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Abstract

Mobile Multi-Streaming Protocol (MMSP) is a new protocol combining and

abstracting the essential functionalities of TCP and UDP for multiple coex

isting networks. It inherits the good characteristics from TCP while over

comes many drawbacks from it. The most important features of MMSP is

multi-streaming within a single connection. Our work proposes, investigates

and provides a concept for maintaining a reliable connection by setting up

multiple streams via different network interfaces. We designed and imple

mented a bunch of new packet formats, algorithms and state machines.

Our experiments have successfully proved that MMSP provides a func

tional solution to satisfy many requirements for up-layer protocols and ap

plications in both wired and wireless networks, producing higher network

throughput, security and reliability. Especially for mobile networks, the

unique design and characteristics of MMSP is in the ascendant. It is a

successful protocol extension of the transport layer on IP stack.
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Chapter 1

Introduction

MMSP is a reliable, multi-streamed, message-oriented transport protocol

layered on top of the unreliable and connectionless IP layer. It operates

the same level as TCP and UDP protocol and inherits lots of good charac

teristics from TCP, such as acknowledgement based handshaking, duplicate

message checking, data corruption and packet loss detection. Furthermore,

it introduces a new concept of multi-streaming, which can support multi

ple streams to deliver data within one message-oriented connection. This

idea overcomes the instability of the wireless network due to the frequently

changed topology. MMSP let mobile nodes have more flexibility to move

around within larger areas without losing the already established connec

tion as multiple links can coexist to keep the connections alive [1].

1.1 Motivations

MMSP is not a replacement of current TCP and UDP. Instead, it is an opti

mized, feature extended and updated protocol derived from TCP and UDP.

Figure 1.1 presents the layer where the middleware MMSP is designed on

IP stack. TCP is one of the most important protocol suites in use today. It

provides reliable, in-order delivery of a stream of bytes, making it suitable
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Chapter 1. Introduction
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Figure Li: MMSP on IP stack

for applications like file transfer and email. It guarantees that unreliable

IP packets are all transmitted without data loss. In terms of congestion,

it specifies its congestion control algorithm and minimizes network conges

tion. TCP retransmits discarded packets, rearranges out-of-order packets

and passes the consecutive byte stream to upper layer applications [1]. It

significantly simplifies the task of writing top layer protocols such as RTSP,

SMTP and other network applications.

User Datagram Protocol (UDP) is a simple transport layer protocol

which provides the a basic data transmission between hosts. As opposed

to TCP, UDP uses datagram as the unit to delivered data. It does not

guarantee reliability or ordering in the way TCP does. Data is not trans

mitted as consecutive streams. UDP also avoids the overhead of checking

sequence numbers and retransmissions [14]; All of these simplicities result

in UDP becoming faster and more efficient. Therefore, many time-sensitive

applications choose to use UDP since dropped packets is not considered as

2



Chapter 1. Introduction

a major factor of the performance

Both TCP and UDP have been extensively used in Internet due to their

admitted robustness, usability and stability. However, both of them have

their respective limitations which make them inappropriate for satisfying

specific group of applications’ demands. For example, video streaming with

TCP requires RTSP packets and RTP packets interleaved [18]. But it is not

always necessary to have RTP packets to arrive in order or without packets

loss. Most of the time, TCP video streaming only requires RTSP command

packets to be in a manner of connection-oriented, but it is not necessary for

the RTP data packets. Having RTP packets all delivered in a connection-

oriented manner may result in unnecessary overhead of TCP streaming. In

this case, TCP protocol can not totally fit into some mobile devices with

slow processors in terms of streaming.

As discussed above, some applications need reliable transfer without se

quence in-order maintenance; others may only require partial ordering of

the data. Under these circumstances, TCP incurs unnecessary delay and

overhead. As opposed to the limitations of TCP and UDP, MMSP provides

more fiexibilities and powerful mechanisms for solving the above discussed

problems. MMSP is also motivated by the idea of automatically switching

between different wireless networks. An example is to use WLAN to trans

mit messages and switch to GPRS/EDGE/UMTS while WiFi becomes out

of range.

Recently, as more and more mobile device vendors choose to unite 3G,

WiFi and WiMax into one entity, simply using TCP and UDP becomes un

realistic to support these hybrids of different networks or multiple networks

3



Chapter 1. Introduction

with the same type. For example, in the past two years, cellphones like

Nokia and LG, smart phones like BlackBerry and laptops all have different

network chipsets installed to support different types of network interfaces.

GPRS/3G and WiFi have been widely unified and incorporate into a single

device. Although TCP and UDP are still widely accepted as the most de

cent transport layer protocols, their original design can no longer satisfy the

latest multi-network requirements, such as multi-streaming by sharing one

connection via multi-streaming paths. In a leading case study in 2007, UMA

technology has become widely incorporated into mobile devices. As a result,

automatical phone-call switching from WiFi to GSM Relay has become re

ality [2]. More and more requirements from recent technology tells us that

just using one protocol TCP or UDP is no longer good enough to provide

functional services for devices that require multi-access networks. Therefore,

engineers begin to search for a more generic protocol that not only provides

services for each network media, but also transparently combines different

networks in holy matrimony.

Unlike TCP and UDP, MMSP presents a more updated and powerful

transport layer protocol to solve the handover problems and source sharing

issues among various networks. This thesis introduces the basic concept

of MMSP, detailing its design, implementation, evaluation and compares

MMSP against TCP.

4



Chapter 1. Introduction

1.2 Thesis Contributions

In this thesis, we propose MMSP to be an extension of current transport

layer protocols to qualify additional requirements that could not be handled

by TCP or UDP. We demonstrate that MMSP provides a higher throughput

than TCP in wireless networks and contains a mechanism to solve handover

between multiple transmission networks. Besides that, we also prove that

MMSP is more secure and reliable.

We highlight MMSP’s advantages by evaluating the current TCP draw

backs with respect of some special purpose applications, such as UMA and

Video Streaming. We compare the performance and functionality between

TCP and MMSP, to learn what kind of applications are suitable to use

MMSP.

We have designed and implemented a prototype of MMSP driver on

Windows XP and implemented several client-server testclamps to evalu

ate our experiment results. During the design portion, we investigate the

shortcomings of TCP and introduce new features using MMSP to alleviate

those said shortcomings. One novel and great advantage using MMSP is

maintaining multiple streams within one connection even when one of the

link interfaces gets disconnected. We realize that as a middleware, MMSP

largely reduces the unnecessary delay time of the head-of-line block issue

that exists in TCP. Moreover, by using the third party application Iperf, we

could clearly and easily gather different test results from TCP and MMSP

experiments, and compare them. After a set of experiments, we proved a

fact that the throughput of MMSP benefits from using multiple streams in

5



Chapter 1. Introduction

various wireless networks. The second indirect contribution is with respect

to Windows network development. Our work provides evidence that the

most used operating system Windows XP is able to add a third party driver

on their protocol stack.

1.3 Thesis Organization

The whole thesis contains five parts. The remaining thesis is organized as

follows. In chapter 2, we give a background overview of TCP and discuss its

unsuitable properties against some specific applications, such as UMA and

video streaming. In this chapter, we also introduce the concept of MMSP, its

properties, features and advantages. In Chapter 3, we discuss our motivation

for using MMSP and provide the design and implementation details. In

Chapter 4, we analyze the gathered data from various experiments carried

out on our MMSP module and analyze the experiment results. The final

conclusion and future work is discussed in chapter 6.

6



Chapter 2

Background and Related

Work

2.1 Evaluation of Unsuitable TCP Service

Since MMSP is derived from TCP, it is helpful to firstly examine the advan

tages and shortcomings of TCP. The Transmission Control Protocol (TCP)

is one of the core protocols of the Internet protocol suite. TCP provides

reliable, in-order delivery for a stream of bytes. It was firstly formally spec

ified in 1974 and was designed to be flexible enough to handle the physical

differences in most computers, routers and networks in general, but still

provide a standard to allow these physically different entities to be able to

transmit data amongst themselves. It is on top of the IP layer and makes

the unreliable IP packet transmission become reliable. It has been widely

used for more than twenty years with little changes [7].

However, the initial TCP design does not cover the special case that a

host has multiple points attached to the Internet. A TCP connection is

only able to hold a single stream using one end point. This drawback is very

costly since it causes unnecessary message delay and wastes the transmission

7



Chapter 2. Background and Related Work,

capability when an alternate available path exists. The limitation of the

TCP design makes it difficult to apply multi-steaming to many signal-control

applications such as video streaming and IP phone calls. To adhere to TCP

standard, these applications can only set up one TCP connection through

one internet interface and all other interfaces are wasted.

One instance that highlights the shortcoming of TCP is:

Example

Video/Audio streaming can be established by two ways: TCP streaming or

UDP streaming. Streaming using TCP requires both RTSP control packets

and UDP packets interleaved within one TCP stream [11]. Both RTSP and

RTP are encapsulated into the TCP payload, shown in Figure 2.1. Figure

2.2 presents the current multimedia streaming network. However, having

both RTSP control packets and RTP data packets in one TCP stream may

result in unnecessary and serious head-of-line block issue [8]. For example, if

several RTP packets are out of order, lost and wait for being retransmitted,

the delivery of RTSP control packets may be delayed. The delayed RTSP

control packets will lead to inaccurate media control in the application layer

[10].

Figure 2.1: Interleaved RTSP and RTP packets with TCP streaming

Also, since TCP only supports one streaming connection, it enlarges the

dependency on only one access point and restricts the lifespan of the whole

8



Chapter 2. Background and Related Work

streaming process to the reachability of this access point. Mobility in short

range networks like WLAN exposes an obvious weakness at this point. The

whole streaming process has to be terminated when the only used access

point becomes unavailable. To solve this problem, multi-streaming becomes

a good solution for devices that have more than one access points to maintain

a connection through other active links. In other words, when a mobile

device gets one link down, it should still be able to keep the connection by

using other available paths. For instance, video streaming on a mobile phone

with accesses to both WiFi and EDGE should be still able to continuously

watch the video via EDGE network after WiFi becomes out of range.

Since TCP is not enough to satisfy applications’ requirements such as

those we discussed above, we propose our new type of protocol which can

keep the basic functionality of TCP and overcome its shortcomings. We

name it MMSP.

ignthlE nia1Epoxt

Figure 2.2: RTSP Streaming Protocol Stack
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Chapter 2. Background and Related Work

Services or Features MMSP TCP UDP
Connection-oriented yes yes no

Full Duplex yes yes yes
Reliable Data Transfer yes yes no

Partial-reliable Data Transfer optional no no
Ordered Data Delivery yes yes no

Unordered Data Delivery optional no yes
Flow Control yes yes no

Congestion Control yes yes no
Application PDU Fragmentation yes yes no

Application PDU Bundling yes yes no
Multi-streaming yes no no

Protection against SYN Flooding Attacks yes no not exist
Allows Half-closed Connections no yes not exist

Multiple Path Selection yes not exist not exist

Table 2.1: Services or Features between MMSP, TCP and UDP

2.2 Overview of MMSP

Mobile Multi-Streaming Protocol (MMSP) is at the same layer as TCP and

UDP and it overcomes some limitations of them. It unites the advantages

of TCP and TJDP while providing a multi-streaming capability. MMSP is

designed to allow one oriented connection to be split into multiple streams.

Even when one link is offline, data flow is still able to spread out through

the other links. MMSP can transmit data via multiple paths to avoid the

so-called head-of-line blocking. Another strong point of MMSP is that it

supports both ordered and unordered data delivery. This makes it suitable

for a wide class of applications. In addition to many new features, MMSP is

more efficient and robust. Table 2.1 presents a comparison of MMSP, TCP

and UDP. As Table 2.1 indicates, MMSP inherits TCP-like mechanisms

such as reliable transmission and ordered delivery. It still uses the flow

10



Chapter 2. Background and Related Work

and congestion control algorithms similar to TCP, such as slow start, fast

recovery and fast retransmit. Moreover, it uses 32 bit checksum as opposed

to the 16 bit checksum. Unlike TCP, it allows several streams to coexist

within one MMSP connection. It defines a stream as a sequence of messages

(like data chunks in UDP) rather than bytes. It uses 4-way handshaking to

set up a connection and 3-way handshake to shutdown a connection. MMSP

does not have a half-open or half-close state as TCP. The details of all these

new features are discussed in Chapter 4.

2.3 Multi-access and Multi-streaming

With the increasing demand for wireless personal area networks (WPAN),

Wireless Local Area Networks (WLAN) are being developed to provide high

bandwidth wireless access for mobile devices in a limited geographical area

[5]. WLAN service is cheaper than most GPRS services. However, the per

formance of WLAN suffers from radio frequency interference and severely

limits the coverage area of WiFi signals. Fortunately, the convergence of IP

and telephony networks enables user terminals to have multiple accesses to

Internet. The combination of several network accesses provides user termi

nals better connectivity and more robustness.

The multi-access technology normally consists of link layer, network layer

and transport layer multiple access. We use MMSP as a solution of the

transport layer for multi-access scenario.

A multi-streaming host that has more than one IP address can estab

lish one MMSP connection containing multiple streams by allocating each

11



Chapter 2. Background and Related Work

separate stream for each assigned IP. The host can effectively control and

aggregate these multiple streams for delivering data. Since TCP only allows

one connection to be set up on one IP address, it does not maximize the

network’s usage when a host has multiple network paths. Figure 2.3 is one

example of hosts that have multiple network interfaces. The client has two

network interfaces: EDGE/3G and WiFi; the server uses another two net

work interfaces: Ethernet and WiFi. If using TCP, the client and server are

only able to use network interface to set up a connection (either the IP1 or

1P2 for the client and ether the 1P3 or 1P4 for the server), but with MMSP

the client and the server are able to have multiple streams coexisted in one

connection. In the example of Figure 2.3, streami uses IP1-1P3 and stream2

uses 1P2-1P4. Every stream in MMSP is bundled by a stream number and

Client

encoded into the MMSP packets, all of which are transmitted to the net

work via one connection. The concept of multi-steaming is very important

in that it avoids the head-of-line blocking problem that happens very often

in TCP. In other words, blocking one stream can not result in blocking other

Figure 2.3: Peers with Multiple Interfaces

12



Chapter 2. Background and Related Work

streams. Figure 2.4 provides a visual relation between a MMSP connection

and its streams.

Str-eamO -ci

( c Stam 1 ____9_

[ *— StreamN

Figure 2.4: Multiple Streams in One MMSP Connection

2.4 Functionality and Terminology of MMSP

MMSP uses its special Automatic Changeover Correction and Retransmis

sion Correction algorithm to control and monitor the whole connection path

selection. When one link becomes unavailable, it redirects the data from

that broken link to other available paths. The top layer applications are not

affected and are not even aware of these underground changes. MMSP is

totally transparent to the top layers.

Automatic Changeover Correction maintains the connectivity of net

work applications. Let us take an example that a laptop has both WiFi and

Ethernet interfaces to Internet. When the laptop has a very fixed position,

people prefer to use the high-speed Ethernet network. In MMSP, this stable

Ethernet interface is selected to build a primary path and the wireless one

is used for a secondary path. The sender will continuously monitor whether

any of IP addresses of the destination host are reachable. If the network link

13
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of the primary address fails, for example the laptop is moved away from the

original place and gets disconnected form Ethernet, MMSP will maintain

the connection by switching the stream from Ethernet to WiFi. Later, after

the Ethernet network is recovered, MMSP will resume the communication

using Ethernet.

Retransmission Correction is a policy to utilize multiple streams to

maximize transmission performance. When retransmission happens, the

sender presumes a network error or congestion occurs. The sender will

retransmit data through alternate network paths. This largely avoids the

head-of-line blocking issue in TCP and results in a better chance of success.

SSEQ Number and TSEQ Number

SSEQ Number stands for Stream Sequence Number. The MMSP user can

specify the number of streams supported by the MMSP connection at the

connection startup time. In order to ensure all messages are delivered in

order, MMSP assigns SSEQ number to each message passed to it by the

MMSP user. This can refer to its usage in TCP. However, as opposed to

TCP, when one stream gets blocked by waiting for the next in-sequence user

message, data delivery via other streams can still resume.

TSEQ Number stands for Transmission Sequence Number. MMSP as

signs a TSEQ number to each user data fragment or unfragmented message.

The TSEQ is independent from any SSEQ Number assigned at stream level.

The receiver acknowledges all TSEQs arrived, even if there are gaps in the

middle. This way, reliable delivery is kept functionally separate from se

14



Chapter 2. Background and Related Work

quenced stream delivery [15].

User Data Fragmentation is provided on demand. MMSP fragments

user messages to guarantee the MMSP packet’s size plus the lower layers’

encapsulation fit in the path MTU. Upon being received, fragments are

reassembled into complete messages before being passed to the MMSP con

sumer.

15



Chapter 3

Design and Implementation

3.1 MMSP Packet Format

MMSP introduces a new mechanism of building packets. Different from

TCP packet (TCP header plus payload), a MMSP packet is composed of a

common header and EXT (extension) blocks. Each EXT block contains ei

ther control information or user data. Multiple EXT blocks can be bounded

into one packet, except the SYN, SYN-ACK, RST and SHUTDOWN blocks.

For these special signal-control blocks, they must not be bundled with any

other blocks in a packet. The total size of resultant IP datagram including

the MMSP packet and IP header shall not be greater than the current path

MTU [13]. All integer fields in an MMSP packet shall be transmitted in

network byte order.

When building a packet with EXTC (Extension Control) blocks and

DATA blocks, an endpoint must locate the EXTC blocks firstly in the MMSP

packet and followed by DATA blocks. See Figure 3.1 for the MMSP packet

format.

16



Chapter 3. Design and Implementation

Block

Block

3.1.1 MMSP Common Header Description

Source Port: 16 bits unsigned integer It indicates the sender’s port

number. Receiver can combine the sonrce IP with this port number, desti

nation IP and port to identify which connection this packet belongs [15].

Destination Port Number: 16 bits unsigned integer It indicates the

port number where this packet is delivered. The receiver will use this port

number to demultiplex the MMSP packet to the correct receiving endpoint

Source Port I Destination Port

MMSP Connection identity (CID,
Common
Header

Checksum

Figure 3.1: MMSP Packet Format

17
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[15].

Checksum: 32 bits unsigned integer The checksum uses Adler-32

algorithm to do the calculation [6].

Connection Identity: 32 bits unsigned integer The packet’s receiver

uses CID to validate the sender of this MMSP packet. During transmission,

the value of this Identification is set to the initial packet received by the

peer endpoint during the connection initialization [12].

3.1.2 MMSP Block Field Description

Different from TCP, MMSP introduces the concept of blocks. The Figure

3.2 illustrates the field format for the blocks to be transmitted in the MMSP

packet.

Block Type: 8 bits unsigned integer This field identifies type of in

formation that the block contains in the Data filed. It ranges from 0 to 255.

The types are classified in Table 3.1:

Block Types are encoded such that the highest-order 1 bit indicating the

action that must be taken if the processing endpoint does not recognize the

Figure 3.2: MMSP Generic Block Format

18
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Value Type
0 Payload Data
1 SACK
2 SYN
3 SYN ACK
4 PING (INFO)
5 PONG
6 FIN
7 FIN-ACE
8 FIN-Done
9 RST
10 ERROR
11 PROBE
12 PROBE ACK

Table 3.1: Block Types

block type.

0: Stop processing this MMSP packet and discard it. Also stop process

ing any further blocks within this packet.

1: Skip this Block and continue processing.

Block Flags: 8 bits These 8 bits are reserved for usage of different block

types as given by the Block Type. They are set to zero on delivering unless

otherwise specified.

Block Length: 16 bits unsigned integer The field represents the whole

size of the block in bytes including the Block Type, Block Flags, Block

Length, and the Block Data fields. But the total length of the Block can

be greater than the Block Length. The total length of a block (including

Type, Length, and Data fields) is designed to be a multiple of 4 bytes in

19
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that the whole MMSP packet is always in 32 bits alignment for processing.

If the length of the whole block does not satisfy the multiple of 4 bytes,

the sender must append the block with all zero bytes until the multiple of

4 bytes occurs. The sender shall never pad with more than 3 bytes. The

receiver must ignore the padding bytes.

Block Data: a variable field This field contains the actual payload to be

transmitted in the Block. Different Block Types may use different formats

of this field.

3.2 MMSP Block Definition

MMSP blocks are mainly defined by two groups of types: DATA Block and

Control Block.

3.2.1 Payload Data (DATA) Type 0

The following format is used for the DATA Block:

Type: 8 bits 0 indicates this Block is DATA type Block.

Reserved: 5 bits These bits are reserved for further use. They should

be set to all D’s and ignored by the receiver.

U bit: 1 bit The U bit means unordered bit. If it is set to 1, it indicates

that this is an unordered DATA Block, and no matter there is a SSEQ or

not, the SSEQ will be ignored.

20



Chapter 3. Design and Implementation

i2bits

( 8 1 16

I liii

Type = 0 Reserved Li B Length

Stream ID SSLQ nmbr

Payload Protocol Speofication

Block Data
e

Figure 3.3: Data Block Format

B bit: 1 bit The B bit means the beginning bit of the fragment. If this

bit is set to 1, it indicates the first fragment of a user message.

E bit: 1 bit The E bit means the ending bit of the fragment. If this bit

is set to 1, it indicates the last fragment of a user message.

Table 3.2 is the combination of B and E bits, used to present different

types of fragments.

We define both B and E bits to 0 to indicate the middle piece of a

fragment and 1 to indicate an unfragmented message.

21
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B E Combination Description
0 0 Middle piece of a fragmented message
0 1 Last piece of a fragmented message
1 0 First piece of a fragmented message
1 1 Unfragmented message

Table 3.2: MMSP Block Fragment Description

Length: 16 bits unsigned integer This field contains the value of the

length of the DATA block in bytes from the beginning of the block to the

end of the data block field, but excluding any padding 0’s. A DATA block

without user data field has Length set to 16 bytes and the last field is Payload

Protocol Specification.

TSEQ: 32 bits unsigned integer This field indicates the TSEQ number

for this DATA block. TSEQ can only range from 0 to 232 -1 and wraps back

to 0 once becomes overflowed. Note: when a user message is fragmented into

multiple blocks, the receiver needs to use TSEQ to reassemble the message.

This means the TSEQ of each fragment of a disassembled message must be

strictly sequential.

Stream ID: 16 bits unsigned integer This value identifies to what

stream the user data belongs.

SSEQ: 16 bits unsigned integer This field represents the stream se

quence number of the following data within the stream identified by the

Stream ID. It ranges from 0 to 65535.

When a user message is fragmented for delivering, each of the fragments
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must use the same Streaming Sequence Number (SSEQ).

Payload Protocol Specification: 32 bits unsigned integer This field

is used by application layer instead of MMSP. The value is passed to MMSP

by its upper layer and sent to its peer. The peer uses this specification to

identify the type of information being carried in this DATA block. If it is

set to 0, it indicates no application identifier is specified by the upper layer

for this payload data.

Data: variable length This is the real carried payload data. MMSP

pads this field with all 0 bytes to make the whole Block be multiple of 4

bytes. But this padding shall never be added more than 3 bytes.

3.2.2 SACK Type 1

SACK is Selective Acknowledgement block used to respond to the received

DATA blocks. It informs the peer receipt of DATA blocks and missed blocks

as represented by their TSEQs. MMSP also uses end-to-end window-based

flow and congestion control mechanism from TCP [3]. The receiver of the

DATA blocks can control the transmission rate at which the sender is sending

by providing a 32-bit based window size

Flags: 8 bits All these 8 bits are set to 0 by the sender and ignored by

the receiver.

Ack TSEQ: 32 bits unsigned integer This field stores the last DATA

block’s TSEQ received in sequence before the first missed one occurs.
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4 32 Bits

Type 1 Flags

16

Length

Ack TSEQ

Advertised Window Size (AWS)

Number of Lost Blocks Number of Duplicate TSEQS

Missed Block I start offset Missed Block 1 end offset

• • • ,

Missed Block N start offset Missed Block N end offset

1g Duplieae I’SEQ

• • •

Nth Duplicate TSEQ

Figure 3.4: SACK Block Format

Advertised Window Size (AWS): 32 bits unsigned integer The

field represents the buffer space in bytes reserved by the sender within a

connection. The receiver can change the value of AWS when it sends SACK

blocks to acknowledge the peer its own buffer space.

Number of Lost Blocks: 16 bits unsigned integer It indicates the

number of blocks that are lost during transmission, i.e. the gap between the

first arrived DATA block up to last arrived block.
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Number of Duplicate TSEQs: 16 bit unsigned integer This field

indicates the number of duplicate TSEQS the endpoint has received. All

these duplicate TSEQs are listed in the duplicate block list.

Missed Blocks fields All these consecutive fields are used to contain lost

blocks. The total number of these fields equals to the value stored in the

field of Number of Lost Blocks. Each missed block has a 16-bit start offset

and end offset of this DATA block. The actual TSEQ of these lost blocks is

calculated by:

First missed block’s TSEQ Start offset + Ack TSEQ - 1;

Last missed block’s TSEQ End offset + Ack TSEQ - 1;

Note: If blocks are successfully received, their TSEQs must fall in the

following condition:

AckTSEQ + startoffset < block”sTSEQ < AckTSEQ + endoffset

Duplicate TSEQ Fields: 32 bits unsigned integer This field indi

cates the number of duplicate TSEQs that have been received since last

SACK was sent. Every time a block with the duplicate TSEQ arrived at the

receiver, it is added to SACK’s Duplicate list and the Number of Duplicate

TSEQs field is incremented by 1. If there is no duplicate, this field is set
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to 0. For example, if a receiver received the TSEQ 5 two times, it should

list TSEQ 5 once in the outbound SACK. After sending the SACK if it still

received one more TSEQ 5, it would list TSEQ 5 as a duplicate once in the

next outgoing SACK.

3.2.3 SYN Type 2

This Block is used to initiate a MMSP connection between two peers. The

SYN Block is a control block that has format shown in Figure 3.5:

32 Bits
0 6 16 31

Type = 2 Control Flag Length

SYN

Advertised Window Size (AWS)

Number of Outgoing streams Number of Incoming streams

SYN TSEQ

IPv4 Addresses

Figure 3.5: SYN Block Format

Type 2: 8 bits SYN Block uses value 2.

Control Flag: 8 bits The Control Flag for SYN Block is reserved. All

these 8 bits are set to 0 by the sender and ignored by the receiver.
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SYN: 32 bits unsigned integer The vaiue of SYN ranges from 0 to 232

-1. It is randomly generated by the sender, used to protect the transmission

from the Sequence Number attacks as in TCP. The SYN tag is also placed

into the Connection Identity field of all the MMSP SYN packets.

Advertised Window Size (AWS): 32 bits unsigned integer The

field represents the buffer space in bytes reserved by the sender within a

connection. The receiver can change the value of AWS when it sends SYN

ACK blocks to acknowledge the peer its own buffer space.

Number of Outgoing Streams: 16 bits unsigned integer It indicates

the maximum outbound streams that the sender of this SYN block proposes

to create in this connection. The value 0 must not be used in this field.

Number of Incoming Streams: 16 bit unsigned integer It indicates

the maximum inbound streams that the sender of this SYN block allows the

other end to create in this connection. The value 0 must not be used in this

field.

SYN TSEQ: 32 bits unsigned integer This field defines the initial

TSEQ that the sender will use in the SYN packet. It ranges from 0 to 232

-1.

IPv4 Addresses: 32 bits (Optional) This area contains a list of IPv4

addresses that the sender of this block supports. The number of IP addresses

in the list must be equivalent to the value stored in the field of Number of
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Outgoing Streams.

3.2.4 SYN-ACK Type 3

The SYN-ACK block is used to acknowledge the SYN block of an MMSP

connection as the initiation state.

The description for Type, Control Flogs, and Length of SYN-ACK are

similar to SYN block.

Advertised Window Size (AWS): 32 bits unsigned integer Similar

to the AWS field in the SYN block, but it indicates the dedicated buffer

space of the sender of the SYN-ACK packet.

Number of Outgoing Streams: 16 bits unsigned integer It indicates

the maximum outbound streams that the sender of this SYN-ACK block

Figure 3.6: SYN-ACK Block Format
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proposes to create in this connection. The value 0 must not be used in this

field.

Number of Incoming Streams: 16 bit unsigned integer It indicates

the maximum inbound streams that the sender of this SYN-ACK block

allows the other end to create in this connection. The value 0 must not be

used in this field.

SYN-ACK TSEQ: 32 bits unsigned integer This field defines the

initial TSEQ that the sender will use in the SYN-ACK packet. It ranges

from 0 to 232 -1.

IPv4 Addresses: 32 bits (Optional) This area contains a list of IPv4

addresses that the sender of this block supports. The number of IP addresses

in the list must be equivalent to the value stored in the field of Number of

Outgoing Streams.

STATE INFO Format SYN-ACK contains mandatory information of

the SYN receiver using variable-length block format. We name this variable-

length block VEXT (Variable Extension).

4 32Bits

8 16 31

VEXT Type =0 Length

Value

Figure 3.7: STATE INFO Format
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VEXT Type: 0 INFO uses type 0.

VEXT Length The length is a variable size, depending on size of the

INFO structure.

VEXT Value This filed contains the necessary state information for the

sender of this SYN-ACK to build up a connection.

After one endpoint receives a SYN packet, it shall send a SYN-ACK as

a response. The SYN-ACK packet must carry State INFO including a time

stamp of this INFO being created, a lifespan of State INFO, and all other

necessary information for it to establish the connection.

3.2.5 PING (INFO) Type 4

PING is a Block used during the initialization of a MMSP connection. It is

sent firstly from the sender to its peer to complete the initialization process,

upon receiving the SYN-ACK from its peer. This Block must precede any

Data Block sent within the connection, but it can be bundled with one or

more DATA blocks in the same packet.

32 1it

8

Type = 4 Flags Length

INFO

Figure 3.8: PING Block with STATE INFO Format
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Flags: 8 bits integer For PING block, this field is set to 0 by the sender

and ignored by the receiver.

Length: 16 bits unsigned integer It is the size of the block in bytes,

including the block header (4 bytes) and the size of the INFO.

INFO: variable size INFO has a variable size. It contains the same

INFO received in the SYN-ACK block.

3.2.6 PONG Type 5

PONG is a block used during the initialization of a MMSP connection. It

acknowledges the sender’s INFO PING block. This block must precede any

Data Block sent within the connection, but it can be bundled with one or

more DATA blocks in the same MMSP packet.

4 32Bits

[ Type 5 Flags Length

31

Figure 3.9: PONG Format

Flags: 8 bits integer For PONG block, this field is set to 0 by the sender

and ignored by the receiver.

Length: 16 bits unsigned integer PONG block does not contain the

INFO in its header. So the Length field is always set to 4.
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3.2.7 FIN Type 6

FIN type block is used to initiate a polite close of a MMSP connection. It

informs the other end to stop sending data upon receiving this FIN. It uses

the following FIN format:

4
32Bis

n 31

Type = 6 Flags Length 8

TSEQ Ack

Figure 3.10: FIN Format

Flags: 8 bits integer In FIN block, this field is set to 0 by the sender

and ignored by the receiver.

Length: 16 bits unsigned integer FIN block indicates the length of

the whole FIN block. It is set to 8.

TSEQ ACK: 32 bits unsigned integer This field contains the TSEQ

number of the last block received in sequence. It is used to acknowledge to

sender’s last block and inform its peer it is ready to shutdown the connection.

3.2.8 FIN-ACK Type 7

This Block is used to acknowledge the receipt of the FIN block at the com

pletion of the Close process.

32



Chapter 3. Design and Implementation

Flags: 8 bits integer This field is set to 0 by the sender and ignored by

the receiver.

Length: 16 bits unsigned integer FIN-ACK only contains 4 bytes.

3.2.9 FIN-DONE Type 8

This block uses the exactly same format as FIN-ACK, but Type is set to 8.

The receiver of a FIN-DONE shall accept a packet only if the CID field of

this packet matches its own CID or its peer’s CID. Otherwise, the receiver

will discard the packet for security purpose [10, 12]. The receiver should

not take any further action when it receives a FIN-DONE block in the FIN

ACK-SENT state.

3.2.10 RST Type 9

The RST block is sent to the other end of a connection to abort the con

nection. The RST block contains a header and may contain the reason

parameters as an option. Data blocks and other Control blocks such as

SYN and FIN are not permitted to be bundled with RST. If an endpoint

receivers a RST for a connection that does not exist or a wrong format, it

must discard it without resetting the connection. The receiver can decide if

Figure 3.11: FIN-ACK Format
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it shall respond to the sender a RST when receives a RST.

4 326its

15 31

Type 9 Reserved Length

Error Paramters (Optional)

Figure 3.12: RST Format

Reserved: 8 bits This field is reserved for future usage. It can be used

to indicate what affection this Error block has on the sender.

Length: 16 bits unsigned integer It is set to the size of the block in

bytes, including the block header and all the error parameters.

3.2.11 ERROR Type 10

Error parameter(s) is/are appended to the RST block as an indication of

the cause of certain error condition. Each RST may contain zero, one or

more than one ERROR parameters. An ERROR is not always considered

fatal of itself, but it may be used to report a fatal condition. ERROR uses

the exactly same block format as RST, but Type is 10 and the Reserved

field is replaced by Flags. Also, ERROR block contains at least one Error

Cause.

Flags: 8 bits It is set to 0 by the sender and ignored on receipt.
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Length: 16 bits unsigned integer It is set to the size of the block in

bytes. It includes the block header and all the Error Cause fields present.

Error Causes: Variable length Error Cause field uses variable-length

block VEXT (Variable Extension) as described in Figure 3.6 in section 3.2.2.

The first two bytes of Error Cause block is Error Code field. The second two

bytes is Cause Length field. Other following bytes contain Specific Cause

Information defined in Table 3.3

Error Code: 16 bits unsigned integer It defines the type of error

conditions being specified.

Cause Length: 16 bits unsigned integer It counts the size of Error

parameters in bytes. It includes the Error code, Cause Length, and Specific

Cause Information.

Specific Cause Information: This field contains the specific information

of this Error block. See Table 3.3 for the definition of each error condition.

3.2.12 PROBE Type 11

This block is sent by one endpoint to probe the reachability of a particular

destination address that is defined in the connection setup.

Flags: 8 bits It is set to 0 by the sender and ignored by the receiver.

Length: 16 bits unsigned integer It is set to the size of the block in

bytes. It includes the block header and the optional Probe Parameter field.
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32 Bits

8 31

Typell Flags Length

Probe Paramters (Optional)

Figure 3.13: PROBE Format

Probe Parameters: variable length This field defines a variable-length

parameter using the VEXT format. This field contains the time when this

Probe is sent aild the destination IP address that this Probe is sent to.

3.2.13 PROBE ACK Type 12

Once an endpoint receives the Probe block, it acknowledges the sender with

this block. The PROBE ACK block must be sent to the source IP address

of the PROBE block’s sender. This block uses the same block format as

PROBE. The parameter field should contain the time when this PROBE

ACK is sent and its own IP address.

3.3 MMSP State Transition

This section describes the transport process within the three main states of

a MMSP connection: connection setup, data transmission and connection

close.
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3.3.1 Connection Setup

Both MMSP and TCP are designed to exchange messages to establish an

end-to-end connection. However, the way MMSP used to set up a connection

and delivery data is different from TCP. Traditional TCP performs a three-

way handshake to establish a connection, whereas MMSP uses a four-way

handshake by involving a state INFO to help protect from DoS attacks. The

DoS attack uses the SYN flood to tie up resources on the server machine, so

that it is unable to respond to legitimate clients’ requests. It is accomplished

by having the hacker’s client discard the returning SYN-ACK message from

the server and not send the final ACK. This results in the server retaining

the partial state that was allocated by the initial hacker’s SYN [17].

MMSP protects against this attack by importing the concept of INFO

as described in section 3.2.3. The INFO block is bundled with the SYN

ACK from the server to the client. The server will not allocate a TCB

(transmission control block) until it receives the INFO sent back from the

client. Since the server only derives a TCB for the connection from an

INFO-PING, it becomes more defensible to denial of service attacks [17].

To achieve an improved security, MMSP introduces a 4-way handshake.

See Figure 3.14 for the 4-way handshaking and Figure 3.15 for its state

transition diagram. The endpoint that initiates the connection setup is

called the client and the other endpoint is called the server. The whole

mechanism is described below:

1. Firstly, both the server and client are in the CLOSED state. The

server is prepared to accept an incoming MMSP connection request.
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This preparation is normally set up by calling socket, bind, and listen.

On server side, we call it passive open.

2. The client initiates an active open by sending a SYN request to the

server to set up a connection. The client builds up a transmission

control block (TCB) that contains all necessary parameters for the

maintenance and manipulation of the connection [20]. The SYN mes

sage provides the server with all the necessary information of the client,

such as a list of IP addresses of the client, the initial sequence num

ber, CID to identify all packets in this connection, number of outgoing

streams the clientS is requesting, and the number of incoming streams

the client can support.

Client Server

Create KB
Start 5Th Timer

_________ _______________

SYN Block ) - Receive 5Th
Create INFO

_________________

Start INFO Timer

Receive SYN-ACI(
51Aut INFO)) Send SYN-ACK

Stop SYJI Timer
Start INFO Timer

________________

Receive INFO PING
Stop INFO Timer

______________________

Send IIIFO-PONG
INFO POliO

____________________

Receive INFO-POlIO —.

Connection Established
Ready to Transmit DATA

Figure 3.14: Four Way Handshaking

3. The server processes the SYN request. If it wishes to accept the con

nection, it generates a temporary TCB. This TCB contains a minimal
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subset of information to recreate the TCB [4]. The TCB’s creation

time is set to the current time. The TCB is fnrther packaged up and

sent back to the client in a SYN-ACK packet. Besides the basic in

formation such as a timestamp on when the INFO is created and the

lifespan of the State INFO as indicated in section 3.2.3, the creator

of the INFO should include MAC (Message Authentication Code) for

message validation [9]. Once the SYN-ACK is delivered, the server

deletes all information associated with the temporary TCB and goes

back to the CLOSED state.

4. After receiving the SYN-ACK block, the client stops SYN Timer.

Then it pings the INFO back to the server within the INFO-PING

block. The client then enters the INFO-PINGED state and starts the

INFO timer. DATA blocks may be also bundled in this packet.

5. When the server receives the INFO from the client, it checks the va

lidity of the INFO. Then server side recreates the TCB from the in

formation contained in the INFO. Only on this time, that server actu

ally assigns its resources to the connection and enters ESTABLISHED

state. Then the server PONGs the INFO back to the client.

6. On the receipt of INFO-PONG, the client enters the ESTABLISHED

state. The whole MMSP connection is completed.
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Figure 3.15: Connection Setup State Diagram

3.3.2 Data Transmission

Two types of blocks are transmitted throughout the data transmission pro

cess: DATA block and PROBE block. DATA blocks carry the actual data

between the client and server; PROBE blocks are exchanged between the

nodes to test the connectivity of the endpoints to preserve the validity of the

data transmission, at regular-time intervals triggered by the Probe Timer.

Three steps happen in Data Transmission Process:

1. DATA blocks are exchanged between peers.
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Figure 3.16: Data Transmission

2. After each DATA block is received, the receiving endpoint returns an

ACK block to the sender.

3. The data exchange continues until the endpoints initiate the CLOSE

request.

MMSP still defines an end-to-end window based flow and congestion con

trol mechanisms similar to TCP. The receiver uses a 32-bit window size in

SACK to inform the other endpoint an expected sending rate. The sender

itself maintains a congestion window to control number of outstanding bytes

that can be sent before they are acknowledged. The SACK is used to ac

knowledge each DATA block that has been received. The receiver adds a

cumulative TSEQ value in each SACK to indicate all previously received

blocks. Sometimes, DATA blocks are lost during the transmission, and then

SACK specifies a sequence of missed blocks and responds back to the sender

for retransmission. But if SACK is also lost, all those unacknowledged data

blocks will still be retransmitted after the transmission timer expired on the
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sender’s side.

3.3.3 Connection Termination

Figure 3.17 and Figure 3.18 show the MMSP Shutdown diagram and its state

machine. MMSP does not support the “half-closed” state presented in TCP,

where one endpoint stays open while the other endpoint closes [15]. MMSP is

not designed to maintain the “half-closed” state since very few applications

require it. MMSP only allows full-closed: when Close is initiated by one

endpoint, the other endpoint must finish sending outstanding packets and

continue the Close forwards. The MMSP connection is fully completed after

both initial Close request and its acknowledgement have been responded by

their respective receivers. The close request can be initiated by any of the

two nodes. Figure 3.18 illustrates an example with the Close request sent

from the server. The process of Close can be described in three steps:

1. The server sends a FIN request to the client and starts the Close timer.

2. The client acknowledges the receipt of the FIN block by generating of

FIN-ACK block, and sent the FIN-ACK back to the server.

3. Server receives the FIN-ACK and responds by stopping its Close timer

and deleting its TCB. Then server creates a FIN-DONE block and

sends it back to the client. Once the client receives the FIN-DONE,

the client side completes the full close of this MMSP connection.
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p

T

Close PendiliD FIN RECVED

Cx

FIN SENT FIN-ACK SENT

Figure 3.17: Connection Termination State Diagram

3.3.4 Path Selection

An important concept of MMSP middleware is that multiple paths coexist

in one MMSP connection. A node can be reached through different IP

addresses. Paths of endpoints are initially informed to each peer within

the SYN block. Therefore, the client only needs to know one IP address

of the server because the all other available IP addresses supported by the

server are delivered within the SYN-ACK block. Currently, MMSP is only

designed to handle IPv4 addresses.

The endpoint monitors all transmission paths to its peer in a MMSP

connection by periodically sending PROBE packets over all paths, even in
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Server Client
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Start Close Timer

___________________

Recieve Fill
send Flil-ACK

(FIN-ACK
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Stop Close Timer Flil-DOIIE -

DeLete TCI3

________

Recieve Fill-DONE
Fully Close

Figure 3.18: Connection Shutdown

cluding those paths that are not used for transmission of data blocks. Each

PROBE block must be acknowledged by a Probe-ACK block. If the num

ber of unacknowledged PROBEs reaches up to three (this value may be

configurable), MMSP shall presume this path is unavailable and put an un

reachable mark on this path in its data structure. When a PROBE block

is acknowledged again, this path is marked to be reachable. If a connection

only has one path and this main path becomes unreachable, the connection

has to be terminated. If all the paths becomes unreachable, MMSP uses the

last unreachable path to set the out-of-service timer (normally we set this

timer to 5 seconds for experiment). Once the timer on the latest unreachable

path is expired, the connection has to be shutdown.

Because MMSP is designed to maintain a list of network interfaces, one

of the IP addresses is selected as the primary path. All data blocks are
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transmitted over this path by default. However, for retransmission, another

active path is selected. In our design, all addresses are listed in an IP address

priority queue, in which path interfaces are ordered by their bandwidth

from high to low. Currently, we designed to select an available path that

has second fastest bandwidth for data retransmission. If the primary path

is down permanently, MMSP may either automatically select a path that

has the second fastest bandwidth as a new primary path or return a status

update to its user and let the user choose another path as the primary path.

In terms of measurement of the round trip time of each path, Probe and

Probe-ACK blocks are used in calculation.

3.3.5 Flow Control and Congestion Control

TCP uses sequence number to detect packet loss and duplication. MMSP

also keeps this functionality by numbering all data blocks with the TSEQ

number. Retransmissions are timer controlled. Whenever a retransmis

sion timer expires, all unacknowledged data blocks shall be retransmitted.

And this timer is restarted and double its time-up period. This is similar

to TCP. The receiver will acknowledge each MMSP packet by sending a

SACK. Sometimes, if some segments of data blocks arrive with some data

blocks missed in the middle, the responding SACK should report all the lost

blocks. Whenever three consecutive SACKs report the same data block hole,

the receiver of these SACKS shall immediately retransmit the reported data

blocks. We call this Fast Retransmit [3]. Each MMSP endpoint maintains a

data buffer with a specific window size. The flow control of MMSP is similar

to the TCP. The receiver can control the transmission rate by advertising
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its window size in the SACK block. The sender also maintains a variable to

specify how many outstanding packets shall be sent before they are acknowl

edged. We call it congestion window size. The sender’s congestion widow

size must be less than or equal to receiver’s window size. The congestion

control of MMSP is derived from TCP congestion control such as slow start

and congestion avoidance, as described in RFC 2581. Instead of one flow

and congestion control for one TCP connection, MMSP has a discrete set

of flow and congestions control on each available path.

3.4 Implementation

As a middleware, MMSP can be implemented on many Operating Systems.

It can be added as a further extension of the different OS kernels. In our

research, we implemented our MMSP on Windows Operating system and

used Winsock API to access network functions. MMSP is designed within

14 modules, as shown in Figure 3.19. The module MMSPcontrol is the

interface provided for the upper layer protocol. This module also controls

the connection setup and termination. It receives the primitives from the

upper layers via message Dispatcher module or the peer via recvBundler. In

response to these input-signals, MMSP_control sends control_primitives to

the upper layers via message dispatcher or the peer via sendBunlder. This

module also contains the state of a connection. The whole MMSP domain

diagram is presented by Fiure 3.19.

All other modules’ functionalities are listed below:
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Dispatcher: This module holds a private list of streams. Since a MMSP

instance usually has more than one stream, the purpose of this module is

the distribution of signals from the upper layer and from the peer via the

socket to the addressed endpoints. Signals from the WinSocket interface are

forwarded to the recvBundler module.

SendBundler: This module bundles blocks to be sent into UDP data

grams. Blocks are accepted with the putBlock function until sendBlock is

called, which causes the transmission of all blocks accumulated so far.

RecvBundler: This module deals with received blocks on receipt of MMSP

data from MMSP message Dispatcher. All received MMSP data are disas

Figure 3.19: MMSP Domain Diagram
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sembled into blocks. Depending on the block type, the blocks are distributed

to MMSPcontrol, RecvCtrl, PathManagement or ReliableTransfer module

respectively.

RecvCtrl: This module creates SACK data structures that are used to

acknowledge received and lost data to the connection peer.

FIowCtrI: This module implements most parts of the flow control mech

anisms.

StreamEngine: This module holds a list of streams to process sending

and receiving data blocks.

ReliableTransfer: This module implements the retransmission mecha

nism. It stores all data that have not been acknowledged by the peer.

PathManagerment: This module does fault management for paths.

ErrorHandler: This module decodes error blocks and handles them re

spectively.

BlockHandler: This module provides functions for assembling and disas

sembling control blocks. When a block is created, the caller gets a block-ID,

with which it can address the block in the other following calls. In order to

handle more than one block at the same time, pointers to blocks are stored

in an array of length MAX”BLOCKS. This is required for modules that re
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ceive a block and want to respond by sending another block. A block should

be deleted after a signal is handled. All the blocks are in host byte order.

Coder: This module is borrowed from the Md5 message digest algorithm.

This document takes as input a message of arbitrary length and produces

as output a 128-bit fingerprint of the input. This algorithm is designed

for digital signature applications, where a large file must be compressed in

a secure manner before being encrypted with a secret key under a public

key cryptosystem such as RSA [16]. MMSP uses this module to assign a

signature to blocks, such as PROBE and INFO blocks.

Timers: This module implements a linked list of timer events.
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Error Code Reason
0001 Wrong Stream ID: It indicates the received DATA block is

delivered to a invalid or nonexistent stream.
0002 Unresolved Address: It indicates the type of address is not

supported by the sender. For example, end points that only
has IPV4 stack is not able to resolve the IPV6 address.

0003 Unrecognized Block Type: This error means the receiver can
not understand the unrecognized block in the upper bits of
its Block Type.

0004 Invalid Field Value: When a field value is out of the defined
domain, this error parameter is appended to the RST block
and returned to the originator.

0005 Missing Mandatory Field: It indicates some mandatory
fields are missing in a received SYN or SYN-ACK block.

0006 Unrecognized Block Field: This error is returned to the orig
inator if the receiver can not recognize the one or more fields
of the received block.

0007 No User Data: If an end point receives a DATA block with
no user DATA, it shall return this error cause to the sender.

0008 No INFO: This error cause shall be returned to the orig
inator if the received SYN-ACK or INFO-PING does not
contain INFO.

0009 Stale INFO or Invalid INFO: It indicates the received INFO
has expired. This error parameter has an EXPIRE field
containing the time difference between the current time and
the time INFO expired, in millisecond.

000A Unrecognized Error: All other undefined errors are included
in this set.

Table 3.3: Error Code Table
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Experimental Evaluation

In this chapter we describe the experiments carried out to compare our

MMSP middleware with the Windows TCP module. Our experimental setup

consists of two different hosts. Both of these two hosts have three interfaces

to a local private network assigned by a D-link router; one interface is wired

link and the other two interfaces are wireless links using 802.11g. This

chapter is formed by two sections. Section one discusses the reliability of

MMSP; Section two introduces the performance tests on MMSP and TCP.

To verify the MMSP reliability and functionality, we tested if a connec

tion can be setup via one path, two paths and even three paths. Then we

manually block one or two of three paths to verify if the MMSP connection

is still maintained. In the last step, we block all available paths and to see

if MMSP can be successfully terminated.

To compare the throughput between MMSP and TCP, we brought in

a popular Network tool, called Iperf. Iperf is a commonly used network

testing tool that can create TCP and UDP data streams and measure the

throughput of a network that is carrying them. It is a modern tool for

network performance measurement.

Section 2 contains two experiments. We modified Iperf to be adapted to
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our MMSP layer and get throughpnt results under the best-effort condition.

Then we did another performance test with a concern of bad network con

nectivity. We configured a simulated noisy environment by adding a data

corruption function on Iperf. We manually configured Iperf to send 100MB

data from the client to the server and corrupted parts of sent-out data for the

error-handling experiment. Then, the test data for both TCP and MMSP

were gathered under this environment.

All experiments were executed several times to verify the consistency of

our results.

4.1 Experiment One - Functionality and

Reliability

Experiment 1 has two hosts (host A and host B) involved in a local private

network. Each host has two wireless interfaces and one wired interface

connected to a Wilress 802.llg router. Three different IP addresses are

assigned to each host. A MMSP application with the client and server mode

was implemented to separately run on host A with the client mode and on

host B with the server mode. The MMSP application was programmed to

use the wired path as the primary path and the other two wireless paths as

the secondary paths for data retransmission.

The purpose of this experiment is to verify the corrent switching be

tween multiple streams in one MMSP connection by enabling and disabling

different paths. The Table 4.1 presents the testing results against six differ

ent cases. Firstly the client built up three paths with the server within one
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Test Cases MMSP Connectivity

Primary Path Disconnected Still Connected
Primary Path Reconnected Still Connected
One of Secondary Paths Disconnected Still Connected
Both Secondary Paths Disconnected Still Connected
All Paths Disconnected The connection successfully

Shutdown

Table 4.1: Functionality Experiment

MMSP connection and began to transmit data through the primary path.

Then we manually disconnected the Primary Path. On response, MMSP

chose an idle path to transmit the data. Since MMSP keeps probing the

availability of each link, after the primary link was recovered, MMSP was

informed and switched back to the primary link. We then disconnected the

other two paths to verify the connection is still maintained. Finally, we

disconnected, all three links. After timers of both server and client were ex

pired, the MMSP instance on both hosts was deleted and their connection

was closed.

4.2 Experiment Two - Throughput

This section introduces two throughput experiments that we did on TCP

and our MMSP on the Windows XP platform. We brought in Iperf, a third

party tool to accomplish these two experiments. Iperf is an open source

application used to measure network performance. It allows the user to set

various parameters for special testing purposes, such as network throughput,

loss ratio, jitter and so forth. Iperf has a client and server mode, either

All Three Paths Coexist Successfully Connected
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Number of Streams Throughput in Mb/s
TCP MMSP

1 Wired Link 174 Mb/s 171 Mb/s
1 Wireless Link 18 Mb/s 18 Mb/s
1 Wired Link + 1 Wireless Link N/A 172 Mb/s
1 Wired Link + 2 Wireless Links N/A 172 Mb/s
2 wireless Links N/A 21 Mb/s

Table 4.2: Throughput Experiment 1

unidirectional or bidirectional [19].

The first experiment is used to evaluate the best-effort throughput be

tween TCP and MMSP with different configurations of path; the secondary

experiment is a throughput test under various error conditions.

In the first experiment, we setup an Iperf client on the host A and an

Iperf server on the host B. See Table 4.2 for each Path configuration. Each

row in this table is a test case. Case 1 and case 2 have only one stream

as their primary path. To test the throughput, the client sent data as fast

as possible to the server via TCP and MMSP respectively. We found that

under the best-effort testing environment, the throughput of MMSP is a

little slower than TCP. This may be caused by the fact that MMSP is not

implemented in the OS kernel. Also, since MMSP is a little complicated

than TCP, the added-in complexity may also result in some extra overhead

that TCP does not have. In case 3 and case 4, extra paths are added into

one MMSP connection. We found the throughput is improved a little bit

since secondary links can be used to reduce the head-of-line block problem.

However, in the above four tests, adding additional paths into MMSP does

not directly present the advantages of multi-streaming in that data loss and
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retransmission are less than 1%. On the other hand, test case 5 presents

a clear improvement of streaming throngh multiple paths when we nsed

a relatively noisy wireless network as the primary path. The throughput

reaches 2lMb/s, improved by 36% against the case 2 of TCP, which is only

18Mb/s.

The second experiment was to test the performance between TCP and

MMSP in a noisy network configuration. We did two subsets of tests. We

first let both MMSP and TCP use a wired link as their primary paths.

Different from TCP, MMSP has extra 802.llg wireless links as its secondary

path for retransmission. In the other subset of test, we chose a 802.llg

wireless link as the primary link, but at this time we used wired links as

the secondary paths for MMSP. In both of these two cases, we let the client

send 100 MB data to the server and corrupted 1MB of every 10MB data

that were sent.

Figure 4.1 presents the throughput between TCP and MMSP with re

spect of the increased number of error packets being delivered. This bench

mark shows that the throughput of TCP and MMSP are decreased while

the errors increased during the transmission. However, TCP’s performance

goes down much faster than MMSP. Since TCP uses one stream only, the

large number of error occurrences results in a serious head-of-line block is

sue. Opposite to TCP, MMSP can use other streams to avoid head-of-line

issue. For example, when 80% of the corrupted data happen, the MMSP’s

throughput becomes two times greater than TCP.

Figure 4.2 presents a clearer performance difference between MMSP and

TCP. Different from previous one in Figure 4.1, MMSP uses the wireless
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Performance of TCP and IMSP in Error
Environment GYired Link as the Primary Path)
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Figure 4.1: Throughput Experimeut 2 Subset 1

link as the primary path and the wired links as secondary paths. TCP’s

throughput still dramatically goes down when transmission errors increase.

However, because MMSP used the wired links as the retransmission paths,

large portion of retransmission data could be delivered through the sec

ondary path. Therefore, throughput is not affected too much by the data

retransmission.

From the experiments, we also noticed that the throughput of MMSP

is not changed by adding extra secondary paths. This is what we expected

since our path selection algorithm was designed to only select a third path

for retransmission until the already selected secondary path is unavailable.

In other words, the third path keeps idle when the one of the secondary

paths is still active for data retransmission.
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Performance of TCP and HSP in Error Environment
(Yireless Link as the Primary Path)
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Figure 4.2: Throughput Experiment 2 Subset 2
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Conclusions and Future

Work

5.1 Conclusions

In this thesis, we propose MMSP, a novel middleware as an extension of

transport layer on IP stack to support multiple streaming via difference

network interfaces within one connection. Using this architecture, mobile

devices are able to utilize multiple access points to maintain the Internet

connectivity. The important concept we introduced here is utilizing multiple

streams in one connection. This avoids the characteristic drawbacks of TCP,

such as head-of4ine block issue and single stream limitations. In other

words, MMSP is designed to organize and manipulate multiple TCP streams

into one MMSP stream, but with more powerful functionality with respect

of reliability, security and usability. To deploy this middleware onto current

IP transport stack, we used the Windows platform and its winsocket API. A

new MMSP state machine was designed to handle each transition condition.

We reused and inherited some algorithms from TCP, such as the flow control

and congestion control; we also redesigned the MMSP packet format and
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discussed the multi-path selection algorithm.

We showed that the proposed architecture has four advantages:

1. It provides better usability. It allows up-layer applications and users

to select more than one links for data delivery instead of just using

one link.

2. It is slick and powerful. It can keep a streaming connection alive

with the outer network as long as one link is active. At this point,

it proposes a very good blueprint for WiMax network coming in the

short future. For example, users can keep a MMSP connection alive

when walking from a WiMax covered area into a new WiMax area

without worrying about the reassociation.

3. It is more reliable and secure. It uses new four-way handshake to avoid

the DoS attacks.

4. It is more efficient. Since multiple paths are used into one connection,

other paths can be used to deliver the retransmission messages when

the primary path becomes indecent. The results of our evaluation

demonstrate this protocol is a reasonable extension for the current IP

stack, especially for the mobile devices which often change their access

points.

5.2 Future Work

Our work has the potential to spawn a new body of research where other

five features of MMSP can be investigated. First, our MMSP only supports

59



Chapter 5. Conclusions and Foture Work

IPv4 address format. The need of IPv6 can be studied and can be added to

MMSP to support for IPv6 networks.

Second, our MMSP was implemented on the windows platform sitting

on the application layer. It uses UDP and Winsocket API as a simulation of

directly using IP layer in the kernel. Since MMSP is not directly accessing

the IP interface, the interaction between UDP and IP may result in some

overhead. Evaluation will be more precise if MMSP could be integrated into

the kernel of an Operating System, like Linux.

Third, our path selection algorithm is designed to choose the next avail

able path for data retransmission from the path queue. It is the simplest way,

but not the smartest way. This algorithm could be redesigned. For exam

ple, whenever retransmission happens, MMSP could be designed to choose

the second fastest links as the data retransmission path by monitoring each

path’s capability.

Fourth, since MMSP is more complicated than TCP, the optimization

of MMSP could be redesigned and simplified for resource limited devices,

especially for some mobile phones with slow processors and low capacity

of memory. The MMSP can be partially ported to the specific IP stack of

different manufactures’ devices and evaluated against their TCP’s perfor

mance.

Fifth, in respect of the performance, lots of work be can investigated by

using multiple streams to simultaneously send data instead of using just one

primary link to deliver data.

Sixth, our current MMSP does not contain a minimum cost algorithm

with the concern of path selection. Lacking of this algorithm may lead to
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unnecessary users’ cost when a costly path is selected as the primary path

while the original primary is dropped. In most cases, 30 or GPRS data are

much more expensive than WiFi. A proper algorithm could be designed to

notify users, ask them to select a cheap data service as the primary path or

provide a list of options to users for primary path recommendations.
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