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Abstract

Parallax is a distributed storage system that uses virtualization to provide storage

facilities specifically for virtual environments. The system employs a novel archi-

tecture in which storage features that have traditionally been implemented directly

on high-end storage arrays and switches are relocated into afederation ofstorage

VMs, sharing the same physical hosts as the VMs that they serve. This architecture

retains the single administrative domain and OS agnosticism achieved by array-

and switch-based approaches, while lowering the bar on hardware requirements

and facilitating the development of new features. Parallaxoffers a comprehensive

set of storage features including frequent, low-overhead snapshot of virtual disks,

the “gold-mastering” of template images, and the ability touse local disks as a

persistent cache to dampen burst demand on networked storage.
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Chapter 1

Introduction

In current deployments of hardware virtualization, storage facilities severely limit

the flexibility and freedom of virtual machines.

Perhaps the most important aspect of the resurgence of virtualization is that it

allows complex modern software – the operating system and applications that run

on a computer – to be completely encapsulated in a virtual machine. The encapsu-

lation afforded by the VM abstraction is without parallel: it allows whole systems

to easily be quickly provisioned, duplicated, rewound, andmigrated across physi-

cal hosts without otherwise disrupting execution. The benefits of this encapsulation

have been demonstrated by numerous interesting research projects that allow VMs

to travel through space [2, 15, 31], time [5, 14, 39], and to beotherwise manipu-

lated [37].

Unfortunately, storage has not experienced a rapid evolution in support of vir-

tualization, as we have seen in both system software and platform hardware such

as CPUs and chipsets. While “storage virtualization” is widely available, the term

is something of a misnomer in that it is largely used to describe the aggregation and

repartitioning of disks at very coarse time scales for use byphysical machines. VM

deployments are limited by modern storage systems because the storage primitives

available for use by VMs are not nearly as nimble as the VMs that consume them.

Operations such as remapping volumes across hosts and checkpointing disks are

frequently clumsy and esoteric on high-end storage systems, and are simply un-

available on lower-end commodity storage hardware.
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This thesis investigates the nature of these storage limitations in the context of

hardware virtualization. We contend that advanced storagefeatures can be incor-

porated into virtualized environments, and done so with minimal overheads. To

validate this position, we describe the design and implementation of the Parallax

storage system for the Xen virtual machine monitor.

Parallax is effectively a cluster volume manager for virtual disks: each physical

host shares access to a single, globally visible block device, which is collabora-

tively managed to present individual virtual disk images (VDIs) to VMs. Parallax

attempts touse virtualization in order to provide advanced storage servicesfor vir-

tual machines. Parallax takes advantage of the structure ofa virtualized environ-

ment to move storage enhancements that are traditionally implemented on arrays or

in storage switches out onto the consuming physical hosts. Each host in a Parallax-

based cluster runs astorage VM, which is a virtual appliance [30] specifically for

storage that serves virtual disks to the VMs that run alongside it. The encapsulation

provided by virtualization allows these storage features to remain behind the block

interface, agnostic to the OS that uses them, while moving their implementation

into a context that facilitates improvement and innovation.

The system has been designed with considerations specific tothe emerging

uses of virtual machines, resulting in some particularly unusual directions. Most

notably, we desire very frequent (i.e., every 10ms) snapshots. This capability al-

lows the fine-grained rewinding of the disk to arbitrary points in its history, which

makes virtual machine snapshots much more powerful. In addition, since our goal

is to present virtual disks to VMs, we intentionally do not support sharing of VDIs.

This eliminates the requirement for a distributed lock manager, and dramatically

simplifies our design. The VM-based design also allows Parallax to be imple-

mented in user-space, allowing for a very fast development cycle.

This work was published at the 3rd ACM SIGOPS/EuroSys European Confer-

ence on Computer Systems in 2008. [20]
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Chapter 2

Related Work

2.1 Storage in Support of Virtualization

Despite the many storage-related challenges present in virtualized environments,

we are aware of only two other storage systems that cater specifically to VM de-

ployments: Ventana [24] and VMware’s VMFS [34].

Ventana attempts to provide support for virtual machines atthe file system

level, effectively virtualizing the file system namespace and allowing individual

VMs to share underlying file objects where possible. File system virtualization is

a fundamentally different approach to the block-level virtualization provided by

Parallax. Ventana provides an improved degree of “transparency” into the contents

of virtual disks, but sacrifices generality in order to achieve it. Windows VMs, for

instance, cannot be hosted off of the NFS interface that the Ventana server presents.

We discuss these block-versus-file trade-offs at more length in Chapter 3.1.1. Ven-

tana’s authors do not evaluate its performance, but do mention that the system

suffers as the number of branches (equivalent to snapshots in Parallax) increases,

while parallax does not suffer from an analogous limitation.

VMFS is a commercial block-level storage virtualization system intended for

use with VMware ESX. VMFS is certainly the most similar knownsystem to

Parallax; both approaches specifically address virtualized environments by pro-

viding distributed facilities to convert one large shared volume into a number of

virtual disks for use by VMs. VMFS acts largely as a cluster file system, specifi-
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cally tuned to host image files. Virtual disks themselves arestored within VMFS

as VMDK [33] images. VMDK is a image format for virtual disks,similar to

QCOW [19] and VHD [22], which provides sparseness and allowsimages to be

“chained”. The performance of chained images decays linearly as the number of

snapshots increases in addition to imposing overheads for open file handles and in-

memory caches for each open image. In addition to chaining capabilities provided

by VMDK, VMFS employs a redo log-based checkpoint facility that has consider-

able performance limitations [35]. Specifically, gold mastering and branching vol-

umes are not well supported by redo logs. Parallax provides fine-grained sharing

and snapshots as core aspects of its design, such that performance can be main-

tained independent of the number or depth of snapshots.

Another approach that addresses issues similar to those of Parallax has been

undertaken in recent work by the Emulab developers at the University of Utah [6].

In order to provide snapshots for Xen-based VMs, the researchers modified Linux

LVM (Logical Volume Management) to provide a branching facility. No details

are currently available on this implementation.

2.2 Snapshots

Beyond VM-specific approaches, many other systems provide virtual volumes in

block-level storage, most notably FAB [8] and its predecessor Petal [16]. Both

systems, particularly FAB, aim to provide a SAN-like feature set at a low total

system cost. Both systems also support snapshots; the ability to snapshot in FAB

is best manifest in Olive [1, 12].

Parallax differs from these prior block-level virtual disksystems in three ways.

First, Parallax assumes the availability of a single sharedblock device, such as an

iSCSI or FiberChannel LUN, NFS-based file, or Petal-like virtual disk, while FAB

and similar systems compose a shared volume from a federation of storage de-

vices. Whereas other systems must focus on coordination among distributed stor-

age nodes, Parallax focuses on coordinating distributed clients sharing a network

attached disk. By relying on virtualized storage in this manner, we address funda-

mentally different challenges. Second, because we providethe abstraction of a lo-

cal disk to virtualized guest operating systems, we can makea reasonable assump-
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tion that disk images will be single-writer. This simplifiesour system and enables

aggressive performance optimization. Third, Parallax’s design and virtualized in-

frastructure enables us to rethink the traditional boundaries of a network storage

system. In addition, among block-level virtualization systems, only Olive [1] has

a snapshot of comparable performance to ours. Olive’s snapshots have more com-

plicated failure semantics than those of Parallax and the system imposes delays on

write operations issued during a snapshot.

WAFL [10] has very similar goals to those of Parallax, and as aconsequence

results in a very similar approach to block address virtualization. WAFL is con-

cerned with maintaining historical versions of the files in anetwork-attached stor-

age system. It uses tree-based mapping structures to represent divergences between

snapshots and to allow data to be written to arbitrary locations on the underlying

disk. Parallax applies similar techniques at a finer granularity allowing snapshots

of individual virtual disks, effectively the analogue of a single file in a WAFL en-

vironment. Moreover, Parallax has been designed to supportarbitrary numbers of

snapshots, as opposed to the hard limit of 255 snapshots available from current

WAFL-based systems.

2.3 Data Protection

Since Parallax is principally designed as a volume management (as opposed to data

protection) system, we do not consider backup or archival storage at great depth.

Still, because Parallax can feasibly supplant many of the features of these systems,

we consider a select few.

Continuous Data Protection is a fine-grained solution to data protection where

every modification to a file system or disk is recorded. Its commercial success is in

part due to the need for strong corporate data retention policies. Many companies

offer systems with protection at or near this level, including Microsoft [21] and

IBM [11]. Parallax’s snapshot system is better described asnear continuous, even

though it can be configured to provide protection at the finestgranularity. We

evaluate this potential briefly in Chapter 5.1.2.

Venti [26] is an archival storage system for use with Plan 9 [25] and forms the

basis of Fossil, Plan 9’s file system. Venti is a content addressed storage system at
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the block level designed to provide permanent and transparent backups with per-

formance comparable to that of a traditional file system. Snapshots, compression,

and variable sized blocks are also supported. Venti does notsupport delete opera-

tions, so use of the system necessitates adopting write-once semantics. The on-disk

structure shares elements with Parallax’s extents, and snapshots use a similar tree

structure. Venti also stores significant meta-data along with each block on disk

including an on-disk directory structure with each group ofblocks.

Elephant [29] explored protecting files from accidental modifications and dele-

tion. In contrast with Parallax, user driven data retentionpolicies are employed.

This is possible in Elephant because of the file-system, as opposed to block level,

interface. However, policy could be added to Parallax at thevolume level. While

course-grained, this would enable applying different policies to, for example, home

and system directories, which could capture most common policy differences. By

tracking the differences between multiple versions of files, Elephant is also able

to determine likely versions to be deleted. Even though there is significantly less

semantic information at the block level, Parallax may be able to employ similar

techniques.

2.4 Other Approaches

Many other systems have provided snapshots as a storage system feature, rang-

ing from file system-level support in ZFS [28] to block-levelvolume management

systems like LVM2 [27]. In every case these systems suffer from either a lim-

ited range of supported environments, severely limited snapshot functionality, or

both. These limitations make them ill-suited for general deployment in virtualized

storage infrastructures.
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Chapter 3

System Architecture

3.1 Clustered Storage Appliances

Figure 3.1 presents a high-level view of the structure of a Parallax-based cluster.

Parallax provides block virtualization by interposing between individual virtual

machines and the physical storage layer. The virtualized environment allows the

storage virtualization service to be physically co-located with its clients. From an

architectural perspective, this structure makes Parallaxunique: the storage system

runs in an isolated VM on each host and is administratively separate from the

client VMs running alongside it; effectively, Parallax allows the storage system to

be pushed out to include slices of each machine that uses it.

In this chapter, we describe the set of specific design considerations that have

guided our implementation, and then present an overview of the system’s structure.

3.1.1 Design Considerations

Parallax’s design is based on four high-level themes:

Agnosticism and isolation. Parallax is implemented as a collaborative set of

storageappliances; as shown in Figure 3.1, each physical host in a cluster contains

a storage VM that is responsible for providing storage to other virtual machines

running on that host. This VM isolates storage management and delivery to a single

container that is administratively separate from the rest of the system. This design

has been used previously to insulate running VMs from devicedriver crashes [7,

7
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Figure 3.1: Parallax is designed as a set of per-host storage appliancesthat
share access to a common block device and present virtual disks to client
VMs.

17], allowing drivers to be transparently restarted. Parallax takes this approach a

step further to isolate storage virtualization in additionto driver code.

Isolating storage virtualization to individual per-host VMs results in a system

that is agnostic to both the OSes that run in other VMs on the host, and the physical

storage that backs VM data. A single cluster-wide administrator can manage the

Parallax instances on each host, unifying the storage management role.

Blocks not files. In keeping with the goal of remaining agnostic to OSes run-

ning within guest VMs, Parallax operates at the block, rather than file, level. Block-

level virtualization provides a narrower interface and allows Parallax to present

simple virtual disks to individual VMs. While virtualization at the block level
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yields an agnostic and simple implementation, it also presents a set of challenges.

The “semantic gap” introduced by virtualizing the system ata low level obscures

higher-level information that could aid in identifying opportunities for sharing, and

complicates request dependency analysis, as discussed in Chapter 4.1.1.

Minimize lock management. Distributed storage has historically implied

some degree of concurrency control. Write sharing of disk data, especially at the

file system level, typically involves the introduction of some form of distributed

lock manager. Lock management is a very complex service to provide in a dis-

tributed setting and is notorious for difficult failure cases and recovery mechanisms.

Moreover, although write conflict resolution is a well-investigated area of systems

research, it is one for which no general solutions exist.

Parallax’s design is premised on the idea that data sharing in a cluster environ-

ment should be provided by application-level services withclearly defined APIs,

where concurrency and conflicts may be managed with application semantics in

mind. Therefore, itexplicitly excludes support for write-sharing of individual vir-

tual disk images. The system ensures that each VDI has at mostone writer, greatly

reducing the need for concurrency control. Some degree of concurrency manage-

ment is still required, but only when performing administrative operations such

as creating new VDIs, and in very coarse-grained allocations of writable areas on

disk. Locking operations are explicitly not required as part of the normal data path

or for snapshot operations.

Snapshots as a primitive operation. In existing storage systems, the abil-

ity to snapshot storage has typically been implemented as anafterthought, and for

very limited use cases such as the support of backup services. Post-hoc implemen-

tations of snapshot facilities are typically complex, involve inefficient techniques

such as redo logs [34], or impose hard limits on the maximum number of snap-

shots [10]. Our belief in constructing Parallax has been that the ability to take and

preserve very frequent, low-overhead snapshots is an enabling storage feature for a

wide variety of VM-related applications such as high-availability, debugging, and

continuous data protection. As such, the system has been designed to incorporate

snapshots from the ground up, representing each virtual disk as a set of radix-tree

based block mappings that may be chained together as a potentially infinite series

of copy-on-write (CoW) instances.
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Figure 3.2: Overview of the Parallax system architecture.

3.1.2 System Structure

Figure 3.2 shows an overview of Parallax’s architecture andallows a brief discus-

sion of components that are presented in more detail throughout the remainder of

the paper.

As discussed above, each physical host in the cluster contains a storage appli-

ance VM that is responsible for mediating accesses to an underlying block storage

device by presenting individual virtual disks to other VMs running on the host.

This storage VM allows a single, cluster-wide administrative domain, allowing

functionality that is currently implemented within enterprise storage hardware to

be pushed out and implemented on individual hosts. The result is that advanced

storage features, such as snapshot facilities, may be implemented in software and

delivered above commodity network storage targets.

Parallax itself runs as a user-level daemon in the Storage Appliance VM, and

uses Xen’sblock tap driver [38] to handle block requests. The block tap driver

provides a very efficient interface for forwarding block requests from VMs to dae-

mon processes that run in user space of the storage applianceVM. The user space

portion of block tap defines an asynchronous disk interface and spawns atapdisk

process when a new VM disk is connected. Parallax is implemented as a tapdisk

library, and acts as a single block virtualization service for all client VMs on the

physical host.

Each Parallax instance shares access to a single shared block device. We place
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no restrictions as to what this device need be, so long as it issharable and accessible

as a block target in all storage VM instances. In practice we most often target iSCSI

devices, but other device types work equally well. We have chosen this approach as

it requires the lowest common denominator of shared storage, and allows Parallax

to provide VM storage on the broadest possible set of targets.

Virtual machines that interact with Parallax are presentedwith entire virtual

disks. Xen allows disks to be accessed using both emulated and paravirtualized

interfaces. In the case of emulation, requests are handled by a device emulator that

presents an IDE controller to the client VM. Emulated devices generally have poor

performance, due to the context switching required to emulate individual accesses

to device I/O memory. For performance, clients may install paravirtual device

drivers, which are written specifically for Xen-based VMs and allow a fast, shared-

memory transport on which batches of block requests may be efficiently forwarded.

By presenting virtual disks over traditional block device interfaces as a storage

primitive to VMs, Parallax supports any OS capable of running on the virtualized

platform, meeting the goal of agnosticism.

The storage VM is connected directly to physical device hardware for block

and network access. Including physical block device drivers in the storage VM

allows a storage administrator the ability to do live upgrades of block device drivers

in an active cluster. This is an area of future exploration for us, but a very similar

approach has been described previously [7].

3.2 Virtual Disk Images

Virtual Disk Images (VDIs) are the core abstraction provided by Parallax to vir-

tual machines. A VDI is a single-writer virtual disk which may be accessed in a

location-transparent manner from any of the physical hostsin the Parallax cluster.

Table 3.1 presents a summary of the administrative operations that may be per-

formed on VDIs; these operations are available through the command line of the

storage VM. There are three core operations, allowing VDIs to be created, deleted,

and snapshotted. These are the only operations required to actively manage VDIs;

once created, they may be attached to VMs as would any other block device. In ad-

dition to the three core operations, Parallax provides someconvenience operations
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that allow an administrator to view catalogues of VDIs, snapshots associated with

a particular VDI, and to “tag” particular snapshots with a human-readable alias, fa-

cilitating creation of new VDIs based on that snapshot in thefuture. An additional

convenience function produces a simple visualization of the VDIs in the system as

well as tagged snapshots.

create(name, [snapshot]) → VDI id Create a new VDI, optionally based on an
existing snapshot. The provided name is
for administrative convenience, whereas
the returned VDI identifier is globally
unique.

delete(VDI id) Mark the given VDI as deleted. When the
garbage collector is run, the VDI and all
snapshots are freed.

snapshot(VDI id) → snap id Request a snapshot of the given VDI.
list() → VDI list Return a list of VDIs in the system.
snap list(VDI id) → snap list Return the log of snapshots associated

with the specified VDI.
snap label(snap id, name) Label the given snapshot with a human-

readable name.
tree()→ (tree view of VDIs) Generate a graph of the current system-

wide VDI tree (see Figure 3.4 for an ex-
ample.)

Table 3.1: VDI Administrative Interfaces.

3.2.1 VDIs as Block Address Spaces

In order to achieve the design goals that have been outlined regarding VDI func-

tionality, in particular the ability to take fast and frequent snapshots, Parallax bor-

rows heavily from techniques used to manage virtual memory.A Parallax VDI is

effectively a singleblock address space, represented by a radix tree that maps vir-

tual block addresses to physical block addresses. Virtual addresses are a continuous

range from zero to the size of the virtual disk, while physical addresses reflect the

actual location of a block on the shared blockstore. The current Parallax implemen-

tation maps virtual addresses using 4K blocks, which are chosen to intentionally

match block sizes used on x86 OS implementations. Mappings are stored in 3-level
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radix trees, also based on 4K blocks. Each of the radix metadata pages stores 512

64-bit global block address pointers, and the high-order bit is used to indicate that a

link is read-only. This layout results in a maximum VDI size of 512GB (9 address

bits per tree-level, 3 levels, and 4K data blocks yields 29∗3 ∗212
= 239

= 512GB).

Adding a level to the radix tree extends this by a factor of 29 to 256TB and has

a negligible effect on performance for small volumes (less than 512GB) as only

one additional metadata node per active VDI need be cached. Parallax’s address

spaces are sparse; zeroed addresses indicate that the rangeof the tree beyond the

specified link is non-existent and must be allocated. In thismanner, the creation

of new VDIs involves the allocation of only a single, zeroed,root block. Parallax

will then populate both data and metadata blocks as they are written to the disk.

In addition to sparseness, references can be shared across descendant radix trees in

order to implement snapshots.

3.3 Snapshots

A snapshot in Parallax is a read-only image of an entire disk at a particular point in

time. Like many other systems, Parallax always ensures thatsnapshots arecrash

consistent, which means that snapshots will capture a file system state that could

have resulted from a crash [1] [16] [23] [36] [24]. While thismay necessitate

running an application or file system level disk check such asfsck, it is unlikely

that any block-level system can offer stronger guarantees about consistency without

coordination with applications and file systems.

3.3.1 Coordination

Snapshots can be taken of a disk that is not in use, or they can be taken during nor-

mal operation. In this latter case, the snapshot semantics are strictlyasynchronous;

snapshots are issued directly into the stream of I/O requests in a manner similar

to write barriers. It is often advantageous (thought not necessary) for such asyn-

chronous snapshots to be coordinated with some external event. For example, in

order to make a backup, a user may want to create a snapshot after a file is saved.

Due to buffer caches, there is little guarantee that the saved file will actually be

present in a snapshot. Two methods exist for establishing this coordination.
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First, the disk may be quiesced prior to taking a snapshot. This can be further

categorized by the level at which the coordination occurs. The application, file

system, or block level can each be placed into a consistent state independently.

Quiescing at a higher level (i.e., application) establishes the strongest consistency

guarantees, but at the greatest performance impact. Parallax is designed to support

consistency at the lowest possible level — its own metadata.This design allows for

the highest possible performance. It also provides a framework upon which higher

level consistency may be added, by making Parallax’s capabilities visible at higher

stages in the storage stack.

Alternatively, by capturing the memory and CPU state along with the disk im-

age, the state of an entire system can be recorded. In this scenario, the system can

be resumed at any checkpoint, and any requests that have not reached disk will

be present in memory. This approach lends itself to virtual machines, because of

the relative ease with which their internal state can be captured and restarted. In a

prototype system for frequent and long running state capture, we have paired Par-

allax with a system called Remus [4]. Remus captures memory and CPU state at

frequencies similar to Parallax, and flushes this data to a dedicated Parallax disk.

We then issue coordinated snapshots of both the memory “disk” and the storage

volume. This enables complete system state capture at very high frequency.

3.3.2 Implementation

To implement snapshots, we use the high-order bit of block addresses in the radix

tree to indicate that the block pointed to is read-only. All VDI mappings are tra-

versed from a given radix root down the tree, and a read-only link indicates that the

entire subtree is read-only. In taking a snapshot, Parallaxsimply copies the root

block of the radix tree and marks all of its references as read-only. The original

root need not be modified as it is only referenced by a snapshotlog that is implic-

itly read-only. The entire process usually requires just three block-write operations,

two of which can be performed concurrently.

The result of a snapshot is illustrated in Figure 3.3. The figure shows a sim-

plified radix tree mapping six-bit block addresses with two address bits per radix

page. In the figure, a VDI has had a snapshot taken, and subsequently had a block
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Figure 3.3: Parallax radix tree (simplified with short addresses) and COW
behaviour.

of data written at virtual block address111111 (binary). The snapshot operation

copies the radix tree root block and redirects the VDI recordto point to the new

root. All of the links from the new root are made read-only, asindicated by the “r”

flags and the dashed grey arrows in the diagram.

Copying a radix tree block always involves marking all linksfrom that block

as read-only. A snapshot is completed using one such block copy operation, fol-

lowing which the VM continues to run using the new radix tree root. At this point,

data writes may not be applied in-place as there is no direct path of writable links

from the root to any data block. The write operation shown in the figure copies

every radix tree block along the path from the root to the data(two blocks in this

example) and the newly-copied branch of the radix tree is linked to a freshly allo-

cated data block. All links to newly allocated (or copied) blocks are writable links,

allowing successive writes to the same or nearby data blocksto proceed with in-

place modification of the radix tree. The active VDI that results is a copy-on-write

version of the previous snapshot.
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[root]

NetB SD Pristine
Sept 6 01:20:39 2007
snapid: (1050704,10)

10 snapshots

Fedora Core 6 Pristine
Sept 6 10:19:03 2007
snapid: (1871224,2)

2 snapshots

Windows 2003 Pristine
Sept 7 08:38:55 2007
snapid: (3746722,1)

1 snapshots

NetB SD testbox
Sept 6 02:34:23 2007

V DI id: 2

2 snapshots

Fedora Core 6 install
Sept 6 12:23:51 2007

V DI id:1

1 snapshots

W2K 3 image 1
Sept 7 11:13:51 2007

V DI id: 311 snapshots

W2K 3 image 2
Sept 7 11:14:26 2007

V DI id: 4

1 snapshots

W2K 3 image 3
Sept 7 11:14:32 2007

V DI id: 5

1 snapshots

Figure 3.4: VDI Tree View—Visualizing the Snapshot Log.

The address of the old radix root is appended, along with the current time-

stamp, to asnapshot log. The snapshot log represents a history of all of a given

VDI’s snapshots.

Parallax enforces the invariant that radix roots in snaplogs are immutable.

However, they may be used as a reference to create a new VDI. The common

approach to interacting with a snapshot is to create a writable VDI clone from it

and to interact with that. A VM’s snapshot log represents a chain of dependent

images from the current writable state of the VDI, back to an initial disk. When

a new VDI is created from an existing snapshot, its snapshot log is made to link

back to the snapshot on which it is based. Therefore, the set of all snapshot logs

in the system form a forest, linking all of the radix roots forall VDIs, which is

what Parallax’s VDI tree operation generates, as shown in Figure 3.4. This aggre-

gate snaplog tree is not explicitly represented, but may be composed by walking

individual logs backwards from all writable VDI roots.
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From a single-host perspective, the VDI and its associated radix mapping tree

and snapshot logs are largely sufficient for Parallax to operate. However, these

structures present several interesting challenges that are addressed in the following

chapters. Chapter 3.4 explains how the shared block device is managed to allow

multiple per-host Parallax instances to concurrently access data without conflicts

or excessive locking complexity. Parallax’s radix trees, described above, are very

fine grained, and risk the introduction of a great deal of per-request latency. The

system takes considerable effort, described in Chapter 4.1, to manage the request

stream to eliminate these overheads.

3.3.3 Fault Cases

Providing crash consistency for snapshots in a distributedsystem can be difficult.

Many of the coordination challenges faced by other systems [1] are obviated by

Parallax’s client-oriented design. However, since Parallax’s snapshots are highly

asynchronous, care must be taken with outstanding requeststo the block layer. We

discuss these challenges and their solution is Chapter 4.2;

3.4 The Shared Blockstore

Traditionally, distributed storage systems rely on distributed lock management to

handle concurrent access to shared data structures within the cluster. In designing

Parallax, we have attempted to avoid distributed locking wherever possible, with

the intention that even in the face of disconnection1 or failure, individual Parallax

nodes should be able to continue to function for a reasonableperiod of time while

an administrator resolves the problem. This approach has guided our management

of the shared blockstore in determining how data is laid out on disk and where

locking is required.

3.4.1 Extent-Based Access

The physical blockstore is divided, at start of day, into fixed-size extents. These

extents are large (2GB in our current implementation) and represent a lockable

1This refers to disconnection from other hosts. A connectionto the actual shared blockstore is
still required to make forward progress.
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single-allocator region. “Allocators” at the this level are physical hosts—Parallax

instances—rather than the consumers of individual VDIs. These extents are typed;

with the exception of a special system extent at the start of the blockstore, extents

either contain data or metadata. Data extents hold the actual data written by VMs

to VDIs, while metadata extents hold radix tree blocks and snapshot logs. This

division of extent content is made to clearly identify metadata, which facilitates

garbage collection. In addition, it helps preserve linearity in the placement of data

blocks, by preventing metadata from becoming intermingledwith data. All extents

start with an allocation bitmap that indicates which blocksare in use.

When a Parallax-based host attaches to the blockstore, it will exclusively lock a

data and a metadata extent for its use. At this point, it is free to modify unallocated

regions of the extent with no additional locking.2 In order to survive disconnection

from the lock manager, Parallax nodes may lock additional unused extents to allow

room for additional allocation beyond the capacity of active extents. We will likely

optimize this further in the future by arranging for connected Parallax instances

to each lock a share of the unallocated extents, further reducing the already very

limited need for allocation-related locking.

The system extent at the front of the blockstore contains a small number of

blockstore-wide data structures. In addition to system-wide parameters, like the

size of the blockstore and the size of extents, it has a catalogue of all fixed-size

extents in the system, their type (system, data, metadata, and unused), and their

current lock-holder. It also contains the VDI registry, a tree of VDI structs, each

stored in an individual block, describing all active VDIs inthe system. VDIs also

contain persistent lock fields and may be locked by individual Parallax instances.

Locking a VDI struct provides two capabilities. First, the locker is free to write

data within the VDI struct, as is required when taking a snapshot where the radix

root address must be updated. Second, with the VDI struct locked, a Parallax

instance is allowed to issue in-place writes toany blocks, data or metadata, refer-

enced as writable through the VDI’s radix root. The second ofthese properties is a

consequence of the fact that a given (data or metadata) blockis only ever marked

writable within asingle radix tree.

2This is a white lie — there is a very coarse-grained lock on theallocation bitmaps used with the
garbage collector, see Chapter 3.4.3.
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Figure 3.5 illustrates the structure of Parallax’s blockstore, and demonstrates

how extent locks allow a host to act as the single writer for new allocations within

a given extent, while VDI locks allow a host write access to allocated VDI blocks

across all extents on the blockstore.

3.4.2 Lock Management

The protocols and data structures in Parallax have been carefully designed to mini-

mize the need for coordination. Locking is required only forinfrequent operations:

to claim an extent from which to allocate new data blocks, to gain write access to

an inactive VDI, or to create or delete VDIs. Unless an extenthas exhausted its

free space, no VDI read, write, or snapshot operation requires any coordination at

all.

The VDI and extent locks work in tandem to ensure that the VDI owner can

safely write to the VDI irrespective of its physical location in the cluster, even if the

VDI owner migrates from one host to another while running. The Parallax instance

that holds the VDI lock is free to write to existing writable blocks in that VDI on

any extent on the shared blockstore. Writes that require allocations, such as writes

to read-only or sparse regions of a VDI’s address space, are allocated within the

extents that the Parallax instance has locked. As a VM moves across hosts in the

cluster, its VDI is managed by different Parallax instances. The only effect of this

movement is that new blocks will be allocated from a different extent.

The independence that this policy affords to each Parallax instance improves

the scalability and reliability of the entire cluster. The scalability benefits are clear:

with no lock manager acting as a bottleneck, the only limiting factor for throughput

is the shared storage medium. Reliability is improved because Parallax instances

can continue running in the absence of a lock manager as long as they have free

space in the extents they have already claimed. Nodes that anticipate heavy block

allocation can simply lock extra extents in advance.

In the case that a Parallax instance has exhausted its free space or cannot access

the shared block device, the local disk cache described in Chapter 5.1.2 could be

used for temporary storage until connectivity is restored.

Because it is unnecessary for data access, the lock manager can be very simple.
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In our implementation we designate a single node to be the lock manager. When the

manager process instantiates, it writes its address into the special extent at the start

of the blockstore, and other nodes use this address to contact the lock manager with

lock requests for extents or VDIs. Failure recovery is not currently automated, but

the system’s tolerance for lock manager failure makes manual recovery feasible.

3.4.3 Garbage Collection

Parallax nodes are free to allocate new data to any free blocks within their locked

extents. Combined with the copy-on-write nature of Parallax, this makes deletion

a challenge. Our approach to reclaiming deleted data is to have users simply mark

radix root nodes as deleted, and to then run a garbage collector that tracks metadata

references across the entire shared blockstore and frees any unallocated blocks.

Parallax’s garbage collector is described as Algorithm 1. It is similar to a mark-

and-sweep collector, except that it has a fixed, static set ofpasses. This is possible

because we know that the maximum length of any chain of references is the height

of the radix trees. As a result we are able to scan the metadatablocks in (disk)

order rather than follow them in the arbitrary order that they appear in the radix

trees. The key data structure managed by the garbage collector is theReachability

Map (RMap), an in-memory bitmap with one bit per block in the blockstore; each

bit indicates whether the corresponding block is reachable.

A significant goal in the design of the garbage collector is that it interfere as

little as possible with the ongoing work of Parallax. While the garbage collector is

running, Parallax instances are free to allocate blocks, create snapshots and VDIs,

and delete snapshots and VDIs. Therefore the garbage collector works on a “check-

point” of the state of the system at the point in time that it starts. Step 1 takes an

on-disk read-only copy of all block allocation maps (BMaps)in the system. Ini-

tially, only the radix roots of VDIs and their snapshots are marked as reachable.

Subsequent passes mark blocks that are reachable from theseradix roots and so

on. In Step 5, the entire RMap is scanned every time. This results in re-reading

nodes that are high in the tree, a process that could be made more efficient at the

cost of additional memory. The only blocks that the collector considers as can-

didates for deallocation are those that were marked as allocated in the checkpoint
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Algorithm 1 The Parallax Garbage Collector

1. Checkpoint Block Allocation Maps (BMaps) of extents.
2. Initialize the Reachability Map (RMap) to zero.
3. For each VDI in the VDI registry:

If VDI is not marked as deleted:
Mark its radix root in the RMap.
For each snapshot in its snaplog

If snapshot is not marked as deleted:
Mark its radix root in the RMap.

4. For each Metadata extent:
Scan its RMap. If a page is marked:

Mark all pages (in the RMap) that it points to.
5. Repeat step 4 for each level in the radix tree.
6. For each VDI in the VDI registry:

If VDI is marked as not deleted:
Mark each page of its snaplog in the RMap.

7. For each extent:
Lock the BMap.
For each unmarked bit in the RMap:

If it is marked in the BMap as well as in the
checkpointed copy of the BMap :

Unmark the BMap entry and reclaim the block.
Unlock the BMap.

taken in Step 1 (see Step 7). The only time that the collector interferes with ongo-

ing Parallax operations is when it updates the (live) allocation bitmap for an extent

to indicate newly deallocated blocks. For this operation itmust coordinate with

the Parallax instance that owns the extent to avoid simultaneous updates, thus the

BMap must be locked in Step 7. Parallax instances claim many free blocks at once

when looking at the allocation bitmap (currently 10,000), so this lock suffers little

contention.

We discuss the performance of our garbage collector during our system evalu-

ation in Chapter 5.1.2.
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3.4.4 Radix Node Cache

Parallax relies on the caching of radix node blocks to mitigate the overheads asso-

ciated with radix tree traversal. We cache only the intermediate radix nodes (i.e.,

Parallax’s metadata) not the actual data stored on disk. Ourcache policy is effec-

tively write-through; however, the cache also ensures the correct ordering of IO

requests during write operations through a generic dependency tracking mecha-

nism. We discuss this aspect of the design at more length in Chapter 4.2.1.

The cache is responsible for mitigating the performance impact of reads of

the radix tree. There are two aspects of Parallax’s design that makes this possi-

ble. First, single-writer semantics of virtual disk imagesremove the need for any

cache coherency mechanisms. Second, the ratio of data to metadata is approxi-

mately 512:1, which makes caching a large proportion of the radix node blocks

for any virtual disk feasible. With our current default cache size of just 64MB we

can fully accommodate a working set of nearly 32GB of data. Weexpect that a

production-grade Parallax system will be able to dedicate alarger portion of its

RAM to caching radix nodes. To maintain good performance, our cache must be

scaled linearly with the working set of data.

The cache replacement algorithm is a simple numerical hash based on block

address. Since this has the possibility of thrashing or evicting a valuable root node

in favor of a low-level radix node, we have plan to implement and evaluate a more

sophisticated page replacement algorithm in the future. For performance and con-

sistency reasons the root node is always kept in-cache.

3.4.5 Local Disk Cache

Our local disk cache leverages our client-oriented approach in order to allow per-

sistent data to be written by a Parallax host without contacting the primary shared

storage. The current implementation is in a prototype phase. We envision several

eventual applications for this approach. In this thesis, wediscuss an approach to

mitigate the effects of degraded network operation by temporarily using the disk as

a cache. We evaluate this technique in Chapter 5.1.2. In the future we plan to use

this mechanism to support fully disconnected operation of aphysical host.

The local disk cache is designed as a log-based ring of write requests that would
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have otherwise been sent to the primary storage system. The write records are

stored in a file or raw partition on the local disk. In additionto its normal process-

ing, Parallax consumes write records from the front of the log and sends them to

the primary storage system. By maintaining the same write ordering we ensure that

the consistency of the remote storage system is maintained.When the log is full,

records must be flushed to primary storage before request processing can continue.

In the event of a physical host crash, all virtual disks (which remain locked) must

be quiesced before the virtual disk can be remounted.

A drawback to this approach is that it incorporates the physical host’s local

disk into the failure model of the storage system. Users mustbe willing to accept

the minimum of the reliability of the local disk and that of the storage system. For

many users, this will mean that a single disk is unacceptableas a persistent cache,

and that the cache must be stored redundantly to multiple disks. For example, dual

hard drives with RAID 1 on each physical machine may suffice for some users.
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Chapter 4

Pipeline Operation

In addition to the basic architecture discussed in Chapter 3, Parallax employs sev-

eral interesting optimizations to ensure correct and efficient operation. In each of

the following cases, we consider Parallax to act on a pipeline of block I/O requests.

At each step we make every attempt to push the largest possible number of requests

through the pipeline, while balancing against the need to ensure correct operation

in the face of error.

4.1 Requests in the Pipeline

While Parallax’s fine-grained address mapping trees provide efficient snapshots

and sharing of block data, they risk imposing a high performance cost on block

requests. At worst, accessing a block on disk can incur threedependent metadata

reads that precede the actual data access. Given the high cost of access to block

devices, it is critical to reduce this overhead. However, since Parallax is present-

ing virtual block devices to the VMs that use it; we must be careful to provide the

semantics that OSes expect from their disks. We now discuss how Parallax aggres-

sively optimizes the block request stream while ensuring the correct handling of

block data.
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4.1.1 Consistency and Durability

VDIs appear as SCSI-like block devices that respond to I/O requests with the same

semantics as a local disk. Only 64 requests are exposed to Parallax at a time and

these in-flight requests may complete in any order. Parallaxdoes not support a tag

or barrier operation, although this is an area of interest for future work. Currently

guest OSes must allow the request queue to drain in order to ensure that all issued

writes have hit the disk. We expect that the addition of barriers will improve our

performance by better saturating the request pipeline.

While in-flight requests may complete out of order, Parallaxmust manage con-

siderable internal ordering complexity. Consider that each logical block request,

issued by a guest, will result in a number ofcomponent block requests to read,

and potentially update metadata and finally data on disk. Parallax must ensure that

these component requests are carefully ordered to provide both the consistency

and durability expected by the VM. These expectations may besatisfied through

the following two invariants:

1. Durability is the guest expectation that acknowledged write requests indicate

that data has been written to disk.1 To provide durability, Parallax cannot

notify the guest operating system that a logical I/O requesthas completed

until all component I/O requests have committed to physicalstorage.

2. Consistency is the guest expectation that its individualblock requests are

atomic—that while system crashes may lose in-flight logicalrequests, Par-

allax will not leave its own metadata in an invalid state.

In satisfying both of these properties, Parallax uses what are effectively soft

updates [18]. All dependent data and metadata are written todisk before updates

are made that reference this data from the radix tree. This ordering falls out of the

copy-on-write structure of the mapping trees, described inthe previous chapter.

For any VDI, all address lookups must start at the radix root.When a write is

being made, either all references from the top of the tree down to the data block

being written are writable, in which case the write may be made in-place, or there

is an intermediate reference that is read-only or sparse. Incases where such a

1Or has at least been acknowledged as being written by the physical block device.
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reference exists, Parallax is careful to write all tree databelow that reference to disk

before updating the reference on disk. Thus, to satisfy consistency for each logical

request, Parallax must not modify nodes in the on-disk tree until all component

requests affecting lower levels of the tree have been committed to disk.

We refer to the block that contains this sparse or read-only reference as acom-

mit node, as updates to it will atomically add all of the new blocks written below it

to the lookup tree. In the case of a crash, some nodes may have been written to disk

without their commit nodes. This is acceptable, because without being linked into

a tree, they will never be accessed, and the corresponding write will have failed.

The orphaned nodes can be returned to the blockstore throughgarbage collection.

4.1.2 Intra-request Dependencies

Logical requests that are otherwise independent can share commit nodes in the tree.

During writes, this can lead to nodes upon which multiple logical requests are de-

pendent. In the case of a shared commit node, we must respect the second invariant

for both nodes independently. In practice this is a very common occurrence.

This presents a problem in scheduling the write of the sharedcommit node. In

Figure 4.1, we provide an example of this behaviour. The illustration shows a com-

mit node and its associated data at four monotonically increasing times. At each

time, nodes and data blocks that are flushed to disk and synchronized in memory

appear darker in color, and are bordered with solid lines. Those blocks that appear

lighter and are bordered with dashed lines have been modifiedin memory but those

modifications have not yet reached disk.

The illustration depicts the progress ofn logical write requests,a0 throughan,

all of which are sequential and share a commit node. For simplicity, this example

will consider what is effectively a radix tree with a single radix node; the Parallax

pipeline behaves analogously when a full tree is present. Attime t0, assume for

the purpose of illustration that we have a node, in memory andsynchronized to

disk, that contains no references to data blocks. At this time we receive then

requests in a single batch, we begin processing the requestsissuing the data blocks

to the disk, and updating the root structure in memory. At time t1 we have made

all updates to the root block in memory, and a write of one of the data blocks
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t0 t1

t2 t3

Figure 4.1: Example of a shared write dependency.

has been acknowledged by the storage system. We would like tocomplete the

logical requesta0 as quickly as possible but we cannot flush the commit node in

its given form because it still contains references to data blocks that have not been

committed to disk. In this example, we wait. At timet2, all data blocks have

successfully been committed to disk; this is the earliest time that we can finally

proceed to flush the commit node. Once that request completesat time t3, we

can notify the guest operating system that the associated I/O operations have each

completed successfully.

The latency for completing requesta0 is thus the sum of the time required to

write the data for the subsequentn− 1 requests, plus the time required to flush

the commit node. The performance impact can be further compounded by the
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dependency requirements imposed by a guest file system. These dependencies are

only visible to Parallax in that the guest file system may stopissuing requests to

Parallax due to the increased latency on some previously issued operation.2

4.1.3 Commit Node Inheritance

As an additional optimization, we introduce the notion of commit node inheritance.

Consider a write operation that involves modifying intermediate nodes in the radix

treeNA andNB. Suppose further thatNA is higher in the tree thanNB, and is thus a

commit node forNB. As discussed, writes toNB can proceed immediately, as can

writes to any data blocks or intermediate nodes belowNB, while writing NA must

be delayed. If at this point a second write request is made that modifiesNB but

not NA then, following the algorithm above, we would declareNB a commit node

on the second write operation. This would necessitate waiting to writeNB until all

component requests on the second write had completed. However, in this case, we

can do better. SinceNA is a commit node forNB we know thatNB is a newly written

node and not linked into the original tree. Since this is the case, we can flush the

re-modifiedNB immediately, safe in the knowledge that it is still protected by NA

as a commit node. In effect, the commit node for the first outstanding request

is inherited onto the second. In addition to providing a performance boost, this

optimization has the effect of simplifying our I/O processing by introducing the

invariant that chains of dependency don’t grow beyond length two: a single commit

nodes, and many dependant nodes.

4.1.4 Dependency Tracking

Our API for dependency tracking consists of a single function provided by the

cache. A dependency can be added between any two nodes with outstanding write

requests. This is done before writes are flushed to disk, but after each node is writ-

ten. Since Parallax only writes at whole block granularity we don’t support more

complicated tracking, as is done in [9]. While this is a simple mechanism, it has

proven very powerful, and is used in establishing consistency for all of Parallax’s

current operations.

2With support for write barriers, this artifact would not be aconcern.
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4.1.5 Further Improvements

Commit nodes are the fundamental “dial” for trading off batching versus latency in

the request pipeline. In the case of sequential writes, where all outstanding writes

(of which there are a finite number) share a common commit node, it is possible

that every in-flight request must complete before notifications may be passed back

to the guest, resulting in bubbles while we wait for the guestto refill the request

pipeline. We intend to address this by limiting the number ofoutstanding logical

requests that are dependent on a given commit node, and forcing the node to be

written once this number exceeds a threshold, likely half ofthe maximum in-flight

requests. Issuing intermediate versions of the commit nodewill trade off a small

number of additional writes for better interleaving of notifications to the guest.

This technique was employed in [9]. As a point of comparison,we have disabled

the dependency tracking between nodes, allowing them to be flushed immediately.

Such an approach yields a 5% increase in sequential write performance, thought

it is obviously unsafe for normal operation. With correct flushing of intermediate

results we may be able to close this performance gap.

4.2 Snapshots in the Pipeline

In systems where distributed writes to shared data must be managed, a linearizabil-

ity of I/O requests around snapshots must be established, otherwise there can be no

consensus about the correct state of a snapshot. Establishing this linearity can be

expensive and complicated. In other systems, this requirespausing the I/O stream

to some degree. A simple approach is to drain the I/O queue entirely [16], while

a more complicated approach is to optimistically assume success and to retry I/O

that conflicts with the snapshot [1].

In Parallax, we expect that high frequency snapshots will inevitably conflict

with write operations. To avoid the performance penalties associated with the pre-

viously mentioned techniques, we instead treat snapshots as pipelined requests and

allow the pipeline to continue to be processed without pauses or retries. Lineariza-

tion of write requests in Parallax comes naturally because each VDI is being writ-

ten to by at most one physical host. Without our single-writer assumptions and our

client-oriented design such an approach would not be possible.
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The point at which Parallax receives a snapshot request is when the snapshot is

said to occur, and the snapshot is then placed in the pipeline. However, snapshots

share the same ordering semantics as any other request in thepipeline; the ordering

between any requests that are in the pipeline at the same timeis ambiguous. Under

normal conditions, all requests received prior to a snapshot will be contained in the

snapshot, while any later requests will not; however, this is not guaranteed.

By design, both requests arriving before and after the snapshot can continue to

be processed in parallel with the snapshot itself. Therefore, Parallax establishes an

ordering of requests with respect to the snapshot, but does not need to write blocks

to disk in that order. In fact, we can allow both pre-snapshotand post-snapshot

operations to complete on their respective views of the disksimultaneously, and

even after the record of the snapshot itself is written to disk. Our generalized de-

pendency tracking to provides a simple mechanism to ensure that the disk remains

consistent and that writes are correctly ordered.

4.2.1 Handling Failures

As long as Parallax terminates normally, allowing outstanding requests to complete

after the snapshot has been recorded does not pose a serious problem; a simple

short-lived lock on the snapshot image until it becomes truly read-only suffices.3

However, when considering the possibility that Parallax may crash, we must ad-

dress several potential problems. Each has been directly validated by injected fail-

ures in a running system.

Incomplete snapshots:Creating a snapshot requires that at least three blocks

are written to disk. It is possible that some of these writes reach disk just before

a crash, while others do not. The resulting incomplete snapshot is detected with

a simple validation check every time the system boots. Incomplete snapshots are

discarded at this time. This is considerably less complicated and costly than similar

methods for comparable systems [1].

Complete snapshot, but incomplete post-snapshot requests: It is possible

that a snapshot is correctly placed on disk, but some requests that follow the snap-

3We do not measure or discuss this delay any further, because it effects only the rate at which
new Parallax volumes can be created. We have no reason to believe that this is an important metric
at this time.
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shot are still in the pipeline when a crash occurs. This case is effectively no differ-

ent from those when a snapshot does not occur. Consistency isguaranteed by the

dependency tracking system.

Complete snapshot, incomplete pre-snapshot requests:It is also possible

that a snapshot is correctly placed on disk, but some requests that precede the

snapshot are still in the pipeline when a crash occurs. In this case, such requests

are necessarily lost. Since the ordering of these requests relative to the snapshot is

ambiguous and the requests have not been confirmed as completed to the guest OS,

the integrity of the snapshot is unchanged. The lost requests can be safely discarded

as if they had arrived after the snapshot. If the snapshot is made in conjunction with

a full system checkpoint, the guest OS will re-issue these requests. Consistency of

the disk is guaranteed by the dependency tracking system.
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Chapter 5

Evaluation

5.1 Evaluation

We now consider Parallax’s performance. As discussed in previous chapters, the

design of our system includes a number of factors that we expect to impose con-

siderable overheads on performance. Block address virtualization is provided by

the Parallax daemon, which runs in user space in an isolated VM and therefore in-

curs context-switching on every batch of block requests. Additionally, our address

mapping metadata involves 3-level radix trees, which risksa dramatic increase in

the latency of disk accesses due to seeks on uncached metadata blocks.

There are two questions that this performance analysis attempts to answer.

First, what are the overheads that Parallax imposes on the processing of I/O re-

quests? Second, what are the performance implications of the virtual machine spe-

cific features that Parallax provides? We address these questions in turn, using se-

quential read and write [3] (in Chapter 5.1.1) and PostMark [13] (in Chapter 5.1.1)

to answer the first and using a combination of micro and macro-benchmarks to

address the second.

In all tests, we use IBM eServer x306 machines, each node witha 3.2 GHz

Pentium-4 processor, 1 GByte of RAM, and an Intel e1000 GbE network interface.

Storage is provided by a NetApp FAS30701 exporting an iSCSI LUN over gigabit

1We chose to benchmark against the FAS 3070 because it is simply the fastest iSCSI target avail-
able to us. This is the UBC CS department filer, and so has required very late-night benchmarking
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links. We access the filer in all cases using the Linux open-iSCSI software initiator

(v2.0.730, and kernel module v1.1-646) running in domain 0.We have been de-

veloping against Xen 3.1.0 as a base. One notable modification that we have made

to Xen has been to double the maximum number of block requests, from 32 to 64,

that a guest may issue at any given time, by allocating an additional shared ring

page in the split block (blkback) driver. The standard 32-slot rings were shown to

be a bottleneck when connecting to iSCSI over a high capacitynetwork.

5.1.1 Overall Performance

It is worth providing a small amount of additional detail on each of the test con-

figurations that we compare. Our analysis compares access tothe block device

from Xen’s domain 0 (dom0 in the graphs), to the block device directly connected

to a guest VM using the block back driver (blkback), and to Parallax. Parallax

virtualizes block access through blktap [38], which facilitates the development of

user-mode storage drivers.

Accessing block devices from dom0 has the least overhead, inthat there is

no extra processing required on block requests and dom0 has direct access to the

network interface. This configuration is effectively the same as unvirtualized Linux

with respect to block performance. In addition, in dom0 tests, the full system RAM

and both hyperthreads are available to dom0. In the following cases, the memory

and hyperthreads are equally divided between dom0 (which acts as the Storage

VM2) and a guest VM.

In the “Direct” case, we access the block device from a guest VM over Xen’s

blkback driver. In this case, the guest runs a block driver that forwards requests

over a shared memory ring to a driver (blkback) in dom0, wherethey are issued to

the iSCSI stack. Dom0 receives direct access to the relevantguest pages, so there

is no copy overhead, but this case does incur a world switch between the client VM

and dom0 for each batch of requests.

Finally, in the case of Parallax, the configuration is similar to the direct case, but

efforts. The FAS provides a considerable amount of NVRAM on the write path, which explains the
asymmetric performance between read and write in many of ourbenchmark results.

2We intend to explore a completely isolated Storage VM configuration as part of future work on
live storage system upgrades.
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when requests arrive at the dom0 kernel module (blktap instead of blkback), they

are passed on to the Parallax daemon running in user space. Parallax issues reads

and writes to the Linux kernel using Linux’s asynchronous I/O interface (libaio),

which are then issued to the iSCSI stack.

Reported performance measures a best of 3 runs for each category. The alter-

nate convention of averaging several runs results in slightly lower performance for

dom0 and direct configurations relative to Parallax. Memoryand CPU overheads

were shown to be too small to warrant their inclusion here.

Sequential I/O

For each of the three possible configurations, we ran Bonnie++ twice in succession.

The first run provided cold-cache data points, while the second allows Parallax to

populate its radix node cache3. The strong write performance in the warm cache

case demonstrates that Parallax is able to maintain write performance near the ef-

fective line speed of a 1Gbps connection. Our system performance is within 5% of

dom0. At the same time, the 12% performance degradation in the cold cache case

underscores the importance of caching in Parallax, as doingso limits the overheads

involved in radix tree traversal. As we have focused our efforts to date on tuning

the write path, we have not yet sought aggressive optimizations for read operations.

This is apparent in the Bonnie++ test, as we can see read performance slipping to

more than 14% lower than that of our non-virtualized dom0 configuration.

PostMark

Figure 5.2 shows the results of running PostMark on the Parallax and directly at-

tached configurations. PostMark is designed to model a heavyload placed on many

small files [13]. The performance of Parallax is comparable to and slightly lower

than that of the directly connected configuration. In all cases we fall within 10% of

a directly attached block device. File creation and deletion are performed during

and after the transaction phase of the PostMark test, respectively. We have merged

both phases, and illustrated the relative time spent in each.

3In the read path, this may also have some effect on our filer’s caching; however, considering the
small increase in read throughput and the fact that a sequential read is easily predictable, we conclude
that these effects are minimal.
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Bonnie Benchmark − Parallax vs. Direct Attached Disk vs. Dom 0

Write Throughput
(Cold Cache)

Read Throughput
(Cold Cache)

Write Throughput
(Warm Cache)

Read Throughput
(Warm Cache)

B
on

ni
e 

T
hr

ou
gh

pu
t s

co
re

 (
K

/S
ec

)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

97090

56347

110656

58162

110718

58019

111910

64928

115043

68008

116201

67429

Parallax Direct Dom0

Figure 5.1: System throughput as reported by Bonnie++ during a first (cold)
and second (warm) run.

Local Disk Performance

To demonstrate that a high-end storage array with NVRAM is not required to main-

tain Parallax’s performance profile, we ran the same tests using a commodity disk

as a target. Our disk was a Hitachi Deskstar 7K80, which is an 80GB, 7,200 RPM

SATA drive with an 8MB cache. The results of Bonnie++ are shown in Figure 5.3.

Again, the importance of caching intermediate radix nodes is clear. Once the sys-

tem has been in use for a short time, the write overheads drop to 13%, while read

overheads are shown to be less than 6%. In this case, Parallax’s somewhat higher

I/O requirements increase the degree to which the local diskacts as a bottleneck.

The lack of tuning of read operations is not apparent at this lower throughput.

In Figure 5.4 we show the results of running the PostMark testwith a local

disk, as above. Similarly, the results show a only small performance penalty when

Parallax is used without the advantages of striping disks ora large write cache.
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Postmark Benchmark − Parallax vs. Direct Attached Disk
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Figure 5.2: PostMark results running against network available filer
(normalized).

5.1.2 Measuring Parallax’s Features

Disk Fragmentation

While our approach to storage provides many beneficial features, it raises concerns

over how performance will evolve as a blockstore ages. This is not unique to

Parallax, rather it is the natural argument against any copy-on-write system — that

block fragmentation will eventually prove detrimental to performance.

In Parallax, fragmentation occurs when the block addressesvisible to the guest

VM are sequentially placed, but the corresponding physicaladdresses are not.

This can come as a result of several usage scenarios. First, when a snapshot is

deleted, it can fragment the allocation bitmaps forcing future sequential writes to

be placed non-linearly. Second, if a virtual disk is sparse,future writes may be

placed far from other blocks that are adjacent in the block address space. Sim-

ilarly, when snapshots are used, the CoW behavior can force written blocks to

diverging locations on the physical medium. Third, the interleaving of writes to
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Bonnie Benchmark − Parallax vs. Direct Attached Disk vs. Dom 0
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Figure 5.3: System throughput against a local disk as reported by Bonnie++
during a first (cold) and second (warm) run.

multiple VDIs will result in data for each virtual disk beingplaced together on the

physical medium. Finally, VM migration will cause the associated Parallax virtual

disks to be moved to new physical hosts, which will in turn allocate from different

extents. Thus data allocations after migration will not be located near those that

occurred before migration. Note however that fragmentation will not result from

writing data to blocks that are not marked read-only, as thisoperation will be done

in place. In addition, sequential writes that target a read-only or sparse region of

a virtual disk will remain sequential when they are written to newly allocated re-

gions. This is true even if the original write-protected blocks were not linear on

disk, due to fragmentation.

Thus, as VDIs are created, deleted, and snapshotted, we intuitively expect that

some fragmentation of the physical media will occur, potentially incurring seeks

even when performing sequential accesses to the virtual disk. To explore this pos-
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Postmark Benchmark − Parallax vs. Direct Attached Disk

Overall File
Creation

Read Append Delete Data
Read

Data
Write

P
os

tm
ar

k 
sc

or
e 

(n
or

m
al

iz
ed

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0.92 0.926
0.875 0.875

0.926 0.921 0.919

Direct

% Time Spent on Operations
Mixed with Transactions

Parallax

% Time Spent on Operations
Mixed with Transactions

Figure 5.4: PostMark results running against a local disk (normalized).

sibility further, we modified our allocator to place new blocks randomly in the

extent, simulating a worst-case allocation of data. We thenbenchmarked local disk

and filer read performance against the resulting VDI, as shown in Figure 5.5.

Even though this test is contrived to place extreme stress ondisk performance,

the figure presents three interesting results. First, although it would be difficult to

generate such a degenerate disk in the normal use of Parallax, in this worst case

scenario, random block placement does incur a considerableperformance penalty,

especially on a commodity disk. In addition, the test confirms that the overheads

for Bonnie++, which emphasizes sequential disk access, arehigher than those for

PostMark, which emphasizes smaller reads from a wider rangeof the disk. Inter-

estingly, the third result is that when the workload is repeated, the filer is capable

of regaining most of the lost performance, and even outperforms PostMark with

sequential allocation. Although a conclusive analysis is complicated by the encap-

sulated nature of the filer, this result demonstrates that the increased reliance on

disk striping, virtualized block addressing, and intelligent caching makes the frag-

mentation problem both difficult to characterize and compelling. It punctuates the
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The Effects of Random Block Placement on Read Performance
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Figure 5.5: The effects of a worst case block allocation scheme on Parallax
performance.

observation made by Stein et al [32], that storage stacks have become incredibly

complex and that naive block placement does not necessarilytranslate to worse

case performance — indeed it can prove beneficial.

As a block management system, Parallax is well positioned totackle the frag-

mentation problem directly. We are currently enhancing thegarbage collector to

allow arbitrary block remapping. This facility will be usedto defragment VDIs

and data extents, and to allow the remapping of performance-sensitive regions of

disk into large contiguous regions that may be directly referenced at higher lev-

els in the metadata tree, much like the concept of superpagesin virtual memory.

These remapping operations are independent of the data path, similar in design to

the garbage collector discussed in Chapter 3.4.3. Ultimately, detailed analysis of

these features, combined with a better characterization ofrealistic workloads, will

be necessary to evaluate this aspect of Parallax’s performance.
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Radix tree overheads

In order to provide insight into the servicing of individualblock requests, we use

a microbenchmark to measure the overheads. There are three distinct node types

in a radix tree. A node may be writable, allowing in-place modification. It may

be sparse, in that it is non-physical and zero-filled. Finally, it may be read-only,

requiring that the contents be copied in order to process write requests. We instru-

mented Parallax to generate each of these types of nodes at the top level of the tree,

to highlight their differences. When non-writable nodes are reached at lower levels

in the tree, the performance impact will be smaller. Figure 5.6 shows the results.

Unsurprisingly, when a single block is written, Parallax performs very similarly to

the other configurations, because writing is done in place. When a sparse node is

reached at the top of the radix tree, Parallax must perform writes on intermediate

radix nodes, the radix root, and the actual data. Of these writes, the radix root can

only complete after all other requests have finished, as was discussed in Chapter

4.1. The faulted case is similar in that it too requires a serialized write, but it also

carries additional overheads in reading and copying intermediate tree nodes.

Garbage collection

As described in Chapter 3.4.3, the Parallax garbage collector works via sequential

scans of all metadata extents. As a result, the performance of the garbage collector

is determined by the speed of reading metadata and the amountof metadata, and is

independent of both the complexity of the forest of VDIs and their snapshots and

the number of deleted VDIs. We’ve run the garbage collector on full blockstores

ranging in size from 10GB to 50GB, and we characterize its performance by the

amount of data it can process (measured as the size of the blockstore) per unit time.

Its performance is linear at a rate of 0.96GB/sec. This exceeds the line speed of the

storage array because leaf nodes do not need to be read to determine if they can be

collected.

The key to the good performance of the garbage collector is that the Reacha-

bility Map is stored in memory. In contrast to the Block Allocation Maps of each

extent which are always scanned sequentially, the RMap is accessed in random or-

der. This puts a constraint on the algorithm’s scalability.Since the RMap contains
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Figure 5.6: Single write request latency for dom0, direct attached disks, and
three potential Parallax states. A 95% confidence interval is shown.

one bit per blockstore block, each 1GB of memory in the garbage collector allows

it to manage 32TB of storage. To move beyond those constraints, RMap pages

can be flushed to disk. We look forward to having to address this challenge in the

future, should we be confronted with a sufficiently large Parallax installation.

Snapshots

To establish baseline performance, we first measured the general performance of

checkpointing the storage of a running but idle VM. We completed 500 check-

points in a tight loop with no delay. A histogram of the time required by each

checkpoint is given in Figure 5.7. The maximum observed snapshot latency in this

test was 3.25ms. This is because the 3 writes required for most snapshots can be

issued with a high degree of concurrency and are often serviced by the physical

disk’s write cache. In this test, more than 90% of snapshots completed within a

single millisecond; however, it is difficult to establish a strong bound on snapshot
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Figure 5.7: Snapshot latency of running VM during constant checkpointing.

latency. The rate at which snapshots may be taken depends on the performance

of the underlying storage and the load on Parallax’s I/O request pipeline. If the

I/O pipeline is full, the snapshot request may be delayed as Parallax services other

requests. Average snapshot latency is generally under 10ms, but under very heavy

load we have observed average snapshot latency to be as high as 30ms.

Next we measured the effects of varying snapshot rates during the decompres-

sion and build of a Linux 2.6 kernel. In Figure 5.8 we provide results for var-

ious sub-second snapshot intervals. While this frequency may seem extreme, it

explores a reasonable space for applications that require near-continuous state cap-

ture. Larger snapshot intervals were tested as well, but hadlittle effect on perfor-

mance. The snapshot interval is measured as the average timebetween successive

snapshots and includes the actual time required to completethe snapshot. By in-

creasing the snapshot rate from 1 per second to 100 per secondwe incur only a

4% performance overhead. Furthermore, the majority of thisincrease occurs as we

move from a 20ms to 10ms interval.

Figure 5.9 depicts the results of the same test in terms of data and metadata

creation. The data consumption is largely fixed over all tests because kernel com-
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Figure 5.8: Measuring performance effects of various snapshot intervals on a
Linux Kernel decompression and compilation.

pilation does not involve overwriting previously written data, thus the snapshots

have little effect on the number of data blocks created. In the extreme, taking snap-

shots every 10ms, 65,852 snapshots were created, each consuming just 5.84KB of

storage on average. This accounted for 375 MB of metadata, roughly equal in size

to the 396 MB of data that was written.

To further explore the potential of snapshots, we created two alternate modes

to investigate even more fine-grained state capture in Parallax. In the first case

we perform a snapshot after every write request, and in the second we inject a

snapshot after each batch of requests. Owing to the experimental nature of this

code, our implementation is unoptimized. In particular, wewere forced to delay

the I/O stream to avoid issuing multiple snapshots in parallel. This restriction has

since been removed.

The effects on performance can be categorized as follows. First, there is an in-
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Figure 5.9: Measuring data consumption at various snapshot intervals on a
Linux Kernel decompression and compilation.

crease in the amount of I/O being performed. Capturing everyblock modification

multiplies the amount of I/O required by a factor of 3, while capturing each batch

can yield an increase as low as 5%. Second, these snapshot modes increase the

number of faulted writes, as a simple function of the number of snapshots taken.

Finally, the delays associated with correct dependency tracking and the pipeline

stalls we introduced add to overhead. It is our belief that the bulk of the perfor-

mance decrease is actually in this third category.

Snapshot per Write 877.921 seconds 1188.59 MB
Snapshot per Batch 764.117 seconds 790.46 MB

Table 5.1: Alternate snapshot configurations.

The impact on the performance of the kernel compile is shown in Table 5.1.

Metadata values are very much as we would expect, showing three metadata blocks

for each data block in the snapshot per write case, and two in the snapshot per batch
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Figure 5.10: Performance of bursted write traffic.

case. The performance results increase by 16% to 33%, and we feel that there is

considerable room for improvement, as discussed. We conclude from these results

that extending Parallax into the area of continuous data protection represents a

promising new direction.

Local Disk Cache

We evaluated our local disk cache to illustrate the advantage of shaping the traffic

of storage clients accessing a centralized network storagedevice. We have not

yet fully explored the performance of caching to local disk in all scenarios, as its

implementation is still in an early phase. The following experiment is not meant

to exhaustively explore the implications of this technique, merely to illustrate its

use and current implementation. In addition, the local diskcache demonstrates the

ease with which new features may be added to Parallax, owing to its clean isolation

from both the physical storage system and the guest operating system. The local

disk cache is currently implemented in less than 500 lines ofcode.

In Figure 5.10, we show the time required to process 500MB of write traffic by

4 clients simultaneously. This temporary saturation of theshared storage resource

may come as a result of an unusual and temporary increase in load, such as occurs
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Figure 5.11: Performance of bursted write traffic with local disk caching.

when a system is initially brought online. This scenario results in a degradation of

per-client performance, even as the overall throughput is high.

In Figure 5.11 we perform the same test with the help of our local disk cache.

The Storage VMs each quickly recognize increased latency intheir I/O requests to

the filer and enable their local caches. As a result, clients perceive an aggregate

increase in throughput, because each local disk can be accessed without interfer-

ence from competing clients. In the background, writes thathad been made to the

local cache are flushed to network storage without putting too much strain on the

shared resource. Clients process the workload in significantly less time (18-20 sec-

onds). A short time after the job completes, the cache is fully drained, though this

background process is transparent to users.

Metadata consumption

While there are some large metadata overheads, particularly in the initial extent, we

expect that metadata consumption in Parallax will be dominated by the storage of
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radix nodes. Measuring this consumption is difficult, because it is parameterized

by not only the image size, but also the sparseness of the images, the system-

wide frequency and quality of snapshots, and the degree of sharing involved. To

simplify this problem, we consider only the rate of radix nodes per data block on

an idealized system.

In a full tree of height three with no sparseness we must create a radix node

for every 512 blocks of data, an additional node for every 262,144 blocks of data,

and finally a root block for the whole disk. With a standard 4KBblock size, for

512GB of data, we must store just over 1GB of data in the form ofradix nodes.

Naturally for a non-full radix tree, this ratio could be larger. However, we believe

that in a large system, the predominant concern is the waste created by duplication

of highly redundant system images — a problem we explicitly address.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Parallax is a system that attempts to provide storage virtualization specifically for

virtual machines. The system moves functionality, such as volume snapshots, that

is commonly implemented on expensive storage hardware out into a software im-

plementation running within a VM on the physical host that consumes the storage.

This approach is a novel organization for a storage system, and allows a storage

administrator access to a cluster-wide administration domain for storage.

Despite its use of several potentially high-overhead techniques, such as a user-

level implementation and fine-grained block mappings through 3-level radix trees,

Parallax achieves good performance against both a very fastshared storage target

and a commodity local disk. We attribute our performance to our design which

avoids locking on the data path, and makes use of caching, batching, and an effi-

cient pipeline in order to mask increases in per-request latency. Our system also

boasts an impressive snapshot capability, which can be usedfor high frequency

state capture approaching that of continuous data protection.

6.2 Future Work

We are actively exploring a number of improvements to the system including the

establishing of a dedicated storage VM, the use of block remapping to recreate the
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sharing of common data as VDIs diverge, the creation of superpage-style mappings

to avoid the overhead of tree traversals for large contiguous extents, and exposing

Parallax’s snapshot and dependency tracking features as primitives to the guest file

system. We also plan to investigate the fragmentation problem in great detail and

explore the degree to which it can be solved by actively re-linearizing the blocks

of a running system. As an alternative to using a single network available disk, we

are designing a mode of operation in which Parallax itself will manage multiple

physical volumes. This may prove a lower cost alternative tolarge sophisticated

arrays.

Work is currently in progress to export the blktap interfaceto Linux block

devices. While virtual machine based operation is still themotivation for Parallax,

such a development will enable still wider use of the system.

We are also continually making performance improvements toParallax. As

part of these efforts we are also testing Parallax on a wider array of hardware. We

plan to deploy Parallax as part of an experimental VM-based hosting environment

later this year. This will enable us to refine our designs and collect more realistic

data on Parallax’s performance. An open-source release of Parallax, with current

performance data, is available at:http://dsg.cs.ubc.ca/parallax/.
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