Multiagent Learning and Empirical
Methods

by
Erik P. Zawadzki

B.Sc. Honours, The University of British Columbia, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in
The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia
(Vancouver)
October, 2008
© Erik P. Zawadzki 2008

Abstract

Many algorithms exist for learning how to act in a repeatatiggand most have theoretical guaran-
tees associated with their behaviour. However, there arefperimental results about the empir-
ical performance of these algorithms, which is importani@ioy practical application of this work.
Most of the empirical claims in the literature to date haverbleased on small experiments, and this
has hampered the development of multiagent learning (MAd9r&ghms with good performance
properties.

In order to rectify this problem, we have developed a suit®ols for running multiagent ex-
periments called the Multiagent Learning Testbed (MALThe$e tools are designed to facilitate
running larger and more comprehensive experiments by remgdlre need to code one-off experi-
mental apparatus. MALT also provides a number of public ean@ntations of MAL algorithms—
hopefully eliminating or reducing differences betweenoalipm implementations and increasing
the reproducibility of results. Using this test-suite, @@ an experiment that is unprecedented in
terms of the number of MAL algorithms used and the number afgmstances generated. The
results of this experiment were analyzed by using a variétyesformance metrics—including
reward, maxmin distance, regret, and several types of cgemee. Our investigation also draws
upon a number of empirical analysis methods. Through thasyais we found some surprising re-
sults: the most surprising observation was that a very grajgorithm—one that was intended for
single-agent reinforcement problems and not multiagearniag—performed better empirically
than more complicated and recent MAL algorithms.

Table of Contents

Abstract e ii
Tableof Contents iii
Listof Tables e Y
Listof Figures e Vi
Acknowledgments e e e e viii
Dedication e iX
1 Introduction 1
2 Background and Related Work 3
2.1 Preferenceand Utility e 3
2.2 One-shotGames 5
2.21 SolutionConcepts e 7
2.3 Repeated Games 9
2.4 Multiagent Learning Algorithms 11
241 FictitiousPlay 12
242 Determined 13
2.4.3 Targeted Algorithmso 14
2.4.4 Q-learning Algorithms 14
2.45 GradientAlgorithms, 15
2.4.6 Previous Experimental Results 16
3 Platform 18
3.1 The Platform Architecture e 18
3.1.1 Definitions 18
3.1.2 Platform Structure 19
3.1.3 Algorithm Implementations 21

Table of Contents

4 Empirical Methodsand Setup 27
4.1 Experimental Setup 27
4.2 BoOtstrapping e e e e e 28
4.3 Statistical Tests e 29

4.3.1 Kolmogorov-SmirnovTest 29
4.3.2 Spearman’s Rank CorrelationTest 31
4.4 Probabilistic Domination e 31

5 Empirical Evaluation of MAL Algorithms 33

5.1 Reward-Based Metrics 33
5.1.1 Average Reward e 33
5.1.2 MaxminDistance 53

5.2 Regret e e e 6 5

5.3 Convergence-Based Metrics e 64
5.3.1 Strategic Stationarity e 67
5.3.2 Stage-Game Nash Equilibria 71
5.3.3 Repeated-Game Nash Equilibria 71

5.4 Links Between Metrics 73
5.4.1 Linking Reward With Maxmin Distance 73
5.4.2 Linking Reward WithRegret 77
5.4.3 Linking Reward With Nash Equilibrium Convergence 80

6 Discussionand Conclusion. 88

7 Future Work: Extensionto Traffic 91
7.1 Wardrop Equilibrium e 92
7.2 Congestion Games e e 92
7.3 0OurGame e e e e 93

7.3.1 OtherModels 95
7.3.2 Experimental Directions 96
Appendices
A Stratified Sampling e 97
Bibliography e 99

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

5.1
5.2

5.3

Al

Previous experiments e 17
Design decisions fdri ctitious play 22
Design decisions fatetermined 22
Designdecisionsfaretao 23
Designdecisionsfareta 23
Design decisions fdll GA-WOLF. Lo 24
Design decisions fABSA. e e 24
Design decisionBV,(y). -« -« o o o 25
Designdecisionsfd@ l earning. e 25
The number and name of each game generator. 28
The different algorithms and their best-response sets. 38
The proportion of grand distribution subsampled atharigames where each al-
gorithm was strictly or weakly dominated. 40
The set of best algorithms for each generator. 49
Two schemes for sampling. e 97

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

2.7

3.1

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

5.15
5.16
5.17
5.18
5.19

von Neummann and Morgenstern’s six preference axioms.. 4
A partial orderingexample L 5
A game ofPrisoner’s Dilemman normal-form with canonical payoffs. 7
A game oBattle of the Sexds normal-form with canonical payoffs. 8
A game ofTraveler's Dilemmawith 100 actions. 11
A Sidewalkor Dispersiongame, where two agents try to miscoordinate where they
SteP. . . e e e 13
A game with a convincing Stackelberg outcome 14
The five steps in running an analyzing an experiment UdiAgT. 20
Kolmogorov-Smirnov testexample. 30
Lensplotforreward e 35
Bootstrapped mean estimator distributionsQef ear ni ng andRV, ;) 36
A heatmap showing the mean reward for each algorithm 37
The mean reward algorithmgameo, 39
The mean reward algorithm gameforD4 42
Reward distribution probabilistic domination betwélea algorithms 43
Self-play lens plotforreward, 44
Algorithm-generator heatmap forreward. 46
Normalized algorithm-generator heatmap forreward...... 47
Bootstrapped mean estimate distribution forD7 48
Correlation between sizeandreward 50
Similarity among different algorithms 52
The sign of the safety distance of each run, by algorithm 54
The distribution of maxmin distances SMAESOVE, mi ni max- QandQ- | ear n-

NG, o e e e e e e 55
The proportion of enforceable runs, blocked by oppbnen. 57
The distribution of negative maxmin distances@GA- WLF andRV, 58
Lensplotforregret. 60
The number of runs for each algorithm that have negater®, or positive regret. . 61
The distribution of regret f&p- | ear ni ngandd@ GA-WOLF. 62

Vi

List of Figures

5.20 Mean average regret, blocked by opponent. 63

5.21 The number of opponents for which the algorithm on tlénate probabilistically
dominates the algorithm on the abscissa. For exaniglegar ni ng probabilis-
tically dominated i ctiti ous pl ay on PSMs involving ten out of eleven pos-

sible opponents. e 65
5.22 The number of generators for which the algorithm on td@ate probabilistically
dominates the algorithmontheabscissa. 66
5.23 Proportion of stationary runs, blocked on opponent 68
5.24 Proportion of non-stationary runs, blocked on geoeratd protagomst 69
5.25 Convergences proportions e e e 70
5.26 Self-play convergences proportions i o e 72
5.27 Proportion of PSMs with enforceable payoffs and paypffiles achieved, by
algorithm. e e 74
5.28 Sign of correlation between reward and maxmin distance. 75
5.29 The distribution of reward fdRV,,,) when conditioning on different maxmin dis-
tances. 76
5.30 The distribution of reward fd@- | ear ni ng when conditioning on different en-
forceability. Runs from D10 wereexcluded. 78
5.31 Bivariate histogram showing reward and maxmin digdocRV, ;) 79
5.32 The sign of correlation between reward andregret 81
5.33 A GA- WLF's CDF curves for positive and non-positive reward 82
5.34 Rewardandregret f@WVESOVE o i i i e e e 83
5.35 Reward and regretf@ |l earning 84
5.36 The sign of correlation between reward dpddistance to the closest Nash equi-
librium . . . 86
5.37 Reward and,.-distance to the closest Nash equilibrium 7 8
7.1 A sample road graph with four intersections. 91
7.2 A sample road graph with two intersections that has ncharequmbrlum for a
system with two atomic drivers. 0. 92

Vii

Acknowledgments

This thesis would not have been possible without the extuteflapport that | received from all
of my friends, colleagues, and professors at the UniveditBritish Columbia. | cannot name
everyone that has helped me with my work in the past severs s two degrees at UBC, but |
will try to name those who directly helped with this dissdda.

There were three students that worked on this project with Aleof this work stems from
a previous thesis by Asher Lipson, and reading his thesigpapdr helped me get a grip on the
problem. David Ludgate was very helpful with the coding a$thersion of MALT and bore with
me when | was still figuring out the rudimentary details osthroject. Alice Gao was an essential
part of the traffic application of this work.

My fellow students were a constant source of ideas, sugmestand advice. I'm very thank-
ful to Baharak Rastegari, Albert Xin Jiang, David Thompséames Wright, Samantha Leung,
Damien Bargiacchi, Frank Hutter, Lin Xu, and Tristram Sawytlfior their insights. | am particu-
larly thankful for James’ careful read over the traffic pdrtre thesis. Both the GTDT and EARG
reading groups listened and commented on version itesabbmy talk and watched it grow from
a summer project, to a course project and finally to a Mastieg'sis.

The entire direction for the analysis of results changeer aétking the empirical algorithmics
course given by Dr. Holger Hoos, and | am indebted to him ferihieresting presentation of the
material and useful suggestions for my problem. Dr. Nandbriktas, beyond agreeing to being
a reviewer for this thesis (on his sabatical, no less), wag kelpful throughout the process—
particularly with some of the statistics for this project.

Dr. Kevin Leyton-Brown, my supervisor, showed me what it mteta do research and essen-
tially taught me how to write from scratch. He constantlylgrged me and was a great person to
work with. Three pieces of his advice will always stick witlenbe the step-mother of your work—
not its mother; research is a dialog and you should see yotk a@adding to the conversation;
and always use a sans serif font in presentations.

viii

Dedication

To my parents, my Babcia, and Gwenn. Each one is as imporsafiedast.

1This can be seen as a preference relationship that doestisfy sampleteness. See Table 2.1

Chapter 1

Introduction

Urban road networks, hospital systems and commodity maket all examples of complicated
multiagent systems that are essential to everyday lifeedddany social interaction can be seen as
a multiagent problem. As a result of the prominence of mgétid systems, a lot of attention has
been paid to designing and analyzing learning algorithmsnfaltiagent environments. Examples
include algorithms by Littman [30], Singh et al. [47], Hu avéliman [24], Greenwald and Hall
[19], Bowling [7], Powers and Shoham [38], Banerjee and Fé&hgand Conitzer and Sandholm
[13]. As a result of this attention, a multitude of differedgorithms exist for a variety of different
settings.

Before introducing a new algorithm, no matter the problerfyrelamental question needs to
be asked: how does it compare with previous approaches? rlicybar, there is little point in
suggesting a method that does not offer some form of impreménguch a question rarely can be
answered with theoretical guarantees alone, and a full @ngyically involves an extensive set of
experiments.

This thesis follows thértificial Intelligence agend§46] for multiagent learning: a good multi-
agent learning (MAL) algorithm is one that gets high rewdousgts actions in a multiagent system.
However, past work in MAL has primarily focused on provingainetical guarantees about differ-
ent algorithms and it has been difficult to prove results &loaw average reward. Instead there
have been numerous theorems about a variety of alternagifermance metrics—for which re-
sults are provable—that are intended to ‘stand in’ for relv&o how good are the numerous MAL
algorithms in terms of the Atrtificial Intelligence criteridor performance?

While most results for MAL algorithms have been theorefic@ime experiments have been
conducted. Most of these experiments were small in termaiwisgnstances, opposing algorithms
and performance metrics. The small number of metrics idquéatly important. Authors have
focused on many different aspects of performance for babr#tical and empirical work. The
abundance of possible metrics and lack of comprehensiveriexgnts mean that given any two al-
gorithms it is unlikely that their empirical results can beaningfully compared—the experiments
that have been done investigated many incomparable asggmsformance. As a result, there are
still opportunities to expand our empirical understandihow MAL techniques interact and how
one could design an algorithm with improved empirical chaastics.

Part of the reason for the relative paucity of large-scalpigoal work is that neither a central-
ized algorithm repository nor a standardized test setugi®XT his is unfortunate, not only because
needless work has to be invested in designing one-off @sthied reimplementing algorithms, but
also because a centralized and public repository increapesducibility and decreases the poten-

Chapter 1. Introduction

tial for implementation differences. Publicly availabledascrutinized implementations will make
experiments easier to run, reproduce, and compare.

In this thesis we make two contributions. First, we descthm design and implementation
of a platform for running MAL experiments; 3). This platform offers several advantages over
one-off setups and we hope that this initial investment amigecture will facilitate larger and more
comprehensive empirical work.

Our second contribution is a large experiment that we setnapeaecuted with our platform
that is, to our knowledge, unprecedented in terms of sgadg. (Our discussion of this experiment
focuses on suggesting empirical methods for analyzing Matiggmance data and engaging in a
detailed discussion of the results. In particular, we shuoat there are some interesting relation-
ships between the different performance metrics and thmeseery basic algorithms out perform
more sophisticated algorithms on several key metrics.

Chapter 2

Background and Related Work

Game theory is a way to model the interactions of multiplé-iséérested agents. Each game
maps the decisions made by the agents to outcomes which @ imapped to rewards for each
of the agents. Everyone’s reward depends on the decisiods maother agents and vice versa.
This powerful representation not only captures everythivay is commonly thought of as a game,
like rock-paper-scissors and backgammon, but also mamy ottimplicated situations in politics,
economics and other social interactions.

Games are a mathematical object. While all game formatizatshare the broad characteri-
zation that the agent’s rewards are tied to the decisionsrhgidbthers, specific games can vary
greatly in their detail. For instance, is the game playedepioc many times? How much about
the game and the other players is known? While it is not thentidn of this thesis to give an
exhaustive survey of all game forms, we will describe the ehdakr the type of game that we use
in this dissertation—the repeated game. However, repegterks are built upon a more basic type
of game, the one-shot game, which in turn relies on havingsa enathematical formalization of
the intuitive notion of having preferences. We will give sotrackground for each of these topics,
starting with building a formal idea of preference.

2.1 Preference and Utility

Game theory is founded on the idea that agents have preé&rener theutcomeof the game—
the state of the world after the game has been played. Garemes are a natural concept with
many examples. Rock-paper-scissors can be seen as hangegtiicomes: player one might win,
player two might win, or they might both tie. Poker can be sagiraving many more possible
outcomes, one for each possible distribution of chips tovtv@us players. Each agent has pref-
erences over these outcomes. Using the example of rock-paissors, each agent prefers any
outcome where they win to one where they lose or tie. Sincegalhts prefer the outcome where
they win there is some natural tension.

Formalizing this intuition requires some light notationetlO be a set of outcomes an€C
O x O be some relationship over them. The notatier- o, denotes that, is weakly preferred
to oo. Strict preference is denoted = o, and neutrality is denoted ~ 0,. A game might have
some random component or the agents themselves might datsogheandom, and this leads to
the idea of dottery over outcomes. A lottery is simply a multinomial probalildistributions
over a set of outcomes. We denote a lottery over outcomés;as. ., 0,,} as[p1 : 01,...,Pn : 0n)
wherep; is the probability that the outcome of the lottery will bg

Chapter 2. Background and Related Work

Not every relationship among the outcomes makes sense afagurce relationship. We
want preference relationships to capture the intuitivessesf ‘preferring’. In particular, we want
to rule out relationships that make incomprehensible istaigs about preference. Consider the
relationship &: 01 > 09 andos > 03, but notoy > o3—while ‘>’ is a perfectly valid relationship, but
it is hard to imagine having non-transitive preference mwgcomes so>’ does not make sense as
a preference relationship.

The most accepted account of what special properties maateonship a preference is due to
the six von Neummann and Morgenstern axioms [52]. Theserexare provided here for flavour
and completeness. We will largely take them as writ in thésih with one exception noted below.

I Completeness Pick two outcomes. Either one is preferred to the other ey t#re equally
preferred.

Il Transitivity : If outcomeo; = o2, andoy = o3, then necessarily; = os.

Il Substitutability : If 0; ~ 09, then
[p:017p3:037"'7pn:0n] ~ [p:027p3:037"'7pn:0n]'

IV Decomposability If two lotteries give equal probabilities to all outcomdwen they are
equally preferred. Essentially there is “no fun in gamblirgn game of craps and a slot
machine are equally preferred if they pay out the same ammauitth the same probabilities.

V Monotonicity: If o; = 0o andp > ¢
then[p: 01,(1 —p):09] = [g:01,(1 —q): 09

VI Continuity: If o > 02, andoy > o3, then there has to be a lottery such that~ [p :
01, (1 _p) : 03]

Figure 2.1: von Neummann and Morgenstern’s six prefererimers.

Of course, some of these axioms could be disputed. For icsstane might want to have a
model of preference that does not assert completeness.alystiem would be able to account for
situations where one might not be sure which of two outcoimeglike better. This is different than
merely being indifferent between two outcomes. One miglgibiltaneously trying to optimize
along multiple dimensions: for example, a hospital adniiaier wants to save both money and
increase the quality of care but might have trouble spebifiglternatives that trade off one against
the othef. This idea of incomparability can be captured with a padradering over outcomes.

As an example, if we define a partial ordering through a dartieference relationship over
12 where outcomes are real-valued pairs énd) = (a,¥') if and only ifa > o’ andb > b'. With
such an ordering,2,4) is preferred tq1, 1), but there is no preference relationship betwgzn)

2Although, estimates for thealue of Statistical Life-the projected marginal cost of a human life [51]—are based
on the fact that money and care quality do get traded off intpra

Chapter 2. Background and Related Work

Figure 2.2: An example of a partial ordering over elememimfit?, where the edges indicate that
the source node is preferred to the sink node.

and(3,0). Partial orderings can be conveniently visualized usingaply, such as in Figure 2.2. We
will later argue that there are strong reasons for not hasipgeference between two algorithms
even when we have extensive experimental data for theiopedance—they might be good in

different situations.

If we have a preference relationship that satisfies the vamiieann and Morgenstern axioms
it can be shown that there existautility functionu : O — |0, 1] that captures the preference
relationship exactly [52]. This means that all of the stnuetof a preference relationship can be
distilled to a mapping of outcomes to real numbers suchdhat o, if and only if u(o1) > u(02);
we can express our preference for any outcome in terms of-diomensional number.

We will call the value of the utility function for a particulamutcome theeward for that out-
come. This is for historical reasons and is not a substactaien about our setting. ‘Reward’
is a more common term for the generic measure of worth in toélity’ in the single-agent re-
inforcement learning and artificial intelligence commiest and so we will inherit this piece of
terminology.

2.2 One-shot Games

As mentioned earlier, agents might have different prefezeorderings over the outcomes of a
game, so what happens when agents with different prefesenwract? If the agents only interact
once then this conflict can be modeled ama-shot gameThe distinguishing characteristic of the
one-shot game is that there is no notion of time or sequenaetms: the agents simultaneously
act once and only once. Therefore the agents need not thimkt &louring or fostering future
relationships when acting in the game. They only need to @onthemselves with how their

Chapter 2. Background and Related Work

action affect their immediate one-off reward.
A one-shot game can be modeled with-tuple: G = (N, A, O, 0,u). Each element of this
tuple has a simple interpretation:

e N isthe set of players.

o A = [[,cn A is the set of actions sets, where each actiondseés set of possible action
that agent € N can take. These action sets do not have to be finite or everaiderbut
we will focus on finite actions sets in this thesis. A partisulnember € A is called an
action profile and is a joint action decision for all players. A useful giesf notation to
have isa_; € A_; which denotes the action choices by the opponents of a pkatiagent:

Ai = [liemy 45
e O is the set of outcomes.

e oisafunctiono : A — O that maps action profiles to outcomes.

e 1 is a vector function that map outcomes of the game to rewandsech of the playerise.
for each agent € N, they have a utility functions; : O — R. In this thesis, we are solely
concerned with the reward associated with an outcome ane@ salhabbreviateu;(o(a)) as

ui(a).

If a player decides to play a particular actiap € A; in G, it is said to be playing g@ure
strategy In many settings agents are allowed to randomize over idasigjiving rise tomixed
strategies These strategies are denotedoasc A(A;), where A(A;) is the | A;|-dimensional
probability simplex—e; is a multinomial distribution over agers action set. Note that these
probabilities are absolutely not allowed to depend on whatdpponent does: the agents unfurl
their fully-specified pure or mixed strategies simultarsdp@and independently.

The probability that any action; will be played iso;(a;). Any actiona; that has non-zero
probability ing; is said to be in itsupport When playing a mixed strategy in a one-shot game,
agents are concerned with maximizing their expected rewafd) = > , p(alo)u;(a).

If, given the opponents’ strategies ;, agent: plays a strategy; such thatu;(c;,0_;) =
max, u;(0}, 0_;), theno; is said to be dest responseThe best response against a particular
set of opponent strategies is not necessarily unigue—itnesebe many strategies that attain the
maximum reward.

Simple one-shot games are representeatbmal-formtables where the rewards are explicitly
written in | N |-dimensional vectors (one utility entry for each playerpitable with one entry per
outcome. For two-players this is a ‘matrix’ where each elenibelongs toR?. Game 2.3 is an
example of a famous gamerisoner’s Dilemmain normal form.

Explicitly writing out all the reward entries is wasteful games that have highly-structured
payoffs. While more parsimonious representations exis,games examined in this thesis are
largely restricted to having two players and typically dmall the games that we look at in this
these are in normal form, although the discussion of a faafilgrgen-player traffic games looked
atin§ 7 will primarily focus on issues of representation.

Chapter 2. Background and Related Work

C D
C 33704
D[40 [1,1

Figure 2.3: A game oPrisoner’s Dilemman normal-form with canonical payoffs.

2.2.1 Solution Concepts

Once a game has been defined, a natural question is: how idstheuagents act? Game theory
is devoted to answering this question in the context of nali@gents. A rational agent is an entity
that ruthlessly and perfectly maximizes expected utilityeg its knowledge of the game and its
opponent. Unfortunately, there is no single ‘solution’ tgame, but rather different families of
solution conceptsvhich are sets of strategies or strategy profiles that gagimine game theoretic
property. The most famous of these is tHash equilibrium but we will first look at two other
solution concepts that will be important to later discussianon-dominated outcomes and maxmin
strategies.

Non-dominated Outcomes

Some actions make never make any sense to play. An impotts® af these are the dominated
actions. An action is (strictly) dominated if there is aretipure or mixed strategy that yields
higher reward regardless of what the opponents do. Thignsdiy captured as

a; Dominatesy, = Vo _;, u;(a;, 0-;) > u;(a;, 0_;). (2.2)

No rational agent ever plays a dominated action and we caardisny outcome that result from
dominated action profiles. The idea of weak domination islairbut the agent can be neutral be-
tween the dominating and dominated strategy for some (lulh@rofiles of opponent strategies.

For example, irPrisoner's Dilemmathe row player's actior” is strictly dominated: if the
column player playg’, row is better off playingD thanC', and if column playsD row would still
be better playing). There is no reason that row should ever pglaand soC' can be discarded as
a possible action.

While strict domination is easy to spot in a two-player twai@n game, it generally has to be
found with a series of linear feasibility programs—one feery action by every player. For any
agent and action, we can use a feasibility program to loolsdéone mixed strategy over the other
actions that has higher expected utility for all of the opgratis actions. If there is a pure strategy
like this, then the corresponding action can be thrown out.

In a two-player game if we assume that the opponent belicagstiie protagonist agent is
rational—or reward maximizing—then the opponent must &islieve that the protagonist will
never play any strategy that has a strictly dominated aatias support. If we furthermore assume
that the opponent is, itself, rational, then it will neveayhny action that is strictly dominated with
respect to the protagonist’s non-dominated actions. Thisiin means that the protagonist will

Chapter 2. Background and Related Work

A B
A[2,1700
B 0,0] 1,2

Figure 2.4: A game oBattle of the Sexda normal-form with canonical payoffs.

never play any strategy that is strictly dominated with ee$go the opponent’s surviving actions
and so forth. This process of removing actions is calleated domination removdlDR) and is
repeated until no more actions can be removed for eithertatjiem action has survived IDR it has
attained a minimal certificate of sensibility: there is asiesome belief about what the opponent
will do for which this strategy is a best respofse

Maxmin Strategies

If an agent has no idea what the opponents will do it can sidlrgntee some level of reward. One
way of thinking about this problem is in terms of playing awian adversary: no matter what
strategy an agent picks, the opponent just-so-happensitap@g the action that minimizes the
protagonist’s reward. The highest reward that an agent eaiingsuch a situation is called the
maxmin valuer thesecurity valugwhich is formally stated as

maxmin;(G) = oz-gll_[a(}f‘h) afféiﬂ,i ui(oi, a—;). (2.2)

Any strategy that achieves the maxmin value is called a mavgttategy. While for some
games the maxmin value is a pessimistic lower-bound, inr@hmes agents are actually playing
against opponents that are trying to minimize their rewanrd the maxmin strategy is well moti-
vated. Indeed, any game with two agents competing for a canfinite resource has this feature:
if there is only one cake, any cake that you have is a slicd thanot have. In two-player constant
sum games, the strategy profile where both players adopt enmastrategy is a member of the
next solution concept that we will discuss—the Nash equilit.

Nash Equilibria
A Nash equilibrium is a strategy profile where all agents dagipg a mutually optimal strategy—
everyone is best responding to everyone else. Formallgdahef Nash equilibria is

NE(G) = {0 € A(A) | Vi € N,Voj € A(A;), ui(0) > ui(0],0-)} . (2.3)

This set is always non-empty [35], but is not necessarilynglston. For example, thBattle of
the Sexe¢Game 2.4) has three Nash equilibria: both agents playinigoth playingB and some
mixture between the two.

3This is not necessarily true when the number of players iatgréhan two.

Chapter 2. Background and Related Work

The Nash equilibrium is a positive concept and not a pradiatr normative one. If there are
several Nash equilibria there is no prescription for pigkivhich one an agent should or will play.
There has been a lot of work done on restricting the set of Nggiilibria to sets of equilibria
that seem ‘natural’ or predictive. Much of the existing wamkrepeated game dynamics can be
seen as describing restricted classes of Nash equilibiiarins of simple adaptation rules—see,
for example, Kalai and Lehrer [25], Kalai and Lehrer [26],rHand Mas-Colell [21] and Hart and
Mansour [20].

One of Nash equilibrium restrictions that we look at in thisdis is the set of Pareto-optimal
Nash equilibria. Pareto-domination is a partial orderimgramutcomes, where one outcome Pareto-
dominates another if all the agents get weakly higher reivatide former outcome than the latter:

a Pareto Dominates = Vi € N, u;(a) > u;(a’). (2.4)

Pareto-optimality refers to any outcome that is not Padetminated by any other outcome: in
every other outcome at least one of the agents is worse oléelh the partial ordering example in
Figure 2.2 can be seen as an example of Pareto-dominatitwdagents.

A Pareto-optimal Nash equilibrium is an equilibrium thaP&reto-optimal when outcomes are
restricted to the Nash equilibria. In a Pareto-dominatadliegum, all agents would do better if
everyone switched to another equilibrium. This suggestisRareto-optimal Nash equilibria should
be a particularly stable appealing set of Nash equilibricttie agents. Note that a Pareto-optimal
Nash equilibrium is not necessarily a Pareto-optimal auteothe difference can be seenHnis-
oner’s Dilemma (C, C) is a Pareto-optimal outcome, bUb, D) is the unique Nash equilibrium
and so is also the Pareto-optimal equilibrium.

2.3 Repeated Games

One-shot games are the foundation of repeated games, ih woor more agents repeatedly (for
either a finite or infinite number of iterations) play a oneisstage-game Unlike the one-shot
game where the agents play the game once and then nevecirdgedn, the history of play in a
repeated game is kept and agents can condition their sgateg it. This suggests that agents need
to worry about how their current choice of action will effégture reward.

Tit-for-Tat (TfT) is an example of a strategy in a repeated game and ispsthe most famous
repeated-game strategy ferisoner’s DilemmaGame 2.3). TfT begins by cooperating and then
plays whatever the opponent did the past iteration. Thezefid the opponent is obliging and
cooperates TfT will continue to cooperate. If ever the ogpardefects TfT will defect the next
round, but will start cooperating whenever the opponentsstaeling cooperative again. TfT is a
relatively simple strategy, but one could imagine consingcmore and more elaborate strategies
with trigger conditions and complicated modes of behaving.

Formally, let us denote the action played in iterattdoy agent; aSaZ(t), and the reward that

1 receives iSrZ(t). For the model of repeated games that we will use, agentdlavged to submit

Chapter 2. Background and Related Work

mixed strategies, denotex:jt), but agents do not receive the expected utility. Insteadction is
sampled from the mixed strategy, and payoff is calculatéugube sampled action.
Agents in finitely repeated games are interested in maxigittieir average reward, and agents
in an infinitely repeated game are interested in maximizmaiy limit average reward:
T ()
t=1"i

T

7; = lim
T—o0

(2.5)

In this thesis, we will exclusively focus on simulating infely repeated games in a finite number
of iterations: agent do not believe that the game will evereren though it does after a set number
of iterations.

One interpretation of these repeated-game strategiestighby are strategies in a one-shot
supergamewhere instead of making a decision each iteration conditioon the past history,
agents make a single policy decision. In this interpretatidT is a single action in thBrisoner’s
Dilemmasupergame. There are many more policies than there arasatithe stage-game: if all
players have: actions and the game is repeatedforithen there aré)(nTz) possible pure-action
policies (policies that only ever make pure-strategy decsy. While the supergame is clearly not
a compact way of representing a repeated game, it is anetuitly of seeing that finitely repeated
games must have Nash equilibria.

Infinitely repeated games also necessarily have equildd furthermore, each infinitely re-
peated game has infinitely many equilibria. We cannot eitiylicharacterize every repeated game
equilibria but we can instead say something about the thefpayofiles that these equilibria
achieve. If all agents have an average reward above th@ectge security values (recall from
§ 2.2.1) then there exists some Nash equilibrium that attamsame profile of payoffs. This is the
celebrateFolk Theorerfl. Any payoff profile where all agents are attaining rewarchiigthat their
security values is said to mnforceable

To gain some insight about the Folk Theorem, let us again meihe game oPrisoner’s
Dilemmaand construct a repeated game Nash equilibrium where baitens repeatedly plag.
The security value for this game ig(if an agent always play®, then it gets a utility of at least
regardless of what the opponent does), anf(8@”) is clearly enforceable. Thereforg, 3) is a
payoff profile of the repeated game Nash equilibrium. Whattae equilibrium strategies? There
are a number of strategy profiles that can attain this outdomene of the simplest profiles is
Grim Triggerin self play.

Grim Trigger playsC' until the opponent play® and then plays) forever: upon the first
sign of deviation from théC, C') outcome the Grim Trigger strategy starts a merciless anddine
ing program of punishment. Grim Trigger in self play is aniégtium because if either player
tries to deviate to another strategy that ever playsgainst Grim Trigger, the deviator will be
worse off: the deviant strategy strategy can, at best rattiaiaverage reward af If either player
switches to a strategy that never pldysgainst Grim Trigger, then this strategy differs only in the

“There are actually several Folk Theorems, but we will onbklat one for average rewards.

10

Chapter 2. Background and Related Work

100 99 1

100 100, 100 99 — 5,99 + 0 1—-61+0

99 [99+45,99—6 99,99 1-6,1+0
1] 1+6,1-0 | 1+0,1-9 1,1

Figure 2.5: A game ofraveler's Dilemmawith 100 actions.

‘off-equilibrium’ punishment details and receives the saaverage reward as Grim Trigger—the
deviant strategy has not improved reward.

The Folk Theorem does not claim that if two agents are aamiean enforceable payoff profile
then the agents are playing a Nash equilibrium. The ideaufiedqum is tied deeply to the threat
of punishment. Grim Trigger in self play is an equilibrium ilehtwo strategies that blindly plag/
is not, even if their behaviour looks the same to an outsideder. In the latter case if either agent
switched to the simple strategy of blindly playiig than their average reward would be higher.

While we might have been unsatisfied by the potential maldtaf Nash equilibria in the one-
shot game, the predictive power of the Folk Theorem is evsst lthere are games where nearly
every outcome arises under a Nash equilibrium. For instarmesider an extension &frisoner’s
Dilemma the Traveler's DilemmaGame 2.3;Prisoner’s Dilemmas the special case with only
2 actions—apparently travelers have more options availableem than prisoners). The security
value isl for both players, and so all outcomes—except for outcomdéiseoform(1 — 4,1 + §) or
(1 + 0,1 — §)—are potentially the result of a Nash equilibrium.

Again, repeated game Nash equilibria are positive stattsvaam not normative, but in many
cases we want a normative claim: how should we behave in atepgame? How should we
go about selecting a particular strategy for a multiagestesy? This thesis is largely devoted to
evaluating one approach that computer science has suddesthis problem: multiagent learning
algorithms.

2.4 Multiagent Learning Algorithms

MAL algorithms have been studied for a long time (57 yearshattime of writing) and many
different algorithms exist. Not only is there a profusioratfforithms but there are also several dif-
ferent settings for multiagent learning. Does an algorikmow the game’s reward functions before
the game starts? Some authors assume yes, while otherseagmirthese reward functions need
to be learned. There are other questions. What signals ahenent actions can an algorithm
observe? Are stage-game Nash equilibria and other conymady-expensive game properties
assumed to be computable? Each of these assumptions chlthadearning problem. A setting
where the rewards are knovenpriori is fundamentally different than a setting where the rewards
are not knowra priori and algorithms have no ability to observe the opponentsardsv

The algorithms that we describe in this section were dedigvith a variety of different goals

11

Chapter 2. Background and Related Work

in mind and this reflects a general disagreement over whee thi&\L algorithms should be trying
to do. Should they be trying to converge to a stage-game Nasttitgium? Should they try

to avoid being exploited by other algorithms? Or are theingyto maximize their sequence of
reward? There is no single answer (but these issues arem@mi length in Shoham et al. [46]
and Sandholm [44]).

Each of these goals poses different empirical questionsinstance, if we are primarily inter-
ested the Bowling and Veloso [10] criterion—all algorithsi®uld converge to a stationary strat-
egy and if the opponent converges to a stationary policylgdirdhms should converge to a best
response—one should analyze experiments using perfommaetics that are sensitive to strategic
stationarity and to the difference between the currentegiyaand the best response strategy.

In this dissertation we focus on two-player repeated gamigs mwany (.e. more than two)
actions per player. Other learning settings have beentigaésd. Some of these settings are
further restrictions that insist, for example, on two-astgames [47] or constant-sum games [30].
Other work looks at learning in generalizations of two-glagepeated games: stochastic games or
N-player games [53]. There are also MAL experiments that e conducted in settings that
are neither generalizations nor restrictions, such asdbpalption-based work by Axelrod [3] and
Airiau et al. [2]. Of these games, the repeated two-playareggetting is the best studied and there
are many recent algorithms designed for such games.

In the remainder of this section we will discuss a selectibralgorithms intended for two-
player repeated games and look at some previous MAL expetim&Ve do not mean to give an
exhaustive survey of this literature but we do want to buildiition about this set of algorithms,
look at the assumptions that they make and indicate some= gétationships between them.

2.4.1 Fictitious Play

Fictitious play[l1l]is probably the earliest example of a learning algonittor two-player
games repeated games. Essentiéliyct i ti ous pl ay assumes that the opponent is playing an
unknown and potentially mixed stationary strategy, arebttd estimate this strategy from the op-
ponent’s empirical distribution of actions—the frequecoynts for each of its actions normalized
to be probabilities. Clearly, in order to collect the freqog countsf i ctiti ous pl ay must

be able to observe the opponent’s actions. The algorithm, titeeach iteration, best responds to
this estimated strategy. Becausecti ti ous pl ay needs to calculate a best response, it also
assumes complete knowledge of its own payoffs.

Fictitious play is guaranteed to converge to a Nash eqiuhibiin self play for a restricted set
of games. These games are said to havdittigous play property(see, for instance Monderer
and Shapley [34]; for an example of a simglex 2 game without this property see Monderer and
Sela[33]).Fi ctitious pl ay will also eventually best respond to any stationary stratéfis
algorithm’s general structure has been extended in a nuofbeays, includingsmooth fictitious
play [17], and we will see later thdti cti ti ous pl ay provides the foundation fofMESOVE
andnet a, two more modern algorithms. These algorithms are destidier in Section 2.4.3.

Fi ctitious play is known to have miscoordination issues, particularly i gky. For

12

Chapter 2. Background and Related Work

example, consider th8idewalk GamdéGame 2.6), where two identicdli cti ti ous pl ay
agents are faced with the issue of trying to get by each othahe sidewalk by either passing

to the Westor the East Since both algorithms are identical and deterministies¢halgorithms

will cycle between(W, W) and (E, E'). There are some clever measures that can be taken to
avoid some of these kinds of problems (for instances, splees response tie-breaking rules and
randomization), but miscoordination is a general issuéis thief i cti ti ous pl ay approach.

4% E
w[-1,-1] 1,1
E | 1,1 | -1,-1

Figure 2.6: ASidewalkor Dispersiongame, where two agents try to miscoordinate where they
step.

2.4.2 Determined

Det er m ned or ‘bully’ (see, for example, Powers and Shoham [38]) is goathm that solves
the multiagent learning problem by ignoring it. MAL algdmits typically change their behaviour
by adapting to signals about the game. Howeler er mi ned, as its name suggests, stubbornly
does not change its behaviour and relies on other algoridttapting their strategies to it.

Det er mi ned enumerates the stage-game Nash equilibria and selectadhat maximizes
its personal reward at equilibrium. Certainbet er m ned is not a final solution to the MAL
problem: for instance, twdet er mi ned agents will stubbornly play different equilibria (unless
there is a an equilibrium that is best for both agents), pbs$tading to a situation where both
algorithms receive sub-equilibrium reward. Additionalyhumerating all the Nash equilibria not
only requires complete knowledge of every agents’ rewandtions, but also is a costly compu-
tational activity that is infeasible on anything but the #s® stage games. With that said, it is
certainly an interesting learning approach to test and esey@Slight variations aflet er m ned
are, likefi ctiti ous pl ay, at the heart ofret a and AWVESOME.

Using a stage-game Nash equilibrium is only one way of betagl®rn and getting an op-
ponent to adapt. One could also imagine aiming for convegén other outcomes: for instance
looking for the outcome with the highest reward given thatdpponent is best responding. Note
that this differs from a stage-game Nash equilibrium beedbedet er mi ned algorithm does
not have to be best responding itself. This amounts to arilequim of the Stackelberg version of
the game: imagine the same game, but instead of moving sinedtisly, thelet er nmi ned agent
moves first. Clearly, a sensible opponent will best-respgonghateverdet er m ned does, and
sodet er m ned should pick the action that gives maximum reward given thatdpponent will
best respond.

As an example of a Stackelberg outcome: in Game 2.7 the ulNgsh equilibrium i B, R).
Indeed, this is the only outcome that survives IDR. Howetlegre is something very appealing

13

Chapter 2. Background and Related Work

about the Pareto-optimal outcome(dt L): if the row player can teach the column player that it
will, in fact, play T then the row player will be much better off.

L R
T | 1—¢1 0,0
B 1,0 €1

Figure 2.7: A game showing a situation whergedt er m ned-style algorithm might be better off
not best responding to its opponent.

2.4.3 Targeted Algorithms

We will next focus on a class of algorithms called thegetedalgorithms. Targeted algorithms
focus on playing against a particular class of opponents. ekample, AWESOVE [13] guaran-
tees convergence when playing itself or any stationary oppo Both these algorithms are based
around identifying what the opponent is doing, with patciattention paid to stationarity and
Nash equilibrium, and then changing their behaviour basetthis assessment.

Meta [38] switches between three simpler strategies: deglyasimilar tofictiti ous
pl ay (there are some small differences in how best responsesabr@lated), adet er m n-
ed-style algorithm that stubbornly plays a Nash equilibritemd the maxmin strategy. Average
reward and empirical distributions of the opponents’ addiare recorded for different periods of
play. Based on these histories one of the three algorithreslésted Met a was theoretically and
empirically shown to be nearly optimal against itself, eldés the best response against stationary
agents, and to approach (or exceed) the security level aféhres in all cases.

AVESQVE also tracks the opponent’s behaviour in different peridgsay and tries to maintain
hypotheses about their play. For example, it attempts teraehe whether the other algorithms
are playing a special stage-game Nash equilibrium. If theyMNESOVE responds with its own
component of that special equilibrium. This special equilim is known in advance by all imple-
mentations 0AVWESOVE to avoid equilibrium selection issues in self play. There ather situa-
tions where it acts in a similar fashionta cti ti ous pl ay, and there are still other discrete
modes of play that it engages in depending on what hypotlielsekeves.

Because both of these algorithms switch between using smsilategies depending on the
situation, these algorithms can be viewed as portfoliorélyms. Here, they both manage similar
portfolios that include aet er mi ned-style algorithm and &i cti ti ous pl ay algorithm.

2.4.4 Q-learning Algorithms

A broad family of MAL algorithms are based @i | ear ni ng [55]: an algorithm for finding the
optimal policy in Markov Decision Processes (MDPs; can lmigfint of as single-agent stochastic
games). This family of MAL algorithms does not explicitly ol the opponent’s strategy choices.

14

Chapter 2. Background and Related Work

They instead settle for learning the expected discountedrrefor taking an action and then fol-
lowing some set policy: thé-function. In order to learn th@-function, algorithms typically take
random exploratory steps with a small (possibly decayimghability.

Each algorithm in this family has a different way of selegtits strategy based on thig-
function. For instance, one could try a straight forwardpaa@on of the single-ager@ | ear n-
i ng to the multiagent setting by ignoring the impact that the aymmt's action makes on the
protagonist’s payoffs. The algorithm simply updates itsar function whenever a new reward
observation is made, where the new estimate is a convex oatidmn of the old estimate and the
new information:

Qa;) = (1 —ay)Q(a;) + o [7‘ + 7y max Qa)| . (2.6)

This algorithm essentially considers the opponent’s bielavto be an unremarkable part of a
noisy and non-stationary environment. The non-stationaf the environment makes learning
difficult but this idea is not entirely without meri@- | ear ni ng has been shown to work in other
non-stationary environments (see, for instance, SuttdrBamto [49]).

M ni max- Q30] is one of the first explicitly multiagent application$ this idea. TheQ-
function that it learns is based on the action profile and ust {he protagonist action: it learns
Q(a;,a—;). Minimax-Q uses the mixed maxmin strategy calculated from@-function as its
strategy:

Q(ai,a—;) = (1 — ar)Q(ai,a—;)

2.7
‘o |7+ max 2.7)

O'Z‘EH (Az) afiEA,i

min oi(a;)Q(a;, a_i)”)
It should be noted that since its maxmin strategies are ledzl from learned)-values, they
may not be the game’s actual maxmin strategies and thusofaittain the security value. Like
Q | ear ni ng, m ni max- Qalso takes the occasional exploration step.

There are further modifications to this general scheNees hQ[24] learnsQ-functions for it
and its opponents and plays a stage-game Nash equilibrrategy for the game induced by these
Q-values. Corr el at ed- Q[19] does something similar except that it chooses from #ieok
correlated equilibria using a variety of different selentmethods. Both of these algorithms assume
that they are able to observe not only the opponents’ actionalso their rewards, and additionally
that they have the computational wherewithal to computendeessary solution concept.

2.4.5 Gradient Algorithms

Gradient ascent algorithms, such@sGA- WLF [7] and RV, [5], maintain a mixed strategy
that is updated in the direction of the payoff gradient. Tihec#ic details of this updating process
depend on the individual algorithms, but the common feaithat they increase the probability
of actions with high reward and decrease the probability mgdramising actions. This family
of algorithms is similar taQ- | ear ni ng because they do not explicitly model their opponent’s
strategies and instead treat them as part of a hon-statiorarvironment.

15

Chapter 2. Background and Related Work

G GA- WL Fis the latest algorithm in the line of gradient learners 8tatted withl GA [47].

G GA- WLF uses an adaptive step length that makes it more or less apgredout changing
its strategy. It compares its strategy to a baseline syadegl makes the update larger if it is
performing worse than the baselird. GA- WLF guarantees non-positive regret in the limit (regret
is discussed in greater detailjb.2) and strategic convergence to a Nash equilibrium whesyinm
againstd GA[57] in two-player two-action games.

There are two versions @l GA- WLF. The first version assumes prior knowledge of personal
reward and the ability to observe the opponent’s actions—ihithe version used in the proofs
for G GA- WWLF’s no-regret and convergence guarantees. There is alsooadse&ersion—on
which all the experiments were based—that makes limitednagons about payoff knowledge
and computational power. Instead, ligel ear ni ng, it merely assumes that it is able to observe
its own reward.

RV, [5] belongs to a second line of gradient algorithms initiakyy ReDVaLeR [4]. This
algorithm also uses an adaptive step size when followingp#y®ff gradient, likeG GA- WOLF,
but this is done on a action-by-action basis. This means timike G GA- WLF, RVU(t) can be
aggressive in updating some actions while being cautioostalpdating others, and it does this
by comparing its reward to the reward at a Nash equilibriutmer&fore RV, ;) requires complete
information about the game and sufficient computationalgrde discover at least one stage-game
Nash equilibrium. RV, also guarantees no-regret in the limit and additionallyvjgles some
convergence results for self play for a restricted classaofes.

G GA- WLF and RV, differ in the way that they ensure that their updated stiategre
still probabilities. G GA- WLF retracts: it maps an unconstrained vector to the vector en th
probability simplex that is closest ify distance. This approach has a tenancy to map vectors to
the extreme points of the simplex, reducing some actionghitibies to zero.RV,,;) normalizes,
which is less prone to removing actions from its supportsTiiference may explain some of the
experimental results later on.

2.4.6 Previous Experimental Results

Setting up a general-sum repeated two-player game exparigmuires a number of design choices.
Say that one has an algorithms to be evaluated in terms oftiaydar performance metric: what
set of games should these algorithms be run on? What othenitalgs should this performance
be compared to? If one is dealing with randomized algoritfwtsch includes any algorithm that
is able to submit a mixed strategy), how many different rumsugd be simulated? For a partic-
ular game, how many iterations should a simulation be rufd f8s can be seen in Table 2.4.6,
existing literature varies in all of these dimensions. Aiddially, some papers do not even discuss
parameters used which makes it difficult to reproduce erpants.

Overall, most of the tests performed in these papers camsidew algorithms. In most of
these experiments, the newly proposed algorithms wereevdiuated by playing against one or
two opponents. Some papers—Ilike Littman [30] and Greenwaldl Hall [19]—seemed to use
many algorithms, but in fact these algorithms were quitelainto each other and varied only in

16

Chapter 2. Background and Related Work

Paper Algorithms Distributions Instances Runs Iterations

Littman [30] 6 1 1 ? ?

Claus and Boutilier [12] 2 3 1-100 2 50-2500
Greenwald and Hall [19] 7 5 1 2500 - 33331 x 10°
Bowling [8] 2 6 1 ? 1% 10°
Nudelman et al. [36] 3 13 100 10 1 x10°
Powers and Shoham [38] 11 21 ? ? 2 x 10°
Banerjee and Peng [5] 2 1 1 1 16000
Conitzer and Sandholm [13] 3 2 1 1 2500

Table 2.1: This table shows a summary of the experimentapdetr a selection of papers. The
summary includes the number of algorithms, the number ofegdistributions, the number of game
instances drawn from these distributions, the number of aumtrials for each instance, and the
number of iterations that the simulations were run for. Imeaases, the setup was unclear, indi-
cated with a'?’. In many cases, fewer thatigorithms x Distributions x Instances X Runs]
runs were simulated, due to some sparsity in the experirmsintetures.

some small details. For example, in Littman [30] two versiofin ni max- Qand two versions of
Q | ear ni ng were tested and each version varied only by its trainingmegiln Greenwald and
Hall [19], four versions ofCor r el at ed- Qwere tested again§- | ear ni ng andFri end- Q
andFoe- Q(the last two are from Littman [29]). Powers and Shoham [B&]lemented the greatest
variety of opposing algorithms out of these experimentsil®\four of the eleven tested were sim-
ple stationary strategy baselines, the remaining sevea WM& algorithms includingHyper - Q
[50], WLF- PHC[10], and a joint action learner [12].

Experiments have also tended to involve small numbers oeganstances, and these instances
have tended to have been drawn from an even smaller numbanw distributions. For example,
Banerjee and Peng [5] used only a single3 action “simple coordination game” and Littman [30]
probed algorithm behaviour with a single grid-world vers@ soccer. For earlier papers, this par-
tially reflected the difficulty of creating a large number dfetent game instances for use in tests.
However with the creation of GAMUT [36], a suite of game gexters, generating large game sets
is now easy and involves little investment in time. Indeedd®lman et al. [36] performed a large
MAL experiment using three MAL algorithms{ ni max- Q WOLF [9], andQ- | ear ni ng) on
1300 game instances drawn from thirteen distributions. Somentepapers have taken full ad-
vantage of the potential of GAMUT, such as Powers and Shol3& put adoption has not been
universal.

Experiments have also differed substantially in the nundddterations considered ranging
from 50 [12] to1 x 10° [8]. Iterations in a repeated game are usually divided irstettting in”
(also calleda “burn-in” period) and “recording” phaseslowing the algorithms time to settle or
adapt before results are recorded. Powers and Shoham ¢88ilezl the fina20 000 out of 200 000
iterations and Nudelman et al. [36] used the fil@DOO iterations out ofl00 000.

17

Chapter 3

Platform

Unfortunately, empirical experiments have largely beerwith one-off code tailored to showing a
particular feature of an algorithm. This has a number of tieg@onsequences. First, it decreases
the reproducibility of experiments by, for instance, obgay the details of algorithm implementa-
tion. Even when source code for the original experiment &lable, it might be difficult to extend
to new experimental settings; having to recode apparatiuces the flexibility of experimental de-
sign. If one experiment hints at an unexpected result it isenddficult to flesh out this behaviour
with a new experiment if it involves recoding the platformndlly, rewriting the same code again
and again wastes time that could be spent running more ctmpsve experiments.

3.1 The Platform Architecture

In this section, we describe an open and reusable platfoatvie call MALT 2.0 (Multiagent
Learning Testbed) for running two-player, general-surpeated-game MAL experiments. Basic
visualization and analysis features are also includedigngiatform. This is the second version of
the platform (the original version is described in LipsoB]j2and this new version is a complete
recoding of the platforfh

What we intend with MALT is not a finished product, but a growirepository of tools, algo-
rithms and experimental settings (suchfaglayer repeated games or stochastic games). Essen-
tially we want this version of MALT to be a base upon which ethesearchers can add and share
tools.

3.1.1 Definitions

In order to clarify our discussion of running a experimenteoparticular game with a particular
set of algorithms, it is useful to define some terms. An ordigar of two algorithms is @airing.
This pair is ordered because many two-player games are asfyianthe payoff-structure for the
row player is different than the payoff structure for theuroh player. The case where an algorithm
is paired with a copy of itself (but with different interndbges and independent random seeds) is
self play

5In this version, we recoded each one of the algorithms clyeffiom the original pseudo-code, completely re-
designed the repeated game simulator, and created arlyengre visualization interface. In short, none of the orain
source code remains.

18

Chapter 3. Platform

We largely concentrate on drawing games from distributioslted game generatorsA par-
ticular sample from a game generator igaane instancePrisoner’s Dilemmas a game generator
and an example game instance is a particular set of payeffebey therisoner's Dilemmapref-
erence ordering. HoweveRrisoner's Dilemmais a simple example and not all game instances
from the same generator are as closely tied.

A pairing and a game instance, taken together, are calledteah A match with one of the
algorithms in the pairing left unspecified ispartially specified matctiPSM). If two algorithms
play the same PSM, we will conclude that any differences eetwtheir performances are due to
the algorithms themselves (including any internal rand@aion) because everything else was held
constant between the two matches.

A particular simulation of a match is calledran or trial. For deterministic algorithms, a sin-
gle run is sufficient to understand the performance of thatimdut for randomized algorithms
(including any algorithm that plays a mixed strategy) nulétiruns may each display different be-
haviour. In such cases, the solution quality distributi®®Df—the empirical distribution of a
performance metric—for the match should be compared. Batlconsists of a number dkra-
tions During an iteration, the algorithms submit their actionsatstage game and receive some
feedback—such as observing their reward or what action pip®reent played. Algorithms are
allowed to submit a mixed strategy in which case a singl@adt sampled from the mixing distri-
bution by the game. The iterations are separateddetiing-in iterationsandrecorded iterations

3.1.2 Platform Structure

In this section we give an overview of the structure of thefptan. The five steps in running an
experiment with the platform are summarized in Figure 3.her€ are three major components
to this platform: the configuration GUI, the actual expenmnengine (the piece that simulates the
repeated games) and the visualization GUI.

The first step to running an experiment is to specify its patans. There are three parts to this
and the configuration GUI guides the process. The first stepaiek a group of algorithms and set
their parameters. The second step is to select the GAMUT glstrébutions used and choose the
parameters for these games. The third step is to establisrajeexperimental parameters, such as
the number of iterations for each simulation.

We have tried to make it as easy as possible to add new alg@rith MALT. Adding a new
algorithm to the GUI is as simple as providing a text file witkish of parameters. Adding the
algorithm to the actual engine requires minimal additioc@ding beyond the implementation of
the algorithm.

The performance of many algorithms are likely very depehdarthese parameters, however
it is out of the scope of this thesis to conduct a sensitivitglgsis or to tune these parameters.
Along with each algorithm, we have provided some defaulapeaters for these implementations

5We call these distribution "solution quality distributishdespite the fact that in MAL there is no clear idea of a
‘solution’ to a game. These distributions could be more nvegally called ‘metric distributions’, however, ‘SQD’ is
the terminology traditionally used in empirical algoritlmmiand so we adopt this language.

19

Chapter 3. Platform

[1. Set Up Experiment] [2. Generate Jobs]

§ Agentsti =_r@—v Jobs
| | NE T

Games ;,@{

Maxmin

Settings

E@— Data =@—~ Metric =@

3. Run Jobs]‘ 4. Calculate Metrics][5. Interpret Results]

Figure 3.1: The five steps in running an analyzing an experimging MALT.

20

Chapter 3. Platform

that were taken from the original papers or were set to vallu@sseemed reasonable from the
description of the algorithm when this was not possible. sEhgarameter settings can be easily
changed using the GUI.

Once the experimental setup has been finalized, text filegearerated for the agent configu-
rations and the game instances. These files are easy to ddit@nare also easy to generate using
scripts that bypass the GUI. MALT uses GAMBIT’s [32] implentation of Lemke-Howson [27]
to find the set of Nash equilibria for each game instance andtamal linear program finds the
maxmin strategies (however, MALT requires CPLEX to solvis ind other linear programs). A
job file is generated for each match. Each job file referenicesagent, game, equilibrium, and
maxmin-strategy files. These files are referenced and thiesraltering the job files simple even
after the job files have been generated.

This set of job files may be run a number of ways. The most badie run them in a batch
job, however for large experiments this may be prohibitivekpensive. Because each job is in-
dependent, a cluster may be used. Each job creates an inaliddta file upon completion that
records the history of play, so they may be run in any orderekoh recorded iteration and for each
agent in the pair, the strategy, sampled action, rewardveteand beliefs about the opponents are
recorded.

After the data files have been generated the performancécmate calculated. A plain-text
file describes the metrics to be calculateg. if we are looking at some kind of convergence,
we might want to specify that thé,, sense of distance should be used. Calculating the metrics
can proceed in serial or it can be run on a cluster. MALT inekiBasic tools for analyzing and
visualizing these results, and there is a visualization @i guides the use of these tools.

3.1.3 Algorithm Implementations

To carry out this study, we selected and implemented elevah BMgorithms. A brief description
of each is useful for intuition.

Fictitious play

In our implementation of i cti ti ous pl ay, the initial action frequencies are set to one for
each action, which is a uniform and easily overwhelmed pribie-breaking (selecting among
members of the best-response set) favours the previowmdotencourage stability. For instance,
if fictitious play playsa; initerationt and at iteratiort+ 1 the best response set includg
the algorithm will chose;. If the best response settat 1 does not include;, then the algorithm
uniformly mixes between best responses.

21

Chapter 3. Platform

Design Decision Setting

BR Tie-Breaking Previous action if still BR
Uniform otherwise

Initial Beliefs Unit virtual action count

Table 3.1: Design decisions foi cti ti ous pl ay

Det er m ned

Our implementation oflet er m ned repeatedly plays the Nash equilibrium that obtains the-high
est personal reward, but if there are multiple equilibrithvtihe same protagonist reward, then the
equilibrium with the highest opponent reward is selectédhdre are any equilibria that are still
tied we use the one found first by GAMBIT’s implementation enbhke-Howson.

Design Decision Setting
NE Tie-Breaking Highest opponent utility

Table 3.2: Design decisions fdet er i ned

AVESOVE

AVESOME is implemented according to the pseduo-code in ConitzerSamtiholm [13]. We use
the parameter settings suggested in Conitzer and Sandi@ja$ its default. For picking the
‘special’ equilibrium we use the first equilibrium found byAGIBIT’s implementation of Lemke-
Howson. It would be interesting to compare our implemeatatif AAESOVE to one that used the
more computationally expensive approach of picking, sapcally optimal equilibrium.

There is a a small performance difference between our imghation of AVESOVE and the
original implementation from Conitzer and Sandholm [13} small test—involving ten different
game instances from a variety of generators and 100 runesidghe random agent—showed that
on three instances there was a significant difference betitedr solution quality distributions. A
two-sample Kolmogorov-Smirnov independence test §£8.1) witha: = 0.05 was used to check
for significance. For these three game instances, our ingsition probabilistically dominated
(sees 4.4) the original implementation in terms of reward (eveward quantile was higher for our
implementation). We were not able to track down the sourdhisfbehaviour difference; however
we spend a considerable amount of time verifying our implaatén against the pseudocode in
the paper, and we are convinced that it is correct.

"The original implementation was in C and MALT 2.0 is writtenJava, so the original implementation could not be
used directly.

22

Chapter 3. Platform

Design Decision Setting
Special Equilibriumd;) First found
Epoch period {V (¢ D
p p N()) |V(1_2t12)(62)2—‘
Equilibrium threshold d.(t)) 75
Stationarity thresholde((t)) ¢

Table 3.3: Design decisions foet a

nmet a

Met a is implemented according to the pseduo-code in Powers aolka®h[38]. The Powers and
Shoham [38] implementation ofet a used a distance measure based on the Hoeffding Inequality,
even though the pseudo-code called for using.amorm. We follow the pseudo-code and use the
¢5 norm. We do not adjust the default threshold lewg) for distance and left it at the original
value.

Design Decision Setting
Security thresholde() 0.01
Bully threshold €) 0.01
“Generous” BR parametet) 0.005
Stationarity thresholdef) 0.025
Coordination/exploration periodd) 90 000
Initial period () 10 000
Secondary periodr{) 80 000
Security check periodr) 1 000
Switching probability £) 0.00005
Window (H) 1 000
[0

Table 3.4: Design decisions foet a

Gradient Algorithms

Our implementation ofa GA- WLF follows the original pseudo-code and uses the learning rate
and step size schedules from the original experiments asitkef These step sizes, however, were
set for drawing smooth trajectories and not necessarilpéoformance. Additionally, the original
experiments foG GA- WLF involved more iterations than we simulated: we ugéditerations

in our experiments as opposed1te in Bowling [7]. It is possible that a more aggressive set of
parameters (e.g. largey) might improve some facets of performance. We, howevecksttth the
original parameter settings for our implementation aneédpérameter tuning questions to future
work.

23

Chapter 3. Platform

For G GA- WLF's retraction map operation (the function that maps an rayitvector inR”
to the closest probability vector in termsfdistance) we used an algorithm based on the method
described in Govindan and Wilson [18H GA- WLF has two variants: in one it assumes that it
can counterfactually determine the reward for playing diti@ry action in the previous iteration,
and in the other it only knows the reward for the the actior ihplayed and has to approximate
the rewards for the other actions. The formula for this apipnation is given by

Va e A; 7Y = (1= a)r®L,_ o + o). (3.1)

In this equation,s*) is the reward that the algorithm experienced while playiotoa a® in
iterationt. The vector*(*) is an|A;|-dimensional vector that reflects the algorithm’s belidfout

rewards. We implemented the latter approach, as all dBA- WL F’'s experimental results are
produced by this version.

Design Decision Setting

Learning rate (¢ L
! g ‘@()) W
Step size(t)) VARSI

Table 3.5: Design decisions f@ GA- WLF.

We also tested an algorithr@SA (Global Stochastic Approximation Spall [48]; to our knowl-
edge this was first suggested for use in a MAL setting by Lip&&j), which is a stochastic
optimization method that resembl€ GA, but takes a noisy, rather than deterministic, step. The
GSA strategy is updated according to Equation 3.2. In

2D = p(z® 4 pOp®) 4 \O 0, (3.2

x¢ 1S the previous mixed strategy; is the reward vector;; is a vector where each component is
sampled from the standard normal distribution (with vaz@nontroled by the parametgt’)), and
P(-) is the same retraction function used @rGA- WLF.

Design Decision Setting
Learning rate ¢(t)) 1

V154100
Step sizex(t)) L

Noise Weight §(t)) NiTEEs I

Table 3.6: Design decisions f@SA.

RV, is a implementation of the algorithm given in Banerjee anddPgp]. Some initial
experiments showed that the settings of the algorithm uséuki paper performed poorly, and we

consequently used some hand picked parameter settingse¢haimore aggressive and seemed to
perform better.

24

Chapter 3. Platform

Design Decision Setting

o-schedule €(t)) @
Step size«(t)) W

Table 3.7: Design decisioi®V, ;).

Q Learni ng

Our implementation of) | ear ni ng is very basic. Since in a repeated game there is only one
‘state’, @ | ear ni ng essentially keeps track @p-values for each of its actions. We use &n
greedy exploration policy (perform a random action withlgability ¢) with a decayinge. 400
exploration steps are expected for thischedule, and drops below a probability 0.05 at ap-
proximately iteratior2800. It is negligible at the end of the settling-in period (lekart3F£—9).

The learning rate«) decays td).01 at the end of the settling in period. The discount factor of
~ = 0.9 was set rather arbitrarily. There is no need to trade offesurreward with future reward:

all actions take the algorithm back to the same state.

Design Decision Setting
Learning rate (t)) (1 5i5)"
Exploration rate {(t)) 11— SOO)t
Future discount factory 0.9

Table 3.8: Design decisions f@¢ | ear ni ng.

M ni max- Qand M ni max- Q | DR

For m ni max- Q we solved a linear program to find the mixed maxmin strategsed on the
(-values. This program was
Maximize U,
subjectto >4, uy(al,a) o] > Uy Vk e Ay
Sol=1
O’{ >0 Vje A
(see, for example, Shoham and Leyton-Brown [45]). The legrmate, exploration rate, and
future discount factor are identical @ | ear ni ng. We also look at a variant afi ni max- Q
calledm ni max- Q | DRthat iteratively removes dominated actions. In each stepeoiterative
IDR algorithm a mixed-strategy domination linear prograee, for example, Shoham and Leyton-
Brown [45]). Both programs are solved with CPLEX 10.1.1.

25

Chapter 3. Platform

Random

The final algorithmy andom is an simple baseline that uniformly mixes over the avéglalstions.
Specifically, it submits a mixed strategywhereVa € A, o(a) = ﬁ.

26

Chapter 4

Empirical Methods and Setup

The primary purpose of MALT is to facilitate the creation aperiments. The next two chapters
demonstrate what MALT can do. In this chapter, we descrilestiup of a large experiment—
indeed this experiment is the largest MAL experiment on nm@imensions—that is aimed at com-
paring the performance of different MAL algorithms usingaaigty of different metrics. We also
focus on building some tools that allow us to make our seconttibution: comprehensively com-
paring existing MAL algorithms using a variety of differemietrics. This analysis also shows the
relationship between reward and some of the alternativeicadhat other authors have used. The
following chapter § 5) is devoted to explaining these results.

4.1 Experimental Setup

We used MALT to set parameters for the eleven algorithmsrdest previously. The goal of this
experiment was to find the algorithms that are best agaimstplar opponents on different types
of games. In order to do this, we ran each of the eleven algoston a number of matches, and
compared their results.

To test a variety of game instances we u$@djame generators from the GAMUT game col-
lection (see Table 4.1). From these generators we genesatetal of 600 different game in-
stances. The generators selected were diverse and cresti@acies that belonged to many families
of games. We do not describe the details of each generaise(ttiescriptions are available in
GAMUT's online documentation), but we do discuss their vatg features when they are im-
portant for understanding the results. The game instareeards were normalized to the, 1]
interval, in order to make the results more interpretablk @mparable.

We examined five different action set siz@€sx 2,4 x 4, 6 x 6,8 x 8 and10 x 10. For each
size, we generated 100 game instances, drawing uniforriy the first twelve generators. An
additional 100 instances were drawn from the last distioio,tD13, which is a distribution of all
strategically distincR x 2 games [41]. The distribution induced by mixing over all 13 BT
generators is called thgrand distribution

With eleven algorithms an@00 game instance there weté x 11 x 600 = 72 600 matches.
Each match was run once fob0 000 iterations, although the fir§0 000 iterations that were spent
adapting were not recorded for analysis. Each match cowld baen run multiple times instead
of just once, and indeed doing so would have been essentisderstanding how any particular
match behaves if at least one of the algorithms is randomitémivever, conducting more runs
per matches would mean that for the same amount of CPU time auddvhave had to either

27

Chapter 4. Empirical Methods and Setup

D1 A Game With Normal Covariant Random Payoffs
D2 Bertrand Oligopoly

D3 Cournot Duopoly

D4 Dispersion Game

D5 Grab the Dollar

D6 Guess Two Thirds of the Average

D7 Majority Voting

D8 Minimum Effort Game

D9 Random Symmetric Action Graph Game
D10 Travelers Dilemma

D11 Two Player Arms Race Game

D12 War of Attrition

D13 Two By Two Games

Table 4.1: The number and name of each game generator.

experiment with fewer games or fewer algorithms. We chogetondo this and traded a better
understanding of how particular matches behaved in returmbre data from more varied game
instances and algorithms. Furthermore, we show in AppeAdixat not stratifying (holding one
experimental variable fixed while varying another; as oppd® varying both) on game instances
reduces variance for many estimates of summary statigtiesriean and median. Since we only
ran each algorithm once on each PSM (a partially specified¢hjatve use the terms ‘run’ and
‘PSM’ interchangeably when we discuss the results.

This experiment generated a lot of data. In order to intérfire results precisely we used
several different empirical methods. Each is motivated pgréicular problem that we encountered
in the analysis.

4.2 Bootstrapping

If we conduct an experiment where two algorithms are run onraber of PSMs then a natural
way to compare their performance is to compare the samplaséaome measure of their perfor-
mance (average reward, for example). However, if we havedhelusion that ‘the sample mean
of algorithm A is higher than the sample mean of algorittiit) how robust is this claim? If we ran
this experiment again are we confident that it would supfartsme conclusion?

A good way to check the results of an experiment is to run itipleltimes. If the conclusion is
the same each time than we can be fairly confident that thdu=ion is true. Let’s say we run an
experimentl00 times, and we found th&b% of the experiments had a sample mean for algorithm
A of betweena, @], that95% of the experiments had a sample mean for algorifBrof between
[b, b]. If @ > b (the lower bound of4’s interval is great than the upper bound B%) then we
can be confident that is better in terms of mean. These intervals aredié percentile intervals

28

Chapter 4. Empirical Methods and Setup

of the mean estimate distribution, and the fact that theyatcomerlap will be taken as sufficient
evidence for there to be a significant relationship betwhemnteans.

While this repeated experimentation is sufficient to allagaerns of insignificant results, it is
also expensive. To verify the summary statistics from orgegment, we had to run many more
(99 in the above example). This is not always possible (our éxymants took7 days on a large
computer cluster, so to rerun them a hundred more times wwaud taken the better part of two
years) and is certainly never desirable. Is there a way tohgsdata from one experiment and still
construct confidence intervals of summary statistics? Tisgvar is yes, and one way to do this is
through the powerful technique of bootstrapping.

Given an experiment witln data points, we can ‘virtually’ rerun the the experiment bips
sampling from the empirical distribution defined by thosepoints. For example, if we have a
sample with100 data points, we could subsamglé data points (with replacement) from these
100 and look at the statistic for this subsample. We can cheapgat this procedure as many
times as we like, creating a distribution for each estimatatistic. From these bootstrapped es-
timator distributions we can form bootstrapped percerititervals and check for overlap. This
is exactly what we would do if we were rerunning experimeatjough bootstrapping does not
involve running a single new experiment and is just a maaih of the data that was already
collected.

There are two parameters that control the bootstrappedbdison: we form the distribution
by subsampling points from the originaln, and we repeat this procesgimes. For this thesis
we will chosel to be |m/2] andk to be around 500. These particular parameters were chosen
to ensure that there would be diversity among the subsar{tbisexplains the moderate sizeldf
and that the empirical distributions would be relativelyosrin (this explains the large).

4.3 Statistical Tests

4.3.1 Kolmogorov-Smirnov Test

While bootstrapping is useful for seeing if summary stassare significantly different or not, will
also want to check if two distributions are themselves S$icgmtly different. A beta distribution
and a Gaussian distribution might coincidentally have #reesmean, but they are are not the same
distribution. So how can we distinguish between distrilnsgi that are different?

The most common way of doing this for general functions isaéisttcal test called the Kol-
mogorovSmirnov (KS) independence test. This test is n@mpairic, which means that it does not
assume that the underlying data is drawn from some knownrapitity distribution. The KS test
checks the vertical distance between two CDFs (see Fig8rg)4nd if the maximum vertical dis-
tance is large enough then the distributions are signifigaifferent. ‘Large enough’ is controlled
by the significance level, and we will use the standard= 0.05 unless otherwise noted.

29

Chapter 4. Empirical Methods and Setup

Example of Probabilistic Domination

0.9

0.8

0.5

F(x)

0.4

0.3

Figure 4.1: An illustration of the KS statistic in terms ofdWDFs. The KS statistic is the vertical
dotted black line between the CDF curves.

30

Chapter 4. Empirical Methods and Setup

4.3.2 Spearman’s Rank Correlation Test

Spearman’s rank correlation test is a way to establish venetmot there is a significant monotonic
relationship between two paired variables. For examplenwgit want to show that there is some
significant monotonic relationship between the size of agjsuiaction set size and the reward that
a learning agent receives on it.

This test is, like the KS test, non-parametric: it does nsuase any parametric form of the
underlying data. The relationship between the two vargbkn be positive (high values of one
variable are correlated with high values of the other vég)br negative (high values of one vari-
able are correlated with low values of the other).

4.4 Probabilistic Domination

Say that we have two algorithms and that one has both a higban end more ‘bad’ runs than the
other (say, runs below.1). Looking solely at the sample means would lead us to coecthdt
this algorithm is better. Should we be happy with the accofiperformance given by the sample
mean?

We might worry, for example, that the distribution of gamstances that we have in the exper-
iment is not representative of a practical problem that watwdaploy a MAL algorithm on: the
‘bad’ runs might be more common in practice. Or perhaps weatdknow the reward function
but instead we observe a monotonic transformation of thamgw~or example, in traffic we may
observe trip time but not the exact reward function—it pfaipas not the case that @ minute
route is exactlyl 2 times worse than a trip that takésninutes, but we do know that it is worse.

However, sometimes performance results are clear enoagjthtse sorts of objections do not
matter and we can claim that one algorithm is better than tier avithout exploring these issues.
These are situations where performance conclusions caral advithout making subjective and
problem-specific judgments, and they are particularly celfimg. These situations can be captured
usingprobabilistic dominatior—a robust partial ordering for distributions.

A solution quality distributionA (SQD; the distribution of a performance metric) dominates
another SQDB if Vq € [0, 1], theg-quantile ofA is higher than theg-quantile of B. If there are two
algorithms,A and B, that are trying to maximize reward, adds SQD probabilistically dominates
B then regardless of the reward valu¢hat one picks, there are more runsAufthan of B that
attain a reward higher than Notice that this means that probabilistic domination iaftetted if
all rewards are shifted by some monotonic function: thetestill be more runs ofA than B that
attain a higher reward thaf(r). Probabilistic domination is stronger than a claim aboatrtiean
of the distributions: domination implies higher means.

Checking for probabilistic domination between two sampleish a maximum size ofi, can
be done inO(n logn) time (sorting the two samples is the dominating step), baait also be
checked visually by looking at the CDF plots. If one of the C&fves is below the other curve
everywhere, than the former dominates the latter. Intligivthis is because the better SQD has

31

Chapter 4. Empirical Methods and Setup

less probability mass on low solution qualities, and morssran higher solution qualities: better
distributions are right-shifted (in Figure 4.3.1, SQDdominates SQIB).

32

Chapter 5

Empirical Evaluation of MAL
Algorithms

The experiment described in Chapter 4 was big: recordingglD0 matches for 0 000 iterations
generatedl43 GB of data. Furthermore, the experiment took approximately CPU days to
run. This is an incredible amount of information to sort thygh and extract meaning from, and
to make sense of the experiment at all we had to summarize wfutis information. First, we
used performance metrics that map ttte000 recorded iterations of each match into a single
number (such as average reward or average regret). Secamdignded to use summary statistics
to examine and analyze the distribution of these performanetrics. In this section, we only
comment on properties of distributions as a whole when tbpgrties are especially strong:g.
probabilistic domination. It is an understatement to say $ome information is lost in this process,
but this is inevitable.

Work in MAL has focused on many different metrics and our expent evaluated different
algorithms using several of these measures of performafeeised average reward and a selection
of other metrics that addressed other aspects of empigctiqmance. We took these metrics from
two broad families of metrics that either measure perforcedrased on aggregated reward or check
for various types of strategic convergence. For each okthestrics we, as much as possible, try
to relate our results to the agent’s algorithmic structure.

Additionally, many authors have proven results about ttetsenative metrics instead of di-
rectly proving results about reward. However, the Artifidiaelligence [46] agenda for MAL
learning states that the fundamental goal of all agentsldhmuto achieve high reward. Because
of the mismatch between this goal and existing results, nbt do we evaluate the algorithms
with each metric, but we also investigate the general cdiorecbetween reward and the alterna-
tive performance metrics. For example, if an algorithm fieatly attains low regret, does it also
frequently attain high reward?

5.1 Reward-Based Metrics

5.1.1 Average Reward

As argued earlier, reward is the most fundamental of all iceetis agents are explicitly trying to
maximize reward given what the other agents are doing. Becatithis, we will engage in a
detailed discussion of the reward results. Merely lookinthe average reward attained in all the

33

Chapter 5. Empirical Evaluation of MAL Algorithms

run over thel0 000 iterations is an extremely coarse summary of a distribubibgames, and so
our analysis does not stop there. In particular, there éeedsting trends when we consider varying
the different opposing algorithms and game instance digidns. However, a broad summary of
the results undifferentiated by run features is a sensilleepto start and gives a gross ranking of
the algorithms.

The average reward that we look at is with respect to the ssdhgaitions, and not the submitted
mixed strategy. This is formally stated in Equation 5.1, wehie iterationsl to 1" refer to the
10 000 recorded iterations:

(5.1)

i

o _ X
L

Observation 1 Q Lear ni ng andRV,,; attained the highest rewards on the grand distribution.

Q | ear ni ng had the highest mean reward(af 14, althoughRV,;) was close with an av-
erage of0.710 (see Figure 5.1). We noticed considerable variation withenreward data, and all
of the other algorithms’ sample means still were within ot@ndard deviation of} | ear ni ng,
includingr andom(which obtained a sample mean®80).

The distribution of reward was definitely not symmetric aedded to have negative skewness
(r andomwas the only exception}?- | ear ni ng’'sdistribution had the highest skewnes$).720,
indicating that the proportion of runs that attained higivaed was larger than the proportion of
runs that attained low reward.

These ranking were not all significant. The slight differeitt means betwee@- | ear ni ng
andRV, ;) does not in fact indicate th& | ear ni ng was a better algorithm (in terms of means)
on the grand distribution of games and opponents. These lyooithms attained significantly
higher reward than any other algorithm, however. This wasrdened by looking at th€5%
percentile intervals on bootstrapped mean estimatorilalisions (see§ 4.2) and seeing which
intervals overlapped (see Figure 5.2). The distributiorsambtained by subsampli2gh00 times,
where each subsample h&@00 runs (half of thel3 200 runs that each algorithm participated in).

Observation 2 Algorithm performance depended substantially on whiclooppt was played.

We blocked the runs based on the opponent for a more detaildgsss of the reward results.
Not only is this useful from an algorithm design perspec(wdy is my algorithm particularly
weak against algorithnil?), but it is also useful for lifting results from our expednt to other
experimental settings. For instance, if one was lookingaioralgorithm that only operated on
games where the payoffs were unknown (excluding, for exap{M,), blocking could be used
to restrict attention to algorithms that satisfied this ¢ast.

Figure 5.3 shows the mean reward for each algorithm agaiesy @ossible opponent. The
most salient feature of this figure is that m ni max- Q
nm ni max- Q | DR andr andomwere all relatively weak against a broad range of opponents.

34

Chapter 5. Empirical Evaluation of MAL Algorithms

Mean Reward
1.2+

1l1r

0.9
0.8

0.7

Reward

0.4

0.3

0.2 | | | | | | | | | |
q rvs gsa det giga awe fict meta mini min rand

Algorithm

Figure 5.1: A plot that shows the mean reward (bar) for eagbrihm and one standard deviation
in either direction (indicated by the size of the lens).

35

Chapter 5. Empirical Evaluation of MAL Algorithms

Bootstrapped Mean Reward Estimate Distribution

A

0.8

0.2

0.1F

1’.
0 ! P_$ — tg L o~ I I J
0.69 0.695 0.7 0.705 0.71 0.715 0.72 0.725 0.73 0.735
Reward

Figure 5.2: The distribution of mean reward estimatesor ear ni ng andRV,,;), constructed
by bootstrapping. The5% confidence intervals are indicated by the dark circles astietilines.

36

Chapter 5. Empirical Evaluation of MAL Algorithms

Protagonist Mean Average Reward

T T T T T T _1
fict .
- 10.9
det .
- I
meta
awe 1 F 10.7
B qt 4 0.6
5
> st I 0.5
<
O gsaf 7
giga
mini
min
rand

fict det meta awe q rvs gsa giga mini min rand
Opponent

Figure 5.3: A heatmap showing the mean reward for each proisigalgorithm (ordinate) playing
against each opposing algorithm (abscissa).

37

Chapter 5. Empirical Evaluation of MAL Algorithms

Opponent Best-Response Set
AVEESOVE G GA- WLF, GSAandRV,
Det er m ned AVEESOVE, G GA- WLF, GSA,

Q I ear ni ngandRV,;
Fictitious play GSA Q| earningandRV,q

G GA- VWLF determ ned, Q| ear ni ng andRV,
GSA determ ned, Q| ear ni ng andRV,
Met a determ ned, @ GA- WLF, GSAandRV, ;)
M ni max- Q Q | earning

M ni max- Q | DR Q l earning

Q Learni ng determ ned, Q| ear ni ng andRV,
Random determ ned, Q| ear ni ng andRV,
RV, det erm ned

Table 5.1: The different algorithms and their best-resp@ets

Another interesting feature is thiat cti ti ous pl ay anddet er m ned tend to get lower re-
ward against themselves (self-play) and each other thansigdaher opponentdvet a—an algo-
rithm that manages a profile of algorithms includinigct i t i ous pl ay anddet er m ned—
also inherited these performances issues, WAIESOVE—the other portfolio algorithm—Ilargely
avoided them.

If we know what algorithm the opponent is using, which algori should we use? We con-
structed best-response sets for each possible opponagthmitstrapped percentile intervals. We
call the algorithm with the highest mean against a particafgponent a best response, but any
algorithm with a overlapping bootstrappe’ percentile interval was also in this set—we cannot
significantly claim that these algorithms do worse than thgagent best algorithm. These best
reponse sets are summarized in Table 5.Qil ear ni ng andRV,(,, are most frequently best
responses, whiléi ctitious play, neta, m ni max- Q m ni max- Qandr andomnever
are best responses.

An interesting interpretation of these best-responselteemuto consider the one-shot ‘algo-
rithm’ game where a player’s action space is the set of alyns and the player picks one of these
as a proxy for playing the repeated game. The payoff for usiggrithm A against algorithn3 is
the mean reward that algorithr attained againsB.

Observation 3 Det er m ned andQ- | ear ni ng both participate in pure strategy Nash equilib-
ria of the algorithm game.

With this interpretation, what can we say about this algponitgame? There were three al-
gorithms that were strictly dominated in this grand disttibn algorithm game:ri ni max- Q,
m ni max- Q | DRandr andom Strict domination means that regardless of what algoritien
other player is using, we could use an algorithm that iststrimetter than the one that we are using.

38

Chapter 5. Empirical Evaluation of MAL Algorithms
Algorithm Game

”

:o‘v:o:o:o&vo&vooooooooo&v&o&v&o&
P st St IS S ST I SO St
V"»“»“u V"»“»“h VQ»“»“& V"»“»“k V“»’»"u V“»"»"u V"»“»"u V"»“»“u V"»“»“u V"»“»“h V"»“»“k
BRI KR IPRR K IPRRIR KPR R IPRR R IPRRIRIPRRR PR KPR KRN
00 20 %000% 20%020% 2020 20% 2020202 202020 Qel0%0% Re%ete% 202000% 2e%e20% ete%e%
O o s S O
2RERMM T R R R R e e
BRIPRRRPR KR IPRR K IPRRIR PR RIPER KPR IPE R R AP R RPN
OO0 0 Sase% Sa3ete% Sesesedifototel Katetel Sateted Sedeses Josetel dototel deteted
OO 00000 0000000 0000 et Shedady ahedety Aty Aty S S
1:9.9.9.).9.9.9. . 0.9.9.) 9.0.9.). 0.9.0. .4.0.9.).0.0.9. .9.9.9.(V"»“»“u V"»Q»“h V"»“»“k

PP R RPRR RN
i Do000% J0de%0% Qe%ee
o o ey
RN
A arets akavee
O S0tete% edetel
- PRIKARCUPERIKS

O 4
20%0%% 2020202 2 %%

. 9.4).4

RIKRIKKIRIKK
i 202020 202020 2ot 22
SRRk
2026%0% 20220 %6222

RIXIRRIIIIRIKR
S x oS00 500000
D D D
n"w“w“m n"wo»“m n"wnwnm
RIISPRIIIIRRXK
i Do000% J0de%0% Qe%ee
PRI
TN Seleled
RIISRIIIIRRIK
- S
PPN
2el0%e% 2%

Pl

O

PP

PR
20%26% 20%%6% 0% %%

Ro000% J0te%0% Qe%ete

x 20000% 20%e%0% Qetee
220%% 20%0%0% 20220
KX

P XXX XXX X X)
i RN

0t otetele oteele!
DX XXX X X XX

AAANANA

L
@®
[72]
(@]

Vs

fictf
detf
meta
awer
gigar
mini
mi
ran

1siuobelold

39

min rand

rvs gsa giga mini

Opponent

q

det meta awe
Interpreting the mean reward results as a ooegame. The cells that are cross-

fict
Q | ear ni ng equilibrium shows up twice since the protagonist can eitfedectQ- | ear ni ng

ordet er m ned, and we indicate this symmetry by making one of the corregdipgnstars hollow.

hatched are dominated and thés'‘indicate pure-strategy Nash equilibria. Tiéhet er m ned and

Figure 5.4:

Chapter 5. Empirical Evaluation of MAL Algorithms

Algorithm Strictly Dominated Weakly Dominated
AVESOVE 10.8% 11.7%
Det er m ned 0.0% 0.0%
Fictitious play 35.9% 36.4%
A GA-WLF 54.1% 55.1%
GSA 0.4% 0.4%
Met a 28.8% 28.2%
M ni max- Q 100.0% 100.0%
M ni max- Q | DR 100.0% 100.0%
Q Lear ni ng 0.0% 0.0%
Random 100.0% 100.0%
RV, 0.0% 0.0%

Table 5.2: The proportion of grand distribution subsamligbrithm games where each algorithm
was strictly or weakly dominated.

The domination must be significant: we want to be confiderttitlilais experiment were repeated,
we would get a similar result. We used bootstrapping to clieisk we subsampled 600 PSMs

10 000 times and from these formdd 000 ‘subsampled’ games. We checked for strict domination
in each game, and considered an algorithm dominated if itdeasinated in at least5% of the
subsampled games. The proportion of subsampled games edmralgorithm was dominated on
is shown in Table 5.2.

There were only two pure-strategy Nash equilibria that eeeurred in the subsampled games
for the grand distribution:Q- | ear ni ng in self-play, andQ- | ear ni ng againstdet er m n-
ed. Q Lear ni ng in self-play is particularly convincing because it was syetiic and did not
require that the players coordinate to playing differerdatsgies, and it occurred #0.2% of the
sub-sample games. The other equilbrium occurred in theingmged.8% of games.

We also looked at the algorithm games formed by restrictittgnéon to individual genera-
tors. For these per-generator algorithm gameser mi ned in self-play was the most common
symmetric pure strategy Nash equilibrium. It was a signifiddash equilibrium in seven of the
generator gamege. det er m ned in self play was a pure strategy Nash equilibrium in more than
95% of the subsampled games for these each of these seven gemggnaites Q- Lear ni ng was
the second most common symmetric pure strategy Nash aquifiband existed in four generator
games.

The generators varied substantially in their pure stratéggh equilibria. For instance DA (
Game with Normal Covariant Payofftiad no significant pure strategy Nash equilibrium. D4,
Dispersion Gameis the other extreme and had pure strategy Nash equilibria (see Figure 5.5).
Part of the reason for the vast number of equilibrialin is that majority of runs for many of
the algorithms yielded reward df(e.g. 84.6% of AWESOVE's runs yielded a reward aof). This
meant that in many of the subsampled games, the majorityyafffsawere exactlyl and so many
of these Nash equilibria are weak. For example, B#);) and Q| ear ni ng attained a re-

40

Chapter 5. Empirical Evaluation of MAL Algorithms

ward of 1 againstfi ctiti ous play,andfictitious play itself attained a reward of
againstRV,;) andfi ctitious play. Therefore bottRV, ;) andfictitious play, and
Q learningandfictitious playareNash equilibria.

Using the concept of probabilistic dominatiof 4.4), we can make more robust statements
about performance than we could by using mean reward.

Observation 4 Q- Lear ni ng was the only algorithm that was never probabilistically doated
by any other algorithm when playing any opponent.

Det er m ned and RV, ;) were the next-least dominatedtet er mi ned was only proba-
bilistically dominated byAWESOME against & i cti ti ous pl ay opponent, which was in turn
dominated byQ- | ear ni ng. RV, ;) was dominated b®@- | ear ni ng when playing against the
m ni max- Qvariants, and also bget er m ned when playing againsRV, ;). Indeed, being
dominated by another algorithm in self-play seemed to bensom onlyAWESOVE, det er m n-
ed andQ- | ear ni ng avoided being dominated by another algorithm when playtimgniselves.
The fact thatdet er m ned was not dominated should be seen as a property of the ganties dis
butions that we chose.

It should be noted that while there are some strong domimatitationships, these are the
exceptions and ambiguity the rule: for most algorithm paimsmost opponents no probabilistic
domination relationship exists (see Figure 5.6). Furtltoeenthere is no opponent for which one
algorithm probabilistically dominates all others.

Observation 5 Most algorithms were worse in self-play than in general.

We noticed above in the probabilistic domination sectiaes4.4) that self-play is a difficult
situation for many algorithms. We also noticed that there $ight tendency towards ‘cool’ cells
on the main diagonal of Figure 5.3. A closer analysis shows fibr most algorithms there is
indeed a significant relationship between self-play instarand low reward. The distribution of
reward in the self-play runs f&{\ESOVE, det er mi ned,fi ctiti ous pl ay andnet a were
probabilistically dominated by the distribution of rewandthe non-self-play runs.

There were no domination results of this kind for the gradegorithms because they had
a tendency to get fewer low-reward runs in self-play, buirtkelf-play means were significantly
lower than their non-self-play means. We verified this byklng at the95% bootstrapped per-
centile intervals. There was no significant relationshipnfoni max- Qandm ni max- Q | DR,
and this self-play trend was reversed €@l ear ni ng: its self-play runs probabilistically domi-
nated its non-self-play runs. Furthermo@,| ear ni ng has the highest mean reward in self-play
(see Figure 5.7).

Interestingly, ANESOVE was one of the algorithms with poorer self-play runs, desitét ma-
chinery for converging to a special equilibrium in selfypl®ne might wonder whether this is be-
causeAVESOVE does not converge due to an overly conservative thresholdefecting whether
its opponent is playing part of an equilibrium, or an indiocatthat AWAESOVE was converging to
the special equilibrium but it was just not associated witthireward (our implementation used

41

Chapter 5. Empirical Evaluation of MAL Algorithms

Algorithm Game for D4

T T T T T T T _1

fict Y Y Y % Y% % -
det N N
meta * 7] [108
awe * YA YA 11197
3 aqrk Kk Kk * Y Y¢r 3% 1 F Ho.6
% T * | 05
& gsal k * % | Mo
giga** * * 7 0.3
minit % % * 7 0.2

mint % % .
0.1

rand .
S S 0

fict det meta awe g rvs gsa giga mini min rand
Opponent

Figure 5.5: Interpreting the mean reward results for Disersion Gamgeas a one-shot game.
The cells that are cross-hatched are dominated, and’thimdlicate pure-strategy Nash equilibria.
Some equilibria show up twice since some of the equilibreaaaymmetric, and we indicate this
symmetry by making one of the corresponding stars hollow.

42

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward Probabilistic Dominance, Block on Opponent
40—

120
w0
= 100
o
Q
S 80
'Tg Il Dominates
8 I Neither
| [IDominated
2 60
(D)
[
o
X
o 40
20

g awe det gsagiga rvs fict metamini minrand

Figure 5.6: The number of opponents and candidate algotiitfatneach algorithm dominates, is
dominated by, or is in a non-dominance relationship with.

43

Chapter 5. Empirical Evaluation of MAL Algorithms

Self-Play Mean Reward

1l1p

0.9
0.8
0.7

0.6

Reward

0.3

0.2

0.1 | | | | | | | | | | |
q rvs gsa giga awe det meta fict mini min rand

Algorithm

Figure 5.7: A plot that shows the mean reward (bar) for eagbrithm in self-play and one standard
deviation in either direction (indicated by the size of thrd).

44

Chapter 5. Empirical Evaluation of MAL Algorithms

the first Nash equilibrium found by GAMBIT’s implementatiaf Lemke-Howson). At the risk
of keeping the reader in suspense, we defer the answigb 8.2 where we look at convergence
results.

Blocking on the opponent yields many trends and quirks baitghoblem’ faced by an algo-
rithm is not completely described by the opponent. The msggenerator also matters: one could
easily imagine a case where a particular algorithm is esieetin one type of game and poor on an-
other, and this information is lost if the data is solely ekaad in terms of the opponent (or, indeed,
if the results are not blocked by any feature of the matchlalfzing each generator separately is
particularly useful from an algorithm design perspectiéak distributions can be identified, and
hopefully any poor behaviour can be isolated and rectifiegk-geénerator results are also useful
from an deployment perspective; there is little point inldgimg a MAL algorithm on a particular
distribution of games instances if the algorithm is weak toreven if the algorithm seems to be
good ‘in general'.

Observation 6 Q Lear ni ng is the best or one of the best algorithms to use for most géorsra

Generators are an important part of the reward story. As easebn in Figure 5.8, the results
for any algorithm vary considerably between the differeaming generators. However, it helps to
take these per-generator reward results and normalize tiieiting the results for each algorithm
on a particular generator by the maximum reward attainechigyaigorithm. Some familiar trends
emergem ni max- Q m ni max- Q | DRandr andomare all worse than the other algorithms in
a broad range of generators, a@@d ear ni ng andRV,, tend to be good.

Q Lear ni ng was the best algorithm or was one of the best algorithm&Gaenerators (see
Table 5.3). It was the only algorithm that was a unique besparse of any generator in terms
of mean reward, and was the only best response for gene@igr®4, and D9). Furthermore
Q | ear ni ng also belonged to the set of best algorithms in generator®B2)7, D10, D11, D12
and D13—this is the set formed by algorithms whose bootggdmean estimat®5% percentile
intervals overlaped with the algorithm with the best sampkean. WhileQ- | ear ni ng most
frequently was a member of a generator’s best algorithnf $etf i t i ous pl ay anddet er -

m ned were also frequently in these sesand7 generators respectively).

The gradient algorithms were especially strong on D7 arglls the only generator where
all three gradient algorithms were in the best algorithm(Begure 5.10). D5, D6, and D8 were
interesting distributions foAWVESOVE andnet a. In D5, neitherAWESOME nor et a managed
to be one of the best algorithms despite the fact that Ibotbt i ti ous pl ay anddet er -

m ned—two of the algorithms that they manage—were. In BRESOVE joinsfictiti ous

pl ay anddet er m ned but net a does not, and in D8 the reverse happemst a, fi ctit -

i ous pl ay anddet er ni ned were the three best algorithms. These three generatosgdta
situations where at least one of the portfolio algorithnileéato capitalize on one of their managed
algorithms. It would be interesting to run further expenniseto determine why this is the case for
these distributions and if this issues could be remedied.

45

Chapter 5. Empirical Evaluation of MAL Algorithms

Agent Mean Average Reward

— 1
fict
- 10.9
det
- 10.8
meta
awe - 07
B q 0.6
[
(@)
2 rvs
<
O gsa
giga
mini
min
rand

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
Generator

Figure 5.8: A heatmap showing the reward for the protagalgdrithm playing PSMs from a
particular generator, averaged over both iterations aM<PS

46

Chapter 5. Empirical Evaluation of MAL Algorithms

Agent Mean Average Reward, Normalized

T T T T T T T T T T T T _1

detr .

mEta I . . |

awer 1 F 0.8

qt i

0.7

rvsr 7

Protagonist

gsar .

gigar y

mini

min

rand

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
Generator

Figure 5.9: A heatmap showing the mean reward for the proiagalgorithm, playing against
the opposing algorithm. These cells have been normalizadh Eolumn has been divided by the
maximum average reward attained by any algorithm on thaicpéar generator.

47

Chapter 5. Empirical Evaluation of MAL Algorithms

Bootstrapped Mean Reward Estimate Distribution

GIGA-WoLF
GSA
—Q

RVy(

09r

0.8

0.67 0.68 0.69 0.7 0.71 0.
Reward

~
N

0.73 0.74

Figure 5.10: The bootstrapped mean estimate distributo®7. Four algorithms are shown; they
are the algorithms that have9a% confidence interval that overlaps wigh | ear ni ng, the algo-
rithm with the highest mean. TH&% confidence intervals fo®- | ear ni ng andG GA- WLF
(the algorithms with the highest and lowest mean) are ineicevith a dashed black line and circles.

48

Chapter 5. Empirical Evaluation of MAL Algorithms

Generator Best Algorithm

D1 Q |l earning

D2 Q I ear ni ngandRV,;

D3 AVESOVE, det ermi ned,fictitious play, GSA,
met a, Q | ear ni ng andRV,;

D4 Q | earning

D5 determ nedandfictitious play

D6 AVESOVE, det ermi ned andfi ctiti ous play

D7 GSA, Q | ear ni ng andRV,

D8 determ ned,fictitious playandneta

D9 Q | earning

D10 fictitious playandQ I earning

D11 determ ned,fictitious play,
net a andQ- | ear ni ng

D12 det er mi ned andQ@ | ear ni ng

D13 AVESQOVE, det er mi ned, GSA, Q | ear ni ng andRV;

Table 5.3: The set of best algorithms for each generator.

Effect of Game Size on Reward

How does the size of a game’s action set effect performancafeL action spaces entail the
possibility of more complicated game dynamics that takegéorio learn about and adapt to, so it
is natural to assume that average reward will decrease aizthef the game increases. Are there
clear trends in this respect?

Observation 7 There is no general relationship between game size and cewam some gen-
erators there is a strong positive correlation and on othenegrators there is a strong negative
correlation.

Our experiment shows that these intuitions do not alwayd.Hebr many algorithms on many
generators we could not reject the null hypothesis of Spaarrank correlation test—that there
was no significant correlation between size and performamate significance level af = 0.05.

For instance, in D7 onl\GSA and G GA- WLF had significant trends (both exhibited negative
correlation; reward was lower in larger games).

As can be seen in Figure 5.11, D2 and D12 were the only twallitions on which we could
reject the null hypothesis for all algorithms, and they sujpgxl opposite conclusions. On instances
from D2, correlation was completely and strongly negatitie:larger the game, the worse everyone
did. The least correlated algorithm wasandomwith a Spearman’s coefficient of correlation
p = —0.329. Correlation was entirely positive for D11, although sonfi¢he coefficients were
smaller. Fi cti ti ous pl ay was the least sensitive to size £ 0.07), but it was anomalous.
The algorithm with the next smallest coefficient WasGA- WOLF, atp = 0.267.

49

Chapter 5. Empirical Evaluation of MAL Algorithms

Correlation Between Size and Reward

Algorithm

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Generator

Figure 5.11: A heatmap summarizing the correlations betveeze and reward for different agents
on different generators. A white cell indicates positiverelation, a black cell indicates negative
correlation, and a gray cell with an ‘X’ indicated an insfigant result.

50

Chapter 5. Empirical Evaluation of MAL Algorithms

Distributions tended to either support entirely negatigaificant correlations, or entirely pos-
itive significant correlations. The only exceptions to thisre D1 and D6, which supported both
kinds of correlation. D2, D7, D8, D9 and D11 were negativebyrelated distributions; the re-
mainder were positive. These results were less clear thghtrbe expected, and we are not sure
why. It could be the case that when the action spaces incieasee, important game features tied
with high reward become more common, or it could be that laagdons spaces make it easier for
MAL algorithms to miscoordinate, which is desirable for sogames. Indeed, D4Bispersion
Games—are show positive correlation between the number of astemd reward, and this is a
game where agents need to miscoordinate to do well.

Observation 8 Similar algorithms tended to have similar performance.

Several of the algorithms that we implemented have commamoaphes to learning. Are
these similarities reflected in the reward results? Thezdhaee major blocks of algorithms with
programmatic similaritiesAWESOME andnet a are similar because they both manage portfolios
with versions off i ctiti ous pl ay anddet er m ned; G GA- WLF, GSA and RVU(t) are
similar as they are all variations on following the rewarddjent; andri ni max- Qandmi ni -
max- Q | DRare similar as the latter is the same as the former excephéoaddition of an IDR
preprocessing step. We call these the portfolio, gradiamtl, minimax blocks. We also might
suspect tha®- | ear ni ng, an algorithm that does not explicitly model the opponerighinbear
some performance similarities to the gradient algorithms.

The algorithms were tested for similarity on PSMs that hadstéame generator and opponent,
and the results are aggregated by summation. There areiblpdSsx 10 = 130 cases where sim-
ilarity could occur—algorithms are of course similar tortiselves and we did not bother checking
these cases. Failing to reject the null hypothesis of thedsS(the hypothesis that both samples
were drawn from the same population) is some evidence f@aah®les being similar. This rough-
and-ready approach does not establish significant sityiland is merely suggestive of similarity;
failing to reject a null hypothesis is not the same as havivays that the null hypothesis is true.
However, with this caveat in mind, there are some interggtiends.

All three predicted blocks emerge, as can be seen in Figd& det a, ANESOVE, fi ct -

i tious play anddet erm ned were all similar to each other on a number of opponent and
generator pairs. Bothet a and AWNESOME are similar in more cases tbet er m ned than to
fictitious play. ForinstanceAWNESQOVE is similar todet er m nedin 101 out of 130 cases
while being similartd i cti ti ous pl ay inonly81 casesMet a andAVESOVE also look quite
similar to each other, being similar 88 cases.Q- | ear ni ng is similar to the algorithms in this
block, especially witrdet er m ned and AWVESOVE, which we had not expectedAWESOVE is
more similar toQ- | ear ni ng than to any other algorithm: they were similarlid3 cases—even
det er m ned andAVESOVE were only similar inl01 cases.

Q Lear ni ng also bears similarities to the gradient-algorithm blocke Block of algorithms
consisting ofRV,,(;), G GA- WLF andGSA were all similar in a number of instances and there is
a particularly tight relationship betwed&d GA- WoLF and GSA (they were similar inl11 cases).

51

Chapter 5. Empirical Evaluation of MAL Algorithms

Average Reward KS Tests

wyobly

d

min ran

rvs gsa giga mini

Algorithm

det meta awe q

fict

the number of opplyeserator pairs two algorithms

1Zzes

A heatmap that summari

Figure 5.12

tric, so only the lower

lagbip is symme

. Thisre

half of the plot is presented. The hotter the cell, the mdreaibns the two algorithms are s

n.

on

terms of reward distribut

ilar on in

are simi

imilar

52

Chapter 5. Empirical Evaluation of MAL Algorithms

The gradient-block algorithms also tended to be similatgber m ned and AWVESOVE on some
cases.

The connection betwean ni max- Qandm ni max- Q | DRwas particularly strong. These
two algorithms were similar ih18 cases. They were also the most similar algorithmsandom
Indeed, these two algorithm were almost twice as likely tcingilar tor andomthan the next
most similar algorithm AVESQVE: it was similar in11 cases tari ni max- Qs 21 cases).

5.1.2 Maxmin Distance

Looking at the difference between the reward that an agentises and the maxmin value of the
underlying game instance is a way of placing reward resalt®ntext:
T .0

MaxminDistance(r;) = % — max a,ri%ig,i u(a;, a_;). (5.2)
We call this differencenaxmin distanceespite the fact that it can be negative. One can always play
a maxmin strategy without fear of exploitation, so gettifgwe the maxmin value is a minimal
requirement of sensible MAL behaviour. Having a enforcegihyoff (having a non-negative
maxmin distance) is also a necessary condition achieviggffsaconsistent with some repeated
game equilibrium, and we will examine this moresib. 3.

Observation 9 @ Lear ni ng attains an enforceable payoff more frequently than anyrailgo-
rithm.

Q Lear ni ng is the algorithm that most frequently attained an enforteephyoff; it attained
a negative maxmin distance in only8% of its runs. The runs wher€- | ear ni ng failed to
attain an enforceable payoff mostly came from either D&jpersion Gameaccounted foB7.6%
of the unenforcable runs) or D13Wo by Two Gameaccounted foB3.3% of the runs). They also
occured prodominently againsandom(29% of the unenforceable runs)j ni max- Q(17.3%)
andm ni max- Q |1 DR (16.0%). There is a sharp jump in the number of non-enforceable runs
betweerQ- | ear ni ng and the next best algorithm@WESQVE, which attained a negative maxmin
distance in7.4% of its runs.

M ni max- Qandni ni max- Q | DR were the algorithms least likely to attain enforceable
payoffs (with the exception afandon). They failed to attain enforceability 28.9% and27.7%
of their runs respectively. While they look for the maxmirdueof the game they do this with
respect to the payoffs they they have learned. This resgliesis that they might have difficulty
attaining their maxmin value due to having inaccurate klie

M ni max- Qandm ni max- Q | DR were especially poor in self-play, where conservative
play can retard payoff learning. There is also a greatergstimm of enforceable runs oh x 2
games15.2%) than on10 x 10 games §8.5%)—Ilarger games have more payoffs to learn. Working
on a more sophisticated exploration scheme looks like aacgsfy promising place to improve
our implementation ofri ni max- Qand its variant.

53

Chapter 5. Empirical Evaluation of MAL Algorithms

0.9

1 o o o o
o~ 3 o ~ <)

Proportion of Runs

o
w

0.2

0.1

Sign of Maxmin Distance

q

I Better than Maxmin
- [Exactly Maxmin
[JWorse than Maxmin

rvs det gsa awe giga meta fict mini min rand

Algorithms

Figure 5.13: The sign of the safety distance of each run, dpyrethm.

54

Chapter 5. Empirical Evaluation of MAL Algorithms

Distribution of Maxmin Distances

1 —
0.9 - = = AWESOME
‘‘‘‘‘ Minimax—Q-IDR
0.8 —Q
0.7
0.6
)
X o05F
L
0.4
0.3
A
L ’
0.2 e
R4
R
R
0.1F P
. 4
- |'5’ PEd
. p—
0 e e ot v W = o = T ! | | | | J
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Maxmin Distance

Figure 5.14: The distribution of maxmin distances AMESOVE, m ni max- QandQ- | ear n-
i ng.

55

Chapter 5. Empirical Evaluation of MAL Algorithms

While Q | ear ni ng is successful against a broad range of opponents, therdreealgo-
rithms that have problems against certain algorithms. ttiquéar, net a is quite good against all
algorithms except fofi cti ti ous pl ay, det er m ned, AVESOVE and itself. It is especially
bad againsti ctitious pl ay, where only68.0% of its runs are enforceable. This should
be contrasted with its excellent performance agapdtear ni ng: enforceability is attained in
97.7% of itruns.Fi cti ti ous pl ay also has issues playing againgt a, det er m ned and
itself. We notice thaAVESOVE anddet er m ned did not share this problem.

RV, (1) had problems attaining enforceable runs too, and althdugheived payoffs well above
the maxmin value frequently (it had the second highest ptapoof runs with strictly positive dis-
tances a68.8%) it had a large number of instances that were close to butoedvo. This is in
contrast to the minimax distance distribution@fGA- WLF, which had fewer non-enforceable
runs with greater negative minimax distance (see Figur2p.We speculate that these runs were
caused byRV,,;) maintaining a small amount of probability mass on all of t@ns, causing it to
‘tremble’. RV, like all gradient algorithms, maintains a mixed stratedyah is updated in the
direction of the reward gradient. This updated vector néedse mapped back to the probability
simplex (the action weight might not sum to one after an upd&V, ;) does this by normalizing
the updated vector, whil8SA andd GA- WLF use a retraction operator that is biased toward the
extreme points on the probability simplex, and has a biastdwlropping actions from the mixed
strategy’s support. An interesting tweakR¥, ;) would be to us&a GA- WLF's retraction oper-
ator instead of normalization, and see if this improves hegdentlyRV, ;) attains enforceability.

5.2 Regret

Regret is the difference between the reward that an ageid bawve received by playing the best
static pure strategy and the reward that it did receive hygusie algorithm:

T
= o ®)y _ ®
Regret(d;,d_;) = max 2 [r(a, a;)—E {r(oi ,a_l-)H . (5.3)

The best pure strategy is chosen after the run assuminghthaipgponent’s actions choices are
frozen. Note that we are using the expected reward fornamaif regret—as opposed to one that
uses the actual actions that the algorithm played—follgvBiowling [7].

Regret has been suggested as a measure of how exploitaligethen is. If an agent accrues
significant regret one possible explanation is that it hambigicked’ into playing the wrong action
by the opponent. However, there are situations, like in Gamewhere ignoring regret might lead
better long-term reward.

Some algorithms, includin@ GA- WLF andRV,), areno-regretlearners: they have theo-
retic results which guarantee that they will accrue zeroategs the number of iterations approaches
infinity. However, to our knowledge it has not been shown expentally how the regret achieved
by these algorithms compares to the regret that other #tgasi achieve; nor has it been demon-
strated whether these algorithms achieve better than egretrin practice.

56

Chapter 5. Empirical Evaluation of MAL Algorithms

Protagonist

Proportion of Enforceable Runs

T T T T T T T T T] 1

det

awe 1 F 0.8

qt i

rVS I _

gsa

giga

mini

min

rand

fict det meta awe q rvs gsa giga mini min rand
Opponent

Figure 5.15: The proportion of enforceable runs, blockedyyonent.

57

Chapter 5. Empirical Evaluation of MAL Algorithms

Distribution of Maxmin Distances

GIGA-WoLF
= = =RV

0.9

a(t)

-0.04 -0.03 -0.02 -0.01
Maxmin Distance

0
-0.08 -0.07 -0.06 -0.05

Figure 5.16: The distribution of negative maxmin distarfees3 GA- WLF andRV,).

58

Chapter 5. Empirical Evaluation of MAL Algorithms

Rather than looking at the total sum of regret over1all000 recorded iterations, we will
discuss the average regret over these iterations. Singerphayoffs are restricted to the, 1]
interval, averaged regret can give a better sense of theitudgrof regret with respect to possible
reward.

Observation 10 Q Lear ni ng was the best algorithm in terms of minimizing regféitGA- WoLF
was the algorithm that most frequently had negative regrasr

Based on the distribution of games and opponents used iexpisriment all algorithms had
positive mean regret (Figure 5.17). All the means were 8mamtly different, which was shown
by checking thed5% percentile intervals for overlap (there was none). Of th€sé ear ni ng
had the lowest regret, 8t008. The gradient algorithms-& GA- WLF, GSA andRV,,;)—had the
next lowest regret afte@- | ear ni ng. Among the gradient algorithm&V, ;) had lower mean
regret thand GA- WLF, but GSA had lower mean regret than either of them. These empirical
results agree witld GA- WLF andRV,,)'s theoretical no-regret guarantees—not only were they
predicted to get zero regret in the limit, but also they haoldgempirical regret results—although
the best algorithm in terms of mean regi@t| ear ni ng, has no guarantees about regret.

Mean regret masks an interesting difference betw@ehear ni ng and the gradient algo-
rithms: they have low mean regret for different reasons. tM&&5%) of Q | ear ni ng’s runs
attain zero regret. It has the fewest positive runBat% (the next lowest IAVVESOVE at 18.2%),
and has the second-fewest negative runs (bnlgt i ti ous pl ay has fewer a0.1%). The gra-
dient algorithms, on the other hand, tended to have manytimegans; the three algorithms with
the most negative regret runs wedeGA- WLF (5.8%), RV (3.2%) andGSA (3.0%). The gra-
dient algorithms also have few zero runs. The algorithmgyder, with the fewest zero runs are
RV, (1), GSA, randomandG GA- WLF.

The negative regret runs were only slightly negative: thewith the lowest regret had an
average regret of-2 x 107%. The same cannot be said for positive regretz4a different runs
an average regret df was attained. These runs indicate disastrously poor pfeesne of the
algorithms has taken the exact wrong action at every passilep. 48.6% of these runs involve
bothf i ctiti ous pl ay orone of the algorithms that wrap arouindct i ti ous pl ay(awe-
some omet a) in self-play, and are on D4{spersion Gaméaswhich are games that encourage
miscoordination. Indeedispersion Gamegeneralize the intuition of Game 2.6 to more than two
actions. This behaviour suggests thattiti ous pl ay becomes stuck in pathological cycling
between the symmetric outcomes (outcomes where both aglegtthe same action), which gets
no reward in game instances frob4. This is a well known problem withi ctiti ous pl ay
and a judicious application of noise to thecti ti ous pl ay algorithm might break the above
lockstep cycle and improve performance.

In terms of mean regre@- | ear ni ng was the best algorithm to use for any generator except
for D13 (all strategically distinc? x 2 games)—RV,, ;) was the best algorithm ther@: | ear ni ng
was also the best algorithm to use against almost every emponhere were only two exceptions:
one wants to us®V,; againstQ- | ear ni ng and AWESOVE against itself. Another interesting

59

Chapter 5. Empirical Evaluation of MAL Algorithms

Mean Regret
0.5

0.4

0.3r

Reward

0.1f

D
<>
D
D

_O.l*

-0.2 | | | | | | | | | | |
q rvs* gsa giga* awe det meta fict mini min rand

Algorithm

Figure 5.17: A plot that shows the mean regret (bar) for egdrithm and one standard deviation
in either direction (indicated by the size of the lens). Algons with an asymptotic no-regret
guarantee are indicated with 4.’

60

Chapter 5. Empirical Evaluation of MAL Algorithms

14000

12000

10000

8000

I \egative
[N Zero
[1Positive

Runs

6000

4000

2000

q awe det fict meta mini min giga rvs gsa rand

Algorithms

Figure 5.18: The number of runs for each algorithm that hagative, zero, or positive regret.

61

Chapter 5. Empirical Evaluation of MAL Algorithms

Distribution of Regret for Q and GIGA-WOoLF

GIGA-WoLF

---Q
0 | | | | |

-0.2 0 0.2 0.4 0.6 0.8 1
Expected Utility

Figure 5.19: The distribution of regret f@ | ear ni ng andG@ GA- WOLF.

1.2

62

Chapter 5. Empirical Evaluation of MAL Algorithms

Mean Average Regret

fict 7 0.3
det .
meta | 0.25
awe i
0.2
B q -
C
@]
g s l 0.15
e
(a R gsar |
gigar 1 r 101
mini
min - 10.05
rand
—0

fict det meta awe qq rvs gsa giga mini min rand
Opponent

Figure 5.20: Mean average regret, blocked by opponent.

63

Chapter 5. Empirical Evaluation of MAL Algorithms

pairing was wher®- | ear ni ng played againsti ctiti ous play: Q| ear ni ng attained

zero regret in every single game. This seems to indicateQhlaear ni ng converged to a pure-
strategy best response in every game agdinstt i t i ous pl ay. Q Lear ni ng was the only

algorithm to do this.

Observation 11 Q- | ear ni ng, G GA- WLF, GSAand RV, are rarely probabilistically dom-
inated in terms of regret.

When blocking on the opponent, some strong probabilistmaidance trends emerge between
the different distributions of regret. For example, thedigat algorithms were never dominated
by any other algorithm@- | ear ni ng is also seldom dominated. It was only dominated once by
AVESOVE when playing against aAVESOVE opponent. However, it is unsurprising tha\E-
SOVE attains lower regret tha@- | ear ni ng in this case since it has special machinery for con-
verging to a stage-game Nash equilibrium in self-play. InestiNequilibrium both agents are best-
responding so both accrue zero regret.cti ti ous pl ay, on the other hand, was frequently
dominated, especially bKAVWESQOVE, det er mi ned, Q | ear ni ng and to a lesser degreet a.
Both det er m ned andQ- | ear ni ng dominatedf i ctiti ous pl ay againstl0 opponents
(@ I ear ni ng was the exception fodet er m ned andvice vers3, and AWVESOVE dominated
fictitious playon9opponents@ GA- WLF andnet a were the only opponents for which
AVESOVE did not dominatd i cti ti ous pl ay).

Similar observations result from blocking on the game gatioes. Q-
| ear ni ng dominated other algorithms frequently—particuldriyct i t i ous pl ay (on9 gen-
erators),imet a (8 generators), andVESOVE (on 8 generators)—while avoiding domination by
another algorithmFi cti ti ous pl ay was dominated frequently - | ear ni ng (9 genera-
tors),det er mi ned (6), ANESOVE (6) andnet a (4) on many different instance generators.

5.3 Convergence-Based Metrics

In this section we shift away from looking at metrics that based on reward and instead look at
metrics that are based on empirical frequency of action. &laed on various ideas of convergence,
from a weak form that merely insists that the empirical disiion of actions is stationary to
much stronger forms that insist on convergence to a restriciass of stage-game Nash equilibria.
We will also consider whether average payoofs are consistéh the infinitely repeated game
equilibrium.

When we look at convergence, we will consider a sequencetioinato be either converged or
not: we will not have an extended discussion about how someesees are “closer” than others
to convergence.

One issue in studying convergence based on empirical da¢alsg with runs that appear “not
quite” to have converged because of random fluctuationsdrethpirical action frequency. The
Fisher exact test (FET) and Pearsog’test can be used for checking whether two multinomial
samples are drawn from a distribution. For example, we migleck whether a later empirical

64

Chapter 5. Empirical Evaluation of MAL Algorithms

Regret Domination

11

fict
- 110

det
- 19

meta
- 18

awe
- 17

q

rvs
gsa
giga
mini
min

rand

fict det meta awe q rvs gsa giga mini min rand

Figure 5.21: The number of opponents for which the algoritimrthe ordinate probabilistically
dominates the algorithm on the abscissa. For exan@pleear ni ng probabilistically dominates
fictitious playonPSMsinvolving ten out of eleven possible opponents.

65

Chapter 5. Empirical Evaluation of MAL Algorithms

Regret Domination, Blocked by Generator

fict
- 112

det
meta - 110

awe
- 18

q

rvs
gsa

giga

mini

min

rand

fict det meta awe q rvs gsa giga mini min rand

Figure 5.22: The number of generators for which the algoritn the ordinate probabilistically
dominates the algorithm on the abscissa.

66

Chapter 5. Empirical Evaluation of MAL Algorithms

action distribution was drawn from the same distributioraasearlier sample (establishing that
the empirical mixed strategies were stationary) or thatrapigcal action distribution profile was
drawn from the same distribution as a stage-game Nash leduii.

Each test was unfortunately inappropriate for the sitmatibat we needed. The test does not
handle situations where some of the actions are rare or es¢pt and the FET was computationally
expensive, and the implementation of it that we used [40@dadn some of the larger and more
balanced action vectors (typically in thé x 10 case).

Instead, we used the incomplete set of FET results to ctditaahreshold based on vector
distance where any two vectors that were closer than thehblgd were considered to be the
same. We calibratel using a receiver operating characteristic curve. The ipteta FET results
were used as ground truth, and we plotted the change in trsiévgorate and false positive rate
as we varied). We picked the threshold that lead to equal number of falsitipes and false
negatives. Based on this ROC analysis, we pickéaf0.02.

5.3.1 Strategic Stationarity

The weakest form of convergence that we will look at is whethienot the algorithms converge to
a stationary strategy profile. This is interesting in its awgit, but is also a necessary condition
for stronger forms of convergence. We consider a run to lisesitthe joint distribution of actions
is the same in the first and second half of the recorded ibergtiusing . -distance. This is a joint
property of both algorithms, so whiket er mi ned andr andomplay stationary strategies they
may still participate in runs that are not stable.

To check how successful our threshold criterion is at detgdtationarity we looked at the re-
sults for two algorithms that always use stationary stiate@et er mi ned was found to be stable
in 99.5% of self-play matches andandomwas found to be stable #2.0% of self-play matches.
When playing each other, they were found to be stabl@4is% of their runs. The differences
that exist between these cases are likely becdeser nm ned has weakly smaller supports than
r andomand mixed strategies with smaller supports are more likelgroduce empirical action
distributions that are close to the original strategy. Weeribat a false positive rate of between
0.5% and8% larger than might be hoped, but nevertheless defer improxitation for empirical
convergence to future work.

G GA- WLF andGSA were the least likely to be stable—particularly in selfyplagainst each
other, or againgtet a (see Figure 5.23). Their striking instability withet a is potentially because
they tripnet a’s internal stability test and change its behaviour. HoweX#ESOVE also has an
internal check like this, but the stability of ti& GA- WoLF and GSA are not noticeably different
between matches WitAWVESOVE and with Q- | ear ni ng (which has no such check)RV,),
the other gradient algorithm, was more stable tBa@A- WLF andGSA. This might be because
RV, (1) had a more aggressive step length: the parameters used exgeriment fod GA- WLF
and GSA were taken from [7] and they were intended to produce smaoajldtories and rather
than fast convergence.

Met a, deternined, fictitious play and ANESOVE were, for the most part, quite

67

Chapter 5. Empirical Evaluation of MAL Algorithms

Proportion of Stationary Runs

0.85

0.8

0.75

0.7

L
[4)
[2)
(@]

d

1Siuobejol

d

min ran

rvs gsa giga mini

Opponent

q

det meta awe

ict

f

, blocked on o@mb. This intensity map is symmetric

ionary runs
and we removed redundant entries for clarity.)

ion of stati

Proport

Figure 5.23

68

Chapter 5. Empirical Evaluation of MAL Algorithms

Proportion of Non-stationary, Blocked on Generator

—40.22
fict
- 10.2
det
- 10.18
meta
- 10.16
awe
- 10.14
@ q
5 0.12
8 rvs
e 0.1
O gsa
. 0.08
giga
. 0.06
mini
) 0.04
min
rand 0.02

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
Generator

Figure 5.24: Proportion of non-stationary runs, blockedjenerator and protagonist

good at achieving stationarity with each other and in génarat a andfi ctiti ous pl ay
were particularly strong against each other, and alwayshesha stationary strategy profile. The
only exception to the stability in this group WAS\ESOVE vs. net a; this pairing was unstable in
10.3% of runs. We are not sure why this is, but it likely has to do wvifie discrete behavioural
changes that both algorithms undergo when their interagsichange.

There were a number of problem generators for the differguatrighms (see Figure 5.24). For
example: generators D1, D2, and D10 created instances #rat particularly difficult for the
gradient algorithm in terms of strategic stabilit®: Lear ni ng was weak on both D5 and D7;
andnet a tended to be unstable on D5, D7 and D10. However these uastetances were rare
regardless of the algorithm paring. The vast majority ofsround a stationary strategy profile.
Evend GA- WLF, which was the algorithm least likely to stabilize, foundt&inarity in87.0%
of its runs (see Figure 5.25).

69

Chapter 5. Empirical Evaluation of MAL Algorithms

Run Convergence

1

0.9t (T IS

0.8 1

0.7} 1
2
z 067 1 | Il Unique NE
kS I Pareto NE
§ 05 [Non-Pareto NE
£ [Istable
2 0.4 [JUnstable
o

o
w

o
N

o
[EEN

awedet g metafict rvs minimingsagigaand
Agent

Figure 5.25: The proportion of runs that were stationarpweoged to a Nash equilibrium or con-
verged to a Pareto-optimal Nash equilibrium.

70

Chapter 5. Empirical Evaluation of MAL Algorithms

5.3.2 Stage-Game Nash Equilibria

A subset of the stable runs settled on one of the stage-gasteddailibrium. For some algorithms,
Nash equilibrium convergence was reasonably comm®NESOVE converged in54.3% of its
runs, anddet er mi ned converged i53.1% of its runs.Det er m ned was better aBWESOVE at
converging to a Pareto-optimal Nash equilbrium (a Nashlleduim that is not Pareto-dominated by
any other Nash equilibrium). IndeeAVESOVE most frequently converged to a Pareto-dominated
equilibrium. This this likely has to do with the way that oorplementation oAVWESOME picked its
‘special’ equilibrium? It was simply the first equilibrium found by the Lemke-Howsalgorithm,
without attention to whether it wass.g. Pareto-dominatedAVESOVE also tended to attain lower
reward when it is converged to a Pareto-dominated Nashteguii than when it did not converge
or converged to a dominated Nash equilibrium.

Figure 5.26 gives the convergence results for self-playe Qirihe first things that jumps out is
how often determined manages to converge to a Nash equitidn self-play. This indicates that
the games we choose had an important characteristic: masggeed a single Nash equilibrium
that was the best for both agents. Indeed, we can see thatitharsurprisingly high number of
games with a unique stage-game Nash equilibrig&5(s). This is not a general property of all
games and sdet er m ned’s convergence results could be radically different on la@ioset of
games. This property likely also affects the convergenoggities for the other algorithms.

We see thaBAWESOVE nearly always attains a stage-game Nash equilibrium. Yetgire-
call the discussion about self-play reward from Sectionl5 AWNESOVE received lower reward in
self-play than non-self-play runs. Together, this indésathat whileAWESOVE was successful at
converging to a Nash equilibrium, this was not enough to @juae high rewards in self-play. An
interesting tweak t&AWESOME would be to use its special self-play machinery to convesgstier
outcomes that are not stage-game Nash equilibria, sucheasotiially-optimal outcome of the
stage game or the Stackelberg-game equilibrium. The aims&djustment would be to improve
self-play reward results while keepidy\ESOVE resistant to exploitation by other algorithms.

5.3.3 Repeated-Game Nash Equilibria

So far, we have been looking at the equilibria for the stageegaThe algorithms are actually
playing a repeated game, however, and we now turn to anglyxivperties of this repeated game.
We look at enforceability—achieving payoff profiles in whiboth payoffs exceed their respective
maxmin values—since enforceability is a necessary camdiior any repeated game Nash equi-
librium. Unfortunately, a sufficient condition for repedtgame equilibria would involve testing
whether each algorithm has correct off-equilibrium bebam—punishments, in particular—built
into its strategy that prevents profitable deviation by peanent. While the algorithms that we
looked at lack off-equilibrium punishments, it is still @resting to see how frequently the algo-
rithms converge to payoff profiles that are realizable byeated game Nash equilibria.

8The original paper, Conitzer and Sandholm [13], left thetrdtof picking the ‘special’ equilibrium unspecified.

71

Chapter 5. Empirical Evaluation of MAL Algorithms

Run Convergence in Self-Play

1

0.9r]] -

0.8f] 1

0.7} 1
(%))
c
z 0.6f 1 | Il Unique NE
ks Bl Pareto NE
S 0.5 1 | BB Non-Pareto NE
£ [Istable
& 0.4r 1 |[JUnstable
a

0.3r 1

0.2} 1

0.1 1

detawe g fictmetarvs gsagigaminiminrand
Agent

Figure 5.26: The proportion of self-play runs that wereistetry, converged to a Nash equilibrium
or converged to a Pareto-optimal Nash equilibrium.

72

Chapter 5. Empirical Evaluation of MAL Algorithms

Observation 12 Q Lear ni ng was involved in matches with payoff profiles consistentatguk
game Nash equilibrium more often than any other algorithm.

Of the algorithms that we examine@; | ear ni ng most frequently had runs that were consis-
tent with a repeated game Nash equilibrium. It was condistéh a repeated game equilibrium in
76.8% of its runs (see Figure 5.27Pet er m ned and AWVESOVE were the next most frequently
consistent, and were consistent/®0% and73.8% of their runs, respectively. Consistency with
a repeated game Nash equilibrium is common, but not univeEeen after90 000 adaptation
iterations, no algorithm was completely successful ateachg enforceable payoff profiles. We
note that if a protagonist algorithm is playing against dipalarly unsuccessful opponent, such as
r andom it might fail to achieve an enforceable payoff profile signpkecause its opponent does
not achieve an enforceable payoff. In particular, if the amnt fails to achieve an enforceable
payoff, it would be unfair to conflate runs where the protagiowas able to achieve an enforceable
payoff with runs where it also failed. We looked at the prajoor of matches where each algorithm
attained an enforceable payoff in Section 5.1.2, and weuded these results in Figure 5.27 for
comparison. Again, no algorithm achieved payoffs aboverthgmin value in all of its runs.

5.4 Links Between Metrics

We argued earlier in this chapter that reward is the mostdomenhtal metric and that the other
metrics, like regret, can be seen as ‘standing in’ for rewaliterefore, it is important to compare
reward results to the other metrics to see if these altematetrics are reasonable substitutes for
reward. For example, is high reward linked with convergingatNash equilibrium? We saw in

§ 5.3.2 that whileAWESQOVE was very good at converging to a Nash equilibrium in selfzpia
did not get especially high reward in these runs. Is this eeg#rirend, or a special property of
AVESOVE? What are the other links between the different aspectsrédipeance?

5.4.1 Linking Reward With Maxmin Distance

Observation 13 Algorithms tend to receive larger rewards when runs are alstorceable.

For most of the algorithms there is a clear and strong relskip between enforceability and
reward. This is to be expected, because a run is only entaicéar an algorithm if the algorithm
attains high reward. Maxmin distance is positively comtedawith reward for all algorithms. This
was tested with Spearman’s rank correlation té#t.8.2) at a significance level of = 0.05. If
we block on game generator (Figure 5.28), the results ageliathe same with a few differences.
There are a few insignificant results, mostly on D11. For gdaymmi ni max- Qis negatively
correlated on D11. Interestinglyi ni max- Q- | DRstill exhibits positive correlation.

For all algorithms the mean reward for enforceable runsgdr than the mean reward for
unenforceable runs. However, when we compare reward SQf&sllenforceable runs and unen-
forceable runs, the former does not always probabilisyicdminate the latter. (Figure 5.29). The

73

Chapter 5. Empirical Evaluation of MAL Algorithms

Enforceability

0.9 b

o
oo
T
I

©
~
T
|

o
(e}
T
I

I Enforceable Profile
I Enforceable Payoff
[INeither

o
a1
T
I

Proportion of Runs
o
N

o
w
T
I

o
N
T
I

g det awe gsa meta fict giga rvs mini min rand

Algorithm

Figure 5.27: Proportion of PSMs with enforceable payoffd payoffs profiles achieved, by algo-
rithm.

74

Chapter 5. Empirical Evaluation of MAL Algorithms

Correlation Between Reward and Maxmin Distance

fict

detr

meta

awer

Vs

Algorithm

gsar

giga

mini

rand

]

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Generator
Figure 5.28: The sign of correlation between reward and niaxiistance for each algorithm and

each game generator. A white cell indicates positive catiael, a black cell indicates negative
correlation, and a grey cell with an ‘x’ indicates insignéfit correlation.

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Enforceability for Rvo(t)

— Above 0.2 Maxmin Distance
09| == Enforceable
““““ Not Enforceable

0.8

T

©
~
T

Q
(o))
T

o
~
T

o
w
T

0.2

T

T

0.1

0 »I'*'“ L | | |
0 0.2 0.4 0.6 0.8 1

Reward

Figure 5.29: The distribution of reward f&V,) when conditioning on different maxmin dis-
tances. For example, the ‘Above 0.2 Maxmin Distance’ cusvéhe empirical CDF curve that
represents the distribution of reward for all runs that heweaxmin distance greater th@u?2.

76

Chapter 5. Empirical Evaluation of MAL Algorithms

exceptions here are the gradient algorithms @nbear ni ng. For both the gradient algorithms
and @ | ear ni ng there tend to be many enforceable zero-reward runs. Therityagd these
zero-reward enforceable runs occur in D1Traveller’'s Dilemma All instances from D10 have a
security value of zero so D10 is one of the few generators evlllgiorithms can get an enforceable
zero reward run. All algorithms frequently have zero-redvauns on instances of D10 but they
tend to get unenforceable zero reward runs in other games freguently than either the gradient
algorithms orQ- | ear ni ng—the enforceable zero-reward runs stand out more for theieggra
algorithms orQ- | ear ni ng since they have fewer unenforceableeward runs. If we exclude
runs from D10 therG GA- WLF, GSA and RV, ;) also exhibit domination, bu®- | ear ni ng
still does not—though the cross-over is small (Figure 5.3U¢ also compared the reward SQDs
for runs with reward strictly higher than the maxmin valudtie reward SQDs for unenforceable
runs, and we found for all algorithm except! ear ni ng, the strictly enforceable maxmin reward
SQDs dominates the unenforceable SQDs.

A more detailed explanation for this relationship can beiseebivariate histograms such as
Figure 5.31. This figure is a representative example of tlaioaship that exists between reward
and maxmin distance for all algorithms excegindom Reward bounds maxmin distance: if one
gets a reward of, then maxmin distance must be between 1 (security value id) andx (se-
curity value of0). These constraints create a feasible regions that is #igdaggam with points
{(1,1),(1,0),(0,0), (0,—1)}, where reward is the first coordinate and maxmin distancedie
ond.

There are two prominent ridges in this histogram. The firthésridge formed by runs having
zero or close to zero maxmin distance, and the second is tbbyeuns with a reward of close to
1. The three bins with the most runs are all close to zero maxiistance with rewards df, 0.5,
and1. The first bin (reward 06) largely corresponds to runs from D10 (although a few rumseca
from D7 and one run came from D13), the middle bin is mostly posed of runs from D6, and
the final bin(reward ofl) consists of instances drawn from either D3, D7, or D11. Agtiese
observations are fdRV, ;) but are echoed in histograms for the other algorithms.

These ridges tell us something rather surprising: runs tewget either close to the maximum
reward or to the security value. There seems to be littleielge way of a trend between the two
metrics beyond the fact that one bounds the other. This adisen is not limited to game instances
from one generator, and many generators contribute to titges.

5.4.2 Linking Reward With Regret

Observation 14 There is a link between obtaining large reward and low regret

There is also a link between having low regret and high rew&egret and reward are neg-
atively correlated for all algorithms (Spearman’s rankrel@tion testia = 0.05): high reward is
linked with low regret. When blocking on generators, we &t D10 induces positive correlation
for all algorithms exceptiet er m ned, and this is sensible: algorithms get better reward when
they are not best responding in this game (the unique Naslibemgun is one of the worst outcomes

77

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Enforceability for Q with D10 Censored

— Enforceable ¥
0.9r | ='= Not Enforceable R

0.8 -

T
1

o
\l
T

o
(o]
T

o
~
T

o
w
T

o
N
T

o
=
T

O‘ L ! ‘ | | | | J
0 0.2 0.4 0.6 0.8 1

Reward

Figure 5.30: The distribution of reward fQ | ear ni ng when conditioning on different enforce-
ability. Runs from D10 were excluded.

78

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Maxmin Distance for RVG(t)

log(runs)

Reward 0 1 Maxmin Distance

Figure 5.31: Bivariate histogram showing reward and maxdmtance forRV,). The25 x 25
uniform bins were used. The height of the bins is shown on stade.

79

Chapter 5. Empirical Evaluation of MAL Algorithms

of the game).

Since relatively few runs accrued significant negative ee@see§ 5.2), the most important
division is between runs that attained positive regret amg that attained non-positive regret. For
most of the algorithms, their performance in non-positivasr probabilistically dominated their
performance in positive regret runs. There were some exceptfor exampleQ- | ear ni ng
andd GA- WLF experienced cross-overs. While f@r| ear ni ng the cross-over was relatively
minor, the cross-over fdd GA- WOLF was more significant: runs that attained positive regret les
often attained zero reward (Figure 5.33).

There is an even more dramatic result: the positive-regres dominated the non-positive runs
for GSA andRV,(;). These two gradient algorithms exhibited behaviour thatenof the other
algorithms displayed: runs with positive regret had betésvard characteristics than runs with
zero or negative regret. This phenomenon did not seem todogodanly one generator nor any one
opponent. We can note that the probabilistic dominationallg seemed to be the weakest when
PSM involving Traveler's Dilemmawvere censored.

The bivariate histograms for the different algorithms shbat there is a ridge for all of them
where regret is zero (the histogram ®WWESOVE is presented in Figure 5.34). This ridge has a
prominent bin for runs with regret close to zero and rewaode<o one. This bin indicates good
runs where algorithms are best-responded and got the gamagisnum reward. This bin is the
largest in terms of runs for most of the algorithms. Howetlegre are other interesting bins that
are only observed in some of the algorithms. In particulbualgorithms except for the gradient
algorithms andl- | ear ni ng had a number of runs with reward close to zero and regret ttose
one. These runs are horrible: not only did the algorithmlgsie to the minimum reward possible,
but also they could have switched to a pure strategy and fatgmeceived a reward close to one.
Of course, it is possible that a reward Iofvas not attainable with the new action—the opponent
could have adapt to the candidate’s strategy—but it is laichagine that the new action would
have done much worse: these runs were already getting dadbe tminimum possible reward.
Furthermore, some algorithms were able to avoid these migly. Q- Lear ni ng, for example,
had no runs of this type and generally avoided high-regmetriavard runs (Figure 5.35). These
runs should serve as a focal point for thinking about howtgsalgorithms should be improved.

5.4.3 Linking Reward With Nash Equilibrium Convergence

A lot of work in multiagent systems has focused on algorittinad try to converge to a stage-game
Nash equilibrium. Indeed, many algorithms lidlet er m ned and AWESOVE explicitly try to
converge to some stage-game Nash equilibrium. But if oneinsgpily interested in getting high
reward, is converging to an equilibrium desirable? Or, ngaeerally, is proximity to a stage-game
Nash equilibrium correlated with obtaining high reward?

Observation 15 There is a link between obtaining large reward and being eltisa stage-game
Nash equilibrium for most algorithms.

80

Chapter 5. Empirical Evaluation of MAL Algorithms

Correlation Between Reward and Regret
fict
det

meta

awe

rvs

Algorithm

gsa
giga
mini

min

rand

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Generator

Figure 5.32: The sign of correlation between reward ancetdgr each algorithm and each game
generator. A white cell indicates positive correlation,lack cell indicates negative correlation,
and a grey cell with an ‘X’ indicates insignificant corretati

81

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Regret for GIGA-WoLF

—— Non-positive Regret
0.9 | '='='Positive Regret

O | | | |
0 0.2 0.4 0.6 0.8 1

Reward

Figure 5.33: A CDF plot showin@d GA- WLF's performance conditioned on achieving either
positive or non-positive reward. Notice that there is lessbpbility mass or0) reward when
G GA- WLF attains positive regret.

82

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Regret for AWESOME

J« \
R0 —,
R
”ﬂdﬂw 0\ ‘Fd»l

NN/
ANV A
WA W/
NN
oﬁ \B»ﬂ.
.
\»ﬂ{ VAN

(sunJ)Boj

Reward

Regret

Figure 5.34: A bivariate histogram showing reward and refpe AVESOVE. Reward bounds

regret: if one gets a reward af, since reward is on0, 1], one can at most attain a regret of

1—x.

83

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and Regret for Q-learning

(sunJ)Boj

Reward

0.9

Regret

Figure 5.35: A bivariate histogram showing reward and rigfigreQ- | ear ni ng. Notice that there

are fewer low-reward high-regret runs than in Figure 5.3derd is less mass on the right of the

plot.

84

Chapter 5. Empirical Evaluation of MAL Algorithms

All algorithms have reward that was negatively correlatéith .. -distance to the closest Nash
equilibrium (Spearman’s rank correlation test;= 0.05). Furthermore, most algorithms were
negatively correlated even when we blocked on the game gemsr(Figure 5.36). There were
some exceptions. The most noticeable exceptions were oBbIi{,and D12 there were a number
of algorithms with positive correlation: it was better tofae away from the equilibrium. This is
especially true on D10 and algorithms received much higeeard if they participated in some
other outcome.

Bivariate histograms (Figure 5.37) reveal three majordsefior all algorithms: runs are either
high in reward, close to a Nash equilibrium, or far from a Neghilibrium (this does not exclude
being high in rewardand being either close or far from the equilibrium). For mostasithms,
being close to a Nash equilibrium and being high in rewardhésrhost common bin. Between
8.1% (A GA- WLF) and26.2% (det er m ned) of runs have a reward greater th@a6 and are
less than0.04 away from a Nash equilibrium (this is the right-most bin irgtiie 5.34). Most
algorithms have other strong modes at the other cornersegdltts, but these are less promienent
that the close and high reward bin.

85

Chapter 5. Empirical Evaluation of MAL Algorithms

Algorithm

Correlation Between Reward and NE Proximity
fict
det

meta
awe
q
rvs
gsa

giga

mini

rand

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Generator

Figure 5.36: The sign of correlation between reward &pedistance to the closest Nash equilib-
rium for each algorithm and each game generator. A whiteigditates positive correlation, a
black cell indicates negative correlation, and a grey céhan ‘X’ indicates insignificant correla-

tion.

86

Chapter 5. Empirical Evaluation of MAL Algorithms

Reward and NE Distance for Determined

e
NN ‘%/0«0/

K KF KRR
ORK QIAKRF) XK
"O\ovz «00 8 4»5»««\%0/ I

D SRR AL

Pboﬂof w(%»0.«0/0»

o cabSA R

M RPN)ﬂ‘&x"»«"

R A=

«w/) >‘Av’¢i>’€
»,) o0

5 LD
/7 X

Op%

VA
KT /0\}0

TR

N/ f0\<>k
LR
N\

4\%

o o o
—

(sunJ)Boj

N\VAY
VAYA
»0%.%‘
\

Reward

NE Distance

Figure 5.37: A bivariate histogram showing reward &nddistance to the closest Nash equilibrium

for det er m ned.

87

Chapter 6

Discussion and Conclusion

In this thesis, we argued for a standardized testbed foriagelht experimentation. This testbed,
while initially more work to create, should offer lastingrizdits: it will allow researchers to focus
on experimental design and not implementation details. Mile & version of this testbed, MALT
2.0, and conducted a sample experiment: we used MALT to atehiset of MAL algorithms. We
analyzed this experiment in depth and we suggested somgiaabimethods that are intended not
only to be useful for understanding and comparing existiggréghm behaviour but also will be
useful for empirically-minded algorithm design.

We observed clear performance results. Firstiyni max- Qandni ni max- Q | DRtended
to perform poorly from a number of perspectives. These tetureward, regret, minimax dis-
tance, strategic stationarity, and convergence to a gfages Nash equilibrium. On the other
handQ@- | ear ni ng had excellent results and was frequently better than maenteand sophis-
ticated learning algorithms—such @& GA- WLF andnet a—on most game instance generators
for most performance metrics. This was a surprising reanld, it could be seen as embarrassing
for the MAL community: an off-the-self algorithm designeat Single-agent learning handily beat
the latest multiagent learning algorithms in many respélitss suggests that there is a lot of room
for improving the empirical performance of specially-dggd MAL algorithm. Indeed, there are
a number of areas where efforts should be focused.

Firstly, there simply needs to be more experimentation. &qeriment was large, but it is
impossible to answer all empirical MAL questions in one eikpent. Some promising directions
for extension are:

e More careful examination of the relationship between perénce and game properties like
size;

e More detailed investigation of behaviour of instances frarsingle generator. This might
give more insight into algorithm behaviour than an experitngith a broad focus like the
one presented in this dissertation;

e Further evaluation studies involving more algorithms lkgoer-Q [50] and Nash-Q [23];

e Extension talV-player repeated games and stochastic games.

Secondly, many of the more recent and sophisticated aigosithave a lot of tunable param-
eters. It was beyond the scope of this paper to adjust thedeeth parameters might be one of
the reason’s tha®) | ear ni ng did so well: it had only three parameters which were all easy t
set. This does not excuse poor performance from algorithittsmany parameters. Indeed, the

88

Chapter 6. Discussion and Conclusion

onus of finding a good set of parameters belongs to the actlofehe algorithm. However, it
is possible that some algorithms may have hidden poteti#ldan be release through rigorous
tuning. This tuning will require further experimentatiomepefully MALT will be of assistance
here—and there are some interesting questions to ask:

e Is one parameter setting good for many problems, or is it éise that one parameter setting
will be great on one set of matches and poor on another?

e Which of, for instanceret a’s parameters are the most important?

e How much better would a rigorously-tuned setting be AMESOVE be than the default
values presented in Conitzer and Sandholm [13]?

e DoesAVESQVE's performance change radically when it selects the sgcatimal Nash
equilibrium as its special equilibrium? How about the ‘&&lberg’ equilibrium?

e For gradient algorithms, is it better to ensure that mixedtsgies are feasible through re-
traction or normalization?

e Is a set of parameters that are good for reward also gooddostfe

e What is the best way to automate parameter tuning?

Thirdly, we presented two different tweaks to existing aiipons:

m ni max- Q | DRandGSA. In many situations, these algorithms offered improvementer the
original algorithm, and in many cases probabilisticallyrdieated the originals. Other modifica-
tions and preprocessing steps can be added to existingthiger and an interesting direction of
would be to see which ones tend to work the best. For instalues IDR-preprocessing always
improve performance? When does it hinder rather than hetgietdlly, experiments of this nature
will also build intuition for how to rectify problematic siaitions and for building new algorithms
from scratch.

Finally, managing a portfolio of existing algorithms alsems like a promising approach for
designing new algorithms with good empirical properti®@ESOVE andret a both can be seen as
portfolio algorithms: they look for features of their opmmt's behaviour and switch between dif-
ferent algorithms accordingly. A more general framewoniailding these portfolio algorithms—
especially ones where the portfolio is not explicitly waiitinto the algorithm—could be a way to
reuse existing MAL methods. Such an algorithm would switehween the different algorithms
in a portfolio as the situation demands, depending on thdreralcharacteristics of the managed
algorithms. Again, this direction of research leads to ale/mst of empirical questions. What
features of the game and game play are the best to look for8 &tukng an algorithm to a portfolio
strictly improve performance?

We leave the reader with a host of unanswered questions.isTasign of vibrancy of the field:
there is still a vast amount of research that needs to be ddhesiarea. We will end this thesis with
a discussion of urban traffic that shows that this field ofaed®is not merely an abstract study of
learning algorithms. MAL research has practical valuegemlly as societal interactions become
more numerous and more difficult to navigate. We hope thatligisis has piqued curiosity and left

89

Chapter 6. Discussion and Conclusion

some tools that are useful in addressing these many isssesiasd with learning and behaving
in multiagent environments.

90

Chapter 7

Future Work: Extension to Traffic

In this section, we will discuss how MAL algorithms can be dige understand urban traffic.
There are two major goals of such work. The first is to charegtevhat behaviour occurs in a
traffic system—called traffic modeling or prediction—ane #econd is to optimize various policy
tools—called traffic management. In this chapter we focugherfirst problem, while noting that
the second problem is the ultimate goal that we want to tamhkte we have a satisfactory model
of traffic to work with.

We are certainly not the first people to study traffic modeli@ivil engineers, for example,
have worked extensively on the problem. There are multigkgbboks including May [31] and
de Dios Ortzar and Willumsen [14] that are devoted solely taleling issues. We take a slightly
different approach to the problem than is traditionallycugecivil engineering. Specifically, we
are more interested the incentives behind routing dedsiatiher than specific physical details of
the system.

Let us clearly articulate one of the problems of traffic maugl route selection. We assume
that we start with a set of trips between two points in a roagtesy (these trips are generated
in the earlier phases of modeling). This system can be mddedea graph like Figure 7 where
nodes represent intersections and directed edges reptases. This is allowed to be a multi-
graph where there are several distinct lanes between twosattions. What kind of behaviour
will intelligent drivers engage in? What system propertas we predict from their interaction?

OO
e

Figure 7.1: A sample road graph with four intersections.

91

Chapter 7. Future Work: Extension to Traffic

(o)
d(m):%:p

Figure 7.2: A sample road graph with two intersections trest ho Wardrop equilibrium for a
system with two atomic drivers.

7.1 Wardrop Equilibrium

One of the suggested route selection methods from the cigiheering community is to assign a
delay function to each edge and look for a Wardrop equiliar[64]. The Wardrop equilibrium is
similar to the Nash equilibrium, but assumes that there isrmountably infinite number of agents
navigating the networks. The users of the road system areledds infinitely divisible flows that
travel from a source node to a sink node. The delay for the flongga particular path is equal to
the sum of delays on each edge.

The traffic flow is assumed to be selfish so at equilibrium atpavith any flow must have the
same delay and any paths without flow must be worse—this id/drerop condition. If we assume
not, then there is some small fraction of flow on a more expernsath that would be better off on
a cheaper path and so the system was not in equilibrium. @ eaffjineers use these conditions to
estimate traffic flow.

This model assumes that commuters are infinitely divisiflkis is not the case in practice,
where each driver is a discrete and atomic object that camnstibdivided. This is a substantial
assumption and Wardrop’s conditions do not work when dsiage atomic. Consider the system
in Figure 7.1 with two players: there is no way to make the tathp equal in cost. Additionally,
atomic drivers could be in a Nash equilibrium but not a Wapdequilibrium. In Figure 7.1 there
is a Nash equilibrium when one driver takes the top route hadsécond driver takes the bottom
but notice that the route costs a}andl respectively. This shows that the condition for a Wardrop
equilibrium does not work in the natural atomic agent case.

7.2 Congestion Games

Congestion gamegg 3], roughly, are a discretization of the previous continsi commuter model
of traffic. Each atomic agerite N picks a path through a graph. The delay for a user is the sum
of the delay along each edge of the path. This is formallyedtat:

d(L) = di(#)- (7.1)

leL

92

Chapter 7. Future Work: Extension to Traffic

Here,#, is the number of agents using lahandd;(-) is the delay function. Notice that the delay
for a lane only depends on the number of agents using it; teere inter-lane dependency.

Congestion games assume that the traffic conditions in @eesection do not affect the condi-
tions in neighbouring intersections; this is an unreaiaisumption. In real traffic networks, when
one lane becomes congested, cars entering from neighigdaries are impeded. This propagates
congestion to nearby lanes and causes delays to cascadgitou the road network. However, in
congestion games the congestion in each lane is indeperaieito we cannot accurately represent
this phenomenon.

7.3 Our Game

The inability to model interlane dependencies is a seriesgd associated with both atomic and
non-atomic congestion games. To model the propagationrafasiion more accurately, we sug-
gest our own model of traffic where these inter-lane deperidsitan be expressed. We represent
the traffic network as an extensive form game where agent® raaderies of turning decisions
based on whatever observations they can make about the $tatemapping of observations to
turns is called a policy. We explicitly model the positionazch agent. Because of this, drivers
may be unable to enter a lane that is heavily congested dmer gieed to bypass jammed lanes
or wait out the congestion. This is exactly the kind of delagpgagation that we are interested in,
where a jam in one lane creates blockages in or strains on¢iae by lanes.

While this model has the necessary richness to expressamerdelay effects, it is also much
more complicated than one-shot congestion games. In plticour system dynamics make it
practically impossible to write a closed-form functiontthaaps from a profile of strategies for the
extensive form game to a profile of delays. As a consequenaceaato simulate the road network
model to determine the outcome of a game.

Our simulator models both space and time as discrete. Weangintulator that can efficiently
simulate large sections of a city and continuous modelsmoé tispace and motion are usually
complicated and expensive to simulate. However, the dizat@®n needs to be done with care, or
important details will be lost, fundamentally altering fhr@blem. We will call a physical quantum
a ‘cell’ and a temporal quantum a ‘tick’. Cells are the fundgtal unit of progress: in each tick
an unimpeded car should be able to move at least one cell., Alsell should be a sufficient
description of a car’s position: a car cannot be half-wagulgh a cell.

We define a cell to be large enough to hold one and only one edls fBat are larger than cars
abstract space more aggressively and cells that are smmedtdzl space and movement with greater
precision. While our model could easily be extended to uggeteor smaller-grained discretization,
vehicle-sized cells offer a good trade-off between moreiefit super-vehicular cells and more
precise sub-vehicular cells (this raises an interestingjiécal question: how sensitive is the system
to more or less coarse discretization of space?).

Each car has a velocity (in cells-per-tick or ‘CPT’s) bouthd®y some upper limit and the
some acceleration function (in CPJT For now, we take acceleration to be constant for simglicit

93

Chapter 7. Future Work: Extension to Traffic

but our model could trivially be extended to more realisticeleration functions. We offer no
formal advice for how these numbers should be set, but tHereld be a qualitative difference
between CPTs for fast-moving cars and slow moving cars. ,Alas should not be able to move
too far in one tick. Moving larger distances in each tick nwetimat a car could potentially interfere
with many other cars and the point of simulating is to makeé¢heonflicts simple to resolve and
relatively infrequent. Setting these kinematic numberd artoarsening of space tacitly sets the
coarsening of time and we need not consider it as a special top

The velocity of a car is bounded by the speed limit of each r@athe internal maximum
velocity, and by the velocity of the cars in front of it. All@gts are assumed to perfectly decelerate
to avoid accidents. While accidents are an important pareaf traffic jams we do not model
them in this thesis. In general we assume agents to be flaateslawful: they are perfect drivers
that always follow laws. Beyond our assumption of flawlessrend lawfulness, the agents have
complete freedom to choose routes and adapt to traffic GonglitAt each intersection, agents are
able to make a turning decision based on some local featdirt® ctate. However, this policy
of mapping observations to turning actions is complicatedl reeds to be learned. We use MAL
algorithms to do this.

Indeed, the only difference between our traffic game anddheerepeated game experiments
is simply the complexity of the stage game: rather than rtejidaplaying a simple two-player one-
shot game likePrisoner’s Dilemmathe algorithms are repeatedly playing a large extensiue-fo
game withV players. Because the game is large and the payoffs are unkrowe are simulating
exactly because we do not have a closed-form expressiohdartiiity functions—we cannot use
many of the algorithms looked at in earlier sections. Thg aidorithms that are able to function
in such an environment are the gradient algorithms@nidear ni ng. Of these, we will focus on
Q | ear ni ng because the gradient algorithms are only designed for looegames, and would
requires serious redesign to work well in extensive-forrmgs. Additionally, in Section 5 we saw
that@ | ear ni ng was a good algorithm for learning in multigent systems ansl better than the
other MAL algorithms for most metrics.

One of the problems for any learning algorithm is that evensimple traffic simulator has a
vast number of states. The state of the system is the positidrvelocity information for every
vehicle (ignoring traffic lights for the moment). If thereeal' cells, V vehicles, and a maximum
velocity of 7, then there are-“,~; x oV possible states.

This can be done efficiently through value approximation f&g an example, fo@- | ear n-

i ng to learn efficiently with so many states it estimates the eatiQ(s, a) for new states by
generalizing from similar states that it has seen beforesemilly, Q- | ear ni ng needs to use
non-linear regression to get an approxim@t@s, a) based on past observations. Techniques like
forests of regression trees and Gaussian processes (sexafople, Rasmussen and Williams
[42]) might be useful for this regression, but they need tdds: to update relative to the cost
of simulating each roundiV learning algorithms need to update their model each rouriekrer
are a lot of interesting questions to explore: what is a gatdEfeatures? Are some regression
techniques better than other for this problem? How shouldexsore to perform well in this
non-stationary environment? Designing RL algorithms wgittod empirical properties for traffic

94

Chapter 7. Future Work: Extension to Traffic

modeling is an exciting topic, and we hope to work more onphadblem in the future.

7.3.1 Other Models

Let us summarize our model in four main points:

Space is discrete and each cell is the same size as a car,
Cars may have different velocities, and can accelerate,
Agents are lawful and flawless drivers,

Drivers are adaptive and are able to learn from past runs.

This model of traffic is not the only way to simulate simple ambroad systems but it is a
flexible model that can be extended in a number of directidiiewever, there have been other
models of traffic suggested. In the following discussion wesharize a few of them and and
indicate how they differ from ours.

There are a number of commercial simulators for simulatiadfit including VISSIM [1],
Paramics [39], and CORSIM [16]. Most commercial simulatars continuous time and space:
each vehicle is a physical object # with real-valued velocity and acceleration. However, this
makes simulations expensive to run. Indeed, most comnheigialators are meant for simulating
short stretches of highways or single intersections torenthat proposed alterations can accom-
modate predicted use. These simulators typically assuatdlth driver's routes are drawn from
some static distribution. For example, a traffic enginegghinivant to simulate 00 drivers per
minute heading down a highway from North to South whiledrivers per minute attempt to enter
the highway via a new on-ramp to ensure that merging is smooth

Wiering [56], Porche and Lafortune [37] and de Oliveira et[&b] all suggest discrete simu-
lators that are intended for simulating intersections fatimizating light times. These simulators
are much more closely aligned with our own goal of explorimdjgy tools than the commercial
simulators.

Wiering [56] uses vehicle-sized cells but does not modetkecation. Vehicles move one cell
forward every tick iff that cell is unoccupied. This undatsis the difference between an unimpeded
fast moving car and a slow car moving on a congested road. tgsdther randomly pick one of
the shortest;-distance paths or co-learn: they pick the shortgslistance path with the lowest
estimated waiting time. This estimated waiting time is nauajective estimate learned by the
agent. Itis an estimate maintained by the system that eadiasaaccess to.

This type of learning is unconvincing. There is no particuleason why any shorteg-
distance paths will be the best path. For example, one might o skirt around the downtown
core of a city, even if it is directly between the start and &wétions. Also, this model assumes
that all driving agents obediently follow the advice of sopsmtral congestion-tracking service.
This ignores the question of whether it is always in the beigrest of the agent to follow this
service’s advice.

de Oliveira et al. [15] use a model very similar to our own:lce@re vehicle-sized and cars
can accelerate. Agents are assumed to be lawful but not #awladeed the agents are overly

95

Chapter 7. Future Work: Extension to Traffic

enthusiastic about breaking and with probabiptglow down by one CPT. Random shocks like
this might be an important part of why congestion forms, betwill ignore it for this phase of the
work. The drivers in this model are simple path followinga@ithms that are unintelligent and do
not adapt.

Porche and Lafortune [37] use super-vehicular cells whaeeagll is an entire block. Cars
move at the constant rate of one CPT and they incur a delaystinat physically modeled: even
if a road is heavily congested all cars still move at one CHils Dears some striking similarities
to a congestion game. Like congestion games, the Porcheafodune simulator fails to model
how delays can propagate through a network. As we arguei@rednis omits an important feature
of the traffic problem. In particular, roads in this model caver ‘jam’ and affect neighbouring
road segments. The drivers in this model are unintelligadtumadaptive. The vehicles’ routes are
simply picked from some distribution and executed.

We also note that the empirical experiments are small: Roackl Lafortune [37] conduct an
experiment with a uniform x 4 grid of intersections, de Oliveira et al. [15] conduct a derabne
with a3 x 3 grid and Wiering [56] also conducts an experiment @wa3 grid. These experiments
are too small to realistically represent genuine routecg®ialthough this does not matter because
the drivers are largely unadaptive. Clearly, there is afl@bom for improvement in the empirical
simulation of road systems, especially with adaptive axdeééa strategic agents.

7.3.2 Experimental Directions

We have not yet run any experiments on this model. Howeverhawe indicated particularly
promising areas for empirical work.
For the system:

e How frequently does the system converge to a stationarylatively stationary state?
e Of these stationary states, are they in equilibrium?
e How sensitive is the system to random accidents or drivetakes?

For the MAL algorithm:

e For reinforcement algorithms, what is a good regressionnigcie and what is a good set of
state features?

What is a good way to explore without introducing too muctseadnto the system?

Can gradient learning algorithms be extended to exterisive-games like traffic?

What are good performance metrics for driving agents?

What are the best learning algorithm for different situagi®

All these questions are important and interrelated, andwleflorward to eventually answering
them.

96

Appendix A

Stratiflied Sampling

In this thesis we need to evaluate with a limited computatitdget a large number of algorithms
and a large number of game instances. However, we want thi@ehaximum information from
the simulations that we did perform. How should we go abonhing these experiments?

For all of our experiments, we are concerned with the expegteformance of a match, de-
noted byf(u, (). Here, f is some metric functiony ~ A is a match, and ~ Z is a random
seed that completely determined any non-deterministi@ehbr in both algorithms. The game
instance/seed pairing uniquely define a run.

When designing our experiment, we must choose whether aostiatifying runs based on the
match. For instance, if we have enough computational tinrerid 00 simulations, we can either
samplel00 matches and perform a single run on each, or we can sampld @ntatches and run
10 runs for each. Stratification clearly leads to a more detailederstanding of the role that ran-
domization plays in each match and is critical informationdlgorithm design. However, for two
kinds of common summary statistics—means and quantileg-sbould avoid any stratification.

Lemma A.0.1 If we are trying to obtain an estimate Ef[f(Mz)] and we have a limited budget of
samples, it reduces variance to sample frdfmand Z independently rather than to stratify based
onM.

Proof Consider two schemes of sampling frdvhandZ, as seen in Table A.1. In the first scheme,
M and Z are sampled separately each time. In the second schesamples are taken from/
and for each sample @i/, Z is sampleds; times.

Independent {(My, Z1),...,(My, Z,)}
Stratified {(Ml, Zl,1)7 cee (Ml, Zle), ey (Mk, Zk,sk)}

Table A.1: Two schemes for sampling.

In both cases, the sample mean is used as the point estimatbefpopulation. Sincé&' and
Z are sampled independently, both schemes yield unbiaseusssts.

However, the first scheme yields lower variance as can beiadequations A.1-A.3. Equa-
tion A.2 follows from the fact that completely independeahdom variables have no covariance
(Equation A.5) and so if two samples share the same stragassétime samplg ~ M) then they
have weakly higher covariance (Equation A.4).

97

Appendix A. Stratified Sampling

Var |y f(M;, Z;) ZC’OU (M;, Zi), f(M;, Z;)] (A.1)
< Z Cov [f (M, Zi), f (M, Zi.y)] (A2)
i,5,k,1
=Var | > f(M; Zm-)] (A.3)
i,J
CO'U [f(Mk, Zk,l)a f(Mk, Zk,m)] 2 CO’U [f(MZ, ZZ’), f(Mj, ZJ)] (A4)
CO’U [f(Mw Zz)7 f(Mj, ZJ)] = CO’U [f(Mk, Zk,l)a f(Mm, me)] (A5)

Additionally, stratifying increases the variance of quignpoint estimation. This result can be
found in Heidelberger and Lewis [22], but it is provided vaith proof.

98

Bibliography

[1]
(2]

[3]

[4]

[5]

PTV AG. Vissim 5.00, 2008. URww. pt vag. com

Stéphane Airiau, Sabyasachi Saha, and Sandip Senutttrwry tournament-based compari-
son of learning and non-learning algorithms for iteratechgs. Journal of Artificial Societies
and Social Simulation10(3):7, 2007. ISSN 1460-7425.

R. Axelrod. The evolution of strategies in the iteratetspner’s dilemma. In L. Davis, editor,
Genetic Algorithms and Simulated Annealimges 32—-41. Morgan Kaufman, Los Altos,
CA, 1987.

B. Banerjee and J. Peng. Performance bounded reinfakelearning in strategic interac-
tions. INAAAI 11, 2004.

B. Banerjee and J. Peng. RV: a unifying approach to peréoce and convergence in online
multiagent learning. IMAMAS 06 pages 798-800, 2006.

[6] A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning tousotg real-time dynamic program-

[7]
(8]

[9]

[10]

[11]

[12]

ming. Technical Report UM-CS-1993-002, University of Madsusetts, Amherst, 1993.
M. Bowling. Convergence and no-regret in multiagentiéag. INnNIPS 17 2004.

M. Bowling. Convergence and no-regret in multiagentiéag. Technical Report TR04-11,
University of Alberta, 2004.

M. Bowling and M Veloso. Rational and convergent leain stochastic games. IdCAI
17, August 4 — 10 2001.

Michael H. Bowling and Manuela M. Veloso. Multiagengataing using a variable learning
rate. Artificial Intelligence 136(2):215-250, 2002.

G. Brown. lterative solution of games by ficticious play Activity Analysis of Production
and Allocation New York, 1951.

C. Claus and C. Boutilier. The dynamics of reinforceirlearning in cooperative multiagent
systems. IMAAAI 4, pages 746 — 752, July 28 1997.

99

Bibliography

[13] V. Conitzer and T. Sandholm. AWESOME: A general muléaglearning algorithm that
converges in self-play and learns a best response agaatiinsty opponents.Machine
Learning 67(1):23-43, 2007.

[14] Juan de Dios Ortzar and Luis G. Willumseviodelling Transport Wiley, 2001.

[15] Denise de Oliveira, Ana L. C. Bazzan, Bruno Castro dagSiEduardo W. Basso, and Lus
Nunes. Reinforcement learning based control of traffictigh non-stationary environments.
In EUMAS volume 223 ofCEUR Workshop Proceeding2006.

[16] Center for Microcomputers in Transportation. TSIS&M 6.0, 2008. URLnttrans.
ce. ufl . edu.

[17] Drew Fudenberg and David M. Kreps. Learning mixed equd. Games and Economic
Behavior 5(3):320-367, July 1993.

[18] S. Govindan and R. Wilson. A global newton method to catefNash equilibriaJournal of
Economic Theoryl110(1):65 — 86, 2003.

[19] A. Greenwald and K. Hall. Correlated-Q learning.I@ML 20, 2003.

[20] S. Hart and Y. Mansour. How long to equilibrium? The coomitation complexity of un-
coupled equilibrium procedures . KCM Symposium on Theory of Computinglume 39,
pages 345 — 353, 2007.

[21] Sergiu Hart and Andreu Mas-Colell. Stochastic uncedglynamics and nash equilibrium:
extended abstract. RARK '05: Proceedings of the 10th conference on Theoretispkcts
of rationality and knowledgepages 52—61, 2005.

[22] P. Heidelberger and PAW Lewis. Quantile estimation @pehdent sequencefperations
Research32(1):185-209, 1984.

[23] J. Hu and M. Wellman. Multiagent reinforcement leamirtheoretical framework and an
algorithm. InICML 15, pages 242 — 250, 1998.

[24] Junling Hu and Michael P. Wellman. Nash Q-learning fengral-sum stochastic games.
Journal of Machine Learning Researchi1039-1069, 2003.

[25] Ehud Kalai and Ehud Lehrer. Rational learning leads &stiNequilibrium.Econometrica6l
(5):1019-1045, 1993.

[26] Ehud Kalai and Ehud Lehrer. Subjective games and dyjiziliGames and Economic Behav-
ior, 8(1):123-163, 1995.

[27] C. Lemke and J. Howson. Equilibrium points of bimatrianges. InJournal of the Society
for Industrial and Applied Mathematicgolume 12, page 413423, 1964.

100

Bibliography

[28] A. Lipson. An empirical evaluation of multiagent le@rg algorithms. Master’s thesis, Uni-
versity of British Columbia, Vancouver, Canada, 2005.

[29] M. Littman. Friend-or-foe Q-learning in general-surmnges. INCML 18, pages 322 — 328,
June 28 — July 1 2001.

[30] M. Littman. Markov games as a framework for multi-ageginforcement learning. IlCML
11, pages 157 — 163, 1994.

[31] A.D. May. Traffic Flow FundamentalsPrentice-Hall, Upper Saddle River, N.J., 1990.

[32] R.D. McKelvey, A.M. McLennan, and T.L. Turocy. Gamb#oftware tools for game theory.
Version 0.97.0.6ht t p: / / econweb. t anu. edu/ ganbi t , 2004.

[33] D. Monderer and A. Sela. A2 2 game without the fictitious play propertyGames and
Economic Behavigrl4:144-148, 1996.

[34] D. Monderer and L.S. Shapley. Fictitious play propdidy games with identical interests.
Journal of Economic Theoy8(1):258—-265, 1996.

[35] J.F. Nash. Equilibrium points in N-person gamé&soceedings of the National Academy of
Sciences of the United States of Ameri®@(1):48—49, 1950.

[36] E. Nudelman, J. Wortman, K. Leyton-Brown, and Y. Shohd®oun the GAMUT: a compre-
hensive approach to evaluating game-theoretic algorithmaAMAS 3 July 19 — 14 2004.

[37] I. Porche and S. Lafortune. Adaptive look-ahead opation of traffic signals. Technical
report, University of Michigan, 1997.

[38] R. Powers and Y. Shoham. New criteria and a new algorithimearning in multi-agent
systems. INNIPS volume 17, pages 1089-1096, 2005.

[39] Paramics Modeller Quadstone Paramics Ltd., 21. URMaw. par ani cs- onl i ne. com

[40] R Development Core Team.R: a language and environment for statistical computing
R Foundation for Statistical Computing, Vienna, Austri®d08. URL htt p://ww.
R- proj ect.org.

[41] A. Rapoport, M. Guyer, and D. Gordomhe 2x2 GameUniveristy of Michigan Press, 1976.

[42] Carl E. Rasmussen and Christopher K. I. WilliafBswussian Processes for Machine Learning
(Adaptive Computation and Machine Learninghe MIT Press, December 2005.

[43] R.W. Rosenthal. A class of games possessing pureegyraiiash equilibria.International
Journal of Game Theory:65-67, 1973.

101

Bibliography

[44] T. Sandholm. Perspectives on multiagent learniAgtificial Intelligence 171(7):382-391,
2007.

[45] Yoav Shoham and Kevin Leyton-BrowMultiagent Systems: Algorithmic, Game-Theoretic,
and Logical FoundationsCambridge University Press, New York, 2008.

[46] Yoav Shoham, Rob Powers, and Trond Grenager. If mghiralearning is the answer, what
is the questionArtificial Intelligence 171(7):365-377, 2007.

[47] S. Singh, M. Kearns, and Y. Mansour. Nash convergenggaafient dynamics in general-sum
games. InJAI 16, 2000.

[48] J. C. Spall.Introduction to Stochastic Search and Optimization: Eation, Simulation and
Control. John Wiley & Sons, Hoboken, New Jersey, 2003.

[49] R.S. Sutton and A.G. BartoReinforcement Learning, An IntroductionThe MIT Press,
Cambridge, Massachusetts, 1999.

[50] G. Tesauro. Extending Q-learning to general adaptiutiragent systems. INIPS 16 2004.

[51] W.K. Viscusi. The value of life: estimates with risks bgcupation and industryEconomic
Inquiry, 42(1):29-48, 2004.

[52] J. von Neumann and O. Morgensterfheory of Games and Economic Behavi@rinceton
University Press, 1944,

[53] T. Vu, R. Powers, and Y. Shoham. Learning against mleltqgpponents. IMAMAS 2005.

[54] J. Wardrop. Some theoretical aspects of road traffieaeh. Proceedings of the Institution
of Civil Engineers, Part 111(36):352-362, 1952.

[55] C.H.Watkins and P. Dayan. Q-learning: technical nMachine Learning8:279-292, 1992.

[56] Marco Wiering. Multi-agent reinforcement learningr fiwaffic light control. InProc. 17th
International Conf. on Machine Learningages 1151-1158. Morgan Kaufmann, San Fran-
cisco, CA, 2000.

[57] M. Zinkevich. Online convex programming and generdiznfinitesimal gradient ascent. In
ICML’03, 2003.

102

