
PSS:

A Phonetic Search System for Short Text Documents

by

Jerry Jiaer Zhang

B.Sc., Simon Fraser University, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August, 2008

© Jerry Jiaer Zhang 2008



Abstract

Finding the right information from the increasing amount of data on the

Internet is not easy. This is why most people use search engines because

they make searching less difficult with a a variety of techniques. In this

thesis, we address one of them called phonetic matching. The idea is to look

for documents in a document set based on not only the spellings but their

pronunciations as well. It is useful when a query contains spelling mistakes

or a correctly spelled one does not return enough results. In these cases,

phonetic matching can fix or tune up the original query by replacing some

or all query words with the new ones that are phonetically similar, and

hopefully achieve more hits. We propose the design of such a search system

for short text documents. It allows for single- and multiple-word queries to

be matched to sound-like words or phrases contained in a document set and

sort the results in terms of their relevance to the original queries. Our design

differs from many existing systems in that, instead of relying heavily on a set

of extensive prior user query logs, our system makes search decisions mostly

based on a relatively small dictionary consisting of organized metadata. Our

goal is to make it suitable for start-up document sets to have the comparable

phonetic search ability as those of bigger databases, without having to wait

till enough historical user queries are accumulated.

U



Table of Contents

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vi

Acknowledgements vii

Dedication viii

1 Introduction 1

1.1 Motivation 1

1.2 Goal 2

1.3 Thesis Contribution 2

2 System Design 4

2.1 Dictionary Creation and Maintenance 4

2.1.1 Text Processing 4

2.1.2 Dictionary Creation 5

2.1.3 Dictionary Maintenance 10

‘U



Table of Contents

2.2 Single Word Search 11

2.2.1 Word Matching 12

2.2.2 Result Sorting 13

2.2.3 Phonetic Matching 16

2.2.4 Summary 30

2.3 Multiple Word Search 30

2.3.1 Phrase Matching 31

2.3.2 Result Sorting 32

2.3.3 Phonetic Matching 33

2.3.4 Summary 38

3 Evaluation 39

3.1 Simulation Setup 39

3.1.1 Test Data Pool 39

3.1.2 Test Input 40

3.1.3 Simulator 41

3.1.4 Environment 42

3.2 Simulation Results 42

4 Conclusion and Future Work 46

4.1 Conclusion 46

4.2 Future Work 47

Bibliography 49

iv



List of Tables

2.1 Operations for Weighted Levenshtein Distance calculation and

their costs 25

3.1 Test input types and sizes 40

3.2 Operation types and sizes 41

3.3 Number of phonetic matches from the correct word, phrase

queries, and from misspelled word, phrase queries 43

3.4 Running time of different types of searches 45

V



List of Figures

2.1 Optimized permutation generation process on a three-word

query 36

vi



Acknowledgements

My deepest gratitude goes first and foremost to my supervisor, Dr. Son T.

Vuong, for his constant encouragement and guidance. He has walked me

through the very stages of the writing of this thesis. Without his consistent

and illuminating instruction, this thesis could not have reached its present

form. It is thanks to his continuous support that I could pursue whatever

topic I found appealing. And it is thanks to his insightful suggestions and

advice that made this thesis, hopefully, interesting.

Second, I would like to express my heartfelt gratitude to Dr. Eric

Wohlstadter for his time and effort to help improve my thesis. Especially

given his busy schedule and my short notice, his help is doubly appreciated.

Last my thanks would go to my beloved family for their loving consider

ations and support all through these years. I also owe my sincere gratitude

to my friends Beier Cal and Karen Jiang for their help during the difficult

course of my thesis work. Also thank Wei Li for his suggestions and tips to

put this thesis together. A special thanks to Yvonne Chen, who has always

inspired me and had great confidence in me over the past ten years. You

are my poetry and light.

vu



Dedication

To my parents.

vii’



Chapter 1

Tntro ion

1.1 Motivation

With the increasing amount of information available on the Internet, quickly

finding what one needs among the overwhelming data is not easy. Search

engines are being constantly improved in many ways to better serve this

goal, and different venders have adopted various techniques to tweak their

products towards the kind of search hits they see right. This is why the

major general search engines sometimes behave very differently and return

better results than others for certain queries. Despite of all the differences,

however, they do share a lot of features in common. Google’s ““Did you

mean” is one example. It is the “We have included” function in Yahoo and

“Were you looking for” in MSN. It addresses the spelling mistakes users

often make by catching the most obvious errors and suggesting the correct

spellings automatically. In fact, this feature has become so popular that

it is now almost the standard function all the big players in the search

engine field have to offer. On the other hand, as much as this feature

is highly demanded, smaller websites do not seem to have it yet because

of the limitations imposed by the current methodology - almost all web

applications implemented their version of “Did you mean” based on the

1



1.2. Goal

query log approach[11], which is essentially a statistic model built upon

an extensive set of prior user queries that smaller websites are not usually

able to accumulate. In this thesis, we aim to address this gap through the

introduction of PPS - a search system relying on a relatively small, self-

contained dictionary to offer the similar feature with phonetic matching for

short text documents.

1.2 Goal

The goal of this thesis is to propose the design of a phonetic search sys

tem for short text documents that only requires a relatively small data set

to function correctly. Instead of counting on a set of extensive prior user

queries, we focus on the correlations among different words, as well as the

relationships between words and the documents containing them to create

a dictionary to store such information for phonetic searches for single- and

multiple-, correctly spelled and misspelled words. Last but not the least, we

run various types of queries against a test data set of restaurant names to

examine the accuracy and efficiency of the system.

1.3 Thesis Contribution

The main contribution of this thesis is to allow for multi-word sound-based

search to increase result accuracy if there are no exact matches. To achieve

this, we:

• Introduce the system that makes novel use of several widely adapted al

2



1.3. Thesis Contribution

gorithms from different fields and incorporate them to form the search

framework.

• Provide a high level design specifying the implementation of this sys

tem that is platform-independent.

• Offer an alternative approach to provide word or phrase correction that

is not based on extensive query statistics, which many main stream

search engines heavily rely on. Our system differs from them in that

decisions are made mostly based on well-organized metadata and thus

result in better accuracy for small document sets. On the other hand,

it is still possible to allow additional filters, such as query statistics, to

be incorporated into our system because of its staged search concerns.

3



Chapter 2

System Design

2.1 Dictionary Creation and Maintenance

All searching mechanisms eventually come down to comparing queries with

the database. In one way, if we consider a query itself as a document that

is typically shorter than those stored in a database, search is really just

pulling documents out of a data collection in terms of their similarities to the

original query. Even without taking accuracy or other factors into account,

a brute-force, word-by-word lookup procedure in each document is obviously

undesirable due to its inefficiency. Therefore, we need to organize the data

in a way that allows fast access and easy creation and maintenance. We

call it a dictionary because like what a real dictionary has to offer, our data

structure for storing documents enables non-linear lookups. In addition,

it builds meta-data that describes each document’s properties for multiple

word sound-based search.

2.1.1 Text Processing

A document consists of words, symbols and Arabic numerals. It is usually

not difficult to break text into words. For this system, we identify words with

regular expressions to match predefined regex patterns to text to extract a

4



2.1. Dictionary Creation and Maintenance

list of unique words that contain only letters, digits, apostrophes, and special

symbols like ©, ., /, etc. This process of identifying words in a document is

sometimes called tokenization.

2.1.2 Dictionary Creation

The tokenized text of a document can then be used to create the dictionary.

A dictionary is a data structure that carries not only the original docu

ment text but also additional information that describes its properties. The

following sections discuss the creation of these properties that are stored

together with the original documents they are derived from as metadata.

Word List

Word List is a list of distinct words that appear in the document. It is

directly from the list of words generated during the text processing phase.

Additionally, it is sorted. Sorting is relatively expensive but there are two

reasons we decided to do it. First, documents are likely to be static once they

are created and stored in the database, so the number of sortings that needs

to be performed is only linear - 0(n). Second, the time and space complexity

of creating a dictionary does not add to the run time of searching, so it is

preferable to organize the data in a way that facilitates search performance.

By placing words in alphabetical order, we can implement binary search for

word matching to reduce the time complexity to O(lgn).

5



2.1. Dictionary Creation and Maintenance

tf-idf Weight

tf-idf Weight is a statistical measure to evaluate the importance of a word to

a document in a set of documents [13]. It is obtained by multiplying Term

frequency and Inverse Document Frequency.

Term Frequency is the number of times a word appears in the docu

ment. Because a word tends to appear more frequently in a longer document

than it does in a short one regardless of its real importance to it, we need to

normalize this value to avoid bias in favour of longer documents [16j. The

mathematical representation of this property for implementation is:

tf = (2.1)
E1 flk

where tf is term frequency of the considered term i, n, is the number of

occurrences of I, and nj is the total number of occurrences of all words

in the document [13].

Inverse Document Frequency is a measure of the importance of a

word or a term to the document. It is the logarithm of the quotient obtained

by dividing the total number of documents by the number of documents that

contain the search word or term. The mathematical representation of this

property for implementation is:

idf = log
N

(2.2)
EkEN{dk . t E dk}

6



2.1. Dictionary Creation and Maintenance

where idf: is the inverse document frequency of the considered term i, N is

the total number of documents, and EkEN{dk : t e dk} is the sum of the

number of documents that contain word i [16]. The natural logarithm is the

most commonly used one in calculating inverse document frequencies.

Once we have term frequency and inverse document frequency calculated,

the value of tf-idf is simply the product of the two:

tf — idf = tf idf (2.3)

It shows that a high tf-idf weight is archived by a high term frequency

in the given document and a low document term frequency in the whole

set of documents. Therefore, terms appearing commonly in all documents

or infrequently in a considered document tend to be given low weights and

thus can be ifitered out [14].

Double Metaphone Code

Double Metaphone is one of the most commonly adopted phonetic matching

algorithms. It is the second generation of the Metaphone algorithm family

that accounts for not only pronunciations of English words, but also their

alternatives accumulated, preserved, or assimilated in English from other

languages such as French, Italian, Spanish, and etc.[17] It indexes words by

their pronunciations and generates two keys, primary and alternate, that

represent the sound of the words [9]. To compare two words for a phonetic

match, one takes the primary and alternate keys of the first word, corn

7



2.1. Dictionary Creation and Maintenance

pare them with those of the second word. The two words are considered

phonetically matching only if one of the following four cases is met:

1. Primary Key 1 Primary Key2

2. Primary Key 1 = Alternate Key 2

3. Alternate Key 2 = Primary Key 1

4. Alternate Key 1 = Alternate Key 2

According to the author of this algorithm, the above four comparisons result

in decreasing similarities of the sounds of the two words. If none of the keys

are matched, the two words are considered phonetically dissimilar [9].

Local Phrase Frequency

The phrase frequency keeps track of the frequency of phrases that appear in

a document. To the context of this paper, a phrase is a group of words which

does not necessarily function as a single unit in the syntax of a sentence.

Rather, it represents one or more consecutive words placed in the same order

as they are in the contained sentence. For example, given the sentence “I

live in San Jose”, “I live”, “live in” and “in San” are all considered as valid

phrases. However, “I in San” is not a phrase because “I” and “in” are not

consecutive. Neither is “live I San Jose” because the words are not in the

same order as they appear in the original sentence.

The way we count phrase frequencies takes a bottom-up approach. Start

ing from the beginning of a document, it first groups every two consecutive

words together and calculates the frequency. Next, it groups every three

8



2.1. Dictionary Creation and Maintenance

consecutive words together and calculates the frequency. This process goes

on and on till it groups all words of the document together and calculates

the frequency, which is always 1. The following illustrates the order of the

phrases derived from the document “Hi, I live in San Jose.”:

1. Hil

2. I live

3. live in

4. in San

5. San Jose

6. Hi I live

7. I live in

8. live in San

9. in San Jose

10. Hi I live in

11. Ilivein San

12. live in San Jose

13. Hi I live in San Jose

Because all we care about are the permutation of consecutive words, punc

tuation is neglected and removed from the sentence. Phrases derived from

9



2.1. Dictionary Creation and Maintenance

the above list are searched through the whole document to count their oc

currences in the document. Again, in order to prevent bias towards longer

documents, the occurrences are divided by the word length of the document.

The quotients thus serve as the phrase frequencies. Each phrase, together

with its frequency, is then saved in a local phrase frequency table for each

document. We call it local because this value is independent of the content

of other documents in the document set.

Global Phrase Frequency

After the local phrase frequencies of a document are calculated, they are then

copied to the global phrase frequency table. If the same phrase exists in the

table, its frequency is increased by that of the same local phrase frequency.

If the phrase does not yet exist in the table, the local phrase frequency is

simply copied to the table as a new entry. The reason of having both local

and global phrase frequencies is so that we know not only how often a set of

words occur together, but also how frequently such a combination appears

across documents.

2.1.3 Dictionary Maintenance

Because the system mainly relies on the additional document properties

built during the creation phase, and some of the values of these proper

ties are related to the whole document set, maintaining the integrities of the

properties is essential for the system to function properly. As new documents

are added to the document set, the dictionary is dynamically updated to ad

just the relative term match strength of each document that is derived from

10



2.2. Single Word Search

the original text of the new documents. The major work is to re-calculate

the tf-idf weight property of each document. As shown in the Dictionary

Creation section , such calculation is mathematically straightforward. A

database script can just do the job. Furthermore, in most cases this process

does not have to be performed each time a new document is added to the

document set. A better approach is to periodically execute that same script

but only look for those unprocessed documents since the last run, and re

adjust the whole document set at the end. This is possible because all that

existing documents need is the size of the new document set and the lists of

terms in the new documents. Therefore, the time complexity of dictionary

maintenance by running a database script is constant, regardless of the size

of the new documents processed. Last but not the least, the frequency of

performing this batch maintenance depends on how often new documents

are entered into the database and how well one wants to keep the system

up-to-date.

2.2 Single Word Search

Searching for a single word involves finding all matching documents and

sorting them in the order of relevance. If the number of results is lower

than the predefined configurable Result Size threshold, the system starts

the phonetic matching action to try to look for candidate documents con

taining words that sound like the queried one. Then these candidates are

ranked based on their relevance to the query and only those that exceed the

predefined configurable Sound-Like threshold are returned. Therefore, we

11



2.2. Single Word Search

break down single-word search into two stages:

1. The system performs text matching search. If the queried word is

found in more than the Result Size number of documents, the system

sorts and returns all of them.

2. If the queries word is not found or only exists in the number of doc

uments smaller than the Result Size threshold, the system performs

phonetic matching search, sorts and returns the results.

The two stages can be further categorized into three steps: Word Matching,

Resulting Sorting, and Phonetic Matching. Each of them is discussed in

more detail below.

2.2.1 Word Matching

Word matching is the most straightforward case to deal with in our system.

We use a combination of the Boolean Model and Vector Space Model on the

metadata of the dictionary entries the system has built at creation time to

not only find documents that contain the searched word, but also sort them

in terms of relevance.

The Boolean Model is based on Boolean logic and sets theories. The idea

is to conceive both the word query and the word list metadata of the searched

documents as sets of terms [1]. Searching is purely based on whether or

not the query word exists in the document word lists. Boolean Model is

quite efficient in that it does not check for things such as term frequency,

document length, etc. All it does is to make sure the retrieved documents

12



2.2. Single Word Search

have all the queried terms appearing in them at least once [2]. On the other

hand, despite of the mathematical simplicity of the Boolean Model, it has

its limitation because if several documents all present the same terms but

with different occurrences, different number of unrelated unique words, or

even different document length, they are indistinguishable to the model.

Therefore, we need to further process the result set so documents that are

more related to the query are placed before the others.

2.2.2 Result Sorting

Vector Space Model can just do the job. It represents document text as

vectors in an algebraic model where each non-zero dimension corresponds

to a distinct word in that document [lO][13]. For example, if we have “The

quick brown fox jumps over the lazy dog” as a document, the dimension of

“the” is two while that of the rest words are all one and any other dimensions

are zero. If we build vectors for the respective documents, we can actually

calculate the document similarities by comparing the angles between them.

This is one of the assumptions made in the Document Similarities Theory

[4]. Like we said at the beginning of this section, because a query can be

considered as a short text document, search is really just pulling documents

out of a data collection in terms of their similarities to the original query

document. To calculate vector angles, they have to be in the same vector

space with the same dimensions. Therefore, the system first takes the union

of all unique terms of two documents. The size N of the union set is used to

create two vectors of N-dimension. These two vectors are both initialized to

zero. For the first vector, each of its dimensions is then changed from zero to

13



2.2. Single Word Search

a non-negative integer indicating the frequency of the word that dimension

represents in the first document. Zero means no word occurrence. Then the

system does the same for the second document vector. Now that the two

vectors in the same vector space contain each document’s word frequency,

we can find out the angle between them in order to see how closely related

they are.

While the above approach is conceptually straightforward, there are a

few things our system has been implemented differently to further improve

its accuracy.

The first is the vector representation in the Vector Space Model. Instead

of using term frequency as values for vector dimensions, we applied the tf

idf weights to evaluate how important a word is to the considered document

[13]. The previous application is simple but fails to take into account the key

factor that longer documents might have a low proportional term frequency

even thought that term may have a higher occurrence than it does in a much

shorter document. In such cases, it is obviously imprudent to simply take

the longer one just because of its higher term frequency. What we need is

to evaluate the relative importance of the term in a document to the whole

document set. This is why we want to apply tf-idf weights. As stated in the

previous section, the local tf parameter normalizes word frequencies in terms

of the length of the document the words reside in. Furthermore, there is also

a global parameter idf, which contributes to the result the frequency of the

documents containing the searching word relative to the whole document set.

The product of the two parameters, known as the tf-idf weight thus tends

to represent the similarity of two documents with respect to the local term

14



2.2. Single Word Search

frequency ratio (to the document itself) and the overall document frequency

ratio (to the whole document set) [15]. In other words, rare terms are given

more weight than common terms. Therefore, in our system a document is

represented as a weight vector:

v=[tf—idfi,tf—idfi,...,tf—idf} (2.4)

where i is the sum of the number of distinct words in two documents.

One another change is that, instead of find the angel between two vec

tors, our system takes a more common approach of calculating the cosine

of an angle, which is equal to the dot product of the two vectors divided by

the length of each of the vectors. The mathematical representation of this

property for implementation is:

cos(O)=
IvlHv2I

(2.5)

When vi and v2 are perpendicular, cos(O) is zero. It means the doc

uments represented by the two vectors have no match. In other words,

the queried word does not exist in the considered document. In our sys

tem, cos(O) is always positive because it is only applied after the Boolean

Model eliminates non-relevant documents in the previous text matching

stage. Therefore, we can sort the results by their cosine similarities: the

large the cos(O) is, the more relevant the document is to the query.

Incorporating the above changes, the sorting process works the following

way:

15



2.2. Single Word Search

1. Construct two initial document vectors of the same dimensions from

the query and a document

2. Take the tf-idf weight values of the query and the document from the

dictionary and fill them into the corresponding vector dimensions

3. Calculate the cosine value of the angel between the two vectors

4. Repeat step 1 to 3 for each document in the result set returned by

Boolean text matching

5. Sort the result set by their cosine values. A larger number indicates

higher relevance of the corresponding document

2.2.3 Phonetic Matching

So far, the search system has been running strictly on exact text matching.

However, if the result set is empty or so small that it does not contain

information a user looks for, the system starts a different kind of search

that is based on pronunciations to hopefully increase the number of hits.

We observe that when a query results a low number of hits, there are two

possible types of reasons:

1. Query is spelled correctly but the data pool just does have a lot of

documents containing the keyword.

2. Query is spelled incorrectly. Otherwise the search pool may return

more hits.

16



2.2. Single Word Search

The system first performs a search operation assuming the spelling is correct.

If not enough results are returned, it then performs another search opera

tion with spelling correction. We will discuss each of them in the following

sections.

Low Hits Resulted from a Correctly Spelled Query

When a query is correctly spelled but results in few hits, the system will

try to broaden the result by looking up words that sound similar to the

query in the document set. Here is where another metadata, the Double

Metaphone code built during the dictionary creation process, comes into

play. Because words of same or similar pronunciations are encoded into

the same or similar Double Metaphone code, a simple database query that

compares the index Double Metaphone codes of two words will return a

list of words that sound like the queried one - straightforward. The less

trivial part is to sort this list of words so that those whose pronunciations

are closer to the queried one are put before the others. The system makes

such decisions based on the Levenshtein Distance of the candidate words

from the original word. The Levenshtein Distance is a measure of difference

between two sequences. When it is applied to two strings, it represents the

minimum number of operations one needs to transform one string to the

other[12]. The basic operations are insertion, deletion, and substitution.

All operations are performed on the character level. In other words, each

operation can only manipulate one single character in a string. For example,

the Levenshtein Distance of the word “night” and the word “right” is one

because one can transform one to the other by substituting the letter “n”

17



2.2. Single Word Search

with “r”, and vice versa. The word “knight” also has a Levenshtein Distance

of one from “night” because inserting “k” at the beginning of “night” results

the other. In a generalized version of the Levenshtein Distance definition,

character transposition (permutation of two characters while keep the rest

fixed) is also allowed. However our system only considers the basic three

operations for simplicity concerns because it is always possible to replace

one transposition operation with a deletion following by an insertion, and it

does not affect the relative costs among string transformations.

Because Double Metaphone codes are strings, we can apply the Leven

shtein Distance to measure their differences and thus calculate the similari

ties of their sounds. Words that are phonetically identical always have the

same Double Metaphone code, so their Levenshtein Distance is zero. As

the pronunciations of two words become less and less alike, their Double

Metaphone codes will have more different characters from each other and

thus result in a further Levenshtein Distance. Therefore, the system ranks

the Levenshtein Distances between the query and the candidate words, and

sort them based on the different Levenshtein Distances.

Low Hits Resulted from an Incorrectly Spelled Query

it is not uncommon for users to enter misspelled queries, and the number

of hits resulted from it is almost guaranteed to be small, if not empty.

From the system’s perspective, misspelling is inevitable and its forms are

unpredictable. It could be a missing-letter error, a double-letter error, or a

swapped-letter error. Each of them could involve one or more letters and

all of them could occur in one query. The challenges here are to identify the

18



2.2. Single Word Search

errors, come up with a list of correction candidates, and sort them in terms

of their proximities to the original misspelled word. There are quite a few

spelling correction algorithms out there. Most of them are derived from the

combination of Levenshtein-Distance-based and q-gram-based algorithms.

We have seen how Levenshtein Distance is calculated. Next we are going to

briefly introduce q-gram and q-gram-based algorithms.

A q-gram of a string is a substring of q characters. For example, if q =

2, the word “search” has the following q-grams:

SEEAARRCCH

By comparison, for q = 2, the word “march” has the following q-grams:

MAARRCCH

Therefore, these two words share the AR, RC and CR q-grams. A typical

q-gram-based algorithm counts the number of q-grams two words have in

conunon. The higher the count is, the stronger match it yields.

A typical q-gram algorithm that has been used widely works the following

way [7]:

1. A query word is first broken into q-grams, where q is, say, 4.

2. Each unique word in the dictionary is also broken into q-grams, where

q is the same as that defined in step

3. All the q-grams are put in the Boolean model to perform a logic AND

operation to retrieve the top correctly spelled words that share the

most number of q-grams with the query word.

19



2.2. Single Word Search

4. If there are not enough number of hits, decrement q by one and do

step 1 to step 3 again. Repeat step 1 to step 4 till q is equal to 2 or

enough hits are returned from step 3.

5. Finally, the retrieved words are ranked in terms of their Levenshtein

Distances to the misspelled word, with the closest ones at the top.

While this method is good for its simplicity, it falls short on several aspects.

First of all, it is inefficient. Breaking a word into q-grams has linear space

complexity and such operations need to be performed on each single word in

dictionary. Therefore, the amount of space step 1 and step 2 take is O(nq) in

total, where n is the dictionary size. To make spelling correction practical,

a reasonably comprehensive dictionary with a few hundreds of thousands of

words and phrases is necessary. Breaking each word in such a dictionary

could cause heavy disk overhead, which in term affects performance. Fur

thermore, step 3 is time-consuming because it involves set intersections and

sorting, which is O(q’) [3]. To make it worse, if what step 3 got does not

meet with the requirement of step 4, it routes the search process to step 1

again and again until the result is satisfying.

Secondly, it is sometimes inaccurate. For example, let’s set q to 2 and

there is this misspelled word “cta” entered by a user, who actually meant

the word “cat”. The 2-grams of the incorrect word is “CT” and “TA”,

while the 2-grams of the correct word is “CA” and “AT”. It is obvious that

the above algorithm is not going to find the most desired word because the

intersection of the two q-gram sets is empty. This is the limitation of the

algorithm so that, even if q has been set to its finest possible granularity,

20



2.2. Single Word Search

the correct word “cat” will never be returned. Such problems tend to occur

often in short words because of the fewer q-grams that can be generated

from them. Our system takes a different approach. Similar to the previous

search process, it involves two steps:

1. Find correctly spelled candidate words that are close enough to the

query word

2. Rank the candidates and return the most matched one(s)

The next two sections discuss each of the above steps in details.

Find Candidate Corrections We observed that in most cases a mis

spelled word had a Levenshtein Distance of no more than 3 from the correct

word. We also noticed that errors causing the distances tend to occur to

wards the end of the misspelled words. Because we are only interested in

the words that are the closest to the query word, the above two observa

tions suggested that, instead of considering all possible words that have all

possible Levenshtein Distances from the query word, we could just focus on

the one-, two-, and three-Levenshtein Distances of the beginning portion of

each word. The following is how it works:

1. Given a query word of length n, set k = F0.6n1, where k is the number

of beginning characters that are going to be taken from the query

word.

2. If k 3, k = min(3,n); else if k > 7, k 7. The lower bound of k

is the less of 3 or the length of the word. It is to make sure there are

21



2.2. Single Word Search

enough possible permutations to form Levenshtein Distance of three

to maintain the level of accuracy. The upper bound of k is 8. This

reflects our observation that the beginning portion of a query word is

more likely to be correctly spelled, so the following correction process

will use this portion as the base to find matches. We set the lower

bound of k to 3 and upper bound to 7 because with the data set we

experimented on, they seemed to be the golden numbers that balanced

accuracy and efficiency.

3. Take the first k characters of the query word and generate a key set

where each item is a key whose Levenshtein Distance are one, two, or

three from the k-length string.

4. Check each key in the key set for a given query against the word list

metadata of each document in the document set. Return the words

that also start with those same keys.

For example, if the misspelled query word is “acommodation” (should be

“accommodation”), the system first finds its length m = 12. Then it sets

k = 10.6. 121 = 8, which is greater than 7, so k is set to 7. Now the first 7

characters “acommod” are taken from the original query and added to the

key set as the first key. Next, new keys that have one Levenshtein Distances

from the first key are generated, followed by generating new keys that have

two Levenshtein Distances and three Levenshtein Distances from the first

key. The following list is the key set snippet with Levenshtein Distances of

one that are generated by inserting the character “c”.

22



2.2. Single Word Search

acommodb (insert “b” after character 7th)

cacommod (insert “c” before 1st character)

accommod (insert “c” before character 2nd)

accommod (insert “c” before character 3rd)

cacocmmod (insert “c” before character 4th)

cacomcmod (insert “c” before character 5th)

cacommcod (insert “c” before character 6th)

cacommocd (insert “c” before character 7th)

cacommodc (insert “c” after character 7th)

dacommod (insert “d” before character 1st)

Note that after “c” is inserted into “acommod” before 2nd character,

the resultant string “accommod” is part of the correct word the system is

expected to return. Finally, the keys in the above list and the rest of the keys

in the key set are all checked against the word list metadata. If the word

“accommodation” exists in at least one of the word lists, it will be returned,

together with other candidates whose beginning portion has a Levenshtein

distance of at most three from “acommod”. For instance, “command” is

another candidate because “comman” has a Levenshtein Distance of three

from “acommod” (delete “a”, replace “o” with “a”, and “d” with “n”).

From our experiment, the size of candidate corrections only ranges from

a couple of words to at most several hundred in a document set consisting

of a few hundreds of thousands of unique words. This is due to the large

23



2.2. Single Word Search

number of false keys in the key set that are phonetically incorrectly. Because

of the relatively small data pool, we are able to implement a reasonably

comprehensive scoring system to rank the candidates in order to find the

best match.

Rank Candidate Corrections Now that a list of candidate words close

enough to the original query word have been found. The next task is to pick

out the best match(es). The system has its scoring system that ranks every

candidate by taking into account several factors, each of which contributes

to the final score that a candidate gets and the highest scored candidate(s)

are considered the best match(es). The factors are:

Weighted Levenshtein Distance from a candidate to the original

misspelled query word. The reason to compare it with the complete word

rather than its first k characters is to ensure the evaluation reflects the

relevance of a candidate to the query word as a whole. Levenshtein Distance

has been discussed and used in quite a few places in previous parts. In this

section, we are going to applied one of its variations: Weighted Levenshtein

Distance. The difference between this one and the original version is that,

instead of treating insertion, deletion and substitution with equal weights,

each of the three operations is now assigned a cost that may vary from each

other. The concept has been commonly used in bioinformatics, known as

the Needleman-Wunsch algorithm, for nucleotide sequence alignment[8]. It

makes sense in our application domain because among all spelling mistakes,

some are more likely to occur than the others. Table 2.1 is a list of allowed

operations in calculating the Weighted Levenshtein Distance and the costs

24



2.2. Single Word Search

associated with these operations.

Operation Cost
Insertion 0.9
Deletion 1
Substitution 0.6
Transposition 0.6
Double Letter Error 0.4

Table 2.1: Operations for Weighted Levenshtein Distance calculation and
their costs.

From the table, we see that Deletion costs more than any other oper

ation, indicating that with everything else identical, if one candidate has

an additional character from the original word (i.e. needs a deletion to

transform it to the original word) while another candidate has the same

characters but two of them are in a slightly different order (i.e. needs a

transposition to transform it to the original word), the latter gets a higher

rank because of its lower cost. We gave Insertion a slightly lower cost than

Deletion because we observed that it was more likely for a user to miss a

character than to have an extra unwanted one. Similarly, entering a wrong

character or swapping two consecutive characters are more likely to occur

than the previous two operations, and thus are assigned an even lower cost.

The last row of the table is a special operation we defined particularly for

word matching. Without it, a misspelled word with an extra character same

as one of the two characters next to it would have to take the most expensive

Deletion operation to match to the correct version. However, we observed

that when this kind of mistakes happened, the most accurate resi±lts were

usually generated by removing one of the double letters. Therefore, we de

25



2.2. Single Word Search

cided to include this supplemented low-cost operation to better model the

real user behaviour. The Weighted Levenshtein Distance is the total cost

of performing one or more operations in Table 2.1. Furthermore, because

shorter words are more likely to get a smaller total cost due to the fewer

operations that can possibly be performed on them, the score has to be nor

malized to avoid such bias. Therefore, if let c be the total operation cost to

transform a candidate to the query word, and n be the query word length,

the score from the Weight Levenshtein Distance can be calculated as:

1—. (2.6)

where c is always less than or equal to n because the maximum cost is no

greater than 1. The smaller c is, and the larger n is, the larger the score is,

which means the closer the candidate is to the misspelled query word. The

extreme case, thought not going to happen in the system, is when the score

is one, then c must be zero, meaning the candidate word and the query word

are identical.

Second, Starting and Ending Characters of a candidate word are

checked against those of the query word. The more beginning or ending

characters the two words share in common, the more likely the candidate is

the correction of the misspelled query. It was also from our tests that users

tended to be more sure about the beginning and ending letters of words they

enter. As the positions of the letter were closer to the middle of the word

from both sides, spelling mistakes were more likely to happen. Therefore,

we took into account this factor in the ranking system with a linear scoring

26



2.2. Single Word Search

function which works the following way:

1. Set s = 0. Starting from the first letter of the candidate and the query

word, check if they are identical. If they are, increment s by 1 and

move on to the next letter (in this case, second one) of both. Repeat

this process till:

(a) the two letters at the same position from the two words are not

the same,

(b) or the letter position is equal to half of the length of the shorter

word.

2. Set e = 0. Starting from the last letter of the candidate and the query

word, do the same as Step 1 except that it checks for the second half

of the words.

3. The final score for this factor is calculated as:

s+e
27

min(rtq,nc)

where flq is the length of the query word, and is the length of the

candidate word. The division is necessary to normalize the score to

prevent bias toward longer words. Also, because both Step 1 and Step

2 must stop at half of the shorter word, s + e must be less than or

equal to min(nq, ne). Therefore, in the extreme case, if the candi

date and the query word are identical, the score is one, which agrees

with the mathematical meaning of the previous score of the Weighted

Levenshtein Distance.

27



2.2. Single Word Search

Third, Double Metaphone code of both the candidate word and the query

word are compared to calculate the third score based on their pronuncia

tions. As we saw early in the introduction section of the Double Metaphone

algorithm, a Double Metaphone code consists of two keys, one primary and

one alternate. The evaluation of how similarly two words sound like each

other works the following way:

1. if the primary key of the candidate is the same as the primary key of

the query word, the candidate gets 0.3

2. else if the primary key of the candidate is the same as the alternate

key of the query word, or if the alternate key of the candidate is the

same as the primary key of the query word, the candidate gets 0.2

3. else if the alternate key of the candidate is the same as the alternate

key of the query word, the candidate gets 0.1

4. else if none of the above three conditions is met, the candidate gets 0

The score is calculated in the same order as the above three methods are

presented. In other words, the maximum score a candidate can possibly get

from this factor is 0.3. One might wonder why this factor does not contribute

to the total score as much as the previous two. We made our decision based

on two reasons. The first is that, as accurate as the Double Metaphone

algorithm was designed based on sophisticated phonetic rules, the author

also admitted that, in some cases, it may fail to generate unique codes to

distinguish certain words that are pronounced only slightly differently, due

to the complexity and the “maddeningly irrational speffing practices” [9] of

28



2.2. Single Word Search

English. The second and more important reason is that, even if there were a

perfect phonetic mapping algorithm that could distinguish every single dif

ferent pronunciation, it is still not able to consider words that sound the same

but differ in meanings. These words are known as homophone. For exam

ple, “right”, “write”, “Wright”, and “rite” are homophones. Their spellings

are considerably more different than their pronunciations are. Because it is

unlikely that the users would misspell a word as one of its homophones, we

had to be careful not to overly rely on phonetic similarity. This is why the

Double Metaphone score is weighted only about 1/3 of the previous spelling-

oriented factors. It serves more like a fall-back measure should there be a

tie in the first two factors.

Lastly, if necessary, Occurrences of candidate words in the word list

metadata of each document are compared. By necessary, it means that this

step is performed only if all the above comparisons result a tie. What this

factor considers is how important a candidate is to the document set. The

more often a word appears in the document set, the higher score it gets.

Because occurrences of words are highly unlikely to be equal in the whole

document set, this is our last resort for picking out the golden word. If it

ever happens that the occurrences of candidates are still the same, one of

them will be randomly returned as the best fit.

Search on Phonetically Similar Word

From either of the two cases, low hits because of a rare query word or

because of a spelling mistake, now that the best phonetically matched word

has been found. The next task is straightforward. The system performs a

29



2.3. Multiple Word Search

single word search using the new word as the query word. All it does is

to repeat the Word Matching and Result Sorting steps discussed previously

and find the result documents. This time, Phonetic Matching is not going to

be performed again because the new query is from the document set, which

means a none-empty return set is guaranteed.

2.2.4 Summary

The single word search consists of two stages that based on different ap

proaches. The first stage is to match text between the query word and the

words in documents. It works fine under the circumstances that a query

word is correctly spelled and it exists in the document set. If either of the

cases fails, the system moves on to the second stage. In the second stage, a

more sophisticated scoring system is applied to find a new query word from

the document set that is phonetically close to the original query word. The

new query word is then used to perform another stage one search to return

more relevant hits.

2.3 Multiple Word Search

So far we have seen how a single word can be searched phonetically in a

document set. Now we are going to deal with phrases, queries consisting of

multiple words. Similar to single word search, there are two stages involved

in searching for a phrase:

1. The system performs text matching search. If the queried phrase is

found in more than the Result Size number of documents, the system

30



2.3. Multiple Word Search

sorts and returns all of them.

2. If the queries word is not found or only exists in the number of doc

uments smaller than the Result Size threshold, the system performs

phonetic matching search, sorts and returns the results.

The two stages can also be further categorized into three steps: Phrase

Matching, Resulting Sorting, and Phonetic Matching. However, the imple

mentations of them are somewhat different from those of their single-word

counterparts. The following sections are going to discuss them in detail.

2.3.1 Phrase Matching

Again, this is the most straightforward part. Similar to single word match

ing, it also applies the Boolean Model to treat documents and the query

string as sets of phrases. However, the variation here is that, instead of

looking at the word list metadata of each document, the phrase is checked

against the local phrase frequency tables. Since each table consists of en

tries of two or more words separated by a whitespace, the query also needs

to be re-formatted by removing punctuation, non-single whitespaces, etc.,

and inserting one and only one whitespace in between words to make it

more search-friendly. Furthermore, phrase entries whose word lengths are

less than that of the query string are neglected because it is impossible for

them to hold the query string. At the end of this step, a set of documents

containing with the query string are returned.

31



2.3. Multiple Word Search

2.3.2 Result Sorting

Sorting is based on the importance of the query string to the document and

the whole document set. Therefore, this is where both the local and the

global phrase frequency tables are needed. As a matter of fact, they are the

only two factors for the system to decide the order of the result documents.

One might wonder why sorting for multi-word queries are so much easier

than doing the same for single-word queries. The reason is that, the Vector

Space Model with tf-idf weights used for the single-word ones does not apply

here because the counted frequencies of phrases are not all meaningful. For

example, given the sentence “I live in San Jose”, “in San” is a valid phrase

in our system but it does not function as a meaningful unit in the sentence.

In statistics, such cases are called noise. If vectors were created with too

much noise in the dimensions, the result could turn out unpredictable. For

example, a document with more meaningless phrases but shorter in word

length could be placed before others that are actually more relevant. On the

other hand, from our tests, the simple phrase frequency comparison worked

well. Each document gets a score which is the product of the local and

global phrase frequencies of the query string. The higher the score is, the

more relevant that document is to the query string. This method produces

reasonably good results because it takes into account the importance of a

phrase both locally to the document and globally to the whole document set.

Therefore, although not as accurate as the Vector Space Model to single-

word queries due to not considering other phrases, such ignorance prevents

unpredictable behaviours from data noise and produces good results.

32



2.3. Multiple Word Search

2.3.3 Phonetic Matching

Similar to single-word search, if the strict text-based matching does not

return satisfying results for the phrase, the system starts the sound-based

search. As we have discussed earlier, the phonetic matching algorithm for

single-word queries returns a list of sound-like candidates and ranks them

in terms of the phonetic closeness to the query word. For phrase queries, we

reuse the same algorithm for phonetic matching in the following way:

1. Break a query phrase into a list of single words.

2. For each word, perform the single-word phonetic matching operation

to retrieve a list of top candidates.

3. Consider all possible permutations of the candidate lists by taking one

word from each of them. For each permutation, refer to the global

phrase frequency table to get its global frequency in the whole docu

ment set. This is called correlation check.

4. After all permutations are generated and their global phrase frequen

cies are check, return the one with the highest frequency.

For example, given a query phrase consisting of three words, the first two

steps of this method are simply to repeat the single-word phonetic matching

operation on each of the three words. In step three, if every word has 100

candidate words, there are at most 1,000,000 (100. 100. 100) combinations

of candidate phrases to be checked against the global frequency table. We

say “at most” because optimizations are implemented to significantly shrink

33



2.3. Multiple Word Search

the exam pool. We will come back to it very soon. The last step is just to

return the one with the highest global frequency.

One may wonder if it would still generate good output by just considering

each phrase word independently and combining the results together as the

phrase search hits. Fom our tests, the answer is no because it would get

a lot of cases severely wrong. For example, a user wants to query for “San

Jose” but accidentally spelled the query “Ssn Jose”. For “Ssn”, the single-

word correction algorithm will probably return candidates such as “sun”,

“son”, and “San”. If we do not consider the correlation between the query

words, because the word “sun” or “son” seems to be more commonly used

than “San”, it is very likely that one of them will be chosen as the best

fit to form the “corrected” phrase “Sun Jose” or “Son Jose”, whereas the

user really meant to search for “San Jose”. This is why collocation check is

performed to prevent such cases from being returned. Consider the above

example. Even if the individual candidates may have higher frequencies,

they have to be evaluated by how often they are seen together. As a result,

“San Jose” will get a higher frequency from the frequency tables than any

other incorrect phrases combined by correct words.

As the number of words in a query increases, the number of permuta

tions from all candidate word lists grows exponentially. We have seen in one

of the previous examples that, for a three-word query, there are 1,000,000

permutations because in order to retain good proximities each candidate list

contains the top 100 closest words. If a query has five words, the number of

permutations quickly boosts to 10 billion! Therefore, a brute-force approach

going through all possible combinations is infeasible due to its huge time and

34



2.3. Multiple Word Search

space complexities. Fortunately, we realized that a permutation could be

generated by selecting one word from each candidate list and then concate

nating the selections together. It means before a permutation is formed, all

entries in the global phrase frequency table are possible matches. Then, the

first word from the first candidate list is chosen as the first element of the

permutation. At this point, those phrase frequency entries not containing

the same first word do not need to be further considered because it is guar

anteed they will not be a match to the whole permutation. Next, the second

word from the second candidate list is chosen as the second element of the

permutation. Now, among the phrase frequency entries left from the previ

ous selection, those that do not contain the same second word do not need to

be further considered either because they will not be a match to the whole

permutation for sure. The process goes on till either the permutation is

completed or there are no phrase frequency entries left to be selected. If the

permutation is completed, it means there is a match in the phrase frequency

table. Otherwise, it means there are no such phrases that can match the

incomplete permutation from its first element up to its last element that is

generated right before the process stops. Therefore, all permutations with

the same beginning elements as the incomplete one can also be “purged”

because matching to them is also guaranteed to be empty. Moreover, before

any permutation is formed, we can further optimize the process by reducing

the phrase frequency pool to only those entries with the same number of

words as that of a complete permutation. This has the effect of limiting the

initial size of the data set to make it converge more quickly. Figure 1 is an

example of the optimized permutation generation process on a three-word

35



2.3. Multiple Word Search

query.

AA1 AB AC BA B8 BC

ACA BAA BAB BCA

I I
Figure 2.1: Optimized permutation generation process on a three-word
query

Suppose there are five three-word phrases in the phrase frequency table.

They are “A C A”, “B A B”, “B C A”, “C C A”, and “C C B”. No

matter how many phrases are there in the original phrase frequency table,

these five are always the ones to beginning with because any other phrases

with more or less words are not considered. For simplicity, each candidate

list has four words, “A”, “B”, “C” and “D”, to be chosen from, and there

are three such candidate lists. Therefore, without optimization, a total

of 64 (4 . 4 4) permutations need to be generated and checked against

the five existing phrases. Let’s see how optimization can speed up this

process. We begin by picking “A”, the first word in the first list, as the

first element of the permutation. Because there is only one phrase of the

five starting with “A”, the other four do not need to be checked for the rest

of this permutation. Then another “A”, the first word in the second list,

C

CCA CCB

I I

36



2.3. Multiple Word Search

is picked as the second element of the permutation. Now this permutation

starts with the words “A A”. Because the only phrase left from the last

selection does not contain “A A” as its beginning portion, we can stop

this permutation at this point. More importantly, any other permutations

starting with “A A” do not need to be further considered. In Figure 1, we

represent the termination of such a “branch” with a dotted board around

the last generated partial permutation. Thus, “A A” is surrounded by a

dotted board. Next, we pick the second word “B” from the second list.

Similarly, there are no phrases with the “A B” beginning portion, so any

permutations of “A B X”, where “X” can be either “A”, “B”, “C” or “D”,

are ignored. Thus, “A B” is also surrounded by a dotted board. Next, we

pick “C” from the second list to form “A C”. Because “A C A” matches

to “A C” for now, we can move on to the third list and select “A” from

it to for the first complete permutation “A C A”. At this point, we find a

match and no further permutations of “A C X” will be performed because

we know there is only one phrase in the form of “A C X”, so we stop

exploring any other permutations starting with “A”. Instead of 16 possible

permutations and comparisons, only 1 complete permutation is generated

and 5 comparisons are made between the incomplete permutation and the

phrase entries for all permutations starting with “A”. The same steps are

repeated for the rests till all five phrases are found. One extreme case is

when a permutation starts with “D”. All the 16 “D X X” combinations

are ignored. A save of 16 generations and 15 comparisons! In figure one,

only a total of six complete permutations are generated and five of them

are the matches. From out tests, such optimization could save over 90% of

37



2.3. Multiple Word Search

computation time on average.

2.3.4 Summary

Similar to single word search, phrase search also consists of two states. The

first stage matches text between the query phrase and the phrase entries

extracted from their documents. If results are found, they are sorted in

terms of their local and global phrase frequencies to the documents. The

higher frequency a phrase is in a document and to the whole document set,

the more relevant that document is to the query phrase. If there are no hits

returned from the first stage, phonetic matching kicks in. A query phrase is

broken into words to find sound-like candidates. These candidates are then

combined to form different permutations that are checked against the global

phrase frequency table. The one with the highest frequency is considered

the golden match and text search is performed again using this new phrase

to return more hits.

38



Chapter 3

Evaluation

In this chapter, we evaluate the performance of our system. To do this,

we have created our simulator and test data to search for restaurant names

throughout the Greater Vancouver Region. We examine the effect of single-

and multiple-word searches with phonetic matching. By comparing the re

suits to the actual data in the test document set, we evaluate the search

accuracy and running time of the system with different types of inputs.

3.1 Simulation Setup

3.1.1 Test Data Pool

The test data is a set of restaurant names in the Great Vancouver Region.

We have built a crawler with the free software Web Scraper Lite [6] to grab

restaurant listings from Yellowpages.ca[18], extract their names and store

them in a database table in MySQL. The data pool consists of more than

3800 documents each of which is the name of a restaurant. We chose restau

rant names as our test data because of two reasons. First, our system was

designed specifically for short text documents. We observed the length of

a restaurant name usually varied from one to eight words, and thus they

39



3.1. Simulation Setup

would make good test data for our evaluation. Secondly, because of Van

couver’s diversity of cuisines from all over the world, some names of these

restaurants originated from languages other than English could be difficult

to spell right if one only knows the pronunciations approximately. For ex

ample, “Strozzapreti” is an Italian word for a kind of pasta, pronounced as

“stroh-tzuh-pray-tee”. Without knowing Italian, it is not unlikely for one to

misspell it as “Strozapreti”, “Strozzapreiti”, or “Strozzaprety” because all

of them share the same or very close pronunciations as that of the correct

version. Searching for such misspelled queries in the test data can help us

understand the level of accuracy and usability the system offers.

3.1.2 Test Input

We created the test input in two stages. First, a set of correctly spelled words

and phrases were generated. These words and phrases must not appear in

the test data pool. Second, we created a set of misspelled words and phrases

with a Levenshtein Distance greater than zero but less than or equal to five

from the existing words and phrases in the test data pooi. There are 1000

inputs in total for the test. Table 3.1 is a summary of the types and the

sizes of the input we tested on.

Input Type LD1 LD2 LD3 LD4 LD5 Total
Correct Word N/A N/A N/A N/A N/A 250
Correct Phrase N/A N/A N/A N/A N/A 250
Misspelled Word 61 59 49 4 38 250
Misspelled Phrase 59 55 53 46 37 250

Table 3.1: Test input types and sizes

40



3.1. Simulation Setup

For misspelled words and phrases with different Levenshtein Distances,

we tried to make the size of each group as close to each other’s as possible.
However, due to the various lengths of restaurant names, it was inevitable

that misspellings with smaller distance tend to occur more often. This is

because the group size grows reversely to the Levensthtein Distance. Fur

thermore, we categorized the misspelled words and phrases by the operations

making them incorrect. Table 3.2 is a breakdown of the operation types and
their sizes. The sums of the number of operations in both types are over
250 because some test cases require multiple operations to be corrected to

the query word or phrase.

Operation Misspelled Word Misspelled Phrase
Insertion 83 79
Deletion 60 1 70
Substitution 134 115
Transposition 146 121
Double Letter Error 170 L 164

Table 3.2: Operation types and sizes

3.1.3 Simulator

We implemented a simulator in PHP to query the test data pool with the

test inputs and to collect the test results. What it does essentially is the
two searching stages for single- and multiple-word queries described in the

previous chapter. We chose PHP as the implementation language for two

reasons. First, a lot of libraries have been made available for PUP to make

coding easier. For our program, we have used the Alix Math library [5] to

41



3.2. Simulation Results

handle all the mathematical details such as vector calculation, normaliza

tion, Weighted Levenshtein Distance, etc. Secondly, PHP is one of the most

popular languages for web development. Consider the system was designed

primarily for web-based searching, implementing it in PHP gives us a feel

of how it would perform in real web applications.

3.1.4 Environment

The test was conducted on an Ubuntu server with an Intel Core 2 Duo

E7200 CPU (running at 2.5GHz, 3MB cache, 1O66FSB) and 2GB memory.

We also installed Apache 2.2.8, MySQL 5.O.51b, and PHP 5.2.6 for the

simulator to query the database. The combination of these technologies

is commonly referred to as LAMP (Linux, Apache, MySQL and PHP). It

defines a popular web service infrastructure for its high flexibility, good

scalability, and low acquisition cost. This LAMP server, both its hardware

and software, represents the majority of the environments where our system

was meant to be run, and therefore was chosen to be the test configuration.

3.2 Simulation Results

The primary goal of the simulation is to evaluate the accuracy of phonetic

search when dealing with different types of input: correct word, correct

phrase, misspelled word, and misspelled phrase. We will discuss each of

them in this section.

The first two rows of Table 3.3 are the search results when a query was

a correctly spelled word or phrase. The system yielded a 95.6% success

42



3.2. Simulation Results

Input Type Number of Queries Number of Matches %
Correct Word 250 239 95.6
Correct Phrase 250 216 86.4
MisspelledWord 250 223 89.2
Misspelled Phrase 250 212 84.8

Table 3.3: Number of phonetic matches from the correct word, phrase
queries, and from misspelled word, phrase queries

ful rate when dealing with single-word queries. It was because the search

process took a regressing pattern to gradually increase the Levenshtein Dis

tance between the Double Metaphone code of the query word and that of

a document until it found the first match. For those the system did not

find a match, it was because they were so randomly generated that their

Double Metaphone Levenshtein Distance from any document was equal to

the length of the Double Metaphone code itself. In other words, these words

did not sound like any words in the test data. However, the 4.4% unsuc

cessful rate (1 — 95.6%) indicates that, such cases are rare. On the other

hand, searching for correctly spelled phrases yielded 86.4%, a considerably

lower successful rate. This is because the system needs to find candidate

words that are phonetically close to every word in a query phrase. If any

word returns an empty candidate list, the matching stops. Furthermore,

the more words a query phrase has, the less likely there is a match in the

document set. This observation was proven by the fact that, among the

13.6% unsuccessful query phrases, most of them consisted of five or more

words.

The last two rows of Table 6 are the search results when a query word or

43



3.2. Simulation Results

phrase was misspelled. Similar to the previous results, single word queries

yielded a high 89.2% successful rate. When we were generating the test

input, we intentionally made all queries have a Levenshtein Distance no

more than 5 to model the common error patterns. This is why the phonetic

matching still worked well with spelling mistakes. It came a little surprise

that the unsuccessful words were the smaller ones. We think it was because

after normalization, even close Levenshtein Distance could be proportionally

large to a small word. For example, if a word “aaa” has Levenshtein Distance

of 3, it means every character of the word has to be changed to transform

it to another word. For misspelled phrases, the successful rate is close to

its correctly spelled counterpart. It was expected because even though they

have different scoring mechanisms, the decisions made by these mechanisms

are both based on the same factors - the Local and Global Frequencies.

On the other hand, the relatively big accuracy gap between the correct

and misspelled single-word queries suggested that even though their scoring

mechanisms were similar, the different factors that each mechanism took

into account resulted in different levels of accuracy.

In addition to accuracy, we have also evaluated the running time of

performing various types of searches.

Table 3.4 shows the running time of all six different types of searches.

It was no surprise that the simplest text-based searches took the least time

while the sound-based misspelled word and phrase searches took the longest.

It is worth mentioning that the maximum average search time is merely

over a second and all types of searches have a small standard deviation

comparing to its average time. Combining Table 3.3, we conclude that the

44



3.2. Simulation Results

Input Type Queries Mm. Mac. Avg. Std. Dev.
Text-based Word 100/100 hOrns 371ms 193ms 76rns
Search
Text-based Phrase 100/100 216rns 478rns 3O5rns 93ms
Search
Sound-based Correct 239/250 607ms hl3lms 866ms 137ms
Word Search
Sound-based Corrct 216/250 715ms 1206ms 893ms 99ms
Phrase Search
Sound-based Mis 223/250 975rns 1704rns 1252ms 281rns
spelled Word Search
Sound-based Mis 212/250 874ms 1569ms 1177ms 325ms
spelled Phrase Search

Table 3.4: Running time of different types of searches

system has behaved reasonably fast and stable with an over 80% successful

rate regardless of the various types of inputs.

45



Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this thesis, we introduce a search system based on both text and sound

matching for short text documents. The system makes novel use of some

of the widely adapted algorithms and mechanisms in several fields by incor

porating them into its staged searching process. The different stages have

been created to deal with different search scenarios, and each stage has its

own scoring model built upon some common algorithms and the metadata

specially prepared for it. The various metadata associated with documents

are the keys to the dictionary-based approach our system takes for phonetic

searching. We provide a high level design specifying the system implemen

tation from dictionary creation and maintenance to text- and sound-based

matching for various types of queries. We also evaluate the system perfor

mance under these different circumstances. The results suggest that our

system meets its design goal with respect to accuracy and efficiency.

46



4.2. Future Work

4.2 Future Work

There are several areas in the development of the system that deserve fur

ther exploration. First of all, there are certain words, such as “the”, “to”,

“not” or “is”, that appear much more often than others but carry very little

information. They are called stopwords. Due to their high occurrences in

almost all documents, building dictionary metadata such as tf-idf weights,

global and local phrase frequencies around them is expensive and usually

not so useful. Therefore, it could be helpful to further increase the accuracy

and efficiency of the system by taking into account these stopwords perhaps

during the dictionary creation and phonetic searching phases. However, it

is important to not overly rely on it. For example, the famous phrase “to

be or not to be” consists of all words that can be considered as stopwords.

Yet they cannot be all treated the same way as others. Therefore, while

checking for stopwords looks like a promising way to improve performance

on general queries, it requires further investigation to make it really useful

without sacrificing the accuracy in special cases.

Secondly, when searching for misspelled words, the current design does

not take missing whitespaces into account. Consider the word “georgebush”.

The best match might be “Georgetown” while what the user really meant

was the phrase “George Bush”. If we consider inserting whitespaces in

“georgebush”, we would get “g eorgebush”, “ge orgebush”, “george bush”,

etc., and thus find that the last one is the best match. Similarly, we can

consider combining words to check for better matches. Again, the chal

lenge here is to find the right granularity to balance between accuracy and

47



4.2. Future Work

efficiency.

Last but not the least, the dictionary-based search approach usually

promises an acceptable level of accuracy for relatively small document sets.

However, as the number of documents grows, one might want to consider

alternatives such as query log. Query log is a statistic model of an extensive

set of prior queries that are compared to a user query and to suggest new

queries that will result in more hits. In our system, the new queries would

be phonetically similar to the original one. Because of the staged search

behaviours our system was designed to, it is possible to allow query log or

other techniques to be plugged in to further improve its performance.

48



Bibliography

[1] Daniel M. Everett and Steven C. Cater. Topology of document retrieval

systems. Journal of the American Society for Information Science,

43:658—673, 1999.

[2] William B. Frakes and Ricardo A. Baeza-Yates, editors. Information

Retrieval: Data Structures & Algorithms. Prentice-Hall, 1992.

[3] George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the

complexity of intersecting finite state automata. In IEEE Conference

on Computational Complexity, pages 229—234, 2000.

[4] Yuhua Li, Zuhair A. Bandar, and David McLean. An approach for

measuring semantic similarity between words using multiple informa

tion sources. IEEE Transactions on Knowledge and Data Engineering,

15(4):871—882, 2003.

[5] PHP Math Library.

http://www.alixaxel.com/wordpress/2007/05/19/php-math-library.

[61 Web Scraper Lite.

http://www.velocityscape.com/products/webscraperlite.aspx.

49



Chapter 4. Bibliography

[7] Gonzalo Navarro, Erkki Sutinen, Jan! Tanninen, and Jorma Tarhio.

Indexing text with approximate q-grams. In COM ‘00: Proceedings of

the 11th Annual Symposium on Combinatorial Pattern Matching, pages

350—363, London, UK, 2000. Springer-Verlag.

[8] Saul B. Needleman and Christian D. Wunsch. A general method ap

plicable to the search for similarities in the amino acid sequence of two

proteins. Journal of Molecar Biology, 48(3):443—453, March 1970.

[9] Lawrence Philips. The double metaphone search algorithm. C/C++

Users J., 18(6):38—43, 2000.

[10] Vijay V. Raghavan and S. K. M. Wong. A critical analysis of vector

space model for information retrieval. Journal of the American Society

for Information Science, 37(5):279—287, 1986.

1111 Soo Young Rieh and Hong iris Xie. Patterns and sequences of mul

tiple query reformulations in web searching: A preliminary study. In

Proceedings of ASISé”IT Annual Meeting, Washington DC Nov 2001,

pages 246—255, 2001.

[121 Eric Sven Ristad and Peter N. Yianilos. Learning string-edit dis

tance. IEEE Transactions on Pattern Analysis and Machine Intelli

gence, 20(5):522—532, 1998.

[13] G. Salton, A. Wong, and C. S. Yang. A vector space model for auto

matic indexing. Commun. ACM 18(11):613—620, 1975.

[14] Gerard Salton and Christopher Buckley. Term-weighting approaches in

50



Chapter 4. Bibliography

automatic text retrieval. In Information Processing and Management,

pages 513—523, 1988.

[151 Gerard Saiton and Christopher Buckley. Term-weighting approaches in

automatic text retrieval. In Information Processing and Management,

pages 513—523, 1988.

[16] Gerard Salton and Michael J. McGill. Introduction to Modern Infor

mation Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[17] Daniel Yacob. Application of the double metaphone algorithm to

amha.ric orthography, 2004.

[18] Yellowpages.ca.

http://www.yellowpages.ca.

51


