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Abstract

We describe a semi-automatic technique for modeling and animating com-

plex musculoskeletal systems using a strand based muscle model. Using our

interactive tools, we are able to generate the motion of tendons and muscles

under the skin of a traditionally animated character. This is achieved by

integrating the traditional animation pipeline with a biomechanical simu-

lator capable of dynamic simulation with complex routing constraints on

muscles and tendons. We integrate our musculoskeletal modeling and ani-

mation toolkit into a professional 3D production environment, thereby en-

abling artists and scientists to create complex musculoskeletal systems that

were previously inaccessible to them. We demonstrate the applications of

our tools to the visual effects industry with several animations of the human

hand and applications to the biomechanics community with a novel model

of the human shoulder.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Statement of Co-Authorship . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Musculoskeletal Modeling and Simulation . . . . . . . . . . . 4

2.1.1 Key Challenges . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Existing Approaches . . . . . . . . . . . . . . . . . . . 6

iii



Table of Contents

2.2 Strand Based Simulation . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Strand Dynamics . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Applications for Various Phenomena . . . . . . . . . . 9

2.2.3 Applications for Muscles and Tendons . . . . . . . . . 9

2.3 Commercial Modeling Tools . . . . . . . . . . . . . . . . . . . 17

2.3.1 Animation . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Biomechanics . . . . . . . . . . . . . . . . . . . . . . . 20

3 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Embedded Plug-in . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Modularization and External Code . . . . . . . . . . . 29

3.3 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 AutoStrands . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Baking Simulations . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Secondary Deformation . . . . . . . . . . . . . . . . . 38

3.5 Interfacing with the Simulator . . . . . . . . . . . . . . . . . . 40

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Case Study: The Human Hand . . . . . . . . . . . . . . . . . 43

4.1.1 Anatomic Description . . . . . . . . . . . . . . . . . . 44

4.1.2 Previous Hand Models . . . . . . . . . . . . . . . . . . 46

iv



Table of Contents

4.1.3 Creating a New Hand Model . . . . . . . . . . . . . . 48

4.1.4 Animation from Simulation . . . . . . . . . . . . . . . 50

4.2 Case Study: The Human Shoulder . . . . . . . . . . . . . . . 52

4.2.1 Anatomic Description . . . . . . . . . . . . . . . . . . 53

4.2.2 Previous Shoulder Models . . . . . . . . . . . . . . . . 57

4.2.3 Creating a New Shoulder Model . . . . . . . . . . . . 59

4.2.4 Simulation for Biomechanical Analysis . . . . . . . . . 61

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A SMUSCLES User Guide . . . . . . . . . . . . . . . . . . . . 74

A.1 Loading and Reloading the Plug-in . . . . . . . . . . . . . . . 75

A.2 sslMuscles Shelf Tab . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 AutoStrands . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.5 Removing SSL Attributes . . . . . . . . . . . . . . . . . . . . 79

A.6 Exporting a ModelerScene . . . . . . . . . . . . . . . . . . . . 79

A.7 Exporting sslMuscle Data . . . . . . . . . . . . . . . . . . . . 80

A.8 Exporting Control Data . . . . . . . . . . . . . . . . . . . . . 80

A.9 Baking Simulations . . . . . . . . . . . . . . . . . . . . . . . . 81

A.10 Skinning Strands . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



List of Tables

3.1 Attributes for Musculoskeletal Primitives . . . . . . . . . . . 33

3.1 Continued: Attributes for Musculoskeletal Primitives . . . . . 34

vi



List of Figures

2.1 A screenshot of Sueda et al.’s muscle simulator [57] . . . . . . 10

2.2 Surface and sliding constraints . . . . . . . . . . . . . . . . . 17

3.1 Pipeline overview . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Our custom shelf in Maya . . . . . . . . . . . . . . . . . . . . 28

3.3 Skin Strands Window . . . . . . . . . . . . . . . . . . . . . . 28

3.4 AutoStrands Window . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Diagram of the AutoStrand process . . . . . . . . . . . . . . . 30

3.6 Varying skin deformation effects . . . . . . . . . . . . . . . . 39

3.7 Painted vertex influence weights . . . . . . . . . . . . . . . . 40

3.8 Diagram of the simulation interfacing process . . . . . . . . . 41

4.1 Anterior and posterior views of the hand bones . . . . . . . . 44

4.2 Anterior compartment muscles of the hand . . . . . . . . . . 45

4.3 Posterior compartment muscles of the hand . . . . . . . . . . 47

4.4 Posterior view of our hand model . . . . . . . . . . . . . . . . 49

4.5 Still shots from a waving animation . . . . . . . . . . . . . . . 50

4.6 The “anatomical snuffbox” with varying skin deformation . . 51

4.7 Comparison to hand animation without tendons . . . . . . . 51

vii



List of Figures

4.8 Still shots from an extension animation . . . . . . . . . . . . 52

4.9 Comparison to real thumb photographs . . . . . . . . . . . . 52

4.10 Bones of the shoulder . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Anterior views of the pectoral girdle . . . . . . . . . . . . . . 54

4.12 Posterior views of the shoulder and thorax . . . . . . . . . . . 55

4.13 Posterior view of the rotator cuff . . . . . . . . . . . . . . . . 56

4.14 Posterior view of our shoulder model . . . . . . . . . . . . . . 60

4.15 Views of our shoulder simulation . . . . . . . . . . . . . . . . 62

4.16 Forces and lengths in the trapezius . . . . . . . . . . . . . . . 62

viii



Acknowledgments

First and foremost, I thank my supervisor, Dinesh K. Pai, without whom

this research would not have been possible. He has provided me with guid-

ance, support, and encouragement throughout my time at UBC. Perhaps

most importantly, he has provided the freedom to conduct my research in-

dependently, enabling me to learn and grow into an accomplished researcher.

I am also thankful to Michiel van de Panne for his helpful comments

and inspirational teaching style. I thank my partner in publication, Shinjiro

Sueda, for showing me the ropes, or strands as it may be, and my fellow

Sensorimotor students David Levin, Danny Kaufman, Qi Wei, and Sang

Hoon Yeo for their suggestions, motivation, and friendship along the way.

Finally, I would like to thank my family for their constant encouragement

and support. It has meant the world to me.

ix



Flying through your powdered trees,
Swiftly floating on your seas,
Atop your peaks, my spirits lift,
My mind flowing in your breeze.

Rainy days have come and gone,
Yet summer skies still shine on,
And when my mind begins to drift
I dream of you, my sweet Dione.

x



Statement of Co-Authorship

Several sections of this thesis were adapted from a paper describing our

modified animation pipeline and the results of our hand model [57]. Portions

of these sections were written by Shinjiro Sueda and Dr. Dinesh K. Pai.

All textual descriptions of this nature have been credited as such at the

beginning of the relevant section. All reproduced figures have been noted

in the corresponding captions. The sections and figures have been adapted

and reproduced here since they are directly connected to the design decisions

and results presented in this thesis.

xi



Chapter 1

Introduction

1.1 Overview

There are several purposes for developing musculoskeletal models. These

models could be used by animators to generate realistic animation for the

visual effects industry. Even though there has been some work on incor-

porating muscles into animations (Sec. 2.1.2), it has been very difficult to

incorporate biomechanically realistic subcutaneous movements into a tradi-

tional animation pipeline. Integration with a traditional character animation

pipeline is important since, unlike secondary motion of inanimate objects,

the movements of characters are of central importance to the story and are

typically hand crafted by expert animators.

Musculoskeletal models are also important to biologists and biomecha-

nists, who use them to analyze the anatomy and physiology of living crea-

tures. Doctors can use these models for medical evaluation, by providing

accurate biomechanical analysis of the muscles and joints, or for educational
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Chapter 1. Introduction

purposes, to help patients and future practitioners visualize what is actually

happening in the muscular system.

We will first discuss the specific contributions of this thesis (Sec. 1.2),

followed by background information on musculoskeletal modeling and sim-

ulation (Sec. 2.1), strand based simulation (Sec. 2.2), and prominent com-

mercial modeling tools (Sec. 2.3). Next we will discuss the design decisions

that were made in the development of our musculoskeletal modeling tools

(Sec. 3). We will then demonstrate the effectiveness of our tools by dis-

cussing the results of two case studies: the first on the human hand (Sec.

4.1) and the second on the human shoulder (Sec. 4.2). Finally, we will

summarize the outcome of this work and discuss the possibilities for future

development of our musculoskeletal modeling and animation tools (Sec. 5).

1.2 Contributions

We have developed a set of interactive tools designed for the modeling and

animation of musculoskeletal systems. The intention of these tools is to

make the modeling of these complex systems accessible to artists, biologists,

biomechanists, and other technical and non-technical users. These tools

were designed specifically to be used in conjunction with the strand based

musculoskeletal simulation software being developed by the Sensorimotor

Systems Lab at the University of British Columbia.

Our musculoskeletal modeling and animation tools have been imple-

mented as a plug-in embedded in a professional 3D production environment

in order to leverage existing generic modeling, animation, and user interface

tools. We have defined several new primitives in order to properly repre-

2



Chapter 1. Introduction

sent musculoskeletal systems. We have included tools for automating the

musculoskeletal modeling and animation processes, and for interfacing with

our external simulation software. Most importantly, we describe a modified

character animation pipeline that semi-automatically generates the motion

of tendons and muscles under the skin of a traditionally animated character.

Our musculoskeletal modeling and animation tools have applications in

the both the animation and biomechanical communities. We demonstrate

the visual effects applications of our tools with several animations of the

human hand (Sec. 4.1) and the biomechanical applications with the details

of a novel model of the human shoulder (Sec. 4.2). These case studies

demonstrate that our tools have made musculoskeletal modeling accessible to

artists and scientists alike, and that it is now possible for both communities

to adopt a strand based muscle model, such as the model introduced by

Sueda et al. [57].

3



Chapter 2

Background

We will first discuss the key challenges involved in musculoskeletal modeling

(Sec. 2.1.1), followed by a review of several common muscle models used in

both computer graphics and biomechanics (Sec. 2.1.2). Next we will explain

the dynamics of strand based simulation (Sec. 2.2.1) and briefly cover work

related to strand simulation as it applies to various natural phenomena (Sec.

2.2.2). We will take an in depth look at strand simulation for muscles and

tendons, since it is critical for this work (Sec. 2.2.3). Finally, we will discuss

various commercial modeling tools which are prominent in the animation

and biomechanics communities (Sec. 2.3).

2.1 Musculoskeletal Modeling and Simulation

2.1.1 Key Challenges

In all aspects of biomechanical modeling, simplifications have to be made

in order to form a controllable representation of the full system. A holistic
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Chapter 2. Background

model needs representations of geometry, activations, and forces. Ideally

these simplifications will not sacrifice the validity of the system. In order to

ensure that a biomechanical model upholds these principles, it is necessary

to study anatomy as well as the work of current biomechanical researchers.

The first significant challenge in the development of functional muscu-

loskeletal models, and the focus of this work, is the development of usable

tools that are capable of representing the complex systems we are trying to

model. See Sec. 2.3 for a description of current commercial modeling tools,

some of which have a musculoskeletal focus.

Static models may help for educational purposes, but they do little

to help with animation and biomechanical analysis. For this reason, we

also need to be concerned with the challenges of musculoskeletal simulators.

These simulators have several key challenges that they need to account for.

First, they need appropriate methods of bone articulation, such as the gen-

eral joint component framework suggested by Shao and Ng-Thow-Hing [49],

the joint-sinus cones suggested by Maurel and Thalmann [35], or the spline

joints recently developed by Lee and Terzopoulos [30].

Second, each simulator needs to implement an appropriate model of mus-

cle tissue. Most researchers model muscle forces using lines of action or

centroidal lines. However, recent studies criticize this simplification, and

suggest that it may be a significant source of error [72]. Charlton and John-

son [13] were along the right lines when they recently suggested a diversion

from straight line muscle forces.

Finally, musculoskeletal simulators also have to handle the complicated

topic of muscle control. Due to the incredible complexity of musculoskele-

5



Chapter 2. Background

tal systems, it is nearly impossible to manually control a simulated system.

Several researchers have made attempts at automated control, using regres-

sion models compiled from experimental data [15, 22], or using optimization

techniques to approximate muscle synergies [13, 21, 29, 70].

2.1.2 Existing Approaches

This section is adapted from [57] and portions of this description were writ-

ten by Sueda and Pai. It is reproduced here since it is essential for the

remainder of this thesis. Much of the work in musculoskeletal modeling and

simulation has its roots in the biomechanics community [9, 12, 13, 16, 17, 21,

22, 36, 44, 70, 77]. With a few exceptions, muscles are modeled by simple

lines of force that can bend around kinematic wrapping surfaces. Few have

been able to represent the complex muscle and tendon routing constraints

that are demonstrated by Sueda et al. [57].

There has also been significant development of musculoskeletal models

in the graphics community. Some have focused only on the muscle anatomy,

and not on dynamic simulation [1, 48, 75]. Ng-Thow-Hing [40] and Teran

et al. [58, 59] developed volumetric muscle models to simulate muscles with

both active and passive components. Zhu et al. [80] use a linear elastic

muscle model along with finite elements for muscle volume deformation.

These finite element approaches are far more computationally intensive than

our strand based approach. Maurel et al. [36] and Aubel and Thalmann [2]

constructed muscle-based virtual human characters using line of force muscle

models. Musculoskeletal models have also been used extensively for facial

animation [31, 51, 73]. Lee and Terzopoulos [29] used a neuromuscular

6



Chapter 2. Background

control model with line of force muscles for the simulation of a human neck.

Zordan et al. [81] developed muscle elements based on springs for simulated

respiration.

There has been significant work in developing algorithmic controllers for

physically based animation, based on using joint torques in place of muscle

activation [18, 42]. Some controllers are able to achieve high realism by

incorporating motion and force capture data [28, 78, 82].

Among the papers that take muscles explicitly into account and solve for

their control signals, many use joint moment-arms, which are commonly used

biomechanical approximations of distributed muscle forces around joints [63,

64, 67]. Sifakis et al. [51] determine activations of a detailed non-linear,

but quasistatic, finite element (FEM) muscle model. Weinstein et al. [74]

use a novel approach to proportional-derivative (PD) control of muscles to

track an animation. Hoegfors et al. [21] solve for muscle activations using

a minimization of the sum of squared muscle stresses. van der Helm [70]

developed a finite element muscle model, using inverse dynamics, given bone

motion and external forces, to calculate optimized muscle forces. Charlton

and Johnson [13] use a least-squares optimization, along with upper and

lower bounds on muscle stress, in order to solve the muscle load-sharing

problem. Lee and Terzopoulos [29] use neural networks to learn to control

the complex musculature of the neck.

7



Chapter 2. Background

2.2 Strand Based Simulation

2.2.1 Strand Dynamics

This section is adapted from [57] and portions of this description were writ-

ten by Sueda. It is reproduced here since it is essential for the remainder of

this thesis. Sueda et al. [57] simulate thin structures they call strands. The

path of a strand is described by a cubic B-spline curve,

p(s, t) =
3∑

i=0

bi(s)qi(t), (2.1)

where qi(t) denote the control points of the strand, with velocities q̇i(t). The

cubic B-spline basis functions, bi(s), depend on where the point is along the

spline. Although a strand can have an arbitrary number of control points,

a point on a strand only depends on four control points, due to the local

support of the B-spline basis. The velocity and the tangent vectors of a

point p(s, t) can be obtained in a similar manner.

ṗ(s, t) ≡ dp

dt
=

3∑
i=0

bi(s)q̇i(t)

p′(s, t) ≡ ∂p

∂s
=

3∑
i=0

b′i(s)qi(t).

(2.2)

A strand, containing n ≥ 4 control points, has 3n degrees of freedom,

corresponding to the x, y, and z coordinates of the n control points [57].

8



Chapter 2. Background

2.2.2 Applications for Various Phenomena

Many simulations of natural phenomena rely on simulating thin strand-

like structures. There have been several papers in the graphics literature

investigating the use of thin physical structures for simulation of various

phenomena.

Qin and Terzopoulos [43] were the first to propose using B-splines for

physically-based geometric design and their idea has since been extended by

Remion et al. [45] and Pai [41]. Lenoir et al. [32] and Coleman and Singh

[14] have developed methods for spline contact and constraints. Recently,

Kass and Anderson [26] have used splines to animate oscillatory motion in

an animation production environment.

Aside from general physical spline models, several recent researchers have

been developing specialized physical models in order to simulate specific

natural phenomena. Bertails et al. [8] have used strand-like objects called

Super-helices for predicting the dynamics of natural hair. Spillmann and

Teschner [56] introduced “CoRdEs” as the first detailed strand model of

thread and have extended their work by including a contact model for the

simulation of knots [55]. Their idea has recently been expanded upon by

Bergou et al. [7], who developed their own thread model called Discrete

Elastic Rods, and by Kaldor et al. [25] who have simulated knitted cloth at

the yarn level.

2.2.3 Applications for Muscles and Tendons

This section is adapted from [57] and portions of this description were writ-

ten by Sueda and Pai. It is reproduced here since it is essential for the

9



Chapter 2. Background

Figure 2.1: A screenshot of Sueda et al.’s simulator. Fixed constraints
are shown in cyan, sliding constraints in green, and surface constraints
in maroon. Surface constraints allow the strands to move axially as well
as laterally. The input animation target is shown in wireframe. Figure
reproduced from [57].

remainder of this thesis. Recently, Sueda et al. [57] have introduced strand-

based muscle and tendon simulation (Fig. 2.1). Their simulator is built on

two primitives: rigid bodies for bones and spline-based strands for tendons

and muscles. Their decision to use strands was motivated by the anatomical

structure of real muscle tissue. Muscles consist of fibers, curved in space,

which are bundled into groups called fascicles. When a muscle is activated,

the fibers contract, which transmits a contractile force directly along each

fiber. By using strands in their muscle simulation, they are able to directly

model this behavior. Strands allow them to define smooth curves to repre-

sent tendons, muscles, or the individual fascicles of each muscle. The forces

applied to the strands can be transmitted directly along the curve, and also

laterally through constraints [57].

10



Chapter 2. Background

They extend the physically-based spline models previously used in com-

puter graphics (Sec. 2.2.2) to include muscle activation, simple yet robust

sliding and surface constraint models, and implicit integration with Rayleigh

damping [57].

The state of the system is given by the stacked positions and velocities

of the rigid bodies and strand control points. These are the generalized

coordinates and velocities of the system, respectively:

χ =
[
· · · Ei · · · qj · · ·

]T
Φ =

[
· · · φi · · · q̇j · · ·

]T
.

(2.3)

Here, Ei ∈ SE(3) and φi ∈ se(3) are the configuration and the spatial ve-

locity, respectively, of the ith rigid body (SE(3) is the space of 3D positions

and orientations, and se(3) is the space of translational and rotational ve-

locities), and qj ∈ R3 and q̇j ∈ R3 are the position and the velocity of the

jth spline control point [57].

For each generalized coordinate, they construct an impulse-momentum

equation which, when discretized at the velocity level, is

MΦ(k+1) = MΦ(k) + hf −GTλ, (2.4)

where M is the block-diagonal generalized mass matrix of rigid bodies and

strand control points [45], h is the step size, f is the generalized force (body

forces for rigid bodies, elastic and damping forces for strands, etc.), and

GTλ is the constraint force [57].

11



Chapter 2. Background

Rigid Bodies and Joints

They treat bones as rigid, since their deformation is not important for their

purposes. The world position and velocity of a point on a rigid body at a

local coordinate r are given by

x = E r

ẋ = E−T Γ(r)φ,
(2.5)

where E is the usual coordinate transformation matrix and the 3×6 matrix,

Γ = (−[r] I), transforms the local spatial velocity of the rigid body, φ, into

the velocity of a local point, r, on the rigid body in local coordinates. Joint

constraints are implemented using the adjoint formulation [38], with which

they easily derive different types of joints by simply dropping rows in the

6× 6 adjoint matrix. For example, they drop the top three rows (the three

rotational DoFs) for a ball joint, or the third row (the rotation about the

z-axis) for a hinge joint [57].

Muscle Strand Dynamics

Based on the strand dynamic quantities mentioned in Sec. 2.2.1, they com-

pute the passive and active elastic forces in the strand, which contribute to f

in Eq. (2.4). Their simulator has the ability to use an arbitrary Force-Length

(FL) relationship, which can be obtained from a standard Hill-type model

[79] or from physiological experiments. However, the constitutive proper-

ties of muscles are still not well established and are the subject of intense

ongoing research. For graphics applications, they use linear FL curves for

12



Chapter 2. Background

both the passive and active forces, since they work just as well for producing

realistic animations. The active force of a muscle is modeled by shifting the

FL curve upwards, so that the resulting stress is higher at each length and

becomes zero at a shorter length [57].

The dynamics equation for the control points of the strands in their

system is given by

M q̇(k+1) = M q̇(k) + h(fd + fg + fp + fa)−GTλ, (2.6)

where M is the mass matrix, fd is the Rayleigh damping force, fg is the

gravity force, and fp is the passive elastic force. The active force, fa, is lin-

ear in the activation levels, and can be expressed as a matrix-vector product,

Aa, where a is the vector of muscle activation levels between 0 (no activa-

tion) and 1 (full activation), and A, which is of size (#DoF× #muscles),

is the “activation transport” matrix, which converts the activations of the

muscles into the corresponding forces on the strand DoFs. This is accom-

plished by scaling the activations as a function of the local strain and spline

blending functions. The last term, GTλ, is the constraint force term [57].

They use Rayleigh damping given by

fd =
(
αM + β

∂fT

∂q

)
q̇, (2.7)

where f is the cumulative force (excluding fd) from Eq. (2.6) and α and β

are positive damping parameters [57].

13



Chapter 2. Background

Constraints

Constraints are required for musculotendon origins/insertions and for ten-

don routing. Although wrapping surfaces implemented in biomechanical

simulators [16, 19] are effective for kinematic constraints, they do not work

for dynamic constraints, and are also limited to simplified geometries, such

as spheres and cylinders [57].

Tendon routing is particularly difficult, and ignored by other existing

biomechanical simulators. They have two types of constraints for tendon

routing: sliding and surface constraints. A sliding constraint is useful when

the strand is to pass through a specific point in space. Surface constraints

are used to allow the strand to slide laterally on the surface as well [57].

Although their simulator is a general multi-body simulator with de-

formable strands, there is one assumption in their application that simplifies

the constraint formulation. Since tendons and muscles stay in contact with

surrounding tissue and do not come apart, they deal only with equality

constraints; inequality constraints, which are more difficult to solve numeri-

cally, do not need to be modeled. In addition, no general-purpose proximity

detection is required. Because strands are based on spline curves, keeping

track of contacting points is computationally inexpensive. Potential contact

points are first predetermined along each strand. After each time step the

closest points are updated using Newton-Raphson search. Contact points on

rigid bodies for surface constraints are tracked in a similar manner, by first

wrapping each rigid body with a cubic tensor-product surface and tracking

the contact on this surface [57].
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The constraints in their system are formulated at the velocity level. Let

g(χ) be a vector of position-level equality constraint functions, such that

when each constraint i is satisfied by the generalized coordinates, χ, gi(χ) =

0. By differentiating g with respect to time, they obtain a corresponding

velocity-level constraint function that is consistent with their discretization.

d g(χ)
dt

=
∂ g(χ)
∂χ

Φ = 0. (2.8)

Denoting the gradient of g by the constraint matrix G, they obtain the

constraint equation GΦ = 0 [57].

This constraint equation may allow the system to drift away from the

constraint manifold because it is formulated at the velocity, not position

level. They add a stabilization term [6] to help correct this drift by pushing

the system back toward the constraint manifold. The stabilized velocity

constraint equation is then

GΦ = −µg, (2.9)

where µ is the stabilizer weight. If there is no positional error (g = 0), then

the constraint equation is exactly GΦ = 0. On the other hand, if there is

a small positional error (g 6= 0), then a non-zero stabilization force, −µg,

is added to push the system back to the constraint manifold. For critical

damping, they set µ = 1/h, to minimize unnecessary oscillations [57].

Fixed Constraints: They use fixed constraints for strand origins and inser-

tions, as well as for attaching several strands to form branching structures.

For example, if they want to constrain a point on a strand, p, to a point on
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a rigid body, p0, they set the relative velocities to be equal.

ġ = ṗ− ṗ0, (2.10)

where both ṗ and ṗ0 are linear with respect to the DoFs of the system, as

given by Eqs. (2.5) and (2.2) [57].

Surface Constraints: Surface constraints are similar to the usual rigid body

contact constraints. A point on a strand is constrained to lie on a point on

the surface of a rigid body. Let p denote the 3D position of the strand point

to constrain and p0 and n its corresponding contact point and normal on

the rigid body. Equating the relative velocities along the normal gives

ġ = nT (ṗ− ṗ0). (2.11)

The constraint point on the strand is fixed, whereas the point on the surface

is updated before each step by finding the closest point on the tensor-product

surface attached to the rigid body (Fig. 2.2(a)) [57].

Sliding Constraints: In most situations, such as in the carpal tunnel, ten-

dons are confined to slide axially but not laterally. They achieve this behav-

ior by adding an additional dimension to the surface constraint. Given the

tangent vector of the point to constrain on a strand, they generate the nor-

mal, n1, and binormal, n2, vectors, and apply the constraint with respect

16



Chapter 2. Background

(a) (b)

Figure 2.2: (a) Surface constraint and (b) sliding constraint. With a
surface constraint, the constraint point moves on the rigid body surface,
whereas with a sliding constraint, the constraint point moves along the
strand. Figure reproduced from [57].

to both of these vectors.

ġ1 = nT
1 (ṗ− ṗ0)

ġ2 = nT
2 (ṗ− ṗ0).

(2.12)

Unlike the surface constraint, the constraint point on the rigid body is fixed,

whereas it is allowed to slide on the strand (Fig. 2.2(b)) [57].

2.3 Commercial Modeling Tools

2.3.1 Animation

There is a wide range of modeling toolkits which have become prominent in

the animation and visual effects industry. Several of these tools are parts of

production level environments, offering not only modeling tools, but other

advanced features such as animation, texturing, rendering, physical simula-

tion for rigid and deformable bodies, and even complex tool sets for specific

simulations, including cloth, fluids, and hair/fur simulations.
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Autodesk’s Maya [4] is a leader among the elite production environ-

ments of this nature. It is prominent in the film and television industries

and has become a favored choice among many studios for 3D modeling and

animation. It contains toolkits for all prominent aspects of visual effects

development. Maya is extensible through both the Maya Embedded Lan-

guage (MEL) and Python scripting. Additionally, Autodesk has released an

OpenMaya API, so that Maya can be fully extended using C.

One of Maya’s top competitors, 3ds Max [3], also known as 3D Studio

Max, is also developed by Autodesk. Like Maya, 3ds Max is a huge 3D

development environment containing all of the toolkits relevant to visual

effects production. 3ds Max has been used most prominently for modeling

in the video game and film industries. 3ds Max can also be extended using

Python scripting.

Another prominent competitor is Avid’s Softimage XSI [5]. It has a

similar tool set to both Maya and 3ds Max. Softimage XSI has cemented

its place in the video game industry and has recently integrated mental ray

rendering into its pipeline.

Blender [10] is the only open-source 3D production environment that has

received major acclaim. It contains all of the major classes of toolkits and

is the only free animation suite available under the GNU General Public

License. It is extensible using Python scripting, though as a publicly devel-

oped software suite, its interface and documentation are somewhat inferior

to its major competitors.

SolidWorks [54] is another prominent modeling suite, though it is mainly

used as a virtual testing product for engineering design work. Common ap-
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plications include modeling, assembly, metal work, and free form surfacing.

SolidWorks is extensible using Visual Basic and C.

In addition to these large suites designed for complete functionality of

the visual effects pipeline, there are several smaller competitors that choose

to focus on a limited, yet arguably more powerful, set of functionality within

the visual effects industry.

Side Effects Software has developed Houdini [50], which has become a

leader among visual effects and character animation suites. Houdini is a

node based system with built in support for many prominent commercial

renderers. Massive [34] is well known for its crowd related effects work,

developed specifically for the “Lord of the Rings” trilogy. Smith Micro’s

Poser 3D [53] is a rendering and character animation suite based on character

adjustment using predefined parameters.

There is a surprising lack of commercial musculoskeletal modeling tools

in the animation industry. As with many types of simulations that are just

beginning to make their way into the animation industry, many companies

have developed their own in house systems, the details of which are kept

secret from competitors and the research community. Some of these systems

are quite intricate production quality muscle systems [46, 65], though to our

knowledge, none of them use a strand based muscle approach.

The only prominent, commercially available musculoskeletal animation

and simulation suite is by cgCharacter [11], which specializes in 3D character

setup for film and television. They have designed male and female human

characters with full muscle setups which are functional using their Absolute

Character Tools (ACT) software. While the muscles in their system are
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considered functional, they rely on line of action muscle models, which are

no longer considered accurate enough (Sec. 2.1.1).

2.3.2 Biomechanics

The needs of the biomechanics community differs drastically from the needs

of the animation and visual effects industry. In biomechanics, the primary

focus is on physiologically accurate representations of musculoskeletal sys-

tems. It is much more important to have justifiable medical results than it

is to have accurate looking results.

One of the leaders in musculoskeletal simulation is Musculographics

Inc.’s Software for Interactive Muskuloskeletal Modeling (SIMM) [39]. This

is a toolkit designed for modeling, animation, and biomechanical analysis of

3D musculoskeletal systems. Like most of its competitors, it is based on line

of action muscle models and joint moments (Sec. 2.1.2). SIMM has found

widespread use by biomechanists and biologists researching the functionality

of a variety of musculoskeletal systems.

SimTk’s OpenSim [52] software is an open source competitor to SIMM.

OpenSim is designed for neuromusculoskeletal modeling and simulation for

biomechanical analysis. It is geared toward multi-institutional collaboration

with a variety of research communities. The software uses a combination of

C++ and Java and can be extended to include custom contact models and

controllers.

The MusculoSkeletal Modeling Software (MSMS) [61] released by The

Alfred Mann Institute is another freely distributed package, helping re-

searchers to build and analyze musculoskeletal models. It is implemented
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in Java, Simulink and C. MSMS has a distributed block architecture, allow-

ing each stage of development, from modeling, to simulation, to interface

control, to be removed and replaced with custom plug-ins.

Portions of MSMS are based on The Alfred Mann Institute’s Muscu-

loskeletal Modeling in Simulink (MMS) [60]. The MMS package converts

SIMM models into Simulink blocks. This functionality makes complex mus-

culoskeletal modeling more accessible to novice programmers, since they no

longer need C proficiency to build their models. Both MSMS and MMS al-

low for interchangeable Simulink muscle models, such as the Virtual Muscle

[62]. This is a custom muscle package which uses line of action muscles with

variable fiber types and force-length relationships.

The Visible Human Project R© [68] is an ongoing research project con-

ducted by the United States National Library of Medicine. Its goal is the

creation of anatomically accurate 3D representations of both male and fe-

male human bodies. The Visible Human Project R© is a joint venture among

many independent research centers and is based on musculoskeletal model-

ing using medical imaging techniques.
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Design Decisions

There are several important design decisions that were made during the

development of these interactive tools. These decisions were made in order

to improve the development of musculoskeletal models, to easily interface

with our muscle simulation software, and to provide animators with direct

access to a novel biomechanical simulator.

We first discuss the overall flow of our modified animation pipeline (Sec

3.1), followed by decisions relating to the general platform that the tools

are implemented in (Sec 3.2). Next we discuss the various object primitives

that were specifically created for musculoskeletal modeling (Sec 3.3). We

then discuss the semi-automated processes within the tool set (Sec 3.4).

Finally, we discuss the tools for interfacing the modeling environment with

the simulator (Sec 3.5).
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3.1 Pipeline

This section is adapted from [57] and portions of this description were writ-

ten by Pai. It is reproduced here since it is essential for the remainder

of this thesis. We have integrated a novel biomechanical simulator into a

traditional animation pipeline (Fig. 3.1). This allows artists and scientists

to easily model musculoskeletal systems. Moreover, it enables artists to

produce secondary motion of tendons and muscles under the skin of a tra-

ditionally animated character. To accomplish this task, our implementation

makes some important pipeline design choices.

Modeling Animation Activation, Simulation Basic Skinning Final Output

Figure 3.1: Pipeline: The user specifies the model and its correspond-
ing animation. Our system computes the required activations, and
simulates the muscles, tendons, and bones. The skin is then attached
to the skeleton, and the subcutaneous deformation from tendon motion
is added as a post-process. Figure reproduced from [57].

First, we clearly separate the secondary motion simulation from the char-

acter animation, so that the animators can perform most of their work in the

usual way. Only the Character Technical Director (TD), as opposed to the

animator, needs to be aware of the presence of a muscle simulation under-

neath the hood. Second, we provide tools to make it easy to add strands and

edit their properties using GUIs in Maya. Finally, the effect of the strand

motion on the skin is performed as a post-process to the normal skinning,

and can be considered as an animation pass to add secondary motion.
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From an animator’s point of view, there are three main differences with

a standard animation pipeline. First, an animation rig is constructed in the

usual way, but in addition, strands are placed within the character. The

strands can be built manually using the standard spline tools available in

Maya. In addition, the strand construction process can be semi-automated

using the AutoStrands Tool provided by our plug-in (Sec. 3.4.1). Though

not a requirement, it is much easier to place the strands if the bone and

muscle meshes are available.

A GUI allows easy setting and editing of physical parameters such as

mass, density, and dimensions (for a complete list of parameters, see Ta-

ble 3.1). In addition to these simple scalar parameters, the proper con-

straints must be added to ensure that the strands function appropriately.

Constraints can be easily added through our plug-in by selecting the appro-

priate strands and specifying the normalized parameter point to which the

constraint should be added. After the strands have been created, they never

need to be manually manipulated again.

The Character TD also skins the standard rig in the normal way. This

will allow the animators to continue their work unaffected by the addition of

muscle strands. Along with this skinned base mesh, there is another version

of the skin mesh, which will be deformed by the muscle strands. We will

call this additional mesh the deformed mesh. The deformation process is

completely automated in our plug-in (Sec. 3.4.3). Although we have added

an additional skin mesh to each character, we do not foresee any problems

since it is already common practice to include several different resolution

meshes with each character [47].
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Second, the animators construct a reference animation as they normally

would, adding life to the characters in their scenes. Once the character has

been animated to their liking, the next step is to add the secondary motion

provided by the muscles. The plug-in exports the models, muscle data,

and animation keyframes to XML files. The muscle simulator then uses

these XML files to recreate the Maya scene within the simulation software

(Sec. 3.5). The simulator calculates the dynamic activation levels for the

muscles that best match the animation keyframes provided (Sec. 2.2.3).

The simulation is then saved as keyframes in an XML file, which are loaded

from our Maya plug-in and baked onto the strand control points (Sec. 3.4.2).

Now the Maya strands will move in a biomechanically accurate way.

The simulated rigid body motion is similar, but not identical, to the in-

put skeletal motion. In the example animations, the average and worst

per-vertex reconstruction errors are around 1mm and 5mm respectively.

These reconstructions errors are actually automatic corrections of physically

unattainable motions and configurations. Nevertheless, once the simulation

is completed, the animator can choose to use the new skeletal animation or

to stick with the original input animation of the rigid bodies, and remap the

tendon motion back to the original motion.

Finally, once a strand animation has been imported, the animator can

use the plug-in to calculate the skin deformation that corresponds to the

given strand motion (Sec. 3.4.3).
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3.2 Platform

3.2.1 Embedded Plug-in

The interactive tools that we have developed are implemented as a plug-in

for Autodesk’s Maya [4]. The design principles used in the development

of these tools should easily lend themselves to implementation and further

development using any professional 3D modeling program.

The decision to build an embedded plug-in within an existing modeling

and animation environment was made in order to leverage the production

quality animation tools as well as the professional interactive interface al-

ready familiar to many artists. We chose to use Maya as our modeling

and animation environment because it is a well known and commonly used

program within the animation industry. In addition to Maya’s reputation

as a top level 3D environment, Autodesk, Inc. has a substantial history

supporting animation research within the educational community and has

generously donated Maya licenses for our continued research and develop-

ment of musculoskeletal software and other graphics related projects.

3.2.2 Scripting

The options for plug-in implementation in Maya, and many other 3D model-

ing programs, include both scripted commands and compiled code using an

API. In Maya, scripts can either be written in MEL or in Python. Compiled

code can be written in C and C++ using the OpenMaya API.

Our plug-in is implemented as a combination of MEL and Python scripts.

This decision was made primarily due to the significantly faster speed of
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development that is made possible by scripting languages. Secondary and

tertiary reasoning for the choice to use a scripted plug-in include prior famil-

iarity with both MEL and Python and to leverage Python’s ability to easily

incorporate external code as modules. See Sec. 3.2.4 and Sec. 3.5 for spe-

cific examples of the advantages that Python’s modularization capabilities

can provide.

3.2.3 User Interface

There are several user interface possibilities within Maya. Interfaces can

involve text menus, mouse context menus, pop-up windows and dialogs,

and shelves. The first three choices are common interfacing techniques,

while the final choice, a shelf, is a specific Maya implementation of button

menus. Maya has organized all of its button menus into separate tabs called

shelves. Any Maya setup contains several shelves, organized into categories

such as “Polygons”, “Surfaces”, “Rendering”, “Physics”, “Cloth”, etc.

We have chosen to design our interface by utilizing the shelving feature

along with a few pop-up windows and dialogs. The majority of the function-

ality of our plug-in is accessible through our custom shelf, the “sslMuscles”

shelf (Fig. 3.2). This shelf contains buttons for the creation of our muscle

primitives (Sec. 3.3), for exporting data to our muscle simulator (Sec 3.5),

importing data from the muscle simulator (Sec. 3.4.2), and for automating

skin deformation (Sec. 3.4.3).

In addition to our custom shelf, we make use of several pop-up windows

and dialogs. The simplest pop-up dialog that we use consists of some in-

structions along with a single field to be filled in by the user. We have two
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Figure 3.2: Our custom shelf in Maya.

more complicated windows that are integral to the automation processes in

our plug-in.

The Skin Strands Window (Fig. 3.3) is the simpler of the two windows.

It allows users to automatically deform a mesh based on the proximity to a

set of strands (Sec. 3.4.3). There are several parameters that are tunable

with fields, sliders, and check boxes in the window. Finally, there is a button

to begin the deformation process using the current parameter values. See

Appendix A.9 for complete instructions on how to use the Skin Strands

Window.

Figure 3.3: The window to control the deformation effects available
for skinning strands.

The AutoStrands Window (Fig. 3.4) is considerably more complex than

the Skin Strands Window. It allows users to semi-automatically fill muscle

meshes with strands, based on external simulation code (Sec. 3.2.4). The

key difference making the AutoStrands Window more complicated is the
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presence of an external simulation running in a separate thread. The window

therefore contains several buttons that control the AutoStrand simulation

threads (Sec. 3.4.1). It also contains fields, sliders, and radio buttons that

tune the simulation parameters. However, several of these parameters can

continue to be tuned after the simulation has been started, interactively

affecting the outcome. See Appendix A.4 for complete instructions on how

to use the AutoStrands Window.

Figure 3.4: The window to control AutoStrand simulations.

3.2.4 Modularization and External Code

The decision to use Python as a primary development language for our plug-

in allows us to easily incorporate external code as modules. The primary

advantage that this modularization provides is drastically increased func-

tionality requiring minimal development time. We have made use of python

modularization in several significant areas throughout our plug-in.

The built in Python module for XML querying and development allows

us to transport data between Maya and our simulation software in an effi-

cient and reliable manner (Sec. 3.5). The Python XML module is integrated

29



Chapter 3. Design Decisions

into any standard Python implementation, and its functionality is easily ac-

cessible to developers.

We have also made use of the Python Threading module in a unique

way. Our AutoStrand Tool relies on an external simulation developed in

C/C++, but not using the OpenMaya API (Sec. 3.4.1). We compile the

simulation code as a Python extension and run it in a separate thread using

the Threading module. This process (Fig. 3.5) has two key benefits. First,

it allows us to easily incorporate external code created by developers with

no knowledge of the OpenMaya API. Second, by running a simulation in a

separate thread we can allow the user to interactively control the simulation

from within Maya. The current state of the simulation is automatically

displayed within the Maya viewport and the user can tweak the parameters

as they see fit. This functionality is usually not available during a standard

Maya simulation, which temporarily freezes most user controls.

Launch Sim,
Take a Step

Update Strands

Python
in Maya C++

Figure 3.5: Block diagram of the AutoStrand modularization process.

An added benefit of this threading process is that users can continue

modeling in Maya while the simulation runs. Since our AutoStrand simula-

tion is a background process designed to produce a final static output, the

actual simulation animation is irrelevant. The user can safely continue their

work while keeping an eye on the progress of the AutoStrand simulation.
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3.3 Primitives

We have developed a variety of new primitives for the construction of mus-

culoskeletal models. The five types of primitives are rigid bodies, joints,

strands, muscle groups, and constraints. Each of these primitives represents

a key building block required by our simulation software.

All of our musculoskeletal primitives are based on existing Maya primi-

tives. They are implemented as pseudo-primitives, adding parameters (Ta-

ble 3.1) to each of their respective Maya primitives, so that the maximal set

of existing tools can be leveraged for the creation of musculoskeletal models.

This pseudo-primitive architecture also allows us to easily convert be-

tween Maya primitives and our musculoskeletal primitives. A musculoskele-

tal primitive can be deleted, leaving behind the valuable control point data

contained within the original primitive. Any musculoskeletal primitive can

be reverted back to its original Maya primitive using our Remove Attributes

Tool (Appendix A.5).

Rigid Bodies

Rigid bodies represent bones. They can be built on top of any frame based

structure in Maya, though the conventions set by our simulation software

dictate that they be created from Group nodes. This allows multiple meshes

and surfaces to be bundled into one rigid body. When a user creates a rigid

body, a center of mass locator will automatically be generated and placed

in a best guess location. This center of mass is critical for determining the

bone’s inertia and other physical properties at simulation time.
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Joints

Joints represent anatomic joints connecting bones. We allow for several

types of joints, including ball, hinge, cylindrical, universal, prismatic, and

rigid joints. As with rigid bodies, joints can be built on any frame based

structure in Maya. It is reasonably irrelevant which structure is chosen,

though locators or Maya joints make the most sense, as they make good

visual representations of single points in space. In order to properly com-

municate with our simulation software, all joints in a scene should be placed

in a single, world level group named “Joints.”

Strands

A strand is our basic muscle tissue primitive. Strands must be built on top

of NURBS curves, since strand simulations are based on a spline represen-

tation (Sec. 2.2.1). There are several methods for strand creation, including

manual creation using Maya’s built in NURBS curve tools, automated cre-

ation by scripting the strand paths, or semi-automated creation using our

AutoStrands Tool (Sec. 3.4.1). One interesting aspect of our simulation

software is that each strand is allowed a unique passive and active force-

length (FL) curve. We use pop-up dialogs at strand creation time to allow

the user to specify custom FL curves for each strand, or to stick with the

default curves used in the simulation software.
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Muscle Groups

A muscle group is a muscle structure that consists of a collection of strands.

Muscle groups are built on top of Group nodes. Any strands contained in the

Group node will be considered to be a part of the muscle group. There are

two primary functions of muscle groups. The first is to specify which strands

belong to one muscle, and should thus co-activate during a simulation. The

second function is to designate volumetric and sheet muscles. By making

this key distinction, we have the freedom to process volumetric muscles

differently in our simulation software.

Constraints

Constraints are the least intuitive of our musculoskeletal primitives. They

are used for routing strands and attaching them to other primitives (Sec.

2.2.3). A constraint is the only musculoskeletal primitive that is created

before its Maya primitive exists in the scene. Constraints are built on top of

locators, which are automatically generated and attached to strands upon

creation. The constraint locators can slide around on the strand using the

position attribute, but will always be attached directly to the strand. There

are several types of constraints, each with its own specific purpose:

Fixed Constraints: Fixed constraints are used to define strand origin and

insertion points, to allow a single strand to split off in multiple directions,

or multiple strands to merge into one strand.
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Surface Constraints: Surface constraints are used to constrain a strand on,

above, or below a given surface.

Sliding Constraints: Sliding constraints are used to constrain a strand to

slide through a specific point in space, relative to a rigid body.

Strut Force Constraints: Strut force constraints are used to mark points

between neighboring strands, in sheet muscles, that should be concerned

with volume preservation.

3.4 Automation

We have developed several tools for automating the musculoskeletal model-

ing and animation processes. Some of these tools are fully automatic, while

others are semi-automatic. The key difference is that semi-automatic tools

allow for user influence. This decision was made in order to automate as

much of the process as possible, while leaving a pipe open for a user to

manually manipulate the outcome.

3.4.1 AutoStrands

The most significant automated modeling tool that we have developed is the

AutoStrands Tool, which is designed for semi-automatic strand placement.

This tool will generate several new strands based on each input strand and

attempt to evenly disperse them within a given polygon mesh. Each new

autostrand will copy the origin and insertion points from its input strand

and will be placed at the same level in the scene hierarchy.
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The AutoStrands Tool is able to disperse the autostrands using external

simulation software by Levin et al. [33], developed with no relation to Maya

(Sec. 3.2.4). This simulation is run in a separate thread, which must be run

and killed from the AutoStrands Window (Fig. 3.4). When the user starts

an AutoStrand simulation, the thread will be launched and the simulation

will be initialized using the current parameters along with the selected mesh

and strands.

The simulation will update the Maya viewport at every time step and will

continue running until it is either paused or killed. Several of the parameters

can be interactively manipulated while the simulation is running (Appendix

A.4). Once a final desired state has been reached, the user must kill the

AutoStrand thread. At this point the autostrands will behave like normal

strands and the control points can be manually manipulated to finalize the

strand paths.

3.4.2 Baking Simulations

Since we are generating strand motion in our external musculoskeletal simu-

lator, we have provided a method for using that automated strand animation

within Maya. Baking a simulation refers to the process of saving simulation

results by adding keyframes, based on the simulation, to the objects in the

scene [47]. Once a simulation has been baked, it exists as a keyframed ani-

mation and there is no need to recompute the simulation. The user is then

free to manually alter the baked keyframes.

We are concerned with baking keyframes to the strand control points

in our scenes. To accomplish this task, we provide a Bake Simulation Tool
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that uses a pop-op dialog to locate a saved Replay XML file created by the

simulation software (Sec. 3.5). Our tool then queries the XML file using the

Python XML module (Sec. 3.2.4) and adds the necessary keyframes to the

strand control points in order to reproduce the simulation. See Appendix

A.9 for specific details on using the Bake Simulation Tool.

3.4.3 Secondary Deformation

This section is adapted from [57] and portions of this description were writ-

ten by Pai. It is reproduced here since it is essential for the remainder of this

thesis. We have provided a method for automatically generating secondary

deformation of a character’s skin. The tendons are automatically skinned

to the characters surface mesh, providing complex secondary motion of the

skin as a result of biomechanically realistic tendon motion.

We automatically determine the skin mesh vertices that are affected by

each strand using proximity computations. Skin deformation due to subcu-

taneous strands is implemented as a post-process that offsets the skin mesh

based on the proximity to strands. The degree of influence of the strands,

and hence their visual prominence, can be controlled by the animator to

produce a range of effects (Fig. 3.6).

The skin deformation algorithm is as follows. Every base mesh vertex

is given a scalar influence weight. This allows us to control the amount

of deformation that each deformed mesh vertex undergoes. In our system,

these influence weights are painted onto the base mesh using a color set and

Maya’s Paint Vertex Color Tool (Fig. 3.7). Only mesh vertices with positive

influence weights are deformed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Varying effects of the skin deformation algorithm. Lateral
falloff is 0.25 for (a) – (d) and 0.5 for (e) – (h). Normal falloff is 0.25
for (a), (c), (e), and (g) and is 0.5 for the rest. Height is 0.25 for (a),
(b), (e), and (f) and is 0.5 for the rest.

At each frame, the closest strand point (ps) to each base mesh vertex

(pv) is determined. Then the deformed mesh vertex is modified as follows:

d = ps − pv

h = max(d · n + c, 0)

f = a exp
(
−‖d− (d · n)n‖2

2b2

)
pv = pv + (w hf)n,

(3.1)

where n is the outward vertex normal and w is the vertex influence weight.

The parameter a controls the height, h, of the offset, b controls the falloff

factor, f , in the lateral direction, and c controls the falloff factor in the
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Figure 3.7: Vertex influence weights painted on the base mesh of a
human hand. The weights go from 0 to 1 using only the R channel of
the color to determine the weight.

normal direction. Thus, when strands protrude above (or lie just beneath)

the base skin, each vertex of the deformed skin is moved along its normal

by an amount proportional to its distance from the strand. The level of

deformation is controllable by the influence weights, and by tweaking the

height and falloff parameters.

3.5 Interfacing with the Simulator

It is of utmost importance that we effectively interface with the muscu-

loskeletal simulation software. Without these interfacing tools, we would

not be able to use our musculoskeletal models in biomechanical simulations,

nor would we be able to create realistic animation based on our simulations.

There are several key decisions that we made in the development of the

interfacing tools. The first decision was to develop a new Java class that
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is designed to create all of the elements in a 3D scene. We developed the

ModelerScene class as a generic 3D scene class, with no elements specific

to Maya or any other program. We have chosen to keep the ModelerScene

class completely distinct from our musculoskeletal simulator as well. This

allows the ModelerScene class to remain a generic 3D scene class that can

be used by any Java graphics application.

We decided that the best way to interface with this class (Fig. 3.8) is by

following the JavaBeans specifications [20]. These specifications describe a

format for Java classes that allows many objects to be encapsulated into a

single object, called a bean. JavaBeans can be serialized and can be easily

encoded into, and decoded from, XML files. A fully functional instance of

the ModelerScene class can be created given a ModelerScene XML file.

Model, Muscle,
Keyframe Data

Sim Positions for
Strand CPs

Maya Java

Figure 3.8: Block diagram of the simulation interfacing process.

The next step in the interfacing process is to create the ModelerScene

XML beans. We have developed a ModelerScene XML exporter in Maya

that will export the selected objects to a properly formatted ModelerScene

XML bean (Appendix A.6).

Since the ModelerScene class has no knowledge of musculoskeletal ob-

jects, it is also necessary to export the musculoskeletal data. We have created

a tool to export this muscle data in a separate Muscle XML file (Appendix
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A.7) and have implemented a ModelerSceneLoader class within our muscu-

loskeletal simulation software that uses both the ModelerScene XML and

the Muscle XML files.

In order to track an animation using the strand controller [57], we need to

first create that animation. Keyframed animations can be created in Maya

and exported in a Control XML file (Appendix A.8). The Control XML file

can easily be loaded in our simulator, since it follows the specifications of our

simulator’s Replay XML files. Our Replay XML files contain keyframe data

for rigid body positions and orientations along with strand control points.

They can be used to replay simulations within the simulator or to bake

simulations onto strands in Maya (Sec. 3.4.2).
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Results

We have conducted two case studies in order to demonstrated the effective-

ness of our musculoskeletal modeling and animation tools. The first case

study focuses on development and animation of a realistic model of the hu-

man hand (Sec. 4.1). This model constitutes an important part of the

results of our recent SIGGRAPH publication [57]. The second case study

focuses on development and biomechanical analysis of a novel model of the

human shoulder (Sec. 4.2). This shoulder model was recently included in

the Proceedings of the International Shoulder Group [27].

4.1 Case Study: The Human Hand

Human bodies are more than skin and bones. When the body moves, ten-

dons and muscles move under the skin in visually important ways that are

correlated with both the movement and the internal forces. For example,

the appearance of tendons on the back of the hand is related to how the

hand is moving and how much force it is exerting. The core goal of this
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case study is to look into the anatomy of the hand, and the current state

of hand simulation and animation techniques, in order to generate more

realistic human hand animation.

4.1.1 Anatomic Description

The human hand is comprised of carpal bones, metacarpal bones and pha-

langes, while the forearm includes the radius and ulna (Fig. 4.1). Carpal

bones are a series of eight small bones, joined by ligaments, and articu-

lated with the radius, ulna, and each other by intercarpal joints. The hand

also has five metacarpal bones, which make up the base of the palm. Each

metacarpal bone articulates with a carpal bone and the distal bone of its

corresponding digit. The distal head of each metacarpal bone is a knuckle.

Phalanges are the bones of the digits, or fingers. The thumb has two pha-

langes, while each finger has three phalanges. Proximal phalanges articulate

with the metacarpal bones and the middle phalanges, which in turn articu-

late with the distal phalanges [66].

Figure 4.1: Anterior and posterior views of the bones of the hand.
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There are two major compartments of muscles that move the wrist, hand,

and digits. The anterior compartment muscles are flexor muscles that origi-

nate on the humerus and insert on the carpal bones, metacarpal bones, and

phalanges. The posterior compartment muscles are extensors which orig-

inate on the humerus and insert on the metacarpal bones and phalanges.

Each compartment contains both superficial and deep groups of muscles [66].

Anterior Compartment

There are four muscles in the superficial anterior compartment and two

muscles in the deep anterior compartment (Fig. 4.2). The deep anterior

compartment consists of flexor pollicis longus, which flexes the distal pha-

lanx of the thumb, and flexor digitorum profundus, which flexes the distal,

middle, and proximal phalanges and the hand at the wrist joint [66].

Figure 4.2: Superficial and deep anterior compartments for the mus-
cles of the hand.
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The largest superficial muscle is the flexor digitorum superficialis, which

flexes the middle and proximal phalanges along with the hand at the wrist

joint. It is assisted in felxion by palmaris longus, flexor carpi radialis, and

flexor carpi ulnaris. Flexor carpi radialis also abducts the hand, while flexor

carpi ulnaris adducts it [66].

Posterior Compartment

The posterior compartment consists of five superficial muscles and four deep

muscles (Fig. 4.3). In the deep posterior compartment, abductor pollicis

longus and extensor pollicis longus are responsible for abducting and ex-

tending the thumb and wrist. Extensor pollicis brevis assists in extending

the thumb. The final muscle in the deep compartment, extensor indicis,

extends all phalanges of the the index finger and wrist [66].

The primary muscle of the superficial posterior compartment is extensor

digitorum. This muscle comprises most of the posterior surface of the fore-

arm and splits into four tendons inserting onto each finger. It extends all of

the phalanges of each finger, along with the wrist. Extensor carpi radialis

and extensor carpi radialis brevis extend and abduct the hand. Extensor

carpi ulnaris extends and adducts the wrist. The final muscle of the su-

perficial compartment, extensor digiti minimi, helps extensor digitorum to

extend the little finger [66].

4.1.2 Previous Hand Models

There have been several avenues of research into the development of biome-

chanically accurate hand models. Hands are an important topic in the
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Figure 4.3: Superficial and deep posterior compartments for the mus-
cles of the hand.

robotics community, since grasping and manipulation of objects is a key

issue in the creation of humanoid robots. Along this line, Wilkinson et al.

[76] have developed an extensor mechanism for an anatomical robotic hand.

As with any important musculoskeletal system, biologists, biomecha-

nists, and biomedical engineers are interested in studying hand models. A

recent example of research in this area is that of Valero-Cuevas et al. [69],

who looked into the ability of the tendon network of the fingers to perform

anatomical computations at a macroscopic scale.

In recent years, there has been significant research into the generation of

realistic hand animation for the visual effects industry. The likely reason for

this recent emergence of hand animation research is that character animation

is of central importance to the industry and hands are often a key focal point
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on animated characters. Albrecht et al. [1] were the first, in this recent

surge, to tackle construction and animation of anatomically based human

hand models.

Later, Tsang et al. [67] developed an anatomically accurate inverse dy-

namics solution for unconstrained hand motion. Around the same time,

Pollard and Zordan [42] created animations from physically-based grasping

control, based on examples from hand related motion capture data. Kry

and Pai [28] have also worked with motion captured hand data. They used

motion capture, along with captured contact forces, to synthesize physically-

based hand animations.

4.1.3 Creating a New Hand Model

We have developed a musculoskeletal model of the human hand using our

musculoskeletal modeling tools and our simulation software. Our hand

model includes all of the muscles that move the wrist, hand, and digits.

It can be animated using keyframed bone animation paths (Sec. 3.5) and

the novel muscle controller built into our simulation software [57].

The major differences between our hand model and the previous hand

models are that we use no motion or force capture techniques. Our model

does not incorporate any external motion databases and the motion of the

muscles are generated based on the input animation. Additionally, our mus-

cles are simulated using forward dynamics, allowing for realistic muscle de-

formation and reactions to prior motion and contact.

Our hand model (Fig. 4.4) contains 54 musculotendons and 17 bones.

The bone and muscle meshes were purchased from Snoswell Design in Ade-
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Figure 4.4: Posterior view of our hand model. Strands are shown
in blue, constraints in green, and bones in gray. The top level scene
hierarchy is displayed on the left.

laide, and the musculotendon paths were manually constructed based on

standard textbook models in the literature [37]. We use fixed constraints to

define origin and insertion points. In our hand model, surface constraints

keep extensor pollicis brevis and extensor pollicis longus near the superfi-

cial layer of the thumb, while sliding constraints help route the extensor

digitorum tendons over the knuckles of each digit. We did not need to use

struts, since most of the hand muscles are thin fusiform muscles that can

be fully simulated using a single strand. The model took an expert user

approximately two days to build and debug, with the primary building time

corresponding to manipulation of constraint locations.
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4.1.4 Animation from Simulation

This section is adapted from [57] and portions of this description were writ-

ten by Sueda. It is reproduced here since it is essential for the remainder of

this thesis. In order to generate hand animations with our model, we had an

artist rig and animate the hand skeleton, and the resulting animations were

imported into our simulation software. The activations for an animation

sequence of several seconds were computed within a few minutes. These

sequences were baked onto the strand control points in Maya, and the final

animations were rendered using Maya’s internal software renderer.

(a) (b) (c)

Figure 4.5: Still shots from an animation showing pronation/supina-
tion of the forearm, and abduction/adduction of the wrist, computed
at interactive rates using our controller. Figure reproduced from [57].

The degrees of freedom of the skeleton are flexion/extension and abduc-

tion/adduction of the fingers, thumb, and wrist, and pronation/supination

of the forearm. Our controller was able to produce motion involving all

of these ranges of motion (Fig. 4.5). Subcutaneous motions are most pro-

nounced for the extensor and abductor tendons of the thumb (Fig. 4.6), and

the extensor digitorum tendons on the back of the palm (Fig. 4.7). Our tech-
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(a) (b) (c)

Figure 4.6: A frame from the thumb animation, before applying our
method (a), and with varying levels of skin deformation (b and c),
showing the “anatomical snuffbox”. Figure reproduced from [57].

(a) (b)

Figure 4.7: (a) Base skin. (b) With our method applied, showing
tendons on the back of the hand realistically deforming the skin. Figure
reproduced from [57].

nique correctly captures the deformation of the skin on the back of the hand

during finger extension (Fig. 4.8). We can generate more subtle deformation

by varying the skinning parameters (Fig. 4.6(c)). Finally, we validate our

technique by comparing the simulated tendons of the thumb to several real

thumb photographs (Fig. 4.9).
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(a) (b) (c)

Figure 4.8: Animation showing tendons deforming the skin during
extension of the digits. Figure reproduced from [57].

Figure 4.9: We compare the simulated tendons of the thumb to several
real thumb photographs. Figure reproduced from [57].

4.2 Case Study: The Human Shoulder

The human shoulder is one of the more complicated musculoskeletal struc-

tures to simulate accurately. The core goal of this case study is to look

into the anatomy of the shoulder, and the current state of biomechanical

shoulder models, in order to gain a better understanding of how a shoulder

model would ideally function. The chief purpose of this research is the de-

velopment of a new biomechanical shoulder model which may have benefits

in both the medical and animation industries.
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4.2.1 Anatomic Description

There are three bones that comprise the shoulder apparatus: the clavicle,

scapula, and humerus (Fig. 4.10). The medial end of the clavicle articu-

lates with the sternum, superior to the first rib of the thorax, forming the

sternoclavicular joint. The lateral end of the clavicle articulates with the

acromion of the scapula to form the acromioclavicular joint. The proxi-

mal head of the humerus articulates with the glenoid cavity of the scapula

forming the glenohumeral joint [66].

Figure 4.10: Anterior and posterior views of the shoulder bones.

The system of muscles that are involved with the shoulder can be de-

scribed in two major groups, based on function. The muscles of the pectoral

girdle stabilize the scapula in order to provide a steady point of origin for the

muscles that move the humerus. These muscles, along with the tendons that

form the rotator cuff, are responsible for the stabilization and movement of

the humerus [66].

Pectoral Girdle

While the main function of the muscles that move the pectoral girdle is

to stabilize the scapula for humeral movement, these muscles also increase
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the range of motion of the humerus by moving the scapula. There are

seven muscles that move the pectoral girdle, three of which originate on the

anterior thorax (Fig. 4.11), and four of which originate on the posterior

thorax (Fig. 4.12) [66].

Figure 4.11: (a) Anterior superficial view of the shoulder and (b)
anterior deep view of the pectoral girdle.

The subclavius is small and cylindrical, and connects the first rib to

the clavicle. Pectoralis minor is a flat triangular muscle which inserts on

the coracoid process of the scapula, and is integral in the movement of

the scapula. Serratus anterior is a large fan-shaped muscle connecting the

superior eight or nine ribs to the vertebral border and inferior angle of the

scapula [66].

The trapezius is the largest muscle involved in the pectoral girdle. It

is a large flat sheet of muscle spanning from the superior nuchal line of

the occipital bone, down over the spines of all the thoracic vertebrae, and
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Figure 4.12: (a) Posterior superficial view and (b) posterior deep view
of the shoulder and thorax.

laterally inserting on the clavicle, acromion and spine of the scapula. The

fibers of trapezius perform several different functions, based on their location

within the massive superficial muscle [66].

The levator scapulae is a long, narrow muscle originating at the cervical

vertebrae, which functions to elevate the scapula. Rhomboideus major and

rhomboideus minor are parallel bands which span inferiolaterally from the

thoracic vertebrae to the vertebral boarder of the scapula. These rhomboid

shaped muscles play a large roll in forcibly lowering raised upper limbs [66].

Rotator Cuff

There are nine muscles that are responsible for the movement of the humerus.

Two of these muscles originate on the axial skeleton and the remaining seven

muscles originate on the scapula. The humerus is held in place largely due

55



Chapter 4. Results

to the four muscles that make up the rotator cuff (Fig. 4.13). Their tendons

fuse together to form a circle around the shoulder joint, providing much of

the strength and stability of the shoulder [66].

Figure 4.13: Posterior deep view of the rotator cuff.

These four muscles are subscapularis, supraspinatus, infraspinatus, and

teres minor. Subscapularis is a large triangular muscle in the subscapular

fossa. Supraspinatus is rounded and lays in the supraspinous fossa. Likewise,

infraspinatus is located in the infraspinous fossa. Teres minor is a cylindrical

muscle and is commonly connected to the infraspinatus. Supraspinatus is

the primary muscle involved in shoulder dislocation [66].

The two axial muscles are pectoralis major and latisimus dorsi. Pec-

toralis major is a large fan shaped muscle covering the superior thorax. It

has two origins, each with different functions. The clavicular head is re-

sponsible for flexion and the sternocoastal head is responsible for extension.

Latissimus dorsi is a broad triangular muscle covering the inferior portion

of the back.
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The remaining scapular muscles that move the humerus are teres major,

coracobrachialis, and the deltoid. Teres major is a thick flat muscle originat-

ing at the inferior angle of the scapula and inserting on the intertubercular

sulcus of the humerus. Coracobrachialis is an elongated narrow muscle orig-

inating on the coracoid process of the scapula, traveling down the humerus

and inserting on the medial shaft. The deltoid is the large, thick muscle that

forms the rounder contour of the shoulder. As with the trapezius, the fibers

of the deltoid perform several different functions. However, in the deltoid,

these fibers can be identified by their differing points of origin [66].

4.2.2 Previous Shoulder Models

There has been a considerable amount of investigation into the inner work-

ings of the shoulder. Researchers across several different fields of study,

from biomechanical engineering, to orthopedic surgery, to computer science,

have attempted to accurately model the shoulder. The scale of these mod-

els is highly variable. Some researchers choose to model the entire upper

limb, while others may focus on just a single joint or muscle. While experi-

mentally obtained shoulder models attempt to generalize shoulder function

based on human subjects, some researchers create biomechanical shoulder

models which exist entirely as computer simulations. These biomechanical

models also vary in scope, though most go beyond the single joint or muscle.

It is often the case that the simulations are limited intentionally in order to

provide accurate approximations to the full system.

One of the most common simplifications among the biomechanical shoul-

der models is the inclusion of a scapulothoracic constraint. The purpose of
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a scapulothoracic constraint is to restrict the motion of the scapula so that

it glides along the thorax [35]. In the anatomic human, the muscles that

insert on the scapula, along with the acromioclavicular and glenohumeral

joints, determine the scapula’s range of motion. Maurel et al. [36] move the

scapula by defining a 5 degree-of-freedom gliding dot contact on an ellip-

soidal model of the thorax. Shao and Ng-Thow-Hing [49] model the thorax

as two ellipsoids, one centered on each half of the rib cage. They then define

three pairs of reference points on the scapula, mandating that at least one

reference pair be constrained to the ellipsoidal surface at all times. Charlton

and Johnson [13] constrain the scapula using a pair of prismatic joints at

the inferior and superior angles of the scapula.

Several models automatically determine the position and orientation

of the clavicle and scapula by including an explicit model of the shoul-

der rhythm. When the body and arm are held stationary, the positions of

the clavicle and scapula are under-constrained [21]. Some models choose to

make use of the regression model by de Groot and Brand [15], while others

implement their own versions of the shoulder rhythm. de Groot and Brand’s

model statistically predicts the orientation of the scapula and clavicle, based

on the orientation of the humerus. Holzbaur et al. [22] use this regression

model, along with experimentally measured moment arms, to define the

path of each muscle or muscle part.

Muscles with large attachments are commonly simplified by treating dif-

ferent sections as separate muscles. There are several approaches to seg-

menting large muscles, stemming from both robotic and physiological jus-

tifications [13]. Johnson et al. [24] have defined the most physiologically
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accurate fascicle divisions for all the muscles of the shoulder. The deltoid

is often split into three main sections based on point of origin, which is in

keeping with medical descriptions (Sec. 4.2.1). Pectoralis major, trapezius,

and latissimus dorsi are also commonly split muscles.

4.2.3 Creating a New Shoulder Model

We have developed a novel musculoskeletal model of the human shoulder

using our musculoskeletal modeling tools and our simulation software. Our

shoulder model includes all of the muscles involved in scapulo-humeral op-

eration, and functions with both forward and inverse dynamics. In forward

dynamics, muscles may be activated individually or by anatomic function.

Furthermore, we have eliminated the need for an explicit scapulothoracic

constraint, allowing the muscles to fully control the motion of the scapula.

The most significant difference between our model and any of the existing

shoulder models is the method of muscle simulation. Rather than using

straight line muscle forces (Sec. 2.1.1), our model uses strands (Sec. 2.2.3).

The complex routing constraints in the strand based muscle model allow

us to eliminate the need for an explicit scapulothoracic constraint. Rather

than creating an artificial constraint between bones, scapular placement is

automatically determined by muscle configuration.

Our shoulder model (Fig. 4.14) simulates the motion of 16 shoulder

muscles using 120 strands, 3 ligaments using 12 strands, and 3 ball joints.

The motion of these muscle parts determines the position and orientation

of the clavicle, scapula, and humerus. We use fixed constraints to define

origin and insertion points. In our shoulder model, surface constraints keep
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Figure 4.14: Posterior view of our shoulder model. Muscles are shown
in red, strands in blue, constraints in green, and bones in gray. The top
level scene hierarchy is displayed on the left.

the deep muscles above the thorax and below the scapula, and keep the

superficial muscles above the scapula and outside the humerus. We mainly

use struts on the superficial muscles, as we have found that most of the deep

muscles in the shoulder are flat sheets that hold volume reasonably well on

their own. The deltoid was created using our AutoStrands Tool (Sec. 3.4.1),

while all other muscle strands were manually placed.

A user of our shoulder simulation has several options for controlling the

muscle dynamics. Motion paths can be specified for any of the bones, in

which case we perform an optimization to determine the dynamic activation

levels for each of the muscle strands [57]. Forward dynamic simulations can
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be performed either with pre-programmed activation levels, or interactively

using a GUI. Muscles can be activated on an individual basis, or they can

be co-activated by anatomic function.

4.2.4 Simulation for Biomechanical Analysis

We are able to successfully simulate several anatomic functions of the shoul-

der using forward dynamics. The anatomic functions of the scapula that our

model supports include elevation, depression, abduction, adduction, upward

rotation, and downward rotation. For the humerus, our model supports flex-

ion, extension, abduction, adduction, medial rotation, and lateral rotation.

The strand paths were built based on our existing muscle meshes and the

detailed descriptions of Johnson et al. [23, 24]. The muscle parameters were

tuned using experimental cadaver data [23, 24, 71] and a Java applet to

determine damping forces.

Our simulator can be used for visualization as well as biomechanical

analysis. Fig. 4.15 demonstrates visualization of muscle activations and Fig.

4.16 shows the forces exerted at the insertion points of the trapezius fascicles

and their length change over time. This type of biomechanical analysis can

be useful to understand the roles of individual sections of muscles during

a given movement. The force plot tells us that the superior and middle

fascicles of the trapezius exert the most force during the movement shown

in Fig. 4.15, while the length plot tells us that during this simulation, all

trapezius fascicles underwent a comparable length change. The total time

to simulate the 330 milliseconds of motion in Fig. 4.15 was 66.2 seconds.
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Figure 4.15: Anterior and posterior views of our shoulder model dur-
ing 50% abduction and 80% upward rotation of the scapula, and 50%
flexion and 80% abduction of the humerus. Activation levels are shown
in red. Figure reproduced from [27].
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Figure 4.16: Forces and lengths in the trapezius during the simulation
shown in Fig. 4.15. Figure reproduced from [27].
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Conclusions

We developed an interactive toolkit for the modeling and animation of mus-

culoskeletal systems. Our tools make modeling these complex systems ac-

cessible to artists, biologists, biomechanists, and medical practitioners. We

automate the entire animation process and portions of the modeling process.

Most importantly, we enabled the seamless integration of biomechanically

realistic secondary animation into a traditional animation pipeline.

5.1 Discussion

Portions of this section are adapted from [57] and were written by Sueda and

Pai. It is reproduced here since it is essential for the remainder of this thesis.

We demonstrated the effectiveness of our approach to realistic secondary

animation by simulating the musculotendons of the human hand. Our hand

model is able to accurately reproduce the visual effect of tendon motion on

the back of the hand. Other than the hands, our method should work well

with areas of flesh where muscles and tendons are near the surface with
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little subcutaneous fat, such as the feet, neck, forearms, and hamstrings.

However, more work needs to be done before the skinning process can be

applied to areas of the body with large volumetric muscles, such as the

shoulder or the torso.

Regardless of skinning, our modeling tools effectively enable scientists

to create novel musculoskeletal models, such as our model of the human

shoulder, which is able to simulate a wide range of motion of the shoulder

using either forward or inverse dynamics. We have eliminated the need for a

scapulothoracic constraint, giving the muscles total responsibility for scapu-

lar motion. In addition to transmitting muscle forces in a continuous man-

ner, our simulation times on a single core are an order of magnitude faster

than solid mechanics approaches running on multiple cores. The addition

of multi-core processing into our simulation should make our computation

times considerably faster.

These two case studies demonstrated that our musculoskeletal modeling

and animation tools provide both artists and scientists with easy access

to the development of complex musculoskeletal systems. We have shown

that there is little reason, aside from the complexity of implementation, for

either community to continue using simple line of action muscle models and

that strand based approaches can become the standard for musculoskeletal

simulation.

5.2 Future Work

Clearly, there are still challenges to be met, both on the graphics side and

in terms of biomechanical construction and validation. We would like to
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provide tools which are appropriate for animating large volumetric muscles.

This will require further development of our volumetric muscle simulation

techniques. The current strut forces work well for flat sheet muscles, such

as the trapezius, but are not robust enough to support large volumetric

muscles, such as the deltoid. We will need to incorporate the effects of these

layered and bulging muscles. This will also require a new skinning algorithm

that evenly distributes the effects of muscle bulging across a character’s skin.

We would also like to extend our tools to incorporate joint dislocation

as well as muscle tearing. Our muscle simulation framework should allow

us to incorporate these principles. We will have to develop new tools for

simulation baking that can handle the occurrence of muscle tearing and we

will have to relax the rigging constraints to allow bone separation.

We are working with other researchers to develop methods of model

fitting from medical imaging. Ideally, these techniques will allow us to au-

tomate much of the modeling process, including strand paths, origin and

insertion points, and several of the muscle parameters. This will allow us to

build parameterized models using our tools, which can be fitted to patient

specific data. Such models would greatly increase the accuracy of our sim-

ulations, allowing our models to be used directly in clinical procedures. It

may even become possible to mimic muscle injuries and neural damage on

a patient to patient level.
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Appendix A

SMUSCLES User Guide

The primary function of this document is to provide a comprehensive user
guide for the SMUSCLES plug-in. The SMUSCLES plug-in is a set of
tools designed for modeling musculoskeletal systems. Its intention is to
make the modeling of these complex systems accessible to artists, biologists,
biomechanists, and other less-technical users. It was designed specifically to
be used in conjunction with the musculoskeletal simulation software being
developed by the Sensorimotor Systems Lab at the University of British
Columbia.

The SMUSLCES plug-in has been developed for Autodesk’s Maya [4] in
order to leverage the production quality animation tools already familiar to
many artists. The design principles used in the development of the SMUS-
CLES plug-in should easily lend themselves to further development using
any professional 3D modeling program.

In this document I will explain how to use the SMUSCLES plug-in for
Maya. This user guide will assume a basic knowledge of the Maya interface
and built-in tools. If at any time you do not understand a reference to a
Maya tool, I encourage you to learn about it in the Maya help files. Maya has
several very good documentation and help files, which can be found under
the Help menu in Maya. I find the following help files the most useful:
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• Maya Help – general information and tutorials on everything in Maya
• MEL Command Reference – explanation of MEL script commands
• Python Command Reference – explanation of Python script commands
• Node and Attribute Reference – explanation of built-in object types

and attributes

The most recent SMUSCLES release is supported by Maya 2008. If you have
a different version of Maya, be sure to use the appropriate plug-in release.

A.1 Loading and Reloading the Plug-in

You must follow the procedure below to install the plug-in when you first
begin using it or when new versions of the plug-in are released.

1. Download the version of the plug-in corresponding to your version of
Maya (i.e. Maya 8.5 or Maya 2008)

2. Extract smusclesMaya2008.zip to the Maya user path
(i.e. C:/Documents and Settings/User Name/My Documents/maya/)

3. Copy sslMuscles.py and paste it in the Maya Plug-in path
(i.e. C:/Program Files/Autodesk/Maya2008/bin/plug-ins/)

4. In Maya, select Window–>Settings/Preferences–>Plug-in Manager

5. Find sslMuscles.py in the list of plug-ins. If it is not there, try refresh-
ing

6. Select the “Load” and “Auto Load” options

When you exit Maya, your shelf will be saved. The sslMuscles tab will
exist until you unload the plug-in or delete it manually.

Sometimes when Maya crashes, it fails to save the proper system state.
This may cause problems with the plug-in functionality. If you experience
problems with the plug-in procedures, or if you have made changes to any
of the plug-in script files, then you should try reloading the plug-in using
the following steps:

1. Select Window–>Settings/Preferences–>Plug-in Manager

2. Find sslMuscles.py in the list of plug-ins

3. Uncheck the “Loaded” option
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4. Allow Maya to delete the sslMuscles shelf

5. Recheck the “Loaded” option

6. Make sure the “Auto Load” option is checked

A.2 sslMuscles Shelf Tab

The majority of the functionality of the plug-in can be accessed using the
buttons on the sslMuscles shelf tab (Fig. 3.2). If you do not have an
sslMuscles shelf tab, refer to Appendix A.1 in order to create one.

Many of the functions within the shelf have relaxed error checking. This
allows a script to run on a selected list of objects, automatically ignoring
any incompatible selections rather then issuing a formal error or warning.
If nothing appears to happen when you use one of the functions, it is most
likely that you have incompatible items selected. Check the Script Editor
for important feedback details.

A.3 Primitives

There are five types of primitives in the SMUSCLES plug-in: rigid bodies,
joints, strands, muscle groups, and constraints.

Rigid Bodies

To create an sslRigidBody, push the Rigid Body Button (picture of a single
bone). This will add sslRigidBody attributes to all of the selected objects.
These attributes can be edited from the channel editor. For a list of ssl-
RigidBody attributes, see Table 3.1.

It will also automatically generate a centerOfMass locator, which will be
placed at a best guess location. This center of mass can be moved manually
after creation.

While any object can become an sslRigidBody, I strongly encourage
following the conventions defined in Sec. 3.3 in order to ensure compatibility
with the simulation software.

Joints

To create an sslJoint, select two sslRigidBodies, followed by the object which
should become an sslJoint. Push the Joint Button (picture of two connected
bones). This will add sslJoint attributes to the last selected object. These
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attributes can be edited from the channel editor. For a list of sslJoint at-
tributes, see Table 3.1.

While any object can become an sslJoint, I strongly encourage following
the conventions defined in Sec. 3.3 in order to ensure compatibility with the
simulation software.

Strands

A strand is the basic muscle structure used in this plug-in. Build your
strands using any of Maya’s built in NURBS curve creation tools, or if you
know the strand paths, with the scripting commands. You can also fill in
a muscle mesh using the Auto Strands Tool (Appendix A.4). I recommend
using the EP Curve Tool and manually tweaking the control points if you
are creating paths by hand.

To convert your NURBS curves to sslStrands, select the curves and push
the Strand Button (picture of thin muscle tissue). Provide Passive and
Active FL curve XML files to the dialog prompts, or hit Cancel to use the
default values.

This will add sslStrand attributes to all of the selected NURBS curves
(and sslMuscleGroup attributes to all of the selected groups). These at-
tributes can be edited from the channel editor. For a list of sslStrand at-
tributes, see Table 3.1.

Muscle Groups

A muscle group is a muscle structure that consists of a collection of strands.
To create an sslMuscleGroup, push the Strand Button (picture of thin mus-
cle tissue). This will add sslMuscleGroup attributes to all of the selected
groups (and sslStrand attributes to all of the selected NURBS curves). These
attributes can be edited from the channel editor. For a list of sslMuscle-
Group attributes, see Table 3.1.

Constraints

A constraint is a locator. Constraints are used to mark locations along the
strand that should be constrained at simulation time. There are several
types of constraints, each with its own button (marked by colored circles
and letters). For an explanation of the purpose and functionality of each
constraint, see Sec. 3.3.
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Fixed Constraints: The F Button adds fixed constraints between all of the
selected sslStrands and the last selected object.

Surface Constraints: The Su Button adds surface constraints between all
of the selected sslStrands and the last selected NURBS surface.

Sliding Constraints: The Sl Button adds sliding constraints between all of
the selected sslStrands and the last selected sslRigidBody.

Strut Constraints: The St Button adds strut constraints between all of the
selected sslStrands.

A.4 AutoStrands

To use the AutoStrands Tool (Sec. 3.4.1), select one, or several, input
strands, along with an enclosing mesh and push the AutoStrands Button
(picture of thick muscle tissue). This will launch the Create AutoStrands
Window (Fig. 3.4).

There are several simulation parameters to tweak before starting an au-
tostrand simulation. The Stiffness controls each autostrand’s “desire” to
become a straight line. The Repulsion Force controls its “desire” to move
away from all other strands in the simulation.

Duplicates per Strand determines the number of autostrands that will
be created for each input strand, while Samples per Strand determines how
many points along the input strand will be sampled for the creation of each
autostrand. Rebuild Strands controls the number of control points (cps)
that each autostrand contains. An autostrand can either match the number
of cps from its input curve, or it can base its cps on the initial sampling.

Once all of the parameters have been set, press the Start AutoStrand
Thread Button. This will launch a new thread that the simulation can
run in (Sec. 3.2.4). The simulation will update the autostrands in the
Maya viewport at every timestep. It can be paused/continued using the
Play/Pause AutoStrands Thread Button. The Stiffness, Repulsion Force,
and Rebuild Strands parameters can all be modified on the fly while the
simulation is running. Once the autostrands have moved to a final position
that you are comfortable with, press the Kill AutoStrands Thread Button.
The autostrands are now essentially identical to regular strands and can be
manually manipulated to further refine their shape.
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A.5 Removing SSL Attributes

The Remove Attributes Tool is used to remove all SSL attributes from
objects that no longer need them, or that have outdated versions of SSL
attributes and need to be updated. Essentially, it takes any of the SMUS-
CLES primitives and converts them back into the corresponding original
Maya primitive.

To remove SSL attributes, select the desired objects and press the Re-
move Attributes Button (picture of a bone and muscle under a “no smoking”
symbol). Please note that removing SSL attributes commonly results in bro-
ken constraints. These broken constraints are automatically deleted by the
Remove Attributes Tool. Once you have removed SSL attributes, you may
have to have recreate some constraints.

A.6 Exporting a ModelerScene

In order to interface with the Java simulation software, you will need to
export your Maya scene as a ModelerScene XML file. The ModelerScene
XML Exporter currently supports the following objects:
• Polygons
• NURBS curves
• NURBS surfaces
• Locators
• Object Hierarchy (parents and groups)

The following steps explain how to export a ModelerScene XML file:

1. Open a Maya scene

2. Select the objects that you want to export

• NOTE: All visible objects within a selected object’s hierarchy will
be exported. Hide objects that you don’t want to export.
• NOTE: All polygons will be triangulated if they are not already

triangular.
• NOTE: You should delete history on the objects that you export

because extra polyShapes often cause export problems.

3. Click the JavaBean XML Button (picture of Java) in the sslMuscles
shelf tab

4. Use the file dialog pop-up to choose a directory and name for your file
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• NOTE: If you are exporting many objects, it may take some time
once you hit save. To monitor your progress, open the Script
Editor before Step 3.

A.7 Exporting sslMuscle Data

In addition to the ModelerScene XML file mentioned in Appendix A.6, you
will need to export the sslMuscle data to a separate XML file. The reasoning
behind this second file is explained in Sec. 3.5. Follow these steps in order
to export the sslMuscle data:

1. Open a Maya scene

2. Add the relevant sslMuscle data using the plug-in buttons

3. Select the objects that you want to export

• NOTE: All visible objects within a selected object’s hierarchy
with sslMuscle data will be exported. Hide objects that you don’t
want to export.
• NOTE: You should delete history on the objects that you export

as extra polyShapes often cause export problems.

4. Click your “Muscle XML” Button in the sslMuscles shelf tab

5. Use the file dialog pop-up to choose a directory and name for your file

6. Use the dialog pop-up to choose the ModelerScene XML file that this
new XML file corresponds to.

7. Use the next dialog pop-up to type the name of the Activation class.
If there is no Activation class, press Cancel.

• NOTE: Depending on how you call this file in Java, you may have
to hand edit the Scene filename and Activation class.

A.8 Exporting Control Data

If you want to track an animation during a simulation, you can first create
the animation in Maya and export it to an XML file with the plug-in by
following these steps:

1. Open a Maya scene
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2. Select the objects that you want to export keyframe data for

• NOTE: Position and orientation data will be exported for the
selected visible sslRigidBodies only.
• NOTE: This data will be exported at every frame between the

first and last keyframe found on the selected visible objects

3. Click your “Control XML” Button in the sslMuscles shelf tab

4. Use the file dialog pop-up to choose a directory and name for your file

A.9 Baking Simulations

Once you have run and saved a Java simulation that you like using the
simulation software, you can bake that simulation onto the strands in your
Maya scene (Sec. 3.4.2). To bake the simulation data as keyframes on your
Maya strand control points, push the Bake Simulation Button (picture of
looping film reel).

Use the windows file dialog pop-up to locate a Replay XML file (note
that this XML file must have been created in a Java simulation using the
ModelerScene class). Once you choose a file, the plug-in will add keyframes
to the cps of the visible strands with names matching those in the Replay
XML file. See Sec. 3.5 for an explanation of Replay XML files.

Be aware that baking simulations disables the undo function and that
Maya often crashes when trying to bake too much simulation data at once.
For best results, break up your simulation data into several smaller Replay
XML files and save your Maya scene after you bake each one.

A.10 Skinning Strands

Skinning strands is a complicated process. The current implementation is
only acceptable for skinning thin muscles and tendons close to the surface
of the skin.

The effects of the skinning process can be controlled from the Skin
Strands Window (Fig 3.3). The deformation will take place for every frame
starting with the Start Frame and ending before the End Frame. The Height
parameter controls the height of the offset deformation, Lateral Falloff con-
trols the falloff factor in the lateral direction, and Normal Falloff controls
the falloff factor in the normal direction. For a more technical explanation
of the skinning process see Sec. 3.4.3.

81



Appendix A. SMUSCLES User Guide

If you wish to attach skin to your strands, the following steps will guide
you through the skinning process:

1. Rig and skin a base mesh to your animated rigid bodies

2. Duplicate this mesh

3. Rename both meshes. The names must be the same, but the base
mesh name must end in “Base”

4. Add a new color set to the base mesh using “Create Empty Color Set”
from the Polygons–>Color Menu

5. Paint vertex influence weights using Maya’s Paint Vertex Color Tool

• NOTE: Only the R channel of the color set affects deformation

6. Select the sslStrands that will drive the deformation, followed by the
new mesh that will be deformed

• NOTE: The sslStrands must already have the animation motion
keyframed (Appendix A.9) before this step

7. Click your Skin Strands Button (picture of thick muscle tissue sur-
rounded by a blue mesh) in the sslMuscles shelf tab

8. Set the appropriate parameters in the Skin Strands Window as ex-
plained above

9. Click the “Start Deformation” Button

• NOTE: It may take some time once you begin the deformation
process. To monitor your progress, open the Script Editor before
Step 9

The deformed skin mesh will need to have its normals recalculated for
every frame. To do this, use “Set To Face” and “Average Normals” from
the Polygons–>Normals Menu at the current viewing frame.
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