
OmniStream: Using Centralized Tree Management for
Incentives-Compatible Peer-to-Peer Media Streaming

by

Ankur Upadhyaya

B.Sc., University of British Columbia, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

October 2008

© Ankur Upadhyaya, 2008



Abstract

The ability to exploit Internet infrastructure to support the live delivery of
streaming media to large audiences would be of significant practical value. Existing
approaches to this problem, however, based on the use of P Multicast, commercial
content distribution networks, or costly bandwidth provisioning, are severely limited: IP
Multicast has seen only sparse deployment, while the latter two options are prohibitively
expensive for many content providers. In recent work, peer-to-peer media streaming has
been explored as an interesting alternative solution. Here, a server peer forwards a
stream to a number of client peers using basic unicast transmission. Clients receiving the
stream can then contribute their unused upstream bandwidth to forward the stream to
additional clients, who in turn can do the same and so on. In effect, the bandwidth
demands of a streaming session are distributed over the set of receivers; although each of
these collaborative end-hosts may have a low-capacity access link, together they
essentially “pooi” their upstream bandwidth to support large-scale streaming sessions.

Unfortunately, this cooperative approach to media streaming is vulnerable to the
inherent tension between selfish interests and collective welfare characteristic of peer-to-
peer systems. The potential prevalence of free-riding, whereby a peer consumes
bandwidth without adequate reciprocity, is of particular concern. Given the highly
sensitive throughput requirements of media streaming, the scalability of any peer-to-peer
approach would be severely limited by such uncooperative behavior. Although a handful
of mechanisms have been proposed to address this issue, they are limited either by their
reliance on “tamper-proof’ software - whereby they unrealistically assume that peers will
correctly follow a prescribed protocol even though it may be in their selfish interest to
deviate, or other practical considerations (e.g. slow responsiveness, instability). In this
thesis, OmniStream, a solution based on the centralized management of multicast trees, is
proposed to address the issue of free-riding in peer-to-peer media streaming, without
these limitations. The proposed protocol is evaluated through simulation experiments
representative of typical operational scenarios. The results obtained suggest the viability
of the proposed approach.

11



Contents

Abstract
. ii

Contents iii

List of Tables iv

List of Figures v

Acknowledgements vi

1. Introduction 1

2. Related Work 6

3. Design 17

4. Evaluation
43

5. Conclusions and Future Work 47

Bibliography
53

111



List of Tables

Table 4-1: Node Scores After 2500 Second Simulation 45

iv



List of Figures

Figure 3-1: Example MDC Architecture 18

Figure 3-2: Packetization of Embedded Bit Stream with FEC Data 20

Figure 3-3: Node Join Operation 24

Figure 3-4: Graceful Node Leave Operation 26

Figure 3-5: Ungraceful Node Leave Operation 27

Figure 3-6: Illustration of Net Contribution C(t) for a Hypothetical Peer 33

Figure 4-1: PDF of the Average Number of Descriptions Received 46

V



Acknowledgements

I wish to express my sincerest gratitude to my supervisor and mentor Dr. Son
Vuong. His constant encouragement, patience, guidance and wisdom throughout the ups
and downs of my research was invaluable. Most of all, I thank him for the considerable
trust and latitude he has given me over the course of my work; in allowing me the
freedom to explore and occasionally stumble down the many avenues I encountered
along the way, I have learned a great deal under his supervision.

I would also like to thank my friends in the Network and Internet Computing Lab
and the Distributed Systems Group. Their insightful perspectives and stimulating
influence has done much to further my research. I especially appreciate the contributions
of my second reader Dr. Charles Krasic; this thesis has benefited tremendously as a result
of his thoughtful feedback.

In addition, I gratefully acknowledge the generous financial support I have
received from the National Sciences and Engineering and Research Council of Canada,
the British Columbia Advanced Systems Institute and the Faculty of Graduate Studies.

Finally, as always, I am deeply thankful for the unwavering love, care and
support my family and friends have blessed me with throughout. Without them, this
thesis would never have been possible.

ANKUR UPADHYAYA

The University of British Columbia
October 2008

vi



To the memory of my loving grandmothers.

vii



CHAPTER 1

Introduction

As observed in [7], the vision of using the global Internet infrastructure to

support live media broadcasts from arbitrary content providers to arbitrary sets of

receivers has been an emphasis of networking research for well over a decade. (We note

that the term “live”, as used in this context, refers to the simultaneous distribution of the

same stream to multiple clients — the content itself may be live or simply the playback of

a file.) Such an Internet utility would have numerous advantages over traditional media

dissemination schemes (e.g. radio, cable, satellite). For examp’e, by making use of a

global network infrastructure, live Internet streaming would not suffer from the limited

geographical reach to which radio and television stations are often restricted. Further, by

making broadcast a common Internet utility and providing support for arbitrarily large

numbers of simultaneous streaming sessions, “channels” would no longer be limited to

those provided by a handful of wealthy content publishers. Finally, Internet broadcasts

can make more efficient use of infrastructure by only serving interested participants. We

note that the realization of this vision has also been given renewed impetus by a number

of recent technology trends, including: (1) the continued proliferation of broadband

Internet connectivity (e.g. Cable, DSL) — as of March 31, 2005 some 164.4 million

broadband lines were in use, this represents an increase of 8.5% over the previous figure

of 151.5 million lines just three months prior [29], (2) the rapidly growing popularity of

1



streaming media applications, as well as (3) the imminent ubiquity of multimedia capable

networked devices (cellular phones, personal digital assistants, video sensor networks,

etc.).

IP Multicast [10], a proposed extension to the Internet architecture, was

originally touted as a network-level (i.e. router-level) solution to the problem of

supporting live streaming to multiple clients. Unfortunately, in spite of the fact that ]P

Multicast has been implemented and is available in most routers today, this technology

has seen only sparse deployment as a result of a number of fundamental limitations [5].

First, in requiring routers to maintain state on a per-multicast group basis, IP Multicast

introduces undue complexity and serious scalability concerns. Second, experience has

shown that, unlike the unicast case, it is incredibly difficult to implement higher-level

transport layer functionality (e.g. flow, error and congestion control, security) on top of

the best-effort semantics provided by IP Multicast. Finally, the requirement for

infrastructure level changes has naturally delayed acceptance.

In the absence of U? Multicast, content providers may invest in high-capacity

infrastructure, or subscribe to a commercial content distribution network (CDN) - neither

option is cost effective. In the case of the former, we note that in the absence of network

support for multicast, the content provider’s server infrastructure — perhaps a single

machine, or a distributed cluster — must unicast a replica of the stream to each individual

client. Given the duration and high throughput requirements of a typical media stream - a

reasonable quality audio/video stream takes 350kbps to encode [8], this inefficient use of

bandwidth is highly problematic: while an insufficiently provisioned access link will not

be able to support large audiences, a higher capacity will be prohibitively expensive for

many potential content providers and even then, is not immune to being overwhelmed in

the event of a sudden surge in demand (i.e. a “flash crowd”). Commercial CDNs (e.g.

Akamai Technologies [2], Digital Island [12], Real Networks [32], Speedera Networks

[36], etc.) address this issue by maintaining a large, geographically-distributed network of

adequately provisioned servers and allowing content providers to subscribe to this

infrastructure. Unfortunately, the CDN model is inappropriate for many publishers. For

small- and medium-scale publishers, normal traffic levels rarely justify the cost of CDN

2



subscription. Further, as noted in [27], there is even increasing evidence that migration to
in-house server-farms may be more economical for large-scale publishers [23].
(Although not further explored in this work, we note that newly emerging approaches to
content distribution based on the use of cloud computing infrastructure — e.g. justin.tv [20]
— may represent a practical, cost-effective option.)

Peer-to-peer architecture presents an interesting alternative to the approaches
above. Under such a design, a server peer acting as a content provider forwards a stream
to a number of client peers using basic unicast transmission. Again, because a copy of
the stream is unicast for each client, a peer with a low upstream capacity access link will
only be able to directly service a relatively small number of client peers. Nevertheless,
client peers receiving the stream can in turn use their unused upstream bandwidth to
forward the stream to additional clients, who in turn can do the same — with this
hierarchical forwarding scheme potentially continuing over any number of levels and
encompassing arbitrarily large numbers of participants. In effect, the bandwidth demands
of a streaming session are no longer concentrated at the content provider but rather, are
distributed over a set of collaborative end-hosts. Although each of these individual end-
hosts may have low-capacity access links, they effectively “pool” their upstream
bandwidth to support large-scale streaming sessions. In short, a peer-to-peer approach
allows bandwidth to scale with demand — live broadcasts to large audiences are possible
without prohibitive investments in infrastructure.

The notion of peer-to-peer media streaming has stimulated a flurry of recent
research activity. Numerous architectures have been proposed and/or implemented, some
examples of which include: End-System Multicast (ESM) [5], CoopNet [27], PROMISE
[17], SplitStream [4], ZIGZAG [39], P2P-TV [30], Peer-to-Peer Receiver Driven
Overlays (PRO) [33], PeerCast [28], GnuStream [19], PeerStreaming [24], oStream [9],
Dagster [25], PPLive [31], as well as numerous other frameworks [3, 11, 42]. Of these,
few have seen any appreciable practical deployment - clearly, significant research
challenges remain.

At least one major class of problems arises from the fact that while peer-to-peer
media streaming depends on peers using their upstream bandwidth to forward data, it is

3



unreasonable to expect that they will obediently behave as routers. Rather, these peers

are end-user software processes and as such, may implement a variety of uncooperative

behaviors. Although the space of possible such behaviors is large, experience in the peer-

to-peer file sharing domain indicates that the phenomenon of “free-riding”, whereby a

peer consumes resources without contributing an equal of greater amount, is of particular

concern. Measurement studies of the Gnutella file-sharing system have shown that fewer

than 30% of users contribute any resources at all and that the majority of downloads are

serviced by only 1% of hosts [1]. Game-theoretic analysis of such systems has also been

used to show that free-riding is to be expected as a naturally emerging effect, as well as to

conjecture that the prevalence of such behavior increases with the scale of a system [14].

While file-sharing is possible under such tenuous conditions, peer-to-peer media

streaming, with its considerably more sensitive bandwidth requirements, would likely

collapse — a fact that has been verified in simulation [15].

Despite extensive exploration of the free-riding problem in the context of file-

sharing, only a handful of studies relevant to streaming are available — none of which

present a comprehensive solution. Many of the anti-free-riding incentive mechanisms

outlined in this previous work (e.g. [6, 8, 14-16]), assume the use of “tamper-proof”

proprietary software, which in turn, ensures that peers adhere to the distributed protocol

used to realize the mechanism. Clearly, however, this assumption is unreasonable in the

case of a widely deployed Internet streaming utility — on such a large scale, the

implementation of peers that deviate from the prescribed protocol for selfish gain must be

anticipated. Mechanisms that do not rely on the assumption of tamper-proof software are

presented in [26] and [35]. While the details of these schemes are deferred to the

following chapter, we note that the first forces a tradeoff between high protocol overhead

and slow responsiveness to free-riders - and further, breaks down when free-riders exhibit

even a limited degree of sophistication (e.g. free-riding only sporadically) — while the

second is susceptible to a high degree of instability.

In this thesis, OmniStream - an extension of the CoopNet [27] peer-to-peer media

streaming framework - is developed to address the free-riding problem. In the proposed

scheme, a single media stream is encoded as a number of sub-streams, also referred to as

4



“descriptions”, such that a client receiving some non-empty subset of these sub-streams

can at least partially reconstruct the original stream, with higher quality being achieved as

more descriptions are used. Each sub-stream is then disseminated along an application-

level multicast tree whose topology is directed by the content provider. By centrally

managing the overlay, the content provider has complete knowledge of its topology and

so, can determine the contribution-level of each client simply by counting how many

descriptions it is consuming and how many it is forwarding. With control of the overlay

topology, the content provider can also determine the quality of service enjoyed by each

peer, by manipulating the number of multicast trees it is granted membership to - and

hence, how many descriptions it is able to receive - as well as its distance from the root in

each of those trees. By ensuring that peers demonstrating good behavior over time are
incorporated into the multicast trees with greater priority, OnmiStream is able to
neutralize the damaging effects of free-riders. As OmniStream only depends on the
content provider’s direct knowledge and control of the overlay topology t accomplish

this, it suffers from neither a requirement for tamper-proof software, nor poor
responsiveness.

The remainder of this thesis is organized as follows. Chapter 2 surveys relevant
previous research, outlining a number of mechanisms specifically aimed at ensuring fair
upstream bandwidth contributions in a peer-to-peer media streaming environment. A
detailed specification of the OmniStream framework is provided in Chapter 3. In Chapter
4, the simulation setup used to evaluate this scheme is described and the experimental
results obtained are presented and discussed. Finally, Chapter 5 concludes this thesis and
outlines some potential avenues of future research.

5



CHAPTER 2

Related Work

The sub-sections below survey the available research into the design of

mechanisms encouraging cooperative behavior in peer-to-peer media streaming

applications. Existing schemes are presented in detail, as an understanding of certain

salient features is required to identify their limitations and later develop the mechanism

proposed in this work.

2.1 Rank-Based Peer Selection

In [14-16], a mechanism that encourages cooperative behavior by ensuring that
peers with greater levels of contribution enjoy higher-quality downloads, is introduced.
Under this scheme, implemented as an extension to the PROMISE streaming system [17],
the contribution-level of a peer (i.e. contribution in terms of upstream bandwidth and

possibly disk storage) is mapped to a score that determines the relative ranking of that
peer in the system. Peers with higher rank are given more flexibility in peer selection by
requiring that participants always accommodate service requests from a higher-ranking
counterpart; thus, more generous contributors have a wider range of choices available to
them when selecting their upstream parent(s). Given that the quality of a streaming
session is very much dependent on the characteristics of streaming sources (e.g. upstream

6



capacity, offered rate, availability) as well as the dynamics of the network paths from
these sources to the receiver (e.g. packet loss rate, overlap of multiple paths from senders
to the receiver, available bandwidth), this greater power in selection translates into
higher-quality reception.

In this scheme, it is assumed that peers are strategic and so choose their
contribution-level x = x so as to optimize an individual utility function U1(x):

U1(x,) =a1Q(R(S1(x1)))—b1C(x1)

Here, x is some abstract characterization of contribution-level, C1(x,) and Q(R1(S(x))
represent the cost incurred and quality of service enjoyed, respectively, by peer i with
contribution-level x, and a and b are appropriate scaling constants. With the ability to
compute the function above, a peer can determine its optimal contribution-level, thus
enabling operation of the proposed incentive mechanism — the specifics of the calculation
of U(x1) are provided below.

C,(x) can be any monotonically non-decreasing representation of cost versus
contribution-level — for example, C(x,) = CT T, D, where CT iS a unit transmission cost and
T, and D, are the transmission rate and duration, respectively, of i. S(x,) must be a
similarly non-decreasing function that maps x to a score — if B1,, and B0,1 represent the
number of bytes uploaded and downloaded, respectively, by peer i, them some legitimate
options include: S(x) = S(x1) = — or S1(x) = B01,1 / Scores may also
be subject to a periodic decay factor, thus encouraging consistently good behavior.

R(S1(x1)) is the cumulative distribution function (cdf) of scores in the system,
mapping the score of peer i to a percentile rank in the range [0,1]. In the absence of
global information, a peer must approximate R1 by sampling a sufficiently large number
of user scores — perhaps gathered through the passive monitoring of service requests
containing score information. In [15] it is shown that the number of samples required to
obtain reliable transmissions is bound by the variance of scores and not population size,
thus allowing for a manageable sampling overhead even with large populations.

Finally, Q’(R1(S(x1))maps the percentile rank of peer ito the expected quality of
service (QoS), quantified as a number in the range [0, 1], representing the fraction of all
packets that are received on time. While the exact specification of this function may vary,

7



it must always satisfy three conditions to serve its purpose of allowing a node to

determine its optimal contribution-level. First, it should asymptotically approach QMAX,

representing the highest level of quality that may be delivered by the system. Second, it

should be monotonically non-decreasing in percentile rank and therefore, user score as

well. Finally, it should have a non-negative initial value QBE = Q1(R(S(x1) = 0)),

representing the “best-effort” service received by free-riders or newcomers that have not

yet had the opportunity to accumulate a score. Note that this best-effort QoS level is

entirely based on whatever service idle peers are willing to provide out of “charity” for

users with scores and therefore ranks, less than their own. In [15], Q(R(S(x)) is defined

as a simple linear function fitting empirical observations of quality versus percentile rank.

In [15], both simulation and wide-area experiments confirm the effectiveness of

the approach above. The association of contribution-level and utility imposed by the

incentive mechanism ensures greater participation by strategic peers, thereby increasing

the capacity of the broadcast overlay and reducing the disproportionate burden otherwise

placed on the small number of naturally occurring altruistic peers.

Nevertheless, a serious limitation of this work is its reliance on an implicit

assumption that participants will not attempt to unfairly benefit by tampering with the

client-side software that implements the incentive mechanism. Specifically, it would be
trivial for a rogue client to bypass the mechanism altogether by reporting inflated scores,

or simply denying service requests from higher-ranking peers. While [15] attempts to
address this issue with such suggestions as weighing the information provided by another

peer based on the extent to which that peer is trusted, or making use of a security

infrastructure such as EigenTrust [21], the subjectivity of these solutions renders them

inexact at best.

2.2 Taxation and Altruism

Another mechanism imposing a relationship between higher contribution levels

and superior throughput is introduced in [8]. This approach is based on a metaphor of
taxation — in effect, the bit-rate r received by a peer I is interpreted as an “income” on

8



which a “tax” off - the upstream bandwidth i contributes to the overlay — must be paid.

By imposing a taxation scheme such that f > r1 for all peers with sufficient upstream

capacity, resource-rich peers effectively contribute surplus “public wealth” (i.e. excess

bandwidth) that can then be redistributed to (i.e. consumed by) resource-poor peers. In

effect, cooperative behavior is achieved and social welfare (i.e. system-wide utility) is

maximized.

A simple linear tax schedule is used - this schedule is characterized by two

parameters: (1) a tax rate specified by the publisher, t and (2) the demogrant, G, a

parameter dynamically inferred from the peer environment that represents the minimum

bit-rate all peers receive regardless of their contribution. The tax rate t is used in the

formula r1 = f,It that specifies the entitled bandwidth of a peer i based on its

contributionf to the broadcast overlay. Essentially, r1 is the downstream bandwidth that

peer i has rightfully “earned” by contributing a forwarding bandwidth off. Equivalently

- using the taxation metaphor - a peer with an entitled income of r1 must pay a tax off.

Note that when t> l,f> whenf >0 andf r$ whenf 0. Thus, assuming we have

N peers numbered 1 to N, at least one of which contributes f > 0, we have:

f1 —r, >0

This non-zero difference, called the “demogrant pool”, corresponds to bandwidth that has

been contributed to the broadcast overlay but is not “used up” in providing peers with

their entitled bandwidth. Once all entitled bandwidth has been allocated, it is this surplus

that is evenly distributed among all peers in the form of the demogrant G.

While the bandwidth allocation method for the proposed taxation scheme is

conceptually defined above, an actual distributed protocol is needed to implement it. The

protocol used in [8] is based on a modified version of the multiple disjoint tree technique

introduced in [4, 27]. In the original specification of this technique, the source splits the

stream into k equal “stripes” and multicasts each using a separate tree. These k trees, in

turn, are formed by having each peer select one tree at random and joining it as an

9



interior node and then joining the remaining k — I trees as a leaf node. In this way, each

peer contributes forwarding bandwidth in the one tree where it is an interior node and

receives bandwidth from all of the trees it joins. Assuming that each stripe has a bit-rate

of v, a peer i can contributef simply by having a fanout off/v in the tree where it acts as

an interior node. Similarly, to receive a bit-rate of r, it must join rIv trees.

Unfortunately, the basic multiple disjoint tree approach is not adequate on its

own. While a peer i can determine f, based on its self-interest and can easily derive r4

from f, using the tax rate t, the value of r, depends on the demogrant G, which is a

dynamically changing parameter based on global information. In order to obtain G and

thus compute r, and determine the number of trees (r/v) to join, the protocol must be

extended to infer G in a distributed, online fashion.

In [8], two techniques are employed for the determination of G: (I) priority and

(2) preemption. The first simply consists of each peer assigning a priority value for each

of the trees it joins, with the first r/v joins (i.e. those that i uses to claim its entitled

bandwidth) being labeled with the highest priority (priority = 0) and all subsequent joins

(i.e. those used to claim i’s share G of the demogrant pool) being labeled with decreasing

priority (priority = 1, 2 and so on). The second technique, preemption, ensures that a join

request of higher priority is never rejected at the expense of a request with lower priority.

Specifically, if the fanout bound of an interior node is reached, a peer with higher priority

can preempt the service of one with lower priority, thus ensuring that peers accepted into

the tree always have a higher priority than those rejected. In this way, we guarantee that

(1) all entitled bandwidth is claimed before demogrant (as a join request of priority 1

cannot be accepted at the expense of one of priority 0) and (2) that the demogrant pool is

distributed evenly (as a join of priority n + 1, where n + 1 > 1, cannot be accepted at the

expense of one of priority n).

While extensive simulation experiments in [8] bear out the effectiveness of this

approach in ensuring cooperative behavior, it nevertheless suffers from the same

contradiction as the rank based peer selection mechanism discussed in the last section.

Specifically, it is assumed that a peer i will adhere to the rules of the taxation mechanism,

joining only rJv trees (where r, = r1 + G) and contributing a forwarding bandwidth of f,

10



by serving as an interior node with a fanout off/v in one multicast tree. Unfortunately,

there is nothing preventing a participant from achieving a very high utility by using a

peer that implements a malicious variant of the protocol in which all k trees are joined

without contributing any bandwidth.

2.3 Tit-for-Tat Punishment

In [26], a “tit-for-tat” strategy, in which uncooperative behavior is discouraged

by identifying and directly retaliating against free-riders, is introduced and represents a

first serious attempt at a truly incentives-compatible peer-to-peer streaming system, free

of any reliance on the assumption of tamper-proof software. This scheme employs a

number of mechanisms that allow a peer to identify free-riders, while only relying on its

own first-hand observations. By using these mechanisms alongside periodic, random

multicast tree reconstructions in which a peer A downstream of a peer B in the current

tree will, with very high likelihood, be upstream of B in some future tree, it is ensured

that A will be in a position to retaliate against B by providing it with a degraded quality of

service Q0S, should it identify B as a free-rider. Although the techniques for identifying

uncooperative peers and retaliating against them are presented as an extension of

SplitStream [4] - an application level multicast service that is implemented over the

Pastry [34] P2P routing substrate and makes use of the same multiple disjoint tree

structure discussed in Section 2.2 - they can easily be applied to a broad selection of tree-

based multicast systems.

Four mechanisms, to be used in combination, are proposed for the identification

of free-riders: (1) debt maintenance, (2) parental availability tracking, (3) reciprocal

requests and (4) ancestor rating. Again, in all of these, difficult issues of trust are

avoided by only requiring a peer to base its judgments on its own first-hand observations.

In debt-maintenance, whenever a peer A forwards a packet to a peer B, such that B is an

immediate child of A in a multicast tree, both nodes note that B owes A a debt of one

packet. As noted in [26], if trees are constructed in a random fashion, A and B can expect

to be the parent of the other with equal frequency and under such circumstances, the

11



expected average accumulated debt will vary with the square root of the number of tree
reconstructions. The “debt level” metric tracked by both of these peers is thus defined as
the total accumulated debt divided by the square root of the number of reconstructions. If
the debt level that A has for B, or vice versa, increases beyond a certain experimentally
determined threshold, A can identify B as a likely free-rider and deny it service until this
debt is reduced.

The next mechanism, parental availability tracking, allows a peer A to classify a
peer B as either a normal or free-riding node based on B’s past history of accepting or
rejecting A’s requests to be a child of B. When a peer A’s request for service from a
prospective parent B is rejected, it may be due to the legitimate reason that B is already
serving the maximum number of children that can be supported by its upstream capacity.
If, however, after numerous tree reconstructions B demonstrates an unduly high
frequency of such rejections, A can identify it as a free-rider and deny it service. Note
that what constitutes an “unduly high frequency” of rejections is very much a function of
the multicast tree construction scheme used.

Reciprocal requests can be viewed as an extension of parental availability
tracking. Assuming that tree reconstructions select new topologies in a random fashion,
two well-behaved peers A and B would expect to be parents of each other with equal
frequency. Thus, if a large disparity were to develop over time in the frequency with
which A was the parent of B, versus the frequency of the reverse, the disadvantaged peer
(say A) could reasonably expect that the other was a free-rider. Rather than denying the
suspect node service, however, A could test its hypothesis by at some point deviating
from the standard join protocol and explicitly requesting to be a child of B. If B were to
reject A, then it could be identified as a free-rider with high-probability, otherwise, A may
assume that the earlier imbalance in its relationship with B occurred by chance.

In ancestor rating, each peer maintains a confidence value for every peer that has
ever served as an ancestor for it in a multicast tree. When a node successfully receives a
packet, it increments its confidence level in each of the peers on the path up to and
including the root of the given tree. Should the peer fail to receive a packet for a stream
within the required window of time, its confidence in each of the peers is reduced.

12



Furthermore, these confidence values are periodically decayed, thus encouraging peers to

consistently behave in a cooperative fashion.

Clearly, the form of “collective punishment” used in ancestor rating will falsely

assign blame to normal nodes in the event that they are on a path containing a free-rider,

or along which any number of “natural” packet losses have occurred. Nevertheless,

assuming that free-riders do not make up an overwhelming fraction of the participants

and that packet losses are relatively infrequent, this effect would be corrected for after the

cooperative behavior of normal nodes is observed with subsequent reconstructions. The

confidence levels for free-riders, however, would be consistently degraded thus allowing

for them to be targeted.

Simulation experiments in [26] demonstrate that a combination of the incentives-

compatible mechanisms outlined above can be used to identify and punish free-riders —

after a sufficient number of tree reconstructions, free-riders were able to receive only

10% of the published stream. In spite of these results, the effectiveness of this approach

remains questionable for several reasons. First, the simulations exposed very slow-

responsiveness to free-riding behavior — the bandwidth consumed by selfish peers was

only gradually reduced to 10% of the published stream after hundreds of tree

reconstructions. While this problem may be somewhat alleviated by increasing the

frequency of tree-reconstructions, this would significantly increase protocol overhead —

illustrating an unfortunate inherent trade-off. Second, even though uncooperative peers

were only able to receive 10% of the published stream, this may represent a significant

fraction of the total capacity of the system if the proportion of free-riding peers is

sufficiently large. Without some provision for ensuring that a free-rider could not

attempt to join under several separate pseudonyms, it is also conceivable that the small

fractions of the stream received under multiple pseudonyms could be pieced together to

obtain a reasonable Q0S-level — thereby circumventing the incentive-mechanism

altogether. Third, an overly simplistic model of free-riding behavior was employed — it

was assumed that free-riders are consistently uncooperative. A more sophisticated

offender that only sporadically misbehaved would able to evade detection by the

mechanisms above to at least some degree. Finally, the successful results generated

13



were for specifically tuned values of the parameters characterizing the mechanisms used

— it was by no means demonstrated, however, that a single, static set of values for these

parameters could be effective across a range of streaming scenarios.

2.4 Market Quotes

In [35], a “Bazaar Framework” is introduced - as with tit-for-tat punishment and

unlike some earlier approaches that attempt to address the problem of free-riding through

the imposition of artificial, rule-based mechanisms, this represents a second serious

attempt at an incentives-compatible solution. In this work, it is observed that natural

incentives for cooperation exist for selfish, utility-maximizing peers in the peer-to-peer

media streaming domain and these may exploited. Consider, for example, a system with

a “root” streaming server R , with an upstream capacity of 400kbps and four client peers

A, B, C and D, each with an upstream capacity of 200kbps and a downstream capacity of

400kbps. If each of the client peers behaves in an uncooperative fashion — i.e. connects

directly to R and refuses to forward any streaming data — then R’s upstream capacity will

be divided four ways and each client will receive data at only 100kbps. By cooperating,

however, these peers can double the throughput they receive — R can stream to A and B at

200kbps and these clients, in turn, can forward 200kbps streams to C and D, respectively.

Clearly, in a system with sufficient competition for a server’s upstream capacity, selfish

peers should have an incentive to cooperate and peers will seek to optimize their

individual utilities by making whatever tradeoffs are needed between maximizing

received throughput and minimizing the upstream bandwidth used.

The Bazaar Framework consists of three elements: (i) the root, (ii) the client

peers and (iii) the Boot Strap Entity (BSE). The root is the server that publishes the

stream — it contributes a fixed portion of its upstream capacity that is evenly divided

among all clients directly connected to it. The client peers are the consumers of the

streaming content and may either be altruistic, in which case they use as much of their

upstream capacity as possible to forward streaming data, or selfish, in which case they try

to maximize some utility function that increases with the throughput received and

14



decreases with the fraction of upstream bandwidth donated to the streaming overlay.

Finally, the BSE is a central repository of information about the nodes in the system that

bootstraps peers joining the system. The BSE maintains a quote repository that contains

a “market-quote” for each peer in the system — this quote is “advertised” by the peer to

the BSE when it joins and consists of three elements: (i) some peer identifier (e.g. an IP

address and port number), (ii) the bandwidth that the peer is willing and able to provide

to a client that joins as its immediate child in the overlay and (iii) some indication of the

latency incurred along the overlay from the root to the peer.

In the Bazaar framework, a streaming session is initiated by the root R

advertising its market quote (RId, Rb, Riat) to the BSE — here Rd is the identifier for R, Rb
is the upstream bandwidth R is willing to contribute to the overlay and Ria, is the

associated latency. Clearly, Riat = 0 as R is the root itself and for the sake of discussion

we will assume that RbW = 400kbps. When a client peer A joins the overlay, it will query
the BSE for the set of market quotes and receive the entry (RId, Rb, Riat), as this is the

only entry in the system, A will send a join request to R and then begin receiving the

stream at the advertised rate of Rb = 400kbps. As R now has a child, it must publish a
revised market quote to the BSE — the quote repository will now contain the advertised

rate of RbW = 200kbps, as the next peer that joins as a child of R will have to split the

400kbps that R is willing to contribute with A. Once A has begun receiving streaming

data, it may or may not choose to publish a market quote (Aid, Ab, Ajar) of its own to the

BSE. Although A’s behavior is entirely determined by whatever utility function best

characterizes its circumstances, it presumably has a strong incentive to publish a market

quote that is competitive with that published by R, as should a new peer elect to join as a
child of R instead of A, the throughput received by A will be sharply reduced from
400kbps to 200kbps. As A has to compensate for the fact that Ajar> Riar, a competitive

quote will contain a value for Ab,., such that Abs., > Rb.,. Nevertheless, Ab. may be
substantially less than A’s upstream capacity — if A is a selfish peer, it will try to select
the lowest possible value of Ab. sufficient to discourage any newcomer from splitting the

capacity of its parent.

15



The scheme outlined above is supplemented by a “shuffle” mechanism that

allows for a peer willing to increase its offered bandwidth to initiate an appropriate

adjustment of the overlay. Consider a streaming session in which the root peer R is

dividing a 400kbps upstream capacity evenly among two client peers A and B, each

initially deciding to forward no data. Realizing that it can receive B’s share of R’s

bandwidth, A can initiate a shuffle operation by sending a market quote to R that it is

specifically directed to B - R will then forward this offer to B. This local quote will have

to contain a value Aba, that is sufficiently higher than the 200kbps currently enjoyed by B

in order to be palatable, say Ab = 300kbps. If B determines that it can increase its utility

by accepting the proposed arrangement it will then detach from R and rejoin the overlay

as a child of A, thereby completing the shuffle. Now, A will receive 400kbps from R and

forward 300kbps to B, increasing the quality enjoyed by both clients. While the Bazaar

framework described in [35] implements the Shuffle-i operation described above — i.e. a

shuffle that involves clients on the same level of the streaming tree — a Shuffle-k

operation, involving multiple peers spanning k levels of the tree is conceivable.

Unlike the tit-for-tat approach, the Bazaar framework seems to effectively ensure

cooperation in the presence of selfish peers. Simulation experiments in [35] demonstrate

that high-levels of cooperation and thus throughput and system-wide utility, are achieved

across populations composed of varying mixtures of selfish and altruistic peers,

possessing a range of upstream capacities and making use of several permutations of join

order. A limitation of the framework, however, is that its dependence on the use of a

single tree leaves it susceptible to a high-degree of volatility in the throughput received

by participating peers. As the upstream capacity of a peer is evenly divided among its

children, a join operation will always have a significant impact on any siblings. This

problem is magnified by the fact that the ability of a peer to provide the bit rate promised

in its market quote may directly depend on the ability of all of its ancestors in the overlay

tree to meet the Q0S parameters promised in their quotes — thus, a local degradation can

ripple down the sub-tree rooted at an affected peer, without any mechanism in place for

cleanly restoring the overlay.

16



CHAPTER 3

Design

In this chapter the design of an incentives-compatible peer-to-peer media

streaming protocol is presented — this approach attempts to address the shortcomings of

earlier schemes, as identified in the preceding survey. The protocol developed is based

on a novel extension of the CoopNet [27) system, a peer-to-peer media streaming system

that employs the multiple-disjoint tree approach referenced in Chapter 2. Specifically, in

CoopNet, a content provider divides its media stream into multiple “stripes”, or

“descriptions”, each consuming an equal amount of bandwidth and disseminated along a

separate multicast tree composed of client peers. The membership and topology of each

multicast tree is determined by a centralized algorithm run by the content provider and

the number of stripes — or equivalently, the quality of the media stream - received by a

client, depends on the number of multicast trees that it participates in. Recognizing that

the tree management algorithm used thus has complete control over the quality of service

received by each peer, this work replaces the simple algorithm employed by CoopNet

with one that enforces a clear correlation between the contribution level of a peer and the

quality of service it enjoys, thereby incentivizing cooperative behavior and penalizing

free-riders.

The remainder of this chapter is organized as follows. In Sections 3.1 and 3.2,

respectively, the notions of striped transmission and centralized tree management are

17



discussed — as they form the basis of the CoopNet system they are central to the approach

developed in this work and so, are presented in further depth here. Finally, in Section 3.3,

a tree management algorithm that relates quality of service and contribution in an

incentives-compatible fashion is introduced.

3.1 Striped Transmission

To present the central notion of striped transmission in more concrete terms, the

particular “Multiple Description Coding” (MDC) scheme employed by CoopNet is

presented here in further detail. As shown in Figure 3-1 (adapted from Figure 3 of [27])

the CoopNet MDC architecture consists of four logical components: the Prioritizer, Tree

Manager, Optimizer and Packetizer.

Figure 3-1: Example MDC Architecture

The points below summarize the operation of these components in producing

separate descriptions from a single media stream. For the sake of discussion, it will be

assumed that a video stream — i.e. a sequence of frames — is being processed.

Step 1: The prioritizer consumes the input stream from an appropriate codec, ingesting

one “group of frames” (GOF). Each GOF represents a contiguous segment of the

18



video of duration T — typically T 1 second — and does not overlap with any

other GOF.

Step 2: The priontizer partitions the GOF into a collection of data units. Each data unit

is annotated with rate-distortion information that specifies how much the

information in that particular unit can contribute to a reduction in distortion when

reconstructing the GOF. This rate-distortion information is then used to sort the

data units in order of decreasing importance — i.e. those units that most contribute

to a reduction of distortion appear first. The resulting sequence of bits is called

an “embedded bit stream” and is sent to the packetizer. The prioritizer also uses

the rate-distortion information to produce a “rate-distortion” (RD) curve that is

fed to the optimizer. This RD curve essentially specifies a function D(R) that

gives the distortion that would result if only the first R bits of the embedded bit

stream were available to reconstruct the original GOF. Thus if 0 = R0 R1 ...

RM, where RM is the total number of bits in the embedded bit stream, then D(R0)>

D(R1): ... D(RM).

Step 3: The tree manager computes the function p(m), which gives the probability that a

client will receive in of the complete set of M descriptions for a GOF and feeds

this function to the optimizer. This probability density function is determined

and continuously updated by the tree manager using statistics reported by the

clients. Over a streaming session, each client maintains a histogram of the

number of descriptions it receives per GOF and periodically reports these
statistics to its parent in a tree designated for this purpose. The parent then adds
the histograms received from its children to its own and passes the result to its
parent and so on. By recursively continuing this process from the leaves to the

root peer running the tree manager, a histogram incorporating statistics for all of
the clients is available and can simply be normalized to obtain p(m).

Step 4: The optimizer uses the RD curve and the probability density function p(m) to

determine the optimal “Forward Error Correction (FEC) profile” for the GOF.

The FEC profile consists of a set of points R0, R1, ... RM, where R0 < R, < ... RM

19



and M is the number of descriptions to be used, that partition the embedded bit

stream. This partitioning is such that any bits in the range [R11, R1) are mapped to

i source blocks and M i FEC blocks, generated using Reed-Solomon encoding

[41]. By distributing these source and FEC blocks across M packets, any in of

these M packets can be used to obtain the first Rm bits of the embedded bit stream.

This is illustrated in Figure 3-2 (adapted from Figure 2 in [27]). Note that with

the probability function p(rn) from the optimizer and the RD curve providing the

rate-distortion function D(R), the optimal values of R0, R1, ... RM can easily be

computed as expected distortion is given by the formula:

p(m)D(R)

Embedded Bit Stream Partitioned Using FEC Profile

R0 R1 R2 A3 RM, RM

I k I I I I

Source Block for
Partition [R0,R1)

t;!::::!:1.!ilI1

iari

//III

Figure 3-2: Packetization of Embedded Bit Stream with FEC Data

FEC Blocks for
Partition [R0,R3)

Packet 1

Packet 2

Packet 3

Packet 4

Packet M

20



Step 5: Using the embedded bit stream and the FEC profile, the optimizer produces M

packets for the GOF, writing the GOF number in the header of each. Each of
these M “descriptions” is then distributed to the participating clients over the
appropriate end-host multicast trees (different descriptions may be disseminated

over different trees).

Step 6: Listening on the end-host multicast trees for the descriptions, a client will receive

m M packets for the GOF and FEC-decode them to obtain the first Rm bits of

the embedded bit stream. With this information, the client can then reconstruct

the GOF with a distortion of D(R1).

Step 7: Repeat from Step 1 until there are no further GOFs to be ingested.

Although many alternatives to the striped transmission scheme outlined above
are available, as surveyed in [13], the protocol proposed in this work is agnostic to the
mechanism used, so long as two requirements are satisfied: (i) a client should be able to
decode any subset of stripes and (ii) the quality enjoyed by a client should strictly be a
function of the number of stripes received.

As a final aside, it should be noted that in addition to enabling the protocol
proposed in this work by allowing the quality of service a peer receives to be controlled
by publishing a particular number of descriptions to it, striped transmission offers several
other advantages over the use of a single media stream. First, by distributing a
transmission across several descriptions along separate multicast trees and allowing a
client peer to at least partially reconstruct the transmission with any subset of these
descriptions, striped transmission offers greater robustness in the face of peer transience.
With a single multicast tree, a node failure or departure will result in all clients in the
affected sub-tree losing reception altogether until the overlay can be repaired. With
striped transmission along several trees, however, only the reception of those descriptions
for which the lost peer was an interior node in the corresponding multicast tree will be
affected — this effect is considerably mitigated by the fact that (a) the reception of the
remaining descriptions will still allow for at least part of the original transmission to be

21



recovered and (b) an intelligently designed tree management algorithm will ensure that
each peer is an interior node in as few multicast trees as possible.

Second, striped transmission allows for network load to be more evenly
distributed among participants in the overlay. As noted in [27], a single, balanced
multicast tree with fanoutf and height h will have! leaf nodes butf -l i — 1 interior
nodes and thus, the fraction of leaf nodes to interior nodes will increase linearly with f.
As it is only the interior nodes that contribute upstream bandwidth in an end-host
multicast scheme, this imbalance places a disproportionate burden on a few nodes and
limits the capacity of the system. The use of multiple trees, however, will of course
alleviate this burden by allowing a greater number of clients to participate as interior
nodes.

Finally, striped transmission allows the upstream capacities of participating peers
to be better leveraged in spite of their considerable heterogeneity in this regard - while a
single large stream will prevent peers with insufficient upstream capacity from
contributing any bandwidth to the overlay, a transmission divided into sufficiently
“narrow” stripes will allow even resource-poor peers to at least forward some subset of
stripes.

3.2 Centralized Tree Management

As discussed earlier, both CoopNet and the extension presented in this work,
make use of centralized tree management. In particular, the root peer is responsible for
determining the topologies of the dissemination trees to be used and ensuring that
participating peers are efficiently organized into an overlay reflecting this structure. A
key advantage of centralized tree management is the control it affords the content
provider - by giving the root peer complete control over the topology of the streaming
overlay, it is empowered to determine the quality of service received by each
participating peer; further, with knowledge of the topology used, the root has an
omniscient view of the levels of bandwidth contribution and consumption for each of the
various participants. Recall, that the effective throughput received by a peer is
determined by the number of stripes that it receives and hence, the number of

22



dissemination trees it is a member of - also, the reliability with which a peer receives

these stripes is determined by the number and stability of its ancestors in these various

trees. Likewise, the bandwidth contributed by a peer is determined by the number of

children it services in the overlay. This centralized control and oversight forms the basis

of this work — a tree management algorithm that observes cooperative behavior and

rewards it with topologies more favorable to contributors. Another key advantage of

centralized tree management is its simplicity, which ensures that the overlay can be

efficiently maintained; as will be later discussed, a graceful join or leave operation only

requires that the arriving or departing node inform the root and that the root appropriately

updates other affected nodes, all of which can be accomplished within two network

round-trip times (RTTs) [27].

Two arguments against the centralized design proposed are that placing the entire

management burden on the root inherently limits scalability and that, in this way, the root

constitutes a single point of failure [27] — fortunately, these concerns are easily

addressed. Indeed, the system is limited by the bandwidth, Cpu and memory resources

of the root on which the tree management algorithm is run. In terms of bandwidth,

however, this central bottleneck only applies to a relatively insignificant load of control

traffic used to manipulate the topology of the overlay — with respect to the bandwidth

requirements of the actual media stream being distributed, however, the system still

scales with demand. In terms of CPU and memory, the extent to which a central

bottleneck raises scalability concerns depends entirely on the tree management algorithm

implemented. Experimental results for the algorithm implemented by CoopNet,

however, indicate that a range of centralized schemes should be feasible — in [27], it was

noted that simple 2GHz Mobile Pentium 4 could handle a population of over 10000

nodes, with 400 joins and leaves per second. Finally, the latter argument, identifying the

root as a single point of failure, is not of concern as given that the media stream will

typically originate from the root alone, the system will suffer from a central point of
failure irrespective of the tree management scheme used.

In any centralized approach, the root must support a set of basic primitives for

constructing and maintaining the overlay as nodes join and leave the system — the

23



subsections below detail the join, leave and repair operations implemented for the

CoopNet framework. It should be emphasized that these primitives are agnostic to the

underlying tree management algorithm employed — they can be used to implement any

number of policies. For this reason, while originally implemented for the CoopNet

system, these primitives are used by the system proposed in this work without

modification.

3.2.1 Node Join

When a new peer wishes to join a streaming session, it sends a join request

message to the root peer — i.e. the content provider. Using its tree management

algorithm, the root can then determine which, if any, peers already participating in the

overlay will serve as parents of the new node; of course, the peer will be assigned at most

one parent in the dissemination tree for each stripe. Figure 3-3 provides an example of

this operation.

Join
EEE

Figure 3-3: Node Join Operation

Here, the root peer R disseminates two stripes — one along the multicast tree

rooted at Pi and the second along the tree rooted at p3. A new peer N wishing to join the

2

24



streaming session will start by sending a join request to R — shown with the thin arrow

from N to R labeled 1. Through its tree management algorithm, R determines that it

would like N to join the tree for the first stripe with p as its parent and to join the tree for

the second stripe with p, as its parent. To modify the overlay accordingly, R sends a

message to 3 indicating that it must pass the first stripe to N, a message to Pi indicating

that it is to forward the second stripe to N and finally a message to N indicating that it

will be receiving these stripes from Pi and p3 — this is shown with the thin arrows

emanating from R labeled 2. The resulting overlay is shown on the right side of Figure 3-

3, with N having joined both multicast trees. Note that although shown in the example

above, it is not mandatory for a new peer to join a multicast tree as a leaf. Should the tree

management algorithm decide to make it an interior node, the root will notify the new

node and its chosen parents as before, however, it will also have to: tell the new node to

serve its new children, inform children of the identities of any new parents selected for

them and finally, inform parents of the identities of any children moved.

3.2.2 Graceful Node Leave

When a peer wishes to leave a streaming session, it will ideally do so in a
controlled fashion by sending a leave request to the root peer. Again, using its tree

management algorithm, the root peer will determine the new parents of any children

being orphaned by the departing node and then notify the affected peers of the new
parent-child relationships to be observed. To minimize disruption to downstream nodes,
the departing peer will ideally continue to participate in the overlay until its parents cease
to forward traffic to it, at the instructions of the root. Figure 3-4 provides an example of

this operation. In this scenario, we again have an overlay with two multicast trees
disseminating two stripes. Should peer P2 wish to leave the overlay, it will send a leave
request to the root, R — shown with the thin arrow labeled 1. Here, both Pi and p3 are
affected by the departure of P2 — Pi loses P2 as a child in the first dissemination tree and
both Pi and p3 lose P2 as a parent in the second tree. To accommodate these changes, R
communicates the rearranged overlay topology determined by its tree management
algorithm to p’ and p — shown by the thin arrows labeled 2. Specifically, R tells Pi to

25



stop forwarding the first stripe to p2 and further, that it will now receive the second stripe

from p. R also informs p that it will now receive the second stripe directly from the root

and instructs it to forward this stream on to p. The end result of this reconfiguration is

shown on the right side of Figure 3-4.

Leave

Figure 3-4: Graceful Node Leave Operation

3.2.3 Ungraceful Node Leave

It is possible that a peer will cease to participate in a streaming session without

providing any prior notification — legitimate reasons for such an “ungraceful leave” may
include anything from a sudden loss of network connectivity or crash of the end-host
software, to unexpected congestion arising from contention with other applications. To
handle these situations, each peer monitors the loss rate for each of its incoming stripes
by inspecting the packet sequence numbers on each and noting any gaps or stoppage.
Should the loss-rate for a particular stream exceed an acceptable threshold, the peer can
assume that at least one of its ancestors has effectively departed or fallen out of
communication. In this case, the peer will check with its current parent to see if it is also
experiencing a loss of service. If the parent responds indicating that it is, the peer waits
for its parent to resolve the situation — alternatively, if the parent fails to respond to the
peer, or responds without any restoration of service within a timely manner, the
complaining peer will contact the root directly, requesting a new parent. In this scheme,
while every peer in a sub-tree affected by an ungraceful leave will query its parent for

26



loss rate information, only the root of each sub-tree will fail to receive a response and so,

only these root peers will directly contact the content provider root R. At this point, R

can select new parents to restore service to the affected sub-trees and note the identity of

the peer that ceased to forward data without warning - should this information be a useful

input to the tree management algorithm employed. A simple example of the procedure

outlined above is illustrated in Figure 3-5.

Figure 3-5: Ungraceful Node Leave Operation

In addition to the legitimate reasons for an ungraceful leave cited above, a peer

that decides to start free-riding, by no longer forwarding some or all of the stripes that it

(1) p2 crashes. (2) 4 and ps
check with their
parents. 5 waits
for P4 to resolve
the situation, while
4 is unable to
reach P2.

(3) P4 contacts the
root, requesting a
new parent for the
unavailable stripe.

(4) R selects itself as
the new parent for P4
in the damaged tree
— service to P4 and
p is restored.

27



was ordered to distribute by the root, will essentially have the same effect as an

unexpected departure and can be handled in a similar fashion. To discourage false

reports of delinquent nodes, however, the root may contact the alleged offender,

instructing it to cease forwarding data to the child claiming that it is not receiving the

expected stripe. If the root is unable to contact the alleged offender during step, it can

assume that the peer has left the overlay and simply process it as a leave operation.

As a concluding aside, it should be emphasized that the node join and leave

examples above are only intended to illustrate the concept of centralized tree

management — whereby the content provider is supplied with the information needed to
monitor membership of the overlay and issues directives to participating peers to control
the overlay topology. These examples are not meant to suggest any particular tree
management policy — that is entirely the domain of the tree management algorithm and
the content provider is free to employ any suitable such algorithm and issue whatever
directives it deems appropriate. Section 3.3 develops the algorithm proposed in this work

as a means for achieving incentives compatible peer-to-peer media streaming.

3.3 Tree Management Algorithm

3.3.] Design Goals

The algorithm used to determine the topology of any tree-based streaming
overlay must address multiple, arguably disparate, design goals — the paragraphs below
identify several desirable criteria considered when formulating the tree management
scheme employed by OmniStream. It should be noted that the first five of these criteria
are not unique to this work — rather, they are the requirements that were identified and
used to drive the design of the CoopNet framework, on which the proposed scheme is
based. These five criteria are concerned with ensuring high stability and low latency
when distributing streaming data through a large and highly dynamic population of
participating peers. The sixth and final criterion is concerned with the free-riding issue
addressed by OmniStream’s enhancement of CoopNet.

28



(1) Limited tree heights, The inherent unreliability of the participating end-hosts in

any peer-to-peer media streaming framework is unavoidable and must be

accounted for accordingly. In the typically conceived of scenario, peers

participating in the overlay are likely to run on small, personal hardware

platforms, under the independent administrative control of personal users. This

leaves the overlay particularly susceptible to the unexpected “departure” of peers

due to such possibilities as the improper shutdown of the streaming client

application, failure at the hardware of software level, or loss of network

connectivity. Moreover, as discussed at the outset, these personal users are likely

to make use of “last-hop” broadband connectivity with a highly constrained

upstream capacity. As the streaming client application may unexpectedly have to

compete with other network services for this scarce upstream bandwidth (e.g. the

personal “administrator” of the node initiates a large FTP upload), the problem of

unreliable peer service is further exacerbated.

Given their high probability, disruptions at the end-host level are likely

to have a significant impact on streaming quality — perhaps more so than failures

in the network itself. To mitigate this concern, the overlay management

algorithm must minimize the height(s) of the tree(s) constructed — in doing so,

the number of end-hosts traversed from the root to a given peer is reduced and so

too, therefore, is the likelihood of service interruption due to the failure of an

upstream ancestor. Note that minimizing tree height is effectively equivalent to

maximizing the “fan-out” at each peer — thus, shorter trees can be obtained by

ensuring that each peer serves as many clients as possible.

(2) Disjoint sets of ancestors. In a striped transmission scheme making use of

multiple trees, the set of ancestors a peer has in one tree should have as few

members in common as possible with the set of ancestors that peer has in any

other tree. The motivation for this disjointedness is once again, to mitigate the

impact that the unexpected disruption of end-hosts may have on streaming

quality. By ensuring that a peer p is an ancestor to a peer q in as few trees as

possible, the number of stripes that q ceases to receive in case p unexpectedly

29



leaves the overlay is limited. Note that maximizing disjointedness is equivalent

to limiting the number of trees in which any peer serves as an interior node (i.e.

has client peers itself).

(3) Scalability. Clearly, the utility of a peer-to-peer media streaming infrastructure is

a function of the number of concurrent clients it can effectively service. Any tree

management algorithm must be able to accommodate large client populations and

handle the significantly higher rates of node joins, leaves and failures associated

with larger numbers of participating peers.

(4) Minimized impact of join and leave operations. Especially as the number of

potential clients increases, it is reasonable to expect a peer-to-peer media

streaming session to be an extremely dynamic environment, with frequent change

to the overlay topology maintained. In such circumstances, the tree management

scheme employed must minimize the delays peers must experience before joining

or leaving the overlay, as well as the service disruptions caused by unexpected

departures.

(5) Close correlation between network and overly topologies. By accounting for the

topology of the underlying physical network, an overlay management algorithm

can reduce the latency experienced by the participating peers — i.e. the delay in

receiving streaming content from the root. For example, in a streaming session

including peers situated in both North America and Europe, a tree can be

constructed so as to minimize the number of trans-Atlantic hops a packet must

make in traveling from the root to a peer. Another advantage of accounting for

physical topology in this manner is that it allows for more efficient use of the

underlying network. For example, if a single backbone link in was used in the

application-level links between peer a and peer b and from peer b to peer c, then

a single packet streaming from a to b and then onto c would unnecessarily

traverse m twice.

30



(6) Ability to ensure cooperative peer behavior. To address the free-rider problem in

the context of peer-to-peer media streaming, a tree management algorithm must

enforce powerful incentives for the contribution of upstream bandwidth, as well

as penalize the unreciprocated consumption of bandwidth. While the techniques

of striped transmission and centralized tree-management applied by CoopNet

address the first five design goals noted above, again, in this work, it is noted that

these methods also provide the means by which the free-riding problem may be

addressed. With centralized management, the root peer, or whichever node is

responsible for executing the tree management algorithm, is able to maintain an

omniscient view of the overlay network, carefully monitoring the contribution

and consumption levels of each participant. With striped transmission, the

quality of service received by each individual peer can be controlled by adjusting

the number of trees the peer is granted membership to.

OmniStream, the extension of CoopNet developed in this work, applies

these observations to ensure that peers receive a number of stripes commensurate

with their individual contribution levels. The specific means by which

OmniStream quantifies the net contribution of a peer over time is outlined in

Section 3.3.2. Section 3.3.3 delineates the manner in which this information is

applied to the construction of the various overlay trees used to disseminate stripes.

3.3.2 Quantifying Net Peer Contribution

As the root peer is responsible for constructing and maintaining the overlay as

nodes join and leave the system, or unexpectedly fail, this root has complete knowledge

of the overlay topology in place at any given time. In particular, for any given peer p, the

root knows how many multicast trees p is a member of (i.e. how many stripes p is

receiving, or equivalently, how much downstream bandwidth it is consuming), as well as

how many children p has in each of those trees (i.e. how much upstream bandwidth p is

contributing to the overlay). Thus, if rQ) is used to denote the number of streams that p

is receiving at time t and f,Q) denotes the number of streams that p forwards at time t,

31



then, the net bandwidth contributed by p to the overlay at t, b(t), is given by the trivial

formula below, where k is the common bit-rate at which each stream is transmitted:

b (t) = k

Clearly, b(t) > 0 indicates that p is a net contributor to the system at time t, b,(t) = 0

indicates that p contributes and consumes bandwidth in equal amounts and if b0(t) < 0,

then p is a net consumer.

While b0(t) characterizes the contribution-level of a peer at a given instant in

time, it does not convey whether or not the peer has made a positive, negative or neutral

contribution to the streaming infrastructure over its lifetime in the system — a separate

metric, C0(t), is defined here for this purpose. The lifetime of a peer is simply the period

for which it is known to the streaming infrastructure — it need not participate in any

overlay over this time, of relevance is only that it is somehow registered and tracked.

The time t0 will be used to denote the time at which the lifetime of peer p begins.

Subsequent to t0, p is affected by a series of events, where an event is anything that may

change b0(t) — that is, anything that may cause p to start or cease to receive or serve one

or more streams (eg. a node joining or leaving the overlay, failing or being affected by a

failure upstream, etc.). Assuming that as of time t, the lifetime of p has been punctuated

by in events, t1 tm, where t0 t1 < ... < tm t, will be used to indicate the points at

which events 1 m transpired, respectively. Noting that p has a contribution-level of

b(t1) at time t, and by definition, this does not change until event i + I occurs at time t+1,

C(t) may be defined by the following formula, where At1 = t1 — t11:

C (t) = b (t1 )At1 + b (t )(t
— tm)

As C(t) is effectively a product of bandwidth and time, it evaluates to a figure

whose units are of data — thus, if b(t) is given in bits-per-second (bps) and the various t

are in seconds then C(t) will provide the net contribution peer p has made to the

streaming infrastructure over its lifetime in bits. This is best illustrated in Figure 3-6,

below — where C(t) is represented by the shaded area.

32



b(t) (bps)

— I 1 t(s)
t0 t1 t2 t3 t4 5 t6 t7

Figure 3-6: Illustration of Net Contribution CQ) for a Hypothetical Peer

An operational scenario for a hypothetical peer p that would produce the graph of

shown in Figure 3-6 is easily conceived of. Suppose peer p arrives and requests to

participate in the streaming overlay at time to. At t1, p is integrated into the overlay,

receiving four stripes and forwarding eight copies of one to various children — this results

in a net contribution of four units of bandwidth over the interval [t1, t2), as shown in

Figure 3-6. At time t2, p’s contribution level is reduced by two units, as two of its

children leave and no longer need stripes forwarded to them. At t3, new children arrive

and p is instructed to forward five additional copies of a stripe to accommodate them. A

negative contribution level is encountered at t4, when additional departures reduce the

number of streams forwarded from p by nine. At t5, p’s net contribution level is

increased by six units as it elects to stop receiving two stripes and also starts forwarding

copies of a stripe to four new children. Finally, three more copies are forwarded at t6.

Clearly, the grey area in Figure 3-6 represents the integral of the bit-rate bQ) over time —

thus explaining its interpretation as the net volume of data contributed by p — i.e. C(t).

33



The metric C(t) defined above omits at least one piece of information pertinent

to any fair characterization of a peer’s contribution. In particular, the contribution made

by p is strictly a function of its net bit-rate over time and does not in any way account for

the relative supply and demand of bandwidth in the streaming session over that period.

Thus, a peer contributing to a streaming session where there is an abundance of

bandwidth, will be equally rewarded as a peer that contributes the same volume of data to

a session where there is a relative scarcity of bandwidth — as an example of this latter

scenario, consider a situation in which a flash crowd of resource poor clients produces a

sharp, unanswered increase in the demand for bandwidth and leads to the starvation of

many participants. To address this concern, b0Q) is augmented with a “market scaling

factor”, c5(t), to arrive at a scaled representation of instantaneous contribution, s(t):

s(t)= 6Xt)b0Q)

Computing the integral of s(t) over time, a new metric, SQ) - that characterizes a peer’s

contribution-level over a period, while also accounting for “market conditions” as

described above - is obtained. This metric shall be referred to as the “score” of peer p. A

discrete formula for SQ) is easily obtained and follows the same pattern as that for CQ),

with the caveat that t0 t now represent the discrete points in time at which s,,(t) may

change (i.e. the points at which either L5(t) or b(t) or both may change):

S1, (t)
=

s (t1_1)At1 + s (t )(t — t)

With the definitions above, the scaling factor ô(t) must satisfy a number of

important properties in order to obtain scores that provide a meaningful characterization

of the relative contributions of participants. First, to address its basic purpose, 5(t) must

positively correlate with the relative demand for bandwidth. More precisely, let DQ)

represent the “aggregate demand” for bandwidth at time t — that is, D(t) is the upstream

bandwidth capacity required to completely satisfy the needs of all peers interested in

receiving a particular stream. Assuming that all peers have sufficient downstream

capacity to consume all M stripes into which the stream of interest is divided, then D(t)

34



can be defined as follows, where n(t) is the number of interested peers at time t and again,

k is the common bit-rate with which each of the M streams is delivered:

D(t)=k.M •n(t)

Similarly, let 5(t) represent the “aggregate supply” of bandwidth at time t. Thus, if n is

the total number of participants registered with the root peer and J(t) represents the

number of stripes that peer i is willing and able to forward at time t, then 5(t) can be

expressed as:

S(t)=kf1(t)

With the definitions above, we can restate the first desired property of öQ) in more

concrete terms - ö(t) should monotonically increase with the ratio D(t)IS(t).

The second desirable property of c5(t) is that it should be positive. As sEQ) is

defined as the product of 5(t) and b(t), 5(t) = 0 would result in a situation in which a peer

making a net contribution of bandwidth to the overlay at time t (i.e. b(t) > 0) would not

increase its score S(t) and thus, receive no credit for its cooperative behavior. Similarly,

a negative value of (t) would result in a situation where peers contributing to the system

would be penalized with lower scores, while those exploiting the overlay (i.e. b,,(t) < 0)

would be credited.

The third and final requirement of 5(t) is that it be “normalized” such that valid

comparisons can be made between scores accumulated over different iets of streaming

sessions. To clarify this point, consider a definition of c5Q) that monotonically increased

with D(t) alone, as opposed to the ratio of D(t) to S(t). In this case, with all other

variables held equal, a streaming session with a larger number of clients would have a

higher (t) than one with fewer clients and so, a peer pi contributing to the larger session

would accumulate a higher score than a peer P2 contributing to the smaller one, regardless

of the fact that P2 may be making a relative contribution that is the same or greater than

that made by Pi• This bias would preclude a straightforward comparison of the scores of

Pi and P2 as a valid means for determining which is the superior contributor.

35



Although many definitions of (t) addressing the requirements above are

possible, the trivial formulation below is used in this work.

S(t)

To conclude this subsection we observe that the notions of score and market

scaling factor developed here possess a number of unique advantages when used to

quantify peer contributions. First, the accumulative nature of peer scores ensures that

clients always have an incentive to make a net contribution to the system, regardless of

whether or not they are interested in consuming any stream at a given time, or whether

they have only a limited upstream capacity. Second, the market scaling factor maintained

by the content provider for each streaming session provides a straightforward means for a

potential contributor to identify which session has the greatest relative scarcity of

bandwidth. By contributing to this session, which by definition will have the highest

value for c5Q), a peer can optimize the score it may accumulate for a given contribution.

In effect, an incentive exists for allocating bandwidth to wherever it is most needed.

Finally, as alluded to earlier, there are no complicated issues of trust to be dealt

with — the content provider alone is responsible for maintaining peer scores in a

centralized fashion. As the overlay topology is determined by directives issued by the

root alone, the score earned or lost by a client at a given time — a function of the number

of descriptions consumed and forwarded - is based strictly on the first-hand observations

of the content provider itself. To emphasize this key point, it is noted that the root does

not depend on peers to obey its directives or truthfully report misbehavior. Should a peer

deviate from the root’s understanding of the streaming topology by disobeying an order

to serve a particular child, the affected child will quickly report this violation, allowing

the root to update its picture of the overlay. Conversely, should a peer dishonestly report

a misbehaving parent, the root simply finds a new parent for the complainant and frees

the falsely accused parent to serve another node — the dishonest peer effectively has no

incentive to behave in this manner and save for some loss of opportunity to increase its

score, the parent is hardly affected. The use of scores also limits the opportunity for

36



peers to misbehave in some collusive manner - ultimately, the extent to which any set of

nodes is able to increase its collective score is a function of the net consumption or

contribution of bandwidth made by that set.

3.3.3 Overlay Formation and Maintenance

In Section 3.2 an overview was provided of the manner in which the root peer

issues directives to clients - notifying them of their parents and children in the various

multicast trees - after the root has decided upon the overlay topology to be used at a

given time. Here, the scheme by which the root determines this topology is outlined.

Note that the algorithm defined here is based on the deterministic tree construction

approach employed by CoopNet. Again, however, OmniStream extends this by taking

into account the score of each peer and ensuring that clients with higher scores are

incorporated into the multicast trees with greater priority than those having lower scores.

As mentioned in Section 3.2, when a client wishes to join a streaming session, it

contacts the content provider with a request message. This message contains at least

three pieces of information: an indication of the media stream it wishes to receive, the

upstream bandwidth capacity that the client is willing and able to contribute to the

overlay and finally, the peer’s maximum downstream capacity. From these latter two

pieces of information, the content provider can determine the maximum in- and out-

degree allowed for the node in the topology simply by dividing with the common bit-rate

at which each description is to be distributed — in this work, the simplifying assumption is

always made that the maximum number of descriptions a peer is willing and able to

receive is simply the total number of descriptions, n.

Once the join request is received, the content provider immediately increments a

running total it maintains for aggregate demand by the downstream capacity of the

joining peer — although a similar total is maintained for aggregate supply, this is not

incremented until the peer is incorporated into a multicast tree and available to serve

children. As in CoopNet, the joining node is then designated to be fertile — that is,

capable of being an interior node — in one of the n multicast trees and sterile — limited to

being a leaf node - in the rest. One major departure from CoopNet, however, is that a

37



joining peer has the flexibility to declare, in its join request, that it will not contribute any

upstream capacity to the overlay — in this case, it is simply designated as sterile in all

trees. Regardless, assuming that the joining peer is contributing enough to forward a

single description, the determination of which tree the node is to be fertile in is made by

keeping track of the number of fertile nodes designated to each tree — the new node is

assigned to whichever tree has the fewest fertile members at the time of the join. As

noted in [27], the motivation behind allowing a peer to be fertile in at most one tree is

rooted in the desire for short trees and disjoint ancestor sets discussed in Section 3.3.1. If

contributors are interior nodes in at most one tree each, then their fan-outs are maximized

and thus, tree heights are minimized for a given number of nodes. Furthermore, the

disjointedness of ancestors is guaranteed in this way — should a client depart or fail, at

most one description will be affected.

After determining the fertile layer, if any, the node is added to a fertile queue for

the designated tree and a sterile queue for each of the remaining trees. Note that these

queues are new constructs introduced by OmniStream - each of the n multicast trees has

its own fertile and sterile queue and these are both priority queues in which precedence is

given to nodes with higher scores. Of course, in order to establish this priority, it is

assumed that OmniStream’s tree management algorithm has access to the latest score of

each peer through a peer registry maintained and periodically updated, in a manner to be

discussed below, by the content provider.

Having added the newly arrived node to the appropriate queues, the process of

updating the topologies of each of the n multicast trees as needed can begin. The same

algorithm, outlined here, is separately applied to each tree for this purpose and starts by

processing nodes in the fertile queue as follows. First, the peer at the head of the fertile

queue, p, is removed and inserted into the associated tree. This insertion occurs by

starting at the root of the tree and moving down until a level is found that contains either:

(i) a fertile node with a higher score willing and able to accommodate p as a child, (ii) a

sterile node or (iii) a fertile node with a lower score. In the event that (i) is encountered,

p is added to the topology as the child of the fertile node — should more than one eligible

parent exist on the same level, the one with the highest score is selected. In case (ii), the

38



sterile node with the lowest score lower than p is replaced by p and inserted into the

appropriate sterile queue. Finally, in case (iii), p is inserted as the parent of the fertile

node with the lower score. As mentioned above, once inserted into the tree, the aggregate

supply figure maintained by OmniStream is incremented by the upstream capacity that p

committed to contribute in its join request. The process of removing the peer at the head

of the fertile queue and inserting it into the tree is repeated until the queue is empty.

Once all nodes in the fertile queue are processed for a tree, those in the sterile

queue are handled. The node at the head of the sterile queue, q, is removed and an

attempt is made to insert it into the associated multicast tree. This insertion process

begins at the root and proceeds down the tree until a level is found that contains either: (i)

a fertile node with enough spare upstream bandwidth to accept q as its child, or (ii) a

sterile node with a lower score than q. In the event that the former is encountered, q is

added as the child of the node with sufficient spare capacity and should more than one

suitable parent exist, whichever has the highest score is selected. In case (ii), the sterile

node with the lowest score lower than q is bumped from the tree - the tree is updated to

replace the sterile node with q and the bumped node is reinserted into the sterile queue.

Should the last level of the tree be reached with neither case having been encountered,

then the multicast tree has no spare capacity with which to accommodate q and so, the

node is simply reinserted into the sterile queue and the insertion attempt is deemed to

have failed. The process above, whereby the head of the sterile queue is removed and

added to the associated tree, is continued until either the sterile queue is emptied or an

insertion attempt fails. In either case, no further updates to the tree are required based on

the contents of the sterile queue.

After the algorithm above has completed for each of the multicast trees,

OmniStream has effectively computed an up to date overlay topology containing any

modifications necessary to accommodate the newly arrived peer. As an aside, note that it

is possible for the topology to remain unchanged after a join — for example, a peer that

declares that it will contribute no upstream bandwidth will be added as sterile to every

tree and if it has a sufficiently low score and none of the trees have the capacity to

accommodate it, the new peer will simply sit on the n sterile queues, not having been

39



incorporated into the overlay. Regardless, it is emphasized here that the processing up to

this point simply determines what, if any, updates need to be made to overlay and occurs

exclusively within the root peer — or whatever content provider host is responsible for

running the tree management algorithm; no communication over the network takes place.

Only after the updated topology has been computed does the content provider issue

directives to the client peers informing them of any new parents and children in each of

the multicast trees.

Handling of the other two events that can affect the overlay topology, graceful

and ungraceful node departures, also involves the fertile and sterile queues. When a node

informs the root of its intention to leave the overlay, it is immediately removed from any

queues that may contain it. Further, if the node has been incorporated as a sterile child in

any multicast tree, it is detached from its parent and similarly removed. The case in

which the departing node has been incorporated into a tree as a fertile child is potentially

more complicated — while a fertile node with no children is handled in the same manner

as a sterile node, when a fertile node with children is removed, new parents for those

children must be found. In this latter scenario, for each tree, we simply add the children

orphaned by the departing node to the sterile queue if sterile and to the fertile queue if

fertile. Note that a fertile orphan may be the root of a sub-tree itself - only this root is

added to the fertile queue and the topology of the orphaned sub-tree itself is unaffected.

Once the queues and trees have been updated as described above in response to

the leave request, the same algorithm used to arrive at an equilibrium topology in the case

of a node join is applied. For each tree, nodes in the fertile queue are removed in priority

sequence and inserted into the tree and subsequently, those in the sterile queue are

similarly removed and inserted until the sterile queue is emptied or an insertion attempt

fails. Having determined the new topology, the content provider can complete processing

of the node leave by appropriately updating its counts of aggregate supply and demand

and issuing whatever directives are needed to modify the overlay. As a closing remark

on node departures, observe that an ungraceful departure can be processed in the same

fashion as a graceful one; in the ungraceful case, however, the processing above is of

course only initiated after the delay needed to detect the failed node.

40



Having covered the handling of node join, leave and failure events, it is

important to note that peer dynamics are not the only drivers of change in the overlay

topology. As discussed in Section 3.3.2, the scores assigned to peers are continually

updated over time as they participate in the streaming infrastructure — should these

updates change the relative standing of two peers in an overlay, then a topology update

may be needed. For a trivial example of this, consider peers p and q such that Sq(ti) <

S(t1) at some time tj and suppose that both peers have elected not to contribute any

upstream bandwidth and so, can only join the multicast trees as sterile children. Further,

assume that p has been incorporated into all of the available multicast trees, while q waits

for service on the corresponding sterile queues. Over time, p, consuming bandwidth and

contributing none, will consistently reduce its score while q, neither consuming nor

contributing anything, will have its score unchanged. Clearly, at some time t2 such that t2

> t1, the condition S(t2)<S(t2)will be satisfied, thus allowing for q to be removed from

the sterile queue to replace p in each of the multicast trees, assuming that p is not

replaced by some other node first. To accommodate changes of this nature, OmniStream

also observes a periodic “update event”. More specifically, at regularly scheduled

intervals (e.g. once every second), the tree management algorithm updates the scores of

all peers in the overlay based on its current topology and then executes the standard

algorithm for updating each tree by removing and inserting nodes from its fertile and then

its sterile queue. The time between update events is determined by the availability of

computational resources — a shorter interval, while allowing for scores to be maintained

with greater precision, will obviously place greater demand on the processor(s) available.

Before concluding the outline of OmniStream’s tree management algorithm here,

two omissions from the discussion above are addressed. First, although it is implied that

a simple comparison of peer scores is used when determining whether or not a peer to be

inserted into a multicast tree may replace an existing client in that tree, this is not strictly

true. Instead, OmniStream divides the peers registered with the streaming infrastructure

into N mutually exclusive and approximately equally-sized sets Qj — i.e.

“quantiles” - based on their scores (e.g. quartiles if N = 4, deciles if N = 10), such that a

peer in a set with a higher index is guaranteed to have a score that is greater than or equal

41



to that of any peer in a set with a lower index. More precisely, if p e Q and q e Q. at

time t, then S(t) Sq(t) if i <j. Rather than using raw scores when determining if one

peer can bump another, OmniStream actually compares these indices of the sets

containing them. The advantage of this approach is the stability it affords the overlay —

by avoiding a direct comparison of raw scores in this manner, the frequency with which

peers are bumped from multicast trees is reduced without removing the incentive for

accumulating higher scores. In fact, with N sets, the number of peers that may be

affected by the insertion of a peer is capped at N — 1 as a client will only be able to bump

a peer in an inferior Set. Note that this division of peers is also easily implemented — by

maintaining a list of registered peers sorted by score, the index of the set containing a

particular client can easily be computed from the position of the peer in the list. In this

work, N = 10 has been used.

The second and final key point is that, as alluded to in Section 3,3.2, a peer need

not be interested in consuming the sub-streams that it forwards. In OmniStream a newly

arrived peer may specify in its join request that it is not interested in consuming any

stream, but would like to “altruistically” contribute its unused upstream bandwidth — in

this case, the tree management algorithm simply incorporates the peer as a fertile node in

a single tree, thus optimizing its net contribution to the system. By providing both the

means and an incentive — i.e. the opportunity to accumulate a higher score — for peers

with idle upstream bandwidth to support the streaming infrastructure, OmniStream,

unlike CoopNet, is able to leverage the resources of otherwise uninterested clients.

Another reason for a peer to forward data that it is not consuming itself may be

due to an extreme scarcity of bandwidth in a particular streaming session. In this

scenario, OmniStream is free to ask a peer with sufficient downstream bandwidth to

accept and forward descriptions belonging to the starved session — perhaps while

simultaneously consuming descriptions pertaining to whatever other session the

forwarding peer is actually interested in. Although this requires the peer to contribute

both downstream and upstream bandwidth, the fact that the peer is contributing to a

session with scarce bandwidth and therefore a high market scaling factor, gives it an

opportunity to quickly increase its score.

42



CHAPTER 4

Evaluation

A preliminary evaluation of the effectiveness of the OmniStream system has

been conducted through the use of simulation experiments. To carry out these

experiments, the OmniStream protocol has been implemented in a custom discrete-event

system simulator comprised of approximately 2000 lines of Java source code. This

simulator is intended to model a period of time over which a swarm of client peers arrive

to participate in a single media streaming session with a scheduled start and end time.

The specific simulation parameters used were as follows. Node arrivals, as well

as graceful and ungraceful departures were simulated over a 2500 second period. The

arrival and planned (i.e. graceful) leave times of the peers were obtained by sampling

Gaussian distributions with ,u 350s, u = 175s and 2150s, u = 175s, respectively.

The intention of clustering joins and leaves within the 2500 second simulation around the

times t = 350s and t = 2150s was to capture a scenario analogous to viewers tuning into a

particular channel to watch a scheduled 30 minute (2150s — 350s = l800s = 30mm)

program and then tuning out. To simulate node failures, a Bernoulli random variable

with p = 005 was sampled upon the arrival of each node — if the random variable

evaluated to true, the node was marked to fail and the time remaining until the failure of

the node was fixed by sampling an exponential distribution with I / = 1 800s / 2 = 900s.

Otherwise a graceful leave time was determined using the Gaussian distribution

described above.

43



The population participating in the streaming session consisted of some of 400

peers, each of which belonged to one of three different classes. Nodes of Type I

essentially model free-riders, receiving all available descriptions if possible, but

forwarding none. Type 2 nodes model cooperative peers, attempting to receive all

available descriptions, but nevertheless reciprocating with a contribution equaling the

bandwidth consumed. Finally, Type 3 nodes represent cooperative peers that contribute

twice as much bandwidth as they consume. Of the 400 clients in the simulated audience,

10% were of Type 3, 20% of Type 2 and the vast majority (70%) were of Type 1. To

capture the fact that these participating end-hosts were the most likely sources of

unreliability in the system, each packet was modeled as having a 1% probability of being

dropped when moving from one node to the next in the overlay.

Finally, the media stream was divided into eight descriptions, each disseminated

using a separate multicast tree. A group of frames (GOF) duration of one second was

used and thus, for each second of the media stream, each node could receive at most eight

packets, one for each description. Within each of the eight multicast trees, a four second

delay was used to model the time needed to detect a failed parent and a delay of one

second was used to simulate the service interruptions caused by graceful leaves, or the

bumping of nodes by superior clients.

The results obtained using the settings above were promising and are

summarized in Table 4-1 and Figure 4-1 below — the data presented is averaged over five

runs of the simulation. Table 4-1 summarizes the scores of each class of peers at the end

of a 2500 second simulation. Clearly, each class of peers converges on a distinct mean

score and this mean increases with the generosity of the associated class. This result

demonstrates the viability of the scoring mechanism proposed in this work as a means of

quantifying peer contribution-level.

In Figure 4-2, a probability density function (PDF) is provided for each class,

characterizing the quality of service experienced by its constituent peers. To construct

these graphs the average number of descriptions received by peers of each class is

computed for each GOF (i.e. each second) of the simulation — the PDF of these per

second averages can then be plotted as in [27], Not surprisingly, it is found that nodes of

44



Type 2 and 3 receive most of the eight descriptions and so should be able to reconstruct

the original stream with relatively little distortion. Free-riders, however, are forced to

divide whatever surplus bandwidth is provided by Type 2 and 3 nodes amongst

themselves and so, on average, receive relatively few descriptions and are heavily

penalized with poor streaming quality.

Table 4-1: Node Scores After 2500 Second Simulation

Standard Minimum MaximumNode Type Mean Score
Deviation Score Score

Type 1 -6245.94 2.71 -6254.59 -6245.94

Type2 -10.22 43.11 -57.63 122.15

Type 3 42303.21 2844.47 35366.47 45353.64

45



Quality of Service for Various Node Types

—Type 1

“T,pe2 -

00 f
07

06

U

0r

3 4
flY

Number of Descripiions Received

Figure 4-1: PDF of the Average Number of Descriptions Received

46



CHAPTER 5

Conclusions and Future Work

5.1 Conclusion

Peer-to-peer media streaming represents an attractive means for using the

Internet infrastructure to support the live delivery of content to large audiences. In this

approach, a server uses basic unicast transmission to forward copies of a media stream to

a set of interested client peers. Each of these clients can then make use of their unused

upstream bandwidth to forward the stream to additional peers, who can in turn do the

same and so on - in theory, this process can recursively span any number of levels from

the original source of the stream, thereby sustaining arbitrarily large audiences. By

effectively pooling the basic, low-capacity access links of participating peers to support

the bandwidth demands of a streaming session, aggregate capacity scales with aggregate

demand. In this way, the publisher is spared the undue — and often prohibitive - costs

associated with bandwidth provisioning, or the employment of a commercial content

distribution network and does not have to depend on sparsely deployed infrastructure, as

in the case of LP Multicast.

Unfortunately, this collaborative approach to media distribution is particularly

vulnerable to the free-riding behavior all too often exhibited in peer-to-peer systems.

Should a substantial proportion of participating clients consume bandwidth without

47



adequately reciprocating by way of their own upstream bandwidth, the scalability of the

system will be severely restricted - this is by no means an unlikely scenario, given the

self-interested nature of peers under independent administrative control and the

substantial utility to be gained by enjoying but not providing the relatively high

bandwidth of a media stream.

Several solutions have been developed to address free-riding in peer-to-peer

media streaming - these consist of protocols that enforce, or at least provide strong

incentives for, cooperative peer behavior. A major limitation of much of this existing

work, however, is its strong reliance on an assumption of “tamper-proof’ client software,

that is, that clients will adhere to the implementation of the prescribed protocol, even

though it may be in their individual self-interest to try and circumvent it. This

assumption is clearly unrealistic. While alternative approaches exist that do not rely on

the obedience of peers in this way, they are affected by other practical issues including

slow responsiveness to uncooperative behavior, or an inherently high degree of instability

in the streaming overlays they construct.

In this work. OmniStream, a novel extension of the CoopNet peer-to-peer media

streaming system, has been developed to address the free-riding problem in this context.

In CoopNet, the Multiple Description Coding (MDC) technique is used to divide the

stream to be distributed into a set of sub-streams — also referred to as “descriptions”,

“stripes”, or “layers”. A client receiving any subset of these descriptions can reconstruct

at least part of the original stream, with the level of distortion depending only on the

number of descriptions received and of course, decreasing as more are obtained.

Alongside MDC, CoopNet also makes use of a centralized tree management algorithm to

organize the participating peers into an overlay network comprised of several multicast

trees — one for each of the descriptions into which the original stream is divided. The

concentration of tree management logic in the server, or “root” peer, is the salient feature

of this latter technique. Specifically, the server is responsible for determining the overlay

topology and issuing directives to the participating clients as necessary to ensure that they

are organized accordingly. In CoopNet, MDC and centralized tree management are

applied to achieve redundancy in data and network paths that, in turn, allows for

48



resilience in the face of peer transience. In this work, however, it is recognized that these

techniques also provide the basis for a solution to the free-riding problem.

In OmniStream, the root peer takes advantage of centralized tree management to

maintain a global view of the overlay topology. With this information, the content

provider can determine the number of descriptions received and/or forwarded by each

participating client and thus, at any given time, knows the net bandwidth contributed to

the overlay by each peer. By computing the integral of this net bandwidth metric over

time, the content provider can maintain a score for each peer that accurately characterizes

the extent of its contribution to, or exploitation of, the streaming infrastructure over its

lifetime. Using MDC, OmniStream can then control the quality of service received by

each client based on its score. By ensuring that peers with higher scores are incorporated

into the multicast trees used to disseminate descriptions with higher priority — these

superior contributors receive a greater fraction of the total number of descriptions and are

thus able to reconstruct the original stream with less distortion. This scheme not only

provides a strong incentive for peers to contribute upstream bandwidth, so as to

accumulate more competitive scores, it also ensures that free-riders, who as net exploiters

of the system will always have inferior scores, are never able to consume bandwidth at

the expense of cooperative peers.

OmniStream also introduces the concept of a “market scaling factor” that adjusts

the net contribution made by a client at a given instant according to the relative demand

and supply of bandwidth at that time. This factor positively correlates with the ratio of

aggregate demand for bandwidth to its aggregate supply and so, contributions made when

there is a relative scarcity of upstream capacity are more greatly valued. Similarly,

exploitation under such circumstances is more heavily penalized. The incorporation of

peer scores and a market scaling factor represents a significant extension of the CoopNet

framework, in that these mechanisms provide a strong impetus for allocative efficiency in

the contribution of upstream bandwidth. In simple terms, OmniStream ensures that, at all

times, peers have a strong incentive to provide bandwidth wherever it is most needed,

regardless of whether or not those peers have any interest in themselves consuming the

data they help to distribute.

49



In this work, a preliminary evaluation of the proposed framework has been

conducted through the use of simulation experiments capturing a typical operational

scenario. The results obtained clearly demonstrate the effectiveness of peer scores

affected by a market factor in characterizing the relative cooperation of clients. The

ability of OmniStream to ensure that free-riders are unable to consume bandwidth at the

expense of more cooperative participants is also clearly borne out, with free-riders

experiencing a substantially reduced quality-of-service over time.

5.2 Future Work

Several directions of research meriting further investigation are immediately

evident with the development of OmniStream in this thesis. The points below briefly

outline a number of such areas.

(1) The monetization of OmniStream’s notion of a peer score is an interesting

problem. As OmniStream allows a peer to accumulate greater scores by

contributing upstream capacity to streaming sessions over time, defining a

scheme whereby a peer can translate this score into some form of payment would

ultimately allow providers to purchase bandwidth. In effect, content providers

could take advantage of an open, distributed infrastructure in which they are able

enlist the upstream bandwidth of other peers on the network, by purchasing it at a

rate perhaps related to the market scaling factor for the associated session.

(2) As previously mentioned, a client need not restrict itself to forwarding the

particular stream that it is viewing — rather, it is possible for it to forward

descriptions belonging to any number of other media streams, regardless of

whether or not is has any interest in those streams itself. This “decoupling” is a

powerful feature in that it allows a peer to contribute its upstream bandwidth to

wherever it may be most effectively employed. Further investigation is needed

50



to evaluate how successful OmniStream is in optimizing utility through the

accommodation of such interaction between streaming sessions.

(3) Although the specifications of the peer score S(t) and the market scaling factor

5,,(t) functions arrived at in this work address the desired requirements of these

metrics and produced successful results in the simulation experiments conducted,

the space of suitable alternative definitions for S(t) and 5(t) is large. Further

study of these alternatives may produce specifications that are superior with

respect to the ease and efficiency of their implementation, or the results they

produce.

(4) As OmniStream tracks the behavior of peers by maintaining scores for each
client based on their participation in the streaming overlay, the content provider

requires some authentication mechanism that allows it to accurately establish the

identity of each peer it communicates with. A suitable authentication mechanism
requires some exploration. As an aside, at least one unique requirement of the
scheme employed is that some cost be associated with the initial process of
acquiring an identity. This is necessary to avoid “whitewashing” behavior,
whereby a free-rider sheds a poor reputation — reflected in a low, negative score -

simply by acquiring a new identity without any penalty.

(5) In addition to establishing client identity, any practical implementation of
OmniStream — or any peer-to-peer media streaming framework for that matter -

must also deal with security issues such as ensuring that streaming data is

protected from any unauthorized access, or tampering by peers forwarding that

data. The means by which to accomplish this must be studied and will likely

interrelate with the authentication mechanism employed.

(6) The simulation experiments in this work were driven by hypothetical models of
peer composition and dynamics intended to approximate a session in which

51



clients belonging to only a handful of classes partake in a scheduled broadcast.

Clearly, any study aimed at deriving more realistic models of client

characteristics and behavior, perhaps through the observation of real peer-to-peer

media streaming environments (e.g. [18, 22, 37, 38, 40]), would allow for a more

accurate evaluation of OmniStream. Such an empirical investigation may also

allow for an accurate utility function characterizing peer behavior to be derived.

This would represent a major contribution, in that it would provide an analytical

basis with which to reason about the design of related incentive mechanisms.

(7) Although CoopNet is able to sustain loads on the order of tens of thousands of

concurrent clients and the associated churn rates of several hundred to a thousand

nodes per second using only modest hardware, given the CPU-intensive nature of

centralized tree management, as well as the additional computational demands

imposed by OmniStream, scalability remains cause for concern. A practical

implementation of OmniStream should be developed and experimentally

evaluated to more precisely characterize limits on the scalability of this scheme,

as well as identify any potential optimizations.

(8) As with CoopNet, OmniStream does not take into account the topology, or other

characteristics (e.g. latency), of the underlying physical network when

constructing its streaming overlay. Doing so could enable the construction of

overlays that (i) minimize delay from the content provider to clients and (ii)

employ network resources with greater efficiency by avoiding the duplication of

a stream across a physical link. Identifying the manner in which to account for

the physical network towards these ends would represent a major enhancement of

the protocol.

52



Bibliography

[1] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella. First Monday,
5(10), 2000.

[2] Akamai. http://www.akamai.com.

[3] Mayank Bawa, Hrishikesh Deshpande and Hector Garcia-Molina. Transience of
Peers and Streaming Media. In F’ Workshop on Hot Topics in Networks, 2002.

[4] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron and Atul Singh. SplitStream: High-Bandwidth Multicast in Cooperative
Environments. In Proceedings of the 19,h ACM Symposium on Operating Systems
Principles, 2003.

[5] Yang-Hua Chu, Sanjay G. Rao, Srinivasan Seshan and Hui Zhang. A Case for End
System Multicast. IEEE Journal on Selected Areas of Communications,
20(8): 1456-147 1, 2002.

[6] Yang-Hua Chu and Hui Zhang. Considering Altruism in Peer-to-Peer Internet
Streaming Broadcast. In Proceedings of the 14th ACM International Workshop on
Network and Operating Systems Support for Digital Audio and Video, 2004.

[7] Yang-Hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao, Kunwadee
Sripanidkulchai, Jibin Zhan and Hui Zhang. Early Experience with an Internet
Broadcast System Based on Overlay Multicast. In Proceedings of the 2004
USENEX Annual Technical Conference, 2004.

[8] Yang-Hua Chu, John Chuang and Hui Zhang. A Case for Taxation in Peer-to-Peer
Streaming Broadcast. In Proceedings of the 2004 ACM Conference on
Applications, Technologies, Architectures and Protocols for Computer
Communications (SIGCOMM), 2004.

[9] Yi Cui, Baochun Li and Kiara Nahrstedt. oStream: Asynchronous Streaming
Multicast in Application-Layer Overlay Networks. IEEE Journal on Selected
Areas in Communications, 22(1):91-106, 2004.

[10] Stephen E. Deering. Multicast Routing in Internetworks and Extended LANs. In
Proceedings of the 1988 ACM Conference on Applications, Technologies,
Architectures and Protocols for Computer Communications (SIGCOMM), 1988.

53



[11] Hrishikesh Deshpande, Mayank Bawa and Hector Garcia-Molina. Streaming Live
Media over Peers. Technical Report 2002-21, Stanford University Database Group,2002.

[12] Digital Island. http://www.digitalisland.com.

[13) V. K. Goyal. Multiple Description Coding: Compression Meets the Network.IEEE Signal Processing Magazine, 18(5):74-93, 2001.

[14] Ahsan Habib, John Chuang and Mohamed M. Hefeeda. Do We Need IncentiveMechanisms for Peer-to-Peer Media Streaming? In Proceedings of the 22”’ AnnualJoint Conference of the IEEE Computer and Communications Societies(INFOCOM), 2003.

[15] Ahsan Habib and John Chuang. Incentive Mechanism for Peer-to-Peer MediaStreaming. In Proceedings of the 12t JEEFJACM International Workshop onQuality of Service, 2004.

[16] Ahsan Habib and John Chuang. Service Differentiated Peer Selection: AnIncentive Mechanism for Peer-to-Peer Media Streaming. iEEE Transactions onMultimedia, 8(3):610-621, 2006.

[17] Mohamed Hefeeda, Ahsan Habib, Boyan Botev, Dongyan Xu and Bharat Bhargava.PROMISE: Peer-to-Peer Media Streaming Using CollectCast. In Proceedings ofthe 2003 ACM Multimedia Conference, 2003.

[18] Yan Huang, Tom Z. J. Fu, Dah-Ming Chiu, John C. S. Lui and Cheng Huang.Challenges, Design and Analysis of a Large-Scale P2P-VoD System. InProceedings of the 2008 ACM Conference on Applications, Technologies,Architectures and Protocols for Computer Communications (SIGCOMM), 2008.

[19] Xuxian Jiang, Yu Dong, Dongyan Xu and Bharat Bhargava. GnuStream: A P2PMedia Streaming Prototype. In Proceedings of the 2003 IEEE internationalConference on Multimedia and Expo, 2003.

[20] Justin.tv. http://www.justin.tv.

[21] Sepandar D. Kamvar, Mario T. Schiosser and Hector Garcia-Molina. TheEigenTrust Algorithm for Reputation Management in P2P Networks. InProceedings of the ]2” World Wide Web Conference, 2003.

[22] Karthik Lakshminarayanan and Venkata N. Padmanabhan. Some Findings on theNetwork Performance of Broadband Hosts. In Proceedings of the 2003A CM/USENIX Internet Measurement Conference, 2003.

54



[23] William LeFebvre. CNN.com: Facing a World Crisis. Invited talk at the USENIX
Technical Conference, 2002.

[24] Jin Li. PeerStreaming: A Practical Receiver-Driven Peer-to-Peer Media Streaming
System. Technical Report MSR-TR-2004-10l, Microsoft Research, 2004.

[25] Wei Tsang Ooi. Dagster: Contributor-Aware End-Host Multicast for Media
Streaming in Heterogeneous Environment. In Proceedings of the 12th Annual SPIE
Multimedia Computing and Networking Conference, 2005.

[26] Tsuen-Wan Ngan, Dan S. Wallach and Peter Druschel. Incentives-Compatible
Peer-to-Peer Multicast. In 2t1 Workshop on Economics of Peer-to-Peer Systems,
June 2004.

[27] Venkata N. Padmanabhan, Helen J. Wang and Philip A. Chou. Resilient Peer-to-
Peer Streaming. In Proceedings of the j1th IEEE International Conference on
Network Protocols, 2003.

[28] PeerCast. http://www.peercast.org.

[29] Point Topic World Broadband Statistics: Qi 2005. http://www.point
topic .com/dslanalysislWorld+Broadband+Statistics+Q1+2005 .pdf.

[30] J. A. Pouwlese, J. R. Taal, R. L. Lagendijk, D. H. J. Epema and H. J. Sips. Real
Time Video Delivery Using Peer-to-Peer Bartering Networks and Multiple
Description Coding. In Proceedings of the 2004 iEEE international Conference on
Systems, Man and Cybernetics, 2004.

[31] PPLi ye. http://www.pplive.com.

[32] Real Networks. http://www.realnetworks.com.

[33] Reza Rejaie and Shad Stafford. A Framework for Architecting Peer-to-Peer
Receiver Driven Overlays. In Proceedings of the 14th ACM International
Workshop on Network and Operating Systems Support for Digital Audio and Video,
2004.

[34] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the
JFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), 2001.

[35] Vivek Shrivastava and Suman Banerjee. Natural Selection in Peer-to-Peer
Streaming: From the Cathedral to the Bazaar. In Proceedings of the 15ih ACM
International Workshop on Network and Operating Systems Support for Digital
Audio and Video, 2005.

55



[36] Speedera. http://www.speedera.com.

[37] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs and Hui Zhang. The
Feasibility of Supporting Large-Scale Live Streaming Applications with Dynamic
Application End-Points. In Proceedings of the 2004 ACM Conference on
Applications, Technologies, Architectures and Protocols for Computer
Communications (SIGCOMM), 2004.

[38] Kunwadee Sripanidkulchai, Bruce Maggs and Hui Zhang. An Analysis of Live
Streaming Workloads on the Internet. In Proceedings of the 2004 ACM/USENJX
Internet Measurement Conference, 2004.

[39] Duc A. Tran, Kien A. Hua and Tai Do. ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming. In Proceedings of the 22’ Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM), 2003.

[40] Eveline Veloso, Virgilio Almeida, Wagner Meira, Azer Bestavros and Shudong Jin.
A Hierachical Characterization of a Live Streaming Media Workload. In
Proceedings of the 2’’ A CM/USENIX Internet Measurement Workshop, 2002.

[41] Stephen B. Wicker. Error Control Systems for Digital Communication and
Storage. Prentice Hall, 1995.

[42] Song Ye and Fillia Makedon. Collaboration-Aware Peer-to-Peer Media Streaming.
In Proceedings of the 2004 ACM Multimedia Conference, 2004.

56


