
Assisting Bug Report Triage through Recommendation

by

John Karsten Anvik

M.S., University of Alberta, 2002

B.Sc., University of Victoria, 2000

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

November 2007

© John Karsten Anvik, 2007

Abstract

A key collaborative hub for many software development projects is the issue tracking
system, or bug repository. The use of a bug repository can improve the software devel-
opment process in a number of ways including allowing developers who are geographically
distributed to communicate about project development. However, reports added to the
repository need to be triaged by a human, called the triager, to determine if reports are
meaningful. If a report is meaningful, the triager decides how to organize the report for
integration into the project's development process. We call triager decisions with the goal
of determining if a report is meaningful, repository-oriented decisions, and triager decisions
that organize reports for the development process, development-oriented decisions.

Triagers can become overwhelmed by the number of reports added to the repository.
Time spent triaging also typically diverts valuable resources away from the improvement of
the product to the managing of the development process. To assist triagers, this dissertation
presents a machine learning approach to create recommenders that assist with a variety of
development-oriented decisions. In this way, we strive to reduce human involvement in
triage by moving the triager's role from having to gather information to make a decision to
that of confirming a suggestion.

This dissertation introduces a triage-assisting recommender creation process that
can create a variety of different development-oriented decision recommenders for a range
of projects. The recommenders created with this approach are accurate: recommenders for
which developer to assign a report have a precision of 70% to 98% over five open source
projects, recommenders for which product component the report is for have a recall of
72% to 92%, and recommenders for who to add to the cc: list of a report that have a
recall of 46% to 72%. We have evaluated recommenders created with our triage-assisting
recommender creation process using both an analytic evaluation and a field study. In
addition, we present in this dissertation an approach to assist project members to specify
the project-specific values for the triage-assisting recommender creation process, and show
that such recommenders can be created with a subset of the repository data.

Contents

Abstract ^ii

Contents ^

List of Tables ^ vii

List of Figures ^ ix

Acknowledgments ^ xi

Dedication ^ xii

Chapter 1 Introduction ^1

1.1 An Overview of Bug Reports ^4
1.2 The Bug Triage Process ^4

1.2.1 A Walkthrough of the Triage Process ^4
1.3 Recommender Creation Process Overview ^6
1.4 Survey of Related Work ^7
1.5 Contributions ^8
1.6 Organization of the Dissertation ^8

Chapter 2 Background ^ 10

2.1 The Bug Triage Process ^ 10

2.1.1 Project Differences for the Triage Process ^10

2.1.2 Some Challenges of the Triage Process ^ 11
2.2 Bug Reports ^ 12

2.2.1 Anatomy of a Bug Report ^ 12

2.2.2 The Life-cycle of a Bug Report ^ 13
2.3 Machine Learning Algorithms ^ 13

2.3.1 Overview of Selected Machine Learning Algorithms ^ 15
2.3.2 Rationale of Choices ^ 20

111

Chapter 3 An Approach to Creating Triage Assisting Recommenders^22

3.1 Overview of MLTriage ^ 22

3.2 A Developer Recommender ^ 24

3.2.1 Which Reports? ^ 25

3.2.2 How Many Reports? ^ 25

3.2.3 Which Features? ^ 26

3.2.4 How to Label the Reports? ^ 27

3.2.5 Which Labels Are Valid? ^ 28

3.2.6 Which Algorithm? ^ 30

3.3 A Component Recommender ^ 33

3.4 A Interest Recommender^ 34

3.5 Sibyl : An Implementation of the Approach ^ 36

3.5.1 Sibyl Back-end ^ 36

3.5.2 Sibyl Front-end ^ 37

3.6 Summary ^ 39

Chapter 4 Evaluation ^ 40

4.1 An Analytic Evaluation of the Recommenders ^ 41

4.1.1 Overview of Analytic Evaluation Procedure ^ 42

4.1.2 Developer Recommender Evaluation ^ 43

4.1.3 Component Recommender Evaluation ^ 46

4.1.4 Interest Recommender Evaluation ^ 48

4.1.5 Threats to Validity ^ 49

4.1.6 Summary of the Analytical Evaluation ^ 50

4.2 A Field Study of the Recommenders ^ 50

4.2.1 Study Subjects ^ 51

4.2.2 Study Methods ^ 52

4.2.3 Quantitative Results ^ 56

4.2.4 Qualitative Results ^ 60

4.2.5 Sibyl Performance Results ^ 62

4.2.6 Threats to Validity ^ 62

4.2.7 Summary of Field Study Results ^ 64

Chapter 5 Assisted Configuration of Recommenders ^ 66

5.1 The Assisted Configuration Approach ^ 67

5.1.1 Selecting and Labeling the Reports ^ 67

5.1.2 Selecting the Labels ^72

5.1.3 Selecting the Reports ^73

5.2 Evaluation of the Approach ^ 75

iv

5.2.1 Heuristics Used ^ 75
5.2.2 Threshold Setting ^ 76
5.2.3 Data Selection Strategy ^76
5.2.4 Results ^77
5.2.5 Summary of Results ^ 82

5.3 Configuring to Create Other Recommenders ^ 82
5.3.1 Configuring a Component Recommender^ 82
5.3.2 Configuring an Interest Recommender ^ 82

5.4 Summary ^ 83

Chapter 6 Discussion ^ 84
6.1 Using a Naïve Approach to Development-Oriented Recommender Creation ^ 85
6.2 Using Other Development Process Information to Create a Development-

Oriented Decision Recommender ^ 86
6.2.1 Component-based Developer Recommendation ^ 87

6.3 Creating Recommenders for Other Development-Oriented Decisions^88
6.3.1 Sub-component Recommender ^ 88
6.3.2 Effort Estimation Recommender ^ 91
6.3.3 Impact Analysis Recommender ^ 92

6.4 Assisted Configuration of Recommenders for Other Repository Types^92
6.5 Using Recommenders to Automate Triage Decisions ^ 93

6.6 Using an Incrementally Updated Algorithm ^ 94
6.7 Providing Feedback to the Recommender ^ 97

Chapter 7 Related Work ^ 98
7.1 Studies of Developers doing Triage ^ 98
7.2 Mining Software Artifact Repositories ^ 100

7.2.1 Mining Source Code Repositories ^ 100

7.2.2 Mining Bug Repositories ^ 100

7.2.3 Email Archives ^ 101

7.3 Expertise Recommendation ^ 102

7.3.1 Expertise Recommendation in General ^ 102

7.3.2 Expert Recommendation in Software Engineering ^ 103

7.4 Assisting Triage Through Recommendation ^ 104

Chapter 8 Conclusions ^ 106

8.1 Future Work ^ 107

8.2 Contributions ^ 108

Bibliography ^ 110

Appendix A Labeling Heuristics ^ 116

A.1 Eclipse Platform Project ^ 116

A.2 Mozilla Projects ^ 117

A.3 gcc Project ^ 118

A.4 Mylyn Project ^ 119

Appendix B Labeling Heuristics from Assisted Configuration^ 120

Appendix C Ethics Certificate ^ 125

vi

List of Tables

2.1 Examples of instances used for creating a recommender. ^ 16

3.1 Date ranges for reports from the Eclipse and Firefox projects used for tuning
RA. ^ 26

3.2 Examples of heuristics used for labeling reports with developer names.^28
3.3 Overview of data used for process tuning. ^ 29
3.4 Precision, recall and F-measure when using developer profile filtering.^30
3.5 Precision, recall and F-measure of a RA when using different machine learn-

ing algorithms ^ 32
3.6 Precision, recall and F-measure of a RA when using a nearest neighbour

algorithm^ 32
3.7 Answers to the six questions for MLTriage when creating a component rec-

ommender. ^ 33
3.8 Answers to the six questions for MLTriage when creating a interest recom-

mender. ^ 34
3.9 Precision, recall and F-measure when using cc: list filtering ^36

4.1 Overviews of the five projects used for analytic evaluation. ^ 41

4.2 Report submission statistics for the five projects ^42

4.3 Date ranges for data used for the analytic evaluation. ^ 42
4.4 Training and testing set sizes for evaluating developer recommenders.^43
4.5 Size of recommendation pool and average implementation expertise list size. 46
4.6 Precision, recall and F-measure for the five developer recommenders^ 46
4.7 Overview of data used for component recommender evaluation ^ 48
4.8 Recall for the five component recommenders. ^ 48
4.9 Percentage of training reports submitted by active developers. ^ 48
4.10 Overview of data used for interest recommender evaluation ^49
4.11 Precision, recall and F-measure for the five interest recommenders^ 49

4.12 Triage experience as reported by triagers. ^52
4.13 Accuracy of the recommenders from the field study. ^ 56
4.14 Median values for control and treatment cases for recommendation ^ 60

vii

4.15 Ranking of recommenders by triager interest. ^ 61
4.16 Performance of the Sibyl service. ^ 62

5.1 Legend for bug report life-cycle states^ 68
5.2 Date ranges for training data and testing set sizes used in evaluation. . .^75
5.3 Active developer thresholds used for evaluation ^76
5.4 Overview of previously created recommenders. ^ 77
5.5 Precision, recall and F-measure for data selection strategies^ 80
5.6 Precision, recall and F-measure using different heuristics and thresholds.^81
5.7 Results of using the proportional data selection strategy^ 81

6.1 Comparing different recommender creation approaches. ^ 86
6.2 Results of a paired t-test comparing the two types of recommenders . ^ 86
6.3 Precision, recall and F-measure for a component-based developer recommender. 88
6.4 Precision, recall and F-measure for a developer recommender^ 88
6.5 The sub-components for the Eclipse project. ^ 89
6.6 Answers to the six questions for MLTrtage when creating a sub-component

recommender^ 89
6.7 Recall for a sub-component recommender^ 90

6.8 Answers to the six questions for MLTriage when creating an effort estimation
recommender^ 92

6.9 Answers to the six questions for MLTriage when creating an impact analysis
recommender^ 93

6.10 Precision, recall and F-measure when using an incrementally updated Naïve
Bayes algorithm ^ 95

8.1 'Triager wish lists for triage-assisting recommenders. ^ 107

B.1 Heuristics used for the Eclipse project^ 120

B.2 Heuristics used for the Firefox project^ 120

B.3 Heuristics used for the gcc project^ 121

B.4 Heuristics used for the Mylyn project. ^ 121

B.5 Heuristics used for the Bugzilla project. ^ 121

viii

List of Figures

2.1 An example of a bug report. ^ 13

2.2 The life-cycle of a Bugzilla report. ^ 14

2.3 The life-cycle of a JIRA report^ 14

2.4 Example of a decision tree. ^ 18

2.5 Support Vector Machines algorithm analogy. ^ 19

3.1 Overview of recommender creation^ 23
3.2 Questions to be answered in creating a recommender. ^ 23
3.3 Bug report before Sibyl inserts recommendations^ 38
3.4 Bug report after Sibyl inserts recommendations. ^ 38
3.5 Overview of how Sibyl works^ 38

4.1 Graph of the five developer recommenders for the top recommendation. 47

4.2 Questions for the background questionnaire^ 51

4.3 Questions for the decision questionnaire^ 53

4.4 Questions for the usage questionnaire. ^ 53

4.5 Information logged by Sibyl. ^ 54

4.6 Questions for the post-Sibyl usage interviews^ 55

5.1 Mock-up for heuristic configuration. ^ 68

5.2 Example of setting the reports-resolved threshold. ^ 73

5.3 A scatter plot of data size vs. recommender precision. ^ 79

6.1 Example of an Eclipse report for the sub-component 'Workbench' ^ 90

6.2 Precision of incremental algorithm^ 95

6.3 Recall of incremental algorithm ^ 96

B.1 Developer resolution graph for Eclipse^ 122

B.2 Developer resolution graph for Firefox^ 122

B.3 Developer resolution graph for gcc^ 123

B.4 Developer resolution graph for Mylyn ^ 123

B.5 Developer resolution graph for Bugzilla ^ 124

ix

C.1 Ethics Certificate ^ 125

Acknowledgments

Just as it takes a village to raise a child, so too does it take many people playing
both large and small roles to have work such as this come about:

1. Gail Murphy, my supervisor, without whom this work would never have gotten very
far. Gail was helpful in a number of respect. First, she helped me frequently take a
step back and look at things in a new light after having' my nose buried in the details
for far too long. Second, she alerted me to when my writing became too "encoded",
admittedly a common occurrence. Lastly, she helped me through juggling this work
and my family responsibilities, most often simply with an attentive ear.

2. Danielle, my wife, who juggled three, and then four, children at home after I left each
morning and allowed me to focus on this work. I could not have accomplished this
work without her unfailing support.

3. Bjorn Freeman-Benson, Eric Wohlstadter and Kelly Booth, my supervisory committee
who helped me to take a broader view of this work.

4. Cristina Conati and Carson Woo, the university examiners, and Prem Devanbu, the
external examiner, who gave constructive comments that greatly improved the quality
of this dissertation. It was also Cristina's course that provided some of the initial spark
for this work and the course project from which this work grew.

5. Davor aubrani6, whose paper also provided some of the initial spark and helped to

shape this work.

6. The Eclipse Platform UI triagers who participated in the field study of the recom-
menders and gave data and feedback on how the recommenders worked in practice.

7. Randy Vance, my brother-in-law, who fed me and let me sleep on his floor for weeks
so that I could finish writing this dissertation after moving my family to Victoria.

8. Chris Dutchyn, Andrew Eisenberg, Thomas Fritz, Lyndon Hiew, Terry Hon, Jonathan
Sillito, David Shepherd and others from the Software Practices Lab who provided
advice, support and distraction over the course of this work.

xi

For Tara, John, Erik, and Kira.

xii

Chapter 1

Introduction

A key collaborative hub for many software projects is a database of reports describing both
bugs that need to be fixed and new features to be added [18]'. This database is often
called a bug repository2 or issue tracking system. The use of a bug repository can improve
the development process in a number of ways: it allows the evolution of the project to
be tracked by knowing how many reports3 are outstanding [15, 20], it allows developers
who are geographically distributed to communicate about project development [46, 57], it
enables approaches to determine which developers have expertise in different areas of the
product [5], it can help improve the quality of the software produced [17, 46, 51], and it
can provide visibility to users about the status of problem reports.4 The bug repository
can thus provide a location for users, developers, quality assurance teams and managers to
engage in a "user-integrated development process" [30, page 4].

However, the use of a bug repository also has a cost. Developers can become over-
whelmed with the number of reports submitted to the bug repository as each report needs
to be triaged5 [39, 52]. Each report is triaged to determine if it describes a valid problem
and if so, how the report should be categorized for handling through the development pro-
cess [23, 52]. When developers are overwhelmed by reports, there are two effects. The first
is that effort is redirected away from improving the product to managing the project. If a
project gets thirty reports a day and it takes five minutes to triage a report,6 then over two-
person hours per day are spent triaging reports. If all of these reports led to improvements

'Also see http : //wiki . mozilla . org/MozillaQualityAssurance : Triage, verified 01/08/07.
2This name is obviously a misnomer, the repository does not contain the bugs, just descriptions

of the bugs.
'We will use both the term report and the more colloquial bug report interchangeably to refer

the items in a bug repository, as the repository typically contains both fault reports and feature
requests.

4As data is more readily accessible about and from bug repositories used in open source devel-
opment projects, we focus our comments and examples on repositories from this type of project.
However, we believe that the issues discussed in this dissertation are applicable to bug repositories
from both open and closed source development projects.

5triage: A process in which things are ranked in terms of importance or priority. (Merriam-
Webster Dictionary)

6These numbers are based on our observation of an open-source project.

1

in the code, this might be an acceptable cost to the project. However, for some projects,
less than half of submitted reports lead to code improvements. For example, we found that
the Eclipse7 project had 5515 unproductive reports in 2004 [3].

The second effect is that reports may not be addressed in a timely fashion. If
the number of reports that enter the repository is more than can be reasonably triaged
within a suitable amount of time for the project, then some reports may languish in the
repository as other reports demanding more immediate attention take precedence. For an
open-source project where the responsiveness of the development team to the community
is often measured by how quickly reports are addressed and the number of outstanding
reports, the rate at which reports are triaged can be an important factor in how the project
is perceived. For example, Crowston et al. found that a measure of success for an open
source project is the rate that users submitted bug reports and participated in project
mailing lists [17].

The person who triages the report, the triager, should have two goals. The first
goal is to have the repository contain the smallest set of best reports for the project. The
smallest set of best reports is desirable because reports typically enter the repository from
a variety of sources, such as members of a technical support division, other developers, and
the user community. Unfortunately, with so many different sources of reports, some of the
reports are not meaningful [3]. For example, on a large project with many team members,
several developers may submit a report describing the same bug [30]. These duplicate
reports need to be gathered together so that development effort is not wasted by having
two developers solve the same problem [32, 55]. A triager also needs to filter reports that
do not adequately enable a bug to be reproduced or that describe a problem whose cause
is not the product, but rather is something beyond the control of the developers, such as
the operating system. Sometimes, a triager also needs to filter out reports that are spam.
Finally, a triager may indicate that the problem will not be fixed or that the feature will
not be added to the product. Reports meeting any of these criteria must be identified so
that development effort can focus on the reports that lead to product improvements. For
example, nearly a third of the reports submitted to the Firefox8 project created between
May 2003 and August 2005 were marked as duplicates [3]. We call triage decisions that
result in a report being designated as not meaningful as a repository-oriented decisions.

A second goal of the triager is to organize the reports for integration into the de-
velopment process. Reports may be organized in a variety of ways. For example, a report
may be categorized by the product component9 it effects so that the report is routed to

7Eclipse provides an extensible development environment, including a Java IDE, and can be
found at www eclipse org (verified 06/06/07).

8Firefox is a web browser and can be found at www.mozilla.org/products/firefox (verified
06/06/07).

9We use the term component to refer to a specific piece of product functionality, such as the user
interface, network protocols, or business logic.

2

the development team responsible for that component. Alternatively, a report may be cat-
egorized by developer according to who has the expertise to resolve it; in other words, the
report is assigned to a developer. Finally, a report may be categorized by other project
members that may want to be informed of progress on the report. We call these types of
decisions development-oriented decisions.

Typically, development-oriented decisions are made after repository-oriented deci-
sions. However, the two decisions may be intermixed. For example, it may be that a
triager lacks the knowledge to determine if a report duplicates another report (a repository-
oriented decision). The triager may choose instead to assign the report to a developer (a
development-oriented decision) so that an appropriate developer can decide whether or not
the report describes a new problem.

Every repository-oriented or development-oriented decision that must be made has
a cost. One source of cost is the time and effort required to gather the information to make
the decision. For example, to determine if a report duplicates a report that already exists
in the repository, the triager must search the repository based on keywords and examine
the results for potential duplicates. As another example, to make a decision about which
developer should be assigned the report, the triager needs to gather information about who
has the expertise to fix the problem. The lowest cost means to gather the information
is from the triager's own experience. When a decision lies outside that experience, more
expensive approaches must be used, such as consulting a project web site that states the
responsibilities of developers or searching for similar reports in the repository. For example,
we estimate that the Eclipse project spent 450 person-hours on unproductive reports in 2004
(5515 reports x 5 minutes / report) [3].

This dissertation presents an approach to assist triagers with the development-
oriented decisions they make during triage activities. The goal behind this approach is
to lower the cost of triage activities by reducing human involvement in the triage process.
Our approach uses a supervised machine-learning algorithm to build models for different
report categories (e.g., by component or by developer). The models are then used to pro-
vide the triager with recommendations for a new report that is submitted to the repository.
In this way, we strive to reduce human involvement in triage by moving the triager's role
from having to gather information to make a decision to that of confirming a suggestion.
The thesis of this work is that

human involvement in the bug triage process can be reduced using recom-

menders; these recommenders can be created using a prescribed process we call

the triage-assisting recommender creation process.

The rest of this chapter proceeds as follows. First, we provide a brief overview of
bug reports, followed by a description of the triage process. We then describe the triage-
assisting recommender creation process. We conclude by outlining previous work and the

3

contributions of this work.

1.1 An Overview of Bug Reports

A bug report contains a variety of information. Some of the information is categorical such
as the report's identification number, its resolution status (i.e., new, unconfirmed, resolved),
the product component the report is believed to involve and which developer has been given
responsibility for the report. Other information is descriptive, such as the title of the report,
the description of the report and additional comments, such as discussions about possible
approaches to resolving the report. Finally, the report may have other information, such as
attachments or a list of reports that need to be addressed before this report can be resolved.
A more detailed description of bug reports is given in Section 2.2.

1.2 The Bug Triage Process

Everyday, almost 300 bugs appear that need triaging. This [number of reports]

is far too much for only the Mozilla programmers to handle.m

As previously mentioned, the decisions that a triager makes can be divided into two
types: repository-oriented or development-oriented. These types of decisions can be seen
in the description of a triager's responsibilities for the Gnome project:"

1. "Making sure the bug has not already been reported before."

2. "Making sure the bug has enough information for the developers and makes sense."

3. "Making sure the bug is filed in the correct place."

4. "Making sure the bug has sensible "Severity" and "Priority" fields."

5. "Making sure the bug is versioned correctly." [10]

The first two decisions listed are repository-oriented decisions. Their intent is to
remove reports that will not contribute to the overall improvement of the product. The
remaining three decisions are development-oriented.

1.2.1 A Walkthrough of the Triage Process

This section presents a picture how triage is generally performed. To create this picture, we
gathered information from a variety of sources including documentation from open source

10Personal communication with Mozilla developer, 05/03/05
liThe Gnome project provides a graphical desktop for the Linux or UNIX operating system. See

www. gnome . org , verified 09/08/07.

4

project websites, observations derived from the comments and history log of bug reports,
and email correspondence and interviews with triagers.

A triager begins their duty by searching the repository for newly submitted reports
for the product component of interest. For convenience, triagers typically use a repository
query that returns such a list. Having obtained a list of reports to triage, the triager will
select a report and then read the title and description. If the description of the problem
is not clear, the triager will typically add a comment to the report asking for clarification
and for some projects change the report status to indicate that more information has been
requested.

The triager's first responsibility is to make the repository-oriented decisions. Typ-
ically, the first repository-oriented decision that the triager makes is determining if the
problem is already described in the repository (i.e., the new report is a duplicate of the
existing report in the repository). To determine if the report is a duplicate, the triager
will first rely on their project knowledge. A trivial example occurs when a reporter inad-
vertently submitted the exact same report twice and the triager has just triaged the first
instance. The triager also often uses keyword and text searches of the repository to find
reports that describe the same problem.

If the report describes a defect, and the triager gains confidence that the defect has
not been previously reported, the triager will next try to reproduce the problem. If he is
unable to reproduce the problem, then the triager will indicate that the problem could not
be confirmed and indicate this information by changing the status of the report. If the
problem is confirmed, the triager will sometimes attach a test case to help the developer in
correcting the problem.

Having made repository-oriented decisions such as establishing that the report de-
scribes a new problem or desired functionality, or that the defect is reproducible, the triager
will begin to make development-oriented decisions. In making the repository-oriented deci-
sions, the triager may have gathered enough information to combine with their own project
knowledge to make such decisions as how to categorize the report with respect to project
and to whom to assign the report. If the triager has not yet gathered enough information,
they will either continue to search and examine reports in the repository to make these deci-
sions or seek the advice of more experienced triagers and developers. For some projects, the
triager will add specific keywords to assist other triagers and developers in knowing certain
features about the problem or requested functionality, such as if the problem results in a
crash or causes the application to freeze, or the type of functionality requested such as a
modification to the user interface.

5

1.3 Recommender Creation Process Overview

The reports within a repository provide a wealth of information about a project's develop-
ment process, especially about how reports are organized Information relevant to report
categorization can be extracted from a set of reports that have been previously categorized
and used to predict how a new report should be categorized [4, 14, 19, 23]. For example,
by extracting information from reports that were organized as belonging to the User In-
terface component, a model of user interface reports could be built and used to suggest
if a new report belongs to this product component [23]. Similarly, information extracted
from reports resolved by a particular developer can be used to recommend if a new report
should be assigned to that developer. Such models can be built using a machine learning
algorithm [4, 14, 19]. We refer to models that are created for the purpose of providing
suggestions or recommendations as recommenders. We use the symbol RD° to refer to the
group of recommenders that assist with development-oriented decisions during bug triage.
We can create separate recommenders for different categorization tasks using a similar pro-
cess. For instance, a recommender that assists with component categorization is an example
of a RD0 recommender. A recommender that assists with assigning reports to developers
is another instance of a RD0 recommender.

In general, using a machine learning approach requires answering questions about
what data to use, how to prepare the data, and what machine learning algorithm to use.
To create a RD0 recommender, six questions need to be answered:

1. Which reports from the repository should be used?

2. How many reports should be used?

3. How should the reports be labeled?

4. What are the valid labels?

5. Which pieces of data from the reports should be used?

6. Which machine learning algorithm should be used?

Through our work, we have determined that half of the answers to these questions
are the same regardless of the particular RD°. The answers to the three questions of which
reports to use, what pieces of data to use, and what machine learning algorithm to use
are the same for each typel2 of Rix) we have investigated. Specifically, we have found
that the use of textual information about a problem or enhancement of resolved reports13
and the Support Vector Machines algorithm [33] can be used to create useful RD°. The

12The type of a recommender refers to the information that the recommender recommends (e.g.,
a developer assignment recommender (RA) is a type of RD0). An instance of a RD0 refers to a
type of RD° that has been created for a specific project, such as a RA for Eclipse.

13A report is considered resolved if it has reached the end of its life-cycle.

6

variation between the different recommenders is in how many reports are used, how the
reports are labeled and which are the valid labels. For brevity, we refer to the machine
learning-based triage-assisting recommender creation process — our approach for creating
a RD0 recommender as MLTriage.

For example, consider creating a recommender to help with assigning new bug
reports (an assignment recommender or RA) for the Eclipse Platform project. To use

WILTriage) we begin by collecting resolved reports from the most recent eight months (i.e.,
answer the questions of which reports and how many reports to use). We then label the
reports with the name of the developer who resolved the report (i.e., answer the question of
how to label the reports). As developers may have left the project in the last eight months,
we only keep reports that are labeled by the current Eclipse developers (i.e., answer the
question of which labels are valid). Having collected the reports we will use for training the
RA, we extract the summary and description from each report. This textual information,
and the label of the report it came from, are then given as input to a Support Vector
Machines supervised machine learning algorithm [31]. After the algorithm has created the
RA, we can provide the recommender the textual information of a new report and receive
back a list of recommendations that can be presented to help the human triager.

To compare the performance of different types and configurations of RD0 we use
the traditional measures of precision, recall, and F-measure. To enable experimentation
with different recommenders created using MLTriage, we integrated four types of RD° into
a web tool for the Bugzilla issue tracking system.14 The four types of RD° we integrated
were a developer assignment recommender (RA), a component recommender (Re), a sub-
component recommender (Rs) and an interest recommender (Ri). We call our tool Sibyl.'

1.4 Survey of Related Work

This dissertation presents an approach (MLTriage) to creating recommenders that assist
with development-oriented decisions. Our approach is unique in three respects.

The first is with respect to generality. Previous approaches have looked at assisting
with one development-oriented decision, either developer assignment [14, 19] or component
assignment [23]. In contrast, MLTrzage can create recommenders for both of these types
of decisions, as well as others, such as a recommender for who should be added to the cc:
list (see Section 3.4), for estimating the effort needed to fix a bug (see Section 6.3) or for
suggesting which files touch to fix a fault or implement a feature (see Section 6.3).

Others have also considered using machine learning to assist with making development-
oriented decisions [14, 19, 23]. Whereas the previous authors applied their process to

14The Bugzilla issue tracking system is commonly used by open source projects and can be found
at www .bugzilla. org (verified 11/06/07)

'A sibyl is a prophetess of the ancient world.

7

one [19, 23] or two [14] projects, we show that MLTriage applies to a variety of projects.16
Our approach is also unique with respect to its performance. Previous approaches

for creating a developer recommender have achieved accuracies of 20% [14] and 30% [19].
Using MLTriage, we create developer recommenders with accuracies in the range of 70%
to 98% for five different projects. Previous work for creating a component recommender
achieved an accuracy of 84% [23] for making one component recommendation. Although
we do not achieve a comparably high accuracy for one recommendation (45%-66%), the
previous work examined suggestions for eight components, whereas we examined projects
with eleven to thirty-four components and what we believe to be a lower quality of data
that is found in open source projects.

1.5 Contributions

This dissertation makes the following contributions to the field of software engineering:

1. An approach/framework to creating RDO recommenders that:

• Generalizes across types of RDO •

• Generalizes across software projects.

• Produces recommenders that are accurate.

2. A field study showing how RD° recommenders work in practice.

3. An approach to assist project members in configuring project-specific parameters
when creating a RD0 recommender that allows recommender creation to occur on a
client instead of a server.

1.6 Organization of the Dissertation

This chapter presented one of the challenges faced by projects that use a bug repository:
developers can become overwhelmed by the number of reports submitted to the repository.
This challenge leads to the need to triage the reports. We presented an overview of the
triage process and divided the decisions made by triagers into two categories: repository-
oriented and development-oriented. This dissertation presents an approach (MLTriage) that
creates recommenders that provide suggestions for development-oriented decisions (RD0).

In the next chapter, we provide a more detailed background of bug reports and
machine learning in preparation for presenting the details of our approach for creating
RD0 recommenders, MLTriage. Following this, we describe how we tuned MLTriage by
creating a developer assignment recommender and then describe how MLTriage is used

"Similar to previous work, we examine open source projects, as their process data is more readily
accessible. However, we believe that MLTriage also generalizes to closed source projects.

8

to create recommenders for a report's component field and cc: list (see Chapter 3). The
choices made in tuning MLTriage are evaluated in Chapter 4. Although some of the answers
for MLTriage are uniform across projects, others are project-specific. To assist a triager in
configuring MLTriage for a specific project, we present an assisted configuration approach for

MLTriage in Chapter 5. We then discuss various questions raised by this work (Chapter 6)
and review related work (Chapter 7), before making our concluding remarks.

9

Chapter 2

Background

This chapter gives additional information on the triage process and provides background

information on bug reports and machine learning algorithms The additional information

on the triage process was gathered from triager questionnaires, interviews, and project web

sites and demonstrates how triage practice differs from project to project.

2.1 The Bug Triage Process

A general overview of the triage process was presented in Section 1.2. This section provides

some further background into how the triage differs from project to project, and some of

the challenges of the triage process.

2.1.1 Project Differences for the Triage Process

Although the types of decisions a triager must make generally do not vary from project to

project, who performs the triage activities does vary. For example, triage for the Eclipse

project is done by project developers, whereas triage for the Mozilla projects', KDE2,

and Gnome are primarily done by volunteers. When developers from the project perform

triage, they are able to draw on deep project knowledge that may allow them to make

correct decisions more often. However, the cost to the project is higher as the time that

developers spend doing triage is time not spent improving the product. In contrast, when

volunteers are used to perform triage, the triagers are more likely to make errors that may

cause delays in the improvement of the product. However the project is able to make better

use of developer resources.3

Like many development processes, the triage process for a particular project is not

static and can change over time. For example, early in the history of the Eclipse project, a

single developer triaged the reports. However, as the product matured and the frequency

1The Mozilla project comprises many projects, such as the popular Firefox web browser and the
Thunderbird email client, and which share the same development process and bug repository.

2KDE is a graphical desktop for Linux and Unix workstations; www .kde org, verified 09/08/07.
3See live. gnome. org/Bugsquad/TriageGuide, verified 23/08/07.

10

of additions to the bug repository increased, the task became too overwhelming for a single
person. Triage was then decentralized and each component team was made responsible for
monitoring the repository for reports that were categorized by their component.4

Assignment of Reports

We have observed that projects use one of two approaches for developer assignment: triager-
directed assignment or self-assignment. For example, the Eclipse project used triager-
directed assignment where the triager has the authority to direct reports to specific de-
velopers. In contrast, the Mozilla project uses self-assignment where reports are assigned
to a default user name, typically associated with a specific project component, and then
developers choose the reports that they wish to resolve.5 This practice is also followed in
the FreeBSD project [25]. However, projects that use this approach have also been observed
to periodically assign reports to developers to get them addressed. For the Gnome project,
reports are assigned to a team leader or someone in charge of coordinating maintenance
activities [23].

As with other development activities, individual triagers approach report assignment
differently depending on their experience with the project. In interviews with four of the
triagers from the Eclipse project, we found that more experienced triagers only need to read
the report description to make assignment decisions, while others look for a stack trace to
point them to the right component or may need to refer to a web page to know who has
current responsibility for a particular component or sub-component.

2.1.2 Some Challenges of the Triage Process

In interviews with four triagers for the Eclipse project, the triagers identified several chal-
lenges. A common challenge expressed by each triager was reproducing the problem de-
scribed by the report. Other work has also made this observation [39]. One triager indicated
that it was challenging to know about every area of the project and that they needed to
build up additional project knowledge in order to triage more effectively.

Several of the triagers commented that the difficulty of triaging a report depended
on the reporter. One triager commented that reports were easier to triage from individuals
in whom he had confidence, either because the triager knows the individual, or because
the individual is on a product component development team. Another triager categorized
reporters into either "I'm using it" reporters or "I'm building on it" reporters. The first
group generates reports that are hard to deal with as they often report the component
wrong initially and do not define or describe the problem very well. The other type of
report submitter, the "I'm building on it" group, typically produce reports that have good

'Personal communication with Eclipse developer, 23/02/05.
5Personal communication with Mozilla developers, 05/03/07. Also see http: //wiki .mozilla.

org/MozillaQualityAssurance :Triage, verified 01/08/07.

11

descriptions and are very technical, sometimes pointing out the code that was causing the
problem. Triagers report that it is easier to triage reports from the second group than
reports from the first group.

2.2 Bug Reports

To assist triagers in making development-oriented decisions, we create recommenders based
on data found in bug reports. To provide more background on the data source that we
use for making recommendations, this section provides on overview of the bug report. We
present two aspects of a bug report: its anatomy and its life-cycle.

2.2.1 Anatomy of a Bug Report

Figure 2.1 shows an example of a report for the Eclipse project. The Eclipse project uses
the Bugzilla bug repository software. Although we focus on the contents of a Bugzilla
bug report in this section, bugs reports in other bug repositories such as JIRA,6 GNATS,7
and Trac8 contain similar data. Each report includes pre-defined fields, free-form text,
attachments, and dependencies.

The pre-defined fields provide a variety of categorical data about the report. Some
values, such as the report identification number, creation date, and reporter, are fixed when
the report is created. Other values, such as the product, component, operating system,
version, priority, and severity, are selected by the reporter when the report is added, but
may also be changed over the lifetime of the report. Other fields routinely change over
time, such as the person to whom the report is assigned, the current status of the report,
and if resolved, its resolution state. There is also a list of the email addresses of people who
have asked to be kept up to date on the activity of the bug. These fields, with exception of
those that are fixed at report creation, represent the different ways that a bug report can
be categorized in the development process.

The free-form text includes the title of the report, a full description of the bug, and
additional comments. The full description area typically contains an elaborated description
of the effects of the bug and any necessary information for a developer to reproduce the
bug. The additional comments include discussions about possible approaches to fixing the
bug and pointers to other bugs that contain additional information about the problem or
that appear to be duplicate reports.

Reporters and developers may provide attachments to reports to provide non-textual
additional information, such as a screenshot of erroneous behaviour. The bug repository
tracks which bugs block the resolution of other bugs and the activity of each report. The

8www atlassian. com/software/j ira, verified 09/08/07
7www . gnu. org/s of tware/gnat s, verified 09/08/07
8trac . edgewall . org, verified 09/08/07

12

Figure removed for copyright reasons.
Original source found at

https://bugs.eclipse.orgibugs/show_bug.cgi?id=4746
Figure 2.1: An example of a bug report.

activity log provides a historical report of how the report has changed over time, such as
when the report has been reassigned, or when its priority has been changed.

2.2.2 The Life-cycle of a Bug Report

Bugs move through a series of states over their lifetime. We illustrate these states using
the life-cycle of a report in a generic Bugzilla repository (see Figure 2.2). However, reports
in other repositories have a similar life-cycle (see Figure 2.3). Projects may add or remove
states to better fit a project's development process. However, we have observed that these
modifications typically are just specializations of the default states. For example, the
Gnome project adds an additional NEEDSINFO state that is a specialization of the NEW

state.
When a report is submitted to the repository, its status is set to UNCONFIRMED.

Once the problem described in the report has been verified, the report moves to the NEW

state. Once a developer has been either assigned to or accepted responsibility for the report,
the status is set to ASSIGNED. When a report is closed its status is set to RESOLVED. It
may further be marked as being verified (VERIFIED) or closed for good (CLOSED). A report
can be resolved in a number of ways; the resolution status in the report is used to record
how the report was resolved. If the resolution resulted in a change to the code base, the
bug is resolved as FIXED. When a developer determines that the report is a duplicate of an
existing report then it is marked as DUPLICATE. If the developer was unable to reproduce
the bug it is indicated by setting the resolution status to WORKSFORME. If the report
describes a problem that will not be fixed, or is not an actual bug, the report is marked as
WONTFIX or INVALID, respectively. A formerly resolved report may be reopened at a later
date and will have its status set to REOPENED.

2.3 Machine Learning Algorithms

The recommenders described in this thesis are built using a machine learning technique.
The field of machine learning is concerned with the development of algorithms and tech-
niques that allow computers to learn [45, 68]. Although, the exact definition of learning
in the context of computer learning seems to be disputed, one definition put forward by
Mitchell [45] states:

13

---,Report Created:: UNCONFIRMED

mo

orr....-44RESOLVED ,„1411h,

VERIFIED

CLOSED

Figure 2.2: The life-cycle of a Bugzilla report.

Possible Resolutions
FIXED
DUPLICATE
WONTFIX
WORKSFORME
INVALID

REOPENED

OPEN ^

Ljj
PROGn4RESS

RESOLVED

CWS:Mair

Figure 2.3: The life-cycle of a JIRA report.

(port Created„--

14

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.

Machine learning algorithms fall under three categories: supervised learning, un-

supervised learning, and reinforcement learning [45]. In this work, we investigate the use

of different supervised learning algorithms to determine which algorithm is the most ap-

propriate, as well as examining the use of one unsupervised learning algorithm. We do

not examine the use of reinforcement learning as this form of machine learning focuses on

learning as events happen, whereas we investigate learning from historical data.

Under the category of supervised learning, there are a number of potential algo-

rithms that could be used for creating recommenders for assisted triage. These algorithms

fall under five sub-categories: rule-based algorithms, probabilistic modeling algorithms, de-

cision tree algorithms, non-linear modeling algorithms, and instance-based algorithms We

chose to investigate one instance of each of these categories: conjunctive rules [68], Naïve

Bayes [34], C4.5 [50], Support Vector Machines [31], and nearest-neighbour [2] respectively.

Since all unsupervised learning approaches are essentially a clustering algorithm at their

core [68], we chose to consider one example only. The unsupervised learning algorithm that

we chose was the clustering algorithm called Expectation Maximization [22].

We next present an overview of the algorithms we chose to evaluate and conclude

this section with our reasoning for our choices.

2.3.1 Overview of Selected Machine Learning Algorithms

To understand how the various machine learning algorithms work, three concepts must be

understood: the attribute (also called the feature), the instance and the class. An attribute

is a specific piece of information that is used to determine the class, such as the component

that a bug report is filed against or the name of the developer who fixed the fault described

by the report. An instance is a collection of attributes that have specific values. For

example, we may be creating instances that contain information about the component a

report was filed against and the name of the developer who fixed it. The attributes of the

instance are "Component" and "Fixed By". Table 2.1 shows examples of three instances.

The first instance is for a report filed against the User Interface component and fixed by

Tom. The second instance is for a File Processing report that was also fixed by Tom.

The third instance is for a report for the User Interface component and fixed by Steve.

Finally, a class is the collection of instances that all belong to the same category. For

example, each row in Table 2.1 could belong to a particular project. From these instances,

a recommender could be created that suggest if a bug report belongs to a specific project

(i.e., the class) such as Firefox within the Mozilla bug repository. In this example, the

attributes of "Component" and "Fixed By" are used for predicting the class Firefox. More

15

Table 2.1: Examples of instances used for creating a recommender.
Component Fixed By

Instance 1 User Interface Tom
Instance 2 File Processing Tom
Instance 3 User Interface Steve

complex data, such as the text of the bug report, can also be used to provide the attributes

for predicting the class of a bug report. Machine learning algorithms differ in how they use

the values of the attributes to predict a class.

The rest of this subsection provides descriptions of the various algorithms we chose

to evaluate.

Conjunctive Rules

Conjunctive rules is an instance of a rule-based approach [68]. The idea behind a rule-based

approach is to determine a rule, or set of rules, for each class that describes all, or as many

as possible, instances in that class.

The conjunctive rules algorithm consists of the creation of a set of rules, whereby

each rule is the conjunction of antecedents that is associated with a particular class. A

simple example of such a rule is "If the report is for the Mac OS X platform and is for the

user interface component, then the report should be assigned to Keith".

Rules for each of the classes are constructed in the following manner. First all of

the attributes for all of the instances for a class are gathered (i.e., all the features of the

reports that have been labeled with Keith). Next, one of the attributes is selected as an

antecedent based on its information gain [68]. In other words, the attribute is evaluated

on how well it contributes towards determining that class of the instance. In this example,

it means determining how well the attribute helps to determine that a report belongs to

Keith as opposed to one of the other developers. A common term like the product name

would not contribute very much information as it would likely appear in the reports labeled

with other developer names, whereas the name of a specific component might contribute

more information about which developer to assign the report.

The rule is built by progressively adding antecedents in the order of information

gain until all of the attributes of the instances for the class have been used. As not all

of the antecedents will be necessary for determining the class, the reduced error pruning
technique is used to create the smallest rule possible for the class. Reduced error pruning

works by iteratively removing antecedents and using a portion of the instances for the class

to evaluate how well the pruned rule correctly classifies an instance. The set of instances

used for evaluation is set aside prior to creating the rule. In other words, a rule is built using

a subset of the reports labeled by Keith and the remaining reports are used to evaluate the

rule. The rule is systematically pruned by removing report attributes with low information

16

gain and the pruned rule is evaluated by how well the rule correctly classifies the reports

that were set aside. Pruning continues until the error rate is minimized.

Once the pruned rules for the classes have been generated, they are applied to a

new report to classify it.

Naive Bayes

Naïve Bayes is a probabilistic technique that uses Bayes rule of conditional probability

to determine the probability that an instance belongs to a certain class. For example, if

the word widget occurs more frequently in the reports resolved by Tom than the reports

resolved by Steve, then it is more likely that a new report that has the word widget in the
description should be given to Tom to resolve.

Intuitively, Bayes rule states that if something occurred frequently in the past, then

it is more likely to occur in the future (see Equation 2.1).

PriorProbability * Likelihood
PosteriorProbability = (2.1)

Evidence
More formally, Bayes rules states that the probability that an instance is of class

C given that the instance / has certain feature values fi Li (i.e., p(Clh f,)) is the'
probability that the instance is of class C (i.e., p(C)) times the probability that the feature

values will have these values if the class is C (i.e., p(fi fn IC)), all over the probability
that the features will have the values of fi^fn (i.e., p(fl^Li)) (see Equation 2.2).

p(C) x p(fi^fnIC)
P(Clfi...^=^ (2.2)

fn)

The algorithm is called "Naive Bayes" as it makes the strong assumption of indepen-

dence of the features. Although this assumption is false in many real-world applications,

in practice recommenders based on Naïve Bayes perform surprisingly well and it has been

found to not be a mathematically unreasonable assumption [26]. Taking the independence

assumption into account reduces Equation 2.2 to Equation 2.3 where / represents the set

of training instances:

ml
P(C1f1 • • • fn)^ri ALI') (2.3)

1.=1
In our use of the Naïve Bayes algorithm, the feature probabilities are based on the

frequency of terms in the reports. However, this can lead to zero probabilities when a report

does not have one of the terms. This problem, known as the zero-frequency problem [67],

is commonly corrected using a Laplace estimator [68].

17

Component

Description
contains "widget"

Yes^No

:Dan:

:Susan

OS

I- 1

Figure 2.4: Example of a decision tree.

C4.5

The C4.5 algorithm [50] creates a decision tree based on the attributes of the instances

in the training set. This algorithm differs from the others (with exception of conjunctive

rules) in its inherent ability to model interaction between the attributes [23].

C4.5 begins by determining the information gain of each attribute and selecting

the attribute that has the highest value. Information gain is a measure of how useful a

particular attribute is in deciding between classes. An attribute with a high information

gain will be good at discriminating between the different classes.

Having selected the attribute with the highest information gain (ab„t), the C4.5

algorithm creates a decision node and then recurses on the remaining attributes obtained

by splitting on ab„t. The subtrees end in leaf nodes representing the classes. A predication

is made by following the appropriate path through the decision tree based on the attribute

values of the instance.

Figure 2.4 shows an example of the top of a decision tree created using C4.5 for

deciding to which developer to assign a report. The figure shows that the C4.5 algorithm

chose the Component attribute as the root of the tree. Depending on the value of Compo-

nent, one of three paths is followed. If the Component is Y, then the report is assigned to

Susan. If the Component is Z, then the next decision is made based on the value of the OS

attribute, and so forth.

Support Vector Machines

Support Vector Machines is an algorithm that determines non-linear models describing each

class and then uses these models to predict the class of new instances.

From the point-of-view of the Support Vector Machines algorithm, the different

instances exist in a multi-dimensional space defined by the attributes. For example, if the

instances have four attributes, then the instances are placed in a four-dimensional space

according to their attribute values. SVM works by first determining the maximum margin

18

Empire A

•(`\O-^Star System

e.(?
Empire B

,KN

•CC'

\• • • Support Vector

Figure 2.5: Support Vector Machines algorithm analogy.

hyper-plane(s) between the different classes in this multi-dimensional space. A hyper-plane

is used to determine the support vectors, specific instances from each of the classes in the

space. The support vectors are then used to create a non-linear equation describing each

of the classes by setting the result of the equation to a specific value, such as one, and

using the attributes values to determine the constants of the equation. To classify a new

instance, the instances attribute values are plugged into the equations for each class and

the largest result indicates the predicted class.

Consider the analogy demonstrated by Figure 2.5. There are two galactic empires,

Empires A and B, that have agreed to a specific boundary in space (i.e., the hyper-plane).

Each of the empires owns specific star systems (i.e., the instances) at certain spatial co-

ordinates (i.e., the attributes). Since both empires want as much territory as possible,

the boundary is such that does not come any closer to each of the two territories as is

possible (i.e., the boundary is a maximum margin). To define this boundary, it is sufficient

only to know which star systems are closest to that boundary (i.e., the support vectors).

The co-ordinates of each of the star systems along this boundary are used to define an

equation representing the territory of each empire. When a new star system is discovered,

the equations are used to determine to which empire the star system belongs.

Expectation Maximization

Expectation Maximization is an iterative clustering algorithm that guesses at the proba-

bility that an instance belongs to a specific cluster (i.e., class) and then iteratively refines

the guesses until a maximum log-likelihood of the probabilities is reached. The algorithm

consists of two parts: guessing the probabilities (i.e., expectation) and maximizing the

expected likelihood found in the previous step (i.e., maximization).

Imagine there is a set of reports that were resolved by two developers, but we do

not know who resolved each report. As we do not know to which cluster (i.e., class) each

19

report belongs, we are going to determine the probability that a report belongs to a certain

cluster (i.e., was resolved by a particular developer). However, we do not know what the

probability distribution is for either of the two clusters, so we estimate the parameters

of the probability function of each cluster (i.e., the means and standard deviations) and

sampling probability (i.e., the proportion of the reports that came from the first developer's

group of reports). This estimation of parameters is the expectation step. We next use these

estimated parameters to determine the probability that a report belongs to each developer

and then compute the log likelihood for the parameters (i.e., the likelihood that we have

found the right parameters). This step is the maximization step. We then use the computed

class probabilities to estimate the parameters for the next iteration. We continue this cycle

until the log likelihood has not increased more than a small amount, such as 10-1°, over

a number of iterations. One way to view this process is that we place the reports into a

single cluster and then tease apart the reports until they are in two clusters.

Nearest Neighbour

The nearest neighbour algorithm is an instance-based algorithm, also known as a lazy algo-

rithm. As opposed to the other algorithms in which a function is determined for computing

the probability that an instance belongs to a class, the nearest-neighbour algorithm uses all

of the instances to make a prediction. The algorithm makes the prediction by comparing

a new instance to all other instances (or representative instances) and finding the previous

instance which is closest to it. The class of the new instances nearest neighbour is then

used as the new instance's predicted class. The distance between two instances is found

using a distance metric specific to the set of attributes.

2.3.2 Rationale of Choices

We chose to investigate rule-based algorithms and decision tree algorithms, because we be-

lieve that they bare some similarity to the reasoning used by triagers in making development-

oriented decisions. For example, when deciding who to assign a report to the triager may

use a rule such as "If the component is UI and the OS is Windows XP, then assign the

report to Steve". Rule-based algorithms and decision tree algorithms bear some similarity.

For example, a decision tree can be turned into a set of rules. However, they do have

subtle differences. First, the set of rules generated by a rule-based algorithm tend to be

clearer and less complex then the equivalent decision tree. Also, rules focus on defining a

single rule that applies to one category without regard for the effect of the rule on other

categories. In contrast, decision trees attempt to determine tests that distinguish between

all classes. [68] Another perspective on these two algorithm types is that a decision tree

is a top-down approach to classification and rules is a bottom-up classification approach.

Finally, rule-based algorithms and decision tree algorithms differ from the other chosen al-

20

gorithms in that they have an inherent ability to model interaction between the attributes
of the categories [23]. We chose to investigate the conjunctive rules [68] algorithm, as it
produces simple rules such as the example given above. We chose the C4.5 [50] algorithm
as it is considered one of the best decision tree algorithms.

We evaluated two variations of the Naïve Bayes algorithm. The first is a multinomial
variation and the second is an incrementally updatable variation. We evaluated the incre-
mentally updated variation to investigate the use of an algorithm that is takes advantage
of the flow of bug reports into the bug repository. We evaluated a multinomial variation
of Naive Bayes because it was used in previous work to automate bug assignment [19] and
component assignment [23], and thus provided a lower bounds for finding a more appropri-
ate algorithm. The algorithm is called multinomial Naive Bayes because it uses a vector
of integer features (i.e., word counts) to represent the reports.

We evaluated Support Vector Machines because it has been shown to be effective for
text categorization [33] and previous work also indicated that it may be a good choice [23].
We chose to investigate the nearest-neighbour algorithm as it too had been used in previous
work [23], and is representative of instance-based machine learning algorithms that do not
precompute a model, but that use all of the reports for comparison. Finally, we investigated
Expectation Maximization as it was suggested in previous work as a way to overcome the
limitation of supervised machine learning algorithms that require reports be labeled [19].

21

Chapter 3

An Approach to Creating Triage
Assisting Recommenders

Our approach to assisting bug report triage is to provide a variety of recommenders that
guide the triager in making common development-oriented triage decisions. This chapter
presents our triage-assisting recommender creation process, which we refer to as MLTriage
(i.e. a machine learning approach to creating triage-assisting recommenders). We be-
gin by presenting an overview of the approach. Next, we show how we used one type of
development-oriented decision recommender, a developer recommender, to tune the ap-
proach. We then present how to use MLTriage to create recommenders for which product
component to file the report against,1 and which other project members may be interested in
being informed of changes to the report. We conclude this chapter with an overview of Sibyl,
a web service that uses recommenders created by our approach to provide development-
oriented decision recommendations to triagers who use the Bugzilla issue tracking system.

3.1 Overview of MLTriage

At a high-level, the creation of a recommender to assist with development-oriented triage
decisions is straightforward. Figure 3.1 shows an overview of the process. First, reports
from a project's issue tracking system are automatically selected. Next, specific pieces of
data, called features, are collected from the selected reports; reports with similar features
are grouped under a label. The label indicates the category or class to which the features
belong. The extracted data and labels are then fed to a supervised machine learning
algorithm and a recommender for a specific development-oriented decision is created. As in
Chapter 1, we will refer to such a recommender as Rix). When the recommender is asked
to make a prediction for a new report, features are extracted from the new report and fed
to the recommender, which provides a list of potential labels. Triage can be assisted by

1Without loss of generality, we use Bugzilla terminology throughout our description of our ap-
proach and the created recommenders.

22

applying this process to create different RDO•

Labels
MN+

Bug^Features
Reports

Issue
Repository

Machine Learning
Algorithm

Recommender

Figure 3.1: Overview of recommender creation.

Although the overall approach is straightforward, applying the approach in practice
is complex as several inter-related decisions must be made to create the recommender.
Specifically, six questions must be answered:

1. Which reports from the repository should be used to create the recommender?

2. How many reports should be used?

3. How should the reports be labeled?

4. What are the valid labels?

5. Which features from the reports should be used?

6. Which machine learning algorithm should be used?

Figure 3.2 depicts how the questions impact our overall approach.

How To Label?
^

Which Labels?

Which Reports?

%11%441it^Labels

Bug^Features
Issue^Reports

Repository
How Many?

Which Algorithm?

[-_==>
Machine Learning

Algorithm
Recommender

Which Features?

Figure 3.2: Questions to be answered in creating a recommender.

A similar process for answering these questions can be used to create different RDO•

It can be used to create a recommender that suggests which developer should be assigned
the responsibility for resolving a particular bug (an assignment recommender or RA). It

23

can be used to create a recommender that suggests which project component the report
should be filed against (a component recommender or Rc) . It can be used to create a
recommender that suggests which project members may have an interest in being informed
of progress made towards the resolution of this bug (an interest recommender or Ri). This
chapter describes in detail how to apply the overall process to create these three types
of RD0 recommenders. We present other possible recommenders that can be created in
Section 6.3.

We developed MLTriage initially for creating a RA. We then investigated how

MLTriage generalizes to other RD0, namely Rc and RT. This chapter provides a full
analysis of answers to the questions for RA, but limits the investigation of which reports,
features, and algorithm to use for Rc and R.!.

As some of the questions require experimentation to answer, we tuned our approach
using data from the Eclipse Platform2 and Firefox3 projects. We chose to use these two
projects for tuning as they have large development communities, many project components,
and have a large set of reports for training a recommender. These choices were then
validated using five different projects (see Section 4.1).4 We found that MLTriage created
recommenders with high precision (70% to 98%) for RA, high recall (72% to 92%) for Rc,
and RI- with moderate to high recalls (46% to 72%).

The remainder of this chapter describes how these three types of triage assisting
recommenders are created using MLTriage. The description of each recommender creation
process is based upon how the six questions described above are answered.

3.2 A Developer Recommender

A developer recommender (RA) provides the triager with suggestions of which project
developers5 should be given the responsibility of resolving the report based on historical
information. For example, when a triager examines a newly submitted report, an RA could
suggest three developers who have the necessary expertise to fix the described problem.

In practice it is not possible to answer the questions for creating a RD() recommender
sequentially due to their inter-relation. We therefore do not describe the answers to the
questions sequentially, but rather present the answers in a manner that minimizes the
inter-dependencies.

2Eclipse provides an extensible development environment, including a Java IDE, and can be
found at www.eclipse.org (verified 06/06/07).

3Firefox is a web browser and can be found at www.mozilla.org/products/firefox (verified
06/06/07).

4Without loss of generality, the projects that we investigate all used the Bugzilla issue tracking
system. As explained in Section 2.2, the contents and life-cycle of reports are very similar across
different issue tracking systems.

5A project developer is an individual that contributes to a project by resolving bugs or imple-
menting features.

24

3.2.1 Which Reports?

Our approach requires selecting bug reports that provide information about how a project
categorizes its reports. For a developer recommender this means selecting the reports that
provide information about the problems each developer has resolved or the features that
they have implemented. As discussed in Section 2.2.2, at any given moment, each report
in an issue repository is at a different point in the report life-cycle. Some reports will be
in a state, such as the UNCONFIRMED or NEW, that does not help in determining which
developers have been known to resolve particular types of problems or implement certain
features. As a result, we ignore these reports when creating a RA, focusing instead on
reports that have been either assigned to a developer or resolved.

As the approach for creating a RD0 uses a supervised machine learning algorithm
(see Section 3.2.6), it is necessary that all reports in the training set have labels. We
therefore further refine the data set by removing reports that cannot be labeled (see Sec-
tion 3.2.4). The data set is also refined to remove reports that are labeled with the names
of developers who our technique deem to not be actively contributing to the project at a
sufficient level to warrant recommendation (see Section 3.2.5).

3.2.2 How Many Reports?

There are several ways to determine the quantity of reports from which to create a RD°.

One way is to use a fixed quantity, such as the five hundred most recent reports. However,
this has two disadvantages. The first is that the appropriate number needs to be known in
advance. The second is that different projects have different quantities of reports. Some
projects may not have a pre-chosen fixed quantity, or if they do the reports may span a long
time period, such as several years, increasing the likelihood of using of obsolete information.

Another way is to use a fixed percentage of the number of reports in the issue
repository. However, this suffers from the same problems of using a fixed quantity: for
projects with a large number of reports obsolete data may be used and for projects with a
small number of reports, there may not be sufficient data to train the recommender.

Alternatively, the reports can be selected based on the time period over which they
occurred, such as the reports that were resolved in the last six months. This technique for
report selection has the advantage of providing some assurance of recency of information.
We take the latter approach and use reports from the previous eight-month time period to
create a RA. This time frame was chosen empirically using data from the Eclipse and Firefox
projects and appears to be appropriate for other projects (see Section 4.1.2). However, this
time frame will depend on the specific project; some projects may not have been running
for eight months yet still have a sufficient quantity of reports to create a Rpo.

25

Table 3.1: Date ranges for reports from the Eclipse and Firefox projects used for tuning
RA.

Start Date End Date
Eclipse Oct 1, 2005 May 31, 2006
Firefox Feb 1, 2006 Sept 30, 2006

3.2.3 Which Features?

Our approach requires an understanding of which reports are similar to each other so that
we can learn the kinds of reports typically resolved by each developer. In the context of
machine learning, this requirement translates to picking features to characterize a report.
Reports with similar features can then be grouped.

As described in Section 2.2.1, each report contains a substantial amount of infor-
mation. Our approach uses the one-line summary and full text description to characterize
each report as they uniquely describe a report. For resolved reports that have been marked
as DUPLICATE, the text of both the report and the report it duplicates are used.

Before we can apply a machine learning algorithm to the free-form text found in
the summary and description, the text must be converted into a feature vector. We fol-
low a standard text categorization approach [59] of first removing all stop words6 and
non-alphabetic tokens [6]. Although stemming7 is traditionally used, we chose not to use
stemming because earlier work [19] indicated that it had little effect. The remaining words
are used to create a feature vector indicating the frequency of the terms in the text. We
then normalize the frequencies based on document (i.e., report) length, intra-document
frequency and inter-document frequency [53].

If a term occurs once in a report, then it is likely to occur more times in the same
report [53]. If the report description is long, this can skew the term distributions across
all the reports. We therefore normalize a term's frequency by document length (ti.'), by
dividing the term's frequency in the report (4) by the square root of the square of the
term's frequency across all the reports (see Equation 3.1).

tr
= (3.1)

VEI,R11 (4)2

The intra-document frequency (also known as term frequency) refers to how often
a term occurs within the description of the report. We normalize the term frequency by
taking the log of one plus the frequency of term i in report r (Equation 3.2). We do this
so that terms with larger counts (low information content8) do not dominate terms with
smaller counts (high information content). We add one to the term frequency so that the

6Stop words are functional words such as 'a', 'the', and 'of' which do not convey meaning.
7Stemming identifies grammatical variations of a word, such as 'see', 'seeing', and 'seen', and

treats them as a being the same word.
8Information count is a measure of a feature's ability to distinguish between different classes.

26

transform becomes the identity transform for terms that occur zero or one time, since the
word vector contains entries for all terms in the set of reports [53].

t^= log(1 ± tfir)^ (3.2)

The inter-document frequency refers to the frequency by which terms occur across
all the reports used to train RA (i.e., the training set). We normalize by this frequency so
as to discount terms that occur frequently across multiple documents. For example, terms
that occur in the boiler plate of a report description such as those in the phrase "Steps to
Reproduce" would not contribute information to distinguish reports that are labeled with
the name of two different developers. To compute inter-document frequency for a term we
take the frequency of term i in report r (fir) and multiply it by the log of the number of
reports (74) over the number of reports containing term i (fir) (see Equation 3.3).

^idf, = fir * log (t)
^ (3.3)

ir

After this process, the feature vector for a report contains normalized frequency
values for each of the words found in the summary and descriptions of the training reports.

3.2.4 How to Label the Reports?

To train the RA being created, we need to provide a set of reports that are labeled with the
name of the developer who was either assigned to the report or who resolved it. At first
glance, this step seems trivial as it seems obvious to use the value of the assigned-to field
in the report. However, the problem is not this simple because projects tend to use the
status and assigned-to fields of a report differently. For example, in both the Eclipse
and Firefox projects, the value of the assigned-to field does not initially refer to a specific
developer, but are first assigned to a default email address before they are assigned to an
actual developer.9 For reports with a trivial resolution, such as duplicate, or reports with
a trivial fix, such as changing the access modifier of a method, the assigned-to field is
often not changed.

Instead of using the assigned-to field, we use project-specific heuristics to label the
reports. These heuristics can be derived either from direct knowledge of a project's process
or by examining the logs of a random sample of reports for the project. We took the latter
approach for the Eclipse and Firefox projects resulting in a set of heuristics. Table 3.2
shows example heuristics for the Eclipse platform and Firefox projects. The full set of
heuristics used for the various projects that were investigated is provided in Appendix A.

9Both Eclipse and Firefox use the Bugzilla issue tracking system and a user name in the Bugzilla
system is an email address.

27

Table 3.2: Examples of heuristics used for labeling reports with developer names.
Eclipse Firefox

If a report is resolved as FIXED, label
it with whoever marked the report as
resolved.

If a report is resolved as FIXED, label
it with whoever submitted the last ap-
proved patch.

If a report is resolved as DUPLICATE, label it with whoever resolved the
report of which this report is a duplicate.
If the report was resolved as not FIXED

by the person who filed the report and
was not assigned to it, and no one re-
sponded to the bug, then the report
cannot be labeled.

If a report is resolved as WORKS-
FORME, it was marked by the triager,
and it is unknown which developer
would have been assigned the report.
Label it as unclassifiable.

3.2.5 Which Labels Are Valid?

Having determined how to label the reports, we next decide which labels are valid labels,
or which classes will be recommended. The set of valid labels is determined from the set
of training reports.

However, before the labels can be determined, the set of training reports must be
filtered. The first step in filtering is to remove reports that also occur in the set of reports
used for testing. The removing of these reports is only relevant in the context of the
evaluation of the recommender. For recommenders used by triagers, these reports would
not be removed. The first column of Table 3.3 shows the number of reports for the Eclipse
and Firefox training sets before any filtering. The next column shows the number of reports
removed because they also occur in the set of reports used for testing. We also need to filter
reports that cannot be classified by the labeling heuristics. The third column of Table 3.3
shows the number of unclassifiable reports. For the Eclipse project, only 1% of the reports
in the data set are unclassifiable. In contrast, 39% of the Firefox reports are unclassifiable
due to a large proportion (32%) of the training reports being marked as WORKSFORME,

WONTFIX, INVALID, or the duplicate of a NEW bug report.1°
All reports remaining after the filtering can be labeled. We now determine the set

of valid labels by removing reports from the training set that are labeled with the name
of developers who no longer work on the project and developers who have only fixed a
small number of bugs. We remove the former because it is not useful to recommend a
developer who is no longer available for assignment. We filter for the latter because we
wish to recommend project members who have a demonstrated expertise with the project
by making significant contributions to the project. We use the heuristics developed for the
project (Section 3.2.4) to determine a developer's project contribution, which we call the
developer's activity level. We use a threshold on the developer's activity level to determine
the set of developers who warrant recommendation.

mThese kind of reports are typically intercepted by a Firefox triager and it is unknown which
developer would have been assigned responsibility for these reports.

28

Table 3.3: Size of data set, training set, and testing set used for process tuning.
Reports Removed Training

Set
Testing

SetIn Test Set Unclassifiable Filtering
Eclipse 7233 37 94 (1%) 746 (10%) 6356 152
Firefox 7596 15 2981 (39%) 1262 (17%) 3338 64

To determine an appropriate threshold, we evaluated the effect of choosing different
activity thresholds on the precision and recall of a RA using data from the Eclipse and
Firefox projects. The recommenders used in this evaluation were created using the assigned
and resolved reports from an eight-month time period (see Section 3.2.2), labeling heuristics
(see Section 3.2.4), and the Support Vector Machines algorithm (see Section 3.2.6). We then
varied the activity threshold value and determined the precision, recall and F-measure of the
recommenders. Equations 3.4 through 3.6 show how precision, recall, and F-measure are
calculated. Further details of how these values are determined is deferred to Section 4.1.1.

Precision =
of recommendations made

of appropriate recommendations
Recall =

of possibly relevant values

2 x (precision x recall)
F = ^ (3.6)

precision + recall
Table 3.4 shows the effect of various developer activity profiles on recommendations

for these two projects. The first column presents the activity threshold that we varied,
ranging from no threshold to eighteen reports over the most recent three months. The next
two columns shows the number of developers considered active for the Eclipse and Firefox
projects when using the given threshold. The final two columns present the top one precision
and recall of a RA created using the given threshold. The first value in these columns is
the precision and the second is the recall." The table presents the results of RA for one
recommendation for brevity. We compare the effect of using no profile, including labeled
reports from the most recent three months, and different contribution levels for the most
recent three months. The time frame of three months was chosen based on an examination
of activity profiles from the two projects spanning the period of a year and observing that
many developers appeared to become inactive more than three months previous.

Table 3.4 shows that using the most recent three months removed 22 (21%) and 133
(37%) names from the Eclipse and Firefox data set respectively and that using a threshold
value of an average of one resolution per developer per month for the three months also
reduced the number of names an additional 68 (39%) and 121 (31%), for each project
respectively. Given that the precision and recall values do not significantly change as these

'A detailed discussion of the ranges of precision and recall is deferred to Section 4.1.2 where our
RA evaluation procedure is explained.

of appropriate recommendations
(3.4)

(3.5)

29

Table 3.4: Precision, recall and F-measure when using developer profile filtering.
Dev. Precision/Recall/F

Firefox Eclipse Firefox Eclipse
No Profile 373 151 69/1/2 75/13/22

>=1 Fix in 3 mo. 240 129 66/1/2 75/13/22

Avg.
Fixes

Per Dev. Per
Month Over

3 mo.

1 119 61 67/1/2 74/13/22
2 68 53 66/1/2 74/12/22
3 56 44 70/1/2 74/13/22
4 40 42 70/1/2 74/13/22
5 35 41 69/1/2 74/12/22
6 33 38 69/1/2 74/12/22

names are pruned indicates that an appropriate set of developers to recommend is being
found. This data confirms that using the most recent three months is appropriate for
activity profiling.

Also, as there is no significant change in the performance of the recommender, any
value between 1 and 18 reports in the most recent three months would be reasonable; we
chose an average value of three resolutions over the recent three months as the threshold
value. Using this threshold value filtered out 5% of the Eclipse reports and 17% of the
Firefox reports from our data set (see the fifth column of Table 3.3). As we observed that
the Eclipse heuristics labeled a number of reports with the default user names (i.e., the user
names started with "platform"), we also removed reports with these labels, which removed
an additional 5% of the Eclipse reports. The last two columns of Table 3.3 shows the size
of the training and testing sets for the Eclipse and Firefox projects. The test set consists
of the resolved reports from the month following the date range used for the training data
set for which an implementation expertise set12 can be determined

3.2.6 Which Algorithm?

There are a variety of machine learning algorithms that can be used to create a triage-
assisting recommender (see Section 2.3.1). To determine an appropriate algorithm for RA,

we evaluated the effect of six different algorithms to create a RA for the Eclipse and Fire-
fox projects respectively. The algorithms we investigated were Naive Bayes [34], Support
Vector Machines [31], C4.5 [50], Expectation Maximization [22], conjunctive rules [68], and
nearest neighbour [2].13 We chose these algorithms as they cover the different categories
of supervised machine learning algorithms [68], and Expectation Maximization provides an
example of using unsupervised learning. We did not explore the use of reinforcement learn-
ing algorithms [64], because reinforcement learning focuses on learning as events happen,

12An implementation expertise set is a list of developers who we believe have the necessary exper-
tise to resolve a report. See Section 4.1.2 for more details.

13The implementation of the algorithms was provided by the Weka machine learning library v.
3.4.7 (www. cs .waikato.ac.nzi-ral/weka, verified 17/07/07).

30

whereas we investigate learning from historical data.
We created RA using the different machine learning algorithms and determined the

precision and recall. Again, the description of how the precision and recall is determined
is deferred to Section 4.1.2.14

The precision and recall of the recommenders created using six of the seven al-
gorithms is presented in Table 3.5. As the seventh algorithm, nearest-neighbour, has an
additional parameter — the number of neighbours to consider Table 3.6 shows the preci-
sion and recall for this algorithm. For the nearest neighbour algorithm we explored the use
of the nearest instance, and the five, ten, and twenty nearest instances. For a RA, we are
interested in a recommender that has high precision as we would prefer the recommender
to produce a small list of developers with the right expertise as opposed to a recommender
that produces a list containing all developers with the right expertise. From the tables we
see that the Support Vector Machines and Naïve Bayes algorithms produced RA that had
the highest precision when making one recommendation. However, when making two or
more recommendations, the Support Vector Machines algorithm generally provides a higher
precision. We therefore chose Support Vector Machines as the algorithm for creating a RA.

14 The remaining answers for creating the RA were the same as for determining the developer
activity threshold (see Section 3.2.5)

31

Table 3.5: Precision recall and F-measure of a RA when using different machine learning algorithm
Predictions Naive B ayes SVM C4.5 EM Rules

Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse Firefox Eclipse
(P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F)

1 76/1/2 72/12/21 70/1/2 75/13/22 67/1/2 57/10/17 35/0.4/1 11/1/2 66/1/2 24/2/4
2 63/2/4 52/17/26 65/2/4 60/20/30 64/2/4 46/17/25 38/1/2 12/2/3 41/1/2 27/9/14
3 61/3/6 48/23/31 60/3/6 51/24/33 65/3/6 35/19/25 41/1/2 11/3/5 41/2/4 24/11/15

Table 3.6: Precision recall and F-measure of a RA when using a nearest neighbour algorithm.
Predictions k = 1 k = 5 k = 10 k = 20

Firefox
(Prec./Rec.)

Eclipse
(Prec./Rec.)

Firefox
(Prec./Rec.)

Eclipse
(Prec./Rec.)

Firefox
(Prec./Rec.)

Eclipse
(Prec./Rec.)

Firefox
(Prec./Rec.)

Eclipse
(Prec./Rec.)

1 56/1/2 24/4/7 58/1/2 16/3/5 58/1/2 28/5/8 53/1/2 37/5/9
2 64/2/4 18/6/9 59/1/2 14/4/6 57/2/4 17/6/9 51/1/2 36/10/16
3 59/3/6 13/7/9 47/2/4 11/5/7 55/2/4 18/9/12 50/2/4 32/14/19

Table 3.7: Answers to the six questions for MLTriage when creating a component recom-
mender.

Question^Answer
Which reports?

^
Assigned and resolved reports are used.

How many reports?
^

Reports are collected from an eight-month period.
Which features?

^
The summary and description are used for the fea-
tures.

How to label?
^

Reports are labeled by the value of the component
field in the report.

Which labels are valid? All component labels are considered valid.
Which algorithm?

^
The Support Vector Machines algorithm is used to
create the recommender.

3.3 A Component Recommender

In an issue tracking system, reports for large projects are often grouped by the functionality
to which the report pertains The Bugzilla issue tracking system refers to these groupings
as components. A common occurrence with open bug repositories15 is that reports are
submitted under a default component, such as General. This results in the reports either
needing to be regrouped during triage or causing a developer to be assigned who may not
have the necessary expertise, possibly causing a delay in the resolution of the report. A
solution to this problem is to provide the triager with a component recommendation so
that the report can be correctly filed.

For example, when the triager examines an newly submitted report, a component
recommender (Re) could provide three recommendations of which project components the
report should be filed against. If the project members are divided into teams based on
the project components, then a Rc can be viewed as suggesting which project team to be
assigned the report.

As previously mentioned, we found that most of the answers to the questions we
determined from tuning RA can be used to create an effective R. The two answers that
differ is how report labels are determined and how valid labels are determined. Table 3.3
shows the six questions and their respective answers, with the differences in answers from
creating RA highlighted.

As a report will only belong to one project component, we are interested in knowing
how well the recommender is at producing that correct recommendation. We therefore focus
on recall over precision for a R. Using MLTriage we created Rc for Eclipse and Firefox
with recalls of 92% and 79% respectively for three recommendations. Further details are
found in Section 4.1.3.

15We use the term open bug repository to refer to repositories in which anyone with a login and
password can post a new report or comment upon an existing report.

33

Table 3.8: Answers to the six questions for MLTriage when creating a interest recommender.
Question^Answer
Which reports?^Assigned and resolved reports are used.
How many reports?^Reports are collected from an three month period.
Which features?^The summary and description are used for the fea-

tures.
How to label?^Reports are labeled by the names appearing in the cc:

list of the report.
Which labels are valid? Only names that occur on fifteen or more reports are

considered valid.
Which algorithm?^The Support Vector Machines algorithm is used to

create the recommender.

3.4 A Interest Recommender

It is common that a report will have a list of individuals who want to be notified when a
change is made to a report. This list is maintained in the cc: list of a bug report. There
are a variety of reasons that someone would be interested in changes to a report. If the
report represents a problem, the individuals may be encountering the problem and want
to know when the problem is fixed. If the individual is a developer for the project, they
may be interested because they are working on a bug for which this bug is blocking their
progress. Another reason is that perhaps a more senior developer would like to keep tabs
on the work of a junior developer who he is mentoring. Finally, for some projects, such
as Mozilla, where triagers do not assign reports but developers self assign, the list in the
cc: field is used to inform developers of reports that they may want to fix.16 An interest
recommender (RI-) assists the triager in deciding which other project members should be

aware of a report.
Again, we started creating a R1 with the answers determined during the tuning

of RA. We found that we needed to change how many reports were selected, how labels
are determined and how valid labels are chosen. Table 3.4 shows these answers with the

differences between the answers for a RA and a R.' highlighted. In the rest of this section

we provide more details about these three differences from a RA.

As with 11c, for /i/ we are interested in the recommender having a high recall.
For the Eclipse and Firefox projects, MLTriage creates /=([with recalls of 49% and 46%
respectively for seven recommendations. The discussion of why these recall values are

acceptable is deferred until Section 4.1.4.
Unlike RA and Rc recommenders where reports are gathered from a period of eight

months, for a R1 we use a period of three months. The reason is that a single report can
produce many training instances. Whereas reports are assigned to one developer and one
component, the cc: list of a report can contain multiple names. For each of those names, a

16Personal communication with Mozilla developer, 01/03/05.

34

copy of the report is created and placed in the training set. If an eight-month time period
is used, it can result in a very large training set (e.g., 16754 instances for our Firefox data
set) that would likely tax a project's hardware resources, and the recommender would take
a long time to train. Also, unlike the project expertise that a RA captures, an individual's
interest in a particular problem or set of problems is more likely to expire as their interest
shifts to more pressing matters. Using a three-month period is more likely to capture the
current interest of the individuals and not their expired interest.

As with a RA, not all names appearing in the cc: list are appropriate for recommen-
dation. Often the cc: list of a report contains the name of an individual who only appears
on one or two other reports as they are directly affected by the problem. As there is very
little data about the interest of such individuals, the recommender creation process cannot
create a good model of their general project interest. We use a threshold on the number of
times a name occurs to determine valid labels.

To determine an appropriate threshold for labeling, we performed an experiment
whereby we varied the threshold value and fixed all other choices for the MLTriage process
used to create R/. As opposed to a RA where we were interested in recommending a small
set of the right people, for a Ri we are interested in recommending all of the right people. In
other words, for a RA, we were interested in a high precision, and for a ///, we are interested
in a high recall. The precision and recall are computed by comparing the recommendations
to the cc: list of the test reports. As with a RA, the test reports assigned and resolved
reports drawn from the month succeeding the period used for the training set.

Table 3.9 shows the results of using different thresholds for determining the set of
names from which to recommend interest. As we are interested in judging if the recom-
mender is suggesting all of the interested individuals, we report the precision and recall for
seven recommendations. Again, the details of how the precision and recall were determined
is deferred to Section 4.1.4.

We were unable to compute the precision and recall for the case where no threshold
is used due to memory constraints.17 Given the large number of labels (1000+) from which
these recommenders suggest, it is doubtful that such a recommender would be of practical
use because with this number of names, many of the names would have very few training
instances and would not produce reliable interest models.

As with the developer activity threshold for a RA, we again see stability in the
average precision and recall for different interest threshold levels. We therefore choose to
use the minimal threshold of fifteen for creating a /i/.

17We encountered Out0fMemory exceptions when using a 2 GB Java heap for the experiment.

35

Table 3.9: Precision, recall and F-measure when using cc: list filtering.
Threshold Eclipse Firefox

Names Recall/Precision/F # Names Recall/Precision/F
No Threshold 1146 -/-/- 1196 -/-/-

15 reports 58 49/13/21 108 46/15/23
25 reports 45 48/13/20 70 46/15/23
35 reports 37 47/12/19 57 46/15/23
45 reports 26 47/12/19 43 45/14/21

3.5 Sibyl : An Implementation of the Approach

To enable experimentation with human bug triagers, we integrated our triage-assisting bug
recommendation approach into a web tool for the Bugzilla issue tracking system. We could
have chosen another interface, but as the projects we examined all used Bugzilla and its web
interface, this choice was practical for attempting to reach existing bug triagers. We call our
tool Siby1.18 Sibyl consists of two parts: a back-end that provides the recommendations and
a front-end that integrates the recommendations into the web page of the Bugzilla report.
Both the front and back ends of Sibyl are implemented as Apache Tomcat19 servlets.

3.5.1 Sibyl Back-end

The Sibyl back-end provides recommendations based on the report summary and descrip-

tion. Sibyl contains four types of RD0 recommenders:

1. RA - which developer should be assigned the responsibility of resolving this report.

2. Rc - which project component should the report be filed against. If the project
component has sub-components, Sibyl also recommends which sub-component the

report should be filed against (Rs).20

3. Ri - which other developers on the project may be interested in being kept up to date

on the progress of this report.

The recommenders are created as described in Sections 3.2 to 3.4. When the Sibyl
front-end requests a kind of recommendation for a specific project, the appropriate rec-
ommender is loaded into memory21 if need be (or reloaded if an updated recommender
exists) and used. The recommenders are updated daily using a cron job. The cron job

downloads and stores potential training reports from the previous twenty-four hours, adds
these reports to the existing training data from the last several months, and then rebuilds

18A sibyl is a prophetess of the ancient world.
19Apache Tomcat is a servlet container that implements the Java Servlet and JavaServer tech-

nologies, and can be found at tomcat .apache.org, (verified 19/07/07).
20More information about the sub-component recommender can be found in Section 6.3.1
21Sibyl is implemented in Java and recommenders are stored as serialized objects on the server.

36

the project recommenders. To create the four recommenders for the Eclipse project takes
approximately fifteen to thirty minutes depending on the number of new reports to be
retrieved. For the Firefox project, it took an hour to an hour and a half to create a RA

and a Rc,,22 depending on how many new reports need to be retrieved.23 Sibyl uses the
implementation of Support Vector Machines in the Weka machine learning library v. 3.4.7

24 to create the recommenders.

3.5.2 Sibyl Front -end

Figure 3.3 shows a screenshot of a report from the Eclipse project before Sibyl inserts the
recommendations.25 Figure 3.4 shows the same report after Sibyl inserts the recommenda-
tions with dotted boxes added to highlight the changes.

Figure 3.4 shows that Sibyl adds a drop down box for developer recommendations
next to the "Reassign bug to" label (Figure 3.4-1). The triager still has the option of using
the original text box to type in the name of the developer to whom to assign the report.
Sibyl makes up to four developer recommendations.

For component recommendation, Sibyl augments the existing "Component" drop-
down box (Figure 3.4-2) by inserting up to three component recommendations at the top
of the list of values. A deliminator is inserted after the recommendations to distinguish
between the recommendations and the list of components.

The sub-component recommendations are presented in a drop-down box that is in-
serted after the component drop-down box (Figure 3.4-3). As not all components have sub-
components, this drop-down box is only inserted when the sub-component recommender
can make recommendations. Sibyl makes up to three sub-component recommendations.

The final recommendation is the interest recommendations. These recommendations
are presented in a multi-line text box (Figure 3.4-4). Sibyl makes up to seven interest
recommendations.

We made the choices on how many recommendations to present based on our results
of an analytical evaluation of the four recommenders. See Section 4.1 for the results of the

analytical evaluation of RA, Rc, and Ri. The analytical evaluation results for Rs are

presented in Section 6.3.1.
Figure 3.5 provides an overview of how Sibyl provides recommendations to a triager.

Sibyl works in the following manner:

22R1 and Rs were added to Sibyl during a field study with Eclipse triagers and after it was clear
that no Firefox triagers would participate in the study. Therefore we do not have data on how long
it would take to refresh the four recommenders for this project.

23So as not to overwhelm the repository server, the retrieval script has a ten second delay between
subsequent report retrievals and can add a significant amount of time to the complete recommender
creation process.

'Available at www.cs .waikato.ac.nz/-ml/weka, verified 17/07/07.
25Both Figure 3.3 and Figure 3.4 show condensed versions of the actual Bugzilla interface.

37

Figure removed for copyright reasons.
Original source found at

https://bugs.eclipse.orgibugs/show_bug.cgi?id=193787

Figure 3.3: The Bugzilla interface before Sibyl inserts recommendations.

Figure removed for copyright reasons.
Original source no longer available.

Figure 3.4: The Bugzilla interface after Sibyl has inserted the developer, component, sub-
component, and interest recommendations.

I. A request to view a report from the project's Bugzilla repository is intercepted in the
triager's web browser by a Javascript script. The request is then redirected to the

Sibyl server.

2. The Sibyl front-end forwards the request to the project's Bugzilla repository.

3. The Sibyl front-end receives the report page from the project's Bugzilla server. It
then extracts the summary and description from the report and gets the developer,
component, sub-component, and interest recommendations from the Sibyl back-end.
Next, the Sibyl front-end inserts the recommendations into the report page.

4. The Sibyl front-end returns the augmented report page to the triager's browser.

1 2

4 3

Firefox
Browser

Sibyl Project
Repository

Greasemon key
Extension

Figure 3.5: Overview of how Sibyl works.

To redirect the triager's report viewing request, we use Greasemonkey. Greasemon-

38

key,26 is a Firefox extension that allows the running of user-created Javascript scripts in
the browser. As part of the user configuration of Sibyl, the triager installs a generated
Javascript that detects when the triager is accessing a report from a known Bugzilla repos-
itory, and redirects the request to the Sibyl server. The triager can deactivate the script or
the Greasemonkey extension at any time if they did not want to use Sibyl.

3.6 Summary

This chapter presented our approach to creating recommenders to assist the triager with
development-oriented decisions (RD0). To create such a recommender requires answering
six inter-related questions. A substantial number of answers to these questions are the
same for the different kinds of Rpo. The answers to the three questions of which reports
to use, what features to use, and what algorithm to use remain the same regardless of the
kind of RD°. The variation in the recommenders is in how many reports to use, how the
reports are labeled, and which are the valid labels. We presented the details of how we used
the creation of a RA to answer and tune the process, and used these results to apply the

MLTriage to creating recommenders for the project component the report should be filed
against and for which other project members may have an interest in being made aware of
the report. We found that this approach created RA with precisions of 70% and 75% when
making one recommendation, for Eclipse and Firefox respectively. We found that using

MLTriage to create a Re created recommenders for the Eclipse and Firefox projects with
recalls of 92% and 79% respectively for three recommendations. Finally, we created /// for
Eclipse and Firefox with recalls of 49% and 46% respectively.

Finally, we presented a description of the implementation of a web service that made
triage-assisting recommendations using recommenders created by MLTriage.

26http://www.greasespot.net/ verified 21/05/07.

39

Chapter 4

Evaluation

Bug triage is a human-intensive process that consumes resources that could be better uti-

lized elsewhere in the project. In this dissertation we have introduced a machine learning-

based triage-assisting recommender creation approach (MLTriage) that we hypothesize can

reduce human involvement for development-oriented decisions in the bug triage process.

We formulate three research questions to investigate this hypothesis.

R1: Does MLTriage create recommenders that make accurate recommenda-

tions? If MLTriage creates recommenders that make accurate recommendations, then

a triager need not examine the report as deeply as they would without the recommen-

dations. Using such recommenders changes the triager's role from making decisions

relying on their own knowledge, experience, and intuition or that which they can gain

from existing tools to confirming decisions made by the recommender.

R2: Do recommenders created using MLTrzage reduce the time it takes to triage

a report? If MLTriage recommenders reduce the time taken to triage reports, then

some of the human resources consumed by the triage process can be directed else-

where in the project. This redirection of resources towards development is especially

important for projects where developers also have the role of triager.

R3: Do the recommenders created using MLTriage help triagers to make better

decisions? In some projects, triage is delegated to those who do not yet have the

project experience to consistently make correct development-oriented decisions. When

errors are made, more human involvement is necessary as one or more experts must

assist the triager to correct the mistake. For example, if a triager makes an incorrect

developer assignment, the incorrectly assigned developer must inform the triager that

a mistake was made and may further have to explain the reason and help the triager

find the correct developer. In either case, there has been more human involvement in

the triage process than if a better decision had been made.

To investigate R1, we conducted an analytical evaluation of three development-

oriented decision recommenders: a developer assignment recommender (RA), a component

40

Table 4.1: Overviews of the five projects used for analytic evaluation.
Project Triage Process Domain Contributors
Eclipse Developer-driven Programming Tool 151
Firefox Volunteer-based Web Browser 343

gcc Developer-driven Compiler 81
Mylyn Developer-driven Programming Tool 13

Bugzilla Volunteer-based Issue Tracking 43

recommender (Re), and an interest recommender (R/). Our analytical evaluation con-
sisted of a series of laboratory experiments where the recommendations were compared to
data extracted from reports. We investigated R2 and R3 through a field study, in which
four human triagers from the Eclipse project used Sibyl over a four-month period (see
Section 4.2).

4.1 An Analytic Evaluation of the Recommenders

To validate our belief that MLTriage can produce good recommenders, we analytically eval-
uated RA, Re, and RI- (created as described in Chapter 3) through laboratory experiments
using data from five projects: the Eclipse Platform project, the Firefox project, the gcc com-
piler project,1 the Mylyn project,2 and the Bugzilla project. These projects were chosen as
they span a range of triage processes and domains, small to large numbers of contributors,
and low (< 10 per day) to high (> 20 per day) bug submission frequencies. Table 4.1 shows
the different dimensions for the projects. The second column categorizes the projects based
on their triage process: developer-driven or volunteer-based. The next column describes
the application domain of the different projects. The fourth column gives an estimate3 of
the number of contributors4 for each project based on our eight-month data sets. In other
words, the number of contributors for a project is the number of distinct developer labels
for all the reports in our data set. Table 4.2 shows the minimum, maximum, and average
number of reports submitted daily to each project over the eight-months period covered by
our data sets (see Table 4.3). As mentioned in Chapter 3, we used the Eclipse and Firefox
projects for tuning MLTriage. We report the results for all five projects in this section,
including the tuning results for ease of reference.

This section begins with an overview of our evaluation methodology. The remain-
der of this section presents the results of our analytic evaluation of the three kinds of

recommenders.
1Gcc is a collection of compilers and can be found at www . gnu. org/software/gcc/gcc .html

(verified 06/06/07).
2Mylyn is a task-focused UI plug-in for Eclipse and can be found at www. eclipse. org/mylyn

(verified 06/06/07).
3As these values are based on our project heuristics, we can only assert that this is an estimate.
'Recall that we define contributor to mean an individual that contributes to source code of the

project.

41

Table 4.2: Report submission statistics for the five projects.
Project Report Submitted / Day

Min. Max. Avg.
Eclipse 0 129 29
Firefox 12 103 36

gcc 0 23 9
Mylyn 0 15 4

Bugzilla 0 18 3

Table 4.3: Date ranges for data used for the analytic evaluation.
Start Date End Date

Eclipse Oct 1, 2005 May 31, 2006
Firefox Feb 1, 2006 Sept 30, 2006

gcc Apr 1, 2006 Nov 30, 2006
Mylyn Feb 1, 2006 Sept 30, 2006

Bugzilla Feb 1, 2006 Sept 30, 2006

4.1.1 Overview of Analytic Evaluation Procedure

The general methodology we used to analytically evaluate the recommenders was to train
the recommender on the data from several months and then use the resolved reports from
the following month as the testing set. We chose this approach to ensure a realistic evalu-
ation; in practice, one would be using a recommender that was trained on the most recent
information.

As is typical in machine learning, we evaluate the performance of the recommenders
created using MLTriage by the measures of precision and recall. Precision measures how
often the approach makes a relevant recommendation for a report (Equation 4.1). Recall
measures how many of the recommendations that are relevant are actually recommended
(Equation 4.2). For example, for a RA the precision measures the percentage of recom-
mendations of a developer with relevant experience to fix the problem and recall measures
how many of the developers who had the appropriate expertise were recommended. As
precision and recall provide complementary measures, F-measure is used to express the
harmonic mean of the precision and recall (Equation 4.3).

The key piece of information in computing both precision and recall is the set of
appropriate recommendations. As this information is specific to the kind of recommender,
we defer explaining how we determine this set for each recommender to the appropriate
sections.

of appropriate recommendations
Precision =^

of recommendations made

of appropriate recommendations
Recall = ^

of possibly relevant values

(4.1)

(4.2)

42

Table 4.4: Training and testing set sizes for evaluating developer recommenders.
Project Developers Training Reports Testing Reports
Eclipse 31 6356 152
Firefox 31 3338 64

gcc 31 2521 70
Mylyn 6 683 50

Bugzilla 11 799 52

F
2 x (precision >< recall)

=
precision+ recall

(4.3)

4.1.2 Developer Recommender Evaluation

We used the data from three other projects, gcc, Mylyn, and Bugzilla, to evaluate the

RA; the data for Eclipse and Firefox was used to tune the RA process and is provided

for convenient reference. Table 4.4 shows the number of active developers, the number of
training reports, and the number of testing reports used in the evaluation. This data shows
that the gcc project has a similar number of active developers as the Eclipse and Firefox
projects (see Table 3.3) and that the Mylyn and Bugzilla have few active developers.

Determining the Implementation Expertise Set

To evaluate a RA, we need to know for each report in the test set which developers on
the project might have the implementation expertise to resolve the report. Implementation
expertise refers to expertise in the code base of the software product and is needed for

determining the precision and recall of a RA. The easiest way to determine the set of
developers with implementation expertise for a report is to ask an expert in the project.
We did not have access to such experts so we developed heuristics for each project based
on information in the source revision repositories.

Source revision repositories log information about changes made to the source code
each time a developer submits code to a source repository (also known as checking-in or
committing). The submission log entry includes various pieces of meta-information, such as
the file that was checked in, its revision number, the check-in date and time, and the check-
in comment made by the developer performing the commit. The source repository software
can produce all of the log entries for a specific file. We use these source repository check-in
logs to provide information about the implementation expertise of the project developers,
that is which developers have accumulated expertise in which parts of the project's code
base. We chose to use source repository information so as to improve the construct validity

of our RA evaluation. Also, this technique has also been used by others for the same

purpose [43, 44, 47].
We refer to the set of developers who have implementation expertise for a particular

43

report as the report's implementation expertise set. Creating an implementation expertise
set for a report involves three steps.

The first step is to establish the linkage between the report and the source reposi-

tory [27, 28, 61]. For projects that use tools that automate this linkage, this step is trivial.

Unfortunately, this was not the case for the projects that we examined.5 However, each of

the projects does use the same linkage convention of putting the report id in the check-in

comments. To establish a report-source code link we search the source repository logs for

the report id number and collect the names of the corresponding files. The resulting list of

source files forms the change set for the report [70].

The next step is to determine the containing module for each source file in the

change set. The containing module may refer to the file itself or some higher abstraction,

such as its package in the case of software implemented in Java. This step recognizes that

it may be unrealistic to examine just the source files of a particular fix when determining

expertise. Developers who work with associated files, such as those in the same package,

also have some level of implementation expertise that may be relevant and this expertise

should not be discounted. For the Java projects (Eclipse and Mylyn), we used the package

as the containing module. For the Mozilla projects (Firefox and Bugzilla), we used the

sub-component.6 For gcc, we used the directory in which the file appears.

The last step is to compile a set of developers who had previously committed changes

to each module. This set is constructed by analyzing the revision history of each file in the

module and using the Line 10 Rule [42, 43, 44, 47]. The Line 10 Rule is a heuristic in which

line 10 of the source repository check-in log for a particular file, the line containing the user

name of the person who performed the commit, is used to determine who has expertise for

that source file. For each file in the containing module, we gather the names of all users

who have committed a change for the file to form the implementation expertise set for that

file. We then combine the implementation expertise sets for all the files in the containing

module to create the implementation expertise set for the bug report.

Using this technique we determine for each report, the list of developers who have

the implementation expertise to resolve the report. Unfortunately, we cannot directly use

this list to calculate the precision and recall of the RA. As the issue repository and source

repositories are disjoint systems, a developer is often represented in each system by different

user names [7]. As a result, we have to create a mapping between the user names of the two

systems. For each project, we created a mapping from the user names in the issue tracking

system to those found in the source repository.

For the Eclipse, gcc, and Mylyn projects this mapping is straightforward, as de-

velopers who make a fix usually have commit access to the repository. The mapping for

60thers have also observed that mapping bug reports to the source changes can be difficult. For
example, Williams and Hollingsworth were only able to link 24% of reports to changes in the source
repository for the Apache web server [66].

6For some projects, the product components are further subdivided into sub-components.

44

Firefox and Bugzilla is more challenging because these projects use a process in which fixes
are reviewed and contributors7 must request that their changes be checked in by a corn-
mitter.8 As a result, the person who checks in a fix is rarely the person that made the fix.
In constructing a user names mapping for such a project, we assumed that the person who
marked a report as resolved is generally also the person who checked in the fix. We then
mapped the user name of the individual that marked the report as resolved, to a list of
user names on whose behalf they may have committed changes to the source repository.

Using the technique of mapping of bug reports to names from the source repository
has an important consequence: it overestimates the set of developers with implementation
expertise, especially for projects such as Firefox and Bugzilla where an additional mapping
of resolvers to fixers is needed.9 As the denominator of the recall formula is the size of
this set, the computed recall value will be lower than the true value. However, as this
overestimation of the developers makes it less likely to miss a developer with the relevant
expertise, this larger error in the computed recall is compensated by a lower error in the
computed precision. In other words, as we are using an approximation of the correct set
of developers who have the needed expertise for a report, there is a measure of error in

our calculation of precision and recall for a RA. However, the measure of error is less for
the precision calculation than for the recall calculation. This smaller amount of error is

important for the construct validity of our RA results, as we favour precision over recall.

There are other techniques that may be used to determine the implementation ex-
pertise set for a bug report. For example, the bug network [58] that a report is in can
be used for creating such a set. To determine which technique was most appropriate, we
evaluated how well the bug network technique and the source repository technique are
at approximating the correct implementation expertise set [5]. We found that the source
repository technique was better suited for the evaluation of a RA. [5]

Results

Table 4.5 shows for the five projects the size of the pool from which recommendations are
drawn and the average size of the implementation expertise lists used for the evaluation.
Table 4.6 shows the results of applying MLTriage to create a RA for the gcc, Mylyn and
Bugzilla projects, as well as the results from tuning with Eclipse and Firefox. Figure 4.1
shows a graph of the precision, recall and F-measure for the top recommendation for each
of the five projects. From the data, we see that the process creates recommenders with high

7A committer is a project member that has the privileges necessary to commit changes to the
source repository.

8Although this situation may also happen with the Eclipse, gcc, and Mylyn projects, we observed
that it was the exception and not the rule. In other words, most changes seemed to have been made
by committers.

9Although this overestimation could lead to an artificial inflation of the precision values, other
work [5] suggests that any artificial inflation will not be significant.

45

Table 4.5: Size of recommendation pool and average implementation expertise list size.
Eclipse Firefox gcc Mylyn Bugzilla

Known Developers 44 56 31 6 11
Avg. Implementation

Expertise List Size 8 80 43 3 32

Table 4.6: Precision, recall and F-measure for the five developer recommenders.
Eclipse Firefox gcc Mylyn Bugzilla

(P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F)
1 75/13/22 70/1/2 84/3/6 98/30/46 98/5/10
2 60/20/30 65/2/4 82/6/11 93/55/69 98/11/20
3 51/24/33 60/3/6 76/10/18 82/72/77 92/14/24

precision for all these projects. These precision values indicate that for a reasonable sized
set of recommendations, such as two or three, the set will often contain an appropriate
developer. The precision for the gcc, Mylyn, and Bugzilla projects is better than that
for the Eclipse and Firefox projects likely because of the smaller development teams for
these three projects. As opposed to the Eclipse and Firefox projects, where the RA makes
recommendations from forty to fifty developers, for these projects the recommender chooses
between six (Mylyn), eleven (Bugzilla), or thirty-one developers (gcc). With a smaller
number of developers to recommend from, it is more likely that the recommender will make
a correct recommendation. This is supported by the lower precision for gcc, relative to the
other two projects, which has roughly three to five times as many developers from which
to make a recommendation.

Compared to the other projects, the RA for Mylyn has a very high recall. We
believe this is a result of our evaluation methodology. Of all the projects, Mylyn has the
smallest pool of developers who might have expertise for a particular report. Therefore,
the overestimation of the developers with implementation expertise for a particular report
will be less and the error in the recall value will be less.

4.1.3 Component Recommender Evaluation

As we described earlier in Section 3.3, reports in a bug repository are commonly grouped
around the functionality that they affect and that on initial submission, reports are often
misfiled with respect to the componentm. This section presents the results of using MLTrjage
to create a component recommender (Rc)for the five projects.

As a report will only belong to one project component, we are interested in know-
ing how well the recommender is at producing that correct recommendation. As there is
only one correct answer, computing the precision is not enlightening; the precision for one
recommendation will be same as the recall, and the best precision that could be achieved

1°See http : //wiki .mozilla. org/MozillaQualityAssurance : Triage, verified 01/08/07.

46

100% -

90% -

80% -

70% -

60% -

50% -

40%

30%

20%

10%

RSTCRS1

^Firefox^gcc
^

Mylyn^Bugzilla

^Precison^ID Recall
^

0 F-Measure

0%

Eclipse

Figure 4.1: Graph of the five developer recommenders for the top recommendation.

for the two and three recommendations would be 50% and 33% respectively. We therefore
focus on the recall of the recommender and do not report precision.

The number of components and size of the training and tests for the evaluation of the
component recommenders is shown in Table 4.7. To compute the component recommender's
recall, we used the value of the testing report's component field as the relevant component
for the report.

Table 4.8 shows the results for using MLTriage to create a Rc for each of five different
projects. We see from the table that if we use the top recommendation (the row labeled "1"
in Table 4.8), the recommender correctly identifies the component 50% to 66% of time. If
three component recommendations are made then the correct component is identified 75%
of the time or better.

The Rc works better for some projects, such as Eclipse, than for others. We believe
there are two likely reasons. The first reason is that the Eclipse project has the highest
number of training reports per component (376 reports) of the projects. Compare this to
the Bugzilla project which has a similar number of components but one-sixth of the number
of training reports as Eclipse and has the lowest recall. In other words, Eclipse has more
information about each component.

Alternatively, this may be a result of who is filing the reports. If most reports are filed
by project members, then the report descriptions will likely have similar terminology and
the recommender will have an easier time determining the component boundaries. Table 4.9

47

Table 4.7: Number of components, and size of training and testing sets for component
recommender evaluation.

Eclipse Firefox gcc Mylyn Bugzilla
Components 18 34 33 11 16

Training Reports 6759 6302 2030 751 1012
Testing Reports 1489 969 275 94 158

Table 4.8: Recall for the five component recommenders.
Predictions Eclipse (%) Firefox (%) gcc (%) Mylyn (%) Bugzilla (%)

1 66 57 55 53 45
2 85 72 68 66 62
3 92 79 76 83 74

shows the percentage of reports from our data set that were submitted by active developers.
We found that 45% of the reports in the training set for the Eclipse recommender were
submitted by active developers, as compared to 18% for the Firefox project, lending some
support to this idea. However, both the Mylyn and Bugzilla projects have a similar number
of components and training reports per component and yet the Mylyn project has a higher
recall even though fewer (39% compared to 45%) of the reports are submitted by active
developers. It therefore may be that the high recall for Eclipse is a result of a combination
of both the high number of training reports per component and the general background of
the reporters.

4.1.4 Interest Recommender Evaluation

As described in Section 3.4, a report often contain a list of individuals who are interested
in being notified when a change is made to the report. This section presents the results for
using MLTriage to create a recommender for who might be interested in a particular report,
Ri (Section 3.4).

Table 4.10 shows the number of names and the size of training and tests sets for
the five projects. As discussed in Section 3.4, the training reports are taken from the most
recent three months of our training data set (see Table 4.3) and the test reports are drawn
from following month. We use the cc: list of each test report as the set of correct values
for the report.

Table 4.9: Percentage of training reports submitted by active developers.
Submitted By Active Developer

Eclipse 45%
Firefox 18%

gcc 24%
Mylyn 39%

Bugzilla 45%

48

Table 4.10: Number of names, and training and testing set sizes for interest recommenda-
tion.

Names Training Reports Test Reports
Eclipse 58 3256 860
Firefox 108 7901 790

gcc 21 1811 275
Mylyn 5 172 31

Bugzilla 17 697 108

Table 4.11: Precision, recall and F-measure for the five interest recommenders.
Predictions Eclipse

(P/R/F)
Firefox

(P/R/F)
gcc

(P/R/F)
Mylyn

(P/R/F)
Bugzilla
(P/R/F)

1 22/11/15 29/13/18 100/59/74 29/21/24 42/24/31
2 21/22/21 26/21/23 61/65/63 18/28/22 32/34/33
3 19/31/24 23/29/26 44/69/53 16/38/23 30/46/36
4 17/37/23 19/33/22 35/69/46 15/47/23 26/53/35
5 16/43/23 18/39/25 29/71/41 14/54/22 24/57/34
6 14/47/22 16/43/23 24/72/36 -/- 23/62/34
7 13/49/21 15/46/23 21/72/33 -/- 21/65/32

Table 4.11 shows the results for the ./i/ of the five projects for up to seven recommen-
dations.11 We chose to investigate the presentation of seven RI recommendations, as we
want to determine how many recommendations need to be presented for the recommender
to have a good recall. As with Rc, we favour recall over precision for an R/ (Section 3.4).

The data in Table 4.11 shows that the RI recommenders achieve recall levels of
between 46% to 72% for seven recommendations (or five in the case of Mylyn). In other
words, a R/ will correctly recommend roughly 50% to 75% of the names that appear on the
cc: list of the report. Considering that a cc: list will often contain names of individuals who
appear on the cc: list of very few reports (see Table 3.9), it seems unreasonable to expect a
high recall value from an cc: list recommender in general. We therefore believe that having
a recall between 46% to 72% is a good range to expect from such a recommender.

4.1.5 Threats to Validity

A threat to the construct validity of our analytic evaluation of the RA is our technique
for determining implementation expertise. As was stated previously, the technique over-
estimates the number of developers who have implementation expertise for a particular
reports. Although this improves the accuracy of our precision measurement, it does so at
the expense of hindering our ability to accurately determine the recall of the RA. As we
were more interested in the precision over the recall of this type of recommender, we do
not feel that this is a problem.

A similar threat to the internal validity of the analytical evaluation of the RA is the

11The Mylyn R1 only had five names which met the threshold criteria of 15 reports.

49

mapping of user names between the bug and source repositories. Although we made every
attempt to make correct mappings, it is possible that some of the mappings were in error.

4.1.6 Summary of the Analytical Evaluation

We conducted an analytic evaluation to answer our first research question: "Does MLTriage
create recommenders that make accurate recommendations?" For a RA we were looking
for a high precision and for a Rc and a RI we were looking for a high recall.

We found that MLTriage created a RA with reasonably high precision, ranging from
70% for Firefox to 98% for Bugzilla and Mylyn when making one recommendation. We
found that using MLTriage to create a Rc resulted in recommenders that correctly identified
the project component 72% to 92% of the time when making three recommendations.
Finally, for using MLTriage to create a RI, we found that it produced a RI with recalls
between between 46% to 72%. Given that there will commonly be individuals that have
an interest in a report, but are unknown to the recommender, we felt that this recall range
indicated that MLTriage does produce a RI that are accurate, even though the recall was
not generally high.

4.2 A Field Study of the Recommenders

Having established analytically that MLTriage produces recommenders that make good
recommendations, we conducted a field study to answer four questions. The first two
questions were R2 and R3:

R2: Do recommenders created using MLTriage reduce the time it takes to triage

a report?

R3: Do the recommenders created using MLTriage help triagers to make better

decisions?

The other two questions were about how well the recommenders worked in practice
(R4) and about one of the Sibyl design choices (R5).

R4: What is the empirical performance of recommenders created using MLTmage?

We wanted to compare whether the results from the analytic evaluation correspond
to the results seen in practice.

R5: What is an appropriate number of recommendations to present to the

triager? We wanted to determine what the human triagers thought the appropriate
number of recommendations would be for RA, Rc, Rs, and Ri.

50

4.2.1 Study Subjects

We recruited triagers from four different open-source projects as subjects for our study.
The four Projects we recruited from were Eclipse, Firefox, Mylyn, and Evolution12. The
subjects were asked to use Sibyl as part of their normal triage activities for a period of
three months with their use of the tool logged. Subjects were recruited via project news
groups, and direct contact. For participating in the study, subjects were given a $20 gift
certificate for an online bookstore.

As part of the user configuration of Sibyl, the participants were asked to answer a
background questionnaire. The questions asked of the participants are shown in Figure 4.2.

1. What is your job function? [Application Developer, QA/Testing, Program Direc-
tor, CIO/CTO, VP Development System Integrator, Application Architect, Project
Manager, Student, Faculty, Business, Analyst, Database Administrator, Other]

2. How many years of programming experience do you have?

3. Are you a developer for the project? [Yes, No]

4. How long have you worked with this project?

5. How many years of triage experience do you have?

6. How many hours a week do you spend triaging?

7. How many triagers are there for your component or project?

8. When assigning reports, what criteria do you use? Why is a report assigned to a
particular person?

Figure 4.2: Questions for the background questionnaire.

Only triagers from the Eclipse Platform project agreed to participate in the field
study. Four triagers from the User Interface (UI) team of Eclipse used Sibyl successively for
four months as part of their triage duties. Although the subjects were asked to use Sibyl
for three months, this proved impractical, as triage duty is rotated among the six project
members, with each member taking a six-week turn.

The four subjects reported that they spent anywhere from one to six hours doing
triage during their turn and that their triage experience for the project ranged from just
over a year to off-and-on for five years. Table 4.12 shows the reported project experience,

triage experience, and weekly time spent triaging reported by the four subjects.

'Evolution is a personal information management product from the Gnome project and is avail-
able at www.gnome.org/projects/evolution, verified 23/08/07.

51

Table 4.12: Triage experience as reported by triagers.
Project

Experience
Triage

Experience
Weekly

Triage Time
Triager A 3 years 1 year (18 weeks - 3 milestones) 6 hours
Triager B 3 years 2.5 years 2-3 hours
Triager C 5 years Off and on for 5 years 1 hour
Triager D 1 year 1 year (18 weeks - 3 milestones) 5 hours

4.2.2 Study Methods

This section provides an overview of the methods we used during the field study. We begin
by describing the recommenders used by the subjects. Next, we discuss how we monitored
their activity. We then present information about the questionnaires we used to collect
various background and qualitative data. Finally, we present overviews of the quantitative
and qualitative techniques we used for analyzing the collected data.

Study Recommenders

The version of Sibyl used by the subjects provided four types of recommendations: developer
recommendations (RA), component recommendations (Re), sub-component recommenda-
tions (Rs)13, and cc: list recommendations (Ri).

The RA used by the subjects was a component-based recommender, which makes
developer recommendations based on the component against which the report is filed (see
Section 6.2.1). The Re and Rr used by Sibyl were created using the same approach as
described in Chapter 3. The sub-component recommender (Rs), was created similar to Rc
but sub-components, unlike component designations, are free-form text fields rather than
a configured field.

The only other difference between the recommenders used for the analytical eval-
uation and those used in the field study was the date range from which the reports were
collected. For the field study, the eight months of reports were collected starting from the
previous day of the recommenders' use. For example, if the triager was using the recom-
menders through Sibyl on January 1, then the recommenders were trained with project
data from to May 1 to December 31 of the previous year. A daily system job was used to
gather the new training data and save it to disk.

As active data was being collected, it occurs that an assigned report collected one
day could be collected as a resolved report on a subsequent day. To use the report with the
most recent information, reports were gathered into the training set in reverse chronological
order before training the recommender. In other words, the most recent version of the report
was used to train the recommenders.

"The sub-component recommender was only applicable to the Eclipse project and is discussed in
Section 6.3.1

52

1. The number of recommendations given were: [Too many, Reasonable, Too few]

2. Were multiple recommendations appropriate? [Yes, No]

• If Yes, was choosing between them easy or difficult? [Very easy, Reasonably easy,
Reasonably difficult, Very difficult]

• Please explain why.

Figure 4.3: Questions for the decision questionnaire.

1. How useful are the assignment recommendations? [Very useful, Reasonably useful,
Not very useful]

2. Does it make it faster to do assignments? [Yes, No]

3. Does it make you consider someone you might not have previously considered? [Yes,
No]

4. Are there any systematic differences between your expectations and what was recom-
mended? [Yes, No]

5. If you answered Yes to Question #4, please elaborate.

6. Do you have any comments about using the recommender?

Figure 4.4: Questions for the usage questionnaire.

To provide a base-line for how long it takes a triager to triage a report, the Sibyl
back-end designated every fifth recommendation request as a control case and made no
recommendations. Users were informed of this at the start of the study so as not to be
surprised when no recommendations were made.

Questionnaires

In addition to the quantitative data collected through the use of Sibyl, the subjects were

asked to complete questionnaires. There were two questionnaires.
The first questionnaire was presented periodically during the subject's use of Sibyl

and included questions about the number of recommendations presented and if multiple
recommendations were appropriate (see Figure 4.3). These questions were asked for each

of RA, Rc, and Rs. We refer to this questionnaire as the decision questionnaire. This

questionnaire was presented to the subject in the web browser after every tenth recorded

report change.
The second questionnaire was presented in the web browser when the subjects sub-

mitted their activity logs for analysis and asked about the subject's impressions of using

the recommenders. The questions for RA are shown in Figure 4.4. The questions for Rc,

Rs, and Rj were similar. We refer to this questionnaire as the usage questionnaire.

53

1. Time stamp of when a triager viewed a report.

2. Time stamp of change request and the changes to a report submitted by a triager.

3. The recommendations made by Sibyl for the different kinds of recommenders.

4. The performance of Sibyl:

(a) How long to get the report from the project's issue repository server.
(b) How long for Sibyl to make the recommendations.
(c) How long to construct the augmented page.

5. When a questionnaire was given to the triager.

6. The results of the questionnaire.

Figure 4.5: Information logged by Sibyl.

Monitoring of Triage Activity

The subjects used an augmented version of Sibyl as part of their normal triage activi-
ties. Sibyl was augmented to log six pieces of information about the triager's activity (see
Figure 4.5). As part of the user configuration of Sibyl, subjects consented to have this in-
formation logged and were assigned a unique study identification number so as to keep their
identity and logged data anonymous. Subjects had full access to this logged information
so as to be informed about what was being collected and were asked, not forced, to submit
their activity logs weekly.

The logged information was recorded for a number of purposes. A time stamp of
when a triager viewed a report was recorded for the purpose of determining how long it
took the triager to make a particular change. A time stamp of when a change was made and
the contents of the change request to the repository server were logged to provide the rest
of the needed information to determine how long it took the triager to make a particular
change, such as assigning the report to a developer. Also, from the change information, and
recording what Sibyl had recommended for the report at the time the change was made,
we determined the accuracy and recall for the recommenders. The performance of Sibyl
was tracked so as to determine where, if any, were the bottlenecks in the service. Sibyl
recorded when a questionnaire was given, and what the questionnaires responses were,
to determine if the triagers were skipping the questionnaires.14 Questionnaire responses
were recorded for later analysis. To determine if appropriate numbers of recommendations
were being presented to the triager, Sibyl recorded additional recommendations for each
recommender. The additional recommendations were then used to perform experiments
simulating Sibyl providing a larger number of recommendations. For RA, Sibyl logged up
to ten recommendations. For Rc and Rs, Sibyl recorded up to six recommendations, and

"We saw no evidence of triagers skipping questionnaires.

54

1. How long have you triaged for the Eclipse UI component?

2. What process do you follow when you triage? How do you approach the task?

3. What do you find is the easiest and hardest parts of triage?

(a) What do you think would help make the hardest part less challenging?

4. Rank the four kinds of recommenders in order of most interested in using to least
interested in using during your triage activities.

5. Are there other fields/information that you would like to see recommendations for?

6. What were your impressions of the Sibyl tool?

Figure 4.6: Questions for the post-Sibyl usage interviews.

for the RI, Sibyl recorded up to fourteen recommendations. The triager was only shown

either the top four (RA), three (Rc and Re), or seven (R1) of these recommendations.

Subject Interviews

The four subjects were interviewed to gather more information about the project's triage

process, more in-depth comments about using Sibyl and to gather more information about

other ways that triagers could be assisted by recommendation in their work. Three of the

triagers were interviewed after they had completed their triage turn and the fourth had

just started using Sibyl. The time period between when the triager had used the tool and

the interview ranged from a few months to currently using the tool.

Questions for the interviews were prepared in advance so as to focus the interviews.

However, the specific questions asked to each subject depended on the flow of the interview

and the subject's experience with Sibyl. For example, one subject was not asked about

their impressions of using Sibyl for triage as they had not yet used the tool for a sufficient

length of time. Figure 4.6 shows the prepared questions.

Methods of Quantitative Analysis

We used two methods for quantitative analysis. The first was used for determining if the

recommenders work as well in practice as was indicated by the analytical evaluation (R4).

We used the measures of recall and accuracy. The recall measure was the same as was used

previously (see Section 4.1).

Accuracy measures if the recommender made the correct recommendation. For ex-

ample, a RA is accurate if it recommends the person that was assigned. We use accuracy

instead of precision as it would be misleading to use the precision measure from Section 4.1;

55

Table 4.13: Accuracy of the recommenders from the field study.
Measurement Changes In-Practice Refined

Developer Accuracy 270 75% 84%
Component Recall 86 85% 94%

Interest Recall 150 51% 72%

we did not ask the triager for an implementation expertise set for each reports.15 It therefore
could have occurred that the recommender suggested developers with the correct expertise,
but the triager chose a different developer from the unknown implementation expertise set.
This choice would cause the recommender to appear to have a lower precision than was
true for that report.

To determine if the use of the recommenders reduced the time taken to triage reports
(R2), we used an an independent t-test. As was stated before, Sibyl periodically designated
report changes as control cases. As there was not enough data collected to do a by-subject
analysis, we aggregated the data and performed an across-subject test.

Methods of Qualitative Analysis

For a qualitative analysis of the recommenders, we used the responses from the surveys and
the interviews. We used this data to either confirm or refute the results found using the
quantitative analysis and to broaden our understanding of how the recommenders affected
the triage process.

4.2.3 Quantitative Results

Over the course of the study, we recorded that the triagers made 259 developer assignments,
86 component assignments, and 150 cc: list assignments using Sibyl over the four months
of study.

Table 4.13 shows the results for the different types of recommenders from the field
study. Presented are the accuracy of RA and the recall for Rc and R1. For each recom-
mender we present two results: in-practice and refined. The in-practice result corresponds
to how the recommender worked from the viewpoint of the triager, and the refined result
refers to the result if cases where the recommender did not have correct information are
removed from consideration.

"As one of our research questions was about the time taken to triage a report, asking for an im-
plementation set for each report, an action a triager would not normally take, would have interfered
with that portion of the field study.

56

Developer Recommendation Results

Over the course of the study there were 270 cases where an assignment was either explicitly
or implicitly made.16 To compute the RA accuracy, we compared the four developer names
recommended by Sibyl to the developers who actually resolved the report. We considered
a correct recommendation had been made if one of the recommendations matched one of
the individuals assigned to the report. The RA analysis was done several months later
to allow for assignment adjustments. A report may have its assignment adjusted in cases
where the triager made an incorrect choice or a developer took over working on the report
from another developer. Either of these cases would cause the report to be have been
assigned to multiple developers. Taking the average over the 270 cases, the RA achieved
an in-practice accuracy of 75%. In other words, three quarters of the time the RA made a
correct recommendation. As we were using a component-based RA, the recommender was
selecting from nineteen different names.

There are two situations in which the RA does not have the correct information to
make appropriate recommendations. The first is if the report is filed against the wrong
project (i.e., the report is not actually for the Eclipse product). The second is if the report
is filed against the wrong project component. This second situation is a problem as the RA

used in the study made recommendations based on the value of the component field. If the
component field was not correct, then the recommender will make recommendations from
the wrong set of developers. We found that there were twenty-nine cases over the study
period where either the report had been assigned to the wrong product or component
or the triager had assigned the report to someone outside of developers known by the
recommender. As all the triagers worked on the 9I component of the Platform product,
if either of these fields was changed at the same time as a developer assignment was made,
we considered this to indicate one of the two situations. After removing these cases, the
recommender's accuracy increased to 84%, the recommenders refined accuracy.

The version of Sibyl used by the triagers provided four developer recommendations
to the triager. As we were uncertain if this value was sufficient, we logged ten recom-
mendations in the background to determine if the recommender would have been more
practical had more recommendations been provided (R4). We found that if the number of
recommendations were raised from four to seven,17 then the accuracy would have risen to
85% for the in-practice accuracy and 94% for the refined accuracy. It is not surprising that
the accuracy would have improved had more recommendations been provided. That the
average accuracy would have gone up by 10% had seven recommendations been made in-
stead of four suggests there may be value in presenting more developer recommendations.18

16There were 259 cases where the triager assigned a report to a developer (i.e., explicit assignment)
and 11 cases where the report was not assigned but was resolved (i.e., implicit assignment).

17The accuracy did not improve beyond seven recommendations.
'Making seven recommendations is less then showing the entire list of 19 developers for the

57

However, the increase in accuracy must be weighed against the additional effort required
by the triager to search the presented names. Although an increase of 10% in accuracy is
a significant improvement, it is unclear if this increase adequately compensates for the in-
creased burden on the triager. Triager comments from the surveys confirmed that although
four recommendations were reasonable, sometimes it was too few.

Component Recommender Results

During the field study, we recorded eighty-six component assignments. Given that the
triagers were all from the same project component, this means that there were eighty-six
reports that were incorrectly filed against the UI component and were reassigned to different
components. Table 4.13 shows that for these reports, the Rc had an in-practice recall of
85%. In other words, the correct project component was one of the three recommendations
85% of the time.

There are two cases in which the Rc does not have the correct information to make
an appropriate recommendation. The first is if the report is filed against the wrong product
(i.e., the report is not for the Platform product). The second is if a new component is added
to the project and the recommender does not yet have information about the component.
We found that there were four cases of each of these situations over the duration of the
field study. If these cases are removed from consideration, then the refined recall is 94%.

As with the RA, we had made a guess that three recommendations was appropriate
to present to the triager. However, we found that if the number of recommendations was
raised to four, then the in-practice and refined recalls would have been 88% and 97%
respectively. Again, it is not surprising that providing more recommendations results in a
better recall, however that adding an additional recommendation results in such a small
increase (3%) demonstrates that three recommendations is likely sufficient to provide a
component recommender with high recall.

Interest Recommender Results

Over the course of the field study, we recorded 150 cases where the triager added names to
the report's cc: list. Table 4.13 shows that the average in-practice recall for R1 was 73%.
In other words, on average, R1 correctly recommended close to three-quarters of the people
that appeared on the cc: list. For comparison, if we had instead recommended the seven
most frequently occurring names on the cc: list from the data set, the in-practice recall
would have been 48%.

However, we observed that triagers for the Eclipse project had a practice of adding
themselves to the reports that they triaged. Taking this practice into account, there are
forty-five cases where individuals other than the person making the change were added to

component.

58

the cc: list, and the refined recall is 60%. This result means that for these forty-five cases,

R1 correctly recommended, on average, half of the individuals on the cc: list. Again, for

comparison, if the top seven most frequently occurring names are used and the name of the

person adding the names is removed from the cc: list, the recall is still 52%.

The analytical recall was found to be 49%, a much lower value than the in-practice

recall and closer to the refined recall. This would seem to indicate that perhaps the triagers

remove their names from the cc: list at some point after they have triaged the reports. If

this is the case, then the practice of the triager adding their name to the report, which

appears to be the reason for the high in-practice recall, would not have been evident in the

data used for the analytical evaluation, and may explain why the refined recall is closer to

the analytical recall.

We found that increasing the number of interest recommendations does not affect
the in-practice recall or refined recall for R1. This suggests that presenting seven interest

recommendations is appropriate.

Triage Time Improvement

One of our research questions (R2) was whether or not the use of triage-assisting recom-

menders reduces the time taken to triage a report. To evaluate if RD0 recommenders do

lower triage time, we collected information about how long it took a triager to make an

aSsignmentl° when the four types of recommenders were available and compared this to

the cases when no recommendations were made (i.e., control cases). The time to make an

assignment was taken to be the time between when the triager first viewed the report and

the time that they made an assignment (e.g., assigned to a developer or added a name to

the cc: list). Recall that Sibyl designated every fifth set of recommendations as a control

case and made no recommendations, providing a baseline.

For analysis, we did a paired t-test (i.e., repeated measures) of time taken for the

triagers to make an assignment with and without a recommendation being provided. Ta-

ble 4.14 shows the median values for each subject for the control cases and for the cases

where the triager was provided recommendations.. We found that there was no statisti-

cal significance between the times taken to triage a report when recommendations were

presented and when no recommendations were given to the triager at our chosen 95% con-

fidence level (t=-1.098, df=3, p= 3.53).20 However, given that the statistical power of the

test21 is 12%, there is a 88% chance that if the recommenders affected the triage time, we

would not have seen it. The lack of any significant effect may be caused by the group of

control reports not being representative due to their relatively small number. For example,

19We use the term assignment to broadly refer to the result of a triager making a decision.
20A confidence level of 95% was chosen as this is the typical value used to determine statistical

significance (See www.socialresearchmethods.net/kb/power.php).
21The statistical power measures the likelihood that if the recommenders had an effect on the

triage time that we would have observed a change.

59

Table 4.14: Median values for control and treatmen
Control

(minutes)
Recommendations

(minutes)
Triager A 1.75 2.8
Triager B 1.01 4.34
Triager C 2.23 1.2
Triager D 1.58 2.18

one of the triagers had only one control case. Therefore, more study is needed to determine
if the recommenders improve the time taken to triage a report, especially as we had such a
small number of participants.

4.2.4 Qualitative Results

In this section we present the results from the decision and usage questionnaires, as well as
information gathered by the triager interviews.

Survey Results

For RA, the triagers found that the number of recommendations presented were either
reasonable (5 responses) or too few (3 responses), confirming our observation from the
quantitative analysis that four recommendations is a reasonable number to present, but
that it may be helpful to let the triager decide how many recommendations are presented.
The triagers indicated three times that multiple recommendations were applicable, but felt
that choosing between them was very easy or easy.

For Rcr, three responses indicated that the triagers felt that three component rec-
ommendations was too few, one response suggested that three recommendations was too
many, and one response indicated that three component recommendations was reasonable.
That the triagers tended to feel that not enough component recommendations were given
is not consistent with the high top-three recall demonstrated by the logs. For the two times
that a triager indicated that there were multiple applicable recommendations, the triagers
again felt that it was easy to decide between them.

Only one triager submitted answers to the usage questionnaire. Recall that this
questionnaire asked questions about the general usability of the recommenders. The triager
commented that he22 found the RA to be very useful and the component recommender to
not be useful.23 In explaining why he felt the component recommender to not be useful he
said:

Often my assignments in this space were between UI and IDF124 and Sibyl didn't
seem to be aware of IDE. Not unexpected, seeing as it's new.

22We mix the gender so as not indicate which triager made these comments.
23The R1 was added later in the field study after this triager had used Sibyl.
241DE is another of the project's components.

60

Table 4.15: Ranking of recommenders by triager interest.
Triager A^Triager B^Triager C^Triager D

Sub-component^Component^Sub-component Sub-component
Component^Sub-component^Developer^Developer

Interest^Interest^Interest^Component
Developer^Developer^Component^Interest

The triager also felt that Sibyl made him consider other alternatives that he would
not have otherwise considered and, with the exception of the component recommender,
there were no differences between the recommendations and his expectations. The triager
also felt that Sibyl made it faster to do assignments.

Interviews Responses

Table 4.15 shows the rankings of the four kinds of recommenders by the four triagers. Note
that the Rs is consistently ranked near the top across the four triagers. When asked to
elaborate on their ranking, the triagers all stated that if the Rs is correctly determined,
that this dictated the developer assignment (hence the low ranking of the RA by the first
two triagers as they felt the recommender was redundant). A similar reason was given for
the high ranking of R. The triagers also consistently felt that R1 was of lesser value than
the other recommenders, when taking into account that the triagers viewed the Rs, Rc,
and RA as providing equivalent functionality.

The information provided about the triagers experience was already given in Sec-
tion 4.2.1 and the triager's responses about their triage process were given in Section 2.1.1.
We defer the discussion of what other fields and information the triagers would like to have
had recommended to Section 8.1 where we discuss future work.

Comments about Sibyl

One of the triagers commented that he felt that the RA had a high accuracy. Another triager
commented that she felt that Sibyl gave good recommendations, but would sometimes get
confused. For example, if the report contained a stack trace, Sibyl would recommend the
SWT25 component due to a SWT thread exception occurring in the stack trace. In other
words, Sibyl would make a recommendation based on the effect of a fault, not the cause of
the fault.

One of the problems with Sibyl that was pointed out by he triagers was that it
made Bugzilla feel less responsive. One of the triagers plainly stated that using Sibyl was
slower than using Bugzilla directly. Given the architecture of Sibyl, this comment is not
surprising; Sibyl redirects Bugzilla requests and would magnify any responsiveness problems

25SWT is an open-source widget toolkit for Java that is used for the Eclipse user interface and is
one of the project components. See www.eclipse.org/swt for more details (verified 26/06/07).

61

Table 4.16: Performance of the Sibyl service (in seconds).
Min Average Max

Get Report 0 3.25 47
Make Recommendations 0 0.7 43
Augment Report Page 0.8 2 11

of the Bugzilla server.

4.2.5 Sibyl Performance Results

As mentioned in Section 4.2.2, we recorded some performance measures about how Sibyl
worked. Specifically we recorded how long it took to get a report from the server, how long
Sibyl took to make a recommendation for the report, and how long it took to construct
the augmented report web page. Table 4.16 shows the minimum, average, and maximum
time in seconds taken by Sibyl to perform these three actions. On average, Sibyl takes very
little time to make a recommendation. The exception is when the server has been rebooted
or the recommenders have been updated and the recommenders need to be loaded into
memory. As the recommenders can range in size up to a hundred megabytes, this loading
can be time consuming. As the recommenders are updated daily, we eliminated this delay
by having the server load the recommenders into memory as part of the update process.
Once this bottleneck was removed, we found that the most time consuming part in using
Sibyl was the retrieval of the report from the server. Since the bottleneck is the report
retrieval, if Sibyl were installed on the same server as the bug repository, it would have
a minimal performance impact on the server during its use as it could directly query the
issue repository database for the relevant information.

4.2.6 Threats to Validity

The first threat to the validity of the results of the field study is that it was only conducted
on a single project. Similarly, all of the participants worked on the same component of the
project. Therefore, the results that the recommenders have a high in-practice accuracy or
recall may not extend to other projects or components of the same project. This lack of
generality may certainly be true for RA as we used a component-based RA for the field
study and an analytical evaluation of this kind of recommender showed it to work best for
the Eclipse project and not as well for the other projects (see Section 6.2.1).

A second threat to the field study results is the small number of participants. These
triagers may not be representative of an average triager. All the participants were also
developers for the project and therefore had access to project knowledge that volunteer
triagers may not have. Having a larger number of participants across multiple projects
would have reduced this threat.

The timing of the field study may have affected the results. The study was conducted

62

in the middle of a development cycle, yet analysis of the Eclipse project has indicated that
the average number of reports the project receives rises in the three months prior and post
to the release of the product [3]. This timing may account for the lack of sufficient data
to test our hypothesis that the recommenders improve triage time. However, it is also less
likely that the triagers would have been willing to try the tool during the pre-release crunch.

The effect that the Sibyl tool had on the triager's workflow is unclear. Although
attempts were made to provide recommendations in such a manner as to not adversely
affect the triager's normal workflow, such as inserting the recommendations into the report
web page as opposed to providing an external tool, there were aspects of data collection
process that may have interfered. The two items that may have interfered the most are
that a control case occurred every fifth change and that a survey was given after every
tenth change. Despite having been forewarned that Sibyl would periodically not make
recommendations (i.e., insert a control case), it is possible that triagers would still be caught
off guard when it occurred, and may have led to a level of distrust with recommenders as the
triager would expect a recommendation and not receive one. We did not see any evidence
that this distrust occurred. The surveys did seem to interfere with triager workflow as one
of the triagers stated this during an interview.

Another possible threat to the validity of the field study is that the triagers au-
tomatically accepted the top recommendation without considering if the recommendation
was appropriate. This blind acceptance of recommendations could have led to the high
RA accuracy results. However, we doubt that this was the case because all of the triagers
had over four months of triage experience for the project as well as being developers for
the project and would be more likely to rely on their own experience than on the tool.
Also, the analysis of the triager assignments was conducted several months afterwards to
account for assignment mistakes (i.e., if the triager made an incorrect assignment it was
likely corrected by the time the analysis was done).

Due to the manner in which the data was collected, it is unclear how much the
triagers actually used the recommenders. As we collected only the results of a triager's
action, such as a change to a report, and not the triager's interaction with the tool, we
only know what changes were made, but not how they were made. It may be that the
recommenders were good, but that the triagers never used them beyond a cursory trial.
Another consequence of how the change information was collected is that we inferred what
type of change was made post-trial using the report's history, which could lead to inaccuracy
in the result with respect to time taken to triage a report.

There were inconsistencies in how long the triagers used the tool. In all cases the
triagers had to be contacted individually to use the tool after it became their turn to triage
for the project. There was therefore no immediate continuity between triagers. This lack of
continuity resulted in some triagers using the tool for only a week of their turn and others
using it for most of their turn and may have led to an inconsistent view of the triagers

63

activity.

As with all field studies there is the threat of experimenter bias. However, as we

based the in-practice and refined results on the logged data and the report history, we feel

that there is little bias in these results and in how long triagers took to triage a report.

It is however possible that experimenter bias affected the wording of the surveys and led

to the more favourable survey responses than are actual true. However, as the follow-up

interviews did not reveal this type of discrepancy we do not think this is likely.

4.2.7 Summary of Field Study Results

We conducted the field study to answer four questions.

R2: Do recommenders created using MLTriage reduce the time it takes

to triage a report? We found that there was no statistical difference between the cases

when triagers were given recommendations and when they were not. However there was

insufficient statistical power to make a conclusion and more study is needed to answer this

question.

R3: Do the recommenders created using MLTriage help triagers to make

better decisions? This question largely pertains to the use of the recommenders by novice

triagers. As the four study subjects were all expert triagers for the project, we were unable

to collect the necessary data to answer this question. As mentioned in Section 4.2.1, we

tried to recruit triagers from projects known to have novice triagers to answer this question,

however we were unsuccessful.

R4: What is the empirical performance of recommenders created using

MLTriage? We found that the RA had an in-practice to refined accuracy range of 75% to

84%. Although these results are not directly comparable to the precision values from the

analytic evaluation, the results from both evaluations seem to indicate that RA would assist

triagers, especially those that do not have a deep project knowledge.

We found that the Rc had an in-practice to refined recall of 85% to 94%. Compared

to the 92% recall found in the analytic study, the field study confirms that the component

recommender can assist triagers in assigning reports to the correct project component and

may be useful as part of the report submission process.

Finally, we found that the in-practice recall of /i/ was 73%. This result is better

than the result from our analytical result of 49%, and may be due to the relatively smaller

number of field study test cases (150 vs. 860 in the analytical evaluation).

Since the refined recall for /=11 (60%) was closer to the recall found in the analytical

evaluation (49%), the triagers may remove themselves from the cc: list of the reports they

triage at some point. As we do not know who triaged which reports in the data set used

for the analytical evaluation, we cannot confirm this.

R5: What is an appropriate number of recommendations to present to

64

the triager?

We found that making four recommendations for RA was generally sufficient, but
that sometimes the triagers wanted to have more recommendations. For .11c, we found that
presenting three recommendations was an appropriate number. Although more recommen-
dations for RI may have been more useful, we feel that the additional burden of increasing
the number of recommendations from seven to fourteen would not be compensated for by
the extra triager effort that would be required.

65

Chapter 5

Assisted Configuration of
Recommenders

A triager who wishes to benefit from recommenders created using the machine learning-
based triage-assisting recommender creation process (MLTriage) faces at least two challenges
in applying MLTriage to the data from his or her project. First, the data extracted from the
bug repository is often noisy and must be cleaned for the technique to work effectively. This
cleaning must typically be performed by a human expert from the development project.
For example, for a developer assignment recommender (RA), the list of developers who
appear in the source repository must be cleaned to remove the names of developers who
are no longer working on the project (see Section 3.2.5). Second, using MLTHage requires
a substantial amount of up-to-date information from the repositories (e.g., eight months
worth of bug reports), necessitating that the technique run either as part of the repository
or on a mostly complete duplicate of the repository. Until the first challenge is solved, it
is not possible to easily insert the technique into the repository infrastructure. Creating a
parallel repository with cleaned data is possible but problematic because of the increased
administrative load and infrastructure needed to keep the repositories synchronized.

In this chapter, we present an approach to address both of these challenges. We in-
troduce a semi-automated configuration process that enables a human expert for a project
to easily configure a project-specific development-oriented decision recommender (RDo),
such as a developer assignment recommender (RA), a product component recommender
(Rc) or an interest recommender (R/). We also show that it is feasible to create a recom-
mender using a subset of the data in a repository. By running over a subset of the data,
it becomes possible to run the approach client-side, instead of server-side, easing the intro-
duction of RD0 recommenders into a particular project's triage process. We demonstrate
the configuration process and the effectiveness of the data subset approach in the context
of a RA. Specifically, we show it is possible to configure RA that achieves within 10% of the
precision rates of the RA presented in Chapter 4 using only 27% to 44% of the reports for
the five projects. We conclude this chapter by providing a description of how the assisted

66

configuration approach can be used to create both Rc and RI.

5.1 The Assisted Configuration Approach

Consider that you are a triager who wishes to create a RA for your project. From prior work
creating RA using MLTriage (i.e., Chapters 3 and 4) you know that RA with high precision
have been created using the Support Vector Machines algorithm, assigned and resolved bug

reports and the text from the summary and description of the reports. However, to create
the project-specific RA you still need to answer the questions of how to label the reports

(i.e., what are the labeling heuristics for the project?) and which of the developers are

appropriate for recommendation. You wonder if it would be possible to use fewer reports

than the eight-months worth of reports used in the previous work to create the RA.
To aid the triager in the creation of the project-specific RA, we describe an approach

in which data from the report repository is sampled, summarized and presented to the

user to help make the project-specific decisions quickly. The approach assists the triager

by first presenting a subset of the repository data to help specify the project heuristics.

Figure 5.1 shows a mock-up of an application that assists the triager in specifying heuristics

by representing groups of reports by regular expressions and allowing the triager to state

what report information to use for report labeling. The potential user interface is described

in more detail in Section 5.1.1.

Once the triager has specified the heuristics, the approach applies the heuristics

to a subset of the repository data to present the triager with a graph showing the report

resolution activity for the developers and suggesting an activity threshold.

The final step of the approach assists the triager in determining an appropriate

sized subset of reports to use for creating the RA. Through iteratively creating RA with
increasing amounts of data until the precision plateaus, the approach produces a suggestion

of the amount of data to use for creating a RA for the project.

5.1.1 Selecting and Labeling the Reports

To assist the user (i.e., the triager) in creating the project-specific heuristics, we first extract

a sample of reports from the repository. We then present the user with summary information

about the reports in the sample. The summary information describes different groups of

reports and we refer to these groups as path groups. For each of these path groups, we also

present the user with a summary of information from the reports in the group that could

be used to label these reports. The user then selects the report groups that he or she wishes

to use for training the recommender by indicating the report information to use in labeling

the reports for the group.

Recall from Section 3.2.4 that we chose to establish the labeling heuristics for a RA by

examining the logs of a random sample of reports from the project to create the heuristics,

67

Path p_l le Labeling Path
Group

Sample .142shi

I

:31.__.ferspie Information Coverage Information

NF(V)? 24% Heuristic Set NA 10% Choose...

NA(F)? 16% Choose... (N)?AF 6% Choose...

NFV 13% Choose... NM(V)? 6% Choose...

Choose...(N)?FV
Choose Data Source^

Eillir

NA(M)? I^Choose...

i^Choose...(NA)+(I)?

NF Submitted Last Patch^Vi m 1 -E, I^Choose...

(N)?AF(V)? Last Marked Fixed^T r^Choose...

NAM? Choose...
Assigned To VIllNA(E)? Choose...

I

ND II,^Choose...

Legend
A ASSIGNED E REMIND L LATER R REOPENED

C CLOSED-FIXED F RESOLVED-FIXED M WORKSFORME V VERIFIED-FIXED

D DUPLICATE I INVALID N NEW W WONTFIX

Create Heuristics

Figure 5.1: Mock-up for heuristic configuration.

Table 5.1: Legend for bug report life-cycle states.
U UNCONFIRMED
N NEW
A ASSIGNED
F RESOLVED-FIXED
V VERIFIED-FIXED

but that an alternative is to derive the heuristics from direct knowledge of the project's
process. By presenting a user with information about the project, we are employing this
alternate technique.

Grouping Reports by Life-cycle

To characterize reports in the repository, we randomly sample reports at intervals of one,
two, four, and eight weeks in the recent past. We take this approach to ensure we have a
sufficient representation of the current report activity. A sample for an interval consists of
twenty-five reports, resulting in a maximum total sample of 100 reports.1 The report sample
is taken from the set of reports that are marked as being in certain states as indicated by
the user, such as reports marked as ASSIGNED or RESOLVED.

The next step in the characterizing the reports is to group the sampled reports by
similarity in their life-cycles.2 We chose this approach because label assignment depends
upon the actions performed to the bugs, such as whether or not a patch has been submitted

'The size of 100 reports is approximately 2 MB for the projects we have analyzed.
'See Section 2.2.2 for more information about bug report life-cycles.

68

for the bug. We determine the life-cycle path of each report from its history log. We
represent each life-cycle path as a string with the characters in the string representing each
state a report has passed through (see Table 5.1 for a mapping of characters to states that
we use). We now want to group the reports with similar life-cycle path strings. We chose to
form these groupings by deriving regular expressions to represent similar life-cycle paths.
Determining a regular expression from a set of examples, as we need to do to form path
groups, is known to be a hard problem. The survey paper by Sakakibara on grammatical
inference [56] lists several bodies of work that provide computationally hardness results
for this process. Consequently, we used a heuristic approach derived from observations of
common path patterns found in a variety of projects and that involve simple transformations
of the path expressions.

After creating the regular expressions from the life-cycles of the sampled reports, we
collect the regular expressions into a set. The regular expressions are then applied to the
paths from the sampled reports.

Our approach to determining and ranking path groups is similar in intent to those
used in sequential pattern mining [1]. Sequential pattern mining is the process of deter-
mining commonly occurring series of transactions in a database, such as people who rent
"Star Wars" then rent "The Empire Strikes Back". Sequential pattern mining is similar
to our approach in that we too are mining for commonly occurring state patterns in the
life-cycles of bug reports and ranking them. However, sequential pattern mining ignores
transactions that are in between other transactions, such as renting "Jaws" before renting
"The Empire Strikes Back". As a result, sequential pattern mining is inappropriate for our
use as we cannot ignore intermediary states in the path. Also, sequential pattern mining
does not capture cycles such as a report moving back and forth between two states.

Forms of Path Regular Expressions As previously mentioned, we create four forms
of regular expressions from the life-cycle paths of the reports in sample. The four forms
are:

1. the path expression itself,

2. path expressions containing a cycle,

3. path expressions that exclude a life-cycle state at either the beginning or end of the
path, and

4. a combination of the second and third form.

These regular expression forms increase in their level of generality. For example, a
path expression with a cycle is a more general form than the path expression itself. The
use of more general path expressions allows the user to specify heuristics at the level of
generality he or she wishes to use. For example, the user may want to specify a heuristic

69

for reports that follow the path NAF and a different heuristic for reports that follow the

path NAFV, or, he or she may want to just specify a heuristic for both of these groups
using the more general expression NAF(V)?.

The first regular expression form is the trivial expression of the path itself. This

expression represents the most specific path grouping. The next form captures cycles in the

path. For example, the regular expression (NA)+F matches paths that alternate between
the NEW state and the ASSIGNED state before ending in the RESOLVED-FIXED state. Paths
are examined for cycles of prime sizes ranging from two to half the length of the path.

We observed a common occurrence with projects that have two states for repre-
senting a new report (e.g., UNCONFIRMED and NEW). Some reports start in the first new
state and move to the second state, and some reports just start in the second new state.

For example, the Firefox3 project has one state to identify reports that have been recently

submitted but for which the problem has not been verified (UNCONFIRMED) and another
state to Indicate that the problem has been verified but not yet been fixed or assigned
(NEW). If a Firefox developer submits a report, she will mark the report directly as NEW

because she will have verified that the problem exists. A similar case occurs where reports

that are resolved as being FIXED do not always get marked as VERIFIED. As we view these
kinds of reports as following similar paths, we use a third regular expression form to cap-

ture the exclusion of one state at either the start or end of the path. For example, the

expression (U)?NF represents reports that follow the path NF with or without starting in
the UNCONFIRMED state. Similarly, the expression NF(V)? represents reports that follow

the NF path with or without ending in the VERIFIED-FIXED state. We also examined the
use of regular expressions that capture the exclusion of two states at the start or end of

the path (e.g., (U)?(N)?F), but we found that this produced many regular expressions that

were not meaningful and thus we do not use it.

The final regular expression form consists of various combinations of the second and

third forms, such as (U)?(NA)+ and (U)?(NA)+F(V)?. The first expression is for the path

group representing reports that have a NA cycle and may or may not have started in the

UNCONFIRMED state. The second example represents the path group for reports that may or
may not start in the UNCONFIRMED state, alternate between the NEW and ASSIGNED states
before moving to the RESOLVED-FIXED state, and possibly the VERIFIED-FIXED state.

Path expressions that match only one or two paths are deemed to be too specific

and are removed from the set of expressions. For the five systems we have tested (see

Section 5.2), this process resulted in a range of 13 to 33 expressions. This list size is

tractable for a user to scan to identify path groups of interest.

3Firefox is a web browser and can be found at www.mozilla. org/products/f iref ox (verified
06/06/07).

70

Determining Data Sources

Given the groupings of reports, the user now needs to describe how to label each group of
reports. Before a labeling heuristic can be specified by the user, we need to determine what
information from a report can be used to label it. We have found that it is not possible for
one rule to fit all reports. For example, one of the heuristics for the Firefox project uses
different report information depending on if there was an approved patch and the number
of individuals that had submitted approved patches (see Appendix A). Thus, we use the
path groups representing different kinds of reports as the basis for this specification. We
refer to the pieces of data that can be used to help label a path group as data sources.

Examples of data sources include the value of the assigned-to field or the person who
attached a patch to the report.

The data sources that can be associated with a particular path group are determined
from reports that belong to the path group. The fields and history log for these reports
are mined for occurrences of user names.4 For example, Figure 5.1 shows that the analysis
of the reports in the NA(F)? path group has determined at least three data sources: an
attachment-added event in the log ("Submitted Last Patch"), a resolved-fixed event in the
log ("Last Marked Fixed"), and the value of the assigned-to field ("Assigned To"). Not
all data sources may be available for each member of a path group; as a result, a user may
select multiple data sources for a single path group. For example, not all reports that are
in the path group represented by NA(F)? will have a data source stating who resolved the
report as fixed; a user might thus specify both the resolved-fixed event and the assigned-to

field, as shown in Figure 5.1. The particular data source to be used for a particular report
depends on the order in which the heuristics are applied during labeling. For the heuristic
being specified in Figure 5.1, the data sources for labeling a report will be used in the order
of attachment-added event, resolved-fixed event, and assigned-to field.

Example: Specifying Labeling Heuristics

Given the path groups and the data sources, it is possible to specify the labeling heuristics.
Figure 5.1 shows a mock-up of an application for assisting the user in specifying these
heuristics. The application presents three pieces of information to the user. The first piece
of information is the regular expressions describing the path groups (Path Group column).

The second piece of information provided is a coverage metric for each regular ex-
pression (Coverage column). The coverage metric indicates how many of the reports, as
a percentage, in the sample are members of the path group. For example, in Figure 5.1
24% of the reports in the sample are members of the NF(V)? path group. The regular
expressions are presented in decreasing order of coverage. This ordering directs the user

4The mining of user names is specific to the creation of a RA. Other recommenders mine different
data (see Section 5.3).

71

toward creating labeling heuristics for commonly occurring reports.

The final piece of information presented to the user is the sources of data that can

be used for labeling the reports of the path groups. As shown in the figure, each regular

expression is associated with a button. The button opens a wizard that is used to specify

the data sources to be used for labeling reports in the path group. The wizard initially

contains a single drop-down box listing the data sources that can be used for labeling the

reports in the path group. The user can also add additional data sources by clicking on the

'+' button to the right of the drop down box (or use the to remove a data source). The

figure shows that the user has already specified data source(s) for the NF(V)? path group

and is in the process of selecting the data sources for the NA(F)? path group. The user has

selected to use two pieces of information from the report's history log: who last attached

a patch to the report and who last marked the report fixed. The user has also selected to
use the value of the assigned-to field if neither of these events are present in the report's
history.

5.1.2 Selecting the Labels

As described in Section 3.1, not all information in the repository is useful. For instance,
for a RA, not all developers listed in the repository are currently active on the project. We

thus need to remove these developers from consideration, which corresponds to selecting

the labels to use in the recommender.

To determine the labels for a RA, namely the set of active developers, we present

the user with a graph showing a distribution of report resolution by developer. This graph

is produced by labeling all resolved reports for the most recent three months with the user-

specified heuristics and ordering the developers from most resolved to least resolved. We

use the median of the probability distribution that typically best fits a report resolution

curve, a Pareto distribution, to suggest a threshold to the user for a cut-off activity level.

Our decision to use a Pareto distribution to model report resolution activity is based

on producing the distributions for the five projects we examined.5 We found that the Pareto

distribution was consistently ranked near the top by the Anderson Darling test.6 Intuitively,

we feel that this choice makes sense as the Pareto distribution is the basis for the '80-20

rule' that states that 80% of the work is done by 20% of the individuals, and this trend has

been observed with other software artifacts [14, 40, 46, 54].

Since not all project's report resolution activity will fit a Pareto distribution and

because a user may have better knowledge about where to set a cut-off, we allow the user

to change the threshold after viewing the distribution. Figure 5.2 shows an example of a

user setting the threshold for project differently than the median. In the figure, a threshold

5See Section 5.2 for a listing of these projects.
6The Anderson Darling test is a common test for assessing if a data set comes from a particular

probability distribution.

72

2

11

c13

F
Z..■L

g
43

§

I cc

.2
g

\

'06' '')°' 0 e..0 6'0"''' ..:°S. 06 ':e 2 .0‘6S .1:''' ''0e'0 '. 046' 06 J:;;0;0 6 ' '*<;' . VI VS<, ":';':

Figure 5.2: Example of setting the reports-resolved threshold for selecting the active devel-
oper set.

of two reports resolved has been suggested, but the user has chosen to move the threshold

up to five reports.

We use all of the labeled data for three months to get an accurate portrayal of the

developers' activity. Although taking a random sample over this time period would use less

data, we feel the risk of misrepresenting developers is too great, especially as this profile

is used in selecting the training data. For the five projects on which we have applied this

approach (Section 4.1), this data amounts to approximately 2 to 3 MB.

5.1.3 Selecting the Reports

A machine learning algorithm must be trained with sample data. In the specification of

the heuristics, the user begins the process of selecting which reports to use to train the

RA. For example, the user may choose to provide labeling heuristics only for reports that

end in the RESOLVED-FIXED state. The user may also choose to include those reports that

have been marked as DUPLICATE. Or the user may choose reports that have been marked

as WONTFIX as the user knows that for the specific project only developers with particular

expertise relative to the area of the report are involved in this decision.

To complete the selection of training data, it also must be determined how many

of the reports to use. Most recommender techniques follow the approach we have used

previously; the more training data the better. Although this approach is reasonable in a

server environment, this approach is not typically practical for a client-side setting. Instead,

we want to be able to determine the right amount of data to use for a particular project

73

automatically.

Work by Forman and Cohen supports our hypothesis of being able to use less data.
Also, Dietterich noted that "as more data is available, the [classifier] accuracy reaches a
higher level before eventually dropping." [24, page 5]. Forman and Cohen investigated the
performance of various machine learning algorithms using small training sets for binary
text classification tasks [29]. They found that both Support Vector Machines and Naïve
Bayes worked reasonably well with partial data sets.

To discover the right amount of data for a particular project we use a series of
automated experiments whereby an amount of randomly selected data is used to create a
recommender and the amount is gradually increased until the accuracy of the produced
recommender plateaus.

Once the trial data is collected, we use stratified five-fold cross validation [68] to
determine the quality of the recommender using this amount of data. Stratified five-fold
cross validation is the process whereby the data is randomly divided into five groups with
equal representation of each developer in the groups. A recommender is then created with
four-fifths of the groups and the last group is used for testing the recommender. This
procedure is repeated five times with each group serving as the test set. The accuracy of
the recommender is the percentage of how many test reports for which the recommender
correctly predicted the label.7 Recall that the reports are labeled using the user-defined
heuristics. The algorithm used to create the recommenders is the Support Vector Machines
algorithm based on the results from Chapter 3.

The accuracy of a particular data level is then compared to the accuracy of the
previous two data levels. If the average difference between these values is less than 1%,
we conclude that the accuracy curve has plateaued and we take the minimum of the three
data levels as a potential project data level. As this process involves randomness in the
partitioning of the data for cross validation and randomness in selecting the reports that
are in the developer report samples, we repeat this process five times and take the median
of these trials as the number of reports to sample for the project to train the recommender.

As we are wanting to determine the amount of data we need for recommender
creation, in each iteration we select more data than the amount that we are evaluating.
For example, if we are testing to see if 100 reports is sufficient, a total of 120 reports are
selected so that in each fold of the cross validation, 100 reports are used for recommender
creation. As the data is selected per developer, the number of reports actually selected for
the developer is increased by the appropriate amount.

7We use accuracy and cross-validation in this situation because we are focusing on the selection of
the appropriate amount number of reports. We chose not to use stratified five-fold cross-validation
for evaluating and comparing the performance of the recommenders in Chapter 4 because the preci-
sion and recall measures require information about all the possible labels (i.e., the set of developers
with the appropriate experience) and cross validation uses only one correct label value.

74

Table 5.2: Date ranges for training data and testing set sizes used in evaluation.
Start Date End Date Testing Reports

Eclipse Oct 1, 2005 May 31, 2006 152
Firefox Feb 1, 2006 Sept 30, 2006 64

gcc Apr 1, 2006 Nov 30, 2006 73
Mylyn Feb 1, 2006 Sept 30, 2006 50

Bugzilla Feb 1, 2006 Sept 30, 2006 52

5.2 Evaluation of the Approach

We evaluate our assisted configuration process along three dimensions. These dimensions
correspond to the three configuration stages presented in Section 5.1: the heuristics used,
the threshold for selecting active developers, and the data selection strategy used for tuning
and training the recommender. We perform the evaluation with five projects to gauge the
generality of our configuration approach. We use the same five projects as in Chapter 4:
Eclipse Platform, Firefox, gcc, Mylyn, and Bugzilla. We compare the results of the RA
recommenders produced for each project to the RA recommenders created using MLTriage
from Chapter 4.

As in Chapter 4, we used assigned and resolved reports from an eight-month period
as the data set from which reports are sampled and drawn for creating a RA using the
assisted configuration approach. The reports used for testing the created recommenders
were taken from the following month for which we could find information in the source
repository. Table 5.2 shows the date ranges and the size of the testing sets for the five
projects. Further details of the recommender configurations are given in Appendix B.

5.2.1 Heuristics Used

The first dimension evaluated is the heuristics used. We experimented with this dimension
to understand how many heuristics a user would need to specify to get a good recommender.
We investigated this by evaluating recommenders created when specifying heuristics for the
top five and top ten presented path groups. In setting the data sources for the heuristics,
we used domain knowledge acquired from constructing the heuristics in Chapter 4. In one
case, this resulted in our not setting a data source for some of the path groups of the Firefox
project. Specifically, for this project some of the top ten path groups were for reports that
moved from UNCONFIRMED to INVALID. As we had previously observed that these reports
are intercepted by triagers, they do not contain information about which developer would
have fixed the problem and cannot be assigned a label. This knowledge would be obvious
to a Firefox project member.

75

Table 5.3: Active developer thresholds used for evaluation.
Suggested User-defined

Threshold Devs. Threshold Devs.
Eclipse 2 48 5 41
Firefox 2 69 5 36

gcc 2 35 5 18
Mylyn 3 7 10 6

Bugzilla 2 13 5 7

5.2.2 Threshold Setting

The second dimension evaluated is the active developer threshold. We experimented with

this dimension to gauge how sensitive the recommender creation process is to changes in the

threshold. We investigated this dimension by considering the results when the suggested

threshold is accepted and when the user specifies a threshold. Table 5.3 shows the values

that we used and the number of developers in the recommendation set that result for each

of the five projects. The user-specified values were determined by examining the report

resolution distribution and judging the point at which the curve started to flatten.

5.2.3 Data Selection Strategy

The final dimension we investigated was the effect of using three different data selection

strategies for tuning and training the recommender. We experimented with different strate-

gies in order to find one that selects just enough data to make a good recommender. The

first data selection strategy randomly selects a fixed number of reports. In each subsequent

tuning iteration this number of reports is increased until the tuning process halts. This

value is then used to train the recommender. In our experiments with this data selection

strategy we began the tuning with 100 reports and the size was increased by 100 in each

iteration. We refer to this data selection strategy as "random".

One possible problem with the random strategy is that it may not reflect the relative

contributions of the developers. In other words, it is possible that few reports are chosen

for a prolific developer and vice versa, causing a recommender to make more incorrect rec-

ommendations. Therefore we experimented with a data selection strategy where the data

is selected so that each developer is represented proportionally according to their relative

contribution to the project. The distribution of developer contribution was normalized so

that the developer contributing the least had a value of one. The tuning process proceeds

by iteratively incrementing the factor by which the developer contribution distribution is

multiplied. In other words, in the first iteration, the lowest contributing developers has

one report in the data set, has two reports in the next iteration, and so forth until the

total number of reports for each developer is reached. Whereas the contribution distribu-

tion provides the number of reports to use for each developer in the dataset, the reports

76

Table 5.4: Overview of recommenders created using MLTria e.
Threshold Data Amount Developers Precision Recall F-Measure

Eclipse 9 6569 43 76% 13% 22%
Firefox 9 2621 39 73% 1% 2%

gcc 9 1791 28 82% 3% 6%
Mylyn 9 683 6 98% 30% 46%

Bugzilla 9 745 5 96% 4% 8%

themselves are selected randomly. We refer to this data selection strategy as "strict".
The last data selection strategy is a variation of the strict proportional strategy.

Instead of adhering strictly to the developer's relative contribution, the reports are selected
randomly until each developer has their proportional number of reports ±25%. This strat-
egy is referred to as "tolerant" and is intended to provide a comprise between the random
and strictly proportional strategies.

5.2.4 Results

We use two metrics to evaluate the effectiveness of the created recommenders: precision
and recall (Equations 4.1 and 4.2 respectively). The details of how we compute these
metrics using information extracted from the source repository can be found in Chapter 4.
Although we present both values for completeness, we focus on precision because we believe
it is more important to recommend a small set of right developers than a large set with
many incorrect recommendations. Our evaluation considers a recommendation set of size
one. Table 5.4 reports the values of these metrics for the five projects from Chapter 4.

As there is a level of randomness to the selection of the reports that are used to
train the recommender, it is rare that the training process will produce the exact same
recommender across different applications of the process to the same data. Consequently,
the results in Tables 5.5 through 5.7 are the average of ten trials.

How Many Heuristics Do We Need?

The data in Tables 5.6 and 5.7 demonstrate that the use of the top five heuristics is sufficient
to produce a recommender with good precision. As would be expected, the use of even more
heuristics generally produces a recommender with even better precision as more heuristics
provides for a larger set of reports for sampling and training.

A general guideline to projects is to use ten heuristics. If the top several heuristics
provide high coverage of the reports, as is the case for the Mylyn project, it may be sufficient
to specify fewer than ten heuristics. Either way, it is tractable and practical for a project
member to specify up to ten heuristics.

77

How Sensitive To Threshold Changes?

Table 5.6 shows that the selection of the threshold to use for determining an active developer

does not typically have a large effect on the created recommender.

The setting of the threshold value can sometimes cause a significant difference in

the amount of data needed for the proportional data selection strategy. This effect is best

seen with the Mylyn project in Table 5.7. If the user-selected threshold of ten is used, 199

reports are selected for training. If the suggested threshold of three is used, 508 reports

are selected. Although the difference in the number of developers considered between these

two threshold settings is one, the added developer has such a low contribution level that

the normalization process causes many more reports to be selected. Feedback should be

provided in a user-interface supporting assisted configuration for a recommender to allow

a user to make the appropriate trade-off.

How Much Data is Needed?

The results in Tables 5.5 to 5.7 demonstrate the tolerance and stability of recommenders

produced using the assisted configuration process. In most cases, the produced recom-

menders are within a few percentage points of the recommenders created with MLTriage

(Table 5.4). This data also shows that good recommenders can be produced using less

data. For example, configuration based on the top ten heuristics, a user-selected threshold,

and the proportional data selection strategy creates recommenders within 10% precision of

those created with MLTriage based on only 27% to 44% as many reports.

The plot in Figure 5.3 provides a different view of the data from the tables, showing

how much data was used for the different data selection strategies and the precision that

resulted. This plot shows that the random strategy ended up using all of the data for four

of the five projects (far right of the plot). This plot also shows that the strict strategy,

which selects reports strictly according to each developer's relative contribution, is better

at producing good recommenders with less data. This result is evidenced by more of the

strict data points being to the left in the plot than those of the other two strategies.

78

90%

80% -

70% -

30% -

•

I

100% -

•

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent of Total Data
• Random 0 Tolerant • Strict

Figure 5.3: A scatter plot of data size vs. recommender precision.

79

Table 5.5: Precision and recall for data selection strategies for tuning and training a developer recommender.
Strategy Random Proportional-Tolerant Proportional-Strict

Total
Reports

Data
Size

Result
(P/R/F)

Data
Size

Iter. Result
(P/R/F)

Data
Size

Iter. Result
(P/R/F)

Eclipse 2861 1200 (42%) 61/10/17 2568 (90%) 7 68/12/20 2318 (81%) 7 67/12/20
Firefox 1025 1025 (100%) 68/1/2 960 (94%) 9 70/1/1 829 (81%) 7 65/1/2

gcc 518 518 (100%) 79/3/6 513 (99%) 15 80/3/6 484 (93%) 11 82/3/6
Mylyn 556 556 (100%) 98/30/46 417 (75%) 19 98/31/46 199 (36%) 9 98/30/46

Bugzilla 374 374(100%) 100/6/11 371 (99%) 10 100/6/11 326 (87%) 7 100/6/11

Table 5.6: Configuring a developer recommender with different heuristics and thresholds using all the possible data.
Heuristics Top 5 Top 10

Data
Size

Sug.
(P/R/F)

Data
Size

User
(P/R/F)

Data
Size

Sug.
(P/R/F)

Data
Size

User
(P/R/F)

Eclipse 1722 62/10/17 1650 63/10/17 2907 72/13/22 2861 72/13/22
Firefox 1270 64/1/2 1025 68/1/2 1270 63/1/1 1025 67/1/2

gcc 329 70/3/6 293 70/3/6 629 83/3/6 518 82/3/6
Mylyn 560 98/30/46 556 98/30/46 560 98/30/46 556 98/30/46

Bugzilla 379 100/6/11 342 100/6/11 406 100/6/11 374 100/6/11

Table 5.7: Configuring an assignment recommender with different heuristics and thresholds using the proportional data selection strategy.
Heuristics Top 5 Top 10

Data
Size

Sug.
(Prec./Rec.)

Data
Size

User
(Prec./Rec.)

Data
Size

Sug.
(Prec./Rec.)

Data
Size

User
(Prec./Rec.)

Eclipse 1665 63/10/17 1320 57/9/16 2815 72/13/22 2280 67/12/20
Firefox 658 57/1/2 509 53/1/2 1128 65/1/2 829 65/1/2

gcc 329 69/3/6 286 72/4/8 619 80/3/6 484 82/3/6
Mylyn 508 97/30/46 199 97/30/46 508 98/30/46 199 98/30/46

Bugzilla 370 100/6/11 303 100/6/11 397 100/6/11 326 99/6/11

5.2.5 Summary of Results

These results show that a RA with good precision can be created using a subset of the data
and that the assisted configuration approach is tolerant to the use of a reasonable number
of heuristics and threshold settings.

5.3 Configuring to Create Other Recommenders

Our assisted configuration approach is more general than the RA case we have used as a
running example. To discuss this generality, we describe how the assisted configuration
techniques can be used to configure two other recommenders for bug reports, Rc and R,T.

5.3.1 Configuring a Component Recommender

In an issue tracking system, reports are often grouped by the functionality that they involve,
called components. A common occurrence with open bug repositories8 is that reports are
filed under a default component, such as UI, as the reporter is often unable to determine
a more suitable component. A component recommender can help by suggesting a more
appropriate component based on the problem described in the report. Two modifications
are needed to the assisted configuration process we have described in this paper to configure
a component recommender.

First, it is no longer necessary to specify the data source for a path group because
only one field is possible, the component field. Second, the process needs to help a user
determine which components to recommend, rather than developers. Similar to the RA

example, the user could be presented with data about how many reports are filed under
each component over a time period and a threshold suggestion.

5.3.2 Configuring an Interest Recommender

It is common that a bug report will have a list of individuals who want to be notified when
a change is made to the report. For instance, if the bug report represents a problem, the
individuals may be encountering the problem and want to know when the problem is fixed.
Or, as another example, an individual may be interested because he is working on a bug
for which this bug is blocking his progress.

To recommend who should be notified for a report change, we need to make two
modifications to our process. We need to change the data sources that need to be associated
with heuristics: two possibilities are the comments (specifically the names of the people
who have submitted comments) and the cc: list for a report. We also need to allow a
user to adjust for noisiness in this data. Similar to determining developer contribution

8An open bug repository is a repository that allows anyone with a user name and password to
submit new reports or comment on existing reports.

82

for bug assignment, the level of noise could be adjusted by presenting the user configuring

the interest recommender with a graph showing the occurrence of individual's names from

the chosen data source(s) and a threshold suggestion for selecting the set of names to

recommended.

5.4 Summary

This chapter presented an approach to assist a user to create a RD0 in a client-side envi-

ronment using RA as an example. We presented techniques for guiding a user in answering

the questions of how many reports to use, which reports to use, how to label the reports,

and which are valid labels. The assisted configuration approach had three steps. The first

step helped the user to decide which reports and how to label them, by presenting them

with a list of regular expressions representing the various life-cycles of the reports in the

repository. For groups of reports that match a particular life-cycle, the user specifies a

heuristic. The second step assists the user in deciding the labels by presenting a frequency

graph and suggesting a frequency threshold. The final step uses the information from the

other two steps to determine how many reports to use. We found that using this approach

produces a RA that is comparable to those created for the our evaluation in Chapter 4.

83

Chapter 6

Discussion

This dissertation presents a machine learning approach (MLTmage) for creating development-
oriented decision recommenders (RD0)• This chapter discusses a number of additional
aspects about MLTriage•

One aspect is the complexity of MLTriage• Using MLTriage requires many inter-
related decisions. Perhaps a more simpler approach for the different types of development-
oriented decisions would be better? Section 6.1 explores this idea by comparing the use of
a developer assignment recommender (RA) created using MLTriage to a recommender that
suggests the most active developers.

Another aspect of MLTriage is that it only takes into consideration one piece of
process information: the categories for the development-oriented decisions. For example,
when creating a RA, MLTriage only considers how reports were assigned to the developers
and does not consider other information such as that the developers of the project are
divided into teams based on the product component. How can MLTruzge use additional
development process information to improve the accuracy of the created recommenders?
Section 6.2.1 discuss the use of additional process information to improve the accuracy of
a RA•

This dissertation demonstrated how to use MLTriage to create three types of Rpo: a
developer assignment recommender (RA), a component recommender (Re), and an interest
recommender (Ri). How could MLTriage be used to create other types of Rix)? Section 6.3
explains how to use MLTrzage to create three other types of RED. Similarly, Section 6.4 ex-
plains how the assisted configuration approach can be used for assisting in the configuration
of recommenders that use source repository data.

In developing MLTriage, we envisioned that the created recommenders would be used
in a semi-automated fashion; the triager selects from a set of recommendations rather than a
tool automatically applying a recommendation. However, could the recommenders created
using MLTriage be used in an automated fashion or as part of the bug report submission
process? Section 6.5 discusses how RD() recommenders could be used to automate parts of
the triage process or as part of the report submission process.

84

The MLTriage process is batch-oriented: given a set of training reports, the process
can produce a recommender based on those training reports. However, in practice, bug
reports arrive and are updated continuously in the repository. We describe how MLTriage
might be better adapted to this reality by considering a machine learning algorithm that
updates the recommender's model on-the-fly as data flows into the repository. Finally, we
discuss one of the drawbacks to the MLTriage approach: not taking into consideration direct
feedback from the triager.

6.1 Using a Naïve Approach to Development-Oriented Rec-

ommender Creation

Creating recommenders using MLTriage is a complex process as there are many inter-related
decisions that need to be made. For example, choosing how to label the reports can affect
which labels are determined to be valid. However, is such complexity necessary?

A simpler approach than MLTriage could be to recommend the most frequently
occurring category values. This approach might be feasible because the number of reports
within different development-oriented categories are commonly imbalanced. For example,
there is commonly a small core set of developers who resolve most of the reports [25, 46].
Another example, is product components under which most reports fall such as General
for Firefox and UI for Eclipse. One approach to creating RD() recommenders could be to
suggest the most frequently occurring categories (e.g., the top four fixers or the top three
components). We refer to this approach as the naïve approach to RD0 creation.

Table 6.1 compares the precision of the naïve approach with that of MLTriage for
a developer recommender (RA). We present results for each of the five projects that we
used for evaluation in Chapter 4. In the case of Eclipse, the naïve approach creates a
very poor recommender as the precision for one recommendation is 23% compared to 75%
for the recommender created using the MLTriage approach. For Firefox and Bugzilla, the
MLTriage recommender appears to be slightly better than the naïve approach. The MLTriage
recommender for Mylyn is similarly comparable to the naïve approach for the one and two
recommendations, but the precision drops significantly for three recommendations. Finally,
the naïve approach for gcc is comparable to MLTriage for one recommendation, but has lower
precision for two and three recommendations.

For analysis, we performed paired t-tests (i.e., repeated measures) between the pre-
cisionsl calculated using the Support Vector Machines and naïve approaches across the five
projects; a separate paired t-test was performed for each of the three sizes of recommenda-
tion lists. Table 6.2 shows the results of the statistical tests. We found that for all three
prediction list sizes there was no statistically significant difference between the two types

'The precisions used in this calculation are the average precisions across the test cases.

85

Table 6.1: Precision of nave approach to the MLTriage approach for creating a RA
(SVM=Support Vector Machines NA=Nave approach).

Eclipse Firefox gcc Mylyn Bugzilla
Predictions SVM NA SVM NA SVM NA SVM NA SVM NA

1 75% 23% 70% 70% 84% 84% 98% 100% 98% 96%
2 60% 26% 65% 66% 82% 55% 93% 94% 98% 98%
3 51% 23% 60% 57% 76% 62% 82% 63% 92% 93%

Table 6.2: Results of a paired t-test comparing the two types of recommenders.
t df p

1 1.00 4 0.375
2 1.53 4 0.201
3 2.39 4 0.075

of recommenders at our chosen 95% confidence level.
We are confident in the values for the Eclipse project due to our work on estimating

implementation expertise sets [5]. For the Mylyn and Bugzilla projects, we believe that
both of these projects have a small number of developers, so a naïve approach will work
well. Finally, we believe that the results for the Firefox and gcc projects are the result of
over estimating the implementation expertise lists, however it is difficult to tell if this is
the case.

Another consideration to be taken into account in selecting between the approaches
for a particular project is the nature of the two approaches. Ignoring the actual results, by
its nature the naïve approach will always recommend the developers that are contributing
the most to the project, regardless of their specific expertise. This means that if the top
recommendations are always accepted for the naïve approach then all the work will be
directed to those who are doing the most work on the project. This will obviously lead to a
work imbalance across the project developers. For a project with few developers this result
may be reasonable, but for a project with many developers this result is likely undesirable.
As the MLTriage approach bases recommendation on evidence of expertise, not on activity,
a recommender created using MLTriage is less likely to have this problem, especially as the
code base grows and developers can no longer be general experts.

6.2 Using Other Development Process Information to Cre-

ate a Development-Oriented Decision Recommender

The MLTriage approach to creating a recommender only takes into consideration one type of
information, namely the category for which the recommender is being created. For example,

in creating a RA, MLTr,„9, only considers information about the individual developers.
Could a more accurate RD() be created if we took into consideration more information

86

about the development process? For example, could a more accurate RA be created if
we incorporate knowledge such as that developers are structured into teams based on the
product component? This section explores the idea of using more development process
information to create a RD0 called a component-based developer recommender.

6.2.1 Component-based Developer Recommendation

We observed that the development teams for the Eclipse and Firefox projects were formally
structured around the project's components. This structuring of development teams was
confirmed through communication with these two projects and has also been observed with
other projects [23, 46]. This structuring can be an important consideration for triagers
when doing developer assignment. As mentioned in Section 2.1.1, the Eclipse project first
triages reports according to the component that the report is against and then reports are
triaged by the component team. A potential way to improve the developer recommender
precision is to incorporate this process information into MLTriageand create a component-
based developer recommender (4).

To construct a R5, we follow a process analogous to that used to triage Eclipse
reports (see Section 2.1.1). The data is first grouped by reported component and then the
groups of reports are used to train a separate recommender for each component. As before,
a developer profile of an average of three resolutions for each of the past three months
is used to determine which developers to recommend. The profiles are created without
regard to the components as we had found that developers often work across multiple
components [4]. In other words, even though developers are formally divided into teams
based on component, they do not strictly develop within that component. The work of
Minto and Murphy described this phenomenon as emergent teams [44]. For a new report,
the recommender uses the appropriate component-recommender based on the value of the
component field in the report to make the recommendations.

Table 6.3 shows the analytical results of using this process for the five projects to
create a R. The results of the analytical evaluation of RA from Chapter 4 are reiterated in
Table 6.4 for comparison. From Tables 6.3 and 6.4 we see that using the process information
substantially improved the precision of the R recommender for Eclipse, but generally
degraded the precision of the other recommenders. This result may be a consequence
of Eclipse developers working more strictly within the component boundaries than the
developers of the other projects [4], however data from other work seems to indicate that
this is not the case [44]. This result may also be a consequence of emergent teams being
more prevalent for the other projects.

87

Table 6.3: Precision and recall for a component-based developer recommender (f) for the
five projects.

Predictions Eclipse Firefox gcc Mylyn Bugzilla
(P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F)

1 97/18/30 70/1/2 92/4/8 94/29/44 94/5/9
2 93/34/50 64/2/4 79/6/11 90/53/68 94/11/20
3 79/41/54 64/3/6 78/10/18 82/73/77 82/12/21

Table 6.4: Precision and recall for a developer recommender (RA) for the five projects.
Predictions Eclipse Firefox gcc Mylyn Bugzilla

(P/R/F) (P/R/F) (P/R/F) (P/R/F) (P/R/F)
1 75/13/22 70/1/2 84/3/6 98/30/46 98/5/10
2 60/20/30 65/2/4 82/6/11 93/55/69 98/11/20
3 51/24/33 60/3/6 76/10/18 82/72/77 92/14/24

6.3 Creating Recommenders for Other Development-Oriented

Decisions

This dissertation has shown how MLTriage has been used to create RD0 recommenders
for three decisions made by triagers. This section presents an overview of how MLTriage
could be used to create three other types of RD0 recommenders. The first recommender is
a triage recommender that recommends the sub-component against which to file a report.
The second recommender is a recommender that estimates the effort required to fix a report.
This recommender could also be used by developers or project managers to prioritize work.
The final recommender is an impact analysis recommender which suggests the files that will
be affected by the fix of a report. This last recommender could be used by both a project
manager or a developer.

The sub-component recommender was implemented as part of the field study and we
present both an analytical and field evaluation of the recommender as was done for the RA,

fic, and R/ recommenders presented in Chapter 4. For the other two recommenders, the
effort estimation recommender and the impact analysis recommender, we only present an
overview of how MLTriage could be used to create the recommenders. The implementation
and evaluation of these two recommenders is left to future work.

6.3.1 Sub-component Recommender

During the field study, the Eclipse triagers requested that a sub-component recommender
(Rs) be created using MLTriage. They made this request because the component for which
they triaged, UI, was further divided into sub-components and developer assignment deci-
sions were based on the sub-component. This section presents the results of an analytical
analysis of the sub-component recommender and results from the use of the sub-component
during the field study.

88

Table 6.5: The sub-components for the Eclipse project.
Component sub-components Training Reports

CVS 12 174
Debug 6 176

Runtime 4 33
SWT 4 35
Team 11 197
Text 15 266

User Assistance 6 261
UI 56 1850

Table 6.6: Answers to the six questions for MLT,,,g, when creating a sub-component rec-
ommender.

Question
^

Answer
Which reports?

^
Assigned and resolved reports are used and parti-
tioned based on the value of the component field.

How many reports?
^

Reports are collected from an eight-month period.
Which features?

^
The summary and description are used for the fea-
tures.

How to label?
^

Reports are labeled by the sub-component informa-
tion appearing in the report summary.

Which labels are valid? All sub-component labels are considered valid.
Which algorithm?

^
The Support Vector Machines algorithm is used to
create the recommender.

Creating a Sub-component Recommender

Of the eighteen components of the Eclipse project, eight components had sub-components.
Table 6.5 shows the number of sub-components for these components and the number of
training reports for all the sub-components of the component. From the table we see that
the number of sub-components ranges from four (SWT) to fifty-six (UI).

A Rs is created in a similar way to that of a /=6; (see Section 6.2.1). The recom-
mender is created by dividing the reports by the value of the component field and creating
a recommender for each report group. Table 6.3.1 shows the answers to the six questions
from MLTriage for creating a Rs with the differences in answers between a RA and a Rs
highlighted.

The process for obtaining the sub-component label requires explanation. As Bugzilla
does not have a predefined field for sub-components, the Eclipse project convention is to
specify the sub-component in the summary by enclosing it in square braces. For exam-
ple, a report summary starting with "[Workbench] ..." refers to a bug report for the
"Workbench" sub-component (see Figure 6.1) Reports are therefore labeled with their sub-
component using the heuristic of extracting the words contained in the first set of square
braces found in the summary field.

89

Figure removed for copyright reasons.
Original source found at^-

https://bugs.eclipse.orgibugs/show_bug.cgi?id=22186

Figure 6.1: Example of an Eclipse report for the sub-component 'Workbench'.

Table 6.7: Recall for a sub-component recommender.
Recommendations Recall

1 49%
2 54%
3 57%

Analytical Results

Recall from Section 4.1.3 that a report will only belong to one project component. Similarly,
a report will only belong to one sub-component. For the same reason that precision does
not provide an appropriate evaluation of a Rc, we only present the recall for evaluating
a Rs. The training reports were gathered from the resolved reports that could be labeled
with a sub-component from the time frame of October 2005 to May 2006. Our testing set
contained 877 reports, which were the assigned and resolved reports of the Eclipse project
from June 2006 that had a sub-component specified.

Table 6.7 shows the analytical results for sub-component recommendation for the
Eclipse project. With three recommendations, we achieve a recall of 57%. This result
means that with three recommendations, the correct sub-component was recommended
just over half of the time. Given that the sub-components of the project represent a fine
granularity of project functionality, and therefore there is relatively little training data for
each sub-component compared to that used for the other recommenders, this result is not
surprising.

Field Study Results

Quantitative Results During the field study (see Section 4.2), we recorded 188 sub-
component assignments. As mentioned in Section 3.5, Sibyl provided three sub-component
recommendations. We found that in practice, Rs provided the correct sub-component
recommendation just under half (48%) of the time. Considering that the sub-component
labels are less constrained than the component labels (i.e., it is very easy to add a sub-
component ad-hoc), and compared to the other recommenders the classes for the sub-
component recommender had the least amount of data, it is not surprising that Rs did not

make very accurate recommendations.

90

If the cases where the sub-component recommender could not reasonably provide
correct recommendations are removed from consideration (i.e., the twelve cases where the
report had been filed under the wrong component), then the accuracy improves marginally
to 52%. This refined accuracy approaches the 57% accuracy we determined analytically.

As was mentioned in Section 4.2, as we did not have information about what was
the correct number of sub-component recommendations to make, we chose to provide three
recommendations, as this was the same number of recommendations we provided for the
R. However, as with the other recommenders in Sibyl, we logged more recommendations
than were presented to the triager. As with Rc we recorded six recommendations in the
log. We found that if the number of sub-components recommendations presented had been
raised from three to six, that the Rs would have an improved in-practice accuracy and
refined accuracy of 55% and 59% respectively. This result shows that even with doubling
the number of recommendations, the accuracy of the sub-component recommender would
only improve by less than ten percent.

Qualitative Results As was done for RA and Rc, a decision questionnaire was given to
the triagers for the sub-component recommender.

For sub-component recommendation, five responses indicated the triagers felt that
three recommendations was a reasonable number of recommendations. However, three
responses indicated that three recommendations was too few. We believe this result is
likely due to the low accuracy of the recommender; the triagers wanted to find the right
recommendation in the list and believed that it was lower down. As with the component
recommender, the triagers indicated twice that there were multiple applicable recommenda-
tions, and that they felt that it was easy to decide between them. In the usage questionnaire
filled out by one of the triagers, the triager commented that she found Rs to be useful.

6.3.2 Effort Estimation Recommender

Some projects, such as JBoss2, track the effort required to fix bugs and add features in
the bug repository.3 Previous work by Weil3 and colleagues presented a technique for
estimating how long it will take to fix a bug (a development-oriented decision) based on
effort information found in the bug reports [65]. To recommend how long it will take to
fix a new report, they use the nearest-neighbour algorithm and compare the summary and
description of the bug reports. Using their approach only 30% of their predictions were
within a +50% range of actual reported effort.

In effect, Weil3 et al. used a rougher version of MLTriage.4 To use MLTriage to create
a recommender that estimates effort (RE), the six questions would be answered as shown

2JBoss is an Java application server; available at labs . jboss.com/jbossas, verified 14/08/07
3None of the projects that we examined tracked bug fixing effort.
4The authors acknowledge that their work was motivated by our MLTriage work.

91

in Table 6.3.2, with the differences between answers for a RA and a RE highlighted. The
creation and analysis of this type of RD0 is left as future work.

Table 6.8: Answers to the six questions for MLT,,„ge when creating an effort estimation
recommender.

Question^Answer
Which reports?^Resolved reports are used.
How many reports?^Reports are collected from an eight-month period.
Which features?^The summary and description are used for the fea-

tures.
How to label?^Reports are labeled by effort bin. The effort values

(e.g., 1.5 hours) would be discretized into bins such
as < 1 hour, 1-2 hours, or 1 day.

Which labels are valid? All effort ranges would be considered valid.
Which algorithm?

^

^The Support Vector Machines algorithm is used to
create the recommender.

6.3.3 Impact Analysis Recommender

A common development-oriented decision is impact analysis during which the set of source
files that need to be accessed to fix a fault or implement a feature are determined [48, 70, 71].
Canfora and Cerulo used an information retrieval technique for doing impact analysis of
bug reports [13]. In their approach, they extracted text from both past reports and source
repository logs. After processing and indexing the terms, their system returned a list of
possible files to change based the text of a new report. With their approach they were able
to predict impacted source files with a top precision and recall of 36% and 67% respectively
for Firefox.

By linking a bug report to the source files impacted by the report, MLTriage could
create a source file recommender (RF). Table 6.3.3 shows the answers to the six MLTriage
questions for such a recommender with the differences between answers for a RA and a RE

highlighted. The creation and analysis of this type of RD0 is left as future work.

6.4 Assisted Configuration of Recommenders for Other Repos-

itory Types

We believe that elements of our assisted configuration approach can also apply to recom-
menders built for other kinds of repository artifacts. As one example, both Zimmermann
and colleagues [71] and Ying and colleagues [70] have proposed approaches that, given a
set of source files a developer is editing, recommend other files that the developer should
consider changing based on co-occurrences of changes to these files recorded in the source
repository. These kinds of approaches also require configuration, such as determining which
transactions to the source repository to consider when marking co-occurring changes. Sim-

92

Which algorithm?

Which labels are valid?

six questions for MLTriage when creating an impact analysis

Answer
Resolved reports are used.
Reports are collected from an eight-month period.
The summary and description are used for the fea-
tures.
Reports are labeled by the names of files that were
touched by the fix.
All file names could be considered valid. An alterna-
tive is to use degree of interest information, such as
Mylyn collects, to restrict the labels to the names of
files that were most important for the fix [35].
The Support Vector Machines algorithm is used to
create the recommender.

Table 6.9: Answers to the
recommender.

Question
Which reports?
How many reports?
Which features?

How to label?

ilar to the approach used for determining developer contribution levels for a RA (see Sec-
tion 5.1.2), a distribution graph of the size of transactions could be presented to the user
to aid in configuring a file recommender. These approaches could also be extended to have
the user configure which kinds of transactions to consider, similar to the path group selec-
tion for RA configuration (see Section 5.1.1). As one example, the transactions could be
grouped, perhaps based on whether the transactions solved similar problems based on bug
similarity, and characterized, perhaps through keyword extraction, and presented to the

user for selection.

6.5 Using Recommenders to Automate Triage Decisions

In developing MLTriage, we envisioned that the created recommenders would be used in a
semi-automated fashion; the triager selects from a set of recommendations rather than a tool
automatically applying a recommendation. Our rationale is that in making a triage decision,
the triagers draws on knowledge that is not necessarily available to the recommender. For
example, when using a recommender to suggest to whom the report should be assigned
for resolution, the triager might choose from the set of developers the tool recommends
based on such knowledge as the current workload of each recommended developer, who is
on vacation, or other information that was not available in the bug repository and thus not

available to the recommender.
However, we found that for some projects, MLTriage can create RD() which have

a high enough precision or recall that it may be possible to use the recommenders to
either automate certain development-oriented decisions or as part of the report submission

process. For example, the RA for the Mylyn and Bugzilla projects had precisions above
90%. This means that reports for these projects could be assigned automatically with

few errors. We also found that the Rc for all five projects were above 75% for three

93

recommendations. This presents the possibility of having the submitter of the bug report
select from the product component recommendations instead of the longer list presented by
the issue tracking system. For projects, such as Eclipse Platform, where reports are triaged
within the team for a particular report, providing the Rc to the submitter may reduce the
number of misclassified reports that the triagers have to examine. However, more study of
the impact of RD0 recommenders on the triage process is needed.

6.6 Using an Incrementally Updated Algorithm

The approach we present in this dissertation trains the classifier using a batched set of data;
all the data is gathered together and fed to the machine learning algorithm so that the
recommender has a complete view of all the training data.. In contrast, an incrementally
updated algorithm only views the instances of the training data one at a time and the
classifier model is updated accordingly [60].

There are two potential advantages to using an incrementally updatable algorithm.
The first is that using an incrementally updated algorithm mimics how information flows
in to and alters a bug repository.

The second is that using an incrementally updated algorithm allows the classifier
model to be created on the fly. As explained in Section 3.5, the Sibyl classifiers are updated
by periodically downloading new training reports and adding them to the set of reports
to be used for training. When the recommender is trained, all the data is presented to
the algorithm at the same time. The process for updating client-side recommenders would
be the same; download the new training reports and present all the training reports to
algorithm in a batch. The new classifier is trained offline and then made active when
training has completed. A classifier trained with an incrementally updated machine learning
algorithm does not need to use an offline training process. As with updating the batch-
trained recommenders, new reports would be downloaded periodically, however the reports
could be integrated into the recommender as they are accessed. This may result in the
classifier being more responsive to project changes such as the addition of new developers

or product components.
Figure 6.2 and Figure 6.3 provides a view of the performance of an incrementally

updated Nave Bayes algorithm to create a RA where the reports are added to the rec-
ommender in chronological order. We chose to use the Naïve Bayes algorithm for our
comparison as we did not have access to a incrementally updatable version of Support Vec-
tor Machines. The recommenders are evaluated after fifty new reports are added to the
recommender. Figure 6.2 compares the precision of the incrementally updated classifier
for Eclipse and Firefox. The precision and recall of the Eclipse and Firefox RA created

using Naïve Bayes (see Chapter 3) have been added to the figures for comparison. As the
precision for the batch-data Nave Bayes RA would appear as a dot in the graph, we have

94

Table 6.10: Precision, recall and F-measure when using an incrementally updated Naïve
Bayes algorithm.

Predictions Firefox Eclipse
(P/R/F) (P/R/F)

1 50/0.5/1 5/0.6/1
2 49/1/2 3/0.6/1
3 47/2/4 3/1/2

100-

90 -

80

70 -

60 -

F
50

40

30

20

10

^0 -F,TITI-rtl,alar771-11^

..?"^S F, ..E3^2 2 2 5i 2 53 E13
N^0 00 0 N •Cl" CO 03 0 N V' CD

^ N N N N

I^IT r 1^1 1 • r

SS ES 2 2 S S ES 2 2 SS 2222E 53 2 2
N° 2 A 2 2 5^4 '4 Zi'• (9(V, 3^E gl 3^(`-i!^(75.1:

of Reports

-Eclipse - Incremental^ Eclipse - Batched Firefox - Incremental^ Firefox - Batched

Figure 6.2: Precision of a developer classifier created using an Naïve Bayes algorithm that
is incrementally updated.

interpolated the value. Similarly, Figure 6.3 shows the recall of the incrementally updated
classifiers for the two projects, with the recalls for the batched-data Naïve Bayes RA also

interpolated. We used the same data and data preparation process as in Section 3.2.6.
From the two figures we see that using an incremental Naïve Bayes algorithm does

not produce very good recommenders in the best case (i.e., using only the most recent 700
reports from Eclipse or 3800 for Firefox) as the best precision reached for both projects is
below that achieved when giving all of the reports to a Naïve Bayes algorithm in a single
batch. In each case, the recommender's precision and recall degrades substantially over

time.

95

20 -

18 -

16 -

14 -

1^6^11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146

of Reports

- Eclipse - Incremental^-Eclipse - Batched Firefox - Incremental^- - - Firefox - Batched

Figure 6.3: Recall of a developer classifier created using an Naïve Bayes algorithm that is
incrementally updated.

96

6.7 Providing Feedback to the Recommender

A limitation of the recommenders created using MLTriage is that they do not incorporate
direct feedback from the triager about the recommendations. For example, a component
recommender Rc could be created using MLTriage and then used by a tool that presents the
triager with the top recommendation. If the recommendation is not appropriate (i.e., the
triager does not like the recommendation), the triager could ask for a new recommendation
and the tool would move down the list. However, in not accepting the first recommendation,
the triager has provided some feedback; they have provided a negative case that might be
used to improve future recommendations. However, the algorithms that we investigate do
not directly take such feedback into account; the algorithms use positive labeling informa-
tion not negative labeling information. In other words, the algorithms require the label to
state "This instance belongs to this class" and do not directly use the information in the
statement "This instance does not belong to this class".

Prior work examined the used the use of feedback for a Rc [23]. Di Lucca and col-
league's approach to incorporating feedback in a component recommendation system was to
present the next likely component if the triager did not like the recommendation. However,
we disagree that this is truly providing feedback to the recommender, as the recommender
is not incorporating any new information from the rejection of the recommendation; if the
recommender was immediately presented with the same report it would produce the same
set of recommendations.

A potential technique for incorporating feedback into the recommender is to use
reinforcement learning [45, 64]. Reinforcement learning is concerned with how an agent
should behave so as to maximize a long-term reward. Reinforcement learning tries to de-
termine a policy that maps the states in the world to how the agent should react to the
states. In the context of RD0, the recommender would make a recommendation and would
receive a positive or negative answer. Based on that answer the recommender would make
new recommendations based on trying to maximize the reward (i.e., lower the recommen-
dation error rate). However, as a reinforcement learning algorithm is designed to trade-off
long-term and short-term reward, we believe that a triager or developer would likely give
up using the recommender before the recommender achieved a sufficient level of accuracy.

97

Chapter 7

Related Work

In this chapter we present work related to our machine learning-based approach for cre-
ating development-decision recommenders, MLTriage. We begin by presenting an overview
of other work that has observed the triage process and how reports are assigned to de-
velopers, one of the development-oriented decisions. Next, we discuss various work that
has mined data from software repositories. Since one of the types of development-oriented
decision recommenders, the developer assignment recommender, is a form of expert recom-
mender, we present an overview of various work that has looked at assisting with expert
recommendation, both inside and outside the field of software engineering. We end this
chapter with comparisons of other work that looks at providing support for triagers through
recommendation.

7.1 Studies of Developers doing Triage

To the best of our knowledge there have not been studies that specifically look at the
process of triage. However, other studies of developers do provide glimpses of the triage
process, primarily how developer assignment is done.

Sandusky and colleagues examined 182,000 reports from a large, thriving open source
development community to investigate the principle of negotiation in the coordination of
distributed software problem management [57]. They identified triage and assignment as
one of the six steps in the "normative software problem management process" [57, page
189] and one of the two steps on which they focused to investigate negotiation. Of the
thirteen topics found to be negotiated, "who is responsible for fixing the bug?" was the
sixth highest. Of the five topics that were higher in rank, three were repository-oriented
decisions ("is there a problem?', "is this a duplicate [report]", and "is this problem fixed?').
The remaining two were development-oriented decisions that can not be categorized ("what
is the best design?" and "how should the [report] be managed?").

Crowston observed the software change process used in the minicomputer division of
a large corporation [16]. He used a coordination theory approach to present two alternatives

98

to their report assignment process. The corporation's existing assignment strategy was to
assign reports to the developer in charge of the module that appeared in error (called
the specialist strategy). Crowston discussed the advantages and disadvantages of using a
generalist strategy whereby reports were given the next available developer and a market
strategy in which developers bid on the reports for which they will assume responsibility.
As MLTriage builds it recommenders based on historical evidence, which neither the general
or market use, it is inherently a specialist strategy.

Mockus and colleagues examined the development process used by two open-source
software projects, Apache' and Mozilla, and compared them to five commercial projects [46].
For the five commercial projects, they reported that reports were assigned to developers by
a supervisor according to developer availability and type of expertise required. A developer
recommender created using MLTriage assists the supervisor with the latter. For both the
Apache and Mozilla projects, it was reported that developers were allowed to self-assign
reports based on their code ownership, expertise, and interest. Mockus et al. also reported
that for the Apache project, triage was done by one or two interested developers who per-
formed periodic triage of new requests. From our observations this is consistent with other
open-source projects; although there may be various volunteers that help with triage, there
is usually one or two key people performing triage.

Ko and colleagues observed seventeen Microsoft developers to determine their infor-
mation needs [39]. They found that bug triage was a common developer activity, observing
that 9 out of the 17 developers triaged reports during the observed 90 minute period in
which they were observed. They found that the primary information needed by the observed
developers when doing triage was to determine if the problem was legitimate (a repository-
oriented decision), how difficult will it be to fix the problem (a development-oriented de-
cision) and is the problem worth fixing (a repository-oriented decision). MLTriage could
provide a recommender that would assist the developer in estimating the effort needed to
fix the report if the reports in the project's repository had information about the effort
required to fix reports (i.e., how difficult to fix) and the effort values were discretized (e.g.
< 30 minutes, < 1 hour, or < 5 hours). See Section 6.3 for more details.

Carstensen and colleagues analyzed the coordination work of software testing at a
Danish manufacturing company to promote general requirements for computer support [15].
They observed that triage, including the assignment of reports to developers, was handled
in weekly meetings. They suggested that a better classification system for the type and
importance of bugs would have facilitated the triage process. From informal conversations
with developers working on commercial projects, this assignment technique is still used,
but less often due to improved coordination tools such as on-line bug repositories.

'Apache is a popular web sever; http: //httpd. apache . org , verified 14/08/07.

99

7.2 Mining Software Artifact Repositories

Recent years have seen an increase in the mining of repository data from software projects,
primarily the source repository, bug repository, and email archives. We divide these efforts
into categories based on the type of repository that is mined.

7.2.1 Mining Source Code Repositories

Source repositories have been mined for a variety of purposes including predicting faulty
modules [9, 37, 49], recommending other files to change [70, 71], and code ownership [8].
We highlight efforts from each of these topics.

Brun and colleagues proposed a program analysis technique for determining which
program properties may indicate faults [9]. In their approach, a program analysis tool
generates program properties for faulty and non-faulty versions of the the programs. These
properties are then given to a machine learning algorithm, and models of these properties
are created. Brun et al. experimented with using the Support Vector Machines and C5.0 (a
revised version of C4.5) to create these models. Based on experimentation, they found that
the Support Vector Machines algorithm was very good at ranking the program properties
to indicate which properties most indicated faulty software.

Both Ying and colleagues [70] and Zimmermann and colleagues [71] proposed ap-
proaches that, given a set of source files a developer is editing, recommend other files that
the developer should consider changing based on co-occurrences of changes to these files
recorded in the source repository. Their approaches were based on data mining techniques
and were found to discover hidden program dependencies. For example, on checking in a
set of files to the source repository, the developer could be warned about missing files (i.e.,
files that should have also been changed).

Bowman and Holt mined source repositories to determine the ownership architecture

of a system [8]. The ownership architecture shows how developers are grouped into teams
and relates these teams to the code for which they are responsible. Proposed uses of an own-
ership architecture included the identification of experts, the identification of non-functional
dependencies, software quality estimates, code abandonment, ownership coverage, and over-
staffing or understaffing of subsystems. However, the approach was only manually applied
to the Linux project as a proof of concept, and never employed in practice.

7.2.2 Mining Bug Repositories

Information stored in a bug repository has been used by a number of researchers. Some
have used the information to investigate questions about the development processes [57, 36],
some about relationships between artifacts of the development process [28, 66] and others
for providing triagers and project managers with recommendations [55, 32]. We highlight
efforts from each of these categories that have relevance to our work.

100

Mockus, Fielding and Herbsleb used data from the source and bug repositories of
two open source projects —Mozilla and Apache to compare the open source software
development (OSS) process to traditional commercial development methods [46]. Using
the bug repository, they arrived at conclusions about such things as the roles played in
the OSS development community, distribution of work, and the defect densities of the two
products. One finding was that OSS projects tend to have a group one order of magnitude
greater than a core developer group who repair defects and receive bug reports from a group
two orders of magnitude greater than the size of the core development team. This one to
two orders of magnitude difference between the group reporting the bugs and the group
fixing the bugs makes triage a problem for such projects.

Work by Sandusky and colleagues focus on the information found in the bug repos-
itory. The goal of this work was to identify bug report networks [58]. Bug report networks
are groupings of bug reports due to duplication, dependency or reference relationships.
These relationships are described in the reports as a means of improving how problems
are managed. This work relates to ours on two levels. At a low level both our work and
the work of Sandusky et al. investigate the use of grouping reports by a common feature.
In their work it is the relationships that are explicitly stated in the report. In our work,
the grouping is by development-decision categories. At a higher level, both works aim to
address the management of bug reports. In the case of Sandusky and colleagues, bug report
networks have two purposes: as an information structuring strategy to reduce cognitive and
organization effort and as a social ordering mechanism of different community roles such as
reporter, assigned-to, or cc: list member. Our work looks at assisting with the management
of reports by providing categorization recommendations for new reports.

Weif3 and colleagues developed a technique for estimating how long it will take to
fix a bug (a development-oriented decision) based on effort information found in the bug
reports [65]. To recommend how long it will take to fix a new report, they use the nearest-
neighbour algorithm and compare the title and description of the bug reports. Using their
approach only 30% of their predictions were within a ±50% range of actual effort. In effect,
Weif3 and colleagues used a rougher version of MLTriage.2

7.2.3 Email Archives

Bird and colleagues mined the email archive of the Apache HTTP server project to answer

questions about the communication and coordination practices of developers in open source
software [7]. They examined questions about the properties of developer social networks,
correlation between activity on mailing lists and activity in the source repository, and
developer status. Bird et al. found that the email social network was typical of other
electronic communities, such as a few members accounting for most of the messages. They

2The authors acknowledge that their work was motivated by our MLTriage work.

101

found that there was a strong correlation between mailing list activity and development
activity and developers do play a more significant social role than all the participants on
the mailing list.

Just as Bird et al. observed that a few members account for many of the email
messages in the mailing list, we observed that bug reports tend to be unevenly spread across
the different development-oriented decision categories. This uneven distribution across the
categories leads to the need to specify which labels are valid when creating a RDO•

7.3 Expertise Recommendation

One kind of recommender created using MLTriage is an assignment recommender that sug-
gests which developer to assign a report, RA. This kind of recommender is an expert rec-

ommender. In this section, we discuss other work that has examined the recommendation
of experts, both inside and outside of the software engineering field.

7.3.1 Expertise Recommendation in General

Outside of the field of software engineering there have been efforts using a variety of tech-
niques for recommending experts. In this section we discuss expert recommenders that use
matrices, graphs and information retrieval. Further examples of automatic expert finders
are listed by Yimam-seid and Kobsa [69].

One technique used for expert recommendation is the use of expertise matrices.
Streeter and Lochbaum presented a technique that used a matrix to categorize different
departments of a research and development company [63]. Five hundred departments were
categorized based on the titles of the documents produced by the departments. One hundred
areas of knowledge, or concepts, were determined using latent semantic analysis [21] and
used as the rows of an expertise matrix. An individual would query an expert recommender
tool and the terms of the query were used to extract appropriate rows from the expertise
matrix. The values of the rows were then used to provide a ranked list of departments.

Another technique used for expert recommendations is expert graphs. Campbell and
colleagues built expertise graphs for the topics appearing in email messages [11]. Emails
submitted by users to the expert recommender system were clustered based on text and
the relationships between the senders and receivers of messages in the clusters was created.
A graph-based ranking algorithm (HITS [38]) was then used to determine the user's topic
expertise.

Another graph-based approach is the ExpertiseNet, which creates expertise graphs
of researchers based on their publications [62]. ExpertiseNet uses the text and citations of
publications to create an expertise graph of a researcher. The citations are used to gauge
how an author influences certain fields based on the fields that her papers cite and the fields
that cite her paper. Latent semantic analysis [21] is used on the text of the document to

102

determine how related two documents are. An expert can be found by keyword searching
on the expertise nets.

A final example of how a system can provide expert recommendations is by infor-
mation retrieval. The ExpertFinder system developed for the MITRE corporation parsed
documents on the corporate intranet, such as technical papers, presentation, resumes, an-
nouncements and newsletters. ExpertFinder then provided a search engine interface that
returned expert recommendations based on frequency of terms associated with particular
employees [41].

Our work uses a fourth technique, machine learning, for creating the expertise model
of the developers. This technique is most similar to the information retrieval approach used
by the ExpertFinder in that we parse text to determine expertise. However, a machine
learning approach differs from an information retrieval approach in that we are not creating
an index of terms that point to developers, but are instead building a more general model
of developer expertise.

7.3.2 Expert Recommendation in Software Engineering

Expert recommendation in the software engineering domain has primarily focused on the
use of the source code repository. We provide three such examples.

The Expertise Recommender by Macdonald and Ackerman [43] provided expertise
recommendations for two groups, a technical support group and a software development
group. The expertise was determined based on two heuristics. The heuristic for the tech-
nical support group was based on a keyword search applied to the titles of other problem
reports. The heuristic for the development group was the Line-10 rule, which determines
the user name of the developer who made changes to a file in the source repository. The
expert for the file was deemed to be the developer who last checked in a change to the file.

Another system that used a similar approach is Mockus and Herbsleb's Expertise
Browser. The Expertise Browser provided recommendations of developers who have exper-
tise for source code files. They based the level of a developer's expertise on the number of
expertise atoms the developer had for the file, where an expertise atom was a change to
the file that was checked into the source repository. Like the Expertise Recommender, they
used the Line-10 rule, however where the Expertise Recommender only used the top name,
the Expertise Browser used all the names from the file's source repository log. The Ex-
pertise Browser contained an interface whereby a user selected a file and received a ranked
list of experts for the file, with the amount of expertise being indicated by font size. The
user could also select a developer and see which files they had worked on, and similarly
see how much they had modified the file. The Expertise Browser was deployed in a large,
distributed software development project, and found to be most useful in locations that
were either new to the project, or lacked local system expertise.

103

The Emergent Expertise Locator (EEL) by Minto and Murphy also used the Line-10
approach to determine expertise for emergent development teams [44]. An emergent team
is an ad-hoc team that spontaneously forms around solving particular problem. EEL pro-
vided recommendations for members of the emergent team based which files have changed
together in the past and which developers made the changes. The EEL approach used
matrix-based computation to provide the expertise recommendations for the set of files
that the developer was currently interested in.

7.4 Assisting Triage Through Recommendation

There are three other works that have looked at creating instances of RD0 recommenders.
Two have looked at creating developer recommenders (RA) and one has looked at creating
a component recommender (Rc). To our best knowledge, none of these works have been
incorporated into a tool for use by triagers. There have also been efforts to assist with
one of the repository-oriented decisions: detecting reports that describe problems already
represented in the repository (i.e., duplicate reports).

Di Lucca and colleagues [23] investigated the use of different machine learning al-
gorithms to recommend which of eight maintenance teams to which a report should be
assigned. Although they referred to their recommendations as development team recom-
mendations, as the development teams were each responsible for one product component,
from our point of view this is the same as component recommendation. Similar to our work,
they investigated the Support Vector Machines, Naïve Bayes, decision trees, and nearest
neighbour algorithms, and found that both Naïve Bayes and Support Vector Machines were
appropriate algorithms (see Section 3.2.6).

'Cubrani6 and Murphy [19] presented an approach to creating a RA based on text

categorization. In their work they achieved precision levels of around 30% on data from the
Eclipse project using the multinomial Naïve Bayes algorithm. Similar to our work, they
used heuristics for determining the label of the training reports (see Section 3.2.4).

Canfora and Cerulo [12, 14] outline an approach for developer recommendation
based on information retrieval. They used text from both the bug report description and
source repository logs and prepared the text in a manner similar that for MLTriage• Also,
they use a technique analogous to our use of the Naive Bayes algorithm for making the
recommendations. Their approach achieved a precision of around 20% for the Mozilla
project.

The work of both Runeson and colleagues [55] and Hiew [32] examined the use of
recommenders to assist triagers with one of the repository-oriented decision, determining if
a new report duplicates an existing report. Runeson and colleagues used a natural language
approach and reported being able to find 66% of the duplicates for reports in a corporate

104

bug repository. Hiew's approach also used natural language processing as well as clus-
tering, and achieved precision and recall rates of 29% and 50% respectively.

105

Chapter 8

Conclusions

The use of a bug repository in the software development process has a number of benefits
for a project. However, part of the cost of using a bug repository is the need for the reports
to be organized through the triage process. The organizational decisions made by triagers
can be divided into two types. The first type includes decisions that determine if a report is
meaningful, such as if the report is a duplicate or is not reproducible. We call such decisions
repository-oriented decisions. The second type includes decisions that organize the report
for the project's development process, such as determining the product component the
report affects or the developer to assign the report. We call these development-oriented
decisions. Making these decisions uses resources that might better be spent improving the
product rather than managing the development process.

This dissertation focuses on reducing human involvement in development-oriented
decisions through a process we call the the triage-assisting recommender creation process.
The work described in this dissertation makes four contributions to this field of software
engineering.

First, we present a machine learning-based triage-assisting recommender creation
process/framework, which we refer to as MLTriage, for creating recommenders that provide
suggestions to help a triager make development-oriented decisions.

Second, we show, through analytical and empirical evaluations, that recommenders
with good accuracy can be created using MLTriage. The analytical evaluation was conducted
across five different open source projects and showed that recommenders with good accuracy
could be created using MLTriage. The empirical evaluation was conducted using a field study
with four triagers from the UI component of the Eclipse Platform project and showed that
the recommenders worked well in practice.

Third, we introduce an approach to assist in the configuration of development-
oriented recommenders. This allows a project member to apply their project-specific knowl-
edge to the configuration of RD0 recommenders for their project.

Lastly, we show it is possible to provide recommendations based on learning from
repository information on a client rather than on a server. This allows RD° recommenders

106

Table 8.1: Triager wish lists for triage-assisting recommenders.
Triager A Is this a duplicate?

When did this regress?

Triager B How severe is this problem?

Triager C How severe is this problem?
Is this a duplicate?
What operating system is this for?
Keywords for the report.

Triager D How severe is this problem?
What is the business priority of this report?
Code solutions for similar types of problems.

to be created using a smaller amount of data.

8.1 Future Work

This work has looked at one point in the software development process, bug report triage,

and presented an approach to assist with one type of triage decision, development-oriented

decisions. However, more work needs to be done towards assisting with triage, specifically

with assisting repository-oriented decisions. There has already been some work towards

assisting with one type of repository-oriented decision, detecting duplicate reports [32, 55].

Observations of developer information needs have also shown that developers spend a lot of

time trying to reproduce behaviour specified in a report [39]. To the best of our knowledge,

there has been no work in automating reproduction of defect behaviour.

One of the questions posed to the four Eclipse triagers during our interview was for

what other fields or pieces of information would they like to have recommendations. The

triagers were told that they were allowed to ask for things that did not necessarily seem

feasible, but to simply provide a wish list. Table 8.1 shows their wish lists. The lists are

not necessarily in order of importance to the triagers. From the table we see that three of

the four triagers listed an estimation of severity of the reported problem. This is another

type of Rix, whose creation using MLTrtage could be explored.

From our experiences with this work, we saw a need to provide triagers with the

ability to train and use RD0 on their machine (i.e., a client environment) so as not to

require installing software on the project's bug repository server. To this end, we created

the assisted configuration approach for RD° recommenders (see Chapter 5). Although we

demonstrated and evaluated the approach for creating developer assignment recommenders

(RA), there is more work to be done. Firstly, more investigation is needed towards using the

assisted configuration approach for other RD() recommenders. Although we have presented

how to use the assisted configuration approach to aid in the creation of other recommenders

107

such as a project-component recommender (Re) and sub-component recommender (Rs),
further evaluation is necessary to determine if the assisted configuration process produces
recommenders that are comparable to those created in Chapter 5. Secondly, although we
provided mock-ups of the interface for assisting with RA configuration, there is still work
to be done towards testing a user interface for the assisted approach.

The results from our assisted configuration evaluation showed that repository mining
techniques may be viable on less than a full repository of data. This opens exciting new
directions and questions for milling software repository work, such as the applicability
of mining approaches to smaller projects and helping users to understand process data
extracted from repository data.

A final area of future work is with respect to the adoption of RD0 recommenders in
to a project's triage process. One of the challenges we faced in conducting the field study
was in getting triagers to try Sibyl, and in this we found we faced a paradox. Although
we configured recommenders for several projects, triagers were hesitant to use the recom-
menders until they were proven effective. However, to demonstrate that they were effective,
we needed to have triagers use them. This dissertation presents initial results that indicate
the effectiveness of RD() recommenders. However more work needs to be done towards the
goal of adoption, specifically in two directions.

The first direction is more evaluation of the recommenders to determine whether or
not the use of RD0 recommenders reduces the time a triager takes to triage a report. Recall
that this was one of our research questions (see Chapter 4). As mentioned in Section 4.2.3,
we were not able to collect enough information to determine if there was an effect. Observa-
tional studies of triagers using the recommenders along with a more precisely instrumented
interface is likely needed to answer this research question. Demonstrating that the use of
RD0 recommenders can reduce triage time will likely make the use of the recommenders
more attractive to triagers.

The second direction of work towards the adoption of RD0 recommenders is fur-
ther exploration of the range of RD0 recommenders that can be created using MLTriage.
Section 6.3, explained how MLTriage might be used to create recommenders for both effort
estimation and impact analysis, however the creation and evaluation of these recommenders
has been left for future work. Providing more RD() recommenders may also provide incen-
tive to triagers. For example, the Eclipse Platform UI triagers became interested in a
sub-component recommender after using Sibyl.

8.2 Contributions

This work makes the following contributions to the field of software engineering.
First, we presented an approach to creating RD0 recommenders that generalizes

across types of Rpo. In this dissertation we investigated four types of RD0 recommenders:

108

a recommender for who to assign a report to (RA), recommenders for which component
(Rc) and sub-component (Rs) to file a report against, and a recommender for which other
project members may want to be informed about progress on this report (RI).

Second, we showed that MLTriage generalizes across software projects. We created
RA, Rc, and RI recommenders for five different open source projects.

Third, we showed the recommenders created using MLTriage are generally accurate.
This was shown in two ways. The first was an analytical evaluation of the RA, Rc, and

recommenders. We further evaluated the RA, Re, Rs, and RI recommenders in a field
study conducted with four Eclipse platform triagers for the UI component. From this field
study we confirmed our analytical results.

Fourth, this dissertation provided an exploration of using supervised and unsuper-
vised machine learning algorithms to create RA recommenders. We evaluated the use of
conjunctive rules, Naïve Bayes, Support Vector Machines, nearest-neighbour, C4.5, and
Expectation Maximization to create such a recommender. We found that Support Vector
Machines creates the most accurate RA in general.

Fifth, we presented an approach to assist project members in configuring project-
specific parameters when creating a RD0 recommender. We demonstrated this approach by

creating RA recommenders for five projects. We showed how the approach assists a project
member in determining which reports to use, how many reports to use, how to label the

reports, and which labels are valid.
Finally, this dissertation provides a study of how triage is accomplished and the chal-

lenges faced by triagers for the project team of a successful open-source project. This study
included information from questionnaires, triager interviews, and a field study showing how

RD0 recommenders work in practice.

109

Bibliography

[1] Rakash Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Proceedings
of the Eleventh International Conference on Data Engineering, pages 3-14, 1995.

[2] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.
Machine Learning, 6(1):37-66, January 1991.

[3] John Anvik, Lyndon Hiew, and Gail C. Murphy. Coping with open bug repositories.
In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, pages
35-39, 2005.

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In
Proceedings of the 28th International Conference on Software Engineering, pages 318—
370, 2006.

[5] John Anvik and Gail C. Murphy. Determining implementation expertise from bug
reports. In Proceedings of the 4th International Workshop on Mining Software Repos-
itories, page 2. IEEE Computer Society, 2007.

[6] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval.
ACM Press, 1999.

[7] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swami-
nathan. Mining email social networks. In Proceedings of the 2006 International Work-
shop on Mining Software Repositories, pages 137-143, May 2006.

[8] Ivan T. Bowman and Richard C. Holt. Reconstructing ownership architectures to help
understand software systems. In Proceedings of International Workshop on Program
Comprehension, pages 28-37, 1999.

[9] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine learning over
program executions. In Proceedings of the 26th International Conference on Software
Engineering, pages 480-490, 2004.

[10] Bugsquad/triageguide. Web page. http://live.gnome.org/Bugsquad/TriageGuide.

[11] Christopher S. Campbell, Paul P. Maglio, Alex Cozzi, and Byron Dom. Expertise
identification using email communications. In CIKM '03: Proceedings of the twelfth
international conference on Information and knowledge management, pages 528-531.
ACM Press, 2003.

[12] Gerardo Canfora and Luigi Cerulo. How software repositories can help in resolving a
new change request. In Workshop on Empirical Studies in Reverse Engineering, 2005.

110

[13] Gerardo Canfora and Luigi Cerulo. Impact analysis by mining software and change
request repositories. In Proc. of International Software Metrics Symposium, page 29.
IEEE Computer Society Press, 2005.

[14] Gerardo Canfora and Luigi Cerulo. Supporting change request assignment in open
source development. In Proc. of the 21st ACM Symposium on Applied Computing,
pages 1767— 1772. ACM Press, 2006.

[15] Peter H. Carstensen and Carsten Sorensen. Let's talk about bugs! Scandinavian
Journal of Information Systems, 7(1):33-54, 1995.

[16] Kevin Crowston. A coordination theory approach to organizational process design.
Organization Science, 8(2):157-175, 1997.

[17] Kevin Crowston, James Howison, and Hala Annabi. Information systems success in
free and open source software development: theory and measures. Software Process:
Improvement and Practice, 11(2):123-148, 2006.

[18] Kevin Crowston and Barbara Scozzi. Coordination practices within floss development
teams The bug fixing process. In Computer Supported Acitivity Coordination, pages
21-30. INSTICC Press, 2004.

[19] Davor aubranió and Gail C. Murphy. Automatic bug triage using text classification. In
Proceedings of Software Engineering and Knowledge Engineering, pages 92-97, 2004.

[20] Cleidson R. B. de Souza, David Redmiles, Gloria Mark, John Penix, and Maarten
Sierhuis. Management of interdependencies in collaborative software development. In
Proceedings of the International Symposium on Empirical Software Engineering, pages
294-303, 2003.

[21] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391-407, 1990.

[22] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(1)J-38, 1977.

[23] Giuseppe Antonio Di Lucca, Massimiliano Di Penta, and Sara Gradara. An approach to
classify software maintenance requests. In Proceedings of the International Conference
on Software Maintenance, pages 93-102, 2002.

[24] Thomas G. Dietterich. Machine learning. Encyclopedia of Cognitive Science, 2003.

[25] Trung T. Dinh-Trong and James M. Bieman. The freebsd project: A replication
case study of open source development. IEEE Transactions on Software Engineering,
31(6):481-494, 2005.

[26] Pedro Domingos and Michael J. Pazzani. Beyond independence: Conditions for the
optimality of the simple bayesian classifier. In Proc. of the International Conference
on Machine Learning, pages 105-112, 1996.

111

[27] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug report
data for feature tracking. In Proceedings of the 10th Working Conference on Reverse
Engineering, page 23. IEEE Computer Society, 2003.

[28] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 23-32. IEEE Computer Society,
2003.

[29] George Forman and Ira Cohn. Learning from little: Comparision of classifiers given
little training. In Proceedings of 8th European Conference on Principles and Practices
of Knowledge Discovery in Databases, pages pp. 161-172, 2004.

[30] Les Gasser and Gabriel Ripoche. Distributed collective practices and F/OSS problem
management: Perspective and methods. In 2003 Conference on Cooperation, Innova-
tion and Technologie, 2003.

[31] Steve R. Gunn. Support Vector Machines for classification and regression. Technical
report, University of Southampton, Faculty of Engineering, Science and Mathematics;
School of Electronics and Computer Science, 1998.

[32] Lyndon Hiew. Assisted detection of duplicate bug reports. Master's thesis, University
of British Columbia, 2006.

[33] Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Machine
Learning, pages 137-142, 1998.

[34] George H. John and Pat Langley. Estimating continous distributions in Bayesian
classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial In-
telligence, pages 338-345, 1995.

[35] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides. In Pro-
ceedings of the 4th international conference on Aspect-oriented software development,
pages 159-168. ACM Press, 2005.

[36] James Howison Kevin Crowston. The social structure of free and open source software
development. First Monday, 10(2), 2005.

[37] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller.
Predicting faults from cached history. In Proceedings of the 29th International Con-
ference on Software Engineering, pages 489-498, 2007.

[38] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604-632, 1999.

[39] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In Proc. of the 29th Int'l Conference on Software Engi-
neering, pages 344-353, 2007.

[40] Stefan Koch and Georg Schneider. Effort, co-operation and co-ordination in an open
source software project: Gnome. Information Systems Journal, 12(1):27 — 42, 2002.

112

[41] David Mattox, Mark T. Maybury, and Daryl Morey. Enterprise expert and knowl-
edge discovery. In Proceedings of the International Conference on Human-Computer
Interaction, pages 303-307. Lawrence Erlbaum Associates, Inc., 1999.

[42] David W. McDonald. Evaluating expertise recommendations. In Proceedings of the
2001 International ACM SIGGROUP Conference on Supporting Group Work, pages
214-223. ACM Press, 2001.

[43] David W. McDonald and Mark S. Ackerman. Expertise recommender: A flexible rec-
ommendation system and architecture. In Proceedings of ACM Conference on Com-
puter Supported Collaborative Work, pages 231-240, 2000.

[44] Shawn Minto and Gail C. Murphy. Recommending emergent teams In Proc. of 4th
Int'l Workshop on Mining Software Repositories, page 5. IEEE Computer Society, May
2007.

[45] Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[46] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309-346, 2002.

[47] Audris Mockus and James D. Herbsleb. Expertise browser: A quantitative approach to
identifying expertise. In Proceedings of the 24th International Conference on Software
Engineering, pages 503-512, 2002.

[48] Sandro Morasca and Gunther Ruhe. A hybrid approach to analyze empirical software
engineering data and its application to predict module fault-proneness in maintenance.
Journal of Systems and Software, 53(3):225-237, Year.

[49] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. Automated support for classifying software failure reports. In
Proceedings of the 25th International Conference on Software Engineering, pages 465—
475, 2003.

[50] Ross Quinlan. C4.5: Programs for Machine Learning. 1993.

[51] Eric S. Raymond. The cathedral and the bazaar. First Monday, 3(3), 1998.

[52] Christian Robottom Reis and Renata Pontin de Mattos Fortes. An overview of the
software engineering process and tools in the Mozilla project. In Proceedings of the
Open Source Software Development Workshop, pages 155-175, 2002.

[53] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tackling the
poor assumptions of Naive Bayes classifiers. In Proceedings of International Conference
on Machine Learning, pages 616-623, 2003.

[54] Gregorio Robles, Stefan Koch, and Jess M. Gonzlez-Barahona. Remote analysis and
measurement of libre software systems by means of the cvsanaly tool. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS), May 2004.

113

[55] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate defect
reports using natural language processing. In Proc. of the 29th Int'l Conference on
Software Engineering, pages 499-510, 2007.

[56] Yasubumi Sakakibara. Recent advances of grammatical inference. Theoretical Com-
puter Science, 185(1):pp. 15-45, October 1997.

[57] Robert J. Sandusky and Les Gasser. Negotiation and the coordination of information
and activity in distributed software problem management. In Proceedings of the In-
ternational Conference on Supporting Group Work, pages 187-196. ACM Press, 2005.

[58] Robert J. Sandusky, Les Gasser, and Gabriel Ripoche. Bug report networks: Varieties,
strategies, and impacts in a F/OSS development community. Proceedings of 1st Int'l
Workshop on Mining Software Repositories, pages 80-84, 2004.

[59] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Com-
puting Surveys, 34(1)J-47, 2002.

[60] Richard Segal and Jeffrey Kephart. Incremental learning in SwiftFile. In Proceedings
of the Seventh International Conference on Machine Learning, pages 863-870, 2000.

[61] Jacek kwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? In Proceedings of the International Workshop on Mining Software Repositories,
pages 1-5. ACM Press, 2005.

[62] Xiaodan Song, Belle L. Tseng, Ching-Yung Lin, and Ming-Ting Sun. Expertisenet:
Relational and evolutionary expert modeling. In Proceedings of User Modeling, pages
99-108. Springer Berlin, 2005.

[63] Lynn A. Streeter and Karen E. Lochbaum. An expert/expert-locating system based on
automatic representationof semantic structure. In Proceedings of the Fourth Conference
on Artifical Intelligence Applications, pages 345-350, 1988.

[64] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[65] Cathrin Weil3, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long
will it take to fix this bug? In Proceedings of .4th Int'l Workshop on Mining Software
Repositories, 2007.

[66] Chadd C. Williams and Jeffrey K. Hollingsworth. Bug driven bug finders. In Pro-
ceedings of the 200.4 International Workshop on Mining Software Repositories, pages
70-74, May 2004.

[67] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. Transactions on Information
Theory, 37(4):1085-1094, July 1991.

[68] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools with
Java Implementations. 2000.

114

[69] Dawit Yimam-Seid and Alfred Kobsa. Expert-finding systems for organizations: Prob-
lem and domain analysis and the DEMOIR approach. Journal of Organizational Com-
puting and Electronic Commerce, 13(41-24, 2003.

[70] Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predict-
ing source code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574-586, September 2004.

[71] Thomas Zimmermann, Peter Weif3gerber, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes. In Proceedings of the 26th International
Conference on Software Engineering, pages pp.563-572, 2004.

115

Appendix A

Labeling Heuristics

This appendix presents the heuristics that were used for labeling the reports for the ana-

lytical evaluation of developer recommenders from Section 4.1.2.

A.1 Eclipse Platform Project

These heuristics are extensions of the ones given by aubrania and Murphy [19].

1. If the report has not been resolved (i.e., NEW, UNCONFIRMED, REOPENED) label the

report with the name of the developer who was last assigned to it.

2. If the report is marked as ASSIGNED, then a developer has taken responsibility for

fixing the report and the report is labeled with their name.

3. If the report was resolved by the assigned-to person, label the report with the assigned-

to person.

4. If the report was not resolved by the person who filed the report or who was assigned

to the report, label the report with the name of the developer who resolved it.

5. If the report is marked as FIXED, regardless of who resolved it, label the report with

the person who marked it as such.

6. If the report was resolved as not FIXED (i.e., WONTFIX, WORKSFORME, INVALID) by

the person who filed the report and was not assigned to it, label the report with the

name of the first person who responded to the report. This heuristic covers cases

where the submitter retracts a report such as after being asked for more information

and not being able to reproduce the problem.

7. If the report was resolved as not FIXED by the person who filed the report and was not

assigned to it, and no one responded to the bug, then the report cannot be labeled.

This heuristic covers cases when a bug is submitted by error, such as the reporter

116

not knowing the proper operation of Eclipse, and retracts the bugs before anyone else
responds to it.

8. If the report was resolved as LATER or WONTFIX by the person who filed the report
and was not assigned to it, label the report with the name of the reporter. This
heuristic covers reports that are to-do items for the developer.

9. If the report is marked as a DUPLICATE, label the report with the label of the report
of which this report is a duplicate of.

A.2 Mozilla Projects

As all of the Mozilla projects use the same development process, we used the same heuristics
for both the Firefox and Bugzilla projects.

1. If the report is marked as NEW, UNCONFIRMED, or REOPENED then no one has taken
responsibility for the report and it is unknown to which developer it will be assigned.
The report is labeled as unclassifiable.

2. If a report is resolved as WORKSFORME, it was so marked by the person doing the bug
triage, and it is unknown which developer would have been assign the report. The
report is labeled as unclassifiable.

3. If the report is marked as ASSIGNED, then a developer has taken responsibility for
fixing the report and the report is labeled with their name.

4. If the report is resolved as FIXED and the report has attachments which were approved
by a reviewer, then

(a) If there is only one submitter of approved patches, label the report with their
name.

(b) If there is more than one submitter of approved patches, choose the name of the
developer who submitted the most patches.

(c) If the submitter(s) of the approved patches cannot be determined, then label the
report with the person who is assigned to the report.

5. If the report was marked as FIXED without an attached patch, then it was likely a
regression and the report is labeled with the name of the person who marked the
report as fixed.

6. If the report is marked as INVALID and the person who resolved the report was not
the person who submitted the report, label the report with the name of the developer
who made the decision.

117

7. If the report was marked as INVALID by the person who submitted the report, the
report was likely submitted in error and it is unknown which developer would have
been assign the report. The report is labeled as unclassifiable.

8. Reports that are marked as WONTFIX are often resolved after some discussion and
the developers reach a consensus. It is unknown which developer would have fixed
the bug, so the report is labeled as unclassifiable.

9. If the report is marked as a DUPLICATE, label the report with the label of the report

of which this report is a duplicate of.

A.3 gcc Project

1. If the report is NEW, UNCONFIRMED, or REOPENED then no developer is responsible
for it and it is unknown who will be assigned. The report is labeled as unclassifiable.

2. If the report is marked as ASSIGNED, then a developer has taken responsibility for
fixing the report and the report is labeled with their name.

3. If the report is marked as WAITING or SUSPENDED, then a developer is waiting for
more information or some other event to occur, such as another bug being fixed,
before this bug can be resolved. As a developer is in the process of resolving the
problem, label the report with their name.

4. If a report is resolved as FIXED, then label the report with the name of the person

who marked the report as fixed.

5. If the report was resolved as INVALID, WONTFIX, or WORKSFORME by the submitter

then the report was likely submitted in error and it is unknown who would have been
assigned the report. The report is labeled as unclassifiable.

6. If the report was resolved as INVALID, WONTFIX, or WORKSFORME by someone other

than the submitter, then label the report with the developer name that made that

determination.

7. If the report was marked as INVALID and report was for the spam component then

the report was the result of actions by a spammer and is labeled as unclassifiable.

8. While the report status CLOSED is not valid for the gcc project, some bug activity
logs show that that a bug was marked as such. These appear to be old reports that
are in the repository so that other reports can reference them, such as duplicates.
Such reports are labeled with the name of the developer who last changed the status

of the report.

118

9. If the report is marked as a DUPLICATE, label the report with the label of the report
of which this report is a duplicate of.

A.4 Mylyn Project

1. If the report is NEW or REOPENED then no developer is responsible for it and it is
unknown who will be assigned. The report is labeled as unclassifiable.

2. If the report is marked as ASSIGNED, then a developer has taken responsibility for
fixing the report and the report is labeled with their name.

3. If the report is marked as a DUPLICATE, label the report with the label of the report
of which this report is a duplicate of.

4. If the report is marked as FIXED, regardless of who resolved it, label the report with
the person who marked it as such.

5. If the report was resolved as not FIXED (i.e., WONTFIX, WORKSFORME, INVALID) by
the person who filed the report and was not assigned to it, label the report with the
name of the first person who responded to the report. This heuristic covers cases
where the submitter retracts a report such as after being asked for more information
and not being able to reproduce the problem.

6. If the report was resolved as not FIXED by the person who filed the report and was not
assigned to it, and no one responded to the bug, then the report cannot be labeled.
This heuristic covers cases when a bug is submitted by error, such as the reporter
not knowing the proper operation of Eclipse, and retracts the bugs before anyone else
responds to it.

7. Reports that are marked as LATER are often resolved after some discussion and the
developers reach a consensus. It is unknown which developer would have fixed the
bug, so the report is labeled as unclassifiable.

119

NF(V)?
(N)?FV
NFV
NF(C)?
NF
ND
NAF(V)?
(N)?AF(V)?
(N)?ANF(V)?
NANF(V)?

Who last marked FIXED
Who last marked FIXED
Who last marked FIXED
Who last marked FIXED
Who last marked FIXED
Label of report that is duplicated
Who last marked FIXED
Who last marked FIXED
Who last marked FIXED
Who last marked FIXED

UD
(U)?NA(F)?
(NA)+(F)?
NA(F)?
(UI)+(V)?
(U)?NA
UI(V)?
NA
NF(V)?
UI

Label of report that is duplicated
Who attached last patch, Value of assigned-to field
Who attached last patch, Value of assigned-to field
Who attached last patch, Value of assigned-to field
(No Data Sources Selected)
Value of assigned-to field
Value of assigned-to field
(No Data Sources Selected)
Who attached last patch, Who last marked FIXED
(No Data Sources Selected)

Appendix B

Labeling Heuristics from Assisted
Configuration

This appendix presents the various configurations used during the evaluation of the assisted

configuration approach (see Chapter 5).

Table B.1: Heuristics used for the Eclipse project.

Table B.2: Heuristics used for the Firefox project.

120

U(NA)+(F)?
(U)?(NA)+(F)?
(U)?NA(F)?
UNA(F)?
U(NA)+F
(U)?(NA)+F
UNAF
(U)?NAF
UD(V)?
UA(F)?

Who attached last patch, Value of assigned-to field
Who attached last patch, Value of assigned-to field
Who attached last patch, Value of assigned-to field
Who attached last patch, Value of assigned-to field
Who last marked FIXED, Value of assigned-to field
Who last marked FIXED, Value of assigned-to field
Who last marked FIXED, Value of assigned-to field
Who last marked FIXED, Value of assigned-to field
Label of report that is duplicated
Who last marked FIXED, Value of assigned-to field

NF
ND(C)?
ND
(N)?(F0)+F
N(F0)±(F)?
(N)?(F0)+(F)?
N(F0)+F
NFO(F)?
NFOF
(N)?FOF

Who last marked FIXED
Label of report that is duplicated
Label of report that is duplicated
Who last marked FIXED
Who last marked FIXED, Who last
Who last marked FIXED, Who last
Who last marked FIXED
Who last marked FIXED, Who last
Who last marked FIXED
Who last marked FIXED

marked RESOLVED
changed the status

changed the status

Table B.3: Heuristics used for the gcc project.

Table B.4: Heuristics used for the Mylyn project.

Table B.5: Heuristics used for the Bugzilla project.
(U)?NA(F)?

^
Who attached last patch, Who last marked FIXED, Value of
assigned-to field

(NA)+(F)?
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

(U)?NAF
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

NA(F)?
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

(NA)+F
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

NAF
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

(N)?AF
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

UNA(F)?
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

UD(V)?
^

Label of report that is duplicated
UNAF
^

Who attached last patch, Who last marked FIXED, Value of
assigned-to field

121

40

20

10

*
o
.9- 30
te

Developer

60

50

120

100 -

80

40

20

Developer

Figure B.1: Developer resolution graph for Eclipse.

Figure B.2: Developer resolution graph for Firefox.

122

120

100

80 -

40 -

20 -

Developer

Figure B.3: Developer resolution graph for gcc.

120

100

80
co

60cua

40

20

Developer

Figure B.4: Developer resolution graph for Mylyn

123

160 1

140

120 -

100 -

into
a 80 -
re
*

60 -

40 -

20 -

o
Developer

Figure B.5: Developer resolution graph for Bugzilla

124

Appendix C

Ethics Certificate

UBC^The University of British Columbia
Office of Research Services
Behavioural Research Ethics Board
Suite 102, 6190 Agronomy Road, Vancouver, B.C. V6T 1Z3

CERTIFICATE OF APPROVAL- MINIMAL RISK RENEWAL
PRINCIPAL INVESTIGATOR:
Gail C. Murphy

DEPARTMENT:
UBC/Science/Computer Science

UBC BREB NUMBER:
H06-80339

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT:
N/A
Other locations where the research will be conducted:
N/A

CO-INVESTIGATOR(S):
John Anvik

SPONSORING AGENCIES:
Natural Sciences and Engineering Research Council of Canada (NSERC) - "Semi-Automating Bug Report
Assignment"
PROJECT TITLE:
Semi-Automating Bug Report Assignment

EXPIRY DATE OF THIS APPROVAL: April 13, 2008

'APPROVAL DATE: April 13, 2007

The Annual Renewal for Study have been reviewed and the procedures were found to be acceptable on ethical
grounds for research involving human subjects.

Approval Is issued on behalf of the Behavioural Research Ethics Board
and signed electronically by one of the following:

Dr. Peter Suedfeld, Chair
Dr. Jim Rupert, Associate Chair

Dr. Arminee Kazanjian, Associate Chair
Dr. M. Judith Lynam, Associate Chair

Dr. Laurie Ford, Associate Chair

Figure Cl: Ethics Certificate

125

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137

