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Abstract

Parallax is a distributed storage system that uses viratédn to provide storage
facilities specifically for virtual environments. The sgist employs a novel archi-
tecture in which storage features that have traditionadigrbimplemented directly
on high-end storage arrays and switches are relocated fetteaation ofstorage
VMs, sharing the same physical hosts as the VMs that they sehig afichitecture
retains the single administrative domain and OS agnostieishieved by array-
and switch-based approaches, while lowering the bar onwzaiedrequirements
and facilitating the development of new features. Paralffers a comprehensive
set of storage features including frequent, low-overheegshot of virtual disks,
the “gold-mastering” of template images, and the abilityuse local disks as a
persistent cache to dampen burst demand on networked storag
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Chapter 1

Introduction

In current deployments of hardware virtualization, steréagilities severely limit
the flexibility and freedom of virtual machines.

Perhaps the most important aspect of the resurgence oahadtion is that it
allows complex modern software — the operating system aplicagions that run
on a computer — to be completely encapsulated in a virtuahinacThe encapsu-
lation afforded by the VM abstraction is without paralldlallows whole systems
to easily be quickly provisioned, duplicated, rewound, arigrated across physi-
cal hosts without otherwise disrupting execution. The fienef this encapsulation
have been demonstrated by numerous interesting reseaijeltsrthat allow VMs
to travel through space [2, 15, 31], time [5, L4, 39], and t@otherwise manipu-
lated [37].

Unfortunately, storage has not experienced a rapid ewoliti support of vir-
tualization, as we have seen in both system software anfibprahardware such
as CPUs and chipsets. While “storage virtualization” iselfcavailable, the term
is something of a misnomer in that it is largely used to desctiie aggregation and
repartitioning of disks at very coarse time scales for usphygical machines. VM
deployments are limited by modern storage systems becaestdrage primitives
available for use by VMs are not nearly as nimble as the VMsdhasume them.
Operations such as remapping volumes across hosts andooiakg disks are
frequently clumsy and esoteric on high-end storage systants are simply un-
available on lower-end commodity storage hardware.



This thesis investigates the nature of these storage tionin the context of
hardware virtualization. We contend that advanced stofeaieires can be incor-
porated into virtualized environments, and done so withimméh overheads. To
validate this position, we describe the design and impleatiem of the Parallax
storage system for the Xen virtual machine monitor.

Parallax is effectively a cluster volume manager for virtliaks: each physical
host shares access to a single, globally visible block @ewidich is collabora-
tively managed to present individual virtual disk image®(¥) to VMs. Parallax
attempts tause virtualization in order to provide advanced storage sesfior vir-
tual machines. Parallax takes advantage of the structuaevisfualized environ-
ment to move storage enhancements that are traditiongtiieimented on arrays or
in storage switches out onto the consuming physical hostsh BEost in a Parallax-
based cluster runsstorage VM, which is a virtual appliance: [30] specifically for
storage that serves virtual disks to the VMs that run alateygi The encapsulation
provided by virtualization allows these storage featuoe®imain behind the block
interface, agnostic to the OS that uses them, while movieg tmplementation
into a context that facilitates improvement and innovation

The system has been designed with considerations specifieetemerging
uses of virtual machines, resulting in some particularlyaual directions. Most
notably, we desire very frequent (i.e., every 10ms) snagshibhis capability al-
lows the fine-grained rewinding of the disk to arbitrary gsiim its history, which
makes virtual machine snapshots much more powerful. Irtiaddsince our goal
is to present virtual disks to VMs, we intentionally do noppart sharing of VDIs.
This eliminates the requirement for a distributed lock nggmaand dramatically
simplifies our design. The VM-based design also allows Rerdb be imple-
mented in user-space, allowing for a very fast developmyeiec

This work was published at the 3rd ACM SIGOPS/EuroSys Ewngeonfer-
ence on Computer Systems in 2008. [20]



Chapter 2

Related Work

2.1 Storage in Support of Virtualization

Despite the many storage-related challenges presenttiraiiled environments,
we are aware of only two other storage systems that cateifisp#ig to VM de-
ployments: Ventana [24] and VMware’s VMFS [34].

Ventana attempts to provide support for virtual machinethatfile system
level, effectively virtualizing the file system namespacel allowing individual
VMs to share underlying file objects where possible. Filaeysvirtualization is
a fundamentally different approach to the block-levelualization provided by
Parallax. Ventana provides an improved degree of “tramsgst’ into the contents
of virtual disks, but sacrifices generality in order to agkid@. Windows VMs, for
instance, cannot be hosted off of the NFS interface that émeavia server presents.
We discuss these block-versus-file trade-offs at more eimg€hapte- 3.1.1. Ven-
tana’s authors do not evaluate its performance, but do orentiat the system
suffers as the number of branches (equivalent to snapshétarallax) increases,
while parallax does not suffer from an analogous limitation

VMFS is a commercial block-level storage virtualizatiorstgm intended for
use with VMware ESX. VMFS is certainly the most similar knosystem to
Parallax; both approaches specifically address virtuala@vironments by pro-
viding distributed facilities to convert one large sharedume into a number of
virtual disks for use by VMs. VMFS acts largely as a cluster &ystem, specifi-



cally tuned to host image files. Virtual disks themselvesséoeed within VMFS
as VMDK [33] images. VMDK is a image format for virtual disksimilar to
QCOW [19] and VHD [22], which provides sparseness and allomeges to be
“chained”. The performance of chained images decays lyearthe number of
snapshots increases in addition to imposing overheadpéor file handles and in-
memory caches for each open image. In addition to chainipglihties provided
by VMDK, VMFS employs a redo log-based checkpoint faciltat has consider-
able performance limitations [35]. Specifically, gold nesistg and branching vol-
umes are not well supported by redo logs. Parallax provigesdrained sharing
and snapshots as core aspects of its design, such thatrparfoe can be main-
tained independent of the number or depth of snapshots.

Another approach that addresses issues similar to thoserafld has been
undertaken in recent work by the Emulab developers at thedusity of Utah [5].
In order to provide snapshots for Xen-based VMs, the rekeesanodified Linux
LVM (Logical Volume Management) to provide a branching f&gi No details
are currently available on this implementation.

2.2 Snapshots

Beyond VM-specific approaches, many other systems provitigal/volumes in
block-level storage, most notably FAR [8] and its predecesetal [15]. Both
systems, particularly FAB, aim to provide a SAN-like featiget at a low total
system cost. Both systems also support snapshots; thgy abiBnapshot in FAB
is best manifest in Olive: [2, 12].

Parallax differs from these prior block-level virtual disfstems in three ways.
First, Parallax assumes the availability of a single shatedk device, such as an
iISCSI or FiberChannel LUN, NFS-based file, or Petal-likéuat disk, while FAB
and similar systems compose a shared volume from a federatistorage de-
vices. Whereas other systems must focus on coordinatiomguaistributed stor-
age nodes, Parallax focuses on coordinating distribuiedtslsharing a network
attached disk. By relying on virtualized storage in this memwe address funda-
mentally different challenges. Second, because we prdkil@bstraction of a lo-
cal disk to virtualized guest operating systems, we can raakasonable assump-



tion that disk images will be single-writer. This simplifiear system and enables
aggressive performance optimization. Third, Parallag'sigh and virtualized in-
frastructure enables us to rethink the traditional bouedanf a network storage
system. In addition, among block-level virtualization tgyss, only Olive [1] has
a snapshot of comparable performance to ours. Olive’s botpHave more com-
plicated failure semantics than those of Parallax and teesyimposes delays on
write operations issued during a snapshot.

WAFL [1C] has very similar goals to those of Parallax, and asm@sequence
results in a very similar approach to block address viradilon. WAFL is con-
cerned with maintaining historical versions of the files inedwork-attached stor-
age system. It uses tree-based mapping structures toeapoegergences between
snapshots and to allow data to be written to arbitrary location the underlying
disk. Parallax applies similar techniques at a finer graitylallowing snapshots
of individual virtual disks, effectively the analogue ofiagle file in a WAFL en-
vironment. Moreover, Parallax has been designed to supploittary numbers of
snapshots, as opposed to the hard limit of 255 snapshotalaeairom current
WAFL-based systems.

2.3 Data Protection

Since Parallax is principally designed as a volume managefas opposed to data
protection) system, we do not consider backup or archivabge at great depth.
Still, because Parallax can feasibly supplant many of tarifes of these systems,
we consider a select few.

Continuous Data Protection is a fine-grained solution ta gadtection where
every modification to a file system or disk is recorded. Its ocmrtial success is in
part due to the need for strong corporate data retentiocipsli Many companies
offer systems with protection at or near this level, inchgdMicrosoft [21] and
IBM [11]. Parallax’s snapshot system is better describedeas continuous, even
though it can be configured to provide protection at the figgahularity. We
evaluate this potential briefly in Chapter 5.1.2.

Venti [26] is an archival storage system for use with PlanZj ghd forms the
basis of Fossil, Plan 9's file system. Venti is a content askiré storage system at



the block level designed to provide permanent and transpégeckups with per-

formance comparable to that of a traditional file system.pShats, compression,
and variable sized blocks are also supported. Venti doesupgort delete opera-
tions, so use of the system necessitates adopting write seroantics. The on-disk
structure shares elements with Parallax’s extents, anasbog use a similar tree
structure. Venti also stores significant meta-data alorty e@ch block on disk

including an on-disk directory structure with each grouploicks.

Elephant [29] explored protecting files from accidental ificdtions and dele-
tion. In contrast with Parallax, user driven data retenpoficies are employed.
This is possible in Elephant because of the file-system, pesgul to block level,
interface. However, policy could be added to Parallax attiieme level. While
course-grained, this would enable applying differentget to, for example, home
and system directories, which could capture most commanoypdifferences. By
tracking the differences between multiple versions of filelephant is also able
to determine likely versions to be deleted. Even thoughetliesignificantly less
semantic information at the block level, Parallax may bes dblemploy similar
techniques.

2.4 Other Approaches

Many other systems have provided snapshots as a storagensfesiture, rang-
ing from file system-level support in ZFS 28] to block-levellume management
systems like LVM2 [27]. In every case these systems suffemfeither a lim-
ited range of supported environments, severely limiteghsinat functionality, or
both. These limitations make them ill-suited for generadldgment in virtualized
storage infrastructures.



Chapter 3

System Architecture

3.1 Clustered Storage Appliances

Figure 3.1 presents a high-level view of the structure of i@lRe-based cluster.
Parallax provides block virtualization by interposing weén individual virtual
machines and the physical storage layer. The virtualizegd@ment allows the
storage virtualization service to be physically co-lodatéth its clients. From an
architectural perspective, this structure makes Paraltéque: the storage system
runs in an isolated VM on each host and is administrativelyasgte from the
client VMs running alongside it; effectively, Parallaxails the storage system to
be pushed out to include slices of each machine that uses it.

In this chapter, we describe the set of specific design cerdidns that have
guided our implementation, and then present an overvieWweso$ystem’s structure.

3.1.1 Design Considerations

Parallax’s design is based on four high-level themes:

Agnosticism and isolation. Parallax is implemented as a collaborative set of
storageappliances; as shown in Figure 3.1, each physical host in a cluster gmnta
a storage VM that is responsible for providing storage to other virtuacimnes
running on that host. This VM isolates storage managemehdalivery to a single
container that is administratively separate from the rett@system. This design
has been used previously to insulate running VMs from degdider crashes [7,

7
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Figure 3.1: Parallax is designed as a set of per-host storage applidinaes
share access to a common block device and present virtlaltdislient
VMs.

171, allowing drivers to be transparently restarted. Raxabkes this approach a
step further to isolate storage virtualization in additiordriver code.

Isolating storage virtualization to individual per-hosv¥ results in a system
that is agnostic to both the OSes that run in other VMs on tisg land the physical
storage that backs VM data. A single cluster-wide admiaistrcan manage the
Parallax instances on each host, unifying the storage neamagf role.

Blocks not files. In keeping with the goal of remaining agnostic to OSes run-
ning within guest VMs, Parallax operates at the block, natien file, level. Block-
level virtualization provides a narrower interface andwahl Parallax to present
simple virtual disks to individual VMs. While virtualizatn at the block level



yields an agnostic and simple implementation, it also prissa set of challenges.
The “semantic gap” introduced by virtualizing the systena &w level obscures
higher-level information that could aid in identifying ampunities for sharing, and
complicates request dependency analysis, as discussdwpiei. 4.1.1.

Minimize lock management. Distributed storage has historically implied
some degree of concurrency control. Write sharing of digk,despecially at the
file system level, typically involves the introduction ofrse form of distributed
lock manager. Lock management is a very complex servicedeige in a dis-
tributed setting and is notorious for difficult failure casend recovery mechanisms.
Moreover, although write conflict resolution is a well-istigated area of systems
research, it is one for which no general solutions exist.

Parallax’s design is premised on the idea that data shariagliuster environ-
ment should be provided by application-level services widarly defined APIs,
where concurrency and conflicts may be managed with apiglicaemantics in
mind. Therefore, iexplicitly excludes support for write-sharing of individual vir-
tual disk images. The system ensures that each VDI has atbmestriter, greatly
reducing the need for concurrency control. Some degreerafurcency manage-
ment is still required, but only when performing adminittra operations such
as creating new VDIs, and in very coarse-grained allocat@writable areas on
disk. Locking operations are explicitly not required ast jpfithe normal data path
or for snapshot operations.

Snapshots as a primitive operation. In existing storage systems, the abil-
ity to snapshot storage has typically been implemented atarthought, and for
very limited use cases such as the support of backup senRoss-hoc implemen-
tations of snapshot facilities are typically complex, ilweoinefficient techniques
such as redo logs [34], or impose hard limits on the maximumbar of snap-
shots [1J]. Our belief in constructing Parallax has beentti@ability to take and
preserve very frequent, low-overhead snapshots is aniegabrage feature for a
wide variety of VM-related applications such as high-aadaility, debugging, and
continuous data protection. As such, the system has be@nddgo incorporate
snapshots from the ground up, representing each virtulaladis set of radix-tree
based block mappings that may be chained together as aipfiieintfinite series
of copy-on-write (CoW) instances.
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Figure 3.2: Overview of the Parallax system architecture.

3.1.2 System Structure

Figure 3.2 shows an overview of Parallax’s architecture almvs a brief discus-
sion of components that are presented in more detail thautghe remainder of
the paper.

As discussed above, each physical host in the cluster csngastorage appli-
ance VM that is responsible for mediating accesses to arrlyimieblock storage
device by presenting individual virtual disks to other VMsning on the host.
This storage VM allows a single, cluster-wide administ&tdomain, allowing
functionality that is currently implemented within entege storage hardware to
be pushed out and implemented on individual hosts. Thetrisstliat advanced
storage features, such as snapshot facilities, may be nnepleed in software and
delivered above commodity network storage targets.

Parallax itself runs as a user-level daemon in the Storagdigkme VM, and
uses Xen'sblock tap driver |38] to handle block requests. The block tap driver
provides a very efficient interface for forwarding block wegts from VMs to dae-
mon processes that run in user space of the storage appVanc&he user space
portion of block tap defines an asynchronous disk interfaacespawns dapdisk
process when a new VM disk is connected. Parallax is implésdeas a tapdisk
library, and acts as a single block virtualization servigedll client VMs on the
physical host.

Each Parallax instance shares access to a single shar&dibldce. We place
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no restrictions as to what this device need be, so long ashiigable and accessible
as a block target in all storage VM instances. In practice wstroften target iSCSI
devices, but other device types work equally well. We haweseh this approach as
it requires the lowest common denominator of shared stomagkallows Parallax
to provide VM storage on the broadest possible set of targets

Virtual machines that interact with Parallax are presemté@t entire virtual
disks. Xen allows disks to be accessed using both emulatggamavirtualized
interfaces. In the case of emulation, requests are hangiladibvice emulator that
presents an IDE controller to the client VM. Emulated dewigenerally have poor
performance, due to the context switching required to etautalividual accesses
to device I/O memory. For performance, clients may installapirtual device
drivers, which are written specifically for Xen-based VMslatlow a fast, shared-
memory transport on which batches of block requests mayfioeetly forwarded.
By presenting virtual disks over traditional block deviceerfaces as a storage
primitive to VMs, Parallax supports any OS capable of rugron the virtualized
platform, meeting the goal of agnosticism.

The storage VM is connected directly to physical device waré for block
and network access. Including physical block device dsivarthe storage VM
allows a storage administrator the ability to do live upgsdf block device drivers
in an active cluster. This is an area of future exploratianuf® but a very similar
approach has been described previosily [7].

3.2 Virtual Disk Images

Virtual Disk Images (VDIs) are the core abstraction prodidiyy Parallax to vir-
tual machines. A VDI is a single-writer virtual disk which ynhe accessed in a
location-transparent manner from any of the physical hiostise Parallax cluster.
Table 3.1 presents a summary of the administrative opastioat may be per-
formed on VDIs; these operations are available through ¢imencand line of the
storage VM. There are three core operations, allowing VBIst created, deleted,
and snapshotted. These are the only operations requir@tivelg manage VDIs;
once created, they may be attached to VMs as would any othek device. In ad-
dition to the three core operations, Parallax provides scongenience operations

11



that allow an administrator to view catalogues of VDIs, stegis associated with
a particular VDI, and to “tag” particular snapshots with atan-readable alias, fa-
cilitating creation of new VDIs based on that snapshot inftihere. An additional
convenience function produces a simple visualization @Mbls in the system as
well as tagged snapshots.

create(ame, [ snapshot]) — VDI_id Create a new VDI, optionally based on an
existing snapshot. The provided name is
for administrative convenience, wheregs
the returned VDI identifier is globally
unique.

delete{vDl_id) Mark the given VDI as deleted. When the
garbage collector is run, the VDI and all
shapshots are freed.

snapshot{/Dl_id) — snap_id Request a snapshot of the given VDI.

list() — VDI list Return a list of VDIs in the system.

snaplist(VDI_id) — snap_list Return the log of snapshots associated
with the specified VDI.

snap.label(snap_id, name) Label the given snapshot with a human-
readable name.

tree() — (tree view of VDIs) Generate a graph of the current system-
wide VDI tree (see Figure 3.4 for an ex-
ample.)

Table 3.1: VDI Administrative Interfaces.

3.2.1 VDIs as Block Address Spaces

In order to achieve the design goals that have been outlegarding VDI func-
tionality, in particular the ability to take fast and frequiesnapshots, Parallax bor-
rows heavily from techniques used to manage virtual memériparallax VDI is
effectively a singleéblock address space, represented by a radix tree that maps vir-
tual block addresses to physical block addresses. Virtidaksses are a continuous
range from zero to the size of the virtual disk, while physaddresses reflect the
actual location of a block on the shared blockstore. TheectwiParallax implemen-
tation maps virtual addresses using 4K blocks, which arsemado intentionally
match block sizes used on x86 OS implementations. Mappirgstared in 3-level

12



radix trees, also based on 4K blocks. Each of the radix metqumges stores 512
64-bit global block address pointers, and the high-ordeshised to indicate that a
link is read-only. This layout results in a maximum VDI siZebd2GB (9 address
bits per tree-level, 3 levels, and 4K data blocks yielgis 2212 = 23° = 512GB).
Adding a level to the radix tree extends this by a factor bt®256TB and has
a negligible effect on performance for small volumes (léemnt512GB) as only
one additional metadata node per active VDI need be cacha@lldx’'s address
spaces are sparse; zeroed addresses indicate that theofahgdree beyond the
specified link is non-existent and must be allocated. Initégner, the creation
of new VDIs involves the allocation of only a single, zeroamht block. Parallax
will then populate both data and metadata blocks as they datemvto the disk.
In addition to sparseness, references can be shared aeszEndant radix trees in
order to implement snapshots.

3.3 Snapshots

A snapshot in Parallax is a read-only image of an entire diskparticular point in
time. Like many other systems, Parallax always ensuresstisgishots arerash
consistent, which means that snapshots will capture a file system diatecould
have resulted from a crasn [1] [16] 23] 3€] 24]. While thisay necessitate
running an application or file system level disk check sucksek, it is unlikely
that any block-level system can offer stronger guaranteestaonsistency without
coordination with applications and file systems.

3.3.1 Coordination

Snapshots can be taken of a disk that is not in use, or theyectakbn during nor-
mal operation. In this latter case, the snapshot semamgcstréctly asynchronous;
snapshots are issued directly into the stream of 1/O reguest manner similar
to write barriers. It is often advantageous (thought noessary) for such asyn-
chronous snapshots to be coordinated with some externat.eer example, in
order to make a backup, a user may want to create a snapstoa dite is saved.
Due to buffer caches, there is little guarantee that thedséile will actually be
present in a snapshot. Two methods exist for establishisgtordination.
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First, the disk may be quiesced prior to taking a snapshat ddn be further
categorized by the level at which the coordination occurke @pplication, file
system, or block level can each be placed into a consistate stdependently.
Quiescing at a higher level (i.e., application) estabksti® strongest consistency
guarantees, but at the greatest performance impact. &aialiiesigned to support
consistency at the lowest possible level — its own metaddie design allows for
the highest possible performance. It also provides a frasrlewpon which higher
level consistency may be added, by making Parallax’s chfiebiisible at higher
stages in the storage stack.

Alternatively, by capturing the memory and CPU state aloiith e disk im-
age, the state of an entire system can be recorded. In thiarscethe system can
be resumed at any checkpoint, and any requests that haveaudted disk will
be present in memory. This approach lends itself to virtuatinmes, because of
the relative ease with which their internal state can beuredtand restarted. In a
prototype system for frequent and long running state captue have paired Par-
allax with a system called Remus [4]. Remus captures menmuhyCPU state at
frequencies similar to Parallax, and flushes this data todé&cdied Parallax disk.
We then issue coordinated snapshots of both the memory™“disk the storage
volume. This enables complete system state capture at iginfriequency.

3.3.2 Implementation

To implement snapshots, we use the high-order bit of blockes$es in the radix
tree to indicate that the block pointed to is read-only. AlbDMmappings are tra-
versed from a given radix root down the tree, and a read-dmiyindicates that the
entire subtree is read-only. In taking a snapshot, Parallaply copies the root
block of the radix tree and marks all of its references as-tedgl The original
root need not be modified as it is only referenced by a snapsfdhat is implic-
itly read-only. The entire process usually requires justetblock-write operations,
two of which can be performed concurrently.

The result of a snapshot is illustrated in Figure 3.3. Therfigghows a sim-
plified radix tree mapping six-bit block addresses with twdr@ss bits per radix
page. In the figure, a VDI has had a shapshot taken, and sudrggghad a block
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Figure 3.3: Parallax radix tree (simplified with short addresses) and\CO
behaviour.

of data written at virtual block addred4.1111 (binary). The snapshot operation
copies the radix tree root block and redirects the VDI redorgdoint to the new
root. All of the links from the new root are made read-onlyiracated by thef*”
flags and the dashed grey arrows in the diagram.

Copying a radix tree block always involves marking all lirfksm that block
as read-only. A snapshot is completed using one such blgek @peration, fol-
lowing which the VM continues to run using the new radix treetr At this point,
data writes may not be applied in-place as there is no digtt @f writable links
from the root to any data block. The write operation showrhim figure copies
every radix tree block along the path from the root to the @&ta blocks in this
example) and the newly-copied branch of the radix tree igelinto a freshly allo-
cated data block. All links to newly allocated (or copied)dHds are writable links,
allowing successive writes to the same or nearby data bltucksoceed with in-
place modification of the radix tree. The active VDI that t&sis a copy-on-write
version of the previous snapshot.
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NetBSD Pristine 2 snapshots NetBSD testbox
Sept 6 01:20:39 2007 p Sept 6 02:34:23 2007

10 snapshots snapid: (1050704,10) VDI id: 2
2 spaoshots Fedora Core 6 Pristine 1 snapshots Fedora Core 6 install
[root] . Sept 6 10:19:03 2007 B > Sept 6 12:23:51 2007
1 snapshots snapid: (1871224,2) VDI id1
W2K3 image 1
Sept 7 11:13:51 2007
VDI id: 3

Windows 2003 Pristine 1 snapshots W2K 3 image 2
Sept 7 08:38:55 2007 P Sept 7 11:14:26 2007

snapid: (3746722,1) w‘ VDI id: 4
W2K 3 image 3
Sept 7 11:14:32 2007
VDI id: 5

Figure 3.4: VDI Tree View—Visualizing the Snapshot Log.

The address of the old radix root is appended, along with thieet time-
stamp, to asnapshot log. The snapshot log represents a history of all of a given
VDI's snapshots.

Parallax enforces the invariant that radix roots in snaplage immutable.
However, they may be used as a reference to create a new VBIcdimmon
approach to interacting with a snapshot is to create a vieitaB®I| clone from it
and to interact with that. A VM’s snapshot log represents airclof dependent
images from the current writable state of the VDI, back tordtial disk. When
a new VDI is created from an existing snapshot, its snapsgigptsl made to link
back to the snapshot on which it is based. Therefore, thef st snapshot logs
in the system form a forest, linking all of the radix roots &t VDIs, which is
what Parallax’s VDI tree operation generates, as showngaorgi3.4. This aggre-
gate snaplog tree is not explicitly represented, but maydmeposed by walking
individual logs backwards from all writable VDI roots.
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From a single-host perspective, the VDI and its associadk mapping tree
and snapshot logs are largely sufficient for Parallax to atper However, these
structures present several interesting challenges teadairessed in the following
chapters. Chapter 3.4 explains how the shared block devioehaged to allow
multiple per-host Parallax instances to concurrently ssaata without conflicts
or excessive locking complexity. Parallax’s radix treessatibed above, are very
fine grained, and risk the introduction of a great deal ofrpeuest latency. The
system takes considerable effort, described in Chapteit@lhanage the request
stream to eliminate these overheads.

3.3.3 Fault Cases

Providing crash consistency for snapshots in a distribayestem can be difficult.

Many of the coordination challenges faced by other syst&thsare obviated by

Parallax’s client-oriented design. However, since Paxallsnapshots are highly
asynchronous, care must be taken with outstanding reqtoetbts block layer. We

discuss these challenges and their solution is Chapter 4.2;

3.4 The Shared Blockstore

Traditionally, distributed storage systems rely on disttéd lock management to
handle concurrent access to shared data structures withicluster. In designing
Parallax, we have attempted to avoid distributed lockingneter possible, with
the intention that even in the face of disconnedionfailure, individual Parallax
nodes should be able to continue to function for a reasonmyied of time while
an administrator resolves the problem. This approach hdedwur management
of the shared blockstore in determining how data is laid sutisk and where
locking is required.

3.4.1 Extent-Based Access

The physical blockstore is divided, at start of day, intodisize extents. These
extents are large (2GB in our current implementation) amadesent a lockable

1This refers to disconnection from other hosts. A connectiothe actual shared blockstore is
still required to make forward progress.
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single-allocator region. “Allocators” at the this levekgshysical hosts—Parallax
instances—rather than the consumers of individual VDIssErextents are typed,;
with the exception of a special system extent at the statteobtockstore, extents
either contain data or metadata. Data extents hold thelatdt@written by VMs
to VDIs, while metadata extents hold radix tree blocks arapshot logs. This
division of extent content is made to clearly identify metia] which facilitates
garbage collection. In addition, it helps preserve lirtgan the placement of data
blocks, by preventing metadata from becoming interminglét data. All extents
start with an allocation bitmap that indicates which bloaks in use.

When a Parallax-based host attaches to the blockstord| éxslusively lock a
data and a metadata extent for its use. At this point, it is foemodify unallocated
regions of the extent with no additional lockifdn order to survive disconnection
from the lock manager, Parallax nodes may lock additionakad extents to allow
room for additional allocation beyond the capacity of axztixtents. We will likely
optimize this further in the future by arranging for conmetParallax instances
to each lock a share of the unallocated extents, furthercieduhe already very
limited need for allocation-related locking.

The system extent at the front of the blockstore contains @lsmmber of
blockstore-wide data structures. In addition to systemenwparameters, like the
size of the blockstore and the size of extents, it has a catalof all fixed-size
extents in the system, their type (system, data, metadathymaused), and their
current lock-holder. It also contains the VDI registry, eetrof VDI structs, each
stored in an individual block, describing all active VDIstire system. VDIs also
contain persistent lock fields and may be locked by individRezallax instances.
Locking a VDI struct provides two capabilities. First, thacker is free to write
data within the VDI struct, as is required when taking a shapsvhere the radix
root address must be updated. Second, with the VDI struéethca Parallax
instance is allowed to issue in-place writesatty blocks, data or metadata, refer-
enced as writable through the VDI's radix root. The secontthe$e properties is a
consequence of the fact that a given (data or metadata) Haoly ever marked
writable within asingle radix tree.

2This is a white lie — there is a very coarse-grained lock oreffeeation bitmaps used with the
garbage collector, see Chafter 3.4.3.
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Figure 3.5 illustrates the structure of Parallax’s blockst and demonstrates
how extent locks allow a host to act as the single writer fav aocations within
a given extent, while VDI locks allow a host write access toadted VDI blocks
across all extents on the blockstore.

3.4.2 Lock Management

The protocols and data structures in Parallax have beefuttamesigned to mini-
mize the need for coordination. Locking is required onlyifdrequent operations:
to claim an extent from which to allocate new data blocks,aim gvrite access to
an inactive VDI, or to create or delete VDIs. Unless an exters exhausted its
free space, no VDI read, write, or snapshot operation reguny coordination at
all.

The VDI and extent locks work in tandem to ensure that the Vibher can
safely write to the VDI irrespective of its physical locatim the cluster, even if the
VDI owner migrates from one host to another while runninge Parallax instance
that holds the VDI lock is free to write to existing writabléobks in that VDI on
any extent on the shared blockstore. Writes that require dilmes, such as writes
to read-only or sparse regions of a VDI's address space,llagted within the
extents that the Parallax instance has locked. As a VM mauwess hosts in the
cluster, its VDI is managed by different Parallax instancgse only effect of this
movement is that new blocks will be allocated from a différextent.

The independence that this policy affords to each Paratistance improves
the scalability and reliability of the entire cluster. Tleakbility benefits are clear:
with no lock manager acting as a bottleneck, the only lingifiexctor for throughput
is the shared storage medium. Reliability is improved bsedarallax instances
can continue running in the absence of a lock manager as lotiges have free
space in the extents they have already claimed. Nodes ttieipate heavy block
allocation can simply lock extra extents in advance.

In the case that a Parallax instance has exhausted its fiee spcannot access
the shared block device, the local disk cache described apteh 5.1.2 could be
used for temporary storage until connectivity is restored.

Because it is unnecessary for data access, the lock mareagbe wery simple.
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In our implementation we designate a single node to be thken@nager. When the
manager process instantiates, it writes its address ieteghcial extent at the start
of the blockstore, and other nodes use this address to ¢onédock manager with
lock requests for extents or VDIs. Failure recovery is notently automated, but
the system’s tolerance for lock manager failure makes maroavery feasible.

3.4.3 Garbage Collection

Parallax nodes are free to allocate new data to any free dlitkin their locked
extents. Combined with the copy-on-write nature of Paxallais makes deletion
a challenge. Our approach to reclaiming deleted data isv® igers simply mark
radix root nodes as deleted, and to then run a garbage aoltbet tracks metadata
references across the entire shared blockstore and frgemaliocated blocks.

Parallax’s garbage collector is described as Algorithnt ik. dimilar to a mark-
and-sweep collector, except that it has a fixed, static seasdes. This is possible
because we know that the maximum length of any chain of nefexeis the height
of the radix trees. As a result we are able to scan the metadtatks in (disk)
order rather than follow them in the arbitrary order thatythppear in the radix
trees. The key data structure managed by the garbage oolietheReachability
Map (RMap), an in-memory bitmap with one bit per block in the dstore; each
bit indicates whether the corresponding block is reachable

A significant goal in the design of the garbage collector & fhinterfere as
little as possible with the ongoing work of Parallax. Whihe tgarbage collector is
running, Parallax instances are free to allocate bloclkegtersnapshots and VDIs,
and delete snapshots and VDIs. Therefore the garbagetooleorks on a “check-
point” of the state of the system at the point in time thatdrtst Step 1 takes an
on-disk read-only copy of all block allocation maps (BMajs}he system. Ini-
tially, only the radix roots of VDIs and their snapshots ararked as reachable.
Subsequent passes mark blocks that are reachable fromrddigeaoots and so
on. In Step 5, the entire RMap is scanned every time. Thidteegure-reading
nodes that are high in the tree, a process that could be madeéfiizient at the
cost of additional memory. The only blocks that the collectonsiders as can-
didates for deallocation are those that were marked asaéiddn the checkpoint
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Algorithm 1 The Parallax Garbage Collector

1.
2.
3.

o1

Checkpoint Block Allocation Maps (BMaps) of extents.
Initialize the Reachability Map (RMap) to zero.
For each VDI in the VDI registry:
If VDI is not marked as deleted:

Mark its radix root in the RMap.

For each snapshot in its snaplog

If snapshot is not marked as deleted:
Mark its radix root in the RMap.

. For each Metadata extent:

Scan its RMap. If a page is marked:
Mark all pages (in the RMap) that it points to.

. Repeat step 4 for each level in the radix tree.
. For each VDI in the VDI registry:

If VDI is marked as not deleted:
Mark each page of its snaplog in the RMap.

. For each extent:

Lock the BMap.
For each unmarked bit in the RMap:
If it is marked in the BMap as well as in the
checkpointed copy of the BMap :
Unmark the BMap entry and reclaim the block.
Unlock the BMap.

taken in Step 1 (see Step 7). The only time that the colleoterferes with ongo-
ing Parallax operations is when it updates the (live) atiocabitmap for an extent
to indicate newly deallocated blocks. For this operatiomitst coordinate with
the Parallax instance that owns the extent to avoid simedtas updates, thus the
BMap must be locked in Step 7. Parallax instances claim maeylflocks at once
when looking at the allocation bitmap (currently 10,00@)tHss lock suffers little
contention.

We discuss the performance of our garbage collector dutimgystem evalu-

ation in Chapter 5.1.2.
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3.4.4 Radix Node Cache

Parallax relies on the caching of radix node blocks to miéighe overheads asso-
ciated with radix tree traversal. We cache only the inteliatedadix nodes (i.e.,
Parallax’'s metadata) not the actual data stored on disk.c@eire policy is effec-
tively write-through; however, the cache also ensures thieect ordering of 10
requests during write operations through a generic depeydgacking mecha-
nism. We discuss this aspect of the design at more length ap€h4.2.1.

The cache is responsible for mitigating the performancearhjpf reads of
the radix tree. There are two aspects of Parallax’s desighrtakes this possi-
ble. First, single-writer semantics of virtual disk imagemove the need for any
cache coherency mechanisms. Second, the ratio of data twlatatis approxi-
mately 512:1, which makes caching a large proportion of Huxrnode blocks
for any virtual disk feasible. With our current default cadize of just 64MB we
can fully accommodate a working set of nearly 32GB of data. efgect that a
production-grade Parallax system will be able to dedical@rger portion of its
RAM to caching radix nodes. To maintain good performance,caghe must be
scaled linearly with the working set of data.

The cache replacement algorithm is a simple numerical hashdon block
address. Since this has the possibility of thrashing ottieg@ valuable root node
in favor of a low-level radix node, we have plan to implememd avaluate a more
sophisticated page replacement algorithm in the future pEdormance and con-
sistency reasons the root node is always kept in-cache.

3.4.5 Local Disk Cache

Our local disk cache leverages our client-oriented appréaorder to allow per-
sistent data to be written by a Parallax host without coirtgahe primary shared
storage. The current implementation is in a prototype phééeenvision several
eventual applications for this approach. In this thesisdigeuss an approach to
mitigate the effects of degraded network operation by temmig using the disk as
a cache. We evaluate this technique in Chapter 5.1.2. Irutiiesf we plan to use
this mechanism to support fully disconnected operationpifysical host.

The local disk cache is designed as a log-based ring of vedfeasts that would
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have otherwise been sent to the primary storage system. Titee n@cords are
stored in a file or raw partition on the local disk. In addittorits normal process-
ing, Parallax consumes write records from the front of tlgedad sends them to
the primary storage system. By maintaining the same writerang we ensure that
the consistency of the remote storage system is maintaMézen the log is full,
records must be flushed to primary storage before requestgsimg can continue.
In the event of a physical host crash, all virtual disks (Whiemain locked) must
be quiesced before the virtual disk can be remounted.

A drawback to this approach is that it incorporates the maydiost’s local
disk into the failure model of the storage system. Users testilling to accept
the minimum of the reliability of the local disk and that oktktorage system. For
many users, this will mean that a single disk is unacceptable persistent cache,
and that the cache must be stored redundantly to multipke difor example, dual
hard drives with RAID 1 on each physical machine may sufficeséome users.
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Chapter 4

Pipeline Operation

In addition to the basic architecture discussed in ChantBagallax employs sev-
eral interesting optimizations to ensure correct and efficoperation. In each of
the following cases, we consider Parallax to act on a pipadfrblock 1/0 requests.
At each step we make every attempt to push the largest pessibiber of requests
through the pipeline, while balancing against the need suencorrect operation
in the face of error.

4.1 Requests in the Pipeline

While Parallax’s fine-grained address mapping trees peoeificient snapshots
and sharing of block data, they risk imposing a high perfaroeacost on block
requests. At worst, accessing a block on disk can incur tthependent metadata
reads that precede the actual data access. Given the higbf@xxess to block
devices, it is critical to reduce this overhead. HowevercsiParallax is present-
ing virtual block devices to the VMs that use it; we must beeidrto provide the
semantics that OSes expect from their disks. We now discaugd$larallax aggres-
sively optimizes the block request stream while ensurirggdbrrect handling of
block data.
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4.1.1 Consistency and Durability

VDIs appear as SCSI-like block devices that respond to IfDests with the same
semantics as a local disk. Only 64 requests are exposed atiaRaat a time and
these in-flight requests may complete in any order. Pardibs not support a tag
or barrier operation, although this is an area of interesftuture work. Currently
guest OSes must allow the request queue to drain in ordestoethat all issued
writes have hit the disk. We expect that the addition of leasrivill improve our
performance by better saturating the request pipeline.

While in-flight requests may complete out of order, Parattaist manage con-
siderable internal ordering complexity. Consider thathdagical block request,
issued by a guest, will result in a number aaimponent block requests to read,
and potentially update metadata and finally data on diskalRarmust ensure that
these component requests are carefully ordered to prowtte the consistency
and durability expected by the VM. These expectations magatisfied through
the following two invariants:

1. Durability is the guest expectation that acknowledgeitbewequests indicate
that data has been written to digk.To provide durability, Parallax cannot
notify the guest operating system that a logical 1/0 reghest completed
until all component 1/O requests have committed to physitalage.

2. Consistency is the guest expectation that its individiatk requests are
atomic—that while system crashes may lose in-flight logiegluests, Par-
allax will not leave its own metadata in an invalid state.

In satisfying both of these properties, Parallax uses wrage#ectively soft
updates [18]. All dependent data and metadata are writtéliskobefore updates
are made that reference this data from the radix tree. THisriog falls out of the
copy-on-write structure of the mapping trees, describethénprevious chapter.
For any VDI, all address lookups must start at the radix rdathen a write is
being made, either all references from the top of the treendmathe data block
being written are writable, in which case the write may be eniagplace, or there
is an intermediate reference that is read-only or sparsecases where such a

10r has at least been acknowledged as being written by thécgaihjock device.

26



reference exists, Parallax is careful to write all tree tbalaw that reference to disk
before updating the reference on disk. Thus, to satisfy consigtéarceach logical
request, Parallax must not modify nodes in the on-disk traé all component
requests affecting lower levels of the tree have been cowdnio disk.

We refer to the block that contains this sparse or read-@igrence as eom-
mit node, as updates to it will atomically add all of the new blockstten below it
to the lookup tree. In the case of a crash, some nodes may bawensitten to disk
without their commit nodes. This is acceptable, becauseowttbeing linked into
a tree, they will never be accessed, and the correspondirig witl have failed.
The orphaned nodes can be returned to the blockstore thgarghage collection.

4.1.2 Intra-request Dependencies

Logical requests that are otherwise independent can shammit nodes in the tree.
During writes, this can lead to nodes upon which multipladabrequests are de-
pendent. In the case of a shared commit node, we must rebpessd¢ond invariant
for both nodes independently. In practice this is a very comaccurrence.

This presents a problem in scheduling the write of the shematmit node. In
Figure 4.1, we provide an example of this behaviour. Thetitation shows a com-
mit node and its associated data at four monotonically asirg times. At each
time, nodes and data blocks that are flushed to disk and symizkd in memory
appear darker in color, and are bordered with solid linems€&tblocks that appear
lighter and are bordered with dashed lines have been modifieémory but those
modifications have not yet reached disk.

The illustration depicts the progressrofogical write requestsgg throughay,
all of which are sequential and share a commit node. For &ityplthis example
will consider what is effectively a radix tree with a singldix node; the Parallax
pipeline behaves analogously when a full tree is presenttindd ty, assume for
the purpose of illustration that we have a node, in memory ymthronized to
disk, that contains no references to data blocks. At thi® tiwme receive the
requests in a single batch, we begin processing the reqgassisg the data blocks
to the disk, and updating the root structure in memory. Aetiimwe have made
all updates to the root block in memory, and a write of one ef diata blocks
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Figure 4.1: Example of a shared write dependency.

has been acknowledged by the storage system. We would likertplete the
logical requesty as quickly as possible but we cannot flush the commit node in
its given form because it still contains references to diields that have not been
committed to disk. In this example, we wait. At tintg all data blocks have
successfully been committed to disk; this is the earligsetthat we can finally
proceed to flush the commit node. Once that request competese ts, we
can notify the guest operating system that the associaledgdérations have each
completed successfully.

The latency for completing requeag is thus the sum of the time required to
write the data for the subsequemt- 1 requests, plus the time required to flush
the commit node. The performance impact can be further camged by the
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dependency requirements imposed by a guest file systeme Tepgndencies are
only visible to Parallax in that the guest file system may $$3ping requests to
Parallax due to the increased latency on some previouslgdssperatior?

4.1.3 Commit Node Inheritance

As an additional optimization, we introduce the notion afnrnit node inheritance.
Consider a write operation that involves modifying intedia¢e nodes in the radix
treeNa andNg. Suppose further thada is higher in the tree thaNg, and is thus a
commit node foMNg. As discussed, writes tg can proceed immediately, as can
writes to any data blocks or intermediate nodes be\gwwhile writing Na must
be delayed. If at this point a second write request is madentioalifiesNg but
not Na then, following the algorithm above, we would decl&ig a commit node
on the second write operation. This would necessitate mgaith writeNg until all
component requests on the second write had completed. Héoviethis case, we
can do better. Sindda is a commit node foNg we know thafNg is a newly written
node and not linked into the original tree. Since this is thge¢ we can flush the
re-modifiedNg immediately, safe in the knowledge that it is still protectesy Na
as a commit node. In effect, the commit node for the first antding request
is inherited onto the second. In addition to providing a perfance boost, this
optimization has the effect of simplifying our I/O procewsgiby introducing the
invariant that chains of dependency don’t grow beyond lengo: a single commit
nodes, and many dependant nodes.

4.1.4 Dependency Tracking

Our API for dependency tracking consists of a single fumctiwovided by the

cache. A dependency can be added between any two nodes wgtaraing write

requests. This is done before writes are flushed to disk,fterteach node is writ-
ten. Since Parallax only writes at whole block granularity eon’t support more
complicated tracking, as is done in [9]. While this is a siempiechanism, it has
proven very powerful, and is used in establishing consistdaor all of Parallax’s

current operations.

2with support for write barriers, this artifact would not be@ncern.
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4.1.5 Further Improvements

Commit nodes are the fundamental “dial” for trading off lhétg versus latency in
the request pipeline. In the case of sequential writes, evhkkioutstanding writes
(of which there are a finite number) share a common commit ,nbde possible
that every in-flight request must complete before notifamaimay be passed back
to the guest, resulting in bubbles while we wait for the guesefill the request
pipeline. We intend to address this by limiting the numbeouaftistanding logical
requests that are dependent on a given commit node, andigotee node to be
written once this number exceeds a threshold, likely hathefmaximum in-flight
requests. Issuing intermediate versions of the commit mallérade off a small
number of additional writes for better interleaving of fictitions to the guest.
This technique was employed in [9]. As a point of comparisea,have disabled
the dependency tracking between nodes, allowing them tabledtl immediately.
Such an approach yields a 5% increase in sequential wriferpgnce, thought
it is obviously unsafe for normal operation. With correcsfling of intermediate
results we may be able to close this performance gap.

4.2 Snapshots in the Pipeline

In systems where distributed writes to shared data must beged, a linearizabil-
ity of I/O requests around snapshots must be establishieeivaise there can be no
consensus about the correct state of a snapshot. Establigtis linearity can be
expensive and complicated. In other systems, this regpaasing the 1/0O stream
to some degree. A simple approach is to drain the I/O queurskgnil€], while

a more complicated approach is to optimistically assumeesscand to retry 1/10
that conflicts with the snapshot [1].

In Parallax, we expect that high frequency snapshots wéNibably conflict
with write operations. To avoid the performance penaltesoeiated with the pre-
viously mentioned techniques, we instead treat snapshaiipalined requests and
allow the pipeline to continue to be processed without paoseetries. Lineariza-
tion of write requests in Parallax comes naturally becaash &DlI is being writ-
ten to by at most one physical host. Without our single-wirsumptions and our
client-oriented design such an approach would not be pessib
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The point at which Parallax receives a snapshot requestas e snapshot is
said to occur, and the snapshot is then placed in the pipaHpeever, snapshots
share the same ordering semantics as any other requesipip#tiee; the ordering
between any requests that are in the pipeline at the saméstingbiguous. Under
normal conditions, all requests received prior to a snapshicbe contained in the
snapshot, while any later requests will not; however, thisat guaranteed.

By design, both requests arriving before and after the $idgsin continue to
be processed in parallel with the snapshot itself. Theeef@arallax establishes an
ordering of requests with respect to the snapshot, but dutesered to write blocks
to disk in that order. In fact, we can allow both pre-snapsimud post-snapshot
operations to complete on their respective views of the distultaneously, and
even after the record of the snapshot itself is written t&.d@ur generalized de-
pendency tracking to provides a simple mechanism to enbatehe disk remains
consistent and that writes are correctly ordered.

4.2.1 Handling Failures

As long as Parallax terminates normally, allowing outstagdequests to complete
after the snapshot has been recorded does not pose a sawbleng a simple
short-lived lock on the snapshot image until it becomestred-only sufficess
However, when considering the possibility that Parallay rosh, we must ad-
dress several potential problems. Each has been direditiated by injected fail-
ures in a running system.

Incomplete snapshots:Creating a snapshot requires that at least three blocks
are written to disk. It is possible that some of these writsch disk just before
a crash, while others do not. The resulting incomplete drads detected with
a simple validation check every time the system boots. Impteta snapshots are
discarded at this time. This is considerably less comg@itand costly than similar
methods for comparable systerns [1].

Complete snapshot, but incomplete post-snapshot request# is possible
that a snapshot is correctly placed on disk, but some resgjtiest follow the snap-

SWe do not measure or discuss this delay any further, becaesfedts only the rate at which
new Parallax volumes can be created. We have no reason ¢évéddiat this is an important metric
at this time.
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shot are still in the pipeline when a crash occurs. This caséfectively no differ-
ent from those when a snapshot does not occur. Consistegoyianteed by the
dependency tracking system.

Complete snapshot, incomplete pre-snapshot requestst is also possible
that a snapshot is correctly placed on disk, but some regjuleat precede the
snapshot are still in the pipeline when a crash occurs. Bdhse, such requests
are necessarily lost. Since the ordering of these requesits/e to the snapshot is
ambiguous and the requests have not been confirmed as cedhfaéhe guest OS,
the integrity of the snapshot is unchanged. The lost request be safely discarded
as if they had arrived after the snapshot. If the snapshoadern conjunction with
a full system checkpoint, the guest OS will re-issue thegaasts. Consistency of
the disk is guaranteed by the dependency tracking system.
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Chapter 5

Evaluation

5.1 Evaluation

We now consider Parallax’s performance. As discussed wiqus chapters, the
design of our system includes a number of factors that weatxtpeémpose con-
siderable overheads on performance. Block address vitiain is provided by
the Parallax daemon, which runs in user space in an isolatédnd therefore in-
curs context-switching on every batch of block requestdi##ahally, our address
mapping metadata involves 3-level radix trees, which reskisamatic increase in
the latency of disk accesses due to seeks on uncached nagtbbatzds.

There are two questions that this performance analysisnptieto answer.
First, what are the overheads that Parallax imposes on teegsing of 1/0O re-
guests? Second, what are the performance implicationgafittual machine spe-
cific features that Parallax provides? We address thesdigue turn, using se-
guential read and write [3] (in Chapter 5.1.1) and PostMa€g [in Chapte- 5.1.1)
to answer the first and using a combination of micro and mherehmarks to
address the second.

In all tests, we use IBM eServer x306 machines, each nodeanvgl?2 GHz
Pentium-4 processor, 1 GByte of RAM, and an Intel e1000 Gh#aor interface.
Storage is provided by a NetApp FAS3(¥8xporting an iSCSI LUN over gigabit

IWe chose to benchmark against the FAS 3070 because it isysingplastest iSCSI target avail-
able to us. This is the UBC CS department filer, and so hasnetjuery late-night benchmarking
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links. We access the filer in all cases using the Linux opé&silSsoftware initiator
(v2.0.730, and kernel module v1.1-646) running in domai\@& have been de-
veloping against Xen 3.1.0 as a base. One notable modificttad we have made
to Xen has been to double the maximum number of block requesis 32 to 64,
that a guest may issue at any given time, by allocating artiaddl shared ring
page in the split block (blkback) driver. The standard 32-8hgs were shown to
be a bottleneck when connecting to iISCSI over a high capaeifyork.

5.1.1 Overall Performance

It is worth providing a small amount of additional detail csmch of the test con-
figurations that we compare. Our analysis compares accebe tolock device
from Xen’s domain 0 (domO in the graphs), to the block deviceatly connected
to a guest VM using the block back driver (blkback), and toaRax. Parallax
virtualizes block access through blktap [38], which fadatles the development of
user-mode storage drivers.

Accessing block devices from domO has the least overheathainthere is
no extra processing required on block requests and domOileas dccess to the
network interface. This configuration is effectively thensaas unvirtualized Linux
with respect to block performance. In addition, in domOggiste full system RAM
and both hyperthreads are available to domO. In the follgveimses, the memory
and hyperthreads are equally divided between domO (whith ascthe Storage
VM?) and a guest VM.

In the “Direct” case, we access the block device from a gudétover Xen'’s
blkback driver. In this case, the guest runs a block drivat forwards requests
over a shared memory ring to a driver (blkback) in domO, whieeg are issued to
the iISCSI stack. DomO receives direct access to the relgusest pages, so there
is no copy overhead, but this case does incur a world switthe®a: the client VM
and domO for each batch of requests.

Finally, in the case of Parallax, the configuration is simtitethe direct case, but

efforts. The FAS provides a considerable amount of NVRAMImawrite path, which explains the
asymmetric performance between read and write in many adbenachmark results.

2We intend to explore a completely isolated Storage VM coméiion as part of future work on
live storage system upgrades.
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when requests arrive at the domO kernel module (blktapadsté blkback), they
are passed on to the Parallax daemon running in user spa@laR#ssues reads
and writes to the Linux kernel using Linux’s asynchronous iiiterface (libaio),

which are then issued to the iISCSI stack.

Reported performance measures a best of 3 runs for eaclogatddpe alter-
nate convention of averaging several runs results in $jigbiwver performance for
domO and direct configurations relative to Parallax. Merewg CPU overheads
were shown to be too small to warrant their inclusion here.

Sequential I/O

For each of the three possible configurations, we ran Borttigice in succession.
The first run provided cold-cache data points, while the seéalows Parallax to
populate its radix node cacheThe strong write performance in the warm cache
case demonstrates that Parallax is able to maintain wriferpgance near the ef-
fective line speed of a 1Gbps connection. Our system pedoeca is within 5% of
domO. At the same time, the 12% performance degradatioreindhd cache case
underscores the importance of caching in Parallax, as daitignits the overheads
involved in radix tree traversal. As we have focused ourreffto date on tuning
the write path, we have not yet sought aggressive optinoizatior read operations.
This is apparent in the Bonnie++ test, as we can see readipenfice slipping to
more than 14% lower than that of our non-virtualized domCfigomation.

PostMark

Figure 5.2 shows the results of running PostMark on the Rarahd directly at-

tached configurations. PostMark is designed to model a Headyplaced on many
small files [13]. The performance of Parallax is comparablartd slightly lower

than that of the directly connected configuration. In allbesase fall within 10% of

a directly attached block device. File creation and detetice performed during
and after the transaction phase of the PostMark test, riagglgc\We have merged
both phases, and illustrated the relative time spent in.each

3In the read path, this may also have some effect on our filachiog; however, considering the
small increase in read throughput and the fact that a seiquiezdd is easily predictable, we conclude
that these effects are minimal.
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Bonnie Benchmark — Parallax vs. Direct Attached Disk vs. Dom 0
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Figure 5.1: System throughput as reported by Bonnie++ during a firsdjcol
and second (warm) run.

Local Disk Performance

To demonstrate that a high-end storage array with NVRAM iseguired to main-
tain Parallax’s performance profile, we ran the same testg @scommodity disk
as a target. Our disk was a Hitachi Deskstar 7K80, which istesB8 7,200 RPM
SATA drive with an 8MB cache. The results of Bonnie++ are shawrigure 5.3.
Again, the importance of caching intermediate radix nodeddar. Once the sys-
tem has been in use for a short time, the write overheads drdp%, while read
overheads are shown to be less than 6%. In this case, Paraltemewhat higher
I/O requirements increase the degree to which the localalitk as a bottleneck.
The lack of tuning of read operations is not apparent at tviet throughput.

In Figure 5.4 we show the results of running the PostMark watt a local
disk, as above. Similarly, the results show a only smallgrerance penalty when
Parallax is used without the advantages of striping diskslarge write cache.
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Postmark Benchmark — Parallax vs. Direct Attached Disk
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Figure 5.2: PostMark results running against network available filer
(normalized).

5.1.2 Measuring Parallax’s Features

Disk Fragmentation

While our approach to storage provides many beneficial feafit raises concerns
over how performance will evolve as a blockstore ages. Thisot unique to
Parallax, rather it is the natural argument against any-©opwrite system — that
block fragmentation will eventually prove detrimental ®rfprmance.

In Parallax, fragmentation occurs when the block addregsdse to the guest
VM are sequentially placed, but the corresponding physichkiresses are not.
This can come as a result of several usage scenarios. Fhety & snapshot is
deleted, it can fragment the allocation bitmaps forcingifeitsequential writes to
be placed non-linearly. Second, if a virtual disk is spafa®yre writes may be
placed far from other blocks that are adjacent in the blodkess space. Sim-
ilarly, when snapshots are used, the CoW behavior can fordém blocks to
diverging locations on the physical medium. Third, therie@ving of writes to
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Bonnie Benchmark — Parallax vs. Direct Attached Disk vs. Dom 0
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Figure 5.3: System throughput against a local disk as reported by Bernie
during a first (cold) and second (warm) run.

multiple VDIs will result in data for each virtual disk beiqgaced together on the
physical medium. Finally, VM migration will cause the assbed Parallax virtual
disks to be moved to new physical hosts, which will in turroedite from different
extents. Thus data allocations after migration will not beated near those that
occurred before migration. Note however that fragmemtatid| not result from
writing data to blocks that are not marked read-only, asahéeration will be done
in place. In addition, sequential writes that target a realg-or sparse region of
a virtual disk will remain sequential when they are writtemewly allocated re-
gions. This is true even if the original write-protected die were not linear on
disk, due to fragmentation.

Thus, as VDIs are created, deleted, and snapshotted, vgvilfuexpect that
some fragmentation of the physical media will occur, pagdiytincurring seeks
even when performing sequential accesses to the virtual @issexplore this pos-
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Postmark Benchmark — Parallax vs. Direct Attached Disk
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Figure 5.4: PostMark results running against a local disk (normalized)

sibility further, we modified our allocator to place new ktscrandomly in the
extent, simulating a worst-case allocation of data. We tierchmarked local disk
and filer read performance against the resulting VDI, as showrigure 5.5.

Even though this test is contrived to place extreme stresBstperformance,
the figure presents three interesting results. First, agthat would be difficult to
generate such a degenerate disk in the normal use of Parallthis worst case
scenario, random block placement does incur a considepaibfermance penalty,
especially on a commodity disk. In addition, the test conditimat the overheads
for Bonnie++, which emphasizes sequential disk accesdjigher than those for
PostMark, which emphasizes smaller reads from a wider rahgfee disk. Inter-
estingly, the third result is that when the workload is repéathe filer is capable
of regaining most of the lost performance, and even outpa$d?ostMark with
sequential allocation. Although a conclusive analysiimglicated by the encap-
sulated nature of the filer, this result demonstrates treirtbreased reliance on
disk striping, virtualized block addressing, and intadlig caching makes the frag-
mentation problem both difficult to characterize and corlingel It punctuates the
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15 _The Effects of Random Block Placement on Read Performance
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Figure 5.5: The effects of a worst case block allocation scheme on Rarall
performance.

observation made by Stein et al [32], that storage stacks bagome incredibly
complex and that naive block placement does not necesdeailglate to worse
case performance — indeed it can prove beneficial.

As a block management system, Parallax is well positiongddkle the frag-
mentation problem directly. We are currently enhancinggasbage collector to
allow arbitrary block remapping. This facility will be used defragment VDlIs
and data extents, and to allow the remapping of performaansiive regions of
disk into large contiguous regions that may be directly nexfeed at higher lev-
els in the metadata tree, much like the concept of superpagegual memory.
These remapping operations are independent of the datasiailar in design to
the garbage collector discussed in Chapter 3.4.3. Ultiyadetailed analysis of
these features, combined with a better characterizatioaabftic workloads, will
be necessary to evaluate this aspect of Parallax’s perfaena
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Radix tree overheads

In order to provide insight into the servicing of individualbck requests, we use
a microbenchmark to measure the overheads. There are fisteetdnode types
in a radix tree. A node may be writable, allowing in-place ffiodtion. It may
be sparse, in that it is non-physical and zero-filled. Finallmay be read-only,
requiring that the contents be copied in order to procesgweguests. We instru-
mented Parallax to generate each of these types of nodestaptlevel of the tree,
to highlight their differences. When non-writable nodes@ached at lower levels
in the tree, the performance impact will be smaller. Figut:ghows the results.
Unsurprisingly, when a single block is written, Parallaxfpems very similarly to
the other configurations, because writing is done in plackeMa sparse node is
reached at the top of the radix tree, Parallax must perforitesvon intermediate
radix nodes, the radix root, and the actual data. Of thesesyithe radix root can
only complete after all other requests have finished, as weasisbed in Chapter
4.1. The faulted case is similar in that it too requires aadizad write, but it also
carries additional overheads in reading and copying ire€liate tree nodes.

Garbage collection

As described in Chapter 3.4.3, the Parallax garbage colleatrks via sequential
scans of all metadata extents. As a result, the performditbe garbage collector
is determined by the speed of reading metadata and the amfometadata, and is
independent of both the complexity of the forest of VDIs aneitt snapshots and
the number of deleted VDIs. We've run the garbage collectofull blockstores
ranging in size from 10GB to 50GB, and we characterize itfoperance by the
amount of data it can process (measured as the size of tHestdog) per unit time.
Its performance is linear at a rate of 0.96GB/sec. This elctee line speed of the
storage array because leaf nodes do not need to be read nmitketéd they can be
collected.

The key to the good performance of the garbage collectoraisttfe Reacha-
bility Map is stored in memory. In contrast to the Block Aliiimn Maps of each
extent which are always scanned sequentially, the RMagissaed in random or-
der. This puts a constraint on the algorithm’s scalabi@iynce the RMap contains

41



15
1.4
1.3
1.2
1.1

0.9 —
0.8 —
0.7 —
0.6 —
0.5 —
0.4 —
0.3
0.2 —
0.1 —

o -

Write completion latency (ms)

DomO Direct Writable Sparse Faulted
Write Write Parallax Parallax Parallax
Block Block Block

Figure 5.6: Single write request latency for domO, direct attachedgjiskd
three potential Parallax states. A 95% confidence intesvsthown.

one bit per blockstore block, each 1GB of memory in the gaglzamjector allows
it to manage 32TB of storage. To move beyond those congtratiflap pages
can be flushed to disk. We look forward to having to addressdhallenge in the
future, should we be confronted with a sufficiently largeaflax installation.

Snapshots

To establish baseline performance, we first measured therggmerformance of
checkpointing the storage of a running but idle VM. We cortgade500 check-
points in a tight loop with no delay. A histogram of the timeue&ed by each
checkpoint is given in Figure £.7. The maximum observed simaigatency in this
test was 3.25ms. This is because the 3 writes required fot smapshots can be
issued with a high degree of concurrency and are often szhliy the physical
disk’s write cache. In this test, more than 90% of snapshotspieted within a
single millisecond; however, it is difficult to establishteong bound on snapshot
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Baseline Snapshot Latency
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Figure 5.7: Snapshot latency of running VM during constant checkponti

latency. The rate at which snapshots may be taken dependwgretformance
of the underlying storage and the load on Parallax’s I/0O esgpipeline. If the

I/0 pipeline is full, the snapshot request may be delayedaaasllBx services other
requests. Average snapshot latency is generally under, irnander very heavy
load we have observed average snapshot latency to be ass@gimes.

Next we measured the effects of varying snapshot ratesgithendecompres-
sion and build of a Linux 2.6 kernel. In Figure 5.8 we providsults for var-
ious sub-second snapshot intervals. While this frequenay seem extreme, it
explores a reasonable space for applications that regegeaontinuous state cap-
ture. Larger snapshot intervals were tested as well, butitiledeffect on perfor-
mance. The snapshot interval is measured as the averagbdtmeen successive
snapshots and includes the actual time required to comibletenapshot. By in-
creasing the snapshot rate from 1 per second to 100 per semimtur only a
4% performance overhead. Furthermore, the majority ofititiease occurs as we
move from a 20ms to 10ms interval.

Figure 5.9 depicts the results of the same test in terms af @ad metadata
creation. The data consumption is largely fixed over alktesicause kernel com-
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Figure 5.8: Measuring performance effects of various snapshot intenraa
Linux Kernel decompression and compilation.

pilation does not involve overwriting previously writteratd, thus the snapshots
have little effect on the number of data blocks created. éretktreme, taking snap-
shots every 10ms, 65,852 snapshots were created, eachnminggust 5.84KB of
storage on average. This accounted for 375 MB of metadatghty equal in size
to the 396 MB of data that was written.

To further explore the potential of snapshots, we createdaiiernate modes
to investigate even more fine-grained state capture in IBaraln the first case
we perform a snapshot after every write request, and in thensewe inject a
snapshot after each batch of requests. Owing to the expaiameature of this
code, our implementation is unoptimized. In particular, were forced to delay
the 1/0O stream to avoid issuing multiple snapshots in peltallhis restriction has
since been removed.

The effects on performance can be categorized as followst, Eiere is an in-
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Figure 5.9: Measuring data consumption at various snapshot intervala o

Linux Kernel decompression and compilation.

crease in the amount of 1/0 being performed. Capturing elkrgk modification

multiplies the amount of I/O required by a factor of 3, whikgpturing each batch
can yield an increase as low as 5%. Second, these snapshes nmogease the
number of faulted writes, as a simple function of the numbesnapshots taken.
Finally, the delays associated with correct dependenakittg and the pipeline
stalls we introduced add to overhead. It is our belief thatliblk of the perfor-

mance decrease is actually in this third category.

Snapshot per Write

877.921 second

1188.59 MB

Snapshot per Batch

764.117 second

5
5

790.46 MB

Table 5.1: Alternate snapshot configurations.

The impact on the performance of the kernel compile is shawhable 5.1.
Metadata values are very much as we would expect, showieg thetadata blocks
for each data block in the snapshot per write case, and tviiartapshot per batch
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Figure 5.10: Performance of bursted write traffic.

case. The performance results increase by 16% to 33%, andelthét there is
considerable room for improvement, as discussed. We coadtom these results
that extending Parallax into the area of continuous datéeption represents a
promising new direction.

Local Disk Cache

We evaluated our local disk cache to illustrate the advantdghaping the traffic
of storage clients accessing a centralized network stodegee. We have not
yet fully explored the performance of caching to local diskall scenarios, as its
implementation is still in an early phase. The following ement is not meant
to exhaustively explore the implications of this technigoeerely to illustrate its
use and current implementation. In addition, the local desthe demonstrates the
ease with which new features may be added to Parallax, owiitg¢lean isolation
from both the physical storage system and the guest opgrsyistem. The local
disk cache is currently implemented in less than 500 linende.
In Figure 5.10, we show the time required to process 500MBraévraffic by

4 clients simultaneously. This temporary saturation ofghared storage resource
may come as a result of an unusual and temporary increasadndach as occurs
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Figure 5.11: Performance of bursted write traffic with local disk caching

when a system is initially brought online. This scenariatissin a degradation of
per-client performance, even as the overall throughpuigis. h

In Figure 5.11 we perform the same test with the help of oualldisk cache.
The Storage VMs each quickly recognize increased latenttyein /O requests to
the filer and enable their local caches. As a result, clieatsgive an aggregate
increase in throughput, because each local disk can besactesthout interfer-
ence from competing clients. In the background, writes liaat been made to the
local cache are flushed to network storage without puttiognioich strain on the
shared resource. Clients process the workload in signtfickess time (18-20 sec-
onds). A short time after the job completes, the cache iy fithined, though this
background process is transparent to users.

Metadata consumption

While there are some large metadata overheads, particuidHe initial extent, we
expect that metadata consumption in Parallax will be dotath@y the storage of

47



radix nodes. Measuring this consumption is difficult, beeail is parameterized
by not only the image size, but also the sparseness of theesndlge system-
wide frequency and quality of snapshots, and the degreeasinghinvolved. To

simplify this problem, we consider only the rate of radix aeger data block on
an idealized system.

In a full tree of height three with no sparseness we must eraatdix node
for every 512 blocks of data, an additional node for every, 242 blocks of data,
and finally a root block for the whole disk. With a standard 4KlBck size, for
512GB of data, we must store just over 1GB of data in the formadix nodes.
Naturally for a non-full radix tree, this ratio could be larg However, we believe
that in a large system, the predominant concern is the wasa¢et! by duplication
of highly redundant system images — a problem we explicitlgirass.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Parallax is a system that attempts to provide storage licaieon specifically for
virtual machines. The system moves functionality, suchohisme snapshots, that
is commonly implemented on expensive storage hardwarentati software im-
plementation running within a VM on the physical host thatsumes the storage.
This approach is a novel organization for a storage systewh aldows a storage
administrator access to a cluster-wide administrationalorfor storage.

Despite its use of several potentially high-overhead tegles, such as a user-
level implementation and fine-grained block mappings thho8-level radix trees,
Parallax achieves good performance against both a vergliased storage target
and a commodity local disk. We attribute our performanceuodesign which
avoids locking on the data path, and makes use of cachinghibgt and an effi-
cient pipeline in order to mask increases in per-requeshtgt Our system also
boasts an impressive snapshot capability, which can be fosddgh frequency
state capture approaching that of continuous data protecti

6.2 Future Work

We are actively exploring a number of improvements to theéesgsncluding the
establishing of a dedicated storage VM, the use of block pging to recreate the
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sharing of common data as VDIs diverge, the creation of aggs-style mappings
to avoid the overhead of tree traversals for large contiguedents, and exposing
Parallax’s snapshot and dependency tracking featuresnaiyes to the guest file
system. We also plan to investigate the fragmentation probh great detail and
explore the degree to which it can be solved by activelynedrizing the blocks
of a running system. As an alternative to using a single ndtawaailable disk, we
are designing a mode of operation in which Parallax itself mvanage multiple
physical volumes. This may prove a lower cost alternativiatge sophisticated
arrays.

Work is currently in progress to export the blktap interfaoeLinux block
devices. While virtual machine based operation is stillitfativation for Parallax,
such a development will enable still wider use of the system.

We are also continually making performance improvementBallax. As
part of these efforts we are also testing Parallax on a widay &f hardware. We
plan to deploy Parallax as part of an experimental VM-bagestiig environment
later this year. This will enable us to refine our designs asibct more realistic
data on Parallax’s performance. An open-source releasarafl&x, with current
performance data, is available attp://dsg.cs.ubc.ca/parallax/.
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