Multiagent Learning and Empirical
Methods

by
Erik P. Zawadzki

B.Sc. Honours, The University of British Columbia, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in
The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia
(Vancouver)
October, 2008
© Erik P. Zawadzki 2008



Abstract

Many algorithms exist for learning how to act in a repeatatiggand most have theoretical guaran-
tees associated with their behaviour. However, there arefperimental results about the empir-
ical performance of these algorithms, which is importani@ioy practical application of this work.
Most of the empirical claims in the literature to date haverbleased on small experiments, and this
has hampered the development of multiagent learning (MAd9r&ghms with good performance
properties.

In order to rectify this problem, we have developed a suit®ols for running multiagent ex-
periments called the Multiagent Learning Testbed (MALThe$e tools are designed to facilitate
running larger and more comprehensive experiments by remgdlre need to code one-off experi-
mental apparatus. MALT also provides a number of public ean@ntations of MAL algorithms—
hopefully eliminating or reducing differences betweenoalipm implementations and increasing
the reproducibility of results. Using this test-suite, @@ an experiment that is unprecedented in
terms of the number of MAL algorithms used and the number afgmstances generated. The
results of this experiment were analyzed by using a variétyesformance metrics—including
reward, maxmin distance, regret, and several types of cgemee. Our investigation also draws
upon a number of empirical analysis methods. Through thasyais we found some surprising re-
sults: the most surprising observation was that a very grajgorithm—one that was intended for
single-agent reinforcement problems and not multiagearniag—performed better empirically
than more complicated and recent MAL algorithms.
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Chapter 1

Introduction

Urban road networks, hospital systems and commodity maket all examples of complicated
multiagent systems that are essential to everyday lifeedddany social interaction can be seen as
a multiagent problem. As a result of the prominence of mgétid systems, a lot of attention has
been paid to designing and analyzing learning algorithmsnfaltiagent environments. Examples
include algorithms by Littman [30], Singh et al. [47], Hu avéliman [24], Greenwald and Hall
[19], Bowling [7], Powers and Shoham [38], Banerjee and Fé&hgand Conitzer and Sandholm
[13]. As a result of this attention, a multitude of differedgorithms exist for a variety of different
settings.

Before introducing a new algorithm, no matter the problerfyrelamental question needs to
be asked: how does it compare with previous approaches? rlicybar, there is little point in
suggesting a method that does not offer some form of impreménguch a question rarely can be
answered with theoretical guarantees alone, and a full @ngyically involves an extensive set of
experiments.

This thesis follows thértificial Intelligence agend§46] for multiagent learning: a good multi-
agent learning (MAL) algorithm is one that gets high rewdousgts actions in a multiagent system.
However, past work in MAL has primarily focused on provingainetical guarantees about differ-
ent algorithms and it has been difficult to prove results &loaw average reward. Instead there
have been numerous theorems about a variety of alternagifermance metrics—for which re-
sults are provable—that are intended to ‘stand in’ for relv&o how good are the numerous MAL
algorithms in terms of the Atrtificial Intelligence criteridor performance?

While most results for MAL algorithms have been theorefic@ime experiments have been
conducted. Most of these experiments were small in termaiwisgnstances, opposing algorithms
and performance metrics. The small number of metrics idquéatly important. Authors have
focused on many different aspects of performance for babr#tical and empirical work. The
abundance of possible metrics and lack of comprehensiveriexgnts mean that given any two al-
gorithms it is unlikely that their empirical results can beaningfully compared—the experiments
that have been done investigated many incomparable asggmsformance. As a result, there are
still opportunities to expand our empirical understandihow MAL techniques interact and how
one could design an algorithm with improved empirical chaastics.

Part of the reason for the relative paucity of large-scalpigoal work is that neither a central-
ized algorithm repository nor a standardized test setugi®XT his is unfortunate, not only because
needless work has to be invested in designing one-off @sthied reimplementing algorithms, but
also because a centralized and public repository increapesducibility and decreases the poten-
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tial for implementation differences. Publicly availabledascrutinized implementations will make
experiments easier to run, reproduce, and compare.

In this thesis we make two contributions. First, we descthm design and implementation
of a platform for running MAL experiments; 3). This platform offers several advantages over
one-off setups and we hope that this initial investment amigecture will facilitate larger and more
comprehensive empirical work.

Our second contribution is a large experiment that we setnapeaecuted with our platform
that is, to our knowledge, unprecedented in terms of sgadg. (Our discussion of this experiment
focuses on suggesting empirical methods for analyzing Matiggmance data and engaging in a
detailed discussion of the results. In particular, we shuoat there are some interesting relation-
ships between the different performance metrics and thmeseery basic algorithms out perform
more sophisticated algorithms on several key metrics.



Chapter 2

Background and Related Work

Game theory is a way to model the interactions of multiplé-iséérested agents. Each game
maps the decisions made by the agents to outcomes which @ imapped to rewards for each
of the agents. Everyone’s reward depends on the decisiods maother agents and vice versa.
This powerful representation not only captures everythivay is commonly thought of as a game,
like rock-paper-scissors and backgammon, but also mamy ottimplicated situations in politics,
economics and other social interactions.

Games are a mathematical object. While all game formatizatshare the broad characteri-
zation that the agent’s rewards are tied to the decisionsrhgidbthers, specific games can vary
greatly in their detail. For instance, is the game playedepioc many times? How much about
the game and the other players is known? While it is not thentidn of this thesis to give an
exhaustive survey of all game forms, we will describe the ehdakr the type of game that we use
in this dissertation—the repeated game. However, repegterks are built upon a more basic type
of game, the one-shot game, which in turn relies on havingsa enathematical formalization of
the intuitive notion of having preferences. We will give sotrackground for each of these topics,
starting with building a formal idea of preference.

2.1 Preference and Utility

Game theory is founded on the idea that agents have preé&rener theutcomeof the game—
the state of the world after the game has been played. Garemes are a natural concept with
many examples. Rock-paper-scissors can be seen as hangegtiicomes: player one might win,
player two might win, or they might both tie. Poker can be sagiraving many more possible
outcomes, one for each possible distribution of chips tovtv@us players. Each agent has pref-
erences over these outcomes. Using the example of rock-paissors, each agent prefers any
outcome where they win to one where they lose or tie. Sincegalhts prefer the outcome where
they win there is some natural tension.

Formalizing this intuition requires some light notationetlO be a set of outcomes an€C
O x O be some relationship over them. The notatier- o, denotes that, is weakly preferred
to oo. Strict preference is denoted = o, and neutrality is denoted ~ 0,. A game might have
some random component or the agents themselves might datsogheandom, and this leads to
the idea of dottery over outcomes. A lottery is simply a multinomial probalildistributions
over a set of outcomes. We denote a lottery over outcomés;as. ., 0,,} as[p1 : 01,...,Pn : 0n)
wherep; is the probability that the outcome of the lottery will bg
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Not every relationship among the outcomes makes sense afagurce relationship. We
want preference relationships to capture the intuitivessesf ‘preferring’. In particular, we want
to rule out relationships that make incomprehensible istaigs about preference. Consider the
relationship &: 01 > 09 andos > 03, but notoy > o3—while ‘>’ is a perfectly valid relationship, but
it is hard to imagine having non-transitive preference mwgcomes so>’ does not make sense as
a preference relationship.

The most accepted account of what special properties maateonship a preference is due to
the six von Neummann and Morgenstern axioms [52]. Theserexare provided here for flavour
and completeness. We will largely take them as writ in thésih with one exception noted below.

I Completeness Pick two outcomes. Either one is preferred to the other ey t#re equally
preferred.

Il Transitivity : If outcomeo; = o2, andoy = o3, then necessarily; = os.

Il Substitutability : If 0; ~ 09, then
[p:017p3:037"'7pn:0n] ~ [p:027p3:037"'7pn:0n]'

IV Decomposability If two lotteries give equal probabilities to all outcomdwen they are
equally preferred. Essentially there is “no fun in gamblirgn game of craps and a slot
machine are equally preferred if they pay out the same ammauitth the same probabilities.

V Monotonicity: If o; = 0o andp > ¢
then[p: 01,(1 —p):09] = [g:01,(1 —q): 09

VI Continuity: If o > 02, andoy > o3, then there has to be a lottery such that~ [p :
01, (1 _p) : 03]

Figure 2.1: von Neummann and Morgenstern’s six prefererimers.

Of course, some of these axioms could be disputed. For icsstane might want to have a
model of preference that does not assert completeness.alystiem would be able to account for
situations where one might not be sure which of two outcoimeglike better. This is different than
merely being indifferent between two outcomes. One miglgibiltaneously trying to optimize
along multiple dimensions: for example, a hospital adniiaier wants to save both money and
increase the quality of care but might have trouble spebifiglternatives that trade off one against
the othef. This idea of incomparability can be captured with a padradering over outcomes.

As an example, if we define a partial ordering through a dartieference relationship over
12 where outcomes are real-valued pairs énd) = (a,¥') if and only ifa > o’ andb > b'. With
such an ordering,2,4) is preferred tq1, 1), but there is no preference relationship betwgzn)

2Although, estimates for thealue of Statistical Life-the projected marginal cost of a human life [51]—are based
on the fact that money and care quality do get traded off intpra
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Figure 2.2: An example of a partial ordering over elememimfit?, where the edges indicate that
the source node is preferred to the sink node.

and(3,0). Partial orderings can be conveniently visualized usingaply, such as in Figure 2.2. We
will later argue that there are strong reasons for not hasipgeference between two algorithms
even when we have extensive experimental data for theiopedance—they might be good in

different situations.

If we have a preference relationship that satisfies the vamiieann and Morgenstern axioms
it can be shown that there existautility functionu : O — |0, 1] that captures the preference
relationship exactly [52]. This means that all of the stnuetof a preference relationship can be
distilled to a mapping of outcomes to real numbers suchdhat o, if and only if u(o1) > u(02);
we can express our preference for any outcome in terms of-diomensional number.

We will call the value of the utility function for a particulamutcome theeward for that out-
come. This is for historical reasons and is not a substactaien about our setting. ‘Reward’
is a more common term for the generic measure of worth in toélity’ in the single-agent re-
inforcement learning and artificial intelligence commiest and so we will inherit this piece of
terminology.

2.2 One-shot Games

As mentioned earlier, agents might have different prefezeorderings over the outcomes of a
game, so what happens when agents with different prefesenwract? If the agents only interact
once then this conflict can be modeled ama-shot gameThe distinguishing characteristic of the
one-shot game is that there is no notion of time or sequenaetms: the agents simultaneously
act once and only once. Therefore the agents need not thimkt &louring or fostering future
relationships when acting in the game. They only need to @onthemselves with how their
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action affect their immediate one-off reward.
A one-shot game can be modeled with-tuple: G = (N, A, O, 0,u). Each element of this
tuple has a simple interpretation:

e N isthe set of players.

o A = [[,cn A is the set of actions sets, where each actiondseés set of possible action
that agent € N can take. These action sets do not have to be finite or everaiderbut
we will focus on finite actions sets in this thesis. A partisulnember € A is called an
action profile and is a joint action decision for all players. A useful giesf notation to
have isa_; € A_; which denotes the action choices by the opponents of a pkatiagent:

Ai = [liemy 45
e O is the set of outcomes.

e oisafunctiono : A — O that maps action profiles to outcomes.

e 1 is a vector function that map outcomes of the game to rewandsech of the playerise.
for each agent € N, they have a utility functions; : O — R. In this thesis, we are solely
concerned with the reward associated with an outcome ane@ salhabbreviateu;(o(a)) as

ui(a).

If a player decides to play a particular actiap € A; in G, it is said to be playing g@ure
strategy In many settings agents are allowed to randomize over idasigjiving rise tomixed
strategies These strategies are denotedoasc A(A;), where A(A;) is the | A;|-dimensional
probability simplex—e; is a multinomial distribution over agers action set. Note that these
probabilities are absolutely not allowed to depend on whatdpponent does: the agents unfurl
their fully-specified pure or mixed strategies simultarsdp@and independently.

The probability that any action; will be played iso;(a;). Any actiona; that has non-zero
probability ing; is said to be in itsupport When playing a mixed strategy in a one-shot game,
agents are concerned with maximizing their expected rewafd) = > , p(alo)u;(a).

If, given the opponents’ strategies ;, agent: plays a strategy; such thatu;(c;,0_;) =
max, u;(0}, 0_;), theno; is said to be dest responseThe best response against a particular
set of opponent strategies is not necessarily unigue—itnesebe many strategies that attain the
maximum reward.

Simple one-shot games are representeatbmal-formtables where the rewards are explicitly
written in | N |-dimensional vectors (one utility entry for each playerpitable with one entry per
outcome. For two-players this is a ‘matrix’ where each elenibelongs toR?. Game 2.3 is an
example of a famous gamerisoner’s Dilemmain normal form.

Explicitly writing out all the reward entries is wasteful games that have highly-structured
payoffs. While more parsimonious representations exis,games examined in this thesis are
largely restricted to having two players and typically dmall the games that we look at in this
these are in normal form, although the discussion of a faafilgrgen-player traffic games looked
atin§ 7 will primarily focus on issues of representation.
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C D
C 33704
D[40 [ 1,1

Figure 2.3: A game oPrisoner’s Dilemman normal-form with canonical payoffs.

2.2.1 Solution Concepts

Once a game has been defined, a natural question is: how idstheuagents act? Game theory
is devoted to answering this question in the context of nali@gents. A rational agent is an entity
that ruthlessly and perfectly maximizes expected utilityeg its knowledge of the game and its
opponent. Unfortunately, there is no single ‘solution’ tgame, but rather different families of
solution conceptsvhich are sets of strategies or strategy profiles that gagimine game theoretic
property. The most famous of these is tHash equilibrium but we will first look at two other
solution concepts that will be important to later discussianon-dominated outcomes and maxmin
strategies.

Non-dominated Outcomes

Some actions make never make any sense to play. An impotts® af these are the dominated
actions. An action is (strictly) dominated if there is aretipure or mixed strategy that yields
higher reward regardless of what the opponents do. Thignsdiy captured as

a; Dominatesy, = Vo _;, u;(a;, 0-;) > u;(a;, 0_;). (2.2)

No rational agent ever plays a dominated action and we caardisny outcome that result from
dominated action profiles. The idea of weak domination islairbut the agent can be neutral be-
tween the dominating and dominated strategy for some (lulh@rofiles of opponent strategies.

For example, irPrisoner's Dilemmathe row player's actior” is strictly dominated: if the
column player playg’, row is better off playingD thanC', and if column playsD row would still
be better playing). There is no reason that row should ever pglaand soC' can be discarded as
a possible action.

While strict domination is easy to spot in a two-player twai@n game, it generally has to be
found with a series of linear feasibility programs—one feery action by every player. For any
agent and action, we can use a feasibility program to loolsdéone mixed strategy over the other
actions that has higher expected utility for all of the opgratis actions. If there is a pure strategy
like this, then the corresponding action can be thrown out.

In a two-player game if we assume that the opponent belicagstiie protagonist agent is
rational—or reward maximizing—then the opponent must &islieve that the protagonist will
never play any strategy that has a strictly dominated aatias support. If we furthermore assume
that the opponent is, itself, rational, then it will neveayhny action that is strictly dominated with
respect to the protagonist’s non-dominated actions. Thisiin means that the protagonist will
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A B
A[2,1700
B 0,0 ] 1,2

Figure 2.4: A game oBattle of the Sexda normal-form with canonical payoffs.

never play any strategy that is strictly dominated with ee$go the opponent’s surviving actions
and so forth. This process of removing actions is calleated domination removdlDR) and is
repeated until no more actions can be removed for eithertatjiem action has survived IDR it has
attained a minimal certificate of sensibility: there is asiesome belief about what the opponent
will do for which this strategy is a best respofse

Maxmin Strategies

If an agent has no idea what the opponents will do it can sidlrgntee some level of reward. One
way of thinking about this problem is in terms of playing awian adversary: no matter what
strategy an agent picks, the opponent just-so-happensitap@g the action that minimizes the
protagonist’s reward. The highest reward that an agent eaiingsuch a situation is called the
maxmin valuer thesecurity valugwhich is formally stated as

maxmin;(G) = oz-gll_[a(}f‘h) afféiﬂ,i ui(oi, a—;). (2.2)

Any strategy that achieves the maxmin value is called a mavgttategy. While for some
games the maxmin value is a pessimistic lower-bound, inr@hmes agents are actually playing
against opponents that are trying to minimize their rewanrd the maxmin strategy is well moti-
vated. Indeed, any game with two agents competing for a canfinite resource has this feature:
if there is only one cake, any cake that you have is a slicd thanot have. In two-player constant
sum games, the strategy profile where both players adopt enmastrategy is a member of the
next solution concept that we will discuss—the Nash equilit.

Nash Equilibria
A Nash equilibrium is a strategy profile where all agents dagipg a mutually optimal strategy—
everyone is best responding to everyone else. Formallgdahef Nash equilibria is

NE(G) = {0 € A(A) | Vi € N,Voj € A(A;), ui(0) > ui(0],0-)} . (2.3)

This set is always non-empty [35], but is not necessarilynglston. For example, thBattle of
the Sexe¢Game 2.4) has three Nash equilibria: both agents playinigoth playingB and some
mixture between the two.

3This is not necessarily true when the number of players iatgréhan two.
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The Nash equilibrium is a positive concept and not a pradiatr normative one. If there are
several Nash equilibria there is no prescription for pigkivhich one an agent should or will play.
There has been a lot of work done on restricting the set of Nggiilibria to sets of equilibria
that seem ‘natural’ or predictive. Much of the existing wamkrepeated game dynamics can be
seen as describing restricted classes of Nash equilibiiarins of simple adaptation rules—see,
for example, Kalai and Lehrer [25], Kalai and Lehrer [26],rHand Mas-Colell [21] and Hart and
Mansour [20].

One of Nash equilibrium restrictions that we look at in thisdis is the set of Pareto-optimal
Nash equilibria. Pareto-domination is a partial orderimgramutcomes, where one outcome Pareto-
dominates another if all the agents get weakly higher reivatide former outcome than the latter:

a Pareto Dominates = Vi € N, u;(a) > u;(a’). (2.4)

Pareto-optimality refers to any outcome that is not Padetminated by any other outcome: in
every other outcome at least one of the agents is worse oléelh the partial ordering example in
Figure 2.2 can be seen as an example of Pareto-dominatitwdagents.

A Pareto-optimal Nash equilibrium is an equilibrium thaP&reto-optimal when outcomes are
restricted to the Nash equilibria. In a Pareto-dominatadliegum, all agents would do better if
everyone switched to another equilibrium. This suggestisRareto-optimal Nash equilibria should
be a particularly stable appealing set of Nash equilibricttie agents. Note that a Pareto-optimal
Nash equilibrium is not necessarily a Pareto-optimal auteothe difference can be seenHnis-
oner’s Dilemma (C, C) is a Pareto-optimal outcome, bUb, D) is the unique Nash equilibrium
and so is also the Pareto-optimal equilibrium.

2.3 Repeated Games

One-shot games are the foundation of repeated games, ih woor more agents repeatedly (for
either a finite or infinite number of iterations) play a oneisstage-game Unlike the one-shot
game where the agents play the game once and then nevecirdgedn, the history of play in a
repeated game is kept and agents can condition their sgateg it. This suggests that agents need
to worry about how their current choice of action will effégture reward.

Tit-for-Tat (TfT) is an example of a strategy in a repeated game and ispsthe most famous
repeated-game strategy ferisoner’s DilemmaGame 2.3). TfT begins by cooperating and then
plays whatever the opponent did the past iteration. Thezefid the opponent is obliging and
cooperates TfT will continue to cooperate. If ever the ogpardefects TfT will defect the next
round, but will start cooperating whenever the opponentsstaeling cooperative again. TfT is a
relatively simple strategy, but one could imagine consingcmore and more elaborate strategies
with trigger conditions and complicated modes of behaving.

Formally, let us denote the action played in iterattdoy agent; aSaZ(t), and the reward that

1 receives iSrZ(t). For the model of repeated games that we will use, agentdlavged to submit
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mixed strategies, denotex:jt), but agents do not receive the expected utility. Insteadction is
sampled from the mixed strategy, and payoff is calculatéugube sampled action.
Agents in finitely repeated games are interested in maxigittieir average reward, and agents
in an infinitely repeated game are interested in maximizmaiy limit average reward:
T ()
t=1"i

T

7; = lim
T—o0

(2.5)

In this thesis, we will exclusively focus on simulating infely repeated games in a finite number
of iterations: agent do not believe that the game will evereren though it does after a set number
of iterations.

One interpretation of these repeated-game strategiestighby are strategies in a one-shot
supergamewhere instead of making a decision each iteration conditioon the past history,
agents make a single policy decision. In this interpretatidT is a single action in thBrisoner’s
Dilemmasupergame. There are many more policies than there arasatithe stage-game: if all
players have: actions and the game is repeatedforithen there aré)(nTz) possible pure-action
policies (policies that only ever make pure-strategy decsy. While the supergame is clearly not
a compact way of representing a repeated game, it is anetuitly of seeing that finitely repeated
games must have Nash equilibria.

Infinitely repeated games also necessarily have equildd furthermore, each infinitely re-
peated game has infinitely many equilibria. We cannot eitiylicharacterize every repeated game
equilibria but we can instead say something about the thefpayofiles that these equilibria
achieve. If all agents have an average reward above th@ectge security values (recall from
§ 2.2.1) then there exists some Nash equilibrium that attamsame profile of payoffs. This is the
celebrateFolk Theorerfl. Any payoff profile where all agents are attaining rewarchiigthat their
security values is said to mnforceable

To gain some insight about the Folk Theorem, let us again meihe game oPrisoner’s
Dilemmaand construct a repeated game Nash equilibrium where baitens repeatedly plag.
The security value for this game ig(if an agent always play®, then it gets a utility of at least
regardless of what the opponent does), anf(8@”) is clearly enforceable. Thereforg, 3) is a
payoff profile of the repeated game Nash equilibrium. Whattae equilibrium strategies? There
are a number of strategy profiles that can attain this outdomene of the simplest profiles is
Grim Triggerin self play.

Grim Trigger playsC' until the opponent play® and then plays) forever: upon the first
sign of deviation from théC, C') outcome the Grim Trigger strategy starts a merciless anddine
ing program of punishment. Grim Trigger in self play is aniégtium because if either player
tries to deviate to another strategy that ever playsgainst Grim Trigger, the deviator will be
worse off: the deviant strategy strategy can, at best rattiaiaverage reward af If either player
switches to a strategy that never pldysgainst Grim Trigger, then this strategy differs only in the

“There are actually several Folk Theorems, but we will onbklat one for average rewards.

10
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100 99 1

100 100, 100 99 — 5,99 + 0 1—-61+0

99 [99+45,99—6 99,99 1-6,1+0
1] 1+6,1-0 | 1+0,1-9 1,1

Figure 2.5: A game ofraveler's Dilemmawith 100 actions.

‘off-equilibrium’ punishment details and receives the saaverage reward as Grim Trigger—the
deviant strategy has not improved reward.

The Folk Theorem does not claim that if two agents are aamiean enforceable payoff profile
then the agents are playing a Nash equilibrium. The ideaufiedqum is tied deeply to the threat
of punishment. Grim Trigger in self play is an equilibrium ilehtwo strategies that blindly plag/
is not, even if their behaviour looks the same to an outsideder. In the latter case if either agent
switched to the simple strategy of blindly playiig than their average reward would be higher.

While we might have been unsatisfied by the potential maldtaf Nash equilibria in the one-
shot game, the predictive power of the Folk Theorem is evsst lthere are games where nearly
every outcome arises under a Nash equilibrium. For instarmesider an extension &frisoner’s
Dilemma the Traveler's DilemmaGame 2.3;Prisoner’s Dilemmas the special case with only
2 actions—apparently travelers have more options availableem than prisoners). The security
value isl for both players, and so all outcomes—except for outcomdéiseoform(1 — 4,1 + §) or
(1 + 0,1 — §)—are potentially the result of a Nash equilibrium.

Again, repeated game Nash equilibria are positive stattsvaam not normative, but in many
cases we want a normative claim: how should we behave in atepgame? How should we
go about selecting a particular strategy for a multiagestesy? This thesis is largely devoted to
evaluating one approach that computer science has suddesthis problem: multiagent learning
algorithms.

2.4 Multiagent Learning Algorithms

MAL algorithms have been studied for a long time (57 yearshattime of writing) and many
different algorithms exist. Not only is there a profusioratfforithms but there are also several dif-
ferent settings for multiagent learning. Does an algorikmow the game’s reward functions before
the game starts? Some authors assume yes, while otherseagmirthese reward functions need
to be learned. There are other questions. What signals ahenent actions can an algorithm
observe? Are stage-game Nash equilibria and other conymady-expensive game properties
assumed to be computable? Each of these assumptions chlthadearning problem. A setting
where the rewards are knovenpriori is fundamentally different than a setting where the rewards
are not knowra priori and algorithms have no ability to observe the opponentsardsv

The algorithms that we describe in this section were dedigvith a variety of different goals

11
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in mind and this reflects a general disagreement over whee thi&\L algorithms should be trying
to do. Should they be trying to converge to a stage-game Nasttitgium? Should they try

to avoid being exploited by other algorithms? Or are theingyto maximize their sequence of
reward? There is no single answer (but these issues arem@mi length in Shoham et al. [46]
and Sandholm [44]).

Each of these goals poses different empirical questionsinstance, if we are primarily inter-
ested the Bowling and Veloso [10] criterion—all algorithsi®uld converge to a stationary strat-
egy and if the opponent converges to a stationary policylgdirdhms should converge to a best
response—one should analyze experiments using perfommaetics that are sensitive to strategic
stationarity and to the difference between the currentegiyaand the best response strategy.

In this dissertation we focus on two-player repeated gamigs mwany (.e. more than two)
actions per player. Other learning settings have beentigaésd. Some of these settings are
further restrictions that insist, for example, on two-astgames [47] or constant-sum games [30].
Other work looks at learning in generalizations of two-glagepeated games: stochastic games or
N-player games [53]. There are also MAL experiments that e conducted in settings that
are neither generalizations nor restrictions, such asdbpalption-based work by Axelrod [3] and
Airiau et al. [2]. Of these games, the repeated two-playareggetting is the best studied and there
are many recent algorithms designed for such games.

In the remainder of this section we will discuss a selectibralgorithms intended for two-
player repeated games and look at some previous MAL expetim&Ve do not mean to give an
exhaustive survey of this literature but we do want to buildiition about this set of algorithms,
look at the assumptions that they make and indicate some= gétationships between them.

2.4.1 Fictitious Play

Fictitious play[l1l]is probably the earliest example of a learning algonittor two-player
games repeated games. Essentiéliyct i ti ous pl ay assumes that the opponent is playing an
unknown and potentially mixed stationary strategy, arebttd estimate this strategy from the op-
ponent’s empirical distribution of actions—the frequecoynts for each of its actions normalized
to be probabilities. Clearly, in order to collect the freqog countsf i ctiti ous pl ay must

be able to observe the opponent’s actions. The algorithm, titeeach iteration, best responds to
this estimated strategy. Becausecti ti ous pl ay needs to calculate a best response, it also
assumes complete knowledge of its own payoffs.

Fictitious play is guaranteed to converge to a Nash eqiuhibiin self play for a restricted set
of games. These games are said to havdittigous play property(see, for instance Monderer
and Shapley [34]; for an example of a simglex 2 game without this property see Monderer and
Sela[33]).Fi ctitious pl ay will also eventually best respond to any stationary stratéfis
algorithm’s general structure has been extended in a nuofbeays, includingsmooth fictitious
play [17], and we will see later thdti cti ti ous pl ay provides the foundation fofMESOVE
andnet a, two more modern algorithms. These algorithms are destidier in Section 2.4.3.

Fi ctitious play is known to have miscoordination issues, particularly i gky. For

12
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example, consider th8idewalk GamdéGame 2.6), where two identicdli cti ti ous pl ay
agents are faced with the issue of trying to get by each othahe sidewalk by either passing

to the Westor the East Since both algorithms are identical and deterministies¢halgorithms

will cycle between(W, W) and (E, E'). There are some clever measures that can be taken to
avoid some of these kinds of problems (for instances, splees response tie-breaking rules and
randomization), but miscoordination is a general issuéis thief i cti ti ous pl ay approach.

4% E
w[-1,-1] 1,1
E | 1,1 | -1,-1

Figure 2.6: ASidewalkor Dispersiongame, where two agents try to miscoordinate where they
step.

2.4.2 Determined

Det er m ned or ‘bully’ (see, for example, Powers and Shoham [38]) is goathm that solves
the multiagent learning problem by ignoring it. MAL algdmits typically change their behaviour
by adapting to signals about the game. Howeler er mi ned, as its name suggests, stubbornly
does not change its behaviour and relies on other algoridttapting their strategies to it.

Det er mi ned enumerates the stage-game Nash equilibria and selectadhat maximizes
its personal reward at equilibrium. Certainbet er m ned is not a final solution to the MAL
problem: for instance, twdet er mi ned agents will stubbornly play different equilibria (unless
there is a an equilibrium that is best for both agents), pbs$tading to a situation where both
algorithms receive sub-equilibrium reward. Additionalyhumerating all the Nash equilibria not
only requires complete knowledge of every agents’ rewandtions, but also is a costly compu-
tational activity that is infeasible on anything but the #s® stage games. With that said, it is
certainly an interesting learning approach to test and esey@Slight variations aflet er m ned
are, likefi ctiti ous pl ay, at the heart ofret a and AWVESOME.

Using a stage-game Nash equilibrium is only one way of betagl®rn and getting an op-
ponent to adapt. One could also imagine aiming for convegén other outcomes: for instance
looking for the outcome with the highest reward given thatdpponent is best responding. Note
that this differs from a stage-game Nash equilibrium beedbedet er mi ned algorithm does
not have to be best responding itself. This amounts to arilequim of the Stackelberg version of
the game: imagine the same game, but instead of moving sinedtisly, thelet er nmi ned agent
moves first. Clearly, a sensible opponent will best-respgonghateverdet er m ned does, and
sodet er m ned should pick the action that gives maximum reward given thatdpponent will
best respond.

As an example of a Stackelberg outcome: in Game 2.7 the ulNgsh equilibrium i B, R).
Indeed, this is the only outcome that survives IDR. Howetlegre is something very appealing

13



Chapter 2. Background and Related Work

about the Pareto-optimal outcome(dt L): if the row player can teach the column player that it
will, in fact, play T then the row player will be much better off.

L R
T | 1—¢1 0,0
B 1,0 €1

Figure 2.7: A game showing a situation whergedt er m ned-style algorithm might be better off
not best responding to its opponent.

2.4.3 Targeted Algorithms

We will next focus on a class of algorithms called thegetedalgorithms. Targeted algorithms
focus on playing against a particular class of opponents. ekample, AWESOVE [13] guaran-
tees convergence when playing itself or any stationary oppo Both these algorithms are based
around identifying what the opponent is doing, with patciattention paid to stationarity and
Nash equilibrium, and then changing their behaviour basetthis assessment.

Meta [38] switches between three simpler strategies: deglyasimilar tofictiti ous
pl ay (there are some small differences in how best responsesabr@lated), adet er m n-
ed-style algorithm that stubbornly plays a Nash equilibritemd the maxmin strategy. Average
reward and empirical distributions of the opponents’ addiare recorded for different periods of
play. Based on these histories one of the three algorithreslésted Met a was theoretically and
empirically shown to be nearly optimal against itself, eldés the best response against stationary
agents, and to approach (or exceed) the security level aféhres in all cases.

AVESQVE also tracks the opponent’s behaviour in different peridgsay and tries to maintain
hypotheses about their play. For example, it attempts teraehe whether the other algorithms
are playing a special stage-game Nash equilibrium. If theyMNESOVE responds with its own
component of that special equilibrium. This special equilim is known in advance by all imple-
mentations 0AVWESOVE to avoid equilibrium selection issues in self play. There ather situa-
tions where it acts in a similar fashionta cti ti ous pl ay, and there are still other discrete
modes of play that it engages in depending on what hypotlielsekeves.

Because both of these algorithms switch between using smsilategies depending on the
situation, these algorithms can be viewed as portfoliorélyms. Here, they both manage similar
portfolios that include aet er mi ned-style algorithm and &i cti ti ous pl ay algorithm.

2.4.4 Q-learning Algorithms

A broad family of MAL algorithms are based @i | ear ni ng [55]: an algorithm for finding the
optimal policy in Markov Decision Processes (MDPs; can lmigfint of as single-agent stochastic
games). This family of MAL algorithms does not explicitly ol the opponent’s strategy choices.

14
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They instead settle for learning the expected discountedrrefor taking an action and then fol-
lowing some set policy: thé-function. In order to learn th@-function, algorithms typically take
random exploratory steps with a small (possibly decayimghability.

Each algorithm in this family has a different way of selegtits strategy based on thig-
function. For instance, one could try a straight forwardpaa@on of the single-ager@ | ear n-
i ng to the multiagent setting by ignoring the impact that the aymmt's action makes on the
protagonist’s payoffs. The algorithm simply updates itsar function whenever a new reward
observation is made, where the new estimate is a convex oatidmn of the old estimate and the
new information:

Qa;) = (1 —ay)Q(a;) + o [7‘ + 7y max Qa)| . (2.6)

This algorithm essentially considers the opponent’s bielavto be an unremarkable part of a
noisy and non-stationary environment. The non-stationaf the environment makes learning
difficult but this idea is not entirely without meri@- | ear ni ng has been shown to work in other
non-stationary environments (see, for instance, SuttdrBamto [49]).

M ni max- Q30] is one of the first explicitly multiagent application$ this idea. TheQ-
function that it learns is based on the action profile and ust {he protagonist action: it learns
Q(a;,a—;). Minimax-Q uses the mixed maxmin strategy calculated from@-function as its
strategy:

Q(ai,a—;) = (1 — ar)Q(ai,a—;)

2.7
‘o |7+ max 2.7)

O'Z‘EH (Az) afiEA,i

min oi(a;)Q(a;, a_i)” )
It should be noted that since its maxmin strategies are ledzl from learned)-values, they
may not be the game’s actual maxmin strategies and thusofaittain the security value. Like
Q | ear ni ng, m ni max- Qalso takes the occasional exploration step.

There are further modifications to this general scheNees hQ[24] learnsQ-functions for it
and its opponents and plays a stage-game Nash equilibrrategy for the game induced by these
Q-values. Corr el at ed- Q[19] does something similar except that it chooses from #ieok
correlated equilibria using a variety of different selentmethods. Both of these algorithms assume
that they are able to observe not only the opponents’ actionalso their rewards, and additionally
that they have the computational wherewithal to computendeessary solution concept.

2.4.5 Gradient Algorithms

Gradient ascent algorithms, such@sGA- WLF [7] and RV, [5], maintain a mixed strategy
that is updated in the direction of the payoff gradient. Tihec#ic details of this updating process
depend on the individual algorithms, but the common feaithat they increase the probability
of actions with high reward and decrease the probability mgdramising actions. This family
of algorithms is similar taQ- | ear ni ng because they do not explicitly model their opponent’s
strategies and instead treat them as part of a hon-statiorarvironment.
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G GA- WL Fis the latest algorithm in the line of gradient learners 8tatted withl GA [47].

G GA- WLF uses an adaptive step length that makes it more or less apgredout changing
its strategy. It compares its strategy to a baseline syadegl makes the update larger if it is
performing worse than the baselird. GA- WLF guarantees non-positive regret in the limit (regret
is discussed in greater detailjb.2) and strategic convergence to a Nash equilibrium whesyinm
againstd GA[57] in two-player two-action games.

There are two versions @l GA- WLF. The first version assumes prior knowledge of personal
reward and the ability to observe the opponent’s actions—ihithe version used in the proofs
for G GA- WWLF’s no-regret and convergence guarantees. There is alsooadse&ersion—on
which all the experiments were based—that makes limitednagons about payoff knowledge
and computational power. Instead, ligel ear ni ng, it merely assumes that it is able to observe
its own reward.

RV, [5] belongs to a second line of gradient algorithms initiakyy ReDVaLeR [4]. This
algorithm also uses an adaptive step size when followingp#y®ff gradient, likeG GA- WOLF,
but this is done on a action-by-action basis. This means timike G GA- WLF, RVU(t) can be
aggressive in updating some actions while being cautioostalpdating others, and it does this
by comparing its reward to the reward at a Nash equilibriutmer&fore RV, ;) requires complete
information about the game and sufficient computationalgrde discover at least one stage-game
Nash equilibrium. RV, also guarantees no-regret in the limit and additionallyvjgles some
convergence results for self play for a restricted classaofes.

G GA- WLF and RV, differ in the way that they ensure that their updated stiategre
still probabilities. G GA- WLF retracts: it maps an unconstrained vector to the vector en th
probability simplex that is closest ify distance. This approach has a tenancy to map vectors to
the extreme points of the simplex, reducing some actionghitibies to zero.RV,,;) normalizes,
which is less prone to removing actions from its supportsTiiference may explain some of the
experimental results later on.

2.4.6 Previous Experimental Results

Setting up a general-sum repeated two-player game exparigmuires a number of design choices.
Say that one has an algorithms to be evaluated in terms oftiaydar performance metric: what
set of games should these algorithms be run on? What othenitalgs should this performance
be compared to? If one is dealing with randomized algoritfwtsch includes any algorithm that
is able to submit a mixed strategy), how many different rumsugd be simulated? For a partic-
ular game, how many iterations should a simulation be rufd f8s can be seen in Table 2.4.6,
existing literature varies in all of these dimensions. Aiddially, some papers do not even discuss
parameters used which makes it difficult to reproduce erpants.

Overall, most of the tests performed in these papers camsidew algorithms. In most of
these experiments, the newly proposed algorithms wereevdiuated by playing against one or
two opponents. Some papers—Ilike Littman [30] and Greenwaldl Hall [19]—seemed to use
many algorithms, but in fact these algorithms were quitelainto each other and varied only in
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Paper Algorithms Distributions Instances Runs Iterations

Littman [30] 6 1 1 ? ?

Claus and Boutilier [12] 2 3 1-100 2 50-2500
Greenwald and Hall [19] 7 5 1 2500 - 33331 x 10°
Bowling [8] 2 6 1 ? 1% 10°
Nudelman et al. [36] 3 13 100 10 1 x10°
Powers and Shoham [38] 11 21 ? ? 2 x 10°
Banerjee and Peng [5] 2 1 1 1 16000
Conitzer and Sandholm [13] 3 2 1 1 2500

Table 2.1: This table shows a summary of the experimentapdetr a selection of papers. The
summary includes the number of algorithms, the number ofegdistributions, the number of game
instances drawn from these distributions, the number of aumtrials for each instance, and the
number of iterations that the simulations were run for. Imeaases, the setup was unclear, indi-
cated with a'?’. In many cases, fewer thatigorithms x Distributions x Instances X Runs]
runs were simulated, due to some sparsity in the experirmsintetures.

some small details. For example, in Littman [30] two versiofin ni max- Qand two versions of
Q | ear ni ng were tested and each version varied only by its trainingmegiln Greenwald and
Hall [19], four versions ofCor r el at ed- Qwere tested again§- | ear ni ng andFri end- Q
andFoe- Q(the last two are from Littman [29]). Powers and Shoham [B&]lemented the greatest
variety of opposing algorithms out of these experimentsil®\four of the eleven tested were sim-
ple stationary strategy baselines, the remaining sevea WM& algorithms includingHyper - Q
[50], WLF- PHC[10], and a joint action learner [12].

Experiments have also tended to involve small numbers oeganstances, and these instances
have tended to have been drawn from an even smaller numbanw distributions. For example,
Banerjee and Peng [5] used only a single3 action “simple coordination game” and Littman [30]
probed algorithm behaviour with a single grid-world vers@ soccer. For earlier papers, this par-
tially reflected the difficulty of creating a large number dfetent game instances for use in tests.
However with the creation of GAMUT [36], a suite of game gexters, generating large game sets
is now easy and involves little investment in time. Indeedd®lman et al. [36] performed a large
MAL experiment using three MAL algorithms{ ni max- Q WOLF [9], andQ- | ear ni ng) on
1300 game instances drawn from thirteen distributions. Somentepapers have taken full ad-
vantage of the potential of GAMUT, such as Powers and Shol3& put adoption has not been
universal.

Experiments have also differed substantially in the nundddterations considered ranging
from 50 [12] to1 x 10° [8]. Iterations in a repeated game are usually divided irstettting in”
(also calleda “burn-in” period) and “recording” phaseslowing the algorithms time to settle or
adapt before results are recorded. Powers and Shoham ¢88ilezl the fina20 000 out of 200 000
iterations and Nudelman et al. [36] used the fil@DOO iterations out ofl00 000.
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Platform

Unfortunately, empirical experiments have largely beerwith one-off code tailored to showing a
particular feature of an algorithm. This has a number of tieg@onsequences. First, it decreases
the reproducibility of experiments by, for instance, obgay the details of algorithm implementa-
tion. Even when source code for the original experiment &lable, it might be difficult to extend
to new experimental settings; h