and

Chapter 4. The Ubicomp Integration Framework 87

others [30, 99].

Based on these considerations, we decided to make use ofisernvab tech-
nologies and an Ontology Driven Architecture to assist éndbnfiguration and run
time maintenance of the composite environment model mahbgehe UIF. An
instance of the Ubicomp Common Model (UCM) is created by &egirator using
to specify the static configuration of the environment. Thsigkd response to dy-
namic run-time changes such as the addition of new entitidscamponents are
described using rules executed by an integrated reasongigee[1] that maintains
both the exposed aspects of the model (Environment Stat®laetalState) and the

implementation as the composition of the environment caang

4.1.3 Cross-Domain Interaction

Since we aim to support access to ubicomp systems from agiphs outside of
the administrative domain where an integrated ubicompeayss deployed, we
provide a standards-based Web Service interface to theTbd-use of Web Ser-
vices makes the UIF accessible and potentially discoverablthe Web through
firewalls and across wide area networks. With a standarsisebavide area se-
curity framework [81] Web Services can be accessed in a sgoanner. Other
mobile and ubiquitous systems such as ReMMoC [45] and WSA] &s well as
commercial systems such as UPnP [74] have proven the vajp@watling a Web
Service abstraction around individual environment resesir While these systems
have demonstrated that the use of Web Service is a workahléosoin some
cases, our aim is more ambitious: unlike these systems, mweaawrapwhole
systemghat expose higher level abstractions suclerasronment model&ntities
and relationships as discussed in Chapter 2, not just individual components o

services.

Chapter 4. The Ubicomp Integration Framework 88

While the use of other protocols is possible, there are aklsenefits to the use
of Web Services [109]. They are relatively simple to use aiplication servers,
especially with the variety of tools and frameworks avdéafor virtually all pro-
gramming languages today. Based on industry standardshthe been widely
adopted for cross-domain communications. Web Servicang®loose coupling,
since only the service and connection is described, indbpdrof the implemen-
tation at either end. They are self describing and disciNeran the Internet.
Finally, while HTTP is often the transport used, other tpass can be supported
by a given Web Service for more efficient internal communmicet over private
networks. However, despite the numerous benefits thereoane srawbacks to
the use of Web Services, particularly in the area of perfogea Scenarios like
ours will incur overhead since the Web Service tools tramsfmethod calls to
and from XML-based SOAP messages. Furthermore, our irttegraystem will
necessarily add an additional layer on existing systemsdaiing method calls.
However, through the careful application of Web Servicest pbeactices [31], we
believe that the benefits of using Web Services outweigtetbest. In the follow-
ing sections we describe the implementation of the UIF wicly our use of Web

Services in more detail.

4.2 Implementation Overview

The UIF is a tiered enterprise server application as showigiare 4.1. The system

performs three essential functions:

1. Itserves as a repository for knowledge about a compasiiecmment model.
This “knowledge” consists of information contributed ditlg by an integra-
tor, by ubicomp system adapters at run time, or deduced bwytagrated

reasoning engine and integration rules.

Chapter 4. The Ubicomp Integration Framework 89

Application Application Appllcatlon =

Domain
Boundary
‘ Web Services Facade ‘
Environment Composition Ubicomp
Logic Integration

Framework

Native Component Model and Model
Container Reasoner Store

Message Broker

Distributed

iROS CTK ECT Adapters
Adapter Adapter Adapter

iROS Components CTK Components ECT Components

Figure 4.1: Ubicomp Integration Framework Architecture.

2. The UIF dispatches method calls from applications to fh@@priate (dis-
tributed) adapter or internal components based on the ravirderred data

in this repository.

3. The system manages event subscriptions for clients afthmposite model,
ensuring subscriptions to asynchronous events are prtgzhgarrectly and

maintained as long as the corresponding integration adegdwailable.

Figure 4.2 illustrates the typical interactions betweehR klibsystems when an
application requests context for an entity. First, the mppibn makes a call to
the Facade Web Service to get context (1). This is delegatéite Environment
Composition Logic (ECL) (2) which makes a request to the Maeael Reasoner
subsystem (3) to get the component information that hartilespecified entity
and context attribute (4). Based on this information, thé.#@&n queries a native

component hosted by the Native Component Container fordhtegt value (A.5)

Chapter 4. The Ubicomp Integration Framework

90

A8,B.12
context value

Application

Applications outside domain

.

Web Services Facade

A7,B.11

context value

2. get context for
entity, attribute

1. get context value for entity,
T attribute
v

UIF hosted by application server

3. get component for
entity, attribute

Environment >
" —>» Model and [(\i54al
Composition R ner ode
Logic P easoner | giore
4. context source

component information

A.5 get context B.5 get context
value from adapter

value from native \ componant
B.:EN. P

A.6 context value I
component

context value

Native Component Veerap By

Container
B.6 get context
B.9 context value value from adapter
component
LI
Distributed Adapters 5

TK
Adapter

B.7 get context
value

B.8 context value I

CTK Component Q

Figure 4.2: High level interaction between UIF subsystems.

or forwards it to the Message Broker (B.5). If a native congranhandles the
request, the context value is returned to the applicatiaf,(A 8). If it is handled
by an integrated system, the Message Broker forwards theesédp a distributed
adapter (B.6), in this case the Context Toolkit (CTK) adapfehe adapter then
makes the query to its component (B.7) and the context valpplied is returned
to the application (B.8, 9, 10, 11, 12). Note that it is als@gible for (static)
context to be maintained in the model. In this case, the ECGlLowery the model
for the context value (not shown).

The Facade subsystem provides a SOAP-based [104] Welz&anterface to

applications for cross domain interoperability. As ddsed, calls to the Facade are

Chapter 4. The Ubicomp Integration Framework 91

delegated to the Environment Composition Logic (ECL) sstmy. The ECL is
not only responsible for dispatching queries, but also famtaining subscriptions
to asynchronous events.

The Model and Reasoner subsystem maintains the currembement model
including the UCM itself, specializations of the UCM, entihstances, static con-
text values, capabilities, component descriptions ani th&ationships. Queries
for entities based on their types, capabilities and staiitext are handled directly
by the Model subsystem since this information is maintainéts knowledge base.
Based on rules supplied with the UCM and an integrator, segnated reasoning
engine can establish new relationships depending on éypi&g and context values
when components or entities are added or removed from thelnbydan adapter
or an application.

The Native Component Container hosts internal “native” UG@Whponents in-
stantiated by the system either on start up, or when firssgeckby an application.
A typical use of a native component by an integrator is to jgl®@a composite ser-
vice, or a specialized context inference capability forititegrated environment.
For example, in the case where user entities aggregate am@&dsaging service,
an integrator can create a new service to send SMS messafgiesitts of a user,
or users contained in a certain building or room. This nevatcast service makes
use of the SMS messaging services of an integrated systemiafy, an integrator
could create a simple context source that provides the nupfhesers in a room
by counting the entities contained in that space.

Method calls destined for an adapter are dispatched by tresdde Broker as
described. Distributed adapters transform the methodteaid from the inte-
grated system’s data structures and APIs as needed.

To support asynchronous events, applications supply gpbea parameters

specific to the event type. The adapter associated forwhedsubscription to the

Chapter 4. The Ubicomp Integration Framework 92

native system and maintains an internal mapping to the Gmdgrsystem sub-

scription. Later, when an event is signalled by the integtatbicomp system, its
adapter marshals the event data to a commonBuiH t yEvent data structure,

and sends it to the UIF. The ECL looks up the associated sbks@and queues the
event for application retrieval.

The UIF was implemented using the JBoss [7] Java 2 Enteradg®n (J2EE)
[97, 98] server, a fairly standard platform for enterpripplacation development.
The UIF consists of approximately 7800 lines of Java codecdinelr components.
The UIF Model subsystem wraps a Resource Description Framke{RDF) store
and general purpose rule-based reasoning engine supptiethe Jena Semantic
Web Framework [1]. The initial model of the environment dstssof the UCM
and environment-specific ontology loaded when the systamsst Static entity,
context and component descriptions are also loaded atugtaalong with default
rules supplied by an integrator. Our prototype deploymesicdbed in Chapter
5 consisted of 535 RDF triples and 278 rules. The Broker conicates with
Adapters using Remote Method Invocation (RMI) [38] so thay be distributed
in an integrated environment. The adapter framework andeimgntations are
approximately another 3000 lines of Java code. In the faligwsubsections we
describe each subsystem in more detail followed by a dismusd our adapter

framework.

4.3 Facade

To implement the UIF Facade Web Service we have used botAxise[10] and
JBossWS [5] Web Service frameworks. These frameworks cavid® server and
client side code to marshal method calls to and from SOAPgamerate WSDL

from an supplied Java class or interface. Using tools seg@piiith either of these

Chapter 4. The Ubicomp Integration Framework 93

frameworks we generated the appropriate server side depluyfiles and WSDL
for the Facade interface.

One challenge specific to our integration task, howevengsited for a generic
data type that is flexible enough to support complex sernécarpeters, event data
and context information while making it easy to marshal tocABP(y different
Web Services frameworks, not only for Java applicationsolfutr languages such
as C# and C++. While we could have considered the use of RDFdasaaex-
change format, we did not want to force application developeinclude an RDF
parser. We required a data structure that can be marshady aand from the
various data formats needed by an integrated system, anttltfr@m the RDF-
based knowledge base and reasoning system in the UIF. Tonatish this we
created thédataObject data structure and associated utility classes for convert-
ing any data structure to and from native Java and RDF. FieldsDataOb-
ject are strings (names, values), integers (type) or nesteddbgtats to support
complex data structures and arrays; it should be a straigtefd task to provide
DataObject converters for other languages. Applications typicallgleange data
with the Fagade Web Service usiaipntextValue andEventSubscription data
structures that use tlBataObject wWhere a generic data structure is needed.

There are four categories of Facade methods:

e Application authentication. The system must be able to authenticate ap-
plications that are allowed to make use of the integratedr@mwent. In
the UIF, an application must log in with its client id befoteean access the
model. The following methods of the Fagade interface athisicategory.

/1 Application authentication
public String login(String clientld,

String password) throws RenpteException;
public void logQut(String clientld) throws RenoteException;

Chapter 4. The Ubicomp Integration Framework 94

e Model Compaosition. Methods in this category allow an application to add
and remove entities such as users, objects, places andeuttiges to the

model. These include the following methods:

/1 Mbdel conposition

public String addEntity(String clientld,
Entitylnfo el nfo) throws RenoteException;

public void renoveEntity(String clientld,
String entityld) throws RenpteException;

e Entity Interaction . These methods support interaction with the entity’s ca-
pabilities: getting current context values, entity redaships, content, call-

ing services, subscribing to and retrieving events.

/1 content
public String getContent(String clientld,
String entityld, String contentAttr) throws RenoteException;

/] events
public EntityEvent[] getEvents(String clientld, int tineout)
t hrows Renot eExcepti on;
public void subscribe(
String clientld,
Event Subscri ption[] event Subs, String eventListener)
t hr ows Renot eExcepti on;
public void unsubscri be(
String clientld, int subld) throws RenoteException;
public int addSubscription(String clientld,
Event Subscri pti on event Sub)
t hr ows Renot eExcepti on;
public void unsubscribeA |l (String clientld)
t hr ows Renot eExcepti on;
public Event Subscription[] getSubscriptions(
String clientld) throws RenpteException;

/1 relationships
public String[] getRelatedEntities(String clientld,
String entityld, String relationship) throws RenoteException;
public void addEntityRel ati onshi p(
String clientld, String entityld,
String otherEntityld, String relationship)

Chapter 4. The Ubicomp Integration Framework 95

t hrows Renot eExcepti on;

/'l services
publ i c DataObject call Service(
String clientld, String entityld, String serviceType,
int serviceld, String nethodName, DataCbject[] parns)
t hrows Renot eExcepti on;

/1 context
publ i c Cont ext Val ue get Cont ext Val ue(
String clientld, String entityld, String attribute)
t hrows Renot eExcepti on;
public voi d set Cont ext Val ue(
String clientld, String entityld, String attribute,
Cont ext Val ue cont ext)
t hrows Renot eExcepti on;

e Introspection and Capabilities Finally, methods in the last category sup-
port finding entities by (RDF) type, or using a SPARQL [103séclause,
and discovering the current context attributes, serviterfimces and events

exposed by an entity.

/1 Introspection and capabilities
public String[] findEntities(

String clientld, String sel ectWere) throws RenpteException;
public String[] findEntitiesByType(

String clientld, String entityType) throws RenoteException;
public String getEntityDescription(

String clientld, String entityld) throws RenpteException;
public String[] getContextAttributes(

String clientld, String entityld) throws RenpteException;
public String[] getlnpl enent edServi ces(

String clientld, String entityld, String serviceType)

t hrows Renot eExcepti on;

public String[] getEventsFired(

String clientld, String entityld) throw RenoteException;

To access objects in other subsystems, the Facade mettuads atatic meth-
ods in theUIF object as shown in Figure 4.3. Note that while applicatiorsy ive

permitted to add new entities, or set context, they cantndedves access, add or

Chapter 4. The Ubicomp Integration Framework 96

remove newcomponentinto the system. This is the role aflapters described in
Section 4.8. Methods in all four categories of the Facadedategated to objects

in the Environment Composition Logic described next.

4.4 Environment Composition Logic

The Environment Composition Logic subsystem containstkey interfaces — the
Environment, Entity, and theClientManager as shown in Figure 4.3Envi-
ronment and Entity objects handle all access to the model, integrated systems
and components, while thelientManager manages application authentication

and subscriptions to asynchronous events.

4.4.1 Environment and Entity Interaction

A Facade call that interacts with the environment as a wisnieh asindEntities
or addEntity, will delegate to an instance @&nvironment. This call will then
query the Model and Reasoning subsystem described in §etto

A Facade call that interacts with a single entity, usinghmods such aget-
ContextAttributes or callService, will first bind an Entity to a resource id in the
model. Binding associates the Entity with a resource in tloelehencapsulated
by aModelEntity object. The Facade then calls methods on the Entity insfanc
which in turn queries the model through thi»delEntity. Wrapping the model in
interfaces in this fashion allows our queries and model @mgntations to change
without affecting the ECL.

To interact with a component (either hosted by the UIF or inagerlying sys-
tem) theEntity object will first query the Model for the component that hasd|
the request (i.e., an event subscription, service call,ootext query). TheEn-

tity method then delegates the request to either a Native Comparehe Mes-

Chapter 4. The Ubicomp Integration Framework

97

ECL::Environment <~

ECL::Entity

-ontEntity : ModelEntity

«uses»
|
|
|
|
|

/.

«interface»

Model::IntegrationModel

i
«uses» -ont
I

«interface»
Model::ModelComponent

Facade

/ I

’ / RN
L7/ «usesx
/ | N
/ A

, .
7 «uses» N
7

I
I
/ | \
|
I
I

UIF

ity

A\
S/

ECL::ClientManager

N —cLientSessions

ECL::ClientSession

«interface»
Model::ModelEntity

-subscriptions
-eventQueue

Figure 4.3: Key classes of Environment Composition Logic.

Chapter 4. The Ubicomp Integration Framework 98

Web Services Environment
Facade Composition Logic Model Broker and Adapters
‘ Application ’ Facade ’ UIF Entity ‘ IntegrationModel ModelEntity ModelComponent AdapterManager RemoteAdapter
T T
i | | : | ! [| |
! | I | I] ! I I
callService(entityld, interface, params) | h | : : | |
! L | | | |
getEnfity(id) | : | | | | !
> | | ! ! | |
new Entity(id) | | : : | |
| | |
getEqtity(d) | : i I |
1 | |
Mod@lEntity i i ! |
Sl i 7 | [| :
I ! ! I I
Ko-=---- = | | 1 | |
! I ! ! I I
K--—-F---- | | | | | |
callService | | | | | |
' L \ | |
“ getServicelmplementations | | : :
N >l |
| |
| modelComponent | | :
| K-~ Foom oo ! |
| getAdapterName | | | |
+ 1 1
| t | | | |
| | adapterName | U | |
| [R [[——— | |
| invoke(adapterName, componentld, entityld, ...) | RMI |
! + ! L |
| | : : invokeService(componentld, entityld, ...)
| |
| | : : Message1
| S (-,
| | | | |
| R Fo e . |
R IS B I ! ! I I
~ I B | | |
,,,,,, L | I | | |
- I I ! !

Figure 4.4: Sequence diagram for Facade.callService().

sage Broker. A simplified sequence diagram for the FagallBervice method is
shown in Figure 4.4.

In addition to illustrating the message flow, this diagramhlights potential
sources of overhead incurred when introducing the UIF betwen application
and an integrated system. We incur overhead from the Welicgdibrary when
it marshals the SOAP call to the corresponding Java methatbth&r potential
delay is incurred when the Environment Composition Logierigs the Integra-
tion Model. Before it is finally handled by a native ubicoms®m, it must be
delegated by the Broker, and processed by the appropriateteeadapter. These

sources of overhead are discussed in more detail in ChapBschion 5.4.3.

Chapter 4. The Ubicomp Integration Framework 99

4.4.2 Application and Subscription Management

The UIF ClientManager shown in Figure 4.3 handles application authentication
and subscriptions to asynchronous events. From our exgerignanaging sub-
scriptions for an integrated environment is not trivialcgna single composite
model event may be signalled by multiple event sources inentliin one sys-
tem. Furthermore, applications must be informed when antaa@irce associated
with one or more subscriptions is no longer available.

When an application logs in using the Facade, the cliens igalidated, and
a new ClientSession object is created.ClientSessions contain a list of event
subscriptions and a queue of events for application retriag shown in Figure
4.3.

When an application subscribes to an eventEaantSubscription is added
to theClientSession. An EventSubscription contains a unique subscription id,
the application client identifier, entity identifier, theemi name and a subscription
data structure specific to that event type. One event swgabdny the MUSEcap
system [40] (discussed in Section 5.3.4) calledearEventis fired when users
are near particular places or other users. In this caseydheEventsubscription
data contains entity ids, and the distance between théesnfitat causes the event
to fire. The subscription is then delegated to the apprapHaitity object and
aggregatedeventSource&eomponent(s) using the same pattern as the service call
example in Figure 4.4.

If the subscription is destined for an integrated system sthbscription is for-
warded to the appropriate adapter by the Message Brokerce Sirdistributed
adapter may fail, our Message Broker called th#apterManager maintains an
adapter-subscription mapping in case an adapter is shut dovails. When this

occurs, theAdapterManager sends an event to th@lientSession (and asso-

Chapter 4. The Ubicomp Integration Framework 100

ciated application) indicating that the subscription hagired. If an individual
EventSourcan an integrated system is shut down, it is the respongibilftthe
adapter to signal to the UIF on its behalf. The UIF will thegrsil application
subscribers that the event capability of that entity hasilbemoved.

Note that, in some cases, multifi&ventSource may supply the same named
EventTypecapability. This is the case when an entity exposes an evmfit as
contextUpdatewnhich is signalled wherany context value changes. In this case
a single event subscription tocantextUpdateevent must be dispatched to more
than one event source, potentially implemented in multgylstems. Because of
this, event subscriptions are reference counted in the THBy can be removed
from aClientSession only when there are no remaining event sources holding the
subscription.

When anAdapter signals an event on behalf of an integrated system, it sup-
plies the client id of the subscribing application, andeaitityEvent data struc-
ture that includes the subscription id, the event name, thigyed of the entity
that exposes the event and the event-specific data. The idienused to look up
the ClientSession object in the ClientManager so that the event can be relayed t
the application. An application supplies a subscriptiomoidinsubscribe from an
event. The unsubscribe call is dispatched toAlkepterManager, removed from
its adapter-subscription list, then forwarded to the appate Adapter.

To summarize, Th€lientManager component of the Environment Composi-
tion Logic authenticates applications and tracks theisstiptions to events. Over-
all the Environment Composition Logic is responsible foeung the Model and
Reasoner to delegate calls, including event subscriptionthe appropriate inte-

grated system.

Chapter 4. The Ubicomp Integration Framework 101

4.5 Model and Reasoning

The Model and Reasoner subsystem manages the currentrenemd model in-
cluding all entities, their capabilities and aggregatethgonents. It typically in-
cludes some static context values, in particular thoseatenot supplied by any
adapter or internal component, but may be useful to apmitait This includes
the static relationships between locations and their d¢oates for example. We
elected to store entities, components, and static entdyioaships and context in
the model; dynamic entity relationships and context retguage delegated to an
adapter. With many entities and rapidly changing contex,feund that it was
not practical to retrieve or cache current context valudlérintegrated model for
entity discovery. The core of our model is implemented ushgyJena semantic
web framework [1]. We integrated the general purpose réagamgine supplied
with Jena into the UIF.

Upon start up, the current model can be loaded into RAM frontaadard
relational database, or from RDF files supplied by an integrd he RDF contains
the UCM core model, specializations of the model for palicenvironments or
required features, and static instance data such as sia#itidns, users, objects,
and fixed components. Once the knowledge base is loaded, taulupport the
UCM and custom rules supplied by an integrator are then netadthe system.
Custom rules may be used to automatically aggregate cdita@id components
with certain entities. For example, a server currently §appuser identity and
presence information for users in the model; context seufmethese capabilities
are automatically associated wi@ampusUserentity types using the following

rules:

all CanpusUsers have presence context
[userPresence: (?entity ucm aggregates predi a: presenceSour ce) <-
(?7entity rdf:type canpus: CanpusUser)]

Chapter 4. The Ubicomp Integration Framework 102

all CanpusUsers have position context
[userPosition: (?entity ucm aggregates predi a: positionSource) <-
(?entity rdf:type campus: CanpusUser)]

Our initial model implementation wrapped a single Jenargariee model: a
data model wrapped with a reasoning engine and associdesd tunfortunately,
the reasoner supplied with the framework is not thread saféhat all queries and
changes to the model must be serialized. For small protatypeels, we found
performance to be adequate, but with larger models we nemuatier approach.
While it should be possible to improve performance by realgiche number of
rules and triples in the model to only those required by optiegation, we wanted
to maintain the flexibility of the Jena reasoner and use OWinash as possible.
To address this we created AftegrationModel implementation that maintains
two cached query models. One is available for queries anadls, while the other
is updated in the background when a change is made. Onceaaljek have been
processed, the background model is then swapped in and aisgddries. Using
this implementation, both queries and changes are fastevmwchanges to the
model are not returned in queries until some time after agha&a made.

We wrapped all queries to the model using three interfadesIntegration-
Model, ModelEntity and ModelComponent. Wrapping the integration model
in these interfaces allowed us to change not only the intiegranodel as described
previously, but also the queries used without changes &r gtirts of the platform.
An IntegrationModel is responsible for model initialization and model composi-
tion using methods to add and remove entities and compankmisntains meth-
ods to find entities by type, or for maximum flexibility, qudior entities using a
SPARQL [103] clause.

Together these interfaces provide the ECL with the knowdedgjuired to dis-

Chapter 4. The Ubicomp Integration Framework 103

patch method calls to the right adapter and/or associatdd tiitnponents. Com-
ponents by be handled by an Adapter as described in Sec8ar #y native UIF

components described next.

4.6 Component Container

The native Component Container subsystem is a simple nomntainer for UCM
components implemented by an integrator. Such componantgrovide compos-
ite services, or custom context sources that make use of oo integrated
ubicomp systems, or services only available to the integratlatform.

The key classes and interfaces for the Native Componenysigdms are shown
in Figure 4.5. TheComponentFactory provides methods to instantiate compo-
nents by providing the component identifier and the Java d@sthe component,
both from the UCM. (The Java class is the value dfimding UCM Component
property.)

TheComponentRegistry encapsulates a mapping from UGmponentId
to Component objects for lookup by other parts of the system. Native camepts
implement a Component interface, or one of its derived fates: ServiceHan-
dler, ContextSource, EventSource, EntityHandler andEnvironment. Each
of these corresponds to a UCM component type, other thamEivéronment.
The Environment is a special component that will receiee@ldEntity andre-
moveEntity method calls from the Fagade to handle adding and removwitiges
to the model that are not handled by a supporting system antusbbe added or
removed by the UIF itself. As their names imp8grviceHandler implements a
method to invoke its services,@ontextSource SUPPOrts context queries by pro-
viding an attribute. AContextSource is also arEventSource that signals events

to objects that implemerEntityEventListener interface. Note thaClientSes-

Chapter 4. The Ubicomp Integration Framework 104

Container::ComponentFactory Container::ComponentRegistry
+createComponent() : Component +getComponent() : Component
N +registerComponent()
AN +removeComponent()
\
«instantiate»
N 1
N
N
N
N
N “
N
N -components

N
|

«interface»
Container::Component

«interface» «interface»
Container::EventSource Container::Environment

«interface»
Container::ServiceHandler

«interface»
Container::ContextSource

«interface»
Container::EntityHandler

Figure 4.5: Key classes and interfaces of Component Container sulpsyste

sion objects in the ECL are also Components managed by the Centalthey
implement theEntityEventListener interface so they can receive events from
both Adapter-hosted components and native UIF componeitfteiContainer.

One composite service we have implemented provides a lmehdressage
service associated with a place that calls individual ngessservices for those
userscontainedina place. Another provides the capability to track usersations
supplied by GPS-equipped PDAs. Other native componentsprayde custom
context inference services, or integration with composierposed using Web Ser-
vices outside the UIF.

A native component implements one of the above interfageg;dlly by spe-
cializing one of several abstract classes supplied witlsyhtem such a&bstract-
ContextSource and AbstractServiceHandler. The components register them-

selves by providing their unique identifiers, their Javadig class and whether

Chapter 4. The Ubicomp Integration Framework 105

the component should be instantiated on start up or on dendfaneixample native

component declaration follows:

<canpus: CanmpusPosi ti onSour ce rdf: | D="positionSource">

<ucm bi ndi ng>ca. ubc. cs. ui f. prot ot ype. Posi ti onCont ext Sour ce

</ ucm bi ndi ng>

<ucm onSt art up>t rue</ucm onSt art up>

<ucm hasCont ext Type rdf:resource="&ucny poi nt Locati on"/>

<ucm firesEvent Type rdf:resource="&ucny cont ext ChangedEvent "/ >
</ canpus: CampusPosi ti onSour ce>

The positionSourcenative component implements a Web Service to receive
GPS coordinate updates from PDAs in the field. The UCM id f tative com-
ponent ispositionSource Its Java binding is th®ositionContextSource class.
The onStartupproperty is true, indicating that it should be instantiatguen the
system starts up. It exposepaintLocationcontext type, and eontextChangedE-
ventevent type.

To summarize, the Container subsystem contains UCM conmp®nmple-
mented within the UIF by an integrator. These componentpoavide composite
services or custom context sources for example either mgalse of an integrated
system or providing new functionality not anticipated byregrated system. Like
components supplied by an integrated system, Contairstetha@omponents are

also registered with the Model and Reasoner subsystem.

4.7 Message Broker: AdapterManager

The AdapterManager object in the UIF is our message broker responsible for
managing adapters and forwarding method calls using JamsoteeMethod In-
vocation (RMI) [38]. TheAdapterManager is also responsible for maintaining
adapter leases and tracking event subscriptions for adaptecase an Adapter

shuts down. Remote Adapters first register with the Adapéerdder, using the

Chapter 4. The Ubicomp Integration Framework 106

adapterStarted() method of AdapterListener shown in Program 4.1. Once an
adapter is registered with the system, theéapterManager dispatches method
calls destined to Components associated with it. Adaptiaisaad remove entities
and components from the model depending on the integrattdreyas described

in the next section.

4.8 Adapters

Key to our approach to integration is the usedapterswhich sit between the UIF
and an underlying ubicomp system. The Adapter interface/shio Program 4.2 is
designed to encapsulate the functionality of an existirigarbp system. Adapters
ensure the integration framework holds the exposed endtiel capabilities of the
integrated system, maintain mappings between componevist subscriptions
and entity identifiers, and marshal method calls to and fitomirttegrated ubicomp
system on demand. Adapters initiate a connection with tHe tl calling the

adapterStarted method of the AdapterListener interface shown in Prograim 4.

Program 4.1 AdapterListener interface.
public interface AdapterlListener extends Renmote {
voi d adapterStarted(String adapterNanme, Adapter adapter);
void fireEvent (String adapterNanme, String sourceld,
String subscriberld, EntityEvent event);
String addeEntity(Entitylnfo el nfo);
void renoveEntity(String entityld);
String addConponent (Conponent I nfo cl nfo);
voi d renoveConponent (String conponentld);

The add/removeComponent and add/removeEntity methods are called
by Adapters to add and remove entities and components to dldelmas they are

discovered in an integrated system. Aggregation links eetwentities and com-

Chapter 4. The Ubicomp Integration Framework 107

ponents may be established by the adapter in the Compofeedtta structure, or

specified in an integration rule installed in the framewokklapters signal events

by calling the AdapterListendireEvent method.

Program 4.2 Adapter interface.

public interface Adapter extends Remote {

bool ean start (bool ean reset);
void stop();
bool ean check();
Cont ext Val ue get Cont ext Val ue(
String componentI D, String entityld, String attribute);
voi d set Cont ext Val ue(
String conmponentI D, String entityld, String attribute,
Cont ext Val ue val ue);
Dat aCbj ect i nvoke(
String componentld, String entityld, String serviceType,
String nmet hodNane, DataCbject[] inArgs);
int[] subscribe(
String conmponentld, String subscriberld,
Event Subscri ption[] event Subs);
public void unsubscri be(
String conmponentld, String subscriberld,
Event Subscri ption[] event Subs);
String[] getRelatedEntities(
String conmponentld, String id, String relationship);
voi d addEntityRel ati onshi p(
String componentld, String id, String entityld,
String rel ationship);
public void addEntity(Entitylnfo info);
public void removeEntity(String entityld);

Several method calls support direct interaction with theeaulying system and

correspond directly to those in the interaction calls of flagade. Note that these

method calls include a component id used to identify theiqpddar component:

EntityHandler, Service, ContextSource or EventSourcehérunderlying system.

Two Adapter method callsddEntity andremoveEntity are called when an

Chapter 4. The Ubicomp Integration Framework 108

application adds or removes an entity from the model. This @zcur when an
application registers a new user with the model, or when apiaee of interest is
added for example. The new entity information is broadaasiltadapters in case

they need to update their native model with this new inforomat

4.8.1 Adapter Framework

To facilitate adapter development, we created a lightweagtapter framework.

The key objects of this framework are shown in Figure 4.6.

BaseAdapter

Adapter O—

s

ComponentMap * 1 ConcreteAdapter -subs SubscriptionMap

-components 1

-component / * -sub
/

/
ComponentRecord / SubscriptionRecord

/
aller
/

ComponentMarshaller _marshaller

/
/

/
Vo
NativeSystem

Figure 4.6: Key classes of the Adapter framework.

The adapter framework consists of these Adapter abstract class which han-
dles set up of a remote RMI-based adapter, and initial magish with the UIF. A
ComponentMap containsComponentRecords indexed by native component id
and UCM id. A ComponentRecord includes a ComponentMarshaiéch mar-

shals data to and from the native system format.

Chapter 4. The Ubicomp Integration Framework 109

Fixed components such as the iREB%nt Heapmre added to the model when
the adapter starts up using ta@¢dComponent call. Dynamic components such
as Context Toolkitwidgetsare added to the composite model when the adapter
receives an event from the native system. Since some sysiemst support such
events, some adapters will poll for newly discovered conepts

When an application makes a synchronous entity interaciidinthe Adapter
looks up theComponentRecord based on the UCM component id supplied. It
then gets th&omponentMarshaler with that record, uses it to marshal the data
and then makes a native system call. TemponentMarshaler iS subclassed
to perform the necessary data and protocol marshaling orr-ayptem, and if
necessary, a per-component basis.

To maintain subscriptions for asynchronous events, antadéypically uses
a SubscriptionMap. This maintains a mapping of UIF subscriberld and compo-
nentld to native event subscriptions. When a new subsonpt received, the
subscription data is marshaled to the native system sgitiscri a nativesub-
scribe call is made and a ne®ubscriptionRecord is added to the map. Like a
ComponentRecord, th@ubcriptionRecord contains aComponentMarshaler
for the native event source. When an event is received byntiegriated system,
the Adapter looks up the correspondiBgbscriptionRecord. The associated
ComponentMarshaler is then used to marshal the event data structure to a UIF
EntityEvent data structure. The AdapterListefieeEvent call is then made to
the UIF to forward to the waitingClientSession and associated UIF applica-
tion. Since the same UIF subscription may correspond to acsibion to mul-
tiple components on the same system, the UIF will supply a@uttion for each
subscriptionld-componentld pair; ti8ubscriptionMap will maintain a record
for each subscription-component pair.

Using the adapter interfaces and framework described kherémplemented

Chapter 4. The Ubicomp Integration Framework 110

a prototype deployment that emulates an campus-scalempiemvironment by

integrating four existing systems [36, 40, 47, 83] desdtiimethe next chapter.

4.9 Summary

In this chapter we presented the Ubicomp Integration Fraorieva platform for
ubicomp systems integration used to evaluate the UCM. Werithesl each sub-
system of the UIF including the Facade Web Service, Enwiram Composi-
tion Logic, Model and Reasoning subsystem, Component @antaBroker and
Adapter Framework.

To summarize, the UIF manages an environment model reppsitmtaining
an instance of the UCM. The model repository is queried tpatish method calls
to the appropriate adapter or internal components. In iaddithe UIF manages
subscriptions for internal or integrated event sourcesafiplications of the in-
tegrated environment model. For example, to query for corabout an entity
(referring to the UIF architecture diagram in Figure 4.1)ag@plication will make
a Web Service call to the Facade. This will be delegatedadtttvironment Com-
position Logic (ECL) subsystem. The ECL queries the knogiedase hosted by
the Model and Reasoning subsystem for the component thplissithe requested
context. If the context request can be satisfied by the MoadélReasoning sub-
system directly (e.g., static context) the context is reddrdirectly. If not, the
ECL examines the component properties to determine whetaeuery should be
handled by an internal UIF component in the Native Compo@amttainer, or an
integrated system dispatched by the Message Broker. Itiessined for an inte-
grated system, the request is dispatched to the appropudaigter and marshaled
to the system-specific API or protocol. The query responseeis returned to the

application in the reverse direction. Service calls andhegsabscriptions follow a

Chapter 4. The Ubicomp Integration Framework 111

similar call pattern.
In the next chapter we present our experience in creatingdh®gosite envi-

ronment shown in Figure 5.1 to evaluate the UCM and the Ulpstjmg system.

112

Chapter 5

Evaluation: An Integrated

Campus Environment

To evaluate the Ubicomp Common Model and our approach toouoipcsystems

integration we considered three key questions:

1. Can our model be used to support applications that makefusailtiple
underlying ubicomp environments each with their own dédfdgrabstractions

and programming models?

2. Is our model flexible enough to support all four classeshidamp systems
identified in Chapter 2:Component Composition&ontext Frameworks

Smart Space SystepsmdWide Area Systems

3. While meeting our first two requirements, can our modelrbplemented
such that it still offers both adequate performance andastal for appli-

cation development?

To answer these questions we describe our experienceatitepa set of four
ubicomp systems into a composite environment for appticatievelopment. The
prototype deployment illustrated in Figure 5.1 was createnhtegrating the Equip
Component Toolkit (ECT) [47] developed at the UniversityNaittingham, a Com-
ponent Composition System, the Context Toolkit (CTK) [36yeloped at Geor-
gia Tech, a Context Framework, iROS [83] developed at Stdnt Smart Space

Chapter 5. Evaluation: An Integrated Campus Environment 113

System, and the MUSEcap platform [40] developed at the Wsityeof British
Columbia, a Wide Area System. MUSEcap is a system desigmezhfopus scale
deployments similar to Active Campus [49]. In this deployrntie UIF acts as an

intermediary between all four ubicomp systems as shown.

Environment
Browser

LabMonitor
Application

PlaceMedia
Application

Web Services Facade

5
Integrated
Model

l— RMI Adapter Broker T |
|

MUSEcap Context Toolkit
Adapter Adapter

emperaturf \f‘
Widget IS

ECT Adapter iROS Adapter

s
EventHeap }
Server I

é MuItiBrow

4

Dataspal

@

PlaceMedia
Server

Enterprise
JavaBean:

MultiBrowsr

Lab Environment Meeting Room

Figure 5.1: Composite campus environment deployment.

5.1 Applications

To exercise our composite environment we developed thaetgpe applications:
PlaceMedia, the Lab Monitor, and the Environment BrowseathBr than inventing
our own unique applications, we aimed to support applioatiospired by previous
work, particularly those used with the systems we integate

Each application was developed for a specific purpose. TaeeRledia ap-

Chapter 5. Evaluation: An Integrated Campus Environment 114

plication described in Section 5.1.1 was used primarilyrémid development and
testing of the UCM, UIF and adapter interfaces. The Lab Mwrgipplication in
Section 5.1.2 was designed to exercise the capabilitiecofrgosite environment
as a whole, making use of four integrated systems simultehedinally, the En-
vironment Browser (Section 5.1.3) was developed primasya tool for testing
and debugging the integrated environment. Each applitéidescribed in more

detail here.

5.1.1 PlaceMedia

PlaceMedia was created for rapid development of the UIF dagtar subsystems.
To accomplish this, the dependency between the PlaceMegiaation and the
MUSEcap platform was broken by inserting the UIF system betwthe applica-
tion and the MUSEcap platform. This way we ensured that thpdicgiion APIs
were adequate for at least one application, and the AdafRémas sufficient to
integrate the MUSEcap system.

PlaceMedia, modelled after the Active Campus Exploreriegtibn [50], al-
lows users to see their own location and the location of thieinds on a campus
map as they roam around. They can communicate with each, athérsee the
locations of interesting landmarks nearby. PlaceMediasusan see their own lo-
cation and the location and on line status (presence) ofdseising a map-based
interface. They can also plangedia markergontaining text, images or video clips
at places of interest and subscribe to alerts that let thesw kwhen they are near
another user or media marker. Users communicate with eaehn osing a built-in
instant messaging facility.

Location and presence is updated periodically by an ageaticagion running

on PDAs or Tablet PCs. Location is derived using wifi signatérsgth [69] or

Chapter 5. Evaluation: An Integrated Campus Environment 115

9 PlaceMedia - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@&-2-@ {5 |- nttp:/focaiost: 2030 uifflaceMedialeb/ca.ubc.magic pmawt Placebecia) | v | | [[Gl+|couoie

P cetting Started [Latest Headines [+ Gmail - Inbos (50) g mblackstock's backma... <, Ubicomp StartUp <, JAMon - Administratio. .
mike | Settings | Help | Sign out

Place”
Meciia Y . =y

BETA

fr [wap | sateiite | Hyorio

Map ;—'
Aler [el=I0T
M:rkserg EI T.ill“i- Mike Blackstock Ed
Tours P
Contacts 1k

Filters: E

Friends E

Friend Markers =
Self o

== o arire D
Self Markers ‘Nc.s‘f el =
eSS E e
F
P - oy

- s (] Y o e, T
@ Mike Blackstock - 4 3 Kb) Y =l

online v i 80 ? - 7
& matt Gt % %,

; ' g ,
Add contact ?’ 5 3 e 4
o E
5 i i JE
¥ Markers Z = e ath Ave W 4
Self: , Rase G W4 I [
A - sdsdf | L% 3 .,
B - 16th and Dunbar \ 4 < Uinivetsity — U Bva - 4"‘@%'
C - Mumber 3 =z % - | - Lo
D - number 2 £3 \ A Universily
E - Green Marker < v Charaty Bl 20l A OUTSE SR oty Bive
 F-3aa NN SN z v
Done

Figure 5.2: PlaceMedia user interface.

provided directly by small Bluetooth GPS units. The web daseplication user
interface was implemented using the Google Web Toblkitd the Google Maps
API? to display locations and media markers. Since the PlaceMagilication
was originally designed to use the MUSEcap platform diyeasiing an Enterprise
JavaBeans [75] API, we created an UIF adapter for MUSEcap nardified the
PlaceMedia application to use the UIF Facade web servidéls Fhis allowed
us to insert the UIF and composite model between the PlaceMaplication

and MUSEcap platform for development and testing of botbrfates. The user

Iseeht t p: / / code. googl e. com webt ool ki t/
2seeht t p: / / code. googl e. con api s/ naps/

Chapter 5. Evaluation: An Integrated Campus Environment 116

interface for the tablet PC version of the application issalan Figure 5.2.

5.1.2 Lab Monitor

The “Lab Monitor” application was designed to exercise tapabilities of a com-
posite environment as a whole, making use of four integraystems simultane-
ously. This required integration with three additionalstixig ubicomp systems as
described in Section 5.3.

The features of Lab Monitor were inspired by the Context Kbah/Out Box
and the iRoom Multibrowse [65] applications. The Lab Monitser interface,
shown in Figure 5.3, performs two primary functions. Firstnonitors our lab
by providing information about who is present (left panég turrent sound and
lighting levels (bottom pane), and allows users to take da@phbbthe lab as shown
in Figure 5.3(a). This allows remote users to see who is ptes® whether there
is a meeting going on, for example. Secondly, it allows useshare web pages
with others by broadcasting URLs to other Lab Monitor apdlens as shown in
Figure 5.3(b). The LabMontitor application makes use ofuess from each of
the four underlying systems. User identity is supplied yttBC MUSEcap sys-
tem. User presence in the room is supplied by an In/Out wiftgat the Context
Toolkit (CTK) using an RFID sensor. Sound and light leveks also supplied by
CTK widgets and appropriate sensors. To share web pagesthi¢gh users, the
UIF broadcasts URLSs using the iROS Event Heap. A web camenisolled by
an integrated Equip Component Toolkit component. Thigjirtgon was accom-

plished using four adapter implementations described ati@e5.3.

Chapter 5. Evaluation: An Integrated Campus Environment

117

MUSEcap and Context Toolkit user

and place context

£ Lab Monitor 7.0

Log In.. | Lgh Out | Take Pyoto

Users

Matt Finke (in}
vinny {out)

rodger (out)

daniel (out)

nicole (in}

Mike Blackstock (in)

ECT camera control

EEX

Lab Status

Sound Level:Low Light Level: Dark I

(a) Lab Monitor Photo tab

iROS events for multibrowsing

= Lab Monitor 2.0

Login.. LogOut Take Photo

Users

Matt Finke (in)
vinny (out)
rodger (out)

- _Shared Arowser |_Photo
I.IIL; |ttp:itwwwe google.com

daniel (out)
nicole (in)
Mike Blackstock {in)

Canada

Google

#gpd(display none)}

Web Images Groups Hews Maps Scholar

Google Search |

=
| I'm Feeling Lucky]

Lab Status

Sound LevelLow Light Level: Dark

(b) Lab Monitor Multibrowse tab

Figure 5.3: Lab Monitor application user interface. The

provide different capabilities to the application.

indicated oyt

Chapter 5. Evaluation: An Integrated Campus Environment 118

Entity
Q u | http:/ flocalhost:8080/ui - |GJ' Coogie O\
L4 Latest Headlines |G| Coogle Maps W Wikipedia % RESTBrokerWiki |) News »

UIF

Logged In as mike

Logout

Shew subscriptions
b

Place Entity: campus:campusPlace

Get Pending Events
®* Label: none
® 1d: http://www.cs. ubc.ca/ ~michael/campus#cam pusPlace
Types
® campus: CampusPlace
® ycm:Entity
* ucm:Place

Entity relationships

® ucnyiassociatesWith
® ucmicontains

Context attributes

® ucmiassociatesWith
® ucm:contains

Services

& campus: PositicnService

Environment: Environment

Done C}J Open Notebook

Figure 5.4: Environment Browser user interface.

5.1.3 Environment Browser

To interactively explore the contents and capabilitiehefintegrated environment
model, the Environment Browser is supplied with the UIF sgst While this ap-
plication was designed more as an administrative and dewedat tool, it also
serves as a demonstration of how an application can browséntaract with an
environment, independent of the types of hosted entitielsassociated capabili-

ties.

Chapter 5. Evaluation: An Integrated Campus Environment 119

The Environment Browser is a web application where each pagesponds
to an entity in the model (person, place or thing). The pagdasos links cor-
responding to the current context, entity relationshipsl events associated with
that entity. Users can navigate to other entities follonamgty relationship links,
retrieve current context values, call services and sutxs¢o events associated with

entities. The user interface of the Environment Exploreshigwn in Figure 5.4.

5.2 System Integration

We tested our applications using a composite Campus ema@nhcomposed of
four integrated systems [36, 40, 47, 63]. In this section escdbe this composite

model and the design and implementation of each adapter.

5.2.1 Campus Composite Environment Model

The composite model in our prototype integration deployimgsummarized in
Figure 5.5. It consists of a ro@&nvironmententity which hosts a stati€ampus
entity. By doing this, the model anticipates incorporatatger places outside the
campus. The Campus contaidsersandPlaceMarkerentities dynamically sup-
plied by the MUSEcap system. The campus also contains & 8i&GIC Lab
entity, and aMeeting Roonplace entity as shown. Users mayfliendswith each
other and may beontained ineither the Campus or the MAGIC Lab.
Capabilities such as context, services and events areiafssbavith users
and place markers. User capabilities are supplied by MUBBod the Context
Toolkit. The MAGIC Lab contexts sound level and temperatare supplied by
the Context Toolkit; the photo service is supplied by an EGmponent. Meeting
Room capabilities for sending URLs to the browser serviagas subscribing to

and sending interaction events are supplied by the iRO®mysNote that these

Chapter 5. Evaluation: An Integrated Campus Environment 120

Contains/Contained In

Interaction
Event Service
Interaction exposes
Event i
Browser
Service

PlaceMarkers

Photo
Service Temperature
se:

o Contained In
exposes Magic Lab
Friend
Relationship Identification
Chat Service

Figure 5.5: Composite environment model including entities and keyaeap
bilities.

capabilities will only appear when the underlying adapggstem and components
are available.

Each adapter design and implementation is described next.

5.3 Adapter Design and Implementation

For each adapter in this section, we provide a table that rirepE8/CM core ab-

stractions (environment, entities, context, servicegngwvcontent) to facilities in

the integrated system. We then highlight key implementatecisions that in-

formed our general adapter design process and integragsons learned. Fol-
lowing a description of our adapters, we summarize the adajssign process,
outlining the steps required by an integrator to integratdiaomp system using
the UCM with the UIF.

Chapter 5. Evaluation: An Integrated Campus Environment 121

5.3.1 Equip Component Toolkit Adapter

The Equip Component Toolkit is a platform which aims to supploe rapid de-
velopment of ubiquitous computing experiences. EgOmponentgtypically im-
plemented using JavaBeans [96]) are used to interact witlceke or may be soft-
ware only components for processing. Components define chanoperties used
to control their operation or read their current state. PBangple, the Camera
Component has amiggerimageCapturgroperty and aimagelLocatiorproperty.
When the value of thigger property is changed, the URL for an image captured
by the camera can be retrieved using ithagelLocation

Components are managed within local component containkishwnay be
coordinated in a distributedataspacdnstallation [46, 61]. Components may be
combined by linking shared properties with similar typeste another so that
property changes are propagated between the two instakajdt 7]. A key advan-
tage of using the ECT dataspace and property links as a cabi@h mechanism
is that components can be combined very easily without kadgé of a specific
toolkit API. Table 5.1 summarizes how the UCM core abstomgimap to a typical
ECT deployment.

Design and Implementation

To make use of components in an ECT installation, we creatgttapter compo-
nent that interacts with the dataspace as a whole, morgtamal interacting with
any component, property and links in the space. The Adaptestified when new
components are discovered or removed and it interacts wifh @mponents on
behalf of UIF applications.

In our prototype adapter integrated a web cam ECT compobn#érgy compo-

nents can be integrated in a similar manner. When a compohérd type Camera

Chapter 5. Evaluation: An Integrated Campus Environment 122

Table 5.1: ECT Adapter UCM Abstractions

Abstraction Implementation

Environment Dataspace containing components that publish properties, named,

Model typed values. These component properties may be linked to other
component properties with the same type.

Entities Not supported directly.

Entity Not supported directly.

Relationships

Context Properties of components can be considered or used as context
values.

Services Services are not supported directly, but a component’s property
values can be set, and then a trigger property is changed.

Events Property change events may be monitored.

Data/ Content | Not supported directly, implicit in some components properties. For
example, the URL of the last photo taken by the web camera com-
ponent is in a property.

is discovered, a UCM Service description is added to the inddés service in-
cludestakePhoto andgetLastPhoto methods. When theakePhoto method is
called in the UIF service, this changes the value ofttlygerimageCapturgrop-
erty of the ECT camera component. This causes a photo to ba.tdkhe photo
URL is saved in the CameiimnagelLocationproperty. When thgetLastPhoto
method is called this value is read from the component ptg@erd returned to

the UIF application.

5.3.2 Context Toolkit Adapter

The Context Toolkit (CTK) is a well known system that intragéd the notion of
reusableContext Widgetshat supply applications with a wide variety of context
[36]. Widgets encapsulate sources of context such as semisoontext interpreters
and related services. A typical CTK deployment can be mappezbre UCM

abstractions as summarized in Table 5.2.

Chapter 5. Evaluation: An Integrated Campus Environment 123

Table 5.2: Context Toolkit Adapter UCM Abstractions

Abstraction Implementation

Environment A Discoverer component tracks CTK components available to ap-

Model plications. The resources available to an application may come and
go as components in the environment are started and stopped.

Entities Entities are often handled explicitly by context aggregators that ag-

gregate context about a certain entity such as a user, place or ac-
tivity. Attributes of a widget may specify the static locations or user
that the context or services potentially apply to. Similarly dynamic
context values can represent entities such as users and locations.
Entity Entity relationships are not supported as a first class abstraction in
Relationships | the CTK, however, certain widgets can associate entities such as
places and users. For example the in/out widget associates users
with the place that the widget serves.

Context Context supported by the toolkit include simple context values for
the ambient sound level, lighting and temperature level in a room.

Services Context widgets can also support associated services. For exam-
ple a light widget could also support lighting control.

Events A common event in the toolkit is support for context changes. Ap-

plications can subscribe to these events, specifying the context at-
tributes they wish to monitor.

Data/ Content | Content is often treated as context in the context toolkit. For ex-
ample, Questions, and presentation content in the Conference As-
sistant are context associated with a Presentation room or activity
[37].

Design and Implementation

We focused on integrating a deployment of the CTK by accgsssnDiscoverer
and certain context widgets directly. Since the source ewddable on Source-
forge?® did not support our sensor hardwhrer was unavailable, we re-implemented
several widgets described in Context Toolkit publicationsselves [34, 36]. Specif-
ically we implemented a light sensing, ambient sound leasd], temperature sens-
ing widget and a ‘presence’ widget [89] that sends eventsnvdre RFID tag is

passed over a reader. An infout widget was also implementddnign use of the

Shttp://contexttool kit.sourceforge. net/
4ht t p: / / www. phi dget's. com

Chapter 5. Evaluation: An Integrated Campus Environment 124

presence widget and an Interpreter component to track #te ef certain users
when they enter or leave a room by waving the RFID over thearadince

CTK components may come and go at any time, the CTK adapteicshbs to

the Discoverer component, indicating the components tleain integrate into the
composite environment. When a supported component is\dised, its RDF de-
scription is injected into the composite model by the adajpted a mapping from
the UCM component id to a CTK identifier is maintained.

For simple widgets such as sound, light and temperatureosgrite compo-
nent mapping from a Context Widget to a UCEBbntextSourceand associated
data marshaling in the adapter was straightforward. Mappie capabilities of
the infout widget presents some unique challenges, howswee it supports the
containment relationship between a room and a few userppegiwith RFID
tags. Since the in/out adapter only applies to certain useysr composite model
(i.e., only those with RFID tags), we had the CTK adapter supige entities ag-
gregated by this component explicitly when the componestiijgtion is added to
the system. To make it easy for applications to find usersdaatbecontained
in a specific room, we marked these userpmedia:MeetingUser in the model.
The RDFroomLocationSourceomponent describing the in/out widget is shown
in Program 5.3.2 including descriptions of the users of typedia:MeetingUser
that have RFID tags.

Our in/out widget supports queries for the relationalpr contained-in plage
but not the inverse relationshjgace contains usersBecause of this, the corre-
sponding UCM component is aggregated by user entities)diyglace entities.

The in/fout widget can signal events when a user enters oesetine room.
The event data supplied when this occurs contains the ueatifier and in/out
state. Since the event is related to the place not an indiVidser, this event is

best aggregated by the room it serves. As a result we used @ tbmponent

Chapter 5. Evaluation: An Integrated Campus Environment 125

Program 5.1 Component description for the roomLocationSource Corgexirce.
<ucm Cont ext Sour ce rdf: | D="roonlLocati onSource’ >
<ucm adapt er >cont ext Tool ki t </ ucm adapt er >
<ucm hasCont ext Type rdf:resource="ucm cont ai nedl nType’ />
<ucm aggr egat or rdf:resource=' &nedi a; n ke’ />
<ucm aggr egat or rdf:resource=' &mnedi a; rodger’ />
<ucm aggregator rdf:resource=' &nedi a; nicole’ />

</ ucm Cont ext Sour ce>

<rdf: Description rdf:about="&pnedi a; m ke’ >
<rdf:type rdf:resource=" &eeting; Meeti ngUser’ />

</rdf: Description>

<rdf: Description rdf:about="&pnedi a; rodger’ >
<rdf:type rdf:resource=" &reeting; Meeti ngUser’ />

</ rdf: Description>

<rdf: Description rdf:about="&nedi a; ni col e’ >
<rdf:type rdf:resource=' &eeting; Meeti ngUser’ />

</ rdf: Description>

descriptions for the CTK in/out widget, a context source ament source for a

single CTK component. The first exposed tumtained-inrelationship, handling

relationship queries for user entities; the second expagethtionship-changed

event handling subscriptions to these events for the plHoere need not be a one
to one correspondence between UCM component descriptimhtha components
of an integrated system.

CTK widgets support the same event type for almost all wistgiie UPDATE
event signalled when context changes. When an entity in thdetraggregates
context from several CTK widgets, a single UIF subscripfioncontext changes
must therefore be propagated to several CTK componentssegaently, there is
not necessarily a one to one correspondence between UlErgilons and CTK

subscriptions.

Chapter 5. Evaluation: An Integrated Campus Environment 126

5.3.3 iROS Adapter

The iROS meta-operating system was constructed to supgoetiments around
interaction with large screen displays in interactive vepdces [63]. Several pro-
totype versions of the installation called the iRoom weteuge From this experi-
ence researchers at Stanford identified some of the mosttiampa@haracteristics
of an interactive workspace infrastructure [83]. A key sigbsm underlying many
of the other iIROS facilities is the Event Heap [64]. This pd@s a coordination
mechanism that decouples applications and services framanaother, allowing
the system as a whole to be more stable. On top of the Event, ldeagral other
general purpose facilities are available. The ICrafteviserinfrastructure pro-
vides service discovery and interaction layered over trenEkieap, and the Data
Heap provides a facility for storage of files associated ighlace, independent
of how they are stored. Arbitrary meta data associated watitent in the Data
Heap can be used by applications directly or by the Data Hsaf to transform
data from one format to another. In Table 5.3 we outline thppiray from the UIF

abstractions to facilities in IROS.

Design and Implementation

For this integration task we focused on integrating a repriedive ICrafter service,
and support for the Event Heap coordination facility to eashe UCM provides
adequate coverage of these capabilities. One applicationGrafter service sup-
plied with the iROS installation is the Multibrowse apptioam andButler service.

The Butler is used to control applications like Internet Bxer on a PC. Multi-

browse allows Internet Explorer users in the workspace rid $eks to other PCs
in the workspace to share URLs. We described the ICrafteleBservice using

a UCM URLServiceservice interface that implementsendURL method. With

Chapter 5. Evaluation: An Integrated Campus Environment 127

Table 5.3: UCM Abstractions Mapped to the iROS System

Abstraction Implementation
Environment The ICrafter subsystem models the environment as a set of re-
Model sources such as application services, components and associated

state. The Data Heap contains relevant content and associated
meta data. The Event Heap is used as a communications mecha-
nism.

Entities Entities information, such as devices, users, groups, are found in
Event Heap event fields, which may be associated with ICrafter ser-
vices and state.

Entity Not supported directly, but group membership can be inferred from
Relationships | information in Event fields (group, user). ICrafter service descrip-
tions can include location of services.

Context Variables in the state space. For example, a light switch state
Services ICrafter services
Events Events are a first class abstraction in the iROS system. Arbitrary

events can be produced or consumed by an iROS client application
or subsystem.
Data/Content | The data heap provides storage for content.

this service integrated, UIF applications, like iIROS Multwse, can open Inter-
net Explorer to display a URL on any iROS equipped PC. Imjtialwas unclear
whether this service should be aggregated hyser entity, or adeviceentity in
the room. Since the device name is included in the serviceriggion, and there
is no way of knowing from iROS who the current user of a PC is,dseided to
introduce a laptop device entity into the environment whdButer/URLService
is added to the model.

To explore the suitability of the UCM in supporting the comabilities of
the Event Heap, we needed a strategy to both receive and sentse To ac-
complish this, we described the Event Heap as a single UCMpoaent with
two capabilities. The first is aneeting:InteractionEventServidbat allows ap-
plications to inject arbitrary events into the Event Heape Becond is theneet-
ing:InteractionEventTypwith the event nameneeting:interactionEverib support

subscription to arbitrary event heap events. Our curreptédmentation is limited

Chapter 5. Evaluation: An Integrated Campus Environment 128

to subscribing to events by thgpefield only, but could be extended to support
templates as in the Event Heap API. These capabilities gresexl by the meeting
room when the component corresponding to the iROS adaptes sip. With this
capability we were able to support the broadcasting andviegeof URLS to share
web pages in our Lab Monitor application through the Everdjike other iROS

applications.

5.3.4 MUSEcap Adapter

The MUSEcap system was developed at UBC to facilitate theldpment of
campus-scale ubiquitous computing applications. LikerfaeeMedia application
described previously, MUSEcap was also used for rapid UC¥W@ik develop-
ment, in this case, for the adapter interfaces outlined ttiGe 4.8. MUSEcap
interfaces are exposed as a type of Enterprise JavaBead @ession Bean
Session Beans are a type of server-side component usedaitdasgd transaction
monitors typically used to implement application logic. #sprevious system
adapters, we first mapped the core UCM abstractions to aalypt/SEcap de-

ployment as summarized in Table 5.4.

Design and Implementation

In integrating MUSEcap, we aimed to leverage its faciliiesnanage users and
their context between indoor campus locations. Anothegqumfacility offered by
MUSEcap was its ability to add (register) and remove eustisiech as people and
places called Place Markers to an environment model andvieete when users
are near places of interest or other users.

To integrate these capabilities, we created entity typelscapability descrip-

tions for the context, event types and service interfacpeged by MUSEcap APIs.

Chapter 5. Evaluation: An Integrated Campus Environment 129

Table 5.4: UCM Abstractions Mapped to the MUSEcap System

Abstraction Implementation
Environment The MUSEcap environment model is implemented using a
Model database. This database is wrapped by several service interfaces

(Session Beans) to access information about users and markers,
their relationships and context.

Entities Entities supported include users and media markers, or places
marked with a latitude and longitude. User entities can be added
by the application when new users register, and marker entities can
be added by users.

Entity Users are related to each other using a ‘Roster’ in the database
Relationships | indicating that the first user in the table is a friend with the sec-
ond. Users may also ‘own’ media markers, indicating that the user
created a marker for others to see.

Context Context supported includes user location updated by agent appli-
cations running on PDAs or Tablet PCs. Context also includes
user identity, and presence information such as ‘on line’, ‘off line’
or ‘away’. Marker context includes its location, and identity. In
PlaceMedia, content such as text, or an image or video can be
associated with a marker. We also consider this marker context.

Services Users in the system can send messages to each other. We con-
sider this to be a service associated with those users.
Events The system can alert applications when users are within a certain

range of each other, or when a user is in range of a marker. Event
subscriptions specify the two users, or the user and marker and the
range. Events are signaled only once when they are in range.
Data/ Content | Content such as text, images or video can be associated with a
marker. We consider marker content as a form of context.

Since all components of MUSEcap are available as long asetiversis running,
static component information is provided in the configunatfiles loaded by the
UIF on start up. Several rules were supplied to associate Btdf components to
Place Marker and User entity types. For example, one ruleifggethat if an en-
tity is a pmedia:CampusUseit aggregates thBositionSource&eomponent. Since
the PostionSource exposetoaation ContextType, alpmedia:CampusUse@so
expose the ability to retrieve their location.

When the UIF calls the adaptetart method, the MUSEcap adapter updates

Chapter 5. Evaluation: An Integrated Campus Environment 130

the UIF with the entities (users and markers) and theircstaintext values, cre-
ating unique UCM ids for each entity. A mapping from UCM eniidentifiers to
MUSEcap identifiers is maintained by the adapter using abdata When new
users or markers are added, the UIF model is updated, and apwimgs are cre-
ated. To interact with the system, the UIF supplies the UCHityeid and compo-
nent id. In the adapter, the component id is used to deterthamethod to call in
the MUSEcap API.

Unlike other integrated systems, MUSEcap supports théyakal add or re-
move new users and places to the composite model. To maké thse teature,
UIF applications such as PlaceMedia will caldEntity or removeEntity US-
ing the Facade Web Services interface. Unlike other meatlioat are targeted to
specific systems, these method calls are then relayatl f&dapters in case they
need to add/remove these entities to/from their nativerenmment model. When
the MUSEcap adapter is called, the UIF entity data strucisirieansformed to
MUSEcap data, and the appropriate calls are made to the MajS&eI.

Finally, since the MUSEcap platform assumes applicatice$odically poll
for events, the MUSEcap adapter, taking on the role of anegin on behalf of
all UIF applications polls fonear events once a subscription is received from any

UIF application.

5.3.5 Adapter Implementation Summary

Table 5.5 summarizes the adapter functionality we implaeatkas described pre-
viously, categorized by the UCM abstractions.

Clearly we did not attempt to map all of the available funaéity of the cho-
sen platforms. Rather, our efforts focused on exercisingW®M abstractions

to gain a better understanding of the integration developmpecess, abstraction

Chapter 5. Evaluation: An Integrated Campus Environment

131

Table 5.5: Adapter Implementations by UCM Abstraction

System/ Context Equip iROS MUSEcap
Abstractior] Toolkit Component
Toolkit
Environment Discoverer Equip Datas- | ICrafter sub | SessionBean
Model pace system, and | interface to
EventHeap database
Entities Static loca- | Implied place | Host device in | Place markers,
tions, users (lab) where | ICrafter service | users
components description
are located
Entity InOutWidget Not supported Host device | User friends,
Relation- relates places contained-in place marker
ships to users. the meeting | ownership
room
Context User location, | Component iROS State | User location,
user presence, | properties (not | API (not imple- | user identity,
room sound, | implemented) mented) presence,
light level, place marker
temperature location
Services Context Widget | Camera Ser- | Browser ser- | Chat service
Services (not | vice vice, inter-
implemented)s action event
service
Events Relationship Property Interaction User or place
changed, con- | changes (not | event marker Near
text changed implemented) event
Data/ (Not sup- | Get photo ser- | DataHeap (Not | Place marker
Content ported) vice method implemented) content

mappings and trade offs such as adapter complexity vs pesfore, which we

report on in

Section 5.4.

5.3.6 Adapter Design Process

From our application development and integration expedene have derived a
design process for integrating ubicomp systems using thigl i a single com-

posite model. This process consists of six steps as follows.

Chapter 5. Evaluation: An Integrated Campus Environment 132

1. Determine the application-environment interaction points. Interaction
points for integration may be an API, protocol, message &byofata store, or
other abstraction hosted by distributed components oralesgrvers. While
locating these interaction points seems like a straighvdiod step, in some
cases, the integrated system’s resources may not be deésmreasy exter-
nal application integration. For example, in ECT or iROS dpelication is
assumed to be a component or a composition of componentg sydtem
itself. In this case, it may be possible to access integrededponents in-
directly using the coordinating system such as the ECT daeaesor iROS

Event Heap.

2. Decide on the environment capabilities to expose to outsidgplications.
Considerations in this step of course begin with the capigsilavailable in
the ubicomp system deployment to integrate. Capabilitiegespond to the
sensors, actuators, software services, and context soavagable. To avoid
unnecessary integration work, an integrator should censirek functionality
required by applications of a composite environment wheteroperability
is most important. Generally, only a subset of the systeapmbilities needs

to be exposed to applications using the UCM.

3. “Find” the missing or implicit entities in the model and associate ca-
pabilities with these entities. In this step, we make anynplicit entities,
people, places, and thingxplicit in the composite model. In some cases,
entities are already explicit in a system. For example, théSHcap inter-
faces exposeiser and place markerentities directly. In other cases, enti-
ties are only implied. For example, since the camera ECT copt itself
provides no information about the physical entities it iscasated with an

integrator may introduce a cametaviceentity to integrate an ECT camera

Chapter 5. Evaluation: An Integrated Campus Environment 133

component. This is necessary since the ECT camera softwanpanent
itself provides no information about the physical entitarfera or place)
it is associated with. Once we've made entities explicithia tnodel, we
must associate the integrated systems’ capabilities \wéhke entities. The
ECT camera service is associated with the camera devicastance of the
iIROS Multibrowse shared browser service is associatedandiptop device.
Similarly, the Event Heap and a temperature Context Toblkiiget can be

associated witlplaceentities.

4. Encapsulate interaction points of the integrated system inJCM com-
ponent abstractions. In some cases, there may be an obvious mapping
between a UCM component and an integrated system intemgotimt. For
example, a CTK widget maps naturally to a UCM context sousgailarly,
an ICrafter service maps to a UCM service component. In athsees, it
may be beneficial to create a UCM component abstraction wiame ex-
ists. For example, the Event Heap is considered to be a tentedination
mechanism. To allow applications to inject arbitrary egeinto the Event
Heap, it is described as a component witrvicelnterfaceand EventType
capabilities. The service interface provides a method jectirevents, the

event type allows outside applications to subscribe todctéon events.

5. Create rules or explicit aggregation relationships. To associate compo-
nents and their implemented capabilities to adapters,eggtjon relation-
ships can be added to the model directly when componentssuoevdred,
or can be inferred by rules that link entities to componeiatsel on type or

static context stored in the model. An integrator can useetechnigue.

6. Implement the Adapter. The last step is to implement the adapter. In our

Chapter 5. Evaluation: An Integrated Campus Environment 134

prototype work, we attempted to leverage code from a prelyadeveloped
adapter in new ones. Over time we recognized that commolitiegiof an
adapter emerged that could be used in an adapter framewdigcassed in

Section 4.8.1.

5.4 Evaluation

In this section, we address the three questions posed atdiiriing of this chapter.
First, we comment on our experience in using the UIF to buildiaations that use
multiple ubicomp systems at the same time. We then discugsterdcomplexity

to get a handle on the flexibility of our model in supporting four systems we
integrated, each from a different category of ubicomp syste outlined in Chapter
2. We then measure the performance of the system as a whaledérstand the
feasibility of our approach. Finally we make some obseovation the use of the

UIF as a stand alone system for application development.

5.4.1 Application Development

Our experience in using a single API to interact with multipy/stems has several
advantages. Developers need only learn and use one seti@ciibsis, and only
one API instead of four or more. This should reduce the legrourve and in-
crease the portability of applications. However, theseebtncome at a cost: the
performance overhead associated with the use of meta-emidd® like the UIF
and the development of flexible adapters to maintain thgiated model and mar-
shal method calls to and from the integrated systems. Iniealydeployment, we
expect that UCM application developers will be largely adetl from the cost of

implementing adapters since they can be created indepiéynden

Chapter 5. Evaluation: An Integrated Campus Environment 135

5.4.2 Adapter Complexity

To evaluate how well our UCM abstractions capture those dfiraderlying sys-
tem we considered the complexity of adapter development. faMed that the
process of developing became easier with more experierttasaprevious imple-
mentations were refactored for greater reuse. We estirhatehe time required
to integrate basic functionality (less than 6 components) dava-based system
was about 2 weeks. This development time depends on theaonoging model
and API, the documentation available, and the capabiliidse integrated. Our
first adapter for MUSEcap was created without any shared aodés about 1200
lines of code. The CTK, IROS and ECT adapters share aboutid@® éf code,
and added about 850, 1050 and 550 lines of additional cogectgely. Overall
we found that the UCM abstractions provided adequate cgeeasbithe underlying
systems’ capabilities: adapters were straightforwardeetbp. In future work
we intend to gather more evidence to support both conclasidth a wider study
involving additional systems and integrators as the piatfes made available to

other research groups.

5.4.3 Performance

Next, we considered the performance and the overhead ohtegration frame-
work. Applications such as PlaceMedia and the LabMonitdk paill the UIF for

new context values, or to retrieve events using the web ganinterface. They
then call services, send events or set context based orsewsgived or user in-
put. To gain insight on the system’s responsiveness to Ggifulh requests, we
measured the average time taken to get context suppliedeb@€dhtext Toolkit,

to call a service supplied by ECT or send an iROS event atrdiife(aggregate)

request frequencies. To do this we created simple simubgiptications that poll

Chapter 5. Evaluation: An Integrated Campus Environment 136

once per second, then varied the number of these pollingcapiphs between 5
and 80. We then measured the average latency of the synclzromeb service
calls made through the UIF to three integrated systems, tmte®t Toolkit, ECT
and iROS. The results are summarized in Figure 5.6.

1600
1400+
1200+

1000+ CTK

—=— ECT
8007 iROS
600
400
200+
0+ ———= T T 1
0 20 40 60 80
Number of Active Polling Applications

Latency

Figure 5.6: Average latency (ms) vs. number of active polling applmagi
(once per second).

In our deployment we hosted iROS, ECT and the CTK on a sindla GHz
Pentium Core Duo system with 1 GB RAM, the MUSEcap platform #re UIF in
a second 3.4 GHz Pentium D with 2 GB RAM. Simulated applicatiavere run on
a tablet PC with 1GB of RAM and a 1.5 GHz Pentium M processdémakhines
were on the same LAN. The model consists of 535 data trighesgéneral purpose
rule-based reasoner uses 278 rules. These tests représstcase response time;
before each test we restarted the system and did not chamgeotttel. The system
was primed with a light test to cache query results. At higiygplication loads
(60-80), we found that the server response time increasegetoone second; ap-
plications are making requests faster than the server spomd. Overall we found
that the system response is less than 100ms for loads of Wpdo3D applications
polling once per second.

We then examined the overhead of the UIF system in some dstaiistru-

Chapter 5. Evaluation: An Integrated Campus Environment 137

Table 5.6: Components of UIF overhead for a call to an ECT component
through the UIF framework. These average values are bas&D@h
samples taken at about 20 per second.

Component Average time (ms) | Overall Distribution
Web to Logic Tier 1.096982 3.39%
ECL subsystem 0.491013 1.52%
Model Query 0.955580 2.95%
RMI Broker 2.576806 7.97%
Native ECT call 0.010512 0.03%
Internal time taken 5.130892 15.86%
Web Services? 27.214260 84.14%
Total Latency 32.345150 100.00%

8calculated by subtracting the measured average internal
time from the latency measured by the application

menting key subsystems in the framework and measuring thiege time taken
for an application to call an ECT service through the UIF. AbI€ 5.6 indicates,
we found that the largest component of overhead was relatétuse of the web
services middleware and network latency taking more th&b 84 the average
time taken. Internally our system contributed just over S5tenthe average time
taken to execute a call; most of this time was used by the Ridptad request and
adapter marshaling.

Finally we considered the responsiveness of the UIF whitketgping changes
to the model managed by the Jena general purpose rule-beasohng engine
[1]. The composite model changes when applications add sews o the model,
or when components are added or removed by an adapter, fompéxa In this
experiment, summarized in Figure 5.7, one application #uels removes a place
entity to and from the model every 10 seconds. We measurethtiiecy of a
getContext made every 2 seconds call from 10 other applications. Teadgtof

the first few calls after a model change increases to moreXtsetond then falls

Chapter 5. Evaluation: An Integrated Campus Environment 138

back to under 100ms as shown. After model changes, querike thodel become
the largest component of overhead.
Latency (ms)

16007
1400]
1200]
1000
800]
600]
400
200

Latency (ms)

0 20 40 60 80 100 120 140

Time (s)

Figure 5.7: Model changes trigger forward reasoning, which causesegont
requests to wait for more than a second until the reasonardmapleted
forward reasoning and the write lock is released.

This raised some concerns about the overall scalabilityuofpproach, and in
particular the use of an integrated general purpose reagemgine in our system.
To explore how the query and forward reasoning time variéis the model size we
conducted two experiments. We first measured the averagg tjne of astatic
model with various model sizes. For this experiment, we ddaker entities to
our model, then measured the average time required to gebtitext source and
associated adapter name associated with a specified emtitgaantext attribute.
Our results are summarized in Table 5.7. Overall, we fouatlttie average query
time for astaticmodel did not change significantly as the model size incokase

Figure 5.7 showed that subsequent queries are delayedhathodel is fin-
ished updating. This raised some performance concernshefsize of the model
increases, does this delay increase? To answer this questioneasured the time
taken to complete a request after changes as the model sizases. Our results

are summarized in Figure 5.8. The top line indicates the taken to complete a

Chapter 5. Evaluation: An Integrated Campus Environment 139

Table 5.7: Query Time as (Static) Model Size Increases

Users | Model Size | Time (ms)
10 580 0.516
50 1020 0.500
100 1570 0.516
200 2670 0.547
300 3770 0.750
400 4870 0.578
500 5970 0.781
600 7070 0.609

change to the model, while the bottom line is the time takeootmplete a query
once an update to the model is complete. Changing the mod¢hka several sec-
onds, and varies linearly with the size of the model, whetlkasjuery time, once
a change is complete, is very fast and relatively invariantha number of triples
increases.

Since we expect model changes to occur when new componemisntities
are added and removed, and in some cases when context istadtlednodel for
reasoning, this will add significant time to application gee that must wait for
changes to complete. To address this, we decided to use bl&douffer” scheme
to maintain two models in the UIF. One model containing al @nd deduced
data is for fast queries (called the query model), while ttieiois used to collect
changes to the model (called the change model). When a cliamgade to the
change model, the system starts reasoning in a backgroueddtiby querying
the change model for all deduced facts. Once this query igptEis a new query
model containing the raw data and deduced facts from thegehaaodel is created.
At an appropriate time, this new query model containing netads swapped in
replacing the previous query model.

Using this approach both queries and changes to the mod&sirdnowever,

Chapter 5. Evaluation: An Integrated Campus Environment 140

changes to the model will not be reflected in subsequent egiantil after a new
query model is generated. With large models this can takerakseconds as il-
lustrated in Figure 5.8. We found this acceptable for oulagpents, but aim to

explore other ways to optimize our model implementatioruiife work.

8000 -
7000 -
6000 -

% 5000
E

s

Change Time (i

w B
o o
o o
o o

2000 -

1000 -

0 1000 2000 3000 4000 5000 6000 7000

Number of Triples

Figure 5.8: Time required to update a model after a change.

Performance Implications

On one hand, we found that theternal performance of the system was adequate,
but the overall performance factoring in the cost of webises/middleware, pos-
sible wide area network latency, and the use of an “off théf’sheasoning engine
may seem discouraging. However, with some additional dpéitions these issues
can be readily addressed. We found that with a suitable nzalgiing scheme
and the use of background reasoning it was possible to tfhdgery and model
change times for freshness of the environment model. By sihgdight-weight
protocols, and by providing APIs to batch more than one ocdrie service call

at once, the cost of web services calls can be reduced. Basedraexperience

with web-based UCM/UIF applications, we have found thathalsi server-based

Chapter 5. Evaluation: An Integrated Campus Environment 141

application can serve multiple users in a single UIF appbca reducing the load

on the integrated model.

5.4.4 The UIF as a Stand Alone System

For effective integration of a wide variety of systems raiggfrom Component
Compositions to Smart Spaces, it was necessary to supiraetions of an un-
derlying system, but to compensate farssingabstractions. To this end, some
of the missing functionality of an underlying system caniinglemented directly
using the UIF. For example, an integrator can add statitientand relationships
found to be useful abstractions but missing from system& sasgcECT or only
implicitly supported in IROS event fields. “Native” UCM sétes can broadcast
messages to users by calling single users messaging ser@ce experience has
demonstrated that a system designed around the core diostsaof the UCM
may not only serve as an integration platform, but could esexw the basis for a
reference ubicomp system implementation. We aim to exphisepossibility in

collaboration with other practitioners in the ubicomp syss community.

5.5 Lessons Learned

Based on the integration experience described in this ehapé discuss our find-
ings with respect to the use of the core Ubicomp Common Mdulwe believe
will be useful for both ubicomp systems developers and nategs.

A comprehensive and flexible environment model aids apjgiteesource dis-
covery. It is important for an environment model to not only containmponents
(as in the ECT Dataspace, or the CTK Discoverer) but alstiestrelationships,

context, and entity capabilities. These abstractions inodehprovide a closer

Chapter 5. Evaluation: An Integrated Campus Environment 142

mapping between the “real world” and the digital world capnated by the ubi-
comp system making it easier to find relevant computing ressu

Maintaining consistency between a composite model andratted systems’
is challenging.Keeping a composite environment model in the integraticatesy
that to some extent mirrors all or parts of the environmentieh@f integrated
systems allowed us to unify the the computing resources oé itih@n one system
in a consistent and unified manner. This benefits the apigicakeveloper since
they need not concern themselves with how capabilities ranggioned. Moreover
since certain abstractions in the UCM such as entities alatiaeships may be
missing or only implicitly supported in an underlying systethis approach allows
us to compensate for missing abstractions in an integrayatem.

That said, we found that it can be challenging to maintairsistency between
an underlying system’s model and the composite model. Imeptoyment we de-
cided to store all entities, components, static relatiggssand context in the model,
and delegate dynamic relationship and context requestetariderlying system.
This limits the ability for applications to discover endii by context and relation-
ships. Furthermore, without this information the UIF is bigato infer higher
level context and new relationships. While an integratarl@@onfigure the UIF
to subscribe to context changes or poll for context valuemgieally, this would
force the reasoning subsystem to work continuously to imésv relationships and
context values unnecessarily, raising a scalability amtbpaance concern.

To address this we considered delegating discovery regjteesiie native sys-
tem. However, this would not only require a common query leaag to interpret
these requests, but also a mechanism to translate thesesgieeenvironment dis-
covery requests in the native system. Similarly, resutismfnative discovery re-
quests would need to be collected and interpreted by thgratien system, which

would require knowledge of the integrated model to intertirem correctly. These

Chapter 5. Evaluation: An Integrated Campus Environment 143

challenges remain an open issue for future research.

An entity abstraction is a natural way to aggregate capdiesi: context, ser-
vice interfaces, events, but there is not a one to one corretgnce between en-
tities and component8Based on our experience and others (e.g., [36, 68, 90]) we
have found that it is natural to aggregate capabilities agBervice interfaces,
context and events types around entities, however we fdwatdhere is not a one-
to-one relationship between entities asmmponentsthe implementations of these
capabilities. More than one entity will often aggregate mponent, inheriting its
capabilities. For example, a single InOut CTK context widgeassociated with
both the place entity and the user entities that are trackbdse n-to-n relation-
ships can present challenges for managing event subsasptihere a single UCM
event may be supplied by multiple components.

Make entity relationships explicit as they are an importsubclass of context.
The Cooltown system highlighted the use of entity relatnips to create web links
between related entities allowing users to browse theinging environment [68].
We found that it was valuable to make these relationshipBoitxip our integrated
model. Entity relationships implicit in iROS event fields@ontext Toolkit context
values made it easy to find devices in a meeting room or thes irse¢he lab, for
example.

Entity typeis an important subclass of conteXthe use of ontologies allowed
us to easily classify all entities in the system not only asppe places, and things,
but also thetypesof people (lab users, students), places (media markerksl- bui
ings), and things (laptops, printers). We found that it watural to aggregate
components with certain types of entities. For example, mddcaggregate an
outdoor location context source with all students, but adgregate the indoor
presence widget with lab users.

Applications are not only consumers of resources, they aiaaipulate the

Chapter 5. Evaluation: An Integrated Campus Environment 144

model directly. While most systems manage context derived from sensorsin th
environment, we have found that it is common for applicaitmnot only consume
such context, but produce it. For effective integratiompl@ation-supplied context
must be propagated to the underlying system for use by regipkcations. Appli-
cations are also a source of events; the Lab Monitor applitaike Multibrowse
[65], can send user interaction events to other UIF apjdicatand iROS services.
We found that some applications will also add and removdientsuch as places
of interest, or newly registered users to an integrated inode

Most ubicomp systems share a common set of evévitdle several systems
have highlighted the importance of event abstractions388,we have also found
that several systems share certain event types. Contekit tgudateevents, like
ECT component property changes, are signaled when corates/change. When
new components are added or removed from a system, the emeérd model
(e.g., Discovery subsystem, Dataspace) will signal appbos in case they rely
on their capabilities. So far we have found the followinghhigvel event types to
be common between systentsintext/relationship changedntity added/removed
capability changed Based on our experience, the consistent implementation of
these canonical events will reduce the need for applicattonpoll for changes
allowing applications to more readily respond to changekérenvironment.

In general we found that the core UCM abstractions are a sapef the sys-
tems’ we integrated. This is not surprising since we attexhpd develop unified
abstractions based on these systems and others. While we few abstraction
mismatches, we did find it necessary to compensatenfssingabstractions such
as entities and entity relationships either in the adapt@fementation or the UIF
system configuration.

From this experience we came to realize that there are a tdraggproaches to

environment integration: One is to compensate for misshgjractions in under-

Chapter 5. Evaluation: An Integrated Campus Environment 145

lying system(s) as we did. Another is to provide informataiout the integrated
system’s capabilities without any compensation for mgsbstractions. In the
former case, the integration system can provide informagibout implied enti-
ties, interpret context data to create and maintain missimidgy relationships, and
support composite services. In the latter case, the irttegraystem can simply
provide a mechanism for accessing the existing capabildfean underlying sys-
tem. An integrator may elect to compensate for some misdisyactions such as
static entities but not others. In a sense, our Adapter frasrieprovides a mech-
anism for exposing system capabilities without (much) cengation for missing
abstractions.

Since our aim is to support the full range of integration apghes since we
integrate several systems with varying capabilities irgtngle composite environ-

ment, a flexible model for ubicomp environments such as thimMikrequired.

5.6 Summary

In this chapter we presented our evaluation of the Ubicommi@on Model. We

focused our evaluation efforts on three areas:

e Application Development. This experience helped us understand whether

our model can be used to support applications that make Upetehtially)
several ubicomp environments with varying abstractiorelev We found
that the model adequately supported application developnaad allowed
us to use a single API with more than one system. The experiaiso
highlighted the cost of integration, in both building adapt and the design
and configuration of a composite environment model whengusinltiple

systems.

Chapter 5. Evaluation: An Integrated Campus Environment 146

e Adapter Complexity. To gain an in depth understanding of the flexibility
of our model, we created adapters for four representatises)s, each from
a different class of ubicomp system as outlined in Chapte©gerall we
found that it was possible to create adapters that provideduate coverage
for each systems’s capabilities and that these adapters strmightforward

to develop.

e Performance. To assess the feasibility of the UIF as an integration plat-
form that uses the UCM for environment integration, we meathe per-
formance of the system under both steady state and dynawiomement
conditions. In the steady state, we found performance adequ/e then
presented an approach to address performance in changidgisnesing a

“double buffering” scheme to trade off model freshness &st fjuery times.

Based on this evaluation experience we discussed some efstbens learned
related to the use of certain UCM abstractions and impleatient challenges that
can inform the design of future integration systems andarb platforms. In the

next chapter we conclude this thesis and discuss future.work

147

Chapter 6

Conclusions and Future Work

In this thesis we have presented the analysis and designatamodel for ubig-
uitous computing systems called the Ubicomp Common Modhls model was
designed to allow application developers to bridge acrogsiaty of existing ubi-
comp platforms. To do this, it must adequately describe uitigs computing
environments in a manner that lends itself to both appboagiortability, special-
ization to different environment domains, and adaptatma variety of systems.
The UCM design was based on the comprehensive survey of mpigystems
presented in Chapter 2. From this survey we found that thietyanf ubicomp
systems abstractions are influenced by the scale of ubicapipydnent and the
tradeoffs between making coordinated environments eagydgram (high level
abstractions) and broad applicability (low level serncosponent abstractions).
We also identified the common abstractions used acrossnwystmenvironment
mode] entities contexf entity relationshipsserviceseventsanddataor content
In chapter 3 we outlined several requirements for a commodeinfor ubi-

comp and the design of the UCM based on the common abstradtentified in
our survey. A key challenge addressed by this model is inrigthe right balance
between interoperability and suitability for cross domaatess while maintain-
ing much of the flexibility of a given underlying ubicomp sgst. Based on the
abstractions identified in Chapter 2 described the UCM aeisiggome detail pre-

senting the three related aspects of the model: the Enveah®tate, Meta State

Chapter 6. Conclusions and Future Work 148

and Implementation.

The Environment State consists of entities modeled by thpating system,
the relationships between entities and their current sbaEues. The Environ-
ment Meta-State aspect is required to support introspeetial associates entities
with their capabilities the types and quality of events, services, context and con-
tent they support. Finally, the Implementation aspectuwascomponentbstrac-
tions aggregated by entities that provide the servicesiteveontext, relationships
and content in an integrated system. We then outline how @kl ldddresses the
outlined requirements, provided an example of how it canxbeneled to support
security domains and access control, and provided use fcasesxecutablenodel
of the UCM used in a supporting system like the Ubicomp Iradgn Framework
(UIF).

In chapter four we described the UlFnsetamiddleware system used to eval-
uate the feasibility of the UCM for both application devetognt and systems in-
tegration. We describe the design and implementation df sabsystem in some
detail including a description of the use of a integratedMedge base and reason-
ing subsystem anddapters The key to our integration approach is to encapsulate
integrated system using an Adapter interface. Adapterdgedhe UIF with infor-
mation about the resources in the integrated system andehaheraction with the
system initiated by UCM applications, converting UIF piaits and data struc-
tures to and from those of the native system.

Finally in Chapter 5 we outlined our application and inteigra experience
deploying a composite ubicomp environment that integréted representative
ubicomp systems. From this experience we described outerdagsign process
and comment on the system’s suitability for Application elepment, integration,
performance and suitability as a stand alone system foouipadevelopment. We

then outlined some lessons learned related to the use of@é id this deploy-

Chapter 6. Conclusions and Future Work 149

ment.

6.1 Lessons Learned

Based on the experience and analysis reported in the peeglmpters, we discuss
our key findings related to the use of the Ubicomp Common Méatelbicomp

systems integration.

6.1.1 A Common Model for Ubiquitous Computing is Useful and

Practical

There will always be a variety of ubicomp systems that supypanous levels of
abstraction, and scale. Certain systems will be specthfizedifferent application
domains, and continue to track research advances in syssefvware engineer-
ing and middleware. Despite continuous evolution and tldewariety of systems
and application domains for ubicomp systems, we have shbainittis practical
to derive a common model for both application portabilitgl &gstems integration.
We have also shown how to instantiate this model meda-middlewarglatform
for systems integration by composing environments. Wihiérd are clear trade-
offs in our approach to interoperability in terms of costsntégration in building
adapters and configuring a composite environment, perfaceand access to the
underlying capabilities of the integrated systems, ouestigation has shown that
these costs are manageable. Clearly our approach of ititegdiverse systems
using the Ubicomp Common Model is feasible, especially cmmsg the benefits

of application portability and interoperability.

Chapter 6. Conclusions and Future Work 150

6.1.2 Unifying Environment Model is the Key to Integration

Our work has shown that it is feasible for the Ubicomp Commard®l and a sup-
porting system to describe and support an environment mbdeunifies those of
a few representative underlying integrated systems. Tdmsbe accomplished by
replicating key resources and relationships such asentibtmponents and aggre-
gation relationships as in the UIF. We believe that this agph, i.e. providing a
unified model in the integration system, is the key to effectntegration for two
reasons. First, because it exposes a unified and consigtgnbf/the environment
facilitating application development and portability. c8ed, it allows an integra-
tor to compensate for missing abstractions in an integrsgettm which is critical
when attempting to integrate systems that expose lowel #ogtractions such as
service and component compositions with others that exggskcit environment

models.

6.1.3 Entity Types and Relationships are Important Subclases of

Context

Based on our analysis of other systems and experience wifielgtwo important
subclasses of context that have been shown to be valuabltesource discovery
and integration.Entity relationshipsallow an application to more easily find en-
tities and their associated resources. The use of eypgsalso makes resource
discovery easier, and enables integration rules to ideetifities for the establish-

ment of entity-aggregation-component relationships.

6.1.4 Systems Share Several Common Event Types

We found that several systems share certain types of comr@rtise These in-

cluded context changed, entity relationship changedtyeatided/removed, and

Chapter 6. Conclusions and Future Work 151

capability changed. Based on our experience, the consissenof these canoni-
cal events increases application portability and reduwesi¢ed for applications to

poll for changes in the environment.

6.1.5 Applications are Both Consumers and Producers

From our experience we have gained some insight into therdleabf an applica-
tion in an integrated ubicomp environment. An applicati®mat only a consumer
of computing resources (e.g. finding entities, receivingnés, retrieving context
values, calling services), but also a producer. In the preduole, the applica-
tion itself is a source of events, content, context and serimplementations for
other applications in the environment. While we supported tole to some ex-
tent through interfaces to set context values, relatigrsstadd and remove entities,
in future implementations a general purpose web servidesféte to the Imple-
mentation aspect of the UCM may be provided so that UCM aatitios can also

register their resources with an integrated environment.

6.1.6 Summary

To summarize, we have shown that our approach and modetabkufor integrat-
ing a range of representative systems. Although not exiveusite systems chosen
for composite model integration and application developmepresent each cat-
egory of system as presented in Chapter 2: Component Cotigpssi Context
Frameworks, Smart Spaces, and Wide Area Systems. Of couniée this does
not mean we can suppal systems, it does indicate that our approach is suitable
for a wide range of ubicomp systems to date.

Through the careful analysis of a wide range of ubicomp systeve have

identified the abstractions shared by these systems, and ossdof this taxon-

Chapter 6. Conclusions and Future Work 152

omy in the design of the Ubicomp Common Model. Our integratmd deploy-
ment experience has informed the design of the UCM, higtitigithe advantages
and challenges of maintaining a composite environment midportant forms of

context and events, and the dual role of an application.

6.2 Future Work

In future work we aim to advance the design of the UCM throughtioued anal-
ysis and practical integration experience. We see oppdigsrior enhancing and
formalizing of the Ubicomp Common Model and continued ergtion of the ubi-
comp systems integration design and implementation sfpaoen our explorations
described in this dissertation we believe that a dual agprbased on analysis and

practical experience is the best way forward.

6.2.1 Enhancing and Specializing the UCM

Based on our integration experience we see opportunitiéaritalize certain as-
pects of the core model, and in particular the common evemtegt and entity
types used across systems. We would also like to furthepexphe development
of Environment Profiles specializations of the UCM for certain application and
environment domains, perhaps consisting of groups of appihg ontologies for

context, entity types, services suitable for the home, @famd other places.

6.2.2 Security

As discussed in Section 3.5, addressing security chalkewgkebe a challenge that
needs to be addressed for cross domain ubicomp deployneegig41, 93]). In an
integration platform like the UIF, we must ensure accessotoputing resources

are protected either individually or in groups that may rmmtespond to physical

Chapter 6. Conclusions and Future Work 153

entities, geographical or network boundaries. Futuregnatigon platforms must
support a variety of access control mechanisms, from tosdit name, password
and shared keys to more lightweight mechanisms that suppom® spontaneous

interactions involving the application directly.

6.2.3 Improved Scalability

We see opportunities to address scalability concerns imgposite (integrated)
environment through optimization of the reasoning sulesyst Approaches in-
clude the use of faster general purpose reasoners, spagse reasoners tuned
to our knowledge base, and more efficient model representain the integration
systems. Furthermore, we believe that it may be possiblederate or cluster inte-
gration systems to share the work of providing access to gosite model across

several servers.

6.2.4 Improved Application Interface

With the development of Web 2.0 applications and the use nadhc web pages
and Asynchronous Javascript and XML (AJAX) technigues weetke increasing
use of domain specific HTTP and XML protocols rather than SaBed web
services. Based on recent experience with other platfoB8kwWe believe that
such protocol for integrated ubicomp environments may bettebfit than Web
Services standards in some situations.

Our experience also highlighted the cost of cross domaérastion. To make
the most of each web service call we believe it is importargravide interfaces
that lend themselves to batch processing. This may inclotdefaces to get all
of the context associated with an entity, or subscribe tasgr entities in a given

place for example.

Chapter 6. Conclusions and Future Work 154

6.2.5 Applications as Components

Finally, we believe that the environment interface showddeltended or compli-
mented with an interface that supports the dual role of atiGgtipn as both a
producer and consumer of computing resources. While thadeainterface does
well in supporting the consumer role, additional interfaeee required to support

applications as producers of context, services, contaheaents.

6.3 In Conclusion

In this work we leveraged the considerable experience ieldping ubicomp sys-
tems to date to find some common ground for application pitittabnd systems
interoperability in ubicomp through the design of the Ui Common Model.
The feasibility of using the core UCM was tested using thecOlvip Integra-
tion Framework to integrate representative systems undemgosite environment
model. Our hope is that systems designers will continue lilmtcon the shoul-
ders of giants” in their quest for ubicomp systems interapiity and portability

required for applications to be truly ubiquitous.

155

Bibliography

[1] Jena, a semantic web framework for Java.

[2]

[3]

[4]

http://jena. sourceforge. net/ . last checked: 9-June-2008.

Universal Description, Discovery and Integration \fers2 OASIS
Standardhtt p: // htt p:

/ I www. oasi s- open. or g/ specs/ i ndex. php#uddi v3. 0. 2.
last checked: 9-June-2008.

OZONE - new technologies and services for emerging noosatieties.
http://ww. hitech-projects. conf euproj ects/ozone/,
2004. last checked: 9-June-2008.

SWeDE: Semantic Web Development Environment.
http://ow -eclipse. projects. semmebcentral . org/,
2005. last checked: 11-June-2008.

[5] JBoss web servicehitt p: // www. | boss. org/j bossws/,2007. last

[6]

checked: 9-June-2008.

Eclipse.org Home Pagédt t p: / / www. ecl i pse. or g/, 2008. last
checked: 11-June-2008.

[7] JBoss home pagént t p: / / ww. j boss. cont , 2008. last checked:

[8]

9-June-2008.

MySQL Home Pageht t p: / / www. nysql . cont , 2008. last checked:
9-June-2008.

[9] The Protégé ontology editor and knowledge acquisisgstem.

htt p://protege. stanford. edu, 2008. last checked:
11-June-2008.

[10] WebServices - Axishtt p: // ws. apache. or g/ axi s/, 2008. last

checked: 9-June-2008.

Bibliography 156

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. SteggléWard, and
A. Hopper. Implementing a sentient computing systéeEE Computer
34(8):50-56, 2001.

Gustavo AlonsoWeb services : concepts, architectures and applications
Data-centric systems and applications. Springer, Beaw York, 2004.

Apple, Inc. Networking - Bonjour.
htt p: // devel oper. appl e. coni net wor ki ng/ bonj our/,
2007. last checked: 9-June-2008.

Mark Assad, David Carmichael, Judy Kay, and Bob Kumrelelf
PersonisAD: Distributed, active, scrutable model framewior
context-aware services. Rervasive Computing (Pervasive 200@ages
55-72, Toronto, Canada, 2007.

Jakob E. Bardram. The Java Context Awareness Frame{dGrkF) - a
service infrastructure and programming framework for eatiaware
applications. IrPervasive Computing and Communications (PerCom
2005) pages 98-115, Munich, Germany, 2005. Springer.

Jakob E. Bardram, Thomas R. Hansen, Martin MogensehMads
Soegaard. Experiences from real-world deployment of stiateare
technologies in a hospital environment. Ubiquitous Computing
(UbiComp 2006)pages 369-386, Orange County, CA, 2006.

C. Becker, G. Schiele, H. Gubbles, and K. Rothermel. BAS
micro-broker-based middleware for pervasive computimg?drvasive
Computing and Communications (PerCom 2Q@#)ges 443451, Fort
Worth, USA, 2003.

Christian Becker, Marcus Handte, Gregor Schiele, and Rothermel.
PCOM - a component system for pervasive computing?drvasive
Computing and Communications (PerCom 20@&ges 67-76,
Washington, DC, USA, 2004.

Gregory Biegel and Vinny Cahill. A framework for deveing mobile,
context-aware applications. Fervasive Computing and Communications
(PerCom 2004)pages 361-365, 2004.

Michael Blackstock, Rodger Lea, and Charles Krasiavdi@ a shared
model for wide area interoperability of ubiquitous compgti
environments. IrBystem Support for Ubiquitous Computing (Ubisys)

Bibliography 157

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Workshop at Ubiquitous Computing (UbiComp 2Q06g¢wport Beach,
CA, 2006.

Michael Blackstock, Rodger Lea, and Charles Krasiovdia wide area
interaction with ubiquitous computing environments.EHuropean
Conference on Smart Sensing and Context (EuroSSC 2B8083hede, The
Netherlands, 2006.

Michael Blackstock, Rodger Lea, and Charles Krasicaptthg ubicomp
systems to a common model. Gommon Models and Patterns for
Pervasive Computing Workshop (CMPPC) at Pervasive 200ibnto,
Canada, 2007.

Michael Blackstock, Rodger Lea, and Charles Krasicnitgng an
integrated ubicomp environment using ontologies and reago In
Context Management and Reasoning (CoMoRea) Workshop e d?es
Computing and Communications (PerCom 2Q00N@w York, 2007.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmeéesame: A
generic architecture for storing and querying RDF and RDEs®@. In

The Semantic Web ISWC 20@2ages 54—-68. Springer Berlin / Heidelberg,
2002.

Barry Brumitt, Brian Meyers, John Krumm, Amanda KerngeSteven A.
Shafer. Easyliving: Technologies for intelligent envinoents. In
Proceedings of the 2nd international symposium on Handaett
Ubiquitous ComputingBristol, UK, 2000. Springer-Verlag. 743885 12-29.

H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Staddmtology for
ubiquitous and pervasive applications.lihernational Conference on
Mobile and Ubiquitous Systems: Networking and SeryiBeston, MA,
2004.

Harry Chen, Tim Finin, and Anupam Joshi. An ontology éontext-aware
pervasive computing environmentsnowledge Engineering Review
18(3):197-207, 2003.

Harry Chen, Tim Finin, Anupam Joshi, Lalana Kagal, -Herich, and
Dipanjan Chakraborty. Intelligent agents meet the sernavitb in smart
spaceslEEE Internet ComputingB(6):69—-79, 2004.

Stuart Cheshire. Zero configuration networking (Zerug.
http://ww. zeroconf. org/,2007. last checked: 9-June-2008.

Bibliography 158

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Eleni Christopoulou and Achilles Kameas. GAS Ontology ontology
for collaboration among ubiquitous computing devickgernational
Journal of Human-Computer Studje&2(5):664—-685, 2005.

Roger L. Costello. Web services best practice, sumrBary
http://1ists.xm.org/archives/xm -dev/ 200201/
nsg00477. ht M , January 2002. last checked: 9-June-2008.

Cristiano Andr da Costa, Adenauer Corra Yamin, and ©lud
Fernando Resin Geyer. Toward a general software infrasteifor
ubiquitous computinglEEE Pervasive Computing(1):64—73, 2008.

Nigel Davies and Hans-Werner Gellersen. Beyond pypid: Challenges
in deploying ubiquitous system#EEE Pervasive Computind.(1):26-35,
2002.

Anind K. Dey. Providing Architectural Support for Building Context-Awea
Applications Phd thesis, Georgia Institute of Technology, 2000.

Anind K. Dey and Gregory D. Abowd. Toward a better untkemgling of
context and context-awareness.Ahll 2000 Workshop on the What, Who,
Where, When, and How of Context-Awarend@sse Hague, The
Netherlands, April 2000.

Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A ceptual
framework and a toolkit for supporting the rapid prototypiof
context-aware applictiondduman-Computer Interaction (HCI) Journal
16(2-4):97-166, 2001.

Anind K. Dey, Daniel Salber, Gregory D. Abowd, and Maasy Futakawa.
The Conference Assistant: Combining context-awarenegswaarable
computing. InProceedings of the 3rd International Symposium on
Wearable Computerpages 114-128, Dublin, Ireland, 1999.

T.B. Downing. Java RMI: Remote Method InvocatiolbG Books
Worldwide, Inc. Foster City, CA, USA, 1998.

Aiman Erbad, Michael Blackstock, Adrian Friday, Rodgea, and Jalal
Al-Muhtadi. MAGIC Broker: A middleware toolkit for interdive public
displays. InMiddleware Support for Pervasive Computing (PerWare)
Workshop at Pervasive Computing and Communications (Rar2208)

pages 509-514, Hong Kong, March 2008.

Bibliography 159

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Matthias Finke, Michael Blackstock, and Rodger Leapbgment
experience toward core abstractions for context awaracgioins. In2nd
European Conference on Smart Sensing and Context (Eurp88jal,
UK, 2007. Springer.

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laasn ®twea, Frans
Kaashoek, and Robert Morris. Persistent personal namegoioally
connected mobile devices. Rroceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation (OSD] $&jttle,
Washington, November 2006.

A. Fox, A. Fox, B. Johanson, P. Hanrahan, and T. Winogtatégrating
information appliances into an interactive workspa&EE Computer
Graphics and Application20(3):54-65, 2000.

A. Friday, N. Davies, N. Wallbank, E. Catterall, and $ 1 Supporting
service discovery, querying and interaction in ubiquitoasputing
environmentsWireless Networksl0(6):631-641, 2004.

Erich GammaDesign patterns : elements of reusable object-oriented
software Addison-Wesley professional computing series. Addigdesley,
Reading, Mass., 1995. Erich Gamma. ... [etal.]. ill. ; 25 cm.

Paul Grace, Gordon S. Blair, and Sam Samuel. A refledtaraework for
discovery and interaction in heterogeneous mobile enwients.
SIGMOBILE Mob. Comput. Commun. Ré&{1):2-14, 2005.

Chris Greenhalgh. EQUIP: a software platform for disited interactive
systems. Technical Report 02-002, Mixed Reality Laboyatdniversity
of Nottingham, 2002.

Chris Greenhalgh, Shahram lIzadi, James Mathrick, Janie, and lan
Taylor. ECT: a toolkit to support rapid construction of uimaep
environments. Iisystem Support for Ubiquitous Computing (Ubisys)
Workshop at Ubiquitous Computing (UbiComp 2Q04dttingham, UK,
2004. Springer.

R. Grimm, J. Davis, E. Lemar, A. MacBeth, S. Swanson, idérson,

B. Bershad, G. Boriello, S. Gribble, and D. Wetherall. Systipport for
pervasive applicationsACM Transactions on Computer Systems
22(4):421-486, 2004.

Bibliography 160

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

William G. Griswold, Robert Boyer, Steven W. Brown, afah Minh
Truong. A component architecture for an extensible, highiggrated
context-aware computing infrastructure. I®SE '03: Proceedings of the
25th International Conference on Software Engineeripages 363—-372,
Washington, DC, USA, 2003. IEEE.

William G. Griswold, Patricia Shanahan, Steven W. Bng\Robert Boyer,
Matt Ratto, R. Benjamin Shapiro, and Tan Minh Truong. Acieenpus:
Experiments in community-oriented ubiquitous computi@@mputer
37:73-81, 2004.

Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an U#Ged
infrastructure for context-aware applicationEEE Pervasive Computing
3(4):66—74, October-December 2004.

V. Haarslev and R. Moller. Racer: A Core Inference Emgfor the
Semantic WebProceedings of the 2nd International Workshop on
Evaluation of Ontology-based Toolsages 27-36, 2003.

S. Harris and N. Gibbins. 3store: Efficient Bulk RDF Stge. Proceedings
of the 1st International Workshop on Practical and Scale®mantic
Systems (PSSSQ®pges 1-20, 2003.

Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, Badl Webster.
The anatomy of a context-aware applicationMobiCom '99 pages
59-68, New York, NY, USA, 1999. ACM.

Karen Henricksen and Jadwiga Indulska. A software mewgging
framework for context-aware pervasive computingParvasive
Computing and Communications (PerCom 2Q0@&ge 77, Los Alamitos,
CA, USA, 2004. IEEE.

Karen Henricksen, Jadwiga Indulska, and Andry Rakioéomy. Modeling
context information in pervasive computing systemsPdénvasive
Computing (Pervasive 200ZJurich, Switzerland, 2002. Springer.

Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Retmel, and
Markus Schwehm. Next century challenges: Nexus: an opdraglo
infrastructure for spatial-aware applications.MobiCom '99 pages
249-255, New York, NY, USA, 1999. ACM.

J. I. Hong and J. A. Landay. An architecture for privamnsitive
ubiguitous computing. IIMoble Systems, Applications and Services
(MobiSys 2004)Boston, MA, USA, 2004.

Bibliography 161

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Jason |. Hong. Context Fabric: Infrastructure supparcontext aware
systems. ICHI '02 extended abstracts on Human factors in computing
systemsMinneapolis, Minnesota, USA, 2001. ACM.

A. Huang, B. Ling, J. Barton, and A. Fox. Making compustéisappear:
Appliance Data Services. MobiCom '01, Rome, Italy, 2001.

Jan Humble, Andy Crabtree, Terry Hemmings, Karl-Refieesson,
Boriana Koleva, Tom Rodden, and Par Hansson. Playing wtlpitis -
user-configuration of ubiquitous domestic environmendJbiComp
2003 Seattle, WA, USA, 2003.

Valrie Issarny, Daniele Sacchetti, Ferda Tartanoghancoise Sailhan,
Rafik Chibout, Nicole Levy, and Angel Talamona. Developingoéent
intelligence systems: A solution based on web serviéesomated
Software Engineeringl2(1):101-137, 2005.

B. Johanson, B. Johanson, A. Fox, and T. Winograd. Ttezantive
workspaces project: experiences with ubiquitous compgutioms.|EEE
Pervasive Computindl(2):67-74, 2002.

Brad Johanson and Armando Fox. The Event Heap: A coatidim
infrastructure for interactive workspaces. Rroceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applicati&isE
Computer Society, 2002. 837560 83.

Brad Johanson, Shankar Ponnekanti, Caesar SenguaptAraando Fox.
Multibrowsing: Moving web content across multiple dispgayn
Ubiquitous Computing (Ubicomp 20QHages 346—353, London, UK,
2001. Springer-Verlag.

Dimitris N. Kalofonos, Zoe Antoniou, Franklin D. Reylds, Max
Van-Kleek, Jacob Strauss, and Paul Wisner. MyNet: A plaiftor secure
P2P personal and social networking servidestCom 20080:135-146,
2008.

Apu Kapadia, Tristan Henderson, Jeffrey J. Fielding] Bavid Kotz.
Virtual Walls: Protecting digital privacy in pervasive émnments. In
Pervasive Computing (Pervasive 200@ages 162-179, Toronto, Canada,
May 2007 2007. Springetr.

T. Kindberg, J. Barton, J. Morgan, G. Becker, D. CaswlDebaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, et al. People, RlacThings:

Bibliography 162

Web Presence for the Real World. Mobile Computing Systems and
Applications WorkshapVionterey, CA, December 2000. IEEE Computer
Society.

[69] A.LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,rhifh, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, et al. Place LabicBev
Positioning Using Radio Beacons in the Wild. Rarvasive Computing
(Pervasive (2005)volume 3468, pages 116-133. Springer, 2005.

[70] Rodger Lea and Michael Blackstock. Ubisys 2006 worksteport.
http://ww. magi c. ubc. ca/ ubi sys/ over vi ew. ht m 2006.
last checked: 9-June-2008.

[71] David S. Linthicum.Next Generation Application Integration
Addison-Wesley Information Technology Series. AddisoasWgy, 2003.

[72] S. Maffioletti and B. Hirsbrunner. Ubidev: An homogenscenvironment
for ubiquitous interactive devices. Rervasive Computing (Pervasive
2002) pages 28-38, August 2002.

[73] B. McBride. Jena: a semantic web toolKitternet Computing, IEEE
6(6):55-59, Nov/Dec 2002.

[74] Microsoft. Understanding Universal Plug and Play: Aitetpaper.
http://ww. upnp. or g/ downl oad/ UPNP_
Under st andi ngUPNP. doc, 2000. last checked: 9-June-2008.

[75] Richard Monson-HaefeEnterprise JavaBeangD'Reilly, 3rd edition,
2001.

[76] Mark W. Newman, Jana Z. Sedivy, Christine M. Neuwirth, Kith
Edwards, Jason I. Hong, Shahram lIzadi, Karen Marcelo, agsebT i
Smith. Challenge: Recombinant computing and the Spealggsypach.
In Mobicom '02 2002.

[77] Daniela Nicklas, Matthias Grobmann, Thomas Schward, $teffen \olz.
A model based, open architecture for mobile, spatially avegaplications.
In SSTD 2001: Proceedings of the 7th International Symposiupatial
and Temporal DatabaseRedondo Beach, CA, USA, 2001. Springer.

[78] Daniel Oberle, Andreas Eberhart, Steffen Staab, Relp¥az, and
In Hans-Arno Jacobsen. Developing and managing softwargonents in
an ontology-based application server.Middleware 2004,

Bibliography 163

ACM/IFIP/USENIX 5th International Middleware Confereneelume
3231 of LNCS pages 459-478, Toronto, Ontario, Canada, 2004. Springer.

[79] Object Management Group (OMGYhe Common Object Request Broker:
Architecture and Specification, Version 2.6May 2002.

[80] Open Services Gateway Initiative Alliance. OSGi Honag €.
http://ww. osgi . org/,2008. last checked: 9-June-2008.

[81] Organization for the Advancement of Structured Infation Standards.
OASIS Web Services Security (WSS) TC.
http://ww. oasi s- open. org/ committees/tc_hone. php?
wg_abbr ev=wss, 2008. last checked: 27-Sept-2008.

[82] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Haarahnd Terry
Winograd. ICrafter: A service framework for ubiquitous qmuting
environments. IJbiComp '01: Proceedings of the 3rd international
conference on Ubiquitous Computimpges 56—75, London, UK, 2001.
Springer.

[83] S.R.Ponnekanti, S.R. Ponnekanti, B. Johanson, Em&ni and A. Fox.
Portability, extensibility and robustness in iROS. In Bhdoson, editor,
Pervasive Computing and Communications (PerCom 2(Q&8)es 11-19,
2003.

[84] A. Ranganathan, R.E. McGrath, R.H. Campbell, and M.xKkdnas.
Ontologies in a pervasive computing environmentPtoceedings of the
IJCAI-03 Workshop on Ontologies and Distributed Systemisime 71,
Acapulco, Mexico, 2003.

[85] Anand Ranganathan and Roy H. Campbell. A middleware for
context-aware agents in ubiquitous computing environment
Middleware 2003volume 2672/2003, pages 143-161. Springer Berlin /
Heidelberg, 2003.

[86] Hans Gellersen Rene Mayrhofer. Shake well before usghéntication
based on accelerometer data Pervasive Computing (Pervasive 2007)
pages 144-161, Toronto, Canada, 2007. Springer.

[87] Manuel Roman, Christopher Hess, Renato Cerqueirandianganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: a middlewartqgta for
active spacesSIGMOBILE Mob. Comput. Commun. Ré({4):65-67,
2002.

Bibliography 164

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

W.A. Ruh, W.J. Brown, and F.X. Maginnig€nterprise Application
Integration: A Tech BriefJohn Wiley & Sons, Inc. New York, NY, USA,
2001.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. ThenBaxt
Toolkit: Aiding the development of context-enabled apgiions. InCHI,
pages 434-441, 1999.

Bill N. Schilit, Norman Adams, Rich Gold, Michael Tsm@Roy Want.
The PARCTAB mobile computing system. Fourth Workshop on
Workstation Operating Systems (WWOS-pages 34-39, Napa, CA,
USA, 1993. IEEE.

Bill N. Schilit, Marvin M. Theimer, and Brent B. Welch. @&tomizing
mobile applications. IUSENIX Symposium on Mobile and
Location-Independent Computing993.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Adialyanpur, and
Yarden Katz. Pellet: A practical OWL DL reasondournal of Web
Semantics5(2):51-53, 2007.

DK Smetters, D. Balfanz, G. Durfee, T.F. Smith, and KeLénstant
Matchmaking: Simple and Secure Integrated Ubiquitous Gdimg
Environments. IrJbiquitous Computing (Ubicomp 2006)lume 4206,
page 477, Orange County, CA, Sept. 17-21, 2006 2006. Springe

J. Pedro Sousa and David Garlan. Aura: an architectiaadework for
user mobility in ubiquitous computing environments.Aroceedings of the
3rd IEEE/IFIP Conference on Software Architectukduwer, B.V., 2002.

Oliver Storz, Adrian Friday, and Nigel Davies. Towafdbiquitous”
ubiquitous computing: an alliance with the grid. 3gstem Support for
Ubiquitous Computing (Ubisys) Workshop at Ubiquitous Cotimg
(UbiComp 2003) Seattle, 2003.

Sun Microsystems. The JavaBeans specification.
http://java. sun. coni javase/t echnol ogi es/ deskt op/
j avabeans/ docs/ spec. ht ml ,1997. last checked: 9-June-2008.

Sun Microsystems. Java 2 Platform, Enterprise EdIfI#EE) Overview.
http://java. sun.conij2ee/ overvi ew. ht m , 2008. last
checked: 9-June-2008.

Bibliography 165

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Sun Microsystems. Java Enterprise Edition at a Glance.
http://java. sun. coni j avaee/,2008. last checked: 9-June-2008.

Joo Geok Tan, Daging Zhang, Xiaohang Wang, and Heng Séegg.
Enhancing semantic spaces with event-driven contextdrdg&tion. In
Pervasive Computing (Pervasive 200&)lume 3468/2005, pages 80-97,
Munich, Germany, 2005. Springer. 3468.

Phil Tetlow, Jeff Z. Pan, Daniel Oberle, Evan Wallakkchael Uschold,
and Elisa Kendall. Ontology driven architectures and pidenses of the
semantic web in systems and software engineering.

http://ww. w3. org/ 2001/ sw Best Practi ces/ SE/ CDA/
2006. last checked: 9-June-2008.

W3C. Resource Description Framewohi.t p: / / www. w3. or g/ RDF/
2004. last checked: 9-June-2008.

W3C. Web Ontology Language (OWL) overview.
http://ww. w3. org/ TR/ ow - f eat ur es/, 2004. last checked:
9-June-2008.

W3C. SPARQL Query Language for RDF.
http://ww. w3. org/ TR/ rdf - spar gl - query/, 2005. last
checked: 9-June-2008.

W3C. SOAP version 1.2 part O: Primer (second edition).
http://ww. w3. org/ TR/ soapl2- part 0/, 2007. last checked:
9-June-2008.

W3C. Web Services Description Language (WSDL) verdd part O:
Primer.htt p: / / www. wW3. or g/ TR/ wsdl 20- pri ner/, June 2007.
last checked: 9-June-2008.

J. Waldo. The Jini architecture for network-centramputing.
Communications of the ACM7(7):76-82, 1999.

Roy Want, Andy Hopper, Veronica Falcao, and Jon Gilsbdrhe Active
Badge location systenACM Transactions on Information Systems
10(1):91-102, 1992.

Mark Weiser. The computer for the 21st centuBgientific American
265(9):94-104, 1991.

Bibliography 166

[109] Lawrence Wilkes. ROI - the costs and benefits of webisesvand service
oriented architecture.
http://roadmap. cbdi f orum com reports/roi/,2008. last
checked: 9-June-2008.

[110] D. Wood, P. Gearon, and T. Adams. Kowari: A Platform $amantic Web
Storage and Analysiroceedings of the 14th International WWW
Conference2005.

