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Abstract

Many algorithms exist for learning how to act in a repeated game and most have theoretical guaran-
tees associated with their behaviour. However, there are few experimental results about the empir-
ical performance of these algorithms, which is important for any practical application of this work.
Most of the empirical claims in the literature to date have been based on small experiments, and this
has hampered the development of multiagent learning (MAL) algorithms with good performance
properties.

In order to rectify this problem, we have developed a suite oftools for running multiagent ex-
periments called the Multiagent Learning Testbed (MALT). These tools are designed to facilitate
running larger and more comprehensive experiments by removing the need to code one-off experi-
mental apparatus. MALT also provides a number of public implementations of MAL algorithms—
hopefully eliminating or reducing differences between algorithm implementations and increasing
the reproducibility of results. Using this test-suite, we ran an experiment that is unprecedented in
terms of the number of MAL algorithms used and the number of game instances generated. The
results of this experiment were analyzed by using a variety of performance metrics—including
reward, maxmin distance, regret, and several types of convergence. Our investigation also draws
upon a number of empirical analysis methods. Through this analysis we found some surprising re-
sults: the most surprising observation was that a very simple algorithm—one that was intended for
single-agent reinforcement problems and not multiagent learning—performed better empirically
than more complicated and recent MAL algorithms.
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Chapter 1

Introduction

Urban road networks, hospital systems and commodity markets are all examples of complicated
multiagent systems that are essential to everyday life. Indeed, any social interaction can be seen as
a multiagent problem. As a result of the prominence of multiagent systems, a lot of attention has
been paid to designing and analyzing learning algorithms for multiagent environments. Examples
include algorithms by Littman [30], Singh et al. [47], Hu andWellman [24], Greenwald and Hall
[19], Bowling [7], Powers and Shoham [38], Banerjee and Peng[5], and Conitzer and Sandholm
[13]. As a result of this attention, a multitude of differentalgorithms exist for a variety of different
settings.

Before introducing a new algorithm, no matter the problem, afundamental question needs to
be asked: how does it compare with previous approaches? In particular, there is little point in
suggesting a method that does not offer some form of improvement. Such a question rarely can be
answered with theoretical guarantees alone, and a full answer typically involves an extensive set of
experiments.

This thesis follows theArtificial Intelligence agenda[46] for multiagent learning: a good multi-
agent learning (MAL) algorithm is one that gets high rewardsfor its actions in a multiagent system.
However, past work in MAL has primarily focused on proving theoretical guarantees about differ-
ent algorithms and it has been difficult to prove results about raw average reward. Instead there
have been numerous theorems about a variety of alternative performance metrics—for which re-
sults are provable—that are intended to ‘stand in’ for reward. So how good are the numerous MAL
algorithms in terms of the Artificial Intelligence criterion for performance?

While most results for MAL algorithms have been theoretical, some experiments have been
conducted. Most of these experiments were small in terms of game instances, opposing algorithms
and performance metrics. The small number of metrics is particularly important. Authors have
focused on many different aspects of performance for both theoretical and empirical work. The
abundance of possible metrics and lack of comprehensive experiments mean that given any two al-
gorithms it is unlikely that their empirical results can be meaningfully compared—the experiments
that have been done investigated many incomparable aspectsof performance. As a result, there are
still opportunities to expand our empirical understandingof how MAL techniques interact and how
one could design an algorithm with improved empirical characteristics.

Part of the reason for the relative paucity of large-scale empirical work is that neither a central-
ized algorithm repository nor a standardized test setup exists. This is unfortunate, not only because
needless work has to be invested in designing one-off testbeds and reimplementing algorithms, but
also because a centralized and public repository increasesreproducibility and decreases the poten-

1



Chapter 1. Introduction

tial for implementation differences. Publicly available and scrutinized implementations will make
experiments easier to run, reproduce, and compare.

In this thesis we make two contributions. First, we describethe design and implementation
of a platform for running MAL experiments (§ 3). This platform offers several advantages over
one-off setups and we hope that this initial investment in architecture will facilitate larger and more
comprehensive empirical work.

Our second contribution is a large experiment that we set up and executed with our platform
that is, to our knowledge, unprecedented in terms of scale (§ 4). Our discussion of this experiment
focuses on suggesting empirical methods for analyzing MAL performance data and engaging in a
detailed discussion of the results. In particular, we show that there are some interesting relation-
ships between the different performance metrics and that some very basic algorithms out perform
more sophisticated algorithms on several key metrics.

2



Chapter 2

Background and Related Work

Game theory is a way to model the interactions of multiple self-interested agents. Each game
maps the decisions made by the agents to outcomes which are inturn mapped to rewards for each
of the agents. Everyone’s reward depends on the decisions made by other agents and vice versa.
This powerful representation not only captures everythingthat is commonly thought of as a game,
like rock-paper-scissors and backgammon, but also many other complicated situations in politics,
economics and other social interactions.

Games are a mathematical object. While all game formalizations share the broad characteri-
zation that the agent’s rewards are tied to the decisions made by others, specific games can vary
greatly in their detail. For instance, is the game played once, or many times? How much about
the game and the other players is known? While it is not the intention of this thesis to give an
exhaustive survey of all game forms, we will describe the model for the type of game that we use
in this dissertation—the repeated game. However, repeatedgames are built upon a more basic type
of game, the one-shot game, which in turn relies on having a crisp mathematical formalization of
the intuitive notion of having preferences. We will give some background for each of these topics,
starting with building a formal idea of preference.

2.1 Preference and Utility

Game theory is founded on the idea that agents have preferences over theoutcomesof the game—
the state of the world after the game has been played. Game outcomes are a natural concept with
many examples. Rock-paper-scissors can be seen as having three outcomes: player one might win,
player two might win, or they might both tie. Poker can be seenas having many more possible
outcomes, one for each possible distribution of chips to thevarious players. Each agent has pref-
erences over these outcomes. Using the example of rock-paper-scissors, each agent prefers any
outcome where they win to one where they lose or tie. Since allagents prefer the outcome where
they win there is some natural tension.

Formalizing this intuition requires some light notation. Let O be a set of outcomes and�⊂
O × O be some relationship over them. The notationo1 � o2 denotes thato1 is weakly preferred
to o2. Strict preference is denotedo1 ≻ o2 and neutrality is denotedo1 ∼ o2. A game might have
some random component or the agents themselves might do something random, and this leads to
the idea of alottery over outcomes. A lottery is simply a multinomial probability distributions
over a set of outcomes. We denote a lottery over outcomes as{o1, . . . , on} as[p1 : o1, . . . , pn : on]
wherepi is the probability that the outcome of the lottery will beoi.

3



Chapter 2. Background and Related Work

Not every relationship among the outcomes makes sense as a preference relationship. We
want preference relationships to capture the intuitive sense of ‘preferring’. In particular, we want
to rule out relationships that make incomprehensible statements about preference. Consider the
relationship ‘⊲’: o1 ⊲ o2 ando2 ⊲ o3, but noto1 ⊲ o3—while ‘⊲’ is a perfectly valid relationship, but
it is hard to imagine having non-transitive preference overoutcomes so ‘⊲’ does not make sense as
a preference relationship.

The most accepted account of what special properties make a relationship a preference is due to
the six von Neummann and Morgenstern axioms [52]. These axioms are provided here for flavour
and completeness. We will largely take them as writ in this thesis with one exception noted below.

I Completeness: Pick two outcomes. Either one is preferred to the other or they are equally
preferred.

II Transitivity : If outcomeo1 � o2, ando2 � o3, then necessarilyo1 � o3.

III Substitutability : If o1 ∼ o2, then
[p : o1, p3 : o3, . . . , pn : on] ∼ [p : o2, p3 : o3, . . . , pn : on].

IV Decomposability: If two lotteries give equal probabilities to all outcomes then they are
equally preferred. Essentially there is “no fun in gambling”—a game of craps and a slot
machine are equally preferred if they pay out the same amounts with the same probabilities.

V Monotonicity : If o1 � o2 andp > q
then[p : o1, (1 − p) : o2] � [q : o1, (1 − q) : o2].

VI Continuity : If o1 ≻ o2, ando2 ≻ o3, then there has to be a lottery such thato2 ∼ [p :
o1, (1 − p) : o3]

Figure 2.1: von Neummann and Morgenstern’s six preference axioms.

Of course, some of these axioms could be disputed. For instance one might want to have a
model of preference that does not assert completeness. Sucha system would be able to account for
situations where one might not be sure which of two outcomes they like better. This is different than
merely being indifferent between two outcomes. One might besimultaneously trying to optimize
along multiple dimensions: for example, a hospital administrator wants to save both money and
increase the quality of care but might have trouble spellingoff alternatives that trade off one against
the other2. This idea of incomparability can be captured with a partialordering over outcomes.

As an example, if we define a partial ordering through a partial preference relationship� over
ℜ2 where outcomes are real-valued pairs and(a, b) � (a′, b′) if and only if a ≥ a′ andb ≥ b′. With
such an ordering,(2, 4) is preferred to(1, 1), but there is no preference relationship between(2, 4)

2Although, estimates for theValue of Statistical Life—the projected marginal cost of a human life [51]—are based
on the fact that money and care quality do get traded off in practice.

4



Chapter 2. Background and Related Work

(2, 2)

(1, 2) (2, 1)

(1, 1)

Figure 2.2: An example of a partial ordering over elements fromℜ2, where the edges indicate that
the source node is preferred to the sink node.

and(3, 0). Partial orderings can be conveniently visualized using a graph, such as in Figure 2.2. We
will later argue that there are strong reasons for not havinga preference between two algorithms
even when we have extensive experimental data for their performance—they might be good in
different situations.

If we have a preference relationship that satisfies the von Neummann and Morgenstern axioms
it can be shown that there exists autility function u : O 7→ [0, 1] that captures the preference
relationship exactly [52]. This means that all of the structure of a preference relationship can be
distilled to a mapping of outcomes to real numbers such thato1 � o2 if and only if u(o1) ≥ u(o2);
we can express our preference for any outcome in terms of a one-dimensional number.

We will call the value of the utility function for a particular outcome thereward for that out-
come. This is for historical reasons and is not a substantiveclaim about our setting. ‘Reward’
is a more common term for the generic measure of worth in than ‘utility’ in the single-agent re-
inforcement learning and artificial intelligence communities, and so we will inherit this piece of
terminology.

2.2 One-shot Games

As mentioned earlier, agents might have different preference orderings over the outcomes of a
game, so what happens when agents with different preferences interact? If the agents only interact
once then this conflict can be modeled as aone-shot game. The distinguishing characteristic of the
one-shot game is that there is no notion of time or sequence ofactions: the agents simultaneously
act once and only once. Therefore the agents need not think about souring or fostering future
relationships when acting in the game. They only need to concern themselves with how their
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action affect their immediate one-off reward.
A one-shot game can be modeled with a5-tuple: G = 〈N,A,O, o, u〉. Each element of this

tuple has a simple interpretation:

• N is the set of players.

• A =
∏

i∈N Ai is the set of actions sets, where each action setAi is set of possible action
that agenti ∈ N can take. These action sets do not have to be finite or even countable but
we will focus on finite actions sets in this thesis. A particular membera ∈ A is called an
action profile, and is a joint action decision for all players. A useful piece of notation to
have isa−i ∈ A−i which denotes the action choices by the opponents of a particular agent:
A−i =

∏

j∈N\{i} Aj .

• O is the set of outcomes.

• o is a functiono : A 7→ O that maps action profiles to outcomes.

• u is a vector function that map outcomes of the game to rewards for each of the playersi.e.
for each agenti ∈ N , they have a utility functionui : O 7→ ℜ. In this thesis, we are solely
concerned with the reward associated with an outcome and so we will abbreviateui(o(a)) as
ui(a).

If a player decides to play a particular actionai ∈ Ai in G, it is said to be playing apure
strategy. In many settings agents are allowed to randomize over decisions giving rise tomixed
strategies. These strategies are denoted asσi ∈ ∆(Ai), where∆(Ai) is the |Ai|-dimensional
probability simplex—σi is a multinomial distribution over agenti’s action set. Note that these
probabilities are absolutely not allowed to depend on what the opponent does: the agents unfurl
their fully-specified pure or mixed strategies simultaneously and independently.

The probability that any actionai will be played isσi(ai). Any actionai that has non-zero
probability inσi is said to be in itssupport. When playing a mixed strategy in a one-shot game,
agents are concerned with maximizing their expected reward: ui(σ) =

∑

a∈A p(a|σ)ui(a).
If, given the opponents’ strategiesσ−i, agenti plays a strategyσi such thatui(σi, σ−i) =

maxσ′

i
ui(σ

′
i, σ−i), thenσi is said to be abest response. The best response against a particular

set of opponent strategies is not necessarily unique—theremay be many strategies that attain the
maximum reward.

Simple one-shot games are represented innormal-formtables where the rewards are explicitly
written in |N |-dimensional vectors (one utility entry for each player) ina table with one entry per
outcome. For two-players this is a ‘matrix’ where each element belongs toℜ2. Game 2.3 is an
example of a famous game,Prisoner’s Dilemma, in normal form.

Explicitly writing out all the reward entries is wasteful ingames that have highly-structured
payoffs. While more parsimonious representations exist, the games examined in this thesis are
largely restricted to having two players and typically small. All the games that we look at in this
these are in normal form, although the discussion of a familyof largen-player traffic games looked
at in § 7 will primarily focus on issues of representation.
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C D
C 3, 3 0, 4
D 4, 0 1, 1

Figure 2.3: A game ofPrisoner’s Dilemmain normal-form with canonical payoffs.

2.2.1 Solution Concepts

Once a game has been defined, a natural question is: how it should the agents act? Game theory
is devoted to answering this question in the context of rational agents. A rational agent is an entity
that ruthlessly and perfectly maximizes expected utility given its knowledge of the game and its
opponent. Unfortunately, there is no single ‘solution’ to agame, but rather different families of
solution conceptswhich are sets of strategies or strategy profiles that satisfy some game theoretic
property. The most famous of these is theNash equilibrium, but we will first look at two other
solution concepts that will be important to later discussions: non-dominated outcomes and maxmin
strategies.

Non-dominated Outcomes

Some actions make never make any sense to play. An important class of these are the dominated
actions. An action is (strictly) dominated if there is another pure or mixed strategy that yields
higher reward regardless of what the opponents do. This is formally captured as

ai Dominatesa′i ≡ ∀σ−i, ui(ai, σ−i) ≥ ui(a
′
i, σ−i). (2.1)

No rational agent ever plays a dominated action and we can discard any outcome that result from
dominated action profiles. The idea of weak domination is similar, but the agent can be neutral be-
tween the dominating and dominated strategy for some (but not all) profiles of opponent strategies.

For example, inPrisoner’s Dilemma, the row player’s actionC is strictly dominated: if the
column player playsC, row is better off playingD thanC, and if column playsD row would still
be better playingD. There is no reason that row should ever playC and soC can be discarded as
a possible action.

While strict domination is easy to spot in a two-player two-action game, it generally has to be
found with a series of linear feasibility programs—one for every action by every player. For any
agent and action, we can use a feasibility program to look forsome mixed strategy over the other
actions that has higher expected utility for all of the opponent’s actions. If there is a pure strategy
like this, then the corresponding action can be thrown out.

In a two-player game if we assume that the opponent believes that the protagonist agent is
rational—or reward maximizing—then the opponent must alsobelieve that the protagonist will
never play any strategy that has a strictly dominated actionin its support. If we furthermore assume
that the opponent is, itself, rational, then it will never play any action that is strictly dominated with
respect to the protagonist’s non-dominated actions. This in turn means that the protagonist will
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A B
A 2, 1 0, 0
B 0, 0 1, 2

Figure 2.4: A game ofBattle of the Sexesin normal-form with canonical payoffs.

never play any strategy that is strictly dominated with respect to the opponent’s surviving actions
and so forth. This process of removing actions is callediterated domination removal(IDR) and is
repeated until no more actions can be removed for either agent. If an action has survived IDR it has
attained a minimal certificate of sensibility: there is at least some belief about what the opponent
will do for which this strategy is a best response3.

Maxmin Strategies

If an agent has no idea what the opponents will do it can still guarantee some level of reward. One
way of thinking about this problem is in terms of playing against an adversary: no matter what
strategy an agent picks, the opponent just-so-happens to beplaying the action that minimizes the
protagonist’s reward. The highest reward that an agent can get in such a situation is called the
maxmin valueor thesecurity value, which is formally stated as

maxmini(G) = max
σi∈

∏

(Ai)
min

a−i∈A−i

ui(σi, a−i). (2.2)

Any strategy that achieves the maxmin value is called a maxmin strategy. While for some
games the maxmin value is a pessimistic lower-bound, in other games agents are actually playing
against opponents that are trying to minimize their reward and the maxmin strategy is well moti-
vated. Indeed, any game with two agents competing for a common finite resource has this feature:
if there is only one cake, any cake that you have is a slice thatI do not have. In two-player constant
sum games, the strategy profile where both players adopt a maxmin strategy is a member of the
next solution concept that we will discuss—the Nash equilibrium.

Nash Equilibria

A Nash equilibrium is a strategy profile where all agents are playing a mutually optimal strategy—
everyone is best responding to everyone else. Formally, theset of Nash equilibria is

NE(G) =
{

σ ∈ ∆(A) | ∀i ∈ N,∀σ′
i ∈ ∆(Ai), ui(σ) ≥ ui(σ

′
i, σ−i)

}

. (2.3)

This set is always non-empty [35], but is not necessarily a singleton. For example, theBattle of
the Sexes(Game 2.4) has three Nash equilibria: both agents playingA, both playingB and some
mixture between the two.

3This is not necessarily true when the number of players is greater than two.
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The Nash equilibrium is a positive concept and not a predictive or normative one. If there are
several Nash equilibria there is no prescription for picking which one an agent should or will play.
There has been a lot of work done on restricting the set of Nashequilibria to sets of equilibria
that seem ‘natural’ or predictive. Much of the existing workin repeated game dynamics can be
seen as describing restricted classes of Nash equilibria interms of simple adaptation rules—see,
for example, Kalai and Lehrer [25], Kalai and Lehrer [26], Hart and Mas-Colell [21] and Hart and
Mansour [20].

One of Nash equilibrium restrictions that we look at in this thesis is the set of Pareto-optimal
Nash equilibria. Pareto-domination is a partial ordering over outcomes, where one outcome Pareto-
dominates another if all the agents get weakly higher rewardin the former outcome than the latter:

a Pareto Dominatesa′ ≡ ∀i ∈ N,ui(a) ≥ ui(a
′). (2.4)

Pareto-optimality refers to any outcome that is not Pareto-dominated by any other outcome: in
every other outcome at least one of the agents is worse off. Indeed, the partial ordering example in
Figure 2.2 can be seen as an example of Pareto-domination fortwo agents.

A Pareto-optimal Nash equilibrium is an equilibrium that isPareto-optimal when outcomes are
restricted to the Nash equilibria. In a Pareto-dominated equilibrium, all agents would do better if
everyone switched to another equilibrium. This suggests that Pareto-optimal Nash equilibria should
be a particularly stable appealing set of Nash equilibria for the agents. Note that a Pareto-optimal
Nash equilibrium is not necessarily a Pareto-optimal outcome: the difference can be seen inPris-
oner’s Dilemma. (C,C) is a Pareto-optimal outcome, but(D,D) is the unique Nash equilibrium
and so is also the Pareto-optimal equilibrium.

2.3 Repeated Games

One-shot games are the foundation of repeated games, in which two or more agents repeatedly (for
either a finite or infinite number of iterations) play a one-shot stage-game. Unlike the one-shot
game where the agents play the game once and then never interact again, the history of play in a
repeated game is kept and agents can condition their strategies on it. This suggests that agents need
to worry about how their current choice of action will effectfuture reward.

Tit-for-Tat (TfT) is an example of a strategy in a repeated game and is perhaps the most famous
repeated-game strategy forPrisoner’s Dilemma(Game 2.3). TfT begins by cooperating and then
plays whatever the opponent did the past iteration. Therefore, if the opponent is obliging and
cooperates TfT will continue to cooperate. If ever the opponent defects TfT will defect the next
round, but will start cooperating whenever the opponent starts feeling cooperative again. TfT is a
relatively simple strategy, but one could imagine constructing more and more elaborate strategies
with trigger conditions and complicated modes of behaving.

Formally, let us denote the action played in iterationt by agenti asa
(t)
i , and the reward that

i receives isr(t)
i . For the model of repeated games that we will use, agents are allowed to submit
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mixed strategies, denotedσ(t)
i , but agents do not receive the expected utility. Instead, anaction is

sampled from the mixed strategy, and payoff is calculated using the sampled action.
Agents in finitely repeated games are interested in maximizing their average reward, and agents

in an infinitely repeated game are interested in maximizing their limit average reward:

r̄i = lim
T→∞

[

∑T
t=1 r

(t)
i

T

]

. (2.5)

In this thesis, we will exclusively focus on simulating infinitely repeated games in a finite number
of iterations: agent do not believe that the game will ever end even though it does after a set number
of iterations.

One interpretation of these repeated-game strategies is that they are strategies in a one-shot
supergamewhere instead of making a decision each iteration conditioned on the past history,
agents make a single policy decision. In this interpretation, TfT is a single action in thePrisoner’s
Dilemmasupergame. There are many more policies than there are actions in the stage-game: if all
players haven actions and the game is repeated forT , then there areO(nT 2

) possible pure-action
policies (policies that only ever make pure-strategy decisions). While the supergame is clearly not
a compact way of representing a repeated game, it is an intuitive way of seeing that finitely repeated
games must have Nash equilibria.

Infinitely repeated games also necessarily have equilibriaand, furthermore, each infinitely re-
peated game has infinitely many equilibria. We cannot explicitly characterize every repeated game
equilibria but we can instead say something about the the payoff profiles that these equilibria
achieve. If all agents have an average reward above their respective security values (recall from
§ 2.2.1) then there exists some Nash equilibrium that attainsthe same profile of payoffs. This is the
celebrateFolk Theorem4. Any payoff profile where all agents are attaining reward higher that their
security values is said to beenforceable.

To gain some insight about the Folk Theorem, let us again examine the game ofPrisoner’s
Dilemmaand construct a repeated game Nash equilibrium where both players repeatedly playC.
The security value for this game is1 (if an agent always playsD, then it gets a utility of at least1
regardless of what the opponent does), and so(C,C) is clearly enforceable. Therefore,(3, 3) is a
payoff profile of the repeated game Nash equilibrium. What are the equilibrium strategies? There
are a number of strategy profiles that can attain this outcomebut one of the simplest profiles is
Grim Trigger in self play.

Grim Trigger playsC until the opponent playsD and then playsD forever: upon the first
sign of deviation from the(C,C) outcome the Grim Trigger strategy starts a merciless and unend-
ing program of punishment. Grim Trigger in self play is an equilibrium because if either player
tries to deviate to another strategy that ever playsD against Grim Trigger, the deviator will be
worse off: the deviant strategy strategy can, at best, attain an average reward of1. If either player
switches to a strategy that never playsD against Grim Trigger, then this strategy differs only in the

4There are actually several Folk Theorems, but we will only look at one for average rewards.
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100 99 . . . 1
100 100, 100 99 − δ, 99 + δ 1 − δ, 1 + δ
99 99 + δ, 99 − δ 99, 99 1 − δ, 1 + δ

...
. . .

1 1 + δ, 1 − δ 1 + δ, 1 − δ 1, 1

Figure 2.5: A game ofTraveler’s Dilemmawith 100 actions.

‘off-equilibrium’ punishment details and receives the same average reward as Grim Trigger—the
deviant strategy has not improved reward.

The Folk Theorem does not claim that if two agents are achieving an enforceable payoff profile
then the agents are playing a Nash equilibrium. The idea of equilibrium is tied deeply to the threat
of punishment. Grim Trigger in self play is an equilibrium while two strategies that blindly playC
is not, even if their behaviour looks the same to an outside observer. In the latter case if either agent
switched to the simple strategy of blindly playingD, than their average reward would be higher.

While we might have been unsatisfied by the potential multitude of Nash equilibria in the one-
shot game, the predictive power of the Folk Theorem is even less: there are games where nearly
every outcome arises under a Nash equilibrium. For instance, consider an extension ofPrisoner’s
Dilemma, the Traveler’s Dilemma(Game 2.3;Prisoner’s Dilemmais the special case with only
2 actions—apparently travelers have more options availableto them than prisoners). The security
value is1 for both players, and so all outcomes—except for outcomes ofthe form(1− δ, 1 + δ) or
(1 + δ, 1 − δ)—are potentially the result of a Nash equilibrium.

Again, repeated game Nash equilibria are positive statements and not normative, but in many
cases we want a normative claim: how should we behave in a repeated game? How should we
go about selecting a particular strategy for a multiagent system? This thesis is largely devoted to
evaluating one approach that computer science has suggested for this problem: multiagent learning
algorithms.

2.4 Multiagent Learning Algorithms

MAL algorithms have been studied for a long time (57 years at the time of writing) and many
different algorithms exist. Not only is there a profusion ofalgorithms but there are also several dif-
ferent settings for multiagent learning. Does an algorithmknow the game’s reward functions before
the game starts? Some authors assume yes, while others assume that these reward functions need
to be learned. There are other questions. What signals of theopponent actions can an algorithm
observe? Are stage-game Nash equilibria and other computationally-expensive game properties
assumed to be computable? Each of these assumptions changesthe learning problem. A setting
where the rewards are knowna priori is fundamentally different than a setting where the rewards
are not knowna priori and algorithms have no ability to observe the opponents’ rewards.

The algorithms that we describe in this section were designed with a variety of different goals
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in mind and this reflects a general disagreement over what these MAL algorithms should be trying
to do. Should they be trying to converge to a stage-game Nash equilibrium? Should they try
to avoid being exploited by other algorithms? Or are they trying to maximize their sequence of
reward? There is no single answer (but these issues are examined at length in Shoham et al. [46]
and Sandholm [44]).

Each of these goals poses different empirical questions. For instance, if we are primarily inter-
ested the Bowling and Veloso [10] criterion—all algorithmsshould converge to a stationary strat-
egy and if the opponent converges to a stationary policy all algorithms should converge to a best
response—one should analyze experiments using performance metrics that are sensitive to strategic
stationarity and to the difference between the current strategy and the best response strategy.

In this dissertation we focus on two-player repeated games with many (i.e. more than two)
actions per player. Other learning settings have been investigated. Some of these settings are
further restrictions that insist, for example, on two-action games [47] or constant-sum games [30].
Other work looks at learning in generalizations of two-player repeated games: stochastic games or
N -player games [53]. There are also MAL experiments that havebeen conducted in settings that
are neither generalizations nor restrictions, such as the population-based work by Axelrod [3] and
Airiau et al. [2]. Of these games, the repeated two-player game setting is the best studied and there
are many recent algorithms designed for such games.

In the remainder of this section we will discuss a selection of algorithms intended for two-
player repeated games and look at some previous MAL experiments. We do not mean to give an
exhaustive survey of this literature but we do want to build intuition about this set of algorithms,
look at the assumptions that they make and indicate some of the relationships between them.

2.4.1 Fictitious Play

Fictitious play [11] is probably the earliest example of a learning algorithm for two-player
games repeated games. Essentially,fictitious play assumes that the opponent is playing an
unknown and potentially mixed stationary strategy, and tries to estimate this strategy from the op-
ponent’s empirical distribution of actions—the frequencycounts for each of its actions normalized
to be probabilities. Clearly, in order to collect the frequency countsfictitious play must
be able to observe the opponent’s actions. The algorithm then, at each iteration, best responds to
this estimated strategy. Becausefictitious play needs to calculate a best response, it also
assumes complete knowledge of its own payoffs.

Fictitious play is guaranteed to converge to a Nash equilibrium in self play for a restricted set
of games. These games are said to have thefictitious play property(see, for instance Monderer
and Shapley [34]; for an example of a simple2 × 2 game without this property see Monderer and
Sela [33]).Fictitious play will also eventually best respond to any stationary strategy. This
algorithm’s general structure has been extended in a numberof ways, includingsmooth fictitious
play [17], and we will see later thatfictitious play provides the foundation forAWESOME
andmeta, two more modern algorithms. These algorithms are described later in Section 2.4.3.

Fictitious play is known to have miscoordination issues, particularly in self play. For
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example, consider theSidewalk Game(Game 2.6), where two identicalfictitious play
agents are faced with the issue of trying to get by each other on the sidewalk by either passing
to theWestor theEast. Since both algorithms are identical and deterministic, these algorithms
will cycle between(W,W ) and (E,E). There are some clever measures that can be taken to
avoid some of these kinds of problems (for instances, special best response tie-breaking rules and
randomization), but miscoordination is a general issues with thefictitious play approach.

W E
W −1,−1 1, 1
E 1, 1 −1,−1

Figure 2.6: ASidewalkor Dispersiongame, where two agents try to miscoordinate where they
step.

2.4.2 Determined

Determined or ‘bully’ (see, for example, Powers and Shoham [38]) is an algorithm that solves
the multiagent learning problem by ignoring it. MAL algorithms typically change their behaviour
by adapting to signals about the game. Howeverdetermined, as its name suggests, stubbornly
does not change its behaviour and relies on other algorithmsadapting their strategies to it.

Determined enumerates the stage-game Nash equilibria and selects the one that maximizes
its personal reward at equilibrium. Certainly,determined is not a final solution to the MAL
problem: for instance, twodetermined agents will stubbornly play different equilibria (unless
there is a an equilibrium that is best for both agents), possibly leading to a situation where both
algorithms receive sub-equilibrium reward. Additionally, enumerating all the Nash equilibria not
only requires complete knowledge of every agents’ reward functions, but also is a costly compu-
tational activity that is infeasible on anything but the smallest stage games. With that said, it is
certainly an interesting learning approach to test and compare. Slight variations ofdetermined
are, likefictitious play, at the heart ofmeta andAWESOME.

Using a stage-game Nash equilibrium is only one way of being stubborn and getting an op-
ponent to adapt. One could also imagine aiming for convergence to other outcomes: for instance
looking for the outcome with the highest reward given that the opponent is best responding. Note
that this differs from a stage-game Nash equilibrium because thedetermined algorithm does
not have to be best responding itself. This amounts to an equilibrium of the Stackelberg version of
the game: imagine the same game, but instead of moving simultaneously, thedetermined agent
moves first. Clearly, a sensible opponent will best-respondto whateverdetermined does, and
sodetermined should pick the action that gives maximum reward given that the opponent will
best respond.

As an example of a Stackelberg outcome: in Game 2.7 the uniqueNash equilibrium is(B,R).
Indeed, this is the only outcome that survives IDR. However,there is something very appealing
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about the Pareto-optimal outcome at(T,L): if the row player can teach the column player that it
will, in fact, playT then the row player will be much better off.

L R
T 1 − ǫ, 1 0, 0
B 1, 0 ǫ, 1

Figure 2.7: A game showing a situation where adetermined-style algorithm might be better off
not best responding to its opponent.

2.4.3 Targeted Algorithms

We will next focus on a class of algorithms called thetargetedalgorithms. Targeted algorithms
focus on playing against a particular class of opponents. For example,AWESOME [13] guaran-
tees convergence when playing itself or any stationary opponent. Both these algorithms are based
around identifying what the opponent is doing, with particular attention paid to stationarity and
Nash equilibrium, and then changing their behaviour based on this assessment.

Meta [38] switches between three simpler strategies: a strategy similar tofictitious
play (there are some small differences in how best responses are calculated), adetermin-
ed-style algorithm that stubbornly plays a Nash equilibrium,and the maxmin strategy. Average
reward and empirical distributions of the opponents’ actions are recorded for different periods of
play. Based on these histories one of the three algorithms isselected.Meta was theoretically and
empirically shown to be nearly optimal against itself, close to the best response against stationary
agents, and to approach (or exceed) the security level of thegame in all cases.

AWESOME also tracks the opponent’s behaviour in different periods of play and tries to maintain
hypotheses about their play. For example, it attempts to determine whether the other algorithms
are playing a special stage-game Nash equilibrium. If they are, AWESOME responds with its own
component of that special equilibrium. This special equilibrium is known in advance by all imple-
mentations ofAWESOME to avoid equilibrium selection issues in self play. There are other situa-
tions where it acts in a similar fashion tofictitious play, and there are still other discrete
modes of play that it engages in depending on what hypothesesit believes.

Because both of these algorithms switch between using simpler strategies depending on the
situation, these algorithms can be viewed as portfolio algorithms. Here, they both manage similar
portfolios that include adetermined-style algorithm and afictitious play algorithm.

2.4.4 Q-learning Algorithms

A broad family of MAL algorithms are based onQ-learning [55]: an algorithm for finding the
optimal policy in Markov Decision Processes (MDPs; can be thought of as single-agent stochastic
games). This family of MAL algorithms does not explicitly model the opponent’s strategy choices.
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They instead settle for learning the expected discounted reward for taking an action and then fol-
lowing some set policy: theQ-function. In order to learn theQ-function, algorithms typically take
random exploratory steps with a small (possibly decaying) probability.

Each algorithm in this family has a different way of selecting its strategy based on thisQ-
function. For instance, one could try a straight forward adaptation of the single-agentQ-learn-
ing to the multiagent setting by ignoring the impact that the opponent’s action makes on the
protagonist’s payoffs. The algorithm simply updates its reward function whenever a new reward
observation is made, where the new estimate is a convex combination of the old estimate and the
new information:

Q(ai) = (1 − αt)Q(ai) + αt

[

r + γ max
a

Q(a)
]

. (2.6)

This algorithm essentially considers the opponent’s behaviour to be an unremarkable part of a
noisy and non-stationary environment. The non-stationarity of the environment makes learning
difficult but this idea is not entirely without merit:Q-learning has been shown to work in other
non-stationary environments (see, for instance, Sutton and Barto [49]).

Minimax-Q[30] is one of the first explicitly multiagent applications of this idea. TheQ-
function that it learns is based on the action profile and not just the protagonist action: it learns
Q(ai, a−i). Minimax-Q uses the mixed maxmin strategy calculated from the Q-function as its
strategy:

Q(ai, a−i) = (1 − αt)Q(ai, a−i)

+αt

[

r + γ max
σi∈

∏

(Ai)

[

min
a−i∈A−i

∑

ai

σi(ai)Q(ai, a−i)

]]

.
(2.7)

It should be noted that since its maxmin strategies are calculated from learnedQ-values, they
may not be the game’s actual maxmin strategies and thus fail to attain the security value. Like
Q-learning,minimax-Q also takes the occasional exploration step.

There are further modifications to this general scheme.NashQ [24] learnsQ-functions for it
and its opponents and plays a stage-game Nash equilibrium strategy for the game induced by these
Q-values. Correlated-Q [19] does something similar except that it chooses from the set of
correlated equilibria using a variety of different selection methods. Both of these algorithms assume
that they are able to observe not only the opponents’ actionsbut also their rewards, and additionally
that they have the computational wherewithal to compute thenecessary solution concept.

2.4.5 Gradient Algorithms

Gradient ascent algorithms, such asGIGA-WoLF [7] andRVσ(t) [5], maintain a mixed strategy
that is updated in the direction of the payoff gradient. The specific details of this updating process
depend on the individual algorithms, but the common featureis that they increase the probability
of actions with high reward and decrease the probability of unpromising actions. This family
of algorithms is similar toQ-learning because they do not explicitly model their opponent’s
strategies and instead treat them as part of a non-stationarity environment.
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GIGA-WoLF is the latest algorithm in the line of gradient learners thatstarted withIGA [47].
GIGA-WoLF uses an adaptive step length that makes it more or less aggressive about changing
its strategy. It compares its strategy to a baseline strategy and makes the update larger if it is
performing worse than the baseline.GIGA-WoLFguarantees non-positive regret in the limit (regret
is discussed in greater detail in§ 5.2) and strategic convergence to a Nash equilibrium when playing
againstGIGA [57] in two-player two-action games.

There are two versions ofGIGA-WoLF. The first version assumes prior knowledge of personal
reward and the ability to observe the opponent’s action—this is the version used in the proofs
for GIGA-WoLF’s no-regret and convergence guarantees. There is also a second version—on
which all the experiments were based—that makes limited assumptions about payoff knowledge
and computational power. Instead, likeQ-learning, it merely assumes that it is able to observe
its own reward.

RVσ(t) [5] belongs to a second line of gradient algorithms initiated by ReDVaLeR [4]. This
algorithm also uses an adaptive step size when following thepayoff gradient, likeGIGA-WoLF,
but this is done on a action-by-action basis. This means that, unlikeGIGA-WoLF, RVσ(t) can be
aggressive in updating some actions while being cautious about updating others, and it does this
by comparing its reward to the reward at a Nash equilibrium. Therefore,RVσ(t) requires complete
information about the game and sufficient computational power to discover at least one stage-game
Nash equilibrium.RVσ(t) also guarantees no-regret in the limit and additionally provides some
convergence results for self play for a restricted class of games.

GIGA-WoLF andRVσ(t) differ in the way that they ensure that their updated strategies are
still probabilities. GIGA-WoLF retracts: it maps an unconstrained vector to the vector on the
probability simplex that is closest inℓ2 distance. This approach has a tenancy to map vectors to
the extreme points of the simplex, reducing some action probabilities to zero.RVσ(t) normalizes,
which is less prone to removing actions from its support. This difference may explain some of the
experimental results later on.

2.4.6 Previous Experimental Results

Setting up a general-sum repeated two-player game experiment requires a number of design choices.
Say that one has an algorithms to be evaluated in terms of a particular performance metric: what
set of games should these algorithms be run on? What other algorithms should this performance
be compared to? If one is dealing with randomized algorithms(which includes any algorithm that
is able to submit a mixed strategy), how many different runs should be simulated? For a partic-
ular game, how many iterations should a simulation be run for? As can be seen in Table 2.4.6,
existing literature varies in all of these dimensions. Additionally, some papers do not even discuss
parameters used which makes it difficult to reproduce experiments.

Overall, most of the tests performed in these papers considered few algorithms. In most of
these experiments, the newly proposed algorithms were onlyevaluated by playing against one or
two opponents. Some papers—like Littman [30] and Greenwaldand Hall [19]—seemed to use
many algorithms, but in fact these algorithms were quite similar to each other and varied only in
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Paper Algorithms Distributions Instances Runs Iterations

Littman [30] 6 1 1 ? ?
Claus and Boutilier [12] 2 3 1 - 100 ? 50-2500
Greenwald and Hall [19] 7 5 1 2500 - 33331× 10

5

Bowling [8] 2 6 1 ? 1× 10
6

Nudelman et al. [36] 3 13 100 10 1× 10
5

Powers and Shoham [38] 11 21 ? ? 2× 10
5

Banerjee and Peng [5] 2 1 1 1 16000
Conitzer and Sandholm [13] 3 2 1 1 2500

Table 2.1: This table shows a summary of the experimental setup for a selection of papers. The
summary includes the number of algorithms, the number of game distributions, the number of game
instances drawn from these distributions, the number of runs or trials for each instance, and the
number of iterations that the simulations were run for. In some cases, the setup was unclear, indi-
cated with a ‘?’. In many cases, fewer than[Algorithms × Distributions × Instances × Runs]
runs were simulated, due to some sparsity in the experimental structures.

some small details. For example, in Littman [30] two versions ofminimax-Q and two versions of
Q-learning were tested and each version varied only by its training regime. In Greenwald and
Hall [19], four versions ofCorrelated-Q were tested againstQ-learning andFriend-Q
andFoe-Q (the last two are from Littman [29]). Powers and Shoham [38] implemented the greatest
variety of opposing algorithms out of these experiments. While four of the eleven tested were sim-
ple stationary strategy baselines, the remaining seven were MAL algorithms includingHyper-Q
[50], WoLF-PHC [10], and a joint action learner [12].

Experiments have also tended to involve small numbers of games instances, and these instances
have tended to have been drawn from an even smaller number of game distributions. For example,
Banerjee and Peng [5] used only a single3×3 action “simple coordination game” and Littman [30]
probed algorithm behaviour with a single grid-world version of soccer. For earlier papers, this par-
tially reflected the difficulty of creating a large number of different game instances for use in tests.
However with the creation of GAMUT [36], a suite of game generators, generating large game sets
is now easy and involves little investment in time. Indeed, Nudelman et al. [36] performed a large
MAL experiment using three MAL algorithms (minimax-Q, WoLF [9], andQ-learning) on
1300 game instances drawn from thirteen distributions. Some recent papers have taken full ad-
vantage of the potential of GAMUT, such as Powers and Shoham [38], but adoption has not been
universal.

Experiments have also differed substantially in the numberof iterations considered ranging
from 50 [12] to1 × 106 [8]. Iterations in a repeated game are usually divided into “settling in”
(also calleda “burn-in” period) and “recording” phases , allowing the algorithms time to settle or
adapt before results are recorded. Powers and Shoham [38] recorded the final20 000 out of200 000
iterations and Nudelman et al. [36] used the final10 000 iterations out of100 000.
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Platform

Unfortunately, empirical experiments have largely been run with one-off code tailored to showing a
particular feature of an algorithm. This has a number of negative consequences. First, it decreases
the reproducibility of experiments by, for instance, obscuring the details of algorithm implementa-
tion. Even when source code for the original experiment is available, it might be difficult to extend
to new experimental settings; having to recode apparatus reduces the flexibility of experimental de-
sign. If one experiment hints at an unexpected result it is more difficult to flesh out this behaviour
with a new experiment if it involves recoding the platform. Finally, rewriting the same code again
and again wastes time that could be spent running more comprehensive experiments.

3.1 The Platform Architecture

In this section, we describe an open and reusable platform that we call MALT 2.0 (Multiagent
Learning Testbed) for running two-player, general-sum, repeated-game MAL experiments. Basic
visualization and analysis features are also included in this platform. This is the second version of
the platform (the original version is described in Lipson [28]) and this new version is a complete
recoding of the platform5.

What we intend with MALT is not a finished product, but a growing repository of tools, algo-
rithms and experimental settings (such asN -player repeated games or stochastic games). Essen-
tially we want this version of MALT to be a base upon which other researchers can add and share
tools.

3.1.1 Definitions

In order to clarify our discussion of running a experiment ona particular game with a particular
set of algorithms, it is useful to define some terms. An ordered pair of two algorithms is apairing.
This pair is ordered because many two-player games are asymmetric: the payoff-structure for the
row player is different than the payoff structure for the column player. The case where an algorithm
is paired with a copy of itself (but with different internal states and independent random seeds) is
self play.

5In this version, we recoded each one of the algorithms carefully from the original pseudo-code, completely re-
designed the repeated game simulator, and created an entirely new visualization interface. In short, none of the original
source code remains.
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We largely concentrate on drawing games from distributionscalledgame generators. A par-
ticular sample from a game generator is agame instance. Prisoner’s Dilemmais a game generator
and an example game instance is a particular set of payoffs that obey thePrisoner’s Dilemmapref-
erence ordering. However,Prisoner’s Dilemmais a simple example and not all game instances
from the same generator are as closely tied.

A pairing and a game instance, taken together, are called amatch. A match with one of the
algorithms in the pairing left unspecified is apartially specified match(PSM). If two algorithms
play the same PSM, we will conclude that any differences between their performances are due to
the algorithms themselves (including any internal randomization) because everything else was held
constant between the two matches.

A particular simulation of a match is called arun or trial . For deterministic algorithms, a sin-
gle run is sufficient to understand the performance of that match, but for randomized algorithms
(including any algorithm that plays a mixed strategy) multiple runs may each display different be-
haviour. In such cases, the solution quality distribution (SQD)6—the empirical distribution of a
performance metric—for the match should be compared. Each run consists of a number ofitera-
tions. During an iteration, the algorithms submit their actions to a stage game and receive some
feedback—such as observing their reward or what action the opponent played. Algorithms are
allowed to submit a mixed strategy in which case a single action is sampled from the mixing distri-
bution by the game. The iterations are separated intosettling-in iterationsandrecorded iterations.

3.1.2 Platform Structure

In this section we give an overview of the structure of the platform. The five steps in running an
experiment with the platform are summarized in Figure 3.1. There are three major components
to this platform: the configuration GUI, the actual experiment engine (the piece that simulates the
repeated games) and the visualization GUI.

The first step to running an experiment is to specify its parameters. There are three parts to this
and the configuration GUI guides the process. The first step isto pick a group of algorithms and set
their parameters. The second step is to select the GAMUT gamedistributions used and choose the
parameters for these games. The third step is to establish general experimental parameters, such as
the number of iterations for each simulation.

We have tried to make it as easy as possible to add new algorithms to MALT. Adding a new
algorithm to the GUI is as simple as providing a text file with alist of parameters. Adding the
algorithm to the actual engine requires minimal additionalcoding beyond the implementation of
the algorithm.

The performance of many algorithms are likely very dependent on these parameters, however
it is out of the scope of this thesis to conduct a sensitivity analysis or to tune these parameters.
Along with each algorithm, we have provided some default parameters for these implementations

6We call these distribution ”solution quality distributions” despite the fact that in MAL there is no clear idea of a
‘solution’ to a game. These distributions could be more meaningfully called ‘metric distributions’, however, ‘SQD’ is
the terminology traditionally used in empirical algorithmics and so we adopt this language.
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Agents

Games

Settings

Compute
NE

Maxmin

Generate Jobs

Simulate Data Compute Metric Visualize

Analyze

Set Up

1. Set Up Experiment 2. Generate Jobs

3. Run Jobs 4. Calculate Metrics 5. Interpret Results

Figure 3.1: The five steps in running an analyzing an experiment using MALT.
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that were taken from the original papers or were set to valuesthat seemed reasonable from the
description of the algorithm when this was not possible. These parameter settings can be easily
changed using the GUI.

Once the experimental setup has been finalized, text files aregenerated for the agent configu-
rations and the game instances. These files are easy to edit and they are also easy to generate using
scripts that bypass the GUI. MALT uses GAMBIT’s [32] implementation of Lemke-Howson [27]
to find the set of Nash equilibria for each game instance and aninternal linear program finds the
maxmin strategies (however, MALT requires CPLEX to solve this and other linear programs). A
job file is generated for each match. Each job file references the agent, game, equilibrium, and
maxmin-strategy files. These files are referenced and this makes altering the job files simple even
after the job files have been generated.

This set of job files may be run a number of ways. The most basic is to run them in a batch
job, however for large experiments this may be prohibitively expensive. Because each job is in-
dependent, a cluster may be used. Each job creates an individual data file upon completion that
records the history of play, so they may be run in any order. For each recorded iteration and for each
agent in the pair, the strategy, sampled action, reward received, and beliefs about the opponents are
recorded.

After the data files have been generated the performance metrics are calculated. A plain-text
file describes the metrics to be calculated:e.g. if we are looking at some kind of convergence,
we might want to specify that theℓ∞ sense of distance should be used. Calculating the metrics
can proceed in serial or it can be run on a cluster. MALT includes basic tools for analyzing and
visualizing these results, and there is a visualization GUIthat guides the use of these tools.

3.1.3 Algorithm Implementations

To carry out this study, we selected and implemented eleven MAL algorithms. A brief description
of each is useful for intuition.

Fictitious play

In our implementation offictitious play, the initial action frequencies are set to one for
each action, which is a uniform and easily overwhelmed prior. Tie-breaking (selecting among
members of the best-response set) favours the previous action to encourage stability. For instance,
if fictitious play playsai in iterationt and at iterationt+1 the best response set includeai,
the algorithm will choseai. If the best response set att + 1 does not includeai, then the algorithm
uniformly mixes between best responses.
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Design Decision Setting
BR Tie-Breaking Previous action if still BR

Uniform otherwise
Initial Beliefs Unit virtual action count

Table 3.1: Design decisions forfictitious play

Determined

Our implementation ofdetermined repeatedly plays the Nash equilibrium that obtains the high-
est personal reward, but if there are multiple equilibria with the same protagonist reward, then the
equilibrium with the highest opponent reward is selected. If there are any equilibria that are still
tied we use the one found first by GAMBIT’s implementation of Lemke-Howson.

Design Decision Setting
NE Tie-Breaking Highest opponent utility

Table 3.2: Design decisions fordetermined

AWESOME

AWESOME is implemented according to the pseduo-code in Conitzer andSandholm [13]. We use
the parameter settings suggested in Conitzer and Sandholm [13] as its default. For picking the
‘special’ equilibrium we use the first equilibrium found by GAMBIT’s implementation of Lemke-
Howson. It would be interesting to compare our implementation ofAWESOME to one that used the
more computationally expensive approach of picking, say, asocially optimal equilibrium.

There is a a small performance difference between our implementation ofAWESOME and the
original implementation from Conitzer and Sandholm [13]7. A small test—involving ten different
game instances from a variety of generators and 100 runs against the random agent—showed that
on three instances there was a significant difference between their solution quality distributions. A
two-sample Kolmogorov-Smirnov independence test (see§ 4.3.1) withα = 0.05 was used to check
for significance. For these three game instances, our implementation probabilistically dominated
(see§ 4.4) the original implementation in terms of reward (every reward quantile was higher for our
implementation). We were not able to track down the source ofthis behaviour difference; however
we spend a considerable amount of time verifying our implementation against the pseudocode in
the paper, and we are convinced that it is correct.

7The original implementation was in C and MALT 2.0 is written in Java, so the original implementation could not be
used directly.
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Design Decision Setting
Special Equilibrium(π∗

p ) First found

Epoch period (N(t))

⌈

|A|Σ
(

1− 1

2t−2

)

(ǫt
e)

2

⌉

Equilibrium threshold (ǫe(t)) 1
t+2

Stationarity threshold (ǫs(t)) 1
t+1

Table 3.3: Design decisions formeta

meta

Meta is implemented according to the pseduo-code in Powers and Shoham [38]. The Powers and
Shoham [38] implementation ofmeta used a distance measure based on the Hoeffding Inequality,
even though the pseudo-code called for using anℓ2 norm. We follow the pseudo-code and use the
ℓ2 norm. We do not adjust the default threshold level (ǫ3) for distance and left it at the original
value.

Design Decision Setting
Security threshold (ǫ0) 0.01
Bully threshold (ǫ1) 0.01
“Generous” BR parameter (ǫ2) 0.005
Stationarity threshold (ǫ3) 0.025
Coordination/exploration period (τ0) 90 000
Initial period (τ1) 10 000
Secondary period (τ2) 80 000
Security check period (τ3) 1 000
Switching probability (p) 0.00005
Window (H) 1 000
‖·‖ ℓ2

Table 3.4: Design decisions formeta

Gradient Algorithms

Our implementation ofGIGA-WoLF follows the original pseudo-code and uses the learning rate
and step size schedules from the original experiments as defaults. These step sizes, however, were
set for drawing smooth trajectories and not necessarily forperformance. Additionally, the original
experiments forGIGA-WoLF involved more iterations than we simulated: we used105 iterations
in our experiments as opposed to106 in Bowling [7]. It is possible that a more aggressive set of
parameters (e.g. largerηt) might improve some facets of performance. We, however, stuck with the
original parameter settings for our implementation and defer parameter tuning questions to future
work.
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ForGIGA-WoLF’s retraction map operation (the function that maps an arbitrary vector inℜn

to the closest probability vector in terms ofℓ2 distance) we used an algorithm based on the method
described in Govindan and Wilson [18].GIGA-WoLF has two variants: in one it assumes that it
can counterfactually determine the reward for playing an arbitrary action in the previous iteration,
and in the other it only knows the reward for the the action that it played and has to approximate
the rewards for the other actions. The formula for this approximation is given by

∀ȧ ∈ Ai r̂
(t+1)
ȧ = (1 − α)r(t)

Iȧ=a(t) + α(r̂
(t)
ȧ ). (3.1)

In this equation,r(t) is the reward that the algorithm experienced while playing action a(t) in
iterationt. The vector̂r(t) is an|Ai|-dimensional vector that reflects the algorithm’s beliefs about
rewards. We implemented the latter approach, as all ofGIGA-WoLF’s experimental results are
produced by this version.

Design Decision Setting
Learning rate (α(t)) 1√

t

10
+100

Step size (η(t)) 1√
104t+108

Table 3.5: Design decisions forGIGA-WoLF.

We also tested an algorithm,GSA (Global Stochastic Approximation Spall [48]; to our knowl-
edge this was first suggested for use in a MAL setting by Lipson[28]), which is a stochastic
optimization method that resemblesGIGA, but takes a noisy, rather than deterministic, step. The
GSA strategy is updated according to Equation 3.2. In

x(t+1) = P (x(t) + η(t)r(t) + λ(t)ζ(t)), (3.2)

xt is the previous mixed strategy,rt is the reward vector,ζt is a vector where each component is
sampled from the standard normal distribution (with variance controled by the parameterλ(t)), and
P (·) is the same retraction function used forGIGA-WoLF.

Design Decision Setting
Learning rate (α(t)) 1√

t

10
+100

Step size (η(t)) 1√
104t+108

Noise Weight (λ(t)) 1√
105t+108

Table 3.6: Design decisions forGSA.

RVσ(t) is a implementation of the algorithm given in Banerjee and Peng [5]. Some initial
experiments showed that the settings of the algorithm used in the paper performed poorly, and we
consequently used some hand picked parameter settings thatwere more aggressive and seemed to
perform better.
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Design Decision Setting
σ-schedule (σ(t)) 1

1+ 1
25

√
t

Step size (η(t)) 1√
1000t+105

Table 3.7: Design decisionsRVσ(t).

Q-Learning

Our implementation ofQ-learning is very basic. Since in a repeated game there is only one
‘state’, Q-learning essentially keeps track ofQ-values for each of its actions. We use anǫ-
greedy exploration policy (perform a random action with probability ǫ) with a decayingǫ. 400
exploration steps are expected for thisǫ-schedule, andǫ drops below a probability of0.05 at ap-
proximately iteration2800. It is negligible at the end of the settling-in period (less than3E−9).
The learning rate (α) decays to0.01 at the end of the settling in period. The discount factor of
γ = 0.9 was set rather arbitrarily. There is no need to trade off current reward with future reward:
all actions take the algorithm back to the same state.

Design Decision Setting
Learning rate (α(t))

(

1 − 1
2000

)t

Exploration rate (ǫ(t)) 1
5

(

1 − 1
500

)t

Future discount factor (γ) 0.9

Table 3.8: Design decisions forQ-learning.

Minimax-Q and Minimax-Q-IDR

For minimax-Q, we solved a linear program to find the mixed maxmin strategy based on the
Q-values. This program was

Maximize U1

subject to
∑

j∈A1
u1(a

j
1, a

k
2) · σ

j
1 ≥ U1 ∀k ∈ A2

∑

σj
1 = 1

σj
1 ≥ 0 ∀j ∈ A1

(see, for example, Shoham and Leyton-Brown [45]). The learning rate, exploration rate, and
future discount factor are identical toQ-learning. We also look at a variant ofminimax-Q
calledminimax-Q-IDR that iteratively removes dominated actions. In each step ofthe iterative
IDR algorithm a mixed-strategy domination linear program (see, for example, Shoham and Leyton-
Brown [45]). Both programs are solved with CPLEX 10.1.1.
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Random

The final algorithm,random, is an simple baseline that uniformly mixes over the available actions.
Specifically, it submits a mixed strategyσ where∀a ∈ A, σ(a) = 1

|A| .

26



Chapter 4

Empirical Methods and Setup

The primary purpose of MALT is to facilitate the creation of experiments. The next two chapters
demonstrate what MALT can do. In this chapter, we describe the setup of a large experiment—
indeed this experiment is the largest MAL experiment on manydimensions—that is aimed at com-
paring the performance of different MAL algorithms using a variety of different metrics. We also
focus on building some tools that allow us to make our second contribution: comprehensively com-
paring existing MAL algorithms using a variety of differentmetrics. This analysis also shows the
relationship between reward and some of the alternative metrics that other authors have used. The
following chapter (§ 5) is devoted to explaining these results.

4.1 Experimental Setup

We used MALT to set parameters for the eleven algorithms described previously. The goal of this
experiment was to find the algorithms that are best against particular opponents on different types
of games. In order to do this, we ran each of the eleven algorithms on a number of matches, and
compared their results.

To test a variety of game instances we used13 game generators from the GAMUT game col-
lection (see Table 4.1). From these generators we generateda total of 600 different game in-
stances. The generators selected were diverse and created instances that belonged to many families
of games. We do not describe the details of each generator (these descriptions are available in
GAMUT’s online documentation), but we do discuss their relevant features when they are im-
portant for understanding the results. The game instances rewards were normalized to the[0, 1]
interval, in order to make the results more interpretable and comparable.

We examined five different action set sizes:2 × 2, 4 × 4, 6 × 6, 8 × 8 and10 × 10. For each
size, we generated 100 game instances, drawing uniformly from the first twelve generators. An
additional 100 instances were drawn from the last distribution, D13, which is a distribution of all
strategically distinct2 × 2 games [41]. The distribution induced by mixing over all 13 GAMUT
generators is called thegrand distribution.

With eleven algorithms and600 game instance there were11 × 11 × 600 = 72 600 matches.
Each match was run once for100 000 iterations, although the first90 000 iterations that were spent
adapting were not recorded for analysis. Each match could have been run multiple times instead
of just once, and indeed doing so would have been essential tounderstanding how any particular
match behaves if at least one of the algorithms is randomized. However, conducting more runs
per matches would mean that for the same amount of CPU time we would have had to either
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D1 A Game With Normal Covariant Random Payoffs
D2 Bertrand Oligopoly
D3 Cournot Duopoly
D4 Dispersion Game
D5 Grab the Dollar
D6 Guess Two Thirds of the Average
D7 Majority Voting
D8 Minimum Effort Game
D9 Random Symmetric Action Graph Game
D10 Travelers Dilemma
D11 Two Player Arms Race Game
D12 War of Attrition
D13 Two By Two Games

Table 4.1: The number and name of each game generator.

experiment with fewer games or fewer algorithms. We chose not to do this and traded a better
understanding of how particular matches behaved in return for more data from more varied game
instances and algorithms. Furthermore, we show in AppendixA that not stratifying (holding one
experimental variable fixed while varying another; as opposed to varying both) on game instances
reduces variance for many estimates of summary statistics like mean and median. Since we only
ran each algorithm once on each PSM (a partially specified match), we use the terms ‘run’ and
‘PSM’ interchangeably when we discuss the results.

This experiment generated a lot of data. In order to interpret the results precisely we used
several different empirical methods. Each is motivated by aparticular problem that we encountered
in the analysis.

4.2 Bootstrapping

If we conduct an experiment where two algorithms are run on a number of PSMs then a natural
way to compare their performance is to compare the sample means of some measure of their perfor-
mance (average reward, for example). However, if we have theconclusion that ‘the sample mean
of algorithmA is higher than the sample mean of algorithmB’, how robust is this claim? If we ran
this experiment again are we confident that it would support the same conclusion?

A good way to check the results of an experiment is to run it multiple times. If the conclusion is
the same each time than we can be fairly confident that the conclusion is true. Let’s say we run an
experiment100 times, and we found that95% of the experiments had a sample mean for algorithm
A of between[a, a], that95% of the experiments had a sample mean for algorithmB of between
[b, b]. If a > b (the lower bound ofA’s interval is great than the upper bound ofB’s) then we
can be confident thatA is better in terms of mean. These intervals are the95% percentile intervals
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of the mean estimate distribution, and the fact that they do not overlap will be taken as sufficient
evidence for there to be a significant relationship between the means.

While this repeated experimentation is sufficient to allay concerns of insignificant results, it is
also expensive. To verify the summary statistics from one experiment, we had to run many more
(99 in the above example). This is not always possible (our experiments took7 days on a large
computer cluster, so to rerun them a hundred more times wouldhave taken the better part of two
years) and is certainly never desirable. Is there a way to usethe data from one experiment and still
construct confidence intervals of summary statistics? The answer is yes, and one way to do this is
through the powerful technique of bootstrapping.

Given an experiment withm data points, we can ‘virtually’ rerun the the experiment by sub-
sampling from the empirical distribution defined by thosem points. For example, if we have a
sample with100 data points, we could subsample50 data points (with replacement) from these
100 and look at the statistic for this subsample. We can cheaply repeat this procedure as many
times as we like, creating a distribution for each estimatedstatistic. From these bootstrapped es-
timator distributions we can form bootstrapped percentileintervals and check for overlap. This
is exactly what we would do if we were rerunning experiments,although bootstrapping does not
involve running a single new experiment and is just a manipulation of the data that was already
collected.

There are two parameters that control the bootstrapped distribution: we form the distribution
by subsamplingl points from the originalm, and we repeat this processk times. For this thesis
we will chosel to be⌊m/2⌉ andk to be around2 500. These particular parameters were chosen
to ensure that there would be diversity among the subsamples(this explains the moderate size ofl)
and that the empirical distributions would be relatively smooth (this explains the largek).

4.3 Statistical Tests

4.3.1 Kolmogorov-Smirnov Test

While bootstrapping is useful for seeing if summary statistics are significantly different or not, will
also want to check if two distributions are themselves significantly different. A beta distribution
and a Gaussian distribution might coincidentally have the same mean, but they are are not the same
distribution. So how can we distinguish between distributions that are different?

The most common way of doing this for general functions is a statistical test called the Kol-
mogorovSmirnov (KS) independence test. This test is nonparametric, which means that it does not
assume that the underlying data is drawn from some known probability distribution. The KS test
checks the vertical distance between two CDFs (see Figure 4.3.1) and if the maximum vertical dis-
tance is large enough then the distributions are significantly different. ‘Large enough’ is controlled
by the significance level,α, and we will use the standardα = 0.05 unless otherwise noted.
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Figure 4.1: An illustration of the KS statistic in terms of two CDFs. The KS statistic is the vertical
dotted black line between the CDF curves.

30



Chapter 4. Empirical Methods and Setup

4.3.2 Spearman’s Rank Correlation Test

Spearman’s rank correlation test is a way to establish whether or not there is a significant monotonic
relationship between two paired variables. For example, wemight want to show that there is some
significant monotonic relationship between the size of a game’s action set size and the reward that
a learning agent receives on it.

This test is, like the KS test, non-parametric: it does not assume any parametric form of the
underlying data. The relationship between the two variables can be positive (high values of one
variable are correlated with high values of the other variable) or negative (high values of one vari-
able are correlated with low values of the other).

4.4 Probabilistic Domination

Say that we have two algorithms and that one has both a higher mean and more ‘bad’ runs than the
other (say, runs below0.1). Looking solely at the sample means would lead us to conclude that
this algorithm is better. Should we be happy with the accountof performance given by the sample
mean?

We might worry, for example, that the distribution of game instances that we have in the exper-
iment is not representative of a practical problem that we want deploy a MAL algorithm on: the
‘bad’ runs might be more common in practice. Or perhaps we do not know the reward function
but instead we observe a monotonic transformation of the reward. For example, in traffic we may
observe trip time but not the exact reward function—it probably is not the case that a60 minute
route is exactly12 times worse than a trip that takes5 minutes, but we do know that it is worse.

However, sometimes performance results are clear enough that these sorts of objections do not
matter and we can claim that one algorithm is better than the other without exploring these issues.
These are situations where performance conclusions can be drawn without making subjective and
problem-specific judgments, and they are particularly compelling. These situations can be captured
usingprobabilistic domination—a robust partial ordering for distributions.

A solution quality distributionA (SQD; the distribution of a performance metric) dominates
another SQDB if ∀q ∈ [0, 1], theq-quantile ofA is higher than theq-quantile ofB. If there are two
algorithms,A andB, that are trying to maximize reward, andA’s SQD probabilistically dominates
B then regardless of the reward valuer that one picks, there are more runs ofA than ofB that
attain a reward higher thanr. Notice that this means that probabilistic domination is unaffected if
all rewards are shifted by some monotonic function: there will still be more runs ofA thanB that
attain a higher reward thanf(r). Probabilistic domination is stronger than a claim about the mean
of the distributions: domination implies higher means.

Checking for probabilistic domination between two samples, with a maximum size ofn, can
be done inO(n log n) time (sorting the two samples is the dominating step), but itcan also be
checked visually by looking at the CDF plots. If one of the CDFcurves is below the other curve
everywhere, than the former dominates the latter. Intuitively, this is because the better SQD has
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less probability mass on low solution qualities, and more mass on higher solution qualities: better
distributions are right-shifted (in Figure 4.3.1, SQDA dominates SQDB).
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Chapter 5

Empirical Evaluation of MAL
Algorithms

The experiment described in Chapter 4 was big: recording all72 600 matches for10 000 iterations
generated143GB of data. Furthermore, the experiment took approximately 126 CPU days to
run. This is an incredible amount of information to sort through and extract meaning from, and
to make sense of the experiment at all we had to summarize muchof this information. First, we
used performance metrics that map the10 000 recorded iterations of each match into a single
number (such as average reward or average regret). Secondly, we tended to use summary statistics
to examine and analyze the distribution of these performance metrics. In this section, we only
comment on properties of distributions as a whole when the properties are especially strong:e.g.
probabilistic domination. It is an understatement to say that some information is lost in this process,
but this is inevitable.

Work in MAL has focused on many different metrics and our experiment evaluated different
algorithms using several of these measures of performance.We used average reward and a selection
of other metrics that addressed other aspects of empirical performance. We took these metrics from
two broad families of metrics that either measure performance based on aggregated reward or check
for various types of strategic convergence. For each of these metrics we, as much as possible, try
to relate our results to the agent’s algorithmic structure.

Additionally, many authors have proven results about thesealternative metrics instead of di-
rectly proving results about reward. However, the Artificial Intelligence [46] agenda for MAL
learning states that the fundamental goal of all agents should be to achieve high reward. Because
of the mismatch between this goal and existing results, not only do we evaluate the algorithms
with each metric, but we also investigate the general connections between reward and the alterna-
tive performance metrics. For example, if an algorithm frequently attains low regret, does it also
frequently attain high reward?

5.1 Reward-Based Metrics

5.1.1 Average Reward

As argued earlier, reward is the most fundamental of all metrics as agents are explicitly trying to
maximize reward given what the other agents are doing. Because of this, we will engage in a
detailed discussion of the reward results. Merely looking at the average reward attained in all the
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run over the10 000 iterations is an extremely coarse summary of a distributionof games, and so
our analysis does not stop there. In particular, there are interesting trends when we consider varying
the different opposing algorithms and game instance distributions. However, a broad summary of
the results undifferentiated by run features is a sensible place to start and gives a gross ranking of
the algorithms.

The average reward that we look at is with respect to the sampled actions, and not the submitted
mixed strategy. This is formally stated in Equation 5.1, where the iterations1 to T refer to the
10 000 recorded iterations:

r̄
(T )
i =

∑T
t=1 r

(t)
i

T
. (5.1)

Observation 1 Q-Learning andRVσ(t) attained the highest rewards on the grand distribution.

Q-learning had the highest mean reward at0.714, althoughRVσ(t) was close with an av-
erage of0.710 (see Figure 5.1). We noticed considerable variation withinthe reward data, and all
of the other algorithms’ sample means still were within one standard deviation ofQ-learning,
includingrandom (which obtained a sample mean of0.480).

The distribution of reward was definitely not symmetric and tended to have negative skewness
(randomwas the only exception).Q-learning’s distribution had the highest skewness,−0.720,
indicating that the proportion of runs that attained high reward was larger than the proportion of
runs that attained low reward.

These ranking were not all significant. The slight difference in means betweenQ-learning
andRVσ(t) does not in fact indicate thatQ-learningwas a better algorithm (in terms of means)
on the grand distribution of games and opponents. These two algorithms attained significantly
higher reward than any other algorithm, however. This was determined by looking at the95%
percentile intervals on bootstrapped mean estimator distributions (see§ 4.2) and seeing which
intervals overlapped (see Figure 5.2). The distributions were obtained by subsampling2 500 times,
where each subsample had6 600 runs (half of the13 200 runs that each algorithm participated in).

Observation 2 Algorithm performance depended substantially on which opponent was played.

We blocked the runs based on the opponent for a more detailed analysis of the reward results.
Not only is this useful from an algorithm design perspective(why is my algorithm particularly
weak against algorithmA?), but it is also useful for lifting results from our experiment to other
experimental settings. For instance, if one was looking foran algorithm that only operated on
games where the payoffs were unknown (excluding, for example,RVσ(t)), blocking could be used
to restrict attention to algorithms that satisfied this constraint.

Figure 5.3 shows the mean reward for each algorithm against every possible opponent. The
most salient feature of this figure is that minimax-Q,
minimax-Q-IDR andrandom were all relatively weak against a broad range of opponents.

34



Chapter 5. Empirical Evaluation of MAL Algorithms

q rvs gsa det giga awe fict meta mini min rand
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Algorithm

R
ew

ar
d

Mean Reward

Figure 5.1: A plot that shows the mean reward (bar) for each algorithm and one standard deviation
in either direction (indicated by the size of the lens).
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Figure 5.2: The distribution of mean reward estimates forQ-learning andRVσ(t), constructed
by bootstrapping. The95% confidence intervals are indicated by the dark circles and dashed-lines.
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Figure 5.3: A heatmap showing the mean reward for each protagonist algorithm (ordinate) playing
against each opposing algorithm (abscissa).
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Opponent Best-Response Set
AWESOME GIGA-WoLF,GSA andRVσ(t)

Determined AWESOME, GIGA-WoLF,GSA,
Q-learning andRVσ(t)

Fictitious play GSA, Q-learning andRVσ(t)

GIGA-WoLF determined,Q-learning andRVσ(t)

GSA determined,Q-learning andRVσ(t)

Meta determined,GIGA-WoLF,GSA andRVσ(t)

Minimax-Q Q-learning
Minimax-Q-IDR Q-learning
Q-Learning determined,Q-learning andRVσ(t)

Random determined,Q-learning andRVσ(t)

RVσ(t) determined

Table 5.1: The different algorithms and their best-response sets

Another interesting feature is thatfictitious play anddetermined tend to get lower re-
ward against themselves (self-play) and each other than against other opponents.Meta—an algo-
rithm that manages a profile of algorithms includingfictitious play anddetermined—
also inherited these performances issues, whileAWESOME—the other portfolio algorithm—largely
avoided them.

If we know what algorithm the opponent is using, which algorithm should we use? We con-
structed best-response sets for each possible opponent using bootstrapped percentile intervals. We
call the algorithm with the highest mean against a particular opponent a best response, but any
algorithm with a overlapping bootstrapped95% percentile interval was also in this set—we cannot
significantly claim that these algorithms do worse than the apparent best algorithm. These best
reponse sets are summarized in Table 5.1.1.Q-learning andRVσ(t) are most frequently best
responses, whilefictitious play, meta, minimax-Q, minimax-Q andrandom never
are best responses.

An interesting interpretation of these best-response results is to consider the one-shot ‘algo-
rithm’ game where a player’s action space is the set of algorithms and the player picks one of these
as a proxy for playing the repeated game. The payoff for usingalgorithmA against algorithmB is
the mean reward that algorithmA attained againstB.

Observation 3 Determined andQ-learning both participate in pure strategy Nash equilib-
ria of the algorithm game.

With this interpretation, what can we say about this algorithm game? There were three al-
gorithms that were strictly dominated in this grand distribution algorithm game:minimax-Q,
minimax-Q-IDR andrandom. Strict domination means that regardless of what algorithmthe
other player is using, we could use an algorithm that is strictly better than the one that we are using.
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Figure 5.4: Interpreting the mean reward results as a one-shot game. The cells that are cross-
hatched are dominated and the ‘⋆’s indicate pure-strategy Nash equilibria. Thedetermined and
Q-learning equilibrium shows up twice since the protagonist can eitherselectQ-learning
ordetermined, and we indicate this symmetry by making one of the corresponding stars hollow.
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Algorithm Strictly Dominated Weakly Dominated
AWESOME 10.8% 11.7%
Determined 0.0% 0.0%
Fictitious play 35.9% 36.4%
GIGA-WoLF 54.1% 55.1%
GSA 0.4% 0.4%
Meta 28.8% 28.2%
Minimax-Q 100.0% 100.0%
Minimax-Q-IDR 100.0% 100.0%
Q-Learning 0.0% 0.0%
Random 100.0% 100.0%
RVσ(t) 0.0% 0.0%

Table 5.2: The proportion of grand distribution subsampledalgorithm games where each algorithm
was strictly or weakly dominated.

The domination must be significant: we want to be confident that if this experiment were repeated,
we would get a similar result. We used bootstrapping to checkthis: we subsampled6 600 PSMs
10 000 times and from these formed10 000 ‘subsampled’ games. We checked for strict domination
in each game, and considered an algorithm dominated if it wasdominated in at least95% of the
subsampled games. The proportion of subsampled games whereeach algorithm was dominated on
is shown in Table 5.2.

There were only two pure-strategy Nash equilibria that everoccurred in the subsampled games
for the grand distribution:Q-learning in self-play, andQ-learning againstdetermin-
ed. Q-Learning in self-play is particularly convincing because it was symmetric and did not
require that the players coordinate to playing different strategies, and it occurred in90.2% of the
sub-sample games. The other equilbrium occurred in the remaining 9.8% of games.

We also looked at the algorithm games formed by restricting attention to individual genera-
tors. For these per-generator algorithm gamesDetermined in self-play was the most common
symmetric pure strategy Nash equilibrium. It was a significant Nash equilibrium in seven of the
generator games,i.e. determined in self play was a pure strategy Nash equilibrium in more than
95% of the subsampled games for these each of these seven generator games.Q-Learning was
the second most common symmetric pure strategy Nash equilibrium, and existed in four generator
games.

The generators varied substantially in their pure strategyNash equilibria. For instance D1 (A
Game with Normal Covariant Payoffs) had no significant pure strategy Nash equilibrium. D4,
Dispersion Game, is the other extreme and had22 pure strategy Nash equilibria (see Figure 5.5).
Part of the reason for the vast number of equilibria inD4 is that majority of runs for many of
the algorithms yielded reward of1 (e.g. 84.6% of AWESOME’s runs yielded a reward of1). This
meant that in many of the subsampled games, the majority of payoffs were exactly1 and so many
of these Nash equilibria are weak. For example, bothRVσ(t) andQ-learning attained a re-

40



Chapter 5. Empirical Evaluation of MAL Algorithms

ward of1 againstfictitious play, andfictitious play itself attained a reward of1
againstRVσ(t) andfictitious play. Therefore bothRVσ(t) andfictitious play, and
Q-learning andfictitious playare Nash equilibria.

Using the concept of probabilistic domination (§ 4.4), we can make more robust statements
about performance than we could by using mean reward.

Observation 4 Q-Learningwas the only algorithm that was never probabilistically dominated
by any other algorithm when playing any opponent.

Determined andRVσ(t) were the next-least dominated:determined was only proba-
bilistically dominated byAWESOME against afictitious play opponent, which was in turn
dominated byQ-learning. RVσ(t) was dominated byQ-learning when playing against the
minimax-Q variants, and also bydetermined when playing againstRVσ(t). Indeed, being
dominated by another algorithm in self-play seemed to be common: onlyAWESOME,determin-
ed andQ-learning avoided being dominated by another algorithm when playing themselves.
The fact thatdetermined was not dominated should be seen as a property of the games distri-
butions that we chose.

It should be noted that while there are some strong domination relationships, these are the
exceptions and ambiguity the rule: for most algorithm pairson most opponents no probabilistic
domination relationship exists (see Figure 5.6). Furthermore, there is no opponent for which one
algorithm probabilistically dominates all others.

Observation 5 Most algorithms were worse in self-play than in general.

We noticed above in the probabilistic domination section (see§ 4.4) that self-play is a difficult
situation for many algorithms. We also noticed that there isa slight tendency towards ‘cool’ cells
on the main diagonal of Figure 5.3. A closer analysis shows that for most algorithms there is
indeed a significant relationship between self-play instances and low reward. The distribution of
reward in the self-play runs forAWESOME, determined,fictitious play andmeta were
probabilistically dominated by the distribution of rewardin the non-self-play runs.

There were no domination results of this kind for the gradient algorithms because they had
a tendency to get fewer low-reward runs in self-play, but their self-play means were significantly
lower than their non-self-play means. We verified this by looking at the95% bootstrapped per-
centile intervals. There was no significant relationship for minimax-Q andminimax-Q-IDR,
and this self-play trend was reversed forQ-learning: its self-play runs probabilistically domi-
nated its non-self-play runs. Furthermore,Q-learning has the highest mean reward in self-play
(see Figure 5.7).

Interestingly,AWESOME was one of the algorithms with poorer self-play runs, despite its ma-
chinery for converging to a special equilibrium in self-play. One might wonder whether this is be-
causeAWESOME does not converge due to an overly conservative threshold for detecting whether
its opponent is playing part of an equilibrium, or an indication thatAWESOME was converging to
the special equilibrium but it was just not associated with high reward (our implementation used
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Figure 5.5: Interpreting the mean reward results for D4 (Dispersion Game) as a one-shot game.
The cells that are cross-hatched are dominated, and the ‘⋆’s indicate pure-strategy Nash equilibria.
Some equilibria show up twice since some of the equilibria are asymmetric, and we indicate this
symmetry by making one of the corresponding stars hollow.
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Figure 5.7: A plot that shows the mean reward (bar) for each algorithm in self-play and one standard
deviation in either direction (indicated by the size of the lens).
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the first Nash equilibrium found by GAMBIT’s implementationof Lemke-Howson). At the risk
of keeping the reader in suspense, we defer the answer to§ 5.3.2 where we look at convergence
results.

Blocking on the opponent yields many trends and quirks but the ‘problem’ faced by an algo-
rithm is not completely described by the opponent. The instance generator also matters: one could
easily imagine a case where a particular algorithm is excellent on one type of game and poor on an-
other, and this information is lost if the data is solely examined in terms of the opponent (or, indeed,
if the results are not blocked by any feature of the match). Analyzing each generator separately is
particularly useful from an algorithm design perspective.Weak distributions can be identified, and
hopefully any poor behaviour can be isolated and rectified. Per-generator results are also useful
from an deployment perspective; there is little point in deploying a MAL algorithm on a particular
distribution of games instances if the algorithm is weak on it, even if the algorithm seems to be
good ‘in general’.

Observation 6 Q-Learning is the best or one of the best algorithms to use for most generators.

Generators are an important part of the reward story. As can be seen in Figure 5.8, the results
for any algorithm vary considerably between the different game generators. However, it helps to
take these per-generator reward results and normalize them, dividing the results for each algorithm
on a particular generator by the maximum reward attained by any algorithm. Some familiar trends
emerge:minimax-Q,minimax-Q-IDR andrandom are all worse than the other algorithms in
a broad range of generators, andQ-learning andRVσ(t) tend to be good.

Q-Learningwas the best algorithm or was one of the best algorithms for10 generators (see
Table 5.3). It was the only algorithm that was a unique best response of any generator in terms
of mean reward, and was the only best response for generatorsD1, D4, and D9). Furthermore
Q-learningalso belonged to the set of best algorithms in generators D2,D3, D7, D10, D11, D12
and D13—this is the set formed by algorithms whose bootstrapped mean estimator95% percentile
intervals overlaped with the algorithm with the best samplemean. WhileQ-learning most
frequently was a member of a generator’s best algorithm set,fictitious play anddeter-
mined were also frequently in these sets (6 and7 generators respectively).

The gradient algorithms were especially strong on D7 and this was the only generator where
all three gradient algorithms were in the best algorithm set(Figure 5.10). D5, D6, and D8 were
interesting distributions forAWESOME andmeta. In D5, neitherAWESOME nor meta managed
to be one of the best algorithms despite the fact that bothfictitious play anddeter-
mined—two of the algorithms that they manage—were. In D6,AWESOME joins fictitious
play anddetermined but meta does not, and in D8 the reverse happens:meta, fictit-
ious play anddetermined were the three best algorithms. These three generators illustrate
situations where at least one of the portfolio algorithms failed to capitalize on one of their managed
algorithms. It would be interesting to run further experiments to determine why this is the case for
these distributions and if this issues could be remedied.
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Figure 5.8: A heatmap showing the reward for the protagonistalgorithm playing PSMs from a
particular generator, averaged over both iterations and PSMs.
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Figure 5.9: A heatmap showing the mean reward for the protagonist algorithm, playing against
the opposing algorithm. These cells have been normalized. Each column has been divided by the
maximum average reward attained by any algorithm on that particular generator.
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Figure 5.10: The bootstrapped mean estimate distribution for D7. Four algorithms are shown; they
are the algorithms that have a95% confidence interval that overlaps withQ-learning, the algo-
rithm with the highest mean. The95% confidence intervals forQ-learning andGIGA-WoLF
(the algorithms with the highest and lowest mean) are indicated with a dashed black line and circles.
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Generator Best Algorithm
D1 Q-learning
D2 Q-learning andRVσ(t)

D3 AWESOME, determined,fictitious play, GSA,
meta, Q-learning andRVσ(t)

D4 Q-learning
D5 determined andfictitious play
D6 AWESOME, determined andfictitious play
D7 GSA, Q-learning andRVσ(t)

D8 determined,fictitious play andmeta
D9 Q-learning
D10 fictitious play andQ-learning
D11 determined,fictitious play,

meta andQ-learning
D12 determined andQ-learning
D13 AWESOME, determined,GSA, Q-learning andRVσ(t)

Table 5.3: The set of best algorithms for each generator.

Effect of Game Size on Reward

How does the size of a game’s action set effect performance? Larger action spaces entail the
possibility of more complicated game dynamics that take longer to learn about and adapt to, so it
is natural to assume that average reward will decrease as thesize of the game increases. Are there
clear trends in this respect?

Observation 7 There is no general relationship between game size and reward: on some gen-
erators there is a strong positive correlation and on other generators there is a strong negative
correlation.

Our experiment shows that these intuitions do not always hold. For many algorithms on many
generators we could not reject the null hypothesis of Spearman rank correlation test—that there
was no significant correlation between size and performance—at a significance level ofα = 0.05.
For instance, in D7 onlyGSA andGIGA-WoLF had significant trends (both exhibited negative
correlation; reward was lower in larger games).

As can be seen in Figure 5.11, D2 and D12 were the only two distributions on which we could
reject the null hypothesis for all algorithms, and they supported opposite conclusions. On instances
from D2, correlation was completely and strongly negative:the larger the game, the worse everyone
did. The least correlated algorithm wasrandom with a Spearman’s coefficient of correlation
ρ = −0.329. Correlation was entirely positive for D11, although some of the coefficients were
smaller. Fictitious play was the least sensitive to size (ρ = 0.07), but it was anomalous.
The algorithm with the next smallest coefficient wasGIGA-WoLF, atρ = 0.267.
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Figure 5.11: A heatmap summarizing the correlations between size and reward for different agents
on different generators. A white cell indicates positive correlation, a black cell indicates negative
correlation, and a gray cell with an ‘x’ indicated an insignificant result.
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Distributions tended to either support entirely negative significant correlations, or entirely pos-
itive significant correlations. The only exceptions to thiswere D1 and D6, which supported both
kinds of correlation. D2, D7, D8, D9 and D11 were negatively correlated distributions; the re-
mainder were positive. These results were less clear than might be expected, and we are not sure
why. It could be the case that when the action spaces increasein size, important game features tied
with high reward become more common, or it could be that larger actions spaces make it easier for
MAL algorithms to miscoordinate, which is desirable for some games. Indeed, D4—Dispersion
Games—are show positive correlation between the number of actions and reward, and this is a
game where agents need to miscoordinate to do well.

Observation 8 Similar algorithms tended to have similar performance.

Several of the algorithms that we implemented have common approaches to learning. Are
these similarities reflected in the reward results? There are three major blocks of algorithms with
programmatic similarities:AWESOME andmeta are similar because they both manage portfolios
with versions offictitious play anddetermined; GIGA-WoLF, GSA andRVσ(t) are
similar as they are all variations on following the reward gradient; andminimax-Q andmini-
max-Q-IDR are similar as the latter is the same as the former except for the addition of an IDR
preprocessing step. We call these the portfolio, gradient,and minimax blocks. We also might
suspect thatQ-learning, an algorithm that does not explicitly model the opponent, might bear
some performance similarities to the gradient algorithms.

The algorithms were tested for similarity on PSMs that had the same generator and opponent,
and the results are aggregated by summation. There are a possible 13×10 = 130 cases where sim-
ilarity could occur—algorithms are of course similar to themselves and we did not bother checking
these cases. Failing to reject the null hypothesis of the KS test (the hypothesis that both samples
were drawn from the same population) is some evidence for thesamples being similar. This rough-
and-ready approach does not establish significant similarity and is merely suggestive of similarity;
failing to reject a null hypothesis is not the same as having shown that the null hypothesis is true.
However, with this caveat in mind, there are some interesting trends.

All three predicted blocks emerge, as can be seen in Figure 5.12. Meta, AWESOME, fict-
itious play anddetermined were all similar to each other on a number of opponent and
generator pairs. Bothmeta andAWESOME are similar in more cases todetermined than to
fictitious play. For instance,AWESOME is similar todetermined in 101 out of130 cases
while being similar tofictitious play in only 81 cases.Meta andAWESOME also look quite
similar to each other, being similar in88 cases.Q-learning is similar to the algorithms in this
block, especially withdetermined andAWESOME, which we had not expected.AWESOME is
more similar toQ-learning than to any other algorithm: they were similar in103 cases—even
determined andAWESOME were only similar in101 cases.

Q-Learning also bears similarities to the gradient-algorithm block. The block of algorithms
consisting ofRVσ(t), GIGA-WoLF andGSA were all similar in a number of instances and there is
a particularly tight relationship betweenGIGA-WoLF andGSA (they were similar in111 cases).
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Figure 5.12: A heatmap that summarizes the number of opponent/generator pairs two algorithms
are similar on in terms of reward distribution. This relationship is symmetric, so only the lower
half of the plot is presented. The hotter the cell, the more situations the two algorithms are similar
in.
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The gradient-block algorithms also tended to be similar todetermined andAWESOME on some
cases.

The connection betweenminimax-Q andminimax-Q-IDRwas particularly strong. These
two algorithms were similar in118 cases. They were also the most similar algorithms torandom.
Indeed, these two algorithm were almost twice as likely to besimilar torandom than the next
most similar algorithm (AWESOME: it was similar in11 cases tominimax-Q’s 21 cases).

5.1.2 Maxmin Distance

Looking at the difference between the reward that an agent acquires and the maxmin value of the
underlying game instance is a way of placing reward results in context:

MaxminDistance(~ri) =

∑T
t=1 r

(t)
i

T
− max

ai∈Ai

min
a−i∈A−i

u(ai, a−i). (5.2)

We call this differencemaxmin distancedespite the fact that it can be negative. One can always play
a maxmin strategy without fear of exploitation, so getting above the maxmin value is a minimal
requirement of sensible MAL behaviour. Having a enforceable payoff (having a non-negative
maxmin distance) is also a necessary condition achieving payoffs consistent with some repeated
game equilibrium, and we will examine this more in§ 5.3.

Observation 9 Q-Learning attains an enforceable payoff more frequently than any other algo-
rithm.

Q-Learning is the algorithm that most frequently attained an enforceable payoff; it attained
a negative maxmin distance in only1.8% of its runs. The runs whereQ-learning failed to
attain an enforceable payoff mostly came from either D4 (Dispersion Game; accounted for37.6%
of the unenforcable runs) or D13 (Two by Two Game; accounted for33.3% of the runs). They also
occured prodominently againstrandom (29% of the unenforceable runs),minimax-Q (17.3%)
andminimax-Q-IDR (16.0%). There is a sharp jump in the number of non-enforceable runs
betweenQ-learning and the next best algorithm,AWESOME, which attained a negative maxmin
distance in7.4% of its runs.

Minimax-Q andminimax-Q-IDR were the algorithms least likely to attain enforceable
payoffs (with the exception ofrandom). They failed to attain enforceability in28.9% and27.7%
of their runs respectively. While they look for the maxmin value of the game they do this with
respect to the payoffs they they have learned. This result suggests that they might have difficulty
attaining their maxmin value due to having inaccurate beliefs.

Minimax-Q andminimax-Q-IDR were especially poor in self-play, where conservative
play can retard payoff learning. There is also a greater proportion of enforceable runs on2 × 2
games (75.2%) than on10×10 games (68.5%)—larger games have more payoffs to learn. Working
on a more sophisticated exploration scheme looks like an especially promising place to improve
our implementation ofminimax-Q and its variant.
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While Q-learning is successful against a broad range of opponents, there are other algo-
rithms that have problems against certain algorithms. In particular,meta is quite good against all
algorithms except forfictitious play, determined,AWESOME and itself. It is especially
bad againstfictitious play, where only68.0% of its runs are enforceable. This should
be contrasted with its excellent performance againstQ-learning: enforceability is attained in
97.7% of it runs.Fictitious play also has issues playing againstmeta, determined and
itself. We notice thatAWESOME anddetermined did not share this problem.

RVσ(t) had problems attaining enforceable runs too, and although it received payoffs well above
the maxmin value frequently (it had the second highest proportion of runs with strictly positive dis-
tances at68.8%) it had a large number of instances that were close to but below zero. This is in
contrast to the minimax distance distribution ofGIGA-WoLF, which had fewer non-enforceable
runs with greater negative minimax distance (see Figure 5.1.2). We speculate that these runs were
caused byRVσ(t) maintaining a small amount of probability mass on all of its actions, causing it to
‘tremble’. RVσ(t), like all gradient algorithms, maintains a mixed strategy which is updated in the
direction of the reward gradient. This updated vector needsto be mapped back to the probability
simplex (the action weight might not sum to one after an update). RVσ(t) does this by normalizing
the updated vector, whileGSA andGIGA-WoLF use a retraction operator that is biased toward the
extreme points on the probability simplex, and has a bias toward dropping actions from the mixed
strategy’s support. An interesting tweak ofRVσ(t) would be to useGIGA-WoLF’s retraction oper-
ator instead of normalization, and see if this improves how frequentlyRVσ(t) attains enforceability.

5.2 Regret

Regret is the difference between the reward that an agent could have received by playing the best
static pure strategy and the reward that it did receive by using the algorithm:

Regret(~σi,~a−i) = max
a∈Ai

T
∑

t=1

[

r(a, a
(t)
−i) − E

[

r(σ
(t)
i , a

(t)
−i)

]]

. (5.3)

The best pure strategy is chosen after the run assuming that the opponent’s actions choices are
frozen. Note that we are using the expected reward formulation of regret—as opposed to one that
uses the actual actions that the algorithm played—following Bowling [7].

Regret has been suggested as a measure of how exploitable an algorithm is. If an agent accrues
significant regret one possible explanation is that it has been ‘tricked’ into playing the wrong action
by the opponent. However, there are situations, like in Game2.7, where ignoring regret might lead
better long-term reward.

Some algorithms, includingGIGA-WoLF andRVσ(t), areno-regret learners: they have theo-
retic results which guarantee that they will accrue zero regret as the number of iterations approaches
infinity. However, to our knowledge it has not been shown experimentally how the regret achieved
by these algorithms compares to the regret that other algorithms achieve; nor has it been demon-
strated whether these algorithms achieve better than zero regret in practice.

56



Chapter 5. Empirical Evaluation of MAL Algorithms

Proportion of Enforceable Runs

Opponent

P
ro

ta
go

ni
st

 

 

fict det meta awe q rvs gsa giga mini min rand

fict

det

meta

awe

q

rvs

gsa

giga

mini

min

rand
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.15: The proportion of enforceable runs, blocked byopponent.

57



Chapter 5. Empirical Evaluation of MAL Algorithms

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maxmin Distance

F
(x

)

Distribution of Maxmin Distances

 

 

GIGA−WoLF
RVσ(t)

Figure 5.16: The distribution of negative maxmin distancesfor GIGA-WoLF andRVσ(t).

58



Chapter 5. Empirical Evaluation of MAL Algorithms

Rather than looking at the total sum of regret over all10 000 recorded iterations, we will
discuss the average regret over these iterations. Since player payoffs are restricted to the[0, 1]
interval, averaged regret can give a better sense of the magnitude of regret with respect to possible
reward.

Observation 10 Q-Learningwas the best algorithm in terms of minimizing regret.GIGA-WoLF
was the algorithm that most frequently had negative regret runs.

Based on the distribution of games and opponents used in thisexperiment all algorithms had
positive mean regret (Figure 5.17). All the means were significantly different, which was shown
by checking the95% percentile intervals for overlap (there was none). Of these, Q-learning
had the lowest regret, at0.008. The gradient algorithms—GIGA-WoLF, GSA andRVσ(t)—had the
next lowest regret afterQ-learning. Among the gradient algorithms,RVσ(t) had lower mean
regret thanGIGA-WoLF, but GSA had lower mean regret than either of them. These empirical
results agree withGIGA-WoLF andRVσ(t)’s theoretical no-regret guarantees—not only were they
predicted to get zero regret in the limit, but also they had good empirical regret results—although
the best algorithm in terms of mean regret,Q-learning, has no guarantees about regret.

Mean regret masks an interesting difference betweenQ-learning and the gradient algo-
rithms: they have low mean regret for different reasons. Most (89.5%) of Q-learning’s runs
attain zero regret. It has the fewest positive runs at10.4% (the next lowest isAWESOME at18.2%),
and has the second-fewest negative runs (onlyfictitious play has fewer at0.1%). The gra-
dient algorithms, on the other hand, tended to have many negative runs; the three algorithms with
the most negative regret runs wereGIGA-WoLF (5.8%), RVσ(t) (3.2%) andGSA (3.0%). The gra-
dient algorithms also have few zero runs. The algorithms, inorder, with the fewest zero runs are
RVσ(t), GSA, random andGIGA-WoLF.

The negative regret runs were only slightly negative: the run with the lowest regret had an
average regret of−2 × 10−6. The same cannot be said for positive regret: in440 different runs
an average regret of1 was attained. These runs indicate disastrously poor play since one of the
algorithms has taken the exact wrong action at every possible step.48.6% of these runs involve
bothfictitious play or one of the algorithms that wrap aroundfictitious play( awe-
some ormeta) in self-play, and are on D4 (Dispersion Games), which are games that encourage
miscoordination. Indeed,Dispersion Gamesgeneralize the intuition of Game 2.6 to more than two
actions. This behaviour suggests thatfictitious play becomes stuck in pathological cycling
between the symmetric outcomes (outcomes where both agentsplay the same action), which gets
no reward in game instances fromD4. This is a well known problem withfictitious play
and a judicious application of noise to thefictitious play algorithm might break the above
lockstep cycle and improve performance.

In terms of mean regret,Q-learningwas the best algorithm to use for any generator except
for D13 (all strategically distinct2×2 games)—RVσ(t) was the best algorithm there.Q-learning
was also the best algorithm to use against almost every opponent. There were only two exceptions:
one wants to useRVσ(t) againstQ-learning andAWESOME against itself. Another interesting
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pairing was whenQ-learning played againstfictitious play: Q-learning attained
zero regret in every single game. This seems to indicate thatQ-learning converged to a pure-
strategy best response in every game againstfictitious play. Q-Learning was the only
algorithm to do this.

Observation 11 Q-learning, GIGA-WoLF, GSA andRVσ(t) are rarely probabilistically dom-
inated in terms of regret.

When blocking on the opponent, some strong probabilistic dominance trends emerge between
the different distributions of regret. For example, the gradient algorithms were never dominated
by any other algorithm.Q-learning is also seldom dominated. It was only dominated once by
AWESOME when playing against anAWESOME opponent. However, it is unsurprising thatAWE-
SOME attains lower regret thanQ-learning in this case since it has special machinery for con-
verging to a stage-game Nash equilibrium in self-play. In a Nash equilibrium both agents are best-
responding so both accrue zero regret.Fictitious play, on the other hand, was frequently
dominated, especially byAWESOME, determined, Q-learning and to a lesser degreemeta.
Both determined andQ-learning dominatedfictitious play against10 opponents
(Q-learning was the exception fordetermined andvice versa), andAWESOME dominated
fictitious play on9 opponents (GIGA-WoLFandmetawere the only opponents for which
AWESOME did not dominatefictitious play).

Similar observations result from blocking on the game generators.Q-
learningdominated other algorithms frequently—particularlyfictitious play (on9 gen-
erators),meta (8 generators), andAWESOME (on 8 generators)—while avoiding domination by
another algorithm.Fictitious play was dominated frequently byQ-learning (9 genera-
tors),determined (6), AWESOME (6) andmeta (4) on many different instance generators.

5.3 Convergence-Based Metrics

In this section we shift away from looking at metrics that arebased on reward and instead look at
metrics that are based on empirical frequency of action. We focus on various ideas of convergence,
from a weak form that merely insists that the empirical distribution of actions is stationary to
much stronger forms that insist on convergence to a restricted class of stage-game Nash equilibria.
We will also consider whether average payoofs are consistent with the infinitely repeated game
equilibrium.

When we look at convergence, we will consider a sequence of action to be either converged or
not: we will not have an extended discussion about how some sequences are “closer” than others
to convergence.

One issue in studying convergence based on empirical data isdealing with runs that appear “not
quite” to have converged because of random fluctuations in the empirical action frequency. The
Fisher exact test (FET) and Pearson’sχ2-test can be used for checking whether two multinomial
samples are drawn from a distribution. For example, we mightcheck whether a later empirical
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action distribution was drawn from the same distribution asan earlier sample (establishing that
the empirical mixed strategies were stationary) or that an empirical action distribution profile was
drawn from the same distribution as a stage-game Nash equilibrium.

Each test was unfortunately inappropriate for the situations that we needed. Theχ2 test does not
handle situations where some of the actions are rare or not present and the FET was computationally
expensive, and the implementation of it that we used [40] failed on some of the larger and more
balanced action vectors (typically in the10 × 10 case).

Instead, we used the incomplete set of FET results to calibrate a threshold based on vector
distance where any two vectors that were closer than the threshold θ were considered to be the
same. We calibratedθ using a receiver operating characteristic curve. The incomplete FET results
were used as ground truth, and we plotted the change in true positive rate and false positive rate
as we variedθ. We picked the threshold that lead to equal number of false positives and false
negatives. Based on this ROC analysis, we picked aθ of 0.02.

5.3.1 Strategic Stationarity

The weakest form of convergence that we will look at is whether or not the algorithms converge to
a stationary strategy profile. This is interesting in its ownright, but is also a necessary condition
for stronger forms of convergence. We consider a run to be stable if the joint distribution of actions
is the same in the first and second half of the recorded iterations, usingℓ∞-distance. This is a joint
property of both algorithms, so whiledetermined andrandom play stationary strategies they
may still participate in runs that are not stable.

To check how successful our threshold criterion is at detecting stationarity we looked at the re-
sults for two algorithms that always use stationary strategies.Determinedwas found to be stable
in 99.5% of self-play matches andrandom was found to be stable in92.0% of self-play matches.
When playing each other, they were found to be stable in94.8% of their runs. The differences
that exist between these cases are likely becausedetermined has weakly smaller supports than
random and mixed strategies with smaller supports are more likely to produce empirical action
distributions that are close to the original strategy. We note that a false positive rate of between
0.5% and8% larger than might be hoped, but nevertheless defer improvedcriterion for empirical
convergence to future work.

GIGA-WoLF andGSAwere the least likely to be stable—particularly in self-play, against each
other, or againstmeta (see Figure 5.23). Their striking instability withmeta is potentially because
they tripmeta’s internal stability test and change its behaviour. However, AWESOME also has an
internal check like this, but the stability of theGIGA-WoLF andGSA are not noticeably different
between matches withAWESOME and withQ-learning (which has no such check).RVσ(t),
the other gradient algorithm, was more stable thanGIGA-WoLF andGSA. This might be because
RVσ(t) had a more aggressive step length: the parameters used in this experiment forGIGA-WoLF
andGSA were taken from [7] and they were intended to produce smooth trajectories and rather
than fast convergence.

Meta, determined, fictitious play andAWESOME were, for the most part, quite
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good at achieving stationarity with each other and in general. meta andfictitious play
were particularly strong against each other, and always reached a stationary strategy profile. The
only exception to the stability in this group wasAWESOME vs. meta; this pairing was unstable in
10.3% of runs. We are not sure why this is, but it likely has to do withthe discrete behavioural
changes that both algorithms undergo when their internal states change.

There were a number of problem generators for the different algorithms (see Figure 5.24). For
example: generators D1, D2, and D10 created instances that were particularly difficult for the
gradient algorithm in terms of strategic stability;Q-Learning was weak on both D5 and D7;
andmeta tended to be unstable on D5, D7 and D10. However these unstable instances were rare
regardless of the algorithm paring. The vast majority of runs found a stationary strategy profile.
EvenGIGA-WoLF, which was the algorithm least likely to stabilize, found stationarity in87.0%
of its runs (see Figure 5.25).
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Figure 5.25: The proportion of runs that were stationary, converged to a Nash equilibrium or con-
verged to a Pareto-optimal Nash equilibrium.
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5.3.2 Stage-Game Nash Equilibria

A subset of the stable runs settled on one of the stage-game Nash equilibrium. For some algorithms,
Nash equilibrium convergence was reasonably common:AWESOME converged in54.3% of its
runs, anddetermined converged in53.1% of its runs.Determinedwas better atAWESOME at
converging to a Pareto-optimal Nash equilbrium (a Nash equilbrium that is not Pareto-dominated by
any other Nash equilibrium). Indeed,AWESOME most frequently converged to a Pareto-dominated
equilibrium. This this likely has to do with the way that our implementation ofAWESOME picked its
‘special’ equilibrium.8 It was simply the first equilibrium found by the Lemke-Howsonalgorithm,
without attention to whether it wase.g. Pareto-dominated.AWESOME also tended to attain lower
reward when it is converged to a Pareto-dominated Nash equilbrium than when it did not converge
or converged to a dominated Nash equilibrium.

Figure 5.26 gives the convergence results for self-play. One of the first things that jumps out is
how often determined manages to converge to a Nash equilibrium in self-play. This indicates that
the games we choose had an important characteristic: many possessed a single Nash equilibrium
that was the best for both agents. Indeed, we can see that there is a surprisingly high number of
games with a unique stage-game Nash equilibrium (58.5%). This is not a general property of all
games and sodetermined’s convergence results could be radically different on another set of
games. This property likely also affects the convergence properties for the other algorithms.

We see thatAWESOME nearly always attains a stage-game Nash equilibrium. Yet, if we re-
call the discussion about self-play reward from Section 5.1.1,AWESOME received lower reward in
self-play than non-self-play runs. Together, this indicates that whileAWESOME was successful at
converging to a Nash equilibrium, this was not enough to guarantee high rewards in self-play. An
interesting tweak toAWESOMEwould be to use its special self-play machinery to converge to other
outcomes that are not stage-game Nash equilibria, such as the socially-optimal outcome of the
stage game or the Stackelberg-game equilibrium. The aim of this adjustment would be to improve
self-play reward results while keepingAWESOME resistant to exploitation by other algorithms.

5.3.3 Repeated-Game Nash Equilibria

So far, we have been looking at the equilibria for the stage game. The algorithms are actually
playing a repeated game, however, and we now turn to analyzing properties of this repeated game.
We look at enforceability—achieving payoff profiles in which both payoffs exceed their respective
maxmin values—since enforceability is a necessary condition for any repeated game Nash equi-
librium. Unfortunately, a sufficient condition for repeated game equilibria would involve testing
whether each algorithm has correct off-equilibrium behaviour—punishments, in particular—built
into its strategy that prevents profitable deviation by its opponent. While the algorithms that we
looked at lack off-equilibrium punishments, it is still interesting to see how frequently the algo-
rithms converge to payoff profiles that are realizable by repeated game Nash equilibria.

8The original paper, Conitzer and Sandholm [13], left the method of picking the ‘special’ equilibrium unspecified.
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Figure 5.26: The proportion of self-play runs that were stationary, converged to a Nash equilibrium
or converged to a Pareto-optimal Nash equilibrium.
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Observation 12 Q-Learning was involved in matches with payoff profiles consistent repeated
game Nash equilibrium more often than any other algorithm.

Of the algorithms that we examined,Q-learningmost frequently had runs that were consis-
tent with a repeated game Nash equilibrium. It was consistent with a repeated game equilibrium in
76.8% of its runs (see Figure 5.27).Determined andAWESOME were the next most frequently
consistent, and were consistent in75.0% and73.8% of their runs, respectively. Consistency with
a repeated game Nash equilibrium is common, but not universal. Even after90 000 adaptation
iterations, no algorithm was completely successful at achieving enforceable payoff profiles. We
note that if a protagonist algorithm is playing against a particularly unsuccessful opponent, such as
random, it might fail to achieve an enforceable payoff profile simply because its opponent does
not achieve an enforceable payoff. In particular, if the opponent fails to achieve an enforceable
payoff, it would be unfair to conflate runs where the protagonist was able to achieve an enforceable
payoff with runs where it also failed. We looked at the proportion of matches where each algorithm
attained an enforceable payoff in Section 5.1.2, and we included these results in Figure 5.27 for
comparison. Again, no algorithm achieved payoffs above themaxmin value in all of its runs.

5.4 Links Between Metrics

We argued earlier in this chapter that reward is the most fundamental metric and that the other
metrics, like regret, can be seen as ‘standing in’ for reward. Therefore, it is important to compare
reward results to the other metrics to see if these alternative metrics are reasonable substitutes for
reward. For example, is high reward linked with converging to a Nash equilibrium? We saw in
§ 5.3.2 that whileAWESOME was very good at converging to a Nash equilibrium in self-play, it
did not get especially high reward in these runs. Is this a general trend, or a special property of
AWESOME? What are the other links between the different aspects of performance?

5.4.1 Linking Reward With Maxmin Distance

Observation 13 Algorithms tend to receive larger rewards when runs are alsoenforceable.

For most of the algorithms there is a clear and strong relationship between enforceability and
reward. This is to be expected, because a run is only enforceable for an algorithm if the algorithm
attains high reward. Maxmin distance is positively correlated with reward for all algorithms. This
was tested with Spearman’s rank correlation test (§ 4.3.2) at a significance level ofα = 0.05. If
we block on game generator (Figure 5.28), the results are largely the same with a few differences.
There are a few insignificant results, mostly on D11. For example, minimax-Q is negatively
correlated on D11. Interestingly,minimax-Q-IDR still exhibits positive correlation.

For all algorithms the mean reward for enforceable runs is higher than the mean reward for
unenforceable runs. However, when we compare reward SQDs based enforceable runs and unen-
forceable runs, the former does not always probabilistically dominate the latter. (Figure 5.29). The
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exceptions here are the gradient algorithms andQ-learning. For both the gradient algorithms
andQ-learning there tend to be many enforceable zero-reward runs. The majority of these
zero-reward enforceable runs occur in D10—Traveller’s Dilemma. All instances from D10 have a
security value of zero so D10 is one of the few generators where algorithms can get an enforceable
zero reward run. All algorithms frequently have zero-reward runs on instances of D10 but they
tend to get unenforceable zero reward runs in other games more frequently than either the gradient
algorithms orQ-learning—the enforceable zero-reward runs stand out more for the gradient
algorithms orQ-learning since they have fewer unenforceable0 reward runs. If we exclude
runs from D10 thenGIGA-WoLF, GSA andRVσ(t) also exhibit domination, butQ-learning
still does not—though the cross-over is small (Figure 5.30). We also compared the reward SQDs
for runs with reward strictly higher than the maxmin value tothe reward SQDs for unenforceable
runs, and we found for all algorithm exceptQ-learning, the strictly enforceable maxmin reward
SQDs dominates the unenforceable SQDs.

A more detailed explanation for this relationship can be seein a bivariate histograms such as
Figure 5.31. This figure is a representative example of the relationship that exists between reward
and maxmin distance for all algorithms exceptrandom. Reward bounds maxmin distance: if one
gets a reward ofx, then maxmin distance must be betweenx − 1 (security value is1) andx (se-
curity value of0). These constraints create a feasible regions that is a parallelogram with points
{(1, 1), (1, 0), (0, 0), (0,−1)}, where reward is the first coordinate and maxmin distance thesec-
ond.

There are two prominent ridges in this histogram. The first isthe ridge formed by runs having
zero or close to zero maxmin distance, and the second is formed by runs with a reward of close to
1. The three bins with the most runs are all close to zero maxmindistance with rewards of0, 0.5,
and1. The first bin (reward of0) largely corresponds to runs from D10 (although a few runs came
from D7 and one run came from D13), the middle bin is mostly composed of runs from D6, and
the final bin(reward of1) consists of instances drawn from either D3, D7, or D11. Again, these
observations are forRVσ(t) but are echoed in histograms for the other algorithms.

These ridges tell us something rather surprising: runs tendto get either close to the maximum
reward or to the security value. There seems to be little elsein the way of a trend between the two
metrics beyond the fact that one bounds the other. This observation is not limited to game instances
from one generator, and many generators contribute to theseridges.

5.4.2 Linking Reward With Regret

Observation 14 There is a link between obtaining large reward and low regret.

There is also a link between having low regret and high reward. Regret and reward are neg-
atively correlated for all algorithms (Spearman’s rank correlation test;α = 0.05): high reward is
linked with low regret. When blocking on generators, we see that D10 induces positive correlation
for all algorithms exceptdetermined, and this is sensible: algorithms get better reward when
they are not best responding in this game (the unique Nash equilibrium is one of the worst outcomes
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of the game).
Since relatively few runs accrued significant negative regret (see§ 5.2), the most important

division is between runs that attained positive regret and runs that attained non-positive regret. For
most of the algorithms, their performance in non-positive runs probabilistically dominated their
performance in positive regret runs. There were some exceptions; for exampleQ-learning
andGIGA-WoLF experienced cross-overs. While forQ-learning the cross-over was relatively
minor, the cross-over forGIGA-WoLFwas more significant: runs that attained positive regret less
often attained zero reward (Figure 5.33).

There is an even more dramatic result: the positive-regret runs dominated the non-positive runs
for GSA andRVσ(t). These two gradient algorithms exhibited behaviour that none of the other
algorithms displayed: runs with positive regret had betterreward characteristics than runs with
zero or negative regret. This phenomenon did not seem to be due to only one generator nor any one
opponent. We can note that the probabilistic domination visually seemed to be the weakest when
PSM involvingTraveler’s Dilemmawere censored.

The bivariate histograms for the different algorithms showthat there is a ridge for all of them
where regret is zero (the histogram forAWESOME is presented in Figure 5.34). This ridge has a
prominent bin for runs with regret close to zero and reward close to one. This bin indicates good
runs where algorithms are best-responded and got the game’smaximum reward. This bin is the
largest in terms of runs for most of the algorithms. However,there are other interesting bins that
are only observed in some of the algorithms. In particular, all algorithms except for the gradient
algorithms andQ-learning had a number of runs with reward close to zero and regret closeto
one. These runs are horrible: not only did the algorithms getclose to the minimum reward possible,
but also they could have switched to a pure strategy and potentially received a reward close to one.
Of course, it is possible that a reward of1 was not attainable with the new action—the opponent
could have adapt to the candidate’s strategy—but it is hard to imagine that the new action would
have done much worse: these runs were already getting close to the minimum possible reward.
Furthermore, some algorithms were able to avoid these runs entirely. Q-Learning, for example,
had no runs of this type and generally avoided high-regret low-reward runs (Figure 5.35). These
runs should serve as a focal point for thinking about how existing algorithms should be improved.

5.4.3 Linking Reward With Nash Equilibrium Convergence

A lot of work in multiagent systems has focused on algorithmsthat try to converge to a stage-game
Nash equilibrium. Indeed, many algorithms likedetermined andAWESOME explicitly try to
converge to some stage-game Nash equilibrium. But if one is primarily interested in getting high
reward, is converging to an equilibrium desirable? Or, moregenerally, is proximity to a stage-game
Nash equilibrium correlated with obtaining high reward?

Observation 15 There is a link between obtaining large reward and being close to a stage-game
Nash equilibrium for most algorithms.
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Figure 5.32: The sign of correlation between reward and regret for each algorithm and each game
generator. A white cell indicates positive correlation, a black cell indicates negative correlation,
and a grey cell with an ‘x’ indicates insignificant correlation.
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Figure 5.34: A bivariate histogram showing reward and regret for AWESOME. Reward bounds
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Figure 5.35: A bivariate histogram showing reward and regret for Q-learning. Notice that there
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plot.
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All algorithms have reward that was negatively correlated with ℓ∞-distance to the closest Nash
equilibrium (Spearman’s rank correlation test;α = 0.05). Furthermore, most algorithms were
negatively correlated even when we blocked on the game generators (Figure 5.36). There were
some exceptions. The most noticeable exceptions were on D6,D10, and D12 there were a number
of algorithms with positive correlation: it was better to befar away from the equilibrium. This is
especially true on D10 and algorithms received much higher reward if they participated in some
other outcome.

Bivariate histograms (Figure 5.37) reveal three major trends for all algorithms: runs are either
high in reward, close to a Nash equilibrium, or far from a Nashequilibrium (this does not exclude
being high in rewardand being either close or far from the equilibrium). For most algorithms,
being close to a Nash equilibrium and being high in reward is the most common bin. Between
8.1% (GIGA-WoLF) and26.2% (determined) of runs have a reward greater than0.96 and are
less than0.04 away from a Nash equilibrium (this is the right-most bin in Figure 5.34). Most
algorithms have other strong modes at the other corners of the plots, but these are less promienent
that the close and high reward bin.
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Figure 5.37: A bivariate histogram showing reward andℓ∞-distance to the closest Nash equilibrium
for determined.
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Chapter 6

Discussion and Conclusion

In this thesis, we argued for a standardized testbed for multiagent experimentation. This testbed,
while initially more work to create, should offer lasting benefits: it will allow researchers to focus
on experimental design and not implementation details. We built a version of this testbed, MALT
2.0, and conducted a sample experiment: we used MALT to evaluate a set of MAL algorithms. We
analyzed this experiment in depth and we suggested some analytical methods that are intended not
only to be useful for understanding and comparing existing algorithm behaviour but also will be
useful for empirically-minded algorithm design.

We observed clear performance results. Firstly,minimax-Q andminimax-Q-IDR tended
to perform poorly from a number of perspectives. These included reward, regret, minimax dis-
tance, strategic stationarity, and convergence to a stage-game Nash equilibrium. On the other
handQ-learning had excellent results and was frequently better than more recent and sophis-
ticated learning algorithms—such asGIGA-WoLF andmeta—on most game instance generators
for most performance metrics. This was a surprising result,and it could be seen as embarrassing
for the MAL community: an off-the-self algorithm designed for single-agent learning handily beat
the latest multiagent learning algorithms in many respects. This suggests that there is a lot of room
for improving the empirical performance of specially-designed MAL algorithm. Indeed, there are
a number of areas where efforts should be focused.

Firstly, there simply needs to be more experimentation. Ourexperiment was large, but it is
impossible to answer all empirical MAL questions in one experiment. Some promising directions
for extension are:

• More careful examination of the relationship between performance and game properties like
size;

• More detailed investigation of behaviour of instances froma single generator. This might
give more insight into algorithm behaviour than an experiment with a broad focus like the
one presented in this dissertation;

• Further evaluation studies involving more algorithms likeHyper-Q [50] and Nash-Q [23];
• Extension toN -player repeated games and stochastic games.

Secondly, many of the more recent and sophisticated algorithms have a lot of tunable param-
eters. It was beyond the scope of this paper to adjust them. Indeed, parameters might be one of
the reason’s thatQ-learning did so well: it had only three parameters which were all easy to
set. This does not excuse poor performance from algorithms with many parameters. Indeed, the
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onus of finding a good set of parameters belongs to the architect of the algorithm. However, it
is possible that some algorithms may have hidden potential that can be release through rigorous
tuning. This tuning will require further experimentation—hopefully MALT will be of assistance
here—and there are some interesting questions to ask:

• Is one parameter setting good for many problems, or is it the case that one parameter setting
will be great on one set of matches and poor on another?

• Which of, for instance,meta’s parameters are the most important?
• How much better would a rigorously-tuned setting be forAWESOME be than the default

values presented in Conitzer and Sandholm [13]?
• DoesAWESOME’s performance change radically when it selects the socially optimal Nash

equilibrium as its special equilibrium? How about the ‘Stackelberg’ equilibrium?
• For gradient algorithms, is it better to ensure that mixed strategies are feasible through re-

traction or normalization?
• Is a set of parameters that are good for reward also good for regret?
• What is the best way to automate parameter tuning?

.
Thirdly, we presented two different tweaks to existing algorithms:

minimax-Q-IDR andGSA. In many situations, these algorithms offered improvements over the
original algorithm, and in many cases probabilistically dominated the originals. Other modifica-
tions and preprocessing steps can be added to existing algorithms, and an interesting direction of
would be to see which ones tend to work the best. For instance,does IDR-preprocessing always
improve performance? When does it hinder rather than help? Hopefully, experiments of this nature
will also build intuition for how to rectify problematic situations and for building new algorithms
from scratch.

Finally, managing a portfolio of existing algorithms also seems like a promising approach for
designing new algorithms with good empirical properties.AWESOME andmeta both can be seen as
portfolio algorithms: they look for features of their opponent’s behaviour and switch between dif-
ferent algorithms accordingly. A more general framework for building these portfolio algorithms—
especially ones where the portfolio is not explicitly written into the algorithm—could be a way to
reuse existing MAL methods. Such an algorithm would switch between the different algorithms
in a portfolio as the situation demands, depending on the empirical characteristics of the managed
algorithms. Again, this direction of research leads to a whole host of empirical questions. What
features of the game and game play are the best to look for? Does adding an algorithm to a portfolio
strictly improve performance?

We leave the reader with a host of unanswered questions. Thisis a sign of vibrancy of the field:
there is still a vast amount of research that needs to be done in this area. We will end this thesis with
a discussion of urban traffic that shows that this field of research is not merely an abstract study of
learning algorithms. MAL research has practical value, especially as societal interactions become
more numerous and more difficult to navigate. We hope that this thesis has piqued curiosity and left
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some tools that are useful in addressing these many issues associated with learning and behaving
in multiagent environments.
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Chapter 7

Future Work: Extension to Traffic

In this section, we will discuss how MAL algorithms can be used to understand urban traffic.
There are two major goals of such work. The first is to characterize what behaviour occurs in a
traffic system—called traffic modeling or prediction—and the second is to optimize various policy
tools—called traffic management. In this chapter we focus onthe first problem, while noting that
the second problem is the ultimate goal that we want to tackleonce we have a satisfactory model
of traffic to work with.

We are certainly not the first people to study traffic modeling. Civil engineers, for example,
have worked extensively on the problem. There are multiple textbooks including May [31] and
de Dios Ortzar and Willumsen [14] that are devoted solely to modeling issues. We take a slightly
different approach to the problem than is traditionally used in civil engineering. Specifically, we
are more interested the incentives behind routing decisions rather than specific physical details of
the system.

Let us clearly articulate one of the problems of traffic modeling: route selection. We assume
that we start with a set of trips between two points in a road system (these trips are generated
in the earlier phases of modeling). This system can be modeled as a graph like Figure 7 where
nodes represent intersections and directed edges represent lanes. This is allowed to be a multi-
graph where there are several distinct lanes between two intersections. What kind of behaviour
will intelligent drivers engage in? What system propertiescan we predict from their interaction?

a b

c d

Figure 7.1: A sample road graph with four intersections.
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Figure 7.2: A sample road graph with two intersections that has no Wardrop equilibrium for a
system with two atomic drivers.

7.1 Wardrop Equilibrium

One of the suggested route selection methods from the civil engineering community is to assign a
delay function to each edge and look for a Wardrop equilibrium [54]. The Wardrop equilibrium is
similar to the Nash equilibrium, but assumes that there is anuncountably infinite number of agents
navigating the networks. The users of the road system are modeled as infinitely divisible flows that
travel from a source node to a sink node. The delay for the flow along a particular path is equal to
the sum of delays on each edge.

The traffic flow is assumed to be selfish so at equilibrium all paths with any flow must have the
same delay and any paths without flow must be worse—this is theWardrop condition. If we assume
not, then there is some small fraction of flow on a more expensive path that would be better off on
a cheaper path and so the system was not in equilibrium. Traffic engineers use these conditions to
estimate traffic flow.

This model assumes that commuters are infinitely divisible.This is not the case in practice,
where each driver is a discrete and atomic object that cannotbe subdivided. This is a substantial
assumption and Wardrop’s conditions do not work when drivers are atomic. Consider the system
in Figure 7.1 with two players: there is no way to make the two paths equal in cost. Additionally,
atomic drivers could be in a Nash equilibrium but not a Wardrop equilibrium. In Figure 7.1 there
is a Nash equilibrium when one driver takes the top route and the second driver takes the bottom
but notice that the route costs are3

2 and1 respectively. This shows that the condition for a Wardrop
equilibrium does not work in the natural atomic agent case.

7.2 Congestion Games

Congestion games[43], roughly, are a discretization of the previous continuous commuter model
of traffic. Each atomic agenti ∈ N picks a path through a graph. The delay for a user is the sum
of the delay along each edge of the path. This is formally stated in:

d(L) =
∑

l∈L

dl(#l). (7.1)
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Here,#l is the number of agents using lanel anddl(·) is the delay function. Notice that the delay
for a lane only depends on the number of agents using it; thereis no inter-lane dependency.

Congestion games assume that the traffic conditions in one intersection do not affect the condi-
tions in neighbouring intersections; this is an unrealistic assumption. In real traffic networks, when
one lane becomes congested, cars entering from neighbouring lanes are impeded. This propagates
congestion to nearby lanes and causes delays to cascade throughout the road network. However, in
congestion games the congestion in each lane is independent, and so we cannot accurately represent
this phenomenon.

7.3 Our Game

The inability to model interlane dependencies is a serious issue associated with both atomic and
non-atomic congestion games. To model the propagation of congestion more accurately, we sug-
gest our own model of traffic where these inter-lane dependencies can be expressed. We represent
the traffic network as an extensive form game where agents make a series of turning decisions
based on whatever observations they can make about the state. This mapping of observations to
turns is called a policy. We explicitly model the position ofeach agent. Because of this, drivers
may be unable to enter a lane that is heavily congested and either need to bypass jammed lanes
or wait out the congestion. This is exactly the kind of delay propagation that we are interested in,
where a jam in one lane creates blockages in or strains on other near by lanes.

While this model has the necessary richness to express inter-lane delay effects, it is also much
more complicated than one-shot congestion games. In particular, our system dynamics make it
practically impossible to write a closed-form function that maps from a profile of strategies for the
extensive form game to a profile of delays. As a consequence weneed to simulate the road network
model to determine the outcome of a game.

Our simulator models both space and time as discrete. We wanta simulator that can efficiently
simulate large sections of a city and continuous models of time, space and motion are usually
complicated and expensive to simulate. However, the discretization needs to be done with care, or
important details will be lost, fundamentally altering theproblem. We will call a physical quantum
a ‘cell’ and a temporal quantum a ‘tick’. Cells are the fundamental unit of progress: in each tick
an unimpeded car should be able to move at least one cell. Also, a cell should be a sufficient
description of a car’s position: a car cannot be half-way through a cell.

We define a cell to be large enough to hold one and only one car. Cells that are larger than cars
abstract space more aggressively and cells that are smallermodel space and movement with greater
precision. While our model could easily be extended to use larger or smaller-grained discretization,
vehicle-sized cells offer a good trade-off between more efficient super-vehicular cells and more
precise sub-vehicular cells (this raises an interesting empirical question: how sensitive is the system
to more or less coarse discretization of space?).

Each car has a velocity (in cells-per-tick or ‘CPT’s) bounded by some upper limit and the
some acceleration function (in CPT2). For now, we take acceleration to be constant for simplicity
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but our model could trivially be extended to more realistic acceleration functions. We offer no
formal advice for how these numbers should be set, but there should be a qualitative difference
between CPTs for fast-moving cars and slow moving cars. Also, cars should not be able to move
too far in one tick. Moving larger distances in each tick means that a car could potentially interfere
with many other cars and the point of simulating is to make these conflicts simple to resolve and
relatively infrequent. Setting these kinematic numbers and a coarsening of space tacitly sets the
coarsening of time and we need not consider it as a special topic.

The velocity of a car is bounded by the speed limit of each road, some internal maximum
velocity, and by the velocity of the cars in front of it. All agents are assumed to perfectly decelerate
to avoid accidents. While accidents are an important part ofreal traffic jams we do not model
them in this thesis. In general we assume agents to be flawlessand lawful: they are perfect drivers
that always follow laws. Beyond our assumption of flawlessness and lawfulness, the agents have
complete freedom to choose routes and adapt to traffic conditions. At each intersection, agents are
able to make a turning decision based on some local features of the state. However, this policy
of mapping observations to turning actions is complicated and needs to be learned. We use MAL
algorithms to do this.

Indeed, the only difference between our traffic game and the earlier repeated game experiments
is simply the complexity of the stage game: rather than repeatedly playing a simple two-player one-
shot game likePrisoner’s Dilemmathe algorithms are repeatedly playing a large extensive-form
game withN players. Because the game is large and the payoffs are unknown—we are simulating
exactly because we do not have a closed-form expression for the utility functions—we cannot use
many of the algorithms looked at in earlier sections. The only algorithms that are able to function
in such an environment are the gradient algorithms andQ-learning. Of these, we will focus on
Q-learning because the gradient algorithms are only designed for one-shot games, and would
requires serious redesign to work well in extensive-form games. Additionally, in Section 5 we saw
thatQ-learningwas a good algorithm for learning in multigent systems and was better than the
other MAL algorithms for most metrics.

One of the problems for any learning algorithm is that even our simple traffic simulator has a
vast number of states. The state of the system is the positionand velocity information for every
vehicle (ignoring traffic lights for the moment). If there are C cells,N vehicles, and a maximum
velocity of v, then there are C!

(C−N)! × vN possible states.
This can be done efficiently through value approximation [6]. As an example, forQ-learn-

ing to learn efficiently with so many states it estimates the value of Q(s, a) for new states by
generalizing from similar states that it has seen before. Essentially,Q-learning needs to use
non-linear regression to get an approximateQ̂(s, a) based on past observations. Techniques like
forests of regression trees and Gaussian processes (see, for example, Rasmussen and Williams
[42]) might be useful for this regression, but they need to befast to update relative to the cost
of simulating each round:N learning algorithms need to update their model each round. There
are a lot of interesting questions to explore: what is a good set of features? Are some regression
techniques better than other for this problem? How should weexplore to perform well in this
non-stationary environment? Designing RL algorithms withgood empirical properties for traffic
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modeling is an exciting topic, and we hope to work more on thisproblem in the future.

7.3.1 Other Models

Let us summarize our model in four main points:

• Space is discrete and each cell is the same size as a car,
• Cars may have different velocities, and can accelerate,
• Agents are lawful and flawless drivers,
• Drivers are adaptive and are able to learn from past runs.

This model of traffic is not the only way to simulate simple urban road systems but it is a
flexible model that can be extended in a number of directions.However, there have been other
models of traffic suggested. In the following discussion we summarize a few of them and and
indicate how they differ from ours.

There are a number of commercial simulators for simulating traffic including VISSIM [1],
Paramics [39], and CORSIM [16]. Most commercial simulatorsare continuous time and space:
each vehicle is a physical object inℜ3 with real-valued velocity and acceleration. However, this
makes simulations expensive to run. Indeed, most commercial simulators are meant for simulating
short stretches of highways or single intersections to ensure that proposed alterations can accom-
modate predicted use. These simulators typically assume that the driver’s routes are drawn from
some static distribution. For example, a traffic engineer might want to simulate100 drivers per
minute heading down a highway from North to South while10 drivers per minute attempt to enter
the highway via a new on-ramp to ensure that merging is smooth.

Wiering [56], Porche and Lafortune [37] and de Oliveira et al. [15] all suggest discrete simu-
lators that are intended for simulating intersections for optimizating light times. These simulators
are much more closely aligned with our own goal of exploring policy tools than the commercial
simulators.

Wiering [56] uses vehicle-sized cells but does not model acceleration. Vehicles move one cell
forward every tick iff that cell is unoccupied. This understates the difference between an unimpeded
fast moving car and a slow car moving on a congested road. Agents either randomly pick one of
the shortestℓ1-distance paths or co-learn: they pick the shortestℓ1-distance path with the lowest
estimated waiting time. This estimated waiting time is not asubjective estimate learned by the
agent. It is an estimate maintained by the system that each car has access to.

This type of learning is unconvincing. There is no particular reason why any shortestℓ1-
distance paths will be the best path. For example, one might want to skirt around the downtown
core of a city, even if it is directly between the start and endlocations. Also, this model assumes
that all driving agents obediently follow the advice of somecentral congestion-tracking service.
This ignores the question of whether it is always in the best interest of the agent to follow this
service’s advice.

de Oliveira et al. [15] use a model very similar to our own: cells are vehicle-sized and cars
can accelerate. Agents are assumed to be lawful but not flawless: indeed the agents are overly
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enthusiastic about breaking and with probabilityp slow down by one CPT. Random shocks like
this might be an important part of why congestion forms, but we will ignore it for this phase of the
work. The drivers in this model are simple path following algorithms that are unintelligent and do
not adapt.

Porche and Lafortune [37] use super-vehicular cells where one cell is an entire block. Cars
move at the constant rate of one CPT and they incur a delay thatis not physically modeled: even
if a road is heavily congested all cars still move at one CPT. This bears some striking similarities
to a congestion game. Like congestion games, the Porche and Lafortune simulator fails to model
how delays can propagate through a network. As we argued earlier, this omits an important feature
of the traffic problem. In particular, roads in this model cannever ‘jam’ and affect neighbouring
road segments. The drivers in this model are unintelligent and unadaptive. The vehicles’ routes are
simply picked from some distribution and executed.

We also note that the empirical experiments are small: Porche and Lafortune [37] conduct an
experiment with a uniform4× 4 grid of intersections, de Oliveira et al. [15] conduct a smaller one
with a3× 3 grid and Wiering [56] also conducts an experiment on a3× 3 grid. These experiments
are too small to realistically represent genuine route choices, although this does not matter because
the drivers are largely unadaptive. Clearly, there is a lot of room for improvement in the empirical
simulation of road systems, especially with adaptive and indeed strategic agents.

7.3.2 Experimental Directions

We have not yet run any experiments on this model. However, wehave indicated particularly
promising areas for empirical work.

For the system:

• How frequently does the system converge to a stationary or relatively stationary state?
• Of these stationary states, are they in equilibrium?
• How sensitive is the system to random accidents or driver mistakes?

For the MAL algorithm:

• For reinforcement algorithms, what is a good regression technique and what is a good set of
state features?

• What is a good way to explore without introducing too much noise into the system?
• Can gradient learning algorithms be extended to extensive-form games like traffic?
• What are good performance metrics for driving agents?
• What are the best learning algorithm for different situations?

All these questions are important and interrelated, and we look forward to eventually answering
them.
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Appendix A

Stratified Sampling

In this thesis we need to evaluate with a limited computational budget a large number of algorithms
and a large number of game instances. However, we want to get the maximum information from
the simulations that we did perform. How should we go about running these experiments?

For all of our experiments, we are concerned with the expected performance of a match, de-
noted byf(µ, ζ). Here,f is some metric function,µ ∼ M is a match, andζ ∼ Z is a random
seed that completely determined any non-deterministic behaviour in both algorithms. The game
instance/seed pairing uniquely define a run.

When designing our experiment, we must choose whether or notto stratifying runs based on the
match. For instance, if we have enough computational time torun 100 simulations, we can either
sample100 matches and perform a single run on each, or we can sample only10 matches and run
10 runs for each. Stratification clearly leads to a more detailed understanding of the role that ran-
domization plays in each match and is critical information for algorithm design. However, for two
kinds of common summary statistics—means and quantiles—one should avoid any stratification.

Lemma A.0.1 If we are trying to obtain an estimate ofE
[

f(M,Z)

]

and we have a limited budget of
samples, it reduces variance to sample fromM andZ independently rather than to stratify based
onM .

Proof Consider two schemes of sampling fromM andZ, as seen in Table A.1. In the first scheme,
M andZ are sampled separately each time. In the second schemek samples are taken fromM
and for each sample ofM , Z is sampledsi times.

Independent {(M1, Z1), . . . , (Mn, Zn)}
Stratified {(M1, Z1,1), . . . , (M1, Z1,s1), . . . , (Mk, Zk,sk

)}

Table A.1: Two schemes for sampling.

In both cases, the sample mean is used as the point estimator for the population. SinceG and
Z are sampled independently, both schemes yield unbiased estimators.

However, the first scheme yields lower variance as can be seenin Equations A.1-A.3. Equa-
tion A.2 follows from the fact that completely independent random variables have no covariance
(Equation A.5) and so if two samples share the same strata (the same sampleµ ∼ M ) then they
have weakly higher covariance (Equation A.4).
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V ar

[

∑

i

f(Mi, Zi)

]

=
∑

i,j

Cov [f(Mi, Zi), f(Mj , Zj)] (A.1)

≤
∑

i,j,k,l

Cov [f(Mi, Zi,j), f(Mk, Zk,l)] (A.2)

= V ar





∑

i,j

f(Mi, Zi,j)



 (A.3)

Cov [f(Mk, Zk,l), f(Mk, Zk,m)] ≥ Cov [f(Mi, Zi), f(Mj , Zj)] (A.4)

Cov [f(Mi, Zi), f(Mj , Zj)] = Cov [f(Mk, Zk,l), f(Mm, Zm,n)] (A.5)

Additionally, stratifying increases the variance of quantile point estimation. This result can be
found in Heidelberger and Lewis [22], but it is provided without proof.
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