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Abstract

Automated human activity recognition has attracted increasing attention in
the past decade. However, the application of machine learning and proba-
bilistic methods for activity recognition problems has been studied only in
the past couple of years. For the first time, this thesis explores the appli-
cation of semi-supervised and active learning in activity recognition. We
present a new and efficient semi-supervised training method for parame-
ter estimation and feature selection in conditional random fields (CRFs),
a probabilistic graphical model. In real-world applications such as activity
recognition, unlabeled sensor traces are relatively easy to obtain whereas la-
beled examples are expensive and tedious to collect. Furthermore, the ability
to automatically select a small subset of discriminatory features from a large
pool can be advantageous in terms of computational speed as well as accu-
racy. We introduce the semi-supervised virtual evidence boosting (sVEB)
algorithm for training CRFs — a semi-supervised extension to the recently
developed virtual evidence boosting (VEB) method for feature selection and
parameter learning. sVEB takes advantage of the unlabeled data via mini-
mum entropy regularization. The objective function combines the unlabeled
conditional entropy with labeled conditional pseudo-likelihood. The sVEB
algorithm reduces the overall system cost as well as the human labeling cost
required during training, which are both important considerations in build-
ing real world inference systems. Moreover, we propose an active learning
algorithm for training CRFs is based on virtual evidence boosting and uses
entropy measures. Active virtual evidence boosting (aVEB) queries the user
for most informative examples, efficiently builds up labeled training exam-
ples and incorporates unlabeled data as in sVEB. aVEB not only reduces
computational complexity of training CRFs as in sVEB, but also outputs
more accurate classification results for the same fraction of labeled data. In
a set of experiments we illustrate that our algorithms, sVEB and aVEB,
benefit from both the use of unlabeled data and automatic feature selection,
and outperform other semi-supervised and active training approaches. The
proposed methods could also be extended and employed for other classifica-
tion problems in relational data.
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Chapter 1

Introduction

Human beings are trained to recognize other people's activities. Whether
at home or in the work place, everyday we are constantly inferring others'
behaviours and intentions. At the office you need to know if your coworker
is on a meeting, having lunch or talking on the phone. At home, you would
like to know if other family members are watching TV, cooking or taking a
nap. Without understanding and reasoning about other people's activities
we cannot effectively communicate and interact in a community.

As understanding others' activities is essential for our intelligent commu-
nications, automated activity recognition is needed for any effective human-
computer interaction. In order to give intelligent suggestions to the user we
need to understand her behaviours and intentions. A key to understanding
the user's intentions is the ability to infer her activities. With the rise of
ubiquitous computing, and having computers in every corner of our lives,
intelligent systems care about human activities beyond mouse clicks and key
board usage. An intelligent ubiquitous home needs to know if the user is
cooking, eating or sleeping. An automated trainer needs to know if the ath-
lete is running, walking, bicycling or sprinting. Activity recognition could
also play a role in health-care technologies; especially in supporting elder
care, managing cognitive disabilities, and monitoring long-term health. Ev-
ery year, a hefty budget is spent on nurses and health care facilities that are
employed to monitor small groups of the elderly and handicapped. Mental
patients also need a great deal of attention. Some of them are monitored
by family members or nurses. Some are asked to keep record of their daily
activities and report them to their therapists. These diaries are often inaccu-
rate and biased mostly because of their behaviourial problems. Automating
human monitoring systems could radically reduce these costs and in many
cases improve the performance. Activity recognition systems could also
have extensive applications in surveillance and military missions. For all
these reasons, an automated reasoning system for inferring and understand-
ing human behaviours has become one of the goals of Artificial Intelligence.
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Activity recognition might seem easy and innate to human beings. However,
it consists of complicated tasks of sensing, learning and inferring. There is
much room left for improving each of these tasks. In the next chapter we
talk about some of the works on designing sensors and processing their out-
puts for activity recognition. However, the focus of this thesis is on the
learning component; how we could efficiently and cost-effectively train an
activity model that could operate in real-world applications.

Considering the sequential nature of human activities, temporal models are
naturally adopted for effective activity recognition systems. Recent work by
Liao et al. [22] has shown very promising results for employing Conditional
Random Fields, for activity recognition. Conditional random fields (CRFs)
are undirected graphical models that have been successfully applied to the
classification of relational and temporal data [15]. However, training com-
plex CRF models with large numbers of input features is slow, and exact
inference is often intractable. The ability to select the most informative
features as needed can reduce the training time and the risk of over-fitting
of parameters. The work of Liao et al. addresses this issue by introducing a
training algorithm that simultaneously performs feature selection and learns
the model parameters.

The goal of our work is to build an activity recognition system that is not
only accurate but also scalable, efficient, and easy to train and deploy. Some
of the main challenges faced by current activity inference systems are the
amount of human effort spent in labeling and feature engineering as well
as the computational complexity and cost associated with training. Data
labeling also has privacy implications because it often requires human ob-
servers or recording videos. In this thesis, we introduce a fast, efficient and
scalable semi-supervised training algorithm for CRFs. By training CRFs in
semi-supervised and active-learning frame-works we reduce the number of
labeled training examples and take advantage of unlabeled training data.
This is particularly beneficial in applications for which labeling is expensive
and collecting unlabeled training data is easy such as activity recognition.
Although we are driven by activity recognition applications, the methodolo-
gies developed in this thesis could be applied to other applications such as
text/video processing or bio-informatics.
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1.1 Related Work

To the best of our knowledge there is no work done on semi-supervised and
active learning for activity recognition. However, there have been works on
related topics, semi-supervised and active training of CRFs, feature-selection
for CRFs and temporal learning for activity recognition:

• Feature selection for CRFs: CRFs are often dealing with domains
with very large number of features. A good number of features are
usually irrelevant and redundant. Several supervised techniques have
been proposed for feature selection in CRFs. For discrete features,
McCallum [27] suggested an efficient method for feature induction by
iteratively increasing conditional log-likelihood. Dietterich [5] applied
gradient tree boosting to select features in CRFs by combining boost-
ing with parameter estimation for 1D linear-chain models. Boosted
random fields (BRFs) [42] combine boosting and belief propagation
for feature selection and parameter estimation for densely connected
graphs that have weak pairwise connections. Recently, Liao et al.
[22] developed a more general version of BRFs, called virtual evidence
boosting (VEB) that does not make any assumptions about graph con-
nectivity or the strength of pairwise connections. The objective func-
tion in VEB is a soft version of maximum pseudo-likelihood (MPL),
where the goal is to maximize the sum of local log-likelihoods given soft
evidence from its neighbors. This objective function is similar to that
used in boosting, which makes it suitable for unified feature selection
and parameter estimation. This approximation applies to any CRF
structure and leads to a significant reduction in training complexity
and time. The algorithms introduced in this thesis are extensions of
VEB.

• Semi-supervised and active training of CRFs: Semi-supervised train-
ing techniques have been extensively explored in the case of generative
models and naturally fit under the expectation maximization frame-
work 134 However, it is not straightforward how to incorporate unla-
beled data in discriminative models using the traditional conditional
likelihood criteria. Kernel CRFs proposed by Lafferty et al. [16] is
a discriminative model of graph structured data. The authors pro-
pose a nearest neighbor semi-supervised training for CRFs by trans-
forming CRF features to a kernel space. Although kernel CRFs show
some promising results for synthetic data, the high computational cost
of kernel methods makes kernel CRFs not a suitable candidate for



Chapter 1. Introduction^ 4

real time activity recognition system. A few semi-supervised training
methods for CRFs have been proposed that introduce dependencies
between nearby data points [20, 50]. More recently, Grandvalet and
Bengio [9] propose a minimum entropy regularization framework for
incorporating unlabeled data into the training of logistic regressions.
The regularizer in the objective function is the conditional entropy of
unlabeled data. Jiao et al. [10] extend this framework to train 1D
Conditional Random Fields. The work is extended to 2D lattice struc-
tures by Lee et al. [17].

Our work is similar to the approach of Jiao et al. [10] in the sense that
we are also inspired by semi-supervised logistic regression proposed by
Grandvalet and Bengio [9]. However, we are using the entropy reg-
ularizer in the boosting objective function used in virtual evidence
boosting [22]. In other words, our method performs feature selection
and incorporates unlabeled data in a unified frame-work. As a result
the semi-supervised training algorithm no longer needs an optimizer
and training becomes faster. Moreover since our approach does not
deal with the local minima involved in the objective function of [10]
and [26], the solution becomes more stable. The experimental results
in chapter 4 demonstrate these advantages.

To the best of our knowledge there are only two works discussing
active learning for training CRFs [12, 13]. Kim and Song [12] pro-
pose an entropy-based measure for a confidence score by which the
system selects the most informative samples and prompts for their
labels. Kristjannson et al. also propose the use of a confidence mea-
sure for finding the most informative sequence [13]. But they use
the normalization constant in constrained CRFs as a score to select
these instances. Similar to the work of Kim and Song [12], we use an
entropy-based measure as the selection criteria. However, we compute
the entropy based on virtual evidence, in a semi-supervised virtual
evidence boosting framework [25].

• Temporal learning for activity recognition: The use of learning algo-
rithms for activity recognition problems has attracted some attention
in the past few years. Choudhury et al. and Lester et al. propose
an activity recognition system that uses boosting for feature selection
and then uses HMMs for smoothing [4, 18]. Liao et al. propose us-
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ing CRFs for activity recognition [22]. They introduce virtual evidence
boosting, an algorithm that performs feature selection and learns CRF
model parameters simultaneously. In chapter 3 we talk about VEB in
details. We should note here that in this thesis we extend the su-
pervised method of Liao et al. to semi-supervised and active-learning
frame-works.

1.2 Contributions

The goal of this thesis is to develop efficient training probabilistic reasoning
techniques for conditional random fields that are applied in activity recogni-
tion systems. We believe that these techniques could be of much use in other
application domains. We can summarize the contributions of this thesis in
the following way:

(1) Comparing the performance of supervised CRF training algorithms for
activity recognition tasks. We provide extensive results for two real-
world activity datasets.

(2) Semi-supervised virtual evidence boosting (sVEB) — an efficient tech-
nique for simultaneous feature selection and semi-supervised training of
CRFs, which to the best of our knowledge is the first method of its kind.

(3) Experimental results that demonstrate the strength of sVEB, which
consistently outperforms other training techniques on synthetic data
and real-world activity classification tasks.

(4) Analysis of the time and complexity requirements of our algorithm, and
comparison with other existing techniques that highlight the significant
computational advantages of our approach.

(5) Active virtual evidence boosting (aVEB), an active learning way of
training of CRFs. By using active learning, we are able to query the user
for the most informative instances and minimize labeling effort. aVEB
is an extension of sVEB. It uses an entropy-based score to find the
most informative instance. After acquiring the label, the algorithm uses
both labeled and unlabeled data in the training. To evaluate aVEB, we
provide experimental results for its performance on real-world activity
data.
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1.3 Notational Remarks

The following is a table of parameters and abbreviations that we use in this
thesis.

ML^ maximum likelihood
MAP^maximum a posteriori
MPL^maximum pseudo likelihood
BRF^ boosted random fields
MAP+Boost^maximum a posteriori with boosting
sMAP^semi-supervised maximum a posteriori
sMAP+Boost^semi-supervised MAP with boosting
VEB^ virtual evidence boosting
sVEB^semi-supervised virtual evidence boosting
aVEB^active virtual evidence boosting

observations
labels sequence
number of labeled and unlabeled
training examples

number of labeled training examples
weight parameter

Ok^ weight parameter for clique k
set of cliques in the graph

A^feature k, corresponding to clique k
nki^ number of counts for feature k in data instance i

number of unlabeled training sequences
boosting working response
boosting weight
number of boosting iterations
boosting iteration
ensemble of weak learners

LF^ likelihood function with weak learners of F
number of states

ve^ virtual evidence
the tuning parameter used in sMAP and sVEB
the variance of gaussian prior used in the MAP
and sMAP regularizes
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dimension of observations
Db^dimension of observations after feature selection

first derivative of LF w.r.t. f
second derivative of LF w.r.t. f
a CRF subsequence

qu^an unlabeled CRF subsequence
qt^a labeled CRF subsequence

number of unlabeled training subsequences
number of labeled training subsequences
number of active learning querys each time

1.4 Outline

In chapter 2 we will give an overview of activity recognition and describe
how the activity datasets of this thesis were collected. Chapter 3 will be
about different supervised techniques for training CRFs, maximum likeli-
hood, maximum a posteriori, maximum pseudo likelihood and virtual evi-
dence boosting. In Chapter 4 we will talk about semi-supervised training
methods for CRFs. We will give an overview of recently developed semi-
supervised maximum a posteriori and will introduce semi-supervised virtual
evidence boosting. Chapter 5 will be on training CRFs in active-learning
frame-work. At the end of chapters 3-5 there are experiments sections where
we evaluate different algorithms on activity and synthetic datasets. In ex-
perimental sections of chapter 4 and 5 we also provide a complexity analysis
of supervised and semi-supervised techniques. At the end we will conclude
and discuss future directions.
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Chapter 2

Activity Recognition

In this chapter we provide a general overview of activity recognition and a
specific description of the set of problems we are interested in. Although
the main contribution of this thesis is not about the design of activity recog-
nition systems, it is driven and inspired by the challenges involved in this
application domain.

The work of this thesis started at Intel Research Seattle as part of a large
multi-disciplinary project on human activity recognition. The activity datasets
were collected by Intel researchers and students at the university of Wash-
ington. In this chapter we talk about their work at the Seattle lab and how
we use the collected data in our experiments.

2.1 An Overview to Activity Recognition

One of the goals of Artificial Intelligence is automated recognition of human
behaviours. Activity recognition systems can be employed in numerous ap-
plications, including:

• smart human-computer interactions such as in user interfaces and
ubiquitous computing [19],

• supervising the disabled and elderly and assisting them through their
daily activities [4],

• monitoring patients for diagnoses and their progress in recovery [47],

• surveillance applications [29],

• better understanding human behaviours and interactions [2].

We distinguish 3 different components in a complete activity recognition
system:
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(a) Sensing: Sensors can range from complex devices such as cameras to
simpler ones such as accelerometers. There is an ongoing area of research
to design and integrate accurate, small and portable/wearable sensors
for activity recognition [23, 24, 32]. Moreover, the research has shown
that for different application domains different sensors might be useful.
For example, video might be a great choice for surveillance applications,
but is impractical in applications that users' privacy matters. In this
thesis we do not talk about the sensing component nor we talk about
wearable sensors. We limit ourselves to briefly describing the specific
sensors that are used for collecting our two activity datasets.

(b) Processing sensor traces: engineering the output of sensors and deriv-
ing informative data features is the next step. Based on the nature
of data we should use different preprocessing tools. For examples for
video streams we use different visual cues whereas for audio data using
frequency coefficients is common.

(c) Building a trainable computational model for inferring activities: once
we have the data features, we need to learn the activity model. the
contributions of this thesis is about this step of the work. Having col-
lected two activity datasets using state-of-the-art wearable sensors and
preprocessing techniques, we investigate a number of machine learning
methods to train a suitable computational model. At the inference step
we compare the performance of these training methods based on their
classification accuracy. In the rest of this section we will talk about step
(a) and (b) of our activity recognition system. In the following chapters,
however, we will talk about step (c).

2.2 Activity Recognition Datasets

In this section we describe how human activity recognition data has been
collected at Intel Research. We then talk about two specific datasets that
have been used for our experiments in this thesis.

Since it is not clear what sensor modalities are useful for human activity
inference, we would like to gather data simultaneously from a large set of
sensors. As a result at Intel Research Seattle a multi-modal sensor board
(MSB) has been implemented. The MSB is a 2.8 cm by 5.8 cm kit that
is designed to attach to the Intel Mote (iMote), a Bluetooth/32-bit ARM7-
based wireless sensor node. It can also communicate with handheld, desktop
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Figure 2.1: The figure illustrates a subset of sensor traces corresponding
to different activities. In a semi-supervised setting, the algorithm takes
advantage of both labeled (shaded) and unlabeled data.

computers, and cell phones via Bluetooth, serial, or USB. The iMote allows
us to send the sensing data of MSB to any commodity Bluetooth device
like a cell phone and our other interfaces allow us to connect to handhelds,
laptops, and other devices [18].

The sensor board contains seven different sensors: Electric Microphone,
Visible Light Phototransistor, 3-Axis Digital Accelerometer, 2-Axis Digital
Compass, Digital Barometer/Temperature, Digital Ambient(IR and Visi-
ble+IR) Light and Digital Humidity/Temperature. The MSB is capable
of sampling the data all simultaneously at fairly high sampling rates [181.
These sensors were selected for their general usefulness based on the related
work in activity inference. Moreover, small footprint, low power consump-
tion, and availability of digital interfaces were other main reasons. Since the
MSB is small and light (the complete package with iMote and battery board
is only 25g) one can comfortably wear it for long time periods. By using the
MSB we collect approximately 18,000 samples of data per second. However,
we do not use the samples directly for classification since in that case we
will end up having an extremely high dimensional feature space. Instead we
summarize the data by computing data features, bringing out the important
details of the data and reducing the dimensionality.
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For the current system the outputs of different sensors are processed to
compute data properties, including linear and logscale FFT frequency coef-
ficients, cepstral coefficients, spectral entropy, band-pass filter coefficients,
correlations, integrals, means, and variances [18], giving us a high dimen-
sional feature vector. For a more detailed description of the system we refer
the reader to further references such as [18]. Intuitively, some features are
more useful for particular activities. For example, FFT coefficients of ac-
celeration will likely capture walking manner and as a result they are likely
to be useful for distinguishing between walking/jogging, walking/standing
and so forth. However, for some activities, such as riding an elevator, it
might not be clear which data features should be used. Including all fea-
tures in the classification process might solve the feature selection problem,
but we usually do not have enough training data to reliably learn the model
parameters for such a high dimensional domain. Moreover, using some irrel-
evant features might confuse the classifier to discriminate between various
activities. The challenge of feature selection in high dimensional domains
is known to the Machine Learning community and a number of theoretical
and application-based solutions have been proposed for this problem. How-
ever, very little work has been done for feature selection in human activity
inference. Most recently some solutions have been proposed in [4, 10, 18].
We will elaborate on them in next chapters.

To train and test our human activity recognition model we collected two
datasets with the system we described above. There are three main differ-
ences between these datasets:

• Type of activities: one of the datasets consists of low-level activities
such as walking and riding elevator. The other dataset contains higher
level activities such as meeting and having meal; they are more abstract
and often contain sub-activities. For example meeting and having meal
usually also contain the basic sitting and talking activities.

• Durations: due to the nature of these activities, the activity durations
are different for these datasets. For example cooking usually takes
longer than brushing teeth. As a result the features for each dataset
are computed for different time frame windows.

• Number of participants: a group of 7 people collected data for lower
level activities but only one person collected data for the other dataset.
For the first dataset we are able to train on a group of people and test
on a different group. Whereas, for the second dataset we train on a
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Time

Figure 2.2: An example of sensor traces for Audio, Acceleration, Compass,
Light and Pressure (from top to bottom). The horizontal line shows time
in seconds. In the preprocessing step linear and logscale FFT frequency co-
efficients, cepstral coefficients, spectral entropy, band-pass filter coefficients,
correlations, integrals, means, and variances are computed, giving us a 651
dimensional feature vector trace

set of days and test on different days. This way we are verifying our
system on two different ways of training which are similar to the real
world settings.

In thethe next section we describe the activity dataset in more detail.

2.3 Low-level and High-level Human Activity
Datasets

For the low-level activity dataset, a group of 7 people collected the data while
doing 8 basic physical activities. Two-thirds of the data was collected from
a computer science building and the other third was collected in an office
building. Volunteers collected data wearing three MSBs: one on a shoulder
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strap, one on the side of their waist, and one on their right wrist. As a result
we have three sets of the data corresponding to each location. The volun-
teers were asked to perform a specific sequence of activities, like sitting on
a couch for a few minutes before walking upstairs to brush their teeth. The
activities consist of 8 basic activities: walking, standing, walking up stairs,
walking down stairs, riding elevator down, riding elevator up and Brushing teeth.
A total of 12 hours of data has been recorded over all participants. The du-
ration of activities ranges from 14 — 143 minutes giving the average of 40
minutes for each activity.

For the high-level dataset, one person collected audio, acceleration, and
light sensor data as he stayed indoors using a small wearable device. The
total length of the dataset is about 1, 100 minutes, recorded over a period
of 12 days. The goal is to recognize the person's major indoor activities
including computer usage, having meal, meeting, TV watching and sleeping.
We segmented the data into one-minute chunks and manually labeled the
activity at each minute. For each chunk of data, we computed 315 feature
values. A detailed numerical description of the activity datasets is presented
in tables (2.1) and (2.2). Labeling activity data is a time-consuming and
boring task. While collecting the data at the Intel lab, we also captured the
ground truth video. After finishing each activity scenario, a person watched
the video and labeled each segment. Figure (2.3) shows the labeled video
streams for three tasks of walking, walking up and sitting.

2.4 Summary
In this chapter we gave an overview to activity recognition and motivated
the reader about our application domain. We talked about the multi-sensor
board (MSB) that is developed at Intel Research Seattle and described how
we have collected and labeled our activity datasets. We do not talk about the
application domain of this thesis, activity recognition, any further. In the
next few chapters, we discuss supervised, semi-supervised and active training
of conditional random fields. In particular we will focus on chain CRFs since
they are suitable for our application. Although our experimental results
show that these methods are helpful for the task of activity recognition we
believe that they could be also applicable in many other application domains
such as text processing and computational vision.
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Activity P1 P2 P3 P4 P5 P6 P7 Total
Sitting 0 1439 2015 1620 3820 2271 2622 13787

Standing 838 688 2285 441 892 1883 921 7948
Walking 1636 2674 2122 1898 2466 3273 3173 17242

Walking up stairs 0 61 531 564 579 522 459 2716
Walking down stairs 321 422 344 387 437 479 379 2679
Riding elevator up 354 73 308 238 93 175 110 1351

Riding elevator down 0 117 286 206 202 287 130 1228
Brushing teeth 0 0 573 577 277 697 538 2662

Total 3149 5474 8464 5931 8766 9587 8332 49703

Table 2.1: The per-class count of collected activity data instances for dataset
1 (multi-person). This table shows the amount of collected data for each
activity per person. There is a total of 49703 data points which is about 3.5
hours.

Computer usage Having meal Meeting Watching TV Sleeping Total
241
^

135
^

148
^

136
^

247
^

907

Table 2.2: This table shows the details of dataset 2. This dataset is collected
by one person during few days. Compared to dataset 1, it is smaller and
has longer duration activities. The total duration of this dataset is about
15.1 hours.
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Figure 2.3: An illustration of labeling activity data based on the ground
truth video. In each picture the left frame show the video stream and the
right frame shows the human labeled activity name.
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Chapter 3

Supervised Training of
Conditional Random Fields
Conditional Random Fields(CRFs) are undirected graphical models, exten-
sively used for classification of structured, relational data [14, 15, 36, 39].
CRFs have shown to be successful for classification problems in different
application domains such as natural language processing [15, 39, 41], infor-
mation extraction [13, 28, 35] and computer vision [14, 40, 45]. Similar to
Hidden Markov Model(HMM) [37] nodes in CRFs represent hidden states
and observations. In this thesis we denote observations by x and hidden
states by y.

Employing CRFs involves two steps:

• learning the model and

• inference based on observations and the trained model.

There are a number of methods proposed for inference in undirected graph-
ical models and particularly CRFs [48]. In this thesis we do not talk about
inference methods, but we will talk about the learning approaches. For
a fair comparison we use same inference method, Belief Propagation [33],
for all the training methods proposed in in the current and next chapters.
Based on the connectivity structure of the graph, CRFs define the probabil-
ity of labels given the observations, p(y Ix). In a simple activity recognition
problem based on time, location and duration (demonstrated in figure (3)),
the coloured nodes represent 4 different type of observations and the blank
nodes represent the labels, hidden states or in this example the types of
activities [21]. In general CRFs could have any structure and they are not
limited to chains. Due to the sequential nature of our activity datasets, in
this thesis we will focus on chain CRFs. However, the proposed methods
could be easily extended for other structures.

CRFs directly represent the conditional probability of hidden states given
the observations. Unlike HMMs, they do not make any assumption on the
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1
^

2
^

4

(a)

 

(b)

True label of the neighbouring node

CD Virtual evidence

Hidden state / activity label

Time of day (morning, afternoon, evening, night)
Location (real values GPS coordinates)

Duration (real values, measure in minutes; example: 12.5 min)

Weekend/weekday (a binary value indicating if it is weekend)

Figure 3.1: Examples of training CRFs in maximum likelihood(a), maximum
pseudo likelihood(b) and virtual evidence boosting(c) frameworks.
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dependency structure between the observations. This property makes CRFs
very suitable for classification tasks in complex domains where we have many
complex and overlapping observational features. Each fully connected sub-
graph in CRFs is called a clique. We could factorize CRFs as a set of cliques,
C, where each clique is denoted as (xk, yk), k c C. In a chain CRF, each
observation with its corresponding hidden state form a clique. Also every
two neighboring hidden states form a clique. In figure (3), the observation
time of the day with the hidden state 2, and hidden state 2 with hidden
state 3 are two cliques. Factorizing graphs to cliques enables us to write the
corresponding probability distributions as a product of clique potentials. A
Clique potential is a function that based on variable configurations returns
a non-negative value. One could think of clique potentials as a value for
capturing the compatibility between the variable(nodes) within the clique.
For example, for our low-level activity dataset, (meeting, computer usage)
is stronger that (meeting, sleeping).

In terms of clique potentials, we could write the probability distribution,
p(y ix) in the following way:

^p(3,1 0) = H ok(xic,Yk)/z,
^ (3.1)

kEc

where Z is a normalizing constant, Z = E fl ç (x, yic). The cost of corn-
y' kEC

puting normalizing constant is exponential in the number of hidden states
since we are summing over all possible configurations. As a result, exact
computation becomes impossible for dense graphs. In this thesis we are
mostly dealing with chain CRFs, for which Z could be computed exactly.
Therefore we do not talk about approximation methods available for com-
puting normalizing constants.
Without loss of generality, we could write each potential function as a log-
linear combination of simpler functions called feature functions. These fea-
ture functions could be binary or real valued, designed by the user and
tailored for the application. For each feature function we assign a weight
parameter, 0, which captures the importance of the function:

^Ok(Ck Yk) = exp{eTfk (xk Yk)}
^

(3.2)

Knowing the structure of CRFs, the task of training is basically learning the
weight parameters, O's, of the model. Learning could be thought as solving
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an optimization problem for O's, where we are trying to maximize the joint
likelihood, p(x, y).

In this chapter we first talk about three common ways of training CRFs,
maximum likelihood (ML), maximum a posteriori (MAP) and maximum
pseudo likelihood (MPL). We then talk about recently developed virtual
evidence boosting (VEB), a supervised algorithm for simultaneous feature
selection and training. The main contributions of this thesis (which are
discussed in the next chapters) are built on VEB.

3.1 Maximum a Posteriori

Given labeled training data, (x, y), we could think of the probability distri-
bution over the data, p(ylx, 0), as a function of 0. In most training methods
for CRFs the goal is to find O's that maximize this likelihood function. In
Maximum likelihood we are solving a maximization problem in which the
objective function is the log likelihood of the labeled training data:

log( p(ylx, 0) )

exp(^ekfk(x,Y))
k=1 log

Eexp(E Okf k(X,y1)),
3('^kr=1

where we have K cliques in the graph. Note that since log is a monotone
function, maximizing log-likelihood is the same as maximizing likelihood
and yields same values for O's. Maximum likelihood is a popular point
estimation method. However, we are often dealing with large number of
parameters in CRFs. To avoid over-fitting, we incorporate a regularizer

1_120,11)into our object function. A common regularizer is Gaussian prior, exp(
which penalizes the weight parameters whose norms are too large. When
we add a regularizer to the ML objective function, we call the new training
approach maximum a posteriori (MAP). More specifically a MAP objective
function with a Gaussian prior is defined as following:

110"L(0) = log(p (ylx, 0) ) — 20.2 (3.5)

L(0) (3.3)

(3.4)
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exp(^okik(x,Y))
log k=1 1101

The regularizer term in the objective function is a Gaussian prior with mean
zero and variance of o-2 on all weight parameters. 6j is the 12 norm of
weight parameter vector, 6. It is possible to use other regularizers for the
ML objective function. One of the common alternatives is lasso or 11 norm
prior, lasso is known as a sparse promoting prior and in a number of works
has been proposed as a feature selection method [30, 43]. Having an /1 norm
makes small weight parameters shrink to zero. As a result, less significant
features which usually have smaller weights will be automatically discarded.
lasso has been used for CRFs in a few different applications [34, 43]. How-
ever, it has been shown that using lasso instead of Gaussian prior in the ML
objective function does not always result in better performance or higher
classification accuracy [34].

It is also possible to use a prior on training unlabeled data. In semi-
supervised approach of [10] the conditional entropy of unlabeled data is
used as a regularizer and incorporated into the MAP objective function.
We will talk about the use of such regularizer in the next chapter.

For large CRFs exact training is often computationally intractable and var-
ious approximate methods are used, such as mean field approximation or
pseudo likelihood maximization [46, 49]. In the next section we will talk
about maximum pseudo likelihood. We then talk about virtual evidence
boosting [221, one of the most recent approximation methods for CRF.

3.2 Pseudo Likelihood

An alternative to approximating the conditional likelihood is to change the
objective function, that is instead of maximizing the likelihood function we
maximize the pseudo likelihood of the training data. Maximum pseudo like-
lihood, MPL [1], is such a technique. For MPL the CRF is cut into a set of
independent patches; each patch consists of a hidden node or class label yi,

20-2
E ex13( E ekik(x, yl))
y'^k=1

(3.6)
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the true value of its direct neighbors and the observations, i.e., the Markov
Blanket(MB) of the node. To understand how MPL approximation works
let us look at the simple CRF example we introduced at the beginning of
this chapter. As shown in figure (3), for MPL the CRF is cut into patches
such that there is no more than one hidden label in each patch. To contain
the information from the neighbors, the true labels of neighboring nodes
will be added to the local attributes of the hidden node. By doing this the
structure of the CRF becomes simplified and turns into a set of patches.
MPL estimation is in fact MAP estimation on the simplified model.

The parameter estimation then becomes the pseudo log-likelihood maxi-
mization:

iip3udo(0) = E log (p(yi IMBy„ 0))
i=1

exP( E ekfk(mByi, yi))
k=1 = E log

i=1^E exp( E ekik(mBy,
k=1

MPL has been known to over-estimate the dependency parameters in some
cases and there is no general guideline on when it can be safely used [8].
In the next section we will talk about virtual evidence boosting (VEB)
another approximation technique. At the end of this chapter we will provide
empirical result comparing the performance of MPL and VEB.

3.3 Virtual Evidence Boosting

Limited work has been done on feature selection in CRFs [27, 42]. In this
section we describe a supervised training algorithm, virtual evidence boost-
ing (VEB), that simultaneously performs feature selection and learns the
model. At each training iteration, VEB uses boosting to select a set of fea-
tures. Boosting has been extensively used for many supervised problems in
various domains [6, 7, 42]. Given independent training instances, a boost-
ing algorithm learns an ensemble of weak learners. The final classification

(3.7)

(3.8)
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if yi = 0

if yi = 1

_F(xi)
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decision is made based on the weighted combination of these weak learners.
Using boosting for training CRFs might sound unusual since in boosting,
contrary to CRFs, we assume that labels are independent. However, in-
spired by MPL, if we chunk a CRF to a set of patches we could use boosting
on each patch as if the labels are independent. We are not talking about
boosting much in this thesis since there are a good number of references on
this subject. We will just briefly describe a particular boosting algorithm,
LogitBoost [7]. We then talk about an extension of LogitBoost which is
used for training CRFs. Similar to other boosting algorithms, in Logitboost
[7] we are dealing with an ensemble of weak learners F. We start with
an empty ensemble and at each boosting iteration, we add the best found
weak learner. The best ensemble of weak learners is the one that maximizes
per-label-log-likelihood:

Liogit = log p(yi)^ (3.9)
i=1

where without loss of generality we assign reverse ensembles for yi = 0 and
yi = 0. Logitboost is very similar to logistic regression. We should just
think of eF(xi) and e-F(xi) as potentials for yi = 1 and yi = 0 respectively.
In LogitBoost using a Newton step, we minimize the objective function of
(3.9) with respect to the ensemble F. In each step the next weak learner is
obtained by solving the following weighted least square problem:

ft (x) = arg min
f z=1

(xt) - zt )2,

where wi = p(yi)(1 - p(yi)) and z. = Yi-°•5 are respectively the weight andp(yi)
working response for instance i.

Instead of observations we could use a given distribution over the observa-
tion domain, {1,^,D} 124 That is, we could present the training data
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as (ve(x,), yi)'s, where ve, is the virtual evidence or the distribution of in-
stance i. In this case while minimizing the negative per-label-log-likelihood,
the computation of the posterior probability, p(y,), should take virtual ev-
idence into account as well. The new weighted least square problem also
incorporates the expectation of the residuals and becomes [21]:

ft(x) arg min E wiE(f (xi) — z)2.
f i=1

Virtual evidence boosting, VEB is an extension of LogitBoost algorithm
[7]. VEB integrates boosting based feature selection into CRF training and
maximizes its objective by sequentially learning a set of weak learners Its.
The objective function used in VEB is very similar to MPL, except that
VEB uses the messages from the neighboring nodes as virtual evidence in-
stead of using the true labels of neighbors. The use of virtual evidence helps
to reduce over-estimation of neighborhood dependencies. We briefly explain
the approach here but please refer to [22] for more detail.

VEB incorporates two types of observations nodes: (i) hard evidence cor-
responding to the observations ve(x), which are indicator functions at the
observation values and (ii) soft evidence, corresponding to the messages from
neighboring nodes ve(n(yi)), which are discrete distributions over the hid-
den states. Let vei {ve(x), ve(n(0)}. The objective function of VEB
is as follows:

LVEB(0)^log(p(yi Ivei, 0)), where^(3.10)

E vei exp( E Ok fk(vei, yi))vei^k=1 p(yilvei, 0) =

E E vei exP( okfk(vei,
ye,^k=1

(3.11)

VEB learns a set of weak learners fts iteratively and estimates the com-
bined feature Ft Ft_i + ft by solving the following weighted least square
error(WLSE) problem:
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ft (vei)^arg min^wiE(f (vei) — zi)2^(3.12)

arg rnin[E^wip(yi Ivei)(f (vei) — zj)2]^(3.13)
vei

where wi

Zi

= P(Y1ive1)(1 — P(Yilvei)),
— 0.5

P(Yiivei)

(3.14)

(3.15)

The wi and zi in equation (3.15) are the boosting weight and working re-
sponse respectively for the ith data point, exactly as in LogitBoost. However,
the least square problem for VEB (equation 3.13) involves ND (D is the
dimension of the observations) points because of virtual evidence as opposed
to N points in LogitBoost. Although equation (3.15) is given for the binary
case (i.e. yi E 10,11), it is easily extendible to the multi-class case and
we have done that in our experiments. At each iteration, ve, is updated
as messages from n(y2) change with the addition of new features. We run
belief propagation (BP) to obtain the virtual evidence before each iteration.
The CRF feature weights, O's, are computed by solving the WLSE problem:

E wizinki

Ok = 
i=1 ^ (3.16)
E Winki
i=1

In case of local features, nki is the count of feature k in data instance i. For
the compatibility features, nki is the virtual evidence from the neighbors.
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Algorithm 1: Training CRFs using VEB
inputs : structure of CRF and training data (x1, yi), with y, E {0,1},

1 <i < M, and F0 = 0
output: Learned FT and their corresponding weights,

1 for t = 1,2, • • • , T do
2^Run BP using Ft to get virtual evidence vei;
3^for i = 1,2,•• • , N do
4^Compute likelihood p(yilvei);
5^Compute wi and ; using equation (3.15)
6^end
7^Obtain "best" weak learner ft according to equation (3.13);
8^Update Ft Ft-1 + ft ;
9 end

3.4 Experiments

In the first set of experiments we evaluate supervised training methods on
activity datasets. These experiments demonstrate the superiority of CRFs
over other proposed methods [4, 18] for activity recognition applications.
They also provide an empirical comparison between different training algo-
rithms for CRFs. Moreover, by providing results for supervised techniques
we can benchmark the performance of the semi-supervised methods, de-
scribed in the next chapter.

We evaluate four different supervised training approaches, namely maxi-
mum a posteriori using all observed features(MAP), (MAP+Boost) using
a subset of features selected in advance, maximum pseudo likelihood(MPL)
and virtual evidence boosting (VEB). We already explained MAP, MPL and
VEB in this chapter. The fourth method, MAP+Boost, is similar to MAP
with one difference. Before training via MAP+Boost, we perform feature
selection with decision stumps and select the top 50 features corresponding
to each activity. We then union these features (about 200 of them) and feed
them to the CRF. This simple approach was also used in [4, 22]. All the
learned models (trained by MAP, MPL, VEB and ML+Boost) are tested
using standard MAP estimate and belief propagation. We used a 12-norm
shrinkage prior as a regularizer for the MAP and MPL methods.
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Labeled
MAP

Average Accuracy
MAP+Boost

(%) -
MPL

Dataset I
MPL+Boost VEB

40% 58.4 ± 5.8 63.0 ± 6.3 59.2 ± 5.8 63.8 ± 4.5 67.9 + 9.9
60% 62.7 ± 6.6 69.4 ± 3.9 66.9 + 4.8 70.2 ± 3.1 82.6 ± 7.3
80% 73.0 ± 4.2 81.8 ± 4.7 78.2 ± 4.3 80.9 ± 5.7 90.3 ± 4.7
100% 77.8 ± 3.4 87.0 ± 2.3 80.6 ± 4.9 88.2 + 5.5 91.5 ± 3.8

Table 3.1: Accuracy ± 95% confidence interval of the supervised algorithms
on activity dataset 1 (multi-person shorter duration data; for details refer to
chapter 2). Note that VEB outperforms other supervised training methods.

Labeled
MAP

Average Accuracy
MAP+Boost

(%) -
MPL

Dataset 2
MPL+Boost VEB

40% 59.4 ± 5.3 60.1 ± 3.0 58.2 ± 3.5 59.6 ± 4.2 67.9 ± 6.7
60% 74.3 ± 3.7 75.8 ± 3.3 74.3 ± 2.9 75.9 ± 2.5 88.5 ± 5.1
80% 80.6 ± 2.9 84.8 ± 2.9 81.1 + 5.3 85.2 + 4.7 93.4 ± 3.8
100% 86.2 ± 3.1 87.5 ± 3.1 87.8 ± 3.2 88.6 ± 5.2 93.8 ± 4.6

Table 3.2: Accuracy ± 95% confidence interval of the supervised algorithms
on activity dataset 2 (multi-day, single person, longer duration dataset).
Note that VEB outperforms other supervised methods

We compare the supervised techniques, ML, MAP+Boost, and VEB, with
increasing amount of labeled data.

In these experiments we evaluate supervised training methods on activity
datasets. These experiments demonstrate the superiority of CRFs over other
proposed methods [4, 18] for activity recognition applications. Moreover, by
providing results for supervised techniques we can benchmark the perfor-
mance of the semi-supervised methods, described in the next chapter.

3.5 Complexity Analysis

Since VEB does not need to use optimizers such as quasi-Newton methods
to learn the weight parameters, VEB is much faster than MAP. For each
training iteration in MAP the cost of running BP is 0(c1ns2) [10] whereas
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length of training sequence
ci^number of labeled training sequences

number of states
dimension of observations

Table 3.3: Description of variables in this section.

the cost of each boosting iteration in sVEB is 0(cins2). Moreover, the num-
ber of training iterations needed is usually much higher than the number of
boosting iterations because optimizers such as L-BFGS require many more
iterations to reach convergence in high dimensional spaces. For example, for
dataset 1, we needed about 600 iterations for MAP to converge but we ran
VEB for only 50 iterations. Table (4.3) shows the time for performing the
experiments on activity datasets (as described in the previous section) 1.

The space complexity of VEB is linearly smaller than MAP. MAP has the
space complexity of 0(ns2D) in the best case [10], whereas VEB has a
lower space cost of 0(ns2Db), because usually in the feature selection step
Db < D. Therefore, the difference becomes significant when we are dealing
with high dimensional data, particularly if they include a large number of
redundant features.

MAP
Time (hours)
MAP+Boost VEB

Dataset 1 34 18 2.5
Dataset 2 7.5 4.25 0.4

Table 3.4: Training time in hours for the supervised algorithms. Note that
the experiments were performed in a Matlab environment. In a more op-
timized development environment, the algorithms would be much faster.
However, we could still compare the time complexity of algorithms based on
their relative time.

1 The experiments were run in Matlab environment and as a result they took longer.
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3.6 Summary

In this chapter we gave a brief overview of two well-known CRF training
algorithms, maximum likelihood and maximum a posteriori estimation as
well as a famous approximation algorithm, maximum pseudo likelihood.
We then described virtual evidence boosting(VEB). VEB is a state-of-the-
art supervised training algorithm that performs feature-selection at the same
time as training. In next two chapters we will talk about, semi-supervised
and active learning extensions of VEB. In this chapter we also provided a
comparison of supervised approaches and evaluated them on two activity
datasets.
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Chapter 4

Semi-supervised Training of
Conditional Random Fields

Semi-supervised learning methods have been extensively studied in the past
decade [3]. In the semi-supervised paradigm, the algorithm not only takes
advantage of labeled data but also incorporates unlabeled data into training
as well. Given a small amount of labeled data, the classification accuracy
is typically low. However, by employing semi-supervised approaches and
incorporating a large amount of unlabeled data the performance can be sig-
nificantly improved. In those applications that involve easy data collection
but expensive labeling, semi-supervised methods are highly attractive. In
activity recognition, as we described in chapter 2, training data is abundant,
but labeling is expensive and in many cases impossible.

In this chapter, we give a brief overview of semi-supervised maximum a
posteriori [10, 26]. We then introduce our novel CRF training algorithm,
semi-supervised virtual evidence boosting (sVEB). This algorithm is an ex-
tension of VEB [22] which we described in the last chapter. At the end, we
will provide extensive experimental results to evaluate the proposed semi-
supervised methods.

4.1 Semi-supervised Maximum a Posteriori

For semi-supervised training of CRFs, Jiao et al. [10] have proposed an algo-
rithm that utilizes unlabeled data via entropy regularization — an extension
of the approach proposed by [9] to structured CRF models. The objective
function that is maximized during semi-supervised training of CRFs is given
below, where (xi, yi) and (x„, yu) represent the labeled and unlabeled data
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respectively:

L(0) log/J(37/1)Q°) + Exy.lx.,e)logpcy.ix.,0)—^(4.1)
20-2

Y.

This objective function resembles the function of maximum a posteriori
training with this difference that here we have a second regularizer,

a Ep(yulx,„ 0)logp(yulx„, 0).
Yu

By using the conditional entropy of unlabeled data as a regularizer in the
objective function, the algorithm incorporates unlabeled data into training.
By minimizing the conditional entropy of the unlabeled data, the algorithm
will generally find a labeling of the unlabeled data that mutually reinforces
the supervised labels. One drawback of this objective function is that it
is no longer concave and in general there will be local maxima. The au-
thors [10] showed that this method, semi-supervised maximum a posteriori
(sMAP), is still effective in improving an initial supervised model, MAP.
However, sMAP is extremely slow because of the computational bottlenecks
involved in training. Mann et al. proposed a more efficient sMAP by taking
advantage of some mathematical simplifications in computing the gradient.
Although the new approach is faster it is still as slow as MAP and does not
perform feature selection.

In the next section, we will introduce semi-supervised VEB which also uses
the conditional entropy of unlabeled data into training. sVEB is the semi-
supervised extension of VEB. Similar to VEB, within the training algorithm,
sVEB has a feature-selection routine that makes it fast and efficient.

4.2 Semi-supervised Virtual Evidence Boosting

In this work, we develop semi-supervised virtual evidence boosting (sVEB)
that combines feature selection with semi-supervised training of CRFs. sVEB
extends the VEB framework to take advantage of unlabeled data via mini-
mum entropy regularization similar to [9, 10, 17]. The new objective func-
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Figure 4.1: A graphical illustration of semi-supervised VEB. On the right a
chain CRF is shown with some labeled (coloured hidden states) and some un-
labeled instances. On the left a patch from the chain, consisting a state and
corresponding virtual evidence (observations and neighbouring messages) is
shown. In each iteration of VEB we run BP on the chain to compute like-
lihood measures and virtual evidence (on right); then we perform feature
selection on a patch (on left). Having the new ensemble of features we run
BP on the chain (right) and we keep iterating until we reach the maximum
number of iterations.

tion LsvEB we propose is as follows, where (i = 1 • • N) are labeled and
(i = N 1 • M) are unlabled examples:

LsVEB =
^log p(yi Ivei) + a E E log p(Vi vei)p(Vi ivei)

^
(4.2)

i=1^i=N+1

The sVEB algorithm, similar to VEB, maximizes the conditional soft pseudo-
likelihood of the labeled data but in addition minimizes the conditional en-
tropy over unlabeled data. The a is a tuning parameter for controlling how
much influence the unlabeled data will have.

By considering the soft pseudo-likelihood in LsvEB and using BP to estimate
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p(yilvei), sVEB can use boosting to learn the parameters of CRFs. The
virtual evidence from the neighboring nodes captures the label dependencies.
There are three different types of feature functions, Is: for continuous
observations f1(x) is a linear combination of decision stumps, for discrete
observations the learner f2(xi) is expressed as indicator functions, and for
virtual evidence the weak learner f3(x) is the weighted sum of two indicator
functions (for binary case). These functions are computed as follows, where

is an indicator function, h is a threshold for the decision stump, and D is
the number of dimensions of the observations:

fi(xi)
^

00(x, > h) + 025(x, < h)^(4.3)

f2(xi) = E 00(x,^ (4.4)
k=1

1

f3(Yi) = E okoyi = k)
^

(4.5)
k=0

Similar to LogitBoost and VEB, the sVEB algorithm estimates a combined
feature function F that maximizes the objective by sequentially learning a
set of weak learners, ft's (i.e. iteratively selecting features). In other words,
sVEB solves the following weighted least-square error (WLSE) problem to
learn fts:

ft = arg min[E E wip(yi Ivei)( f (xi) — z)2+
i=1 vei

E E E wipcovei)cf (xi) - zi)2}
^

(4.6)
i=N +1 y vei

For labeled data (first term in equation 4.6), boosting weights, wi's, and
working responses, zi's, are computed as described in equation (3.15). But
for the case of unlabeled data the expression for wi and zi becomes more
complicated because of the entropy term. We present the equations for wi
and zi below, please refer to the Appendix for the derivations:
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wi = ce2(1 —P(Yilvei))1P(Yilvei)(1 —P(Yilvei)) + logp(yilvei)]
(yi 0.5)P(Yi lvei) (1 — log P(Yi ivei)) (4.7)

a [p(yi Ivei) (1 — p(yi lvei)) + log p(yi Ivei)]

The soft evidence corresponding to messages from the neighboring nodes is
obtained by running BP on the entire training dataset (labeled and unla-
beled). The CRF feature weights Oks are computed by solving the WLSE
problem (e.q.(4.6)),

ek =
E E winki
i=1 Yi

Algorithm 2 gives the pseudo-code for sVEB. The main difference between
VEB and sVEB are steps 7 — 10, where we compute wi's and zi's for all
possible values of yi based on the virtual evidence and observations of un-
labeled training cases. The boosting weights and working responses are
computed using equation (4.7). The weighted least-square error (WLSE)
equation (4.6) in step 10 of sVEB is different from that of VEB and the
solution results in slightly different CRF feature weights, O's. One of the
major advantages of VEB and sVEB over MAP and sMAP is that the pa-
rameter estimation is done by mainly performing feature counting. Unlike
MAP and sMAP, we do not need to use an optimizer to learn the model
parameters which results in a huge reduction in the time required to train
the CRF models. Please refer to the complexity analysis section for details.

4.3 Experiments

In this section we will perform extensive experiments on synthetic and real
activity datasets to evaluate the proposed semi-supervised CRF training al-
gorithm, sVEB.

E E wizinki
i=1 (4.8)
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Algorithm 2: Training CRFs using semi-supervised VEB
inputs : structure of CRF and training data (xi, yi), with yi E {O, 1} ,

1 <i < M, and F0 = 0
output: Learned FT and their corresponding weights, 0

1 for t = 1,2, • • • , T do
2^Run BP using Ft to get virtual evidence vet;
3^for i = 1,2, • • , N do
4^Compute likelihood p(yilvei);
5^Compute wi and zi using equation (3.15)
6^end

for i = N + 1, M and y, = 0 , 1 do
8^Compute likelihood p(yi lye; );
9^Compute wi and zi using equation (4.7)

10^end
ii^Obtain "best" weak learner ft according to equation (4.6) and

update Ft = Ft-i + ft
12 end

In the first set of experiments, we analyze how much the complexity of the
underlying CRF affects the performance using synthetic data. We would like
to evaluate the performance of sMAP and sVEB when the number of states
and the observation dimensions increase. We also investigate the effect of
the tuning parameter a on the performance of the training algorithm. In
the second set of experiments, we evaluate the benefit of feature selection
and using unlabeled data on two real-world activity datasets.

We compare the performance of the semi-supervised virtual evidence boost-
ing(sVEB) presented in this paper to the semi-supervised maximum a pos-
teriori(sMAP) method of Jia et al. [10]. We evaluate a variation of sMAP,
sMAP+Boost, on the activity dataset. In this variation, we first perform
feature selection with decision stumps, similar to the work of Choudhury et
al. [4], and then feed the selected features to sMAP. By comparing the per-
formance of sMAP+Boost, we show the effectiveness of simultaneous feature
selection in the training.
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4.3.1 Experiments on Synthetic Data

The synthetic data is generated using a first-order Markov Chain with self-
transition probabilities set to 0.9. For each model, we generate five sequences
of length 4,000 and divide each trace into sequences of length 200. We ran-
domly choose 50% of them as the labeled and the other 50% as unlabeled
training data. We perform leave-one-out cross-validation and report the av-
erage accuracies.

To measure how the complexity of the CRFs affects the performance of the
different semi-supervised methods, we vary the number of local features and
the number of states. First, we compare the performance of sVEB and sMAP
on CRFs with increasing the number of features. The number of states is set
to 10 and the number of observation features is varied from 20 to 400 obser-
vations. Figure (la) shows the average accuracy for the two semi-supervised
training methods and their confidence intervals. The experimental results
demonstrate that sVEB outperforms sMAP as we increase the dimension of
observations (i.e. the number of local features). In the second experiment,
we increase the number of classes and keep the dimension of observations
fixed to 100. Figure (lb) demonstrates that sVEB again outperforms sMAP
as we increase the number of states. Given the same amount of training
data, sVEB is less likely to overfit because of the feature selection step. In
both these experiments we set the value of tuning parameter, a, to 1.5. To
explore the effect of tuning parameter a, we vary the value of a from 0.1 to
10 , while setting the number of states to 10 and the number of dimensions
to 100. Figure (1c) shows that the performance of both sMAP and sVEB
depends on the value of a but the accuracy decreases for large a's similar
to the sMAP results presented in [10].

4.3.2 Experiments on Activity Datasets

We collected two activity datasets using wearable sensors, which include au-
dio, acceleration, light, temperature, pressure, and humidity. As described
in chapter 2, the first dataset contains instances of 8 basic physical activi-
ties (e.g. walking, running, going up/down stairs, going up/down elevator,
sitting, standing, and brushing teeth) from 7 different users. There is on
average 30 minutes of data per user and a total of 3.5 hours of data that is
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Figure 4.2: Accuracy of sMAP and sVEB for different number of states.
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Figure 4.5: An example of a classification trace. The blue(lower) line repre-
sents the ground truth and the red(upper) line represents the classification
based on semi-supervised VEB where all unlabeled data is incorporated.
Note that the distance between these lines is just for presentation purposes
and does not indicate a bias (i.e. the value of the blue(lower) line is equal
to the integer above it).
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Figure 4.4: Accuracy of sMAP and sVEB for different values of a.
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Un-
labeled

Average Accuracy
sMAP+all obs

(%) - Dataset
sMAP+Boost

I
sVEB

20% 60.8 ± 5.4 66.4 + 4.2 72.6 + 2.3
40% 68.1 ± 4.8 76.8 ± 3.4 78.5 ± 3.4
60% 74.9 ± 3.1 81.3 + 3.9 85.3 ± 4.1

Table 4.1: Accuracy ± 95% confidence interval of semi-supervised algo-
rithms on activity datasets 1.

manually labeled for training and testing purposes. The data is segmented
into 0.25s chunks resulting in a total of 49613 data points. For each chunk,
we compute 651 features. During training, the data from each person is
divided into sequences of length 200 and fed into linear chain CRFs as ob-
servations.For more details on the dataset please see chapter 2.

The second dataset contains instances of 5 different indoor activities (e.g.
computer usage, meal, meeting, watching TV and sleeping) from a single
user. We recorded 15 hours of sensor traces over 12 days. As this set con-
tains longer time-scale activities, the data is segmented into 1 minute chunks
and 321 different features are computed, similar to the first dataset. There
are a total of 907 data points. These features are fed into CRFs as observa-
tions, one linear chain CRF is created per day.

We randomly select 40% of the sequences for a given person or a given day
as labeled and a different subset as the unlabeled training data. We compare
the performance sMAP and sVEB as we incorporate more unlabeled data
(20%, 40% and 60%) into the training process. For all the experiments, the
tuning parameter a is set to 1.5. We perform leave-one-person-out cross-
validation on dataset 1 and leave-one-day-out cross-validation on dataset 2
and report the average the accuracies (please see supplementary material
for per class breakdown). The number of features chosen (i. e. the boosting
iterations) is set to 50 for both the datasets — including more features did
not significantly improve the classification performance.

For both data,sets, incorporating more unlabeled data improves accuracy.
The sMAP estimate of the CRF parameters performs the worst. Even with



SNAP sMAPI•Boost WEB

111 
100

oo

ao

• 70

C.1

< 50

CD
40

CD
> 30

20

10

Chapter 4. Semi-supervised Training of Conditional Random Fields 39

20% 40% 60%

Figure 4.6: Average accuracy of sMAP, sMAP+Boost and sVEB (bars from
left to right) on dataset 1 for different amount of unlabeled data incorporated
into training. This bar plot shows 20% (left), 40% (middle) and 60% (right).

Un-
labeled

Average Accuracy
sMAP+all ohs

(%) - Dataset
sMAP+Boost

2
sVEB

20% 71.4 ± 3.2 70.5 ± 5.3 79.9 ± 4.2
40% 73.5 ± 5.8 74.1 ± 4.6 83.5 ± 6.3
60% 75.6 ± 3.9 77.8 ± 3.2 87.4 ± 4.7

Table 4.2: Accuracy ± 95% confidence interval of semi-supervised algo-
rithms on activity datasets 2.

Average Accuracy (Vo) - Dataset I
labeled sMAP+all ohs sMAP+Boost sVEB

5% 59.2 ± 6.5 65.7 ± 8.3 71.2 ± 5.7
20% 66.9 ± 5.9 67.3 ± 8.5 77.4 ± 3.6

Table 4.3: Accuracy ± 95% confidence interval of semi-supervised algo-
rithms on activity datasets 1. As numbers show, sVEB results in higher
accuracy.
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Figure 4.7: Average accuracy of sMAP, sMAP+Boost and sVEB (bars from
left to right) on dataset 2 for different amount of unlabeled data incorporated
into training. This bar plot shows 20% (left), 40% (middle) and 60% (right).

Average Accuracy (%) - Dataset 2
labeled sMAP+all obs sMAP+Boost sVEB

5% 71.2 ± 4.1 68.3 ± 6.7 79.7 ± 7.9
20% 71.4 ± 6.3 73.8 ± 5.2 83.1 ± 6.4

Table 4.4: Accuracy ± 95% confidence interval of semi-supervised algo-
rithms on activity datasets 2. sVEB outperforms other semi-supervised
approaches here as well.
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the shrinkage prior, the high dimensionality can still cause over-fitting and
lower the accuracy. Whereas parameter estimation and feature selection
via sVEB consistently results in the highest accuracy. The (sMAP+Boost)
method performs better than sMAP but does not perform as well as when
feature selection and parameter estimation is done within a unified frame-
work as in sVEB. Table 8 summarize our results. The results of supervised
learning algorithms are presented in Table 8. Similar to the semi-supervised
results, the VEB method performs the best, the MAP is the worst performer,
and the accuracy numbers for the (MAP+Boost) method is in between. The
accuracy increases if we incorporate more labeled data during training. Our
experiments clearly demonstrate that although adding more unlabeled data
is not as helpful as incorporating more labeled data, the use of cheap unla-
beled data along with feature selection can certainly boost the performance
of the models significantly.

4.4 Complexity Analysis

length of training sequence
ci^number of labeled training sequences

number of unlabeled training sequences
number of states
dimension of observations

Db^dimension of observations in selected features

Table 4.5: Description of variables in this section.

The sVEB algorithm is significantly faster than sMAP because it does not
need to use optimizers such as quasi-newton methods to learn the weight
parameters. This is similar to the speed-up we gain by choosing VEB
over MAP. For each training iteration in sMAP the cost of running BP is
0(cins2 + cun2s3) [10] whereas the cost of each boosting iteration in sVEB
is 0((ci + c,)ns2). The efficient entropy gradient computation that is pro-
posed in [26] reduces the cost of sMAP to 0((c/ + c)ns2) but still requires
an optimizer to maximize the log-likelihood. Moreover, the number of train-
ing iterations needed is usually much higher than the number of boosting
iterations because optimizers such as L-BFGS require many more iterations
to reach convergence in high dimensional spaces. For example, for dataset
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1, we needed about 1000 iterations for sMAP to converge but we ran sVEB
for only 50 iterations. Table (8) shows the time for performing the experi-
ments on activity datasets (as described in the previous section) 1. On the
other hand the space complexity of sVEB is linearly smaller to sMAP and
MAP. sMAP has the space complexity of 0(ns2D) in the best case [10].
sVEB have a lower space cost of 0(ns2Db), because of the feature selection
step Db < D usually. Therefore, the difference becomes significant when we
are dealing with high dimensional data, particularly if they include a large
number of redundant features.

sMAP
Time (hours)

sMAP+Boost Fast sMAP sVEB
Dataset 1 96 48 37 4
Dataset 2 10.5 8 5.5 0.6

Table 4.6: Training time in hours for the semi-supervised algorithms. Note
that the experiments were performed in matlab environment and as a result
they take longer than real world implementations. However, we could still
compare the time complexity of algorithms based on their relative time.

4.5 Summary

In this chapter we gave an overview of some of the semi-supervised learning
algorithm for training CRFs. We empirically compare these algorithms in
chapter 6. The computational complexity of the above methods is analyzed
in chapter 7. We extensively talked about semi-supervised virtual evidence
boosting(sVEB), one of the main contributions of this thesis. sVEB can
be seen as an extension of VEB [22] in which the conditional entropy of
unlabeled data is incorporated into training as a regularizer for the training
objective function. With the same amount of labeled training data, sVEB
outperforms VEB (results are mentioned in chapter 7). The shorter version
of this chapter has been published [25] by the author and her mentor at Intel
Research Seattle. In the next chapter, we will talk about extending VEB in
an active-learning frame-work.

1 The experiments were run in Matlab environment and as a result they took longer.
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Chapter 5

Active Training of CRFs

There are many learning situations in which unlabeled data is abundant
and easy to collect, however, data labeling is expensive. For example in
case of text processing, it is easy to feed text corpora to the system, but
going through pages and tagging or labeling the text is time-consuming and
error-prone.

In case of activity recognition we have a similar problem. Collecting activity
data from wearable sensors is cheap and convenient. We could easily ask a
group of volunteers to use wearable sensors for few days while performing
different activities. On the other hand, labeling the collected activity data is
hard if not impossible in some situations. One way of labeling data is to ask
volunteers to keep a diary while performing activities. Although this might
seem possible for simple and short-period data collecting, it interferes with
the natural flow of activities and it becomes complicated when activities
overlap. One of the problems with diary keeping is that the labeling is not
reliable particulary if we are training the system for a disabled person. In-
stalling a small camera on patients' body or their wheelchair is much easier
than asking them to keep a diary. As a result diary keeping is not applicable
for labeling activity data. The other approach for labeling activity data is
capturing ground truth video. There are two main problems with this ap-
proach. One is that it is very time consuming and boring (not to mention
expensive) to go through days of activity videos and segment each part. The
second and more important problem is about the privacy issues. For many
activities, although the volunteers do not have any problem with collecting
the data, they are not comfortable with sharing the captured video. For
example many people do not like other people watching them sleeping or
brushing teeth.
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Employing semi-supervised approaches for activity recognition enables us to
reduce the amount of required labeled data for a desired level of accuracy.
However, we could reduce the labeling effort even more if we could label the
most informative activity segments. Also it will be helpful in many applica-
tions if the system could improve its performance online while it is in use.
For all these reasons, we desire an active training system that queries users
for labels to improve the performance.

Active learning has attracted an increasing attention over past few years
[11, 511 and few different approaches have been proposed [11]. However,
there has been little work done on active learning for discriminative classi-
fiers such as logistic regression or Conditional Random Fields [12, 38]. In
this thesis we aim to propose an active training algorithm for CRFs that is
based on Virtual Evidence Boosting. Since VEB has shown to be the most
successful for training CRFs particularly in activity recognition [21, 22, 25]
we became motivated to develop the the active-learning extension.

In this thesis we talk about active learning of CRFs based on entropy mea-
sures. In the rest of this chapter, We describe a simple active maximum
likelihood training for which we use an entropy-based confidence score to
label more training data and improve the performance. We then introduce
the active virtual evidence boosting(aVEB) algorithm which is an extension
of semi-supervised virtual evidence boosting. At the end the we evaluate
sVEB by providing empirical results on activity datasets.

5.1 Uncertainty-based Sample Selection

A number of active learning systems work based on an uncertainty (or cer-
tainty) score. In such systems, given an initial classifier, uncertainty scores
are computed for unannounced examples. Instances with highest scores (the
most uncertain ones) are regarded as the most informative ones and selected
for human labeling. One of the ways to quantify the uncertainty is to come
up with an entropy-based measure [12]. The labels for samples with the
highest entropy measure change the trained model the most. Therefore
the high entropy samples are considered as the most informative ones. In
CRFs, the training data consist of subsequences of observations (we have
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subsequences of labels only for labeled training data).

Kim et al. propose an active learning frame-work for training CRFs for a
computational linguistics application [12]. They introduce a mixed score
based on the entropy and novelty of the sample. They provide a definition
for the sample novelty according to word similarity distance meters. The
system queries for the most diverse sample (the one that has low similarity
measure to the already queried samples) that has the highest entropy mea-
sure. In activity recognition, we do not have words and similarity measures.
However, we could measure the entropy of sequences and use that as a mea-
suring stick.

Given an observation subsequence, x, in unlabeled training data and its fixed
length, we could come up with the corresponding finite set of all possible
label subsequences, Y. Each element of set y, y, denotes a possible label
subsequence. The probability distribution of having y as the label sequence
of x is p(ylx) which is s computed using equation (3.1), similar to any other
CRF. The entropy of the probability distribution p(y Ix) is the following:

= -Ep(y1x) logp(y1x) (5.1)
yEY

The number of possible labeled sequences and the size of y grows exponen-
tially as we increase the length of the observation sequence. The complexity
of computing the entropy measure by equation (5.1) is also becomes expo-
nentially hard. To overcome this difficulty, instead of computing H1 for all
possible state subsequences, we could find the K highest probability state
subsequences and compute the entropy for them. Searching for K highest
probable subsequences is cheap when it is done by the Viterbi [44] search
algorithm. The new entropy measure becomes:

K  P(YkIX)^P(Yklx)
H2- E log y

k=1 E gykix)^E p(yklx)
k=1^k=1

(5.2)

where yk represents the kth best state subsequence.

In entropy-based active training of CRFs, the user is asked to label the
training subsequence that has the highest entropy measure. The new labeled
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Algorithm 3: Entropy-based Active Training of CRFs.
inputs :

• structure of CRF

• labeled training sequences L =-^qld containing (xi, yi), with
yi E {0, 1}, 1 <i < N

• unlabeled training sequences U = {q. ^containing (xi, yi),
N+1<i<M

output:

• CRF weights, 0

while system needs more improvement or lUI > 0 do
2

^

^Training: Run BP on labeled training data; Compute
likelihood p(yIL), given different configurations of y;

3^for j = 1, • • • , J do
4^Obtain label for sequence q* for which H2 is the highest.
5^Update: U.---=-U—q*, L=Luq*,N=N+1q*I.
6^end
7 end

training subsequence is then added to the labeled data and system trains
the model again.

5.2 Active Virtual Evidence Boosting

In semi-supervised virtual evidence boosting, we have a set of labeled and
a set of unlabeled data. Experimental results in chapter 4 show that sVEB
outperforms VEB, meaning that incorporating unlabeled data into train-
ing improves the performance. However, we would like to achieve the best
performance having the least amount of labeled data. In other words, we
would like the system to ask for the label of the most informative unlabeled
training instances. By informative instances we mean the ones that know-
ing their labels could change the value of model parameters the most. We
could define a confidence score for VEB similar to the entropy-based con-
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fidence score we described before. The entropy for the distribution over a
subsequence, is as follows:

Hveb = p(Vilvei) log p(Vi Ivei)^(5.3)
i=b

Here q is a subsequence containing < (xb, yb),^, (xe, ye) >, where b denotes
the index of the first instance in q and e denotes the last index of last
instance. Similar to precious chapters ve, denotes the virtual evidence of
instance i. The difference between this measurement and what we described
before is that here we use virtual evidence instead of neighbouring states
and observations. Also since we are using this score within the VEB setting,
number of features are much less than what we have in maximum likelihood
setting. We would like to query the user for the label of the most informative
subsequence,q*. That is the one with the highest entropy.

q* = arg min[^P(Vilvei) log p(y'ilvei)]^(5.4)
qEU

i=b

In the active virtual evidence boosting (aVEB) algorithm, similar to semi-
supervised virtual evidence boosting (see chapter 4) we have a set of labeled
and unlabeled training data. Through boosting iterations and incorporating
both labeled and unlabeled data, we compute virtual evidence and likeli-
hoods. Then if the performance is not satisfactory we ask user to label few
unlabeled training subsequences. We then move this newly labeled train-
ing data from set of unlabeled subsequences to labeled ones. Once again
we train the CRF as we do in sVEB and test if we are content with the
performance. This cycle continues until the user is satisfied or wants to
stop labeling. Instead of setting a performance threshold, such as comput-
ing accuracy error, we could set the algorithm to query the user for a fixed
number of time. Algorithm 3, shows the steps of aVEB algorithm. For more
efficiency, instead of asking the user to label one subsequence each time, we
ask for J sequences.
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Amount of Labeled Data

Figure 5.1: Comparison of active virtual evidence boosting (aVEB) algo-
rithm with semi-supervised (sVEB) and supervised virtual evidence boost-
ing(VEB) on dataset 1 (multi-person). The performance is evaluated as we
label higher percentage of data and incorporate into training and is measured
based on the average classification accuracy during testing. The plots shows
that aVEB outperforms sVEB and aVEB. The curves for all approaches
reach the same point when we label 100% of the training data.

5.3 Experiments

In the first set of experiments we would like to evaluate the effect of active
training of CRFs. We compare aVEB with sVEB and VEB on two activity
datasets. In the first experiment we start with a fixed amount of labeled
data (5% of training data) and incorporate more labeled and less unlabeled
data into training. For baseline methods, sVEB and VEB, we randomly
select unlabeled sequences and add them to the labeled training data. But
for aVEB we select the unlabeled data based on equation (5.4). Similar to
the experiments of chapters 3 and 4, we perform leave-one-person-out cross
validation for dataset 1 and leave-one-day-out cross validation for dataset 2.
For dataset 1 we use subsequences of length 4 and we set J (the number of
querying user each time) to 10. But for dataset 2 subsequences have length
40 and J is 1.

After training the model we do inference using standard MAP and BP. We
average the accuracies and compute the 95% interval. The experimental



10090^50^60^70

Amount of Labeled Data

WEB

•■■•■ WEB

1 oo

go

ao

70

C-)

60

50

40
20^ao

Chapter 5. Active Training of CRFs^49

Figure 5.2: Comparison of active virtual evidence boosting (aVEB) algo-
rithm with semi-supervised (sVEB) and supervised virtual evidence boost-
ing(VEB) on dataset 2 (single-person multi-day). The performance is eval-
uated as we label higher percentage of data and incorporate into training
and is measured based on the average classification accuracy during testing.
The plots shows that aVEB outperforms sVEB and aVEB. The curves for
all approaches reach the same point when we label 100% of the training
data.



Chapter 5. Active Training of CRFs^50

results are demonstrated in figures (5.1) and (5.2). aVEB and sVEB have
the same performance in the beginning since they are basically identical at
that point. Later aVEB outperforms sVEB since we randomly add labeled
data to sVEB but choose to add the most informative instances to aVEB.
The effect of using an entropy-based measure is evident form the empirical
comparison. VEB on the other hand has lower accuracy compare to both
sVEB and aVEB. The reason behind it is that we incorporate unlabeled
data into sVEB and aVEB. At the end, when we are using 100% of the
labeled and no unlabeled training data, all three algorithms result the same
accuracy.

In the next set of experiments we would like to compare active virtual ev-
idence boosting, aVEB, with entropy based CRF training algorithm de-
scribed earlier in this chapter. These experiments are designed to observe
the effect of using feature selection and virtual evidence boosting in the ac-
tive training of CRFs. Similar to the previous experiments we start with
5% of training data labeled. Each time we query the label of selected sub-
sequences and add them to the training. We again use subsequence length
of 100 for dataset 1 and 40 for dataset2. For dataset 1 we set J to 10 where
for the second dataset J is 1. Figures (5.3) and (5.4) demonstrate the ex-
perimental results. As VEB and sVEB outperform MAP and sMAP, here
we also see that the active training of in the VEB setting performs better
than the active training in the MAP setting.

5.4 Summary
In this chapter we gave an overview of the limited work on active training of
CRFs, 112, 13]. In details we described the entropy-based approach which is
similar to [12]. We introduced active virtual evidence boosting (aVEB) algo-
rithm. aVEB iteratively calls sVEB but each time adds a set of informative
labeled subsequences to the training data. We compared the performance
of aVEB with sVEB and VEB to show the effectiveness of incorporating ac-
tive learning into virtual evidence boosting training methods. Moreover we
compared aVEB with an entropy-based MAP active learning algorithm. On
two sets of activity recognition datasets, aVEB again demonstrates its su-
periority. There is much room to explore active learning for training CRFs.
It will be valuable to investigate decision theoretic approaches [11] or value
of information that is proposed for logistic regression [38].



• •■••■• Entropy-based

•••.■ aVEB

100

BO

80

CU
z 70
C.)

60

50

Chapter 5. Active Training of CRFs^51

■•■ aVEB

Entropy-based

6., 70

7 60
C.)

<50

40

91.110
^

20 10040^5070

Amount of Labeled Data

Figure 5.3: Comparison of active virtual evidence boosting (aVEB) algo-
rithm with entropy-based algorithm, described in chapter 5, on dataset 1
(multi-person). The performance is evaluated as we label higher percent-
age of data and incorporate into training and is measured based on the
average classification accuracy during testing. The plots shows that aVEB
outperforms the entropy-based approach.

Amount of Labeled Data

Figure 5.4: Comparison of active virtual evidence boosting (aVEB) algo-
rithm with entropy-based algorithm, described in chapter 5, on dataset 2
(single-person, multi-day). The performance is evaluated as we label higher
percentage of data and incorporate into training and is measured based on
the average classification accuracy during testing. The plots shows that
aVEB outperforms the entropy-based approach.
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Algorithm 4: Active Training of CRFs using VEB
inputs :

• structure of CRF

• labeled training sequences L^. . . q1L1 containing (xi, yi), with
E {0, 1}, 1 < i < N

• unlabeled training sequences U =^qn containing^yi),
N+1<i<M

• F0
output:

• Learned FT and their corresponding weights, 0

1 while system needs more improvement or IUI > 0 do

^

2^for t = 1,2, • • , T do

^

3^Run BP using Ft to get virtual evidence vet;
^4^for i = 1,2, • ••, N do

^

5^Compute likelihood p(yilvei);
^6^ Compute w, and ; using equation (3.15)
^7^end

^

8^for i N 1, M and y, = 0,1 do

^

9^Compute likelihood p(yilvei);
^10^ Compute wi and ; using equation (4.7)
^11^end

^

12^Obtain "best" weak learner ft according to equation
(4.6)

^13^Update: Ft = Ft_i ± ft ;
^14^end

^

15^for j = 1,• • • , J do

^

16^Obtain label for sequence q* such that

q* = arg min [ Ep(givei) log p(y'ilvei)] ,equation
gEU ,=b

(5.4);
^17^Update: U U — q*, L = L U q* , N N + lel.
^18^end

19 end
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we investigated an application driven problem. Activity recog-
nition has attracted increasing attention in recent years mainly because of
its numerous applications in health-care, human and computer interaction
and surveillance. Inspired by the work of Liao et al. [4, 22], we studied
application of Conditional Random Fields to this problem domain. More-
over, we extended virtual evidence boosting, the novel training algorithm of
[22] to semi-supervised and active learning frame-works. To the best of our
knowledge, this thesis for the first time proposes the use of semi-supervised
and active learning for activity recognition. Besides providing a review of
state-of-the-art CRF training algorithms and evaluating them on our activ-
ity datasets we carefully described the two novel algorithms of this thesis:

• We presented semi-supervised virtual evidence boosting (sVEB), a new
training method for CRFs, that can simultaneously select discrimina-
tive features via modified LogitBoost and utilize unlabeled data via
minimum-entropy regularization. Our experimental results demon-
strate that sVEB significantly outperforms other training techniques
in real-world activity recognition problems. The unified framework for
feature selection and semi-supervised training presented in this paper
reduces the overall computational cost and the human labeling cost,
which are often the major bottlenecks in building large classification
systems.

• We introduced a simple yet applicable approach for training CRFs in
an active-learning framework. The proposed methodology could be
employed in adaptive devices designed for multi-users. The goal of
active learning is mainly to make training faster and more efficient
by reducing labeling effort. Moreover, the proposed active training
methods, similar to the virtual evidence boosting algorithm of Liao et
al. [22], is computationally efficient. As a result it could be used in
on-line adaptive systems such as adaptive mobile devices.
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Our promising experimental results demonstrate that activity recognition
and ubiquitous computing in general could largely benefit from employing
semi-supervised and active learning methods. Although our work was moti-
vated by activity recognition problems, it could be applicable in many other
domains. Exploring and improving these new CRF training algorithms for
other applications could be an immediate future work. In the next section
we will discuss some of the possible future directions that the author has in
mind.

6.2 Future Work

Employing machine learning in ubiquitous computing is a relatively new re-
search area and there is much room left for exploring. Activity recognition
in particular could be improved by data mining and machine learning meth-
ods. Machine learning, on the other hand, could take advantage of a new
and interesting application domain. This thesis along with the work of Liao
[21, 22], are considered as pioneers on the application of temporal learning
in activity recognition. There are a number of theoretical challenges left
unsolved. To name a few we could mention clustering users based on be-
haviourial patterns and hierarchical activity learning. On the other hand, on
the application side there is much work to be done. Many applications could
take advantage of the methods discussed in this thesis. For example, in the
area of ubiquitous computing, they could be used in assistive technologies
and adaptive mobile devices.

6.2.1 Hierarchical Activity Recognition

Many complex activities, such as cooking and attending a meeting, consist
of few lower-level sub-activities (for example, cooking could contain stand-
ing, walking and stirring; meeting could involve sitting, talking and writing).
Perhaps, we could approach activity recognition as a hierarchical structural
learning problem for which we might have few labels for the higher level
data and some labels for the lower level data. Incorporating the labeled
and unlabeled data of the two activity levels and the model structure into
training will result in a better performance. However, the theory behind
semi-supervised hierarchical activity recognition is still needed to be estab-
lished.
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6.2.2 Clustering Users Based on Behavourial Patterns

Transferring activity knowledge between people is very attractive. In the
experimental sections of this thesis, we explored the possibilities of training
the model based on a group of people and testing it on a different person.
However, this data is collected from a particular group of people, graduate
students of University of Washington, and at the same environment, the
campus of the University of Washington. The data they collected for a
sequence of activities is perhaps very different from the data a handicapped
person collects. Moreover, outdoor and indoor environments, humid and
dry climate affect the collected data as well. One easy way to tackle this
problem is to train a model for every new user. However, this is expensive
and impractical for real-world applications. One promising solution as Liao
also mentions [21] is to cluster users based on their activity patterns and
train a model for each cluster. When a new user starts working with the
system, she is assigned to one of the clusters and the corresponding activity
model. However, the problem is that it is not clear what metric we should
use for measuring similarity within activities. Also, since we do not have
activity labels for her, it is not clear how we should select a cluster. This
could be explored as a model-selection problem.

6.2.3 Adaptive Mobile Devices

In chapter 5 we talked about active-training of the model. Particularly when
activity recognition is based on the wearable sensors data, user adaptation
becomes necessary. Each user has different hand or shoulder movements
or navigates different environments. As a result it is important to adapt
the device to each user. The proposed methods of this thesis could be
really applicable for adapting intelligent health care devices for new patients.
User modeling and customized software applications are not new concepts.
However, ubiquitous computing still lacks adaptive technologies. In this
thesis we did not talk about design of such devices. However, it will be an
interesting direction perhaps in the fields of ubiquitous computing.
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Chapter 7

Appendix A: Derivation of
sVEB

In this section, we show how we derived the equations for wi and ; (equation
4.7):

LF^LsVEB = LVEB aHemp^ (7.1)

=^log p(yi Ivei) + a E^p(Vi lvei) log p(g lvei) (7.2)
i=1^i=N+1

As in LogitBoost, the likelihood function LF is maximized by learning
an ensemble of weak learners. We start with an empty ensemble F = 0 and
iteratively add the next best weak learner, ft, by computing the Newton
update where g and H are the first and second derivative respectively of
LF with respect to f(vei, yi).

F(vei, yi)) <-- F(vei, yi) -
aLF±f

where g = ^
I
f=0af

a2LF,±f
and H = ^ i.fro9f2

g -= E 2(2yi — 1)(1 — p(y,^+
i= 1

E E[2(2g _ 1)(1 — p(Vilvei))P(gIvei)(1 — logp(Vilvei))1

— E 4p(yi Ivei)(1 — p(yi Ivei))(2yi — 1)2 +
^

(7.7)
i=1

H'
(7.3)

(7.4)

(7.5)

(7.6)
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Ce2 E E 4(2Vi — 1)2(1 — p(Vilvei))[p(Vilvei)(1 — p(givei)) +
i=N+1

logp(Ovei)]

E ziwi + E E ziwi
i=1

F^F (7.8)

E wi + E E wi
i=1^i=N+ 1 y,!

where

yi-0.5 if 1 <^< N eq.^(3.15)
P(Yilvei)

Zi =

{

(7.9)
(Vi-0.5)p(Vilvei)(1—logp(Vilvei)) eq. (4.7)

a[p(Vilvei)(1—P(Vilvei))-1-logp(Viivei)]^IL^<^11' 1v2

and

wi

P(Yilvei)(1 — P(Yilvei))^eq.(3.15)

a2(1 — P(Vilve1))[p(gIvei)(1 — P(gIvei))
1+ logp(g Ivei)] eq.(4.7)

if 1 <i <N

if N<i<M
(7.10)

At iteration t we get the best weak learner, ft, by solving the WLSE
problem in eq. (4.6).
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Chapter 8

Appendix B: Per-class
Average Accuracies

This appendix demonstrates the extended classification results of supervised
methods of chapter 3 and semi-supervised methods described in chapter 4.
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Class Average
MAP+all obs

Accuracy (%)
MAP+Boost VEB

Sitting 74.1 ± 5.2 84.8 ± 3.3 86.8 + 5.1
Standing 68.7 ± 4.6 84.2 ± 3.1 89.6 + 5.2
Walking 84.5 ± 3.1 89.7 ± 2.4 93.7 ± 3.8

Walking up stairs 74.2 ± 2.8 86.5 ± 1.9 95.3 ± 3.4
Walking-down-stairs 80.9 ± 2.5 85.3 ± 2.3 92.5 ± 2.4
Riding elevator down 76.3 ± 2.7 83.6 ± 1.5 95.1 ± 3.1

Riding elevator up 79.4 ± 2.2 84.7 ± 1.7 96.8 ± 1.9
Brushing teeth 84 ± 1.8 90.3 ± 1.3 98.2 ± 1.7

Table 8.1: Average accuracy per class and + 95% confidence interval of
supervised algorithms on activity datasets 1.

Class Average
MAP+all obs

Accuracy (%)
MAP+Boost VEB

Computer usage 88.1+ 3.6 88.6 ± 3.4 92.1 ± 4.4
Having meal 83.7 ± 2.5 89.2 ± 2.9 96.9 ± 4.9

Meeting 84.3 ± 4.2 85.1 ± 4.5 88.6 ± 5.6
Watching TV 85.4 + 2.9 86 + 2.7 92.7 ± 4

Sleeping 87.2 ± 2.1 87.9 ± 2.3 97.4 + 3.9

Table 8.2: Average accuracy per class and ± 95% confidence interval of
supervised algorithms on activity dataset 2.

Class Average
sMAP+all obs

Accuracy (%)
sMAP+Boost sVEB

Sitting 75.9 + 3.5 82.5 + 3.5 82.5+ 3.8
Standing 68.1 ± 4.2 77.4± 5.2 77.4 ± 5.7
Walking 75 ± 4.8 79.6 ± 4.6 79.6 ± 4.1

Walking up stairs 76.4 ± 2.1 84.2 ± 2.4 84.2+ 2.9
Walking-down-stairs 78.6 ± 2.2 83.9 ± 2 83.9 ± 2.5
Riding elevator down 75.2 ± 2.4 84.4 + 2.6 84.4 ± 3.1

Riding elevator up 78.7 ± 2.1 85.1 ± 2.9 85.1 + 3.2
Brushing teeth 83.1 ± 1.5 89.8 ± 1.4 89.8 ± 2.3

Table 8.3: Average accuracy per class and ± 95% confidence interval of
semi-supervised algorithms on activity dataset 1.
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Class Average
sMAP+all obs

Accuracy (%)
sMAP+Boost sVEB

Computer usage 75.4 ± 3.1 78.8 ± 2.5 81.6 ± 3.9
Having meal 72.9 ± 2.5 74.3 ± 3.2 90.9 ± 4.1

Meeting 71.3± 5.5 70.1 ± 4.8 84.5 ± 4.5
Watching TV 74.1 ± 4.3 73.9 ± 3.1 83.7 ± 5.1

Sleeping 80.6 ± 2.9 85.6 ± 2.4 94.9 ± 2.6

Table 8.4: Average accuracy per class and ± 95% confidence interval of
semi-supervised algorithms on activity dataset 2.
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