
A Hybrid P2P Pre-Release
Distribution Framework for Flash

Crowd Avoidance in P2P Video on
Demand Streaming

by

Stanley Kai Him Chiu

B.Sc., The University of British Columbia, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

(Vancouver)

July, 2008

© Stanley Kai Him Chiu 2008

p

Abstract

In recent years, the high maintenance cost of centralized video on demand sys

tems has led to the development of peer to peer video on demand systems.

These peer to peer systems help to remove the cost and bandwidth limitations

of a centralized group of servers. In a peer to peer scenario, the publisher and a

small set of peers who were published to must handle all video requests. If many

peers request a video after it is released, the small set of peers with the video

cached may not have enough bandwidth to satisfy all requests. This situation

is known as a flash crowd. We propose a hybrid peer to peer framework that

allows publishers to publish videos before release time. For marketing purposes,

it is common for videos that are ready for distribution to be kept from being

released until a preset release time. By distributing a video before the release

time, more peers will have the video at release time, thus allowing more requests

to be handled. A hybrid peer to peer encryption management system is used

to prevent users from viewing videos before release time. In order to determine

who to distribute a video to before users are allowed to view the video, we design

a hybrid peer to peer subscription system. In this system, users may specify

interest in sets of videos and are notified of new videos matching the interest

so that retrieval may start. Finally, we modify an existing peer to peer video

on demand framework to better handle concurrent streaming and downloading.

Our experiments show that this framework can greatly increase a peer to peer

streaming system’s ability to handle flash crowd situations.

11

Table of Contents

Abstract jj

Table of Contents iii

List of Tables vi

List of Figures vii

- Acknowledgements ix

1 Introduction 1

1.1 Motivation 1

1.2 Thesis Contributions 3

1.3 Thesis Organization 4

2 Background Information and Related Works 5

2.1 Background Information 5

2.1.1 Traditional Television 5

2.1.2 Internet Video Distribution 6

2.1.3 Internet Video Streaming 6

2.1.4 Peer to Peer Systems 7

2.2 Related Works 7

2.2.1 Proxy-based Systems
. 7

111

Table of Contents

2.2.2 Peer to Peer Multicast 8

2.2.3 Peer to Peer Video on Demand 8

2.2.4 Commercial Video Scheduling Systems 9

3 System Design 10

3.1 Introduction 10

3.2 System Operation 12

3.3 Hybrid Peer to Peer Storage System 12

3.4 Video Subscription 14

3.4.1 Subscription Granularity 14

3.4.2 Subscription Information Storage 15

3.4.3 User Notification System 17

3.5 Encryption Management System 21

3.5.1 Encryption 21

3.5.2 Encryption Information Storage 21

3.5.3 Encryption Information Retrieval 22

3.6 Video Retrieval . 24

3.6.1 Video Downloading 24

3.6.2 Stream Prioritization 25

4 System Implementation 30

4.1 Architecture 30

4.1.1 Framework 30

4.1.2 Component Details 30

4.2 Implementation Details 33

4.2.1 Related Software 33

4.2.2 System Flow 33

4.2.3 Graphic User Interface 36

iv

Table of Contents

5 Evaluation 38

5.1 Theoretical 38

5.2 Simulation 40

5.2.1 Simulation Setup 40

5.2.2 Simulation Methodology 42

5.2.3 Simulation Results 43

6 Conclusion and Future Work 55

6.1 Conclusions 55

6.2 Future Work 56

Bibliography 59

V

List of Tables

3.1 Video Information 16

3.2 Storage Schema for Schedule Information 17

3.3 Storage Schema for Video Information of Channels and Series 19

3.4 Storage Schema for Encryption Information 22

4.1 Framework Layers 31

vi

List of Figures

4.1 Sequence diagram of video publication 34

4.2 Sequence diagram of schedule maintanence 35

4.3 Sequence diagram of schedule and download display 36

4.4 GUI for publication of a video 36

4.5 GUI for displaying schedules and downloads 37

5.1 Flash crowd request pattern 42

5.2 Periodic flash crowd request pattern 42

5.3 Constant crowd rejection ratio 44

5.4 Flash crowd rejection ratio 45

5.5 Periodic flash crowd rejection ratio 46

5.6 Stream prioritization effects with RWT 0 hours 47

5.7 Stream prioritization effects with RWT = 2 hours 47

5.8 Stream prioritization effects with RWT = 4 hours 48

5.9 Stream prioritization effects with RWT = 6 hours 48

5.10 Subscription rate effects with RWT 0 hours 49

5.11 Subscription rate effects with RWT = 2 hours 49

5.12 Subscription rate effects with RWT = 4 hours 50

5.13 Subscription rate effects with RWT 6 hours 50

5.14 Completion ratio for RWT = 0 hours 51

5.15 Completion ratio for RWT = 2 hours 51

vii

List of Figures

5.16 Completion ratio for RWT 4 hours 52

5.17 Completion ratio for RWT = 6 hours 52

5.18 Rejection ratio for 1 movie 53

5.19 Rejection ratio for 50 movies 53

5.20 Rejection ratio for 100 movies 54

viii

Acknowledgements

I would like to thank my supervisor, Dr. Son T. Vuong, for his support and

encouragement. I would also like to express my gratitude for my second reader,

Dr. Charles Krasic, for his support and suggestions.

I would also like to thank all the members of the NIC lab, who made the lab

a great environment to work in. Their comments and suggestions are greatly

appreciated.

Finally, I express thanks to my family and my relatives who have supported

me throughout the years.

ix

Chapter 1

Introduction

1.1 Motivation

Video on demand systems have gained popularity in recent years. These systems

allow users to watch any part of any video available on the system whenever they

want. In the past, these systems were implemented by having a central server

or group of servers provide videos for all other users of the system. However,

this approach is limited by the high cost and bandwidth required to maintain

the central servers.

The emergence of the peer to peer computing model promises to solve this

problem by removing the need for a central server. This model has proven

successful in solving file sharing problems [3, 5]. Many researchers have at

tempted to create peer to peer systems suitable for video on demand streaming

[10, 20, 28]. In peer to peer systems, each peer acts as both a server and a

client, allowing for the sharing of resources amongst peers without a centralized

server.

Without an expensive server with large amounts of bandwidth, the quality

and smoothness of the video playback is often limited by the limited upstream

bandwidth available to peers on the internet. These issues are especially am

parent during flash crowd situations, where a great number of users attempt to

watch the same video or small set of videos in a short amount of time. This

often occurs when a popular video is released. In peer to peer approaches, only

1

Chapter 1. Introduction

the publisher and the few peers published to have the video at release time.

Since these few peers have limited bandwidth, it is unlikely and often impos

sible for these few peers to smoothly stream the video information to all peers

who requested the video.

Commercial peer to peer video streaming services, such as Joost 41 and

BabelGum [1], alleviate this problem by maintaining a set of servers to help

distribute the video. However, like with a central server solution, this method

may be costly to maintain.

In recent years, centralized schedule systems have been introduced to a few

commercial systems, including Veoh [71 and BBC iPlayer (2}. These systems dis

play schedules of videos for users and allow them to subscribe to them. Stream

ing quality may be improved in situations where only small numbers of users

are subscribed to or watch the video after release. However, in the case of pop

ular videos, large number of subscribed viewers may automatically attempt to

download the video after release, increasing the demand on the senders. This

may cause video startup delay and video quality to become worse.

In this thesis, we attempt to alleviate the problem of flash crowds without

requiring the maintenance of a set of costly servers for video distribution. Pop

ular videos, such as television series and movies, often have a preset release for

marketing and advertising purposes, even if the video data itself is ready to be

released. For example, a season of a television series that has been edited and

is ready to be viewed will often be released slowly over the duration of a season.

Movies that are ready for digital distribution are also delayed normally in order

to synchronize with the distribution of physical media such as DVDs, which

take time to produce and transport.

We propose allowing the distribution of videos before release time to allevi

ate flash crowd problems. To support this, the system must decide: (1) how to

2

Chapter 1. Introduction

prevent users from watching videos before release time, (2) who to distribute

early releases of videos to, and (3) how to distribute video. We design a hybrid

peer to peer encryption management system, hybrid peer to peer subscription

system, and modify an existing peer to peer video on demand system, Bitvam

pire [20], to solve these problems. By using a hybrid peer to peer approach, the

load on the central server can be kept to a very low level while supporting a

large number of users in the system.

1.2 Thesis Contributions

This thesis attempts to solve bandwidth and flash crowd problems by allowing

pre-release distribution of videos using information provided by the user about

their video interests. This is achieved with the following contributions:

• Design a suitable hybrid peer to peer video subscription and notification

system that allows users to: (1) view schedules, (2) subscribe to sets of

videos, and (3) receive notification when a subscribed video is released.

• Design a hybrid peer to peer distributed encryption management system

that allows publishers to publish encrypted videos with a set date to allow

viewing. Decryption keys are automatically published onto the distributed

system upon release time, allowing streaming peers to retrieve it and de

crypt the video.

• Design a retrieval system that prioritizes requests from streaming peers

over downloading peers to allow smoother streaming of videos and more

efficient use of aggregate bandwidth for a video in the network.

• Design a system architecture for implementing the system and describe

implementation details. We also implement a simple GUI prototype to

demonstrate publisher and user interactions with the system.

3

Chapter 1. Introduction

• Evaluate the proposed systems and algorithms both theoretically and

through simulations.

1.3 Thesis Organization

This thesis is divided into six chapters. Chapter 2 describes the background

information for peer to peer video streaming technologies and details related

works in the field. Chapter 3 presents the design for the proposed framework.

In Chapter 4, we translate the design into an architecture and describe im

plementation details for implementing the architecture. We also implement a

simple prototype with a graphical user interface (GUI) to show how a user in

teracts with the proposed system. Chapter 5 evaluates the framework both

theoretically and through simulations. Lastly, we conclude the thesis and dis

cuss possible research directions for further improvement of the framework in

Chapter 6.

4

Chapter 2

Background Information

and Related Works

This chapter provides some background information concerning video streaming

and peer to peer technologies.

2.1 Background Information

2.1.1 Traditional Television

Video streaming was originally made popular by television. Television video

streaming allows for a centralized authority to distribute multiple channels of

video to users. Users may select a channel and view what the centralized channel

administrators have chosen to be displayed at the time. This streaming of

video information is achieved by multicasting the video data over certain preset

frequencies either over the air or through a physical cable.

These systems offered the users little flexibility. The only choice the user

may make is what channel he/she wants to watch. Over time, personal video

recorders (PVRs) emerged. These new systems offer the user greater flexibility.

While the channel administrators get to control at what time an episode is avail

able, users can now see a schedule beforehand and mark videos for recording.

By recording a video, a user is able to watch it at any time after it has been

5

Chapter 2. Background Information and Related Works

released. Pausing, fast forwarding, and jumping to specific parts of videos is

also possible now since the entire video is stored.

2.1.2 Internet Video Distribution

Because traditional television multicasting methods required specific frequen

cies in the airwaves or specialized cables to be reserved for transmitting video

information, the number of video streaming companies in an area is often lim

ited. These same limitations also make it hard for companies to operate world

wide. With the emergence of the internet, a new distribution method capable of

transferring videos became available. The internet is a global network in which

any connected computer can communicate with any other connected computer.

With this new communications method, information such as videos can now be

transferred to anyone in the world as simple files.

2.1.3 Internet Video Streaming

Centralized video streaming services [6, 8J gained popularity and demonstrated

the feasibility of distributing video over the internet. A central server or a set of

centralized servers stored the videos, allowing users to access and stream them

directly. For the consumers, these systems offer great flexibility. Unlike tradi

tional television streaming, it is possible to watch videos that have been released

in the past without having recorded it. Watching any video ever released onto

the central server and skipping to any part of the video are often allowed on

such systems. Services offering these capabilities are commonly known as video

on demand services.

6

Chapter 2. Background Information and Related Works

2.1.4 Peer to Peer Streaming Systems

The central server approaches required large amounts of bandwidth, storage,

and computing power. These requirements meant that it is often expensive

to maintain a popular video on demand service. As hardware technologies

improved, the bandwidth available to consumers also increased. This allowed

another video streaming technology, peer to peer video streaming, to emerge.

By allowing the viewers, also known as peers in peer to peer systems, to use

their upstream bandwidth to share videos with each other, the central server

can be eliminated. However, without the costly central servers, these systems

are susceptible to problems such as flash crowds, in which many peers want to

watch a video in a short amount of time. This is because bandwidth capacity is

often asymmetric, with each peer having more download bandwidth than upload

bandwidth. In this situation, peers can easily consume more bandwidth than

they contribute.

2.2 Related Works

This section describes pervious works attempting to solve video streaming dis

tribution problems.

2.2.1 Proxy-based Systems

Early video on demand systems attempted to alleviate server demand by using

proxies [9, 11, 22, 25]. Two approaches for implementing these systems are (1)

prefix-based caching [22, 25] and (2) segment-based caching [9, 11]. Proxies in

prefix-based caching cache the beginning parts of popular videos. When viewers

request these videos, the proxies will send the cached frames while requests are

concurrently sent to request the central server to retrieve remaining parts of

7

Chapter 2. Background Information and Related Works

the video. These proxies help to decrease start up latency for viewing videos

and also may decrease the load on the central server. Segment-based caching

systems split a video into parts called segments. These segments are distributed

to various proxies, which can help serve viewers, decrease the load on the central

server, and decrease startup latency.

2.2.2 Peer to Peer Multicast

Peer to peer video multicasting is another category of video streaming research

[10, 12—14, 27]. These systems are similar to a peer to peer version of traditional

television, allowing senders to stream specific video streams to large numbers of

viewers. One such system, Spreadlt 114], operates by creating and maintaining

a single tree. Video is streamed by having nodes in the tree relay video streams

to its children nodes. However, this approach does not handle node failures

very well, especially if the failure is at the source. Narada [12, 13], NICE

[10], and ZIGZAG [27] focus on multiple sender and multiple receiver streaming

applications. In these systems, trees are formed when a sender wants to stream

video to multiple receivers.

2.2.3 Peer to Peer Video on Demand

Peer to peer video on demand systems are yet another category of research

[20, 28]. In these systems, viewers have greater flexibility. Viewers are gen

erally allowed to start watching any part of any video existing on the system.

Mohamed et al [28] proposes a system in which a set of relatively stable peers,

named seed peers or super peers, store all videos initially. As peers stream videos

from seed peers, they cache the video. Caching the video allows the peers to

help the super peers in further distributing videos. However, these systems are

vulnerable to flash crowds. In this situation, only the seed peers have the video,

8

Chapter 2. Background Information and Related Works

making it difficult to stream to all peers at a rate that allows smooth playback

of the video.

BitVampire [201 improves peer to peer video on demand streaming by allow

ing viewers to aggregate bandwidth from multiple senders and splitting videos

into smaller parts called segments.

PALS [23] uses layered coding for peer to peer streaming. When congestion

occurs, PALS may still be able to display a lower quality version of the video

utilizing the bandwidth still available from senders.

2.2.4 Commercial Video Scheduling Systems

In recent years, commercial peer to peer video on demand systems [2, 4, 7] have

appeared. Very recently, scheduling systems have been introduced to Veoh [7]

and BBC iPlayer [2). These systems allow retrieval of schedules and allow users

to subscribe to video series or centralized video lists. Clients periodically poil

the server, and thus are able to automatically retrieve videos upon release.

9

Chapter 3

System Design

This chapter presents the design of the video on demand system. By allowing

the publication and distribution of videos before release time, we can increase

the video quality and increase the smoothness of the video playback.

3.1 Introduction

As described in Chapter 1, peer to peer video streaming technologies are vul

nerable to flash crowds. Commercial products generally attempt to solve this

problem by setting up large amounts of servers with high bandwidth, but main

tenance of the servers can be costly. We propose another solution. By allowing

publishers to publish and distribute videos before release time, we increase the

duration of time the video can propagate through the peer to peer network

before any peer watches the video. As it propagates through the network to

subscribers, it is cached by these subscribed peers, thus increasing the avail

ability of the video. Having cached the video or parts of the video, this set of

subscribers will need to retrieve less data or no data at all when viewing of the

video occurs after the video release time.

In order for this framework to improve video streaming performance, videos

must be published before release time. Fortunately, this seems to be the case

for many types of videos, such as television series and movies. For television

series, there is normally a set time for each episode to be displayed during a

10

Chapter 3. System Design

season, even if the series is ready beforehand. There also often needs to be

at least a few hours of time between having the video ready and the airing of

the video on television, due to physical preparation and transportation delays.

Since publishers normally synchronize the release time for various distribution

methods, this means that there is often time before the release time in which

the movie is ready and may be distributed in our framework. For movies, digital

release dates are also synchronized with the distribution of physical mediums

such as DVDs. The creation and transportation of physical media often takes

time, which may be used for pre-release distribution of the media in our proposed

framework.

Our design consists of three major parts, which are (1) the subscription sys

tem, (2) the encryption management system, and (3) the peer to peer streaming

system. The subscription system allows peers to specify the videos they are in

terested in and automatically retrieve these videos. By allowing subscribed

peers to automatically retrieve videos, published videos will automatically be

propagated through the peer to peer network even before release time, increas

ing availability. To prevent peers from watching distributed videos before the

release time is reached, the encryption management system does not distribute

decryption keys for encrypted videos before release time. The actual distri

bution of peer to peer videos is based on Bitvampire [20]. However, by al

lowing peers to automatically download videos, situations where downloading

peers and streaming peers compete for bandwidth might occur. We modify the

algorithms described in Bitvampire to handle these situations by prioritizing

streaming peers.

11

Chapter 3. System Design

3.2 System Operation

When a peer publishes a video, information about the video and decryption

information is sent to a light weight central server. The publishing peer may

then start distributing an encrypted version of the video data onto the peer

to peer video on demand system. After receiving the publication information,

the central server first stores the video information locally. The central server

now updates the video schedule to include the published video and stores this

information onto the hybrid peer to peer storage system described in Section

3.3. When the release time for the video is reached, the central server publishes

the decryption information onto the hybrid peer to peer storage system.

Schedule information is accessible by all peers in the network through the

hybrid peer to peer storage system. A peer may subscribe to a set of videos or

watch any released video. When a peer watches a video, a modified version of

the Bitvampire [20) streaming algorithm is used to retrieve the video. Before

displaying the video, which is only allowed after release time, the decryption

key is retrieved from the hybrid peer to peer system and used to decrypt the

video.

By periodically polling the hybrid peer to peer storage system, peers have

access to up to date schedules. When a new video in the schedule matches

a subscription, the peer will automatically retrieve the video using a modified

version of the Bitvampire streaming algorithm described in Section 3.6.

3.3 Hybrid Peer to Peer Storage System

We first describe the storage system used in this thesis. Hybrid peer to peer

frameworks [21, 28, 29] use a mix of different centralized or peer to peer architec

tures to improve performance. B. T. Loo et al. [21] investigate the performance

12

Chapter 3. System Design

of various hybrid peer to peer infrastructures. These hybrid peer to peer ar

chitectures often increase performance by choosing between various algorithms

such as searching through flooding or searching through structured peer to peer

searches dynamically depending on query. By supporting multiple infrastruc

tures, the best features of different algorithms may be combined.

We propose a simple hybrid peer to peer storage system which is easy to im

plement and is suitable for our system. Information stored in our system, such

as decryption information, should never be lost. In our system, we use a central

server to create schedules and control publishing. This allows the administra

tors of the central server to have local access to information about all videos,

and allows them to control the publication of videos. The central server also

manages decryption keys before publication to ensure normal untrusted peers

do not get access to this key before release. Since a central server already exists,

it is logical to use the central server for retrieval of this information. However,

we do not want to cause great processor and bandwidth load on the central

server. Therefore, we combine a peer to peer infrastructure with the central

server for distribution of information, using the central server only as a backup

of information. When information is lost in the peer to peer infrastructure, a

request is sent to the central server. The central server not only responds to

this request, but also republishes this information onto the peer to peer infras

tructure. By using this hybrid architecture, we hope to achieve greater stability

by restoring the values on the distributed system when a value is lost, and by

allowing viewing to work using the distributed system even when the central

server is down. We also hope to decrease both the bandwidth and processor

requirements of the central server by making peer streaming and scheduling

requests use the peer to peer system unless problems occur.

Distributed hash tables (DHTs) [24, 261 are well suited to become the peer

13

Chapter 3. System Design

to peer infrastructure for our system. DHTs allow the storage of < key, value>

pairs and allows lookup of a value by supplying a key. DHTs have the advantage

of having fast lookups, being scalable, and being fault tolerant. One main

disadvantage of DHTs is that queries have to be exact key lookups. Complex

queries such as wildcards are hard to support over DHTs. Fortunately, all

queries in this thesis can be designed to be lookups of exact keys without any

lost of features.

3.4 Video Subscription

A video subscription system allows users to specify interest in sets of videos,

which is referred to as subscription. It also allows the client program to au

tomatically detect when a video matching a subscription is published. This

allows videos to be downloaded before viewing of the video occurs. It alleviates

the flash crowd problem by propagating the video throughout the peer to peer

network as subscribers cache downloaded videos, and by allowing subscribers to

have time to retrieve the video data before streaming.

3.4.1 Subscription Granularity

In order to allow simple and intuitive specification of sets of videos, a method

of specifying subscriptions needs to exist. Personal video recorder systems have

been popular in recent years. Such systems normally allow users to see the

schedule before the release date. Users are then able to either select a specific

video to record, or select a recurring time slot to record. Advanced PVR systems

can also allow the automatic recording of a television series.

Based on this popular system, this thesis proposes to allow 3 types of sub

scriptions: specific video, series, and channel. Subscribing to a specific video

allows the video to be retrieved before viewing. This method of subscription is

14

Chapter 3. System Design

especially helpful for viewing of long high quality videos, such as movies. The

second type of subscription, series subscription, allows subscription to the set

of videos belonging to a specific series. This is useful for television series with

multiple episodes. By using this subscription type, the user does not have to

wait for an episode to be announced before subscribing. Instead, the user only

needs to select a series to be recorded and new episodes will be automatically

queued for retrieval. The third type of subscription, channels, allows the sub

scription to sets of videos belonging to a specific channel. A channel contains

sets of videos with features users might be interested in. For example, short

humorous videos or movies produced by a specific producer can be grouped into

one channel, allowing users to simply subscribe to that to automatically retrieve

those videos.

3.4.2 Subscription Information Storage

In order to support the subscription system described above, video information

must first be given by the publisher to the central server. When a publisher

publishes a video, the publisher must specific a time for when the video will be

released. This allows schedules to be created and updated. The publisher must

also specify the channel, series, episode number, and video name of the video. If

the channel, series, or episode number are not specified, it is automatically set

to a special keyword notapplicable. The storage of channel and series numbers

allows users who have subscribed to them to be notified properly, while the

specification of episode number allows the retrieval of only one copy of the video

should multiple publishers publish different encodings of the same episode on

different channels. The name and episode numbers are also information the

user is likely to find useful when searching for a video. After receiving the

information, the central server assigns the video a unique video identifier (VID)

15

Chapter 3. System Design

Name Description
Video Identifier Unique identifier for the video.
Name The name of the video.
Release time The time after which users may watch the video.
Series name The series this video belongs to.
Episode name The episode this video belongs to.
Channel name__- The channel this video belongs to.

Table 3.1: Video Information

in order to distinguish between different videos with the same name. Table 3.1

shows the schema that the central server stores to allow this system to operate.

With this information, the central server can maintain a schedule containing

the information about videos and when they will be released. This is basically

a list of the video information for a set of videos, which will be referred to as

the schedule in the rest of this thesis.

We can now use the hybrid peer to peer storage system to store the schedule.

By putting this information onto the hybrid system, peers may periodically poii

to find new schedules. In order to store the schedule on our hybrid peer to peer

storage system, we must map the information to a < key, value > pair. Since

there is currently only one large schedule containing all videos, any universally

known key word, such as “schedule” may be used as the key. The value for this

key will be the schedule for all videos in the system.

However, each key is often managed by only one node or a small set of nodes

in DHT algorithms [24, 26]. With one node managing the schedule information

for all videos and handling all user requests for the schedule, the process and

bandwidth load on this peer will be very high. Reliability issues might also

become a problem, since peers on a DHT are often unreliable. Even though the

hybrid peer to peer approach allows the central server to be used as a backup, the

central server will spend great amounts of bandwidth sending the full schedule

to a new peer every time a node handling the schedule leaves the network.

16

Chapter 3. System Design

Key Value Description
“ Schedule” + s schedule8 DHT pair allowing storage of a

schedule containing information
for videos between s and s + d.

Table 3.2: Storage Schema for Schedule Information

Therefore, we optimize the design by splitting the schedule with information

about all videos into schedules with information about all videos in a certain

time range. The time range, r, controls the size of the schedules. If r is set to a

very high value, certain peers on the DHT may have to handle great amounts

of requests. If r is set to a very low value, in order to get the schedule of videos

in a certain time period, such as a day, many peers might need to be contacted

since each peer is only responsible for a very short time range.

To map this to a < key, value >, we can simply concatenate “schedule”

with the start time, s, for the time range, r, of the schedule. We will refer to a

schedule storing information for videos between s and s + d as schedule8. The

value of r and one value of s, such as 0, must be globally known so users may

map any time to a the correct schedule. For example, if it is known that 0 is a

valid s and we want find the schedule containing the time 100005 to a schedule,

we may simply search the DHT using the key “schedule” concatenated with the

integer value of floor(100005/r) * r to find the appropriate schedule. Table 3.2

shows the <key, value> pair stored onto the DHT.

3.4.3 User Notification System

Automatic retrieval of videos matching subscriptions by users allows videos to

propagate through the network. One simple approach is to have users poll the

hybrid peer to peer storage system periodically for updates to all schedules.

Periodically matching updated videos in the schedules to a locally stored list of

17

Chapter 3. System Design

subscriptions allows a list of videos matching subscriptions to be stored. The

videos on this list may then be automatically retrieved.

Unfortunately, this simple approach is infeasible in large networks since peers

must retrieve all schedules periodically, which will greatly increase the overhead

introduced by the subscription system. To solve this, we propose that users

only poll and retrieve schedules for a range of time, polirarige, before and after

the current time. This is suitable for our system since users will often only

need schedules of recently released and upcoming videos for normal operation

of the framework. Only those users who specifically want to see older videos

will have use for very old schedules. This time range is the period where videos

just released or soon to be released are located, and will be the time period

that affects flash crowds most. A high value for polirarige allows the automatic

retrieval of videos with release times further in the future, while a low value for

pollrange decreases the amount of overhead introduced by the system.

This optimization greatly decreases the overhead and feasibility of the sys

tem, but introduces a new problem. If a user has not run the program in

a time period greater than polirarige, schedules for the time period before

currenttime — polirange will not be retrieved. Without knowledge of the videos

released in that period, videos that match the user subscriptions might not be

found. As previously mentioned, retrieving schedules for every time period

since the start of the system to retrieve information for all videos requires large

amounts of bandwidth and processor overhead and is likely infeasible.

Recall that this thesis supports three granularities for subscribing to videos,

which are specific video subscriptions, series subscriptions, and channel sub-.

scriptions. Specific video selections are unique in that a user must have found

it on a schedule, which means the video information is already known from the

schedule. Therefore, users may not be notified of subscribed videos only for

18

Chapter 3. System Design

Key Value Description
“ channel” + List < videos> DHT pair allowing storage and
channelname retrieval of a list of videos in

channel channelname.
“ series” + List < videos> DHT pair allowing storage and
seriesname retrieval of a list of videos in se

ries serie.sname.

Table 3.3: Storage Schema for Video Information of Channels and Series

channel and series subscriptions. With the hybrid peer to peer system already

available, we propose simply putting lists of video information for channels and

series directly onto the storage system. We map these lists of videos to the

storage system by generating unique keys, which are “channel” + channelname

for channels, are “series” + seriesname for series. Table 3.3 shows the new

information stored by the storage system.

With this information available, users may simply retrieve updates of video

information for channels and series they have subscribed to when they start the

program. There is no need to periodically poll for updates to these lists, since

upcoming and current schedules are periodically retrieved.

Program 3.1 illustrates the pseudocode for ‘this algorithm. The program first

retrieves a list of videos for series the user has subscribed to. The list of videos

matching series subscriptions is then added to the subscribedVideos list. This

is repeated for channels. Periodically, schedules for the time period between

currentTime — pollRange and currentTime + poliRange are updated. The

videos in these schedules are then matched to the subscriptions, and matching

videos are added to the subscribedVideo list.

19

Chapter 3. System Design

Program 3.1 Algorithm for retrieving schedules and finding subscribed videos.

// @param poliRange The number of time units before and after
// the current time to poll for
// @param poliRate The number of time units between polls for
// updated schedules
// param seriesSubscriptions List of series subscriptions
// param channelSubscriptions List of channel subscriptions
// param videoSubscriptions List of video subscriptions
// @param subscribed Videos List of videos matching
// subscriptions
public void receivedBlockEncryptionHandler (long poliRange long

pollRate , List seriesSubscriptions List channelSubscriptions
List videoSubscriptions List subscribedVideos) {

List seriesVideoList = getSeriesVideoList (seriesSubscriptians
updateSubscribedSeriesVideos (subscribedVideos , seriesVideoList

seriesSubs.criptions)

List channelVideoList = getChannelVideoList(channelSubscriptions)

updateSubscribedChannelVideos(subscribedVideos channelVideoList
channelSubscriptions)

while (!quit) {
long startTime = currentTime — poliRange;
long endTime = currentTime + pvllRange;
List schedules = getSchedules (startTime endTime)

List matchedVideos = findSubscribedVideos (schedules
seriesSubscriptions , channelSubscriptions
videoSubscriptions);

subscribedVideos .add(matchedVideos);
Thread, wait (pollRate)

20

Chapter 3. System Design

3.5 Encryption Management System

Without encrypting videos, early distribution of videos allows users to view

videos before release time. This is obviously undesirable behaviour and is likely

unacceptable to publishers. In order to prevent viewing of videos before release

time, we introduce a simple encryption management system.

3.5.1 Encryption

When a video is published, we encrypt the video before distributing it to prevent

viewing of the video. Encryption allows the transformation of the video data into

normally unusable data. However, with the correct decryption key, a decryption

algorithm can be used to transform this unusable data back into the original

video data. Our design allows the use of any encryption algorithm that uses

only a decryption key for decryption.

In Bitvampire [20], videos are split into smaller parts, segments, before pub

lication occurs. These segments are further split into smaller pieces, blocks. By

choosing a random key and an encryption method, the publisher may encrypt

these small blocks before distribution. Users who retrieve these encrypted blocks

will not be able to watch it. Since these blocks are very small, it generally does

not affect the startup delay of the video stream.

3.5.2 Encryption Information Storage

Normal operation of the system requires that users be able to watch the video

after release time. In order to support this, we propose that the publisher

sends the decryption key and the encryption method name to the central server

during publication. The central server does not distribute this information to

anyone before release time, thus ensuring that viewing of the video does not

occur. When the release time is reached, the decryption key may be put onto

21

Chapter 3. System Design

Key Value Description
“ key” + VID decryption key DHT pair allowing storage and

retrieval of the decryption key
for a video with unique identifier
VID.

“ method” + VID encryption method DHT pair allowing storage
name and retrieval of the encryption

method name for a video with
unique identifier VID.

Table 3.4: Storage Schema for Encryption Information

the hybrid peer to peer storage system for users to retrieve. Table 3.4 shows

how this information may be mapped into < key, value > pairs using the unique

video identifier VID.

3.5.3 Encryption Information Retrieval

When a user chooses to watch a video after release time, the user first retrieves

the decryption key and encryption from the storage system. As each block

arrives through the underlying peer to peer streaming application, it can simply

be decrypted before being displayed by the peer to peer streaming application.

Using this approach, peers will decrypt the video every time they view the

video. If the encryption method is very demanding on processing power, an

optimization might be useful to shift when the video is decrypted and decrease

the number of times a video is decrypted. This allows for smoother playback of

the video even by users who have older and slower computers.

We optimize the algorithm by having users store the decrypted version of the

video whenever a video is downloaded or viewed after release time. When we

store pieces of the movies, segments, we also store whether or not the segment

is encrypted.

When senders distribute segments to receivers, the sender must specify

22

Chapter 3. System Design

whether or not the segment is encrypted. Before release time, it will always

be encrypted. However, after release time, if it is encrypted, the user may de

crypt it before storage. By using this optimization, copies of the videos on the

network will become decrypted versions over time and will propagate as de

crypted versions. Each viewer will still only need to decrypt each block at most

once, with some users viewing after release time not having to decrypt at all.

Program 3.2 presents the pseudocode for the retrieval of blocks. After the

retrieval of a block, the user first checks to see if the video block is encrypted. If

it is not, the block may simply be stored as a decrypted block. If it is encrypted

and the video has not been released, the user stores the encrypted version of the

block. If it is encrypted and the video has been released, the user retrieves the

decryption information from the hybrid peer to peer storage system and uses it

to decrypt the block. This block is then stored in its decrypted form.

Program 3.2 Algorithm for handling the decryption of blocks.

// param releaseTime The release time of the video
// @param vid The unique identifier for the video
// @param block The block of video data
// param encrypted True if the transferred block is encrypted
// else false
public void receivedBlockEncryptionHandler(long releaseTime , mt

vid, Block block, boolean encrypted) {
long currentTime = getCurrentTime()
if (!encrypted) {

storeDecryptedBlock(vid , block)
} else {

if (currentTime < releaseTime) {
storeEncryptedBlock(vid , block);

} else {
byte [1 decryptionKey = getDecryptionKey(vid)
String decryptionMethod = getDecryptionMethod(vid)
Block decryptedBlock = decrypt(block , decryptionKey

decryptionMethod)
storeDecryptedBlock(vid , decryptedBlock)

}
}

}

23

Chapter 3. System Design

3.6 Video Retrieval

With the help of the subscription and encryption systems, videos may now be

distributed onto the peer to peer video on demand streaming network. This

section investigates optimizations to Bitvampire’s peer to peer streaming al

gorithm for allowing downloading requests and streaming requests to coexist

without affecting streaming quality.

3.6.1 Video Downloading

There are now two kinds of data transfers, video streams and video downloads.

Video streams occur when a user plays a video, while video downloads occur

when videos match user subscriptions. The video streams are handled by the

peer to peer streaming algorithm. The download transfers can use traditional

peer to peer file transferring algorithms or peer to peer streaming algorithms.

Peer to peer file transferring algorithms generally work by sending blocks out

of order. If a user decides to watch a subscribed video that has not completed

downloading, out of order blocks already cached may not help in lowering the

bandwidth requirements for smooth playback of the video.

For example, imagine a situation where a peer has downloaded the 10 min

utes of a 20 minute video with a bitrate of 100KBps. The peer now decides

to start watching the video. If the peer has downloaded the last 10 minutes

of the video, the data downloaded does not help in streaming the first 10 min

utes of the video. The peer requires a constant 100KBps for smooth play

back. If the peer has downloaded the first 10 minutes, the user only requires

(20miriutes — lorninutes) * lOOKBps/2ominutes = 50KBps for smooth play

back of the video. This is because the peer already has the video information

required to display the first 10 minutes, and can use the 20 minutes of playback

time to download the last 10 minutes while maintaining smooth video playback.

24

Chapter 3. System Design

As illustrated by the example, in order video transfers are preferable for our

design. Therefore, our design makes use of peer to peer streaming algorithms

for both streaming and downloading.

3.6.2 Stream Prioritization

With both downloading and streaming transfers occurring at the same time,

downloads may compete with video streams for bandwidth when there is not

enough bandwidth in the system. Slow video transfer in video download situa

tions simply means the download will go slower. In the case of video streaming,

slow video transfer can cause video playback to stutter and pause. We therefore

optimize the system to prioritize video streams.

Receiver Side Prioritization

On the receiver side, if a user chooses to stream a video while downloading

subscribed videos, the receiver may not have enough download bandwidth to

support both. As previously described, the user will likely prefer a smooth video

stream over faster video downloads. Thus, we modify the Bitvampire algorithm

to prioritize video streaming.

Videos in Bitvampire [20] are split into smaller pieces called segments. Re

trieval of videos is achieved through location of peers with a specific segment

and requesting the segment from these peers. Peers in Bitvampire keep track

of their download bandwidth. If the incoming rate from sender s decreases for

a period T or is notified by sender s to switch, it will switch the sender s by

sending its unfinished part of the request to another peer with the segment

cached.

By keeping track of whether a video transfer is a stream or a download, the

retrieval algorithm can be improved to prioritize streaming. Using the algorithm

25

Chapter 3. System Design

described by Bitvampire to monitor download speeds, we can determine whether

the video stream is being retrieved at the requested speed. If it is, then the

downloading of other videos must not be affecting the speed of the stream, thus

requiring nothing to be done. However, if the speed of the stream transfer

is lower than the speed requested from the suppliers, the downloading of other

videos may be affecting the retrieval speed of the stream, possibly causing pauses

in the video playback.

We modify the Bitvampire supplier switching algorithm to solve this issue.

When it is detected that the incoming rate for the video stream transfers are

lower than they should be for a period T, instead of switching senders, any

video transfers for downloading videos are first stopped. The receiver then

waits another period T, and if the incoming rate is still too low, the supplier is

switched. After the user finishes watching the video stream, video downloading

is resumed.

Supplier Side Prioritization

In Bitvampire, each peer sets the maximum upload bandwidth, bandm, that it

can handle. When peers retrieve videos, they retrieve a list of peers with the seg

ment they want to retrieve. The scheduling algorithm in Bitvampire schedules

amongst peers with the segment using information about each peer’s maximum

upload bandwidth, bandmax and available bandwidth, bandavaji. Without mod

ification of this algorithm, the supplier would treat downloads and streams of

videos the same way. Video playback smoothness is directly affected by the

bandwidth of video streams, but not by the bandwidth of video downloads. We

therefore modify this algorithm to prioritize video streams.

We allow peers retrieving videos to send a flag to video suppliers, specifying

whether the video transfer is a download or stream. In order to allow suppliers to

replace downloaders with streamers when it is unable to serve a stream request,

26

Chapter 3. System Design

each supplier keeps track of the bandwidth reserved by each downloader. A

supplier also maintains information about the amount of bandwidth reserved

for downloads, banddownloads, along with the previously mentioned bandmax

and baridavaji.

When a peer attempts to stream a video, it tries the original algorithm by

finding suppliers with the segment, and reserving bandwidth from suppliers us

ing knowledge of bandm and bandavaji for each supplier. If it is unable to

find enough suppliers to reserve the required bandwidth, the peer now assumes

suppliers have bandavail = bandavail + banddovjnloads and reserves bandwidth

amongst suppliers using this new information. Program 3.3 illustrates this al

gorithm. When there is not enough bandwidth for smooth streaming, the peer

starts requesting that suppliers free bandwidth by stopping transfers to down-

loaders. This repeats until there is enough bandwidth to stream the video

smoothly or the list of suppliers is depleted.

Program 3.4 presents how a supplier can free bandwidth for streaming re

questors. The supplier stops transfers to downloaders one by one until it has

saved the requested amount of bandwidth. The supplier also updates the avail

able bandwidth, bandwidth reserved for downloads, and the list of downloaders.

27

Chapter 3. System Design

Program 3.3 Algorithm for requesting the stream of a video segment.

// param vid The unique identifier for the video
// param segmentNum The segment of the video that is being
// requested
// param requiredBandwidth The bandwidth required to stream
// smoothly
public void streamSegment(int vid , mt segmentNum, mt

requiredBandwidth) {
Supplier H suppliers = findSuppliers (vid , segmentNum)

let totalAvailBandwidth = 0;
for (mt = 0; i < suppliers, size 0 i++) {

totalAvailBandwidth += supplier [i]. availBandwidth;
}

if (totalAvailBandwidth > requiredBandwidth) {
requestSegment (vid , segmentNum, requiredBandwidth , suppliers)

} else {
for (mt = 0; i < suppliers, size Q ; i++) {

hit missingBandwidth = requiredBandwidth —

totalAvailBandwidth;

if (missingBandwidth <= 0) {
streamSegment(vid segmentNum, requiredBandwidth);
return;

}

if (missingBandwidth < supplier [i]. reservedDownloadBandwidth)

supplier [i]. freeFromDownloaders(missingBandwidth)
totalAvailBandwidth += missingBandwidth;

} else {
supplier [i]. freeFromDownloaders(supplier [i

reservedDownloadBandwidth);
totalAvailBandwidth += supplier [i].

reservedDownloadBandwidth);
}

}

streamSegment(vid, segmentNum, requiredBandwidth);

}

28

Chapter 3. System Design

Program 3.4 Algorithm for freeing bandwidth by stopping transfers to down-
loaders.

// param requiredBandwidth The extra bandwidth required by the
// streaming peer.
// param downloaders The list of downloaders being
// transferred to.
// ‘param numDownloaders The number of downloaders
public void freeFromDownloaders(int requiredBandwidth , List

downloaders , mt numDownloaders) {
for (mt i = 0; i < numDownloaders; i++) {

if (requiredBandwidth <= 0) {
return;

}

reservedDownloadBandwidth —= downloaders get (i).
reservedBandwidth;

availBandwidth += downloaders get (i) reservedBandwidth;
requiredBandwidth —= downloaders I]. reservedBandwidth;
stopTransfer (downloaders get (i))
downloaders remove (I)

}

29

Chapter 4

System Implementation

This chapter describes the implementation details of the system. In section 4.1,

we describe the general architecture of the system. Details for implementing

this architecture using existing technologies are described in section 4.2.

4.1 Architecture

4.1.1 Framework

Our system is composed of multiple layers based on a simplified version of the

RTG framework presented in BitVampire [20], which is inspired by the JXTA

framework [16]. The RTG framework allows the decoupling of each layer, thus

separating the system logic and allowing algorithms to be replaced with relative

ease. Table 4.1 describes each layer and lists components that belong to each

layer.

4.1.2 Component Details

At the highest level of this architecture, interaction with the user is supported

through the use of a graphical user interface (GUI). Initiation and interaction

with the GUI triggers the Application Logic component, which processes the

user’s requests.

In order to handle these requests, the Application Logic component calls the

30

Chapter 4. System Implementation

rLayer Description Components
Application This layer contains ap- GUI, Application Logic

plication specific compo
nents, which often in
cludes the GUI.

Abstraction This layer provides a sim- Controller
pie interface that allows
the application layer to
access the service layer.
Service layer modules can
thus be swapped easily
without changes to the ap
plication layer.

Service The service layer contains Encryption, Subscription,
common services. Differ- Automatic retrieval, Peer
ent algorithms to provide to peer streaming
a service may be imple
mented here to affect the
performance of the sys
tem.

Core This layer contains the Hybrid peer to peer stor
high level peer to peer age system
communication models.

Communication This layer contains the low DHT, Sockets
level peer to peer commu
nication details.

Table 4.1: Framework Layers

31

Chapter 4. System Implementation

abstraction layer Controller component. This component is normally only an

adaptor, containing no real logic. By calling the right service layer component,

the controller can delegate the logical computations to the correct service layer

components.

In this system, there are four main service components, which are Encryption,

Subscription, Automatic Retrieval, and Peer to Peer Streaming. Encryption

and decryption of video data is handled by the Encryption component. The

Subscription component handles user subscriptions, detection of videos match

ing user subscriptions, and updating of schedules. When a video matching a

user’s subscriptions is detected, it is handled by the Automatic Retrieval com

ponent. The Automatic Retrieval component maintains a list of videos that

match subscriptions and its download status. The role of this component is

to provide the GUI with the a list of downloading videos, as well as automat

ically starting and stopping downloads to control the number of videos being

downloaded concurrently. The last major component, Peer to Peer Streaming,

allows for the streaming of video data. In this system, this is provided by Bit-

vampire.

Communication with other peers is required for the operation of many of

these components. The core layer abstracts this in order to facilitate the sharing

and reuse of the core layer components by higher levels. In this system, the

major component in this layer is the Hybrid Peer to Peer component, which

allows data to be retrieved from the DHT if information is on the DHT, or the

central server if the DHT has lost the information requested.

The DHT and central server communication is supported by the final layer,

communication. The DHT component allows the storage of < key, value >

pairs on the network, while the Central Server component allows communica

tion between the central server and the client.

32

Chapter 4. System Implementation

4.2 Implementation Details

4.2.1 Related Software

This prototype makes use of 2 other software frameworks: BitVampire [20] and

FreePastry [151. Bitvampire provides the peer to peer streaming algorithms

while FreePastry provides the distributed hash table algorithms. Since both

FreePastry and BitVampire are built using the Java programming language,

Java is also used to implement this prototype.

4.2.2 System Flow

This section details the flow of high level requests with which a user may interact

with the system. Viewing of videos is not shown here because it is handled by

the underlying peer to peer video streaming architecture, Bitvampire.

Publication

Figure 4.1 shows the UML sequence diagram for the publication of a video.

When a user publishes a video using the GUI, the logic in the application layer

GUI classes checks the input information for errors. If there are no errors, the

central server is informed of the publication through the communication layer

CentrcilServerHaridler class. As part of the core layer, this class handles the

communication between the central server and the client. A response containing

a unique video identifier for the video is expected from the central server, and is

passed back to the application logic in the GUI when it is received. To publish

the actual video data, the abstraction layer Controller class is now called in

order to gain access to a service. The Controller class passes the request to the

appropriate service, MediaService. MediaService is part of the Bitvampire

code and provides peer to peer streaming services to the applicaton. One of its

33

Chapter 4. System Implementation

functions, publish, is now called to handle the distribution of the video data.

We modify MediaService to call the Encryption service class for encryption of

data before distributing the data.

I CentralS Hardier

_____ _______ ______

pubishO

HI

Schedule Updates and Automatic Video Retrieval

Figure 4.2 shows the sequence for updating schedules and downloading videos.

The service layer SubscriptionManager class calls the communication layer

HybridSto’rage class to retrieve updated video lists for channels and series the

user has subscribed to. The service layer RetrievalManager class is called

to match this updated video list with its current list of video downloads. If

new videos to download are found, they are queued by the RetrievalManager

and automatically downloaded using the MediaService class. Updates for re

pub3ist)

Figure 4.1: Sequence diagram of video publication

34

Chapter 4. System Implementation

cent schedules are then retrieved by the SubscriptioriManager using the the

HybridStorage class. This list of videos is sent to the RetrievalManager, which

checks for matches to subscriptions and queues any matched videos for down

load. Periodic polling for recent schedules is done by the SubscriptionManager.

1 HvbO4$ae RevM j MedaSerce

pdaGSChnnMdeoLiIs()

ubbdV)

dJVo()

reenVideos

dabdVkIeo) i

Figure 4.2: Sequence diagram of schedule maintanence

View Schedules and Downloads

The flow for viewing schedules and viewing downloads is illustrated in 4.3. Af

ter a user decides to view the schedule using the application layer GUI, the

GUI simply retrieves the schedules from the service layer SubscriptionManager

and the download list from the service layer RetrievalManager. Since both

SubscriptionManager and RetrievalManager keeps these lists up to date,

there is no need to contact the network.

35

Chapter 4. System Implementation

[l:ii1 [rIDIManaoer I I
ge&due

Figure 4.3: Sequence diagram of schedule and download display

4.2.3 Graphic User Interface

We implement a prototype with a Graphical User Interface (GUI) to demon

strate how publishers and clients may interact with this system. The GUI for

input of publication details and display of the schedule information are shown

in Figure 4.4 and Figure 4.5 respectively.

Figure 4.4: GUI for publication of a video

In Figure 4.4, the publisher is asked to input information which our frame-

dwnoadngVdeo
L.

MedlaNanle Found

MediaTVpe: MPEG1(C) .4deo.mpeg J.
BRate(kbps: I 4O

r
Series Name: Found

Channel Name: ICoar

ReleaseDe(Y,WMMDD)OU8OFOc —

Releaserpme(IIIMM): !23S0

LLTh____

36

Chapter 4. System Implementation

ass .W JI..J
jca UI,

9 DE.Ncad,

D
u CUP’

9 F O6P.I-2 -

u
P O - US-

w..tss, to,,’lEpC
—-

SesissNInat F,.,,C

OatmdNa..nI Ceugtr S.jsat.tsct.m.1

stSatens UCSPIOCCJUJ

R.Wss*TNss P1106-i p20060006
RtI.fl. States, loop ROIfl.4d

Figure 4.5: GUI for displaying schedules and downloads

work requires, such as the title (“Keywords” in the Bitvampire GUI), series

(“MediaName” in the Bitvampire GUI), release date, and release time. Other

information, including bitrate, is required by the Bitvampire.

Figure 4.5 displays a user’s GUI after he has subscribed to a series named

“Found”. This is done by first clicking on any video in the schedule, shown

in the left side of the interface. On the right side, various information about

the video such as the channel name and series name are displayed, along with

buttons for each type of subscription. These buttons allow the user to subscribe

to sets of videos. The screenshot shows that both the released episode 3 and

the unreleased episode 4 are automatically detected as subscribed videos and

are displayed in the download area. The statuses of both episodes are also set

to “Downloading”, signifying that automatic retrieval has started.

37

Chapter 5

Evaluation

This chapter evaluates the proposed system both theoretically and through sim

ulations.

5.1 Theoretical

We evaluate the hybrid peer to peer approach by comparing it to a central server

approach.

In a traditional central server system, each request goes directly to the cen

tral server, introducing bandwidtht units of bandwidth overhead, where

bandwidtht = requests * messagesizep

+requestsr * messagesize (5.1)

+numpollschedules * poliRate * averagemessagesize3

requests represents the number of publish requests and requests,. repre

sents the number of retrieval requests. messagesizep is the size of a publish

message, while messagesize and averagemessagesize are the sizes of video

information messages and schedule messages respectively. numpoUschedules

represents the number of schedules within the polirange and poliRate is the

rate at which users poii for updates to schedules.

38

Chapter 5. Evaluation

In the hybrid peer to peer storage system, the system overhead is defined as

banclwidth, = requests * messagesizep

+lostrequest.sr * (2 * messagesizer) (5.2)

+lostrequests5* (2 * averagemessagesize3)

where lostrequestsr is the number of retrieval requests not retrievable from

the DHT and lostrequests3 are the number of schedule requests not retrievable

from the DHT. Note that we assume the DHT overhead is negligible, since the

high frequency and size of viewing requests and schedule requests should far

outweigh the DHT overhead in systems like Freepastry.

In the hybrid system, we assume each lost request on the DHT results in

2* message because the central server answers the request and also restores the

information onto the DHT.

We evaluate each part of the equation independently. For publishing mes

sages, we see that both systems require requests * messagesizep units of data

transfer. The DHT is not used for publishing requests and thus there is no

difference in bandwidth incurred. However, publishing messages are likely to be

the least common since publishing only occurs once per video.

We now evaluate the retrieval related cost. We first find the difference be

tween the hybrid system and the traditional system, as shown below:

lostrequests *(2 * messagesize)
— requests * messagesize (5.3)

= (2 * lostrequestsr — requestsr) * messagesize.

We see that if (2 * lostrequestsr) < requestsr, then the hybrid peer to peer

system requires less bandwidth. In other words, if 50% or more of the DHT

requests are not lost, then the hybrid peer to peer system performs better. The

39

Chapter 5. Evaluation

schedule related cost comparison is equivalent to the retrieval related cost. It is

easy to see that if 50% or more of the DHT requests are not lost, then the hybrid

peer to peer system has an advantage. We also conclude that the percentage of

lost messages in the DHT is proportional to the amount of bandwidth required

by the hybrid storage system.

Simulations done by Rowstron et al. have achieved greater than 95% success

rate in many cases with feasible parameters using PAST, which is a storage

system built on top of pastry [24]. At 95%, the hybrid peer to peer system only

uses requests,./(2 * 0.95 * requests,.) * 100% = 52.6% of the bandwidth used

by a traditional central server approach for video information and schedule

distribution.

5.2 Simulation

We implement a simulator with which we evaluate the performance of the sub

scription and pre-release distribution system. The simulator used is a modified

version of the original Bitvampire [20] simulator.

5.2.1 Simulation Setup

We simulate a network with 4500 peers and 6 seed peers. Seed peers in Bitvam

pire are peers who are more stable, have more bandwidth available, and have

more storage space.

Most parameters in the simulation are equivalent to the Bitvampire simula

tion parameters. Peers have a maximum bandwidth ranging between 512 kbps

to 2 Mbps and a maximum delay ranging from 4ms to lOms. While peers only

allow a maximum of 128 kbps to 1 Mbps to be used for upload, seed peers’ have

maximum upstream bandwidth ranging from 1 Mbps to 2 Mbps.

We allow seed peers to store a maximum of 1000 to 3000 segments while peers

40

Chapter 5. Evaluation

may store 24 to 36 segments. In Bitvampire’s simulator, each segment itself is

5 minutes long and roughly 19MB. Each video consists of 12 segments and is

60 minutes in length. The bitrate of each video is 512kbps. In Bitvampire’s

simulation, 500 movies exist in the system. In this simulation, we choose to use

only 50 movies. This allows us to simulate a flash crowd over a small set of

movies more easily. We will vary this parameter in one of the simulations.

Peers in peer to peer networks often leave and rejoin. To properly simulate

this, the Bitvampire simulator simulates 20 peers leaving per minute, with peers

rejoin the network after 15 minutes to 3 hours.

Three different video request arrival patterns are used to simulate different

kinds of user behaviour in the real world: constant arrival, flash crowd arrival,

and periodic flash crowd arrival. To simulate a constant arrival pattern, 20

requests arrive per minute constantly. This kind of behaviour can occur for

popular old videos, attracting a constant stream of interested viewers. Another

kind of arrival pattern, flash crowds, often occurs when a new video is released

and great numbers of people want to view it at the same time. To simulate this,

we first simulate peer requests at a rate of 20 requests per minute, then increase

the rate to 120 requests per minute, then decrease it back to 20. The third

kind of traffic, periodic flash crowds, can occur when different popular videos

are released one after another. We simulate this by alternating between high

request rates of 120 requests per minute and low request rates of 20 requests

per minute. Figure 5.1 and Figure 5.2 show the flash crowd pattern and the

periodic flash crowd pattern respectively.

In this simulator and the Bitvampire simulator, the popularity of videos fol

low a Zipf-like distribution. In a Zipf distribution, the most popular video

has a popularity proportional to i/ia, where a is a parameter. This is chosen

because Cherkasova et al. [19] collected statistics of video access frequencies in

41

Chapter 5. Evaluation

140 — — ———

e
•

120 -———————————________ -___________________

.. 100

:
. E

€0 -—————----—

. 40 —---———-— —_______

20

0 rT,r’—-rq7nrrrrrrnrrnrrrnmrlmnmnTrr:imr-nntmt-rr— flflRtflWI!fltfttflTtflfll’
— ..

lime (minutes)

Figure 5.1: Flash crowd request pattern

140 — —

—-..

120
—.

.1a0
._

a0 —-—-——.— ———.--- —..——

60 -— ——
- ——

! .___.._

‘

20
-

0
.-4 r- m D Li, — t.. m 0 U — r- in Si Li, ,.4 •.. in a, UI..4 — IN in Cs Ii, 40 40 I.. C Cs SI 01 0 0 .

lime (minutes)

Figure 5.2: Periodic flash crowd request pattern

HPLabs media server and HP corporate media solutions server over a period of

time and found that file access frequencies closely resembled a Zipf-like distri

bution with a value of a between 1.4 and 1.6. Following Bitvampire’s settings

and the results of Cherkasova et aL, a is set to 1.4 in the simulator.

5.2.2 Simulation Methodology

In our simulation, we have 3 phases: publishing, subscribing, and watching.

Following BitVampire’s simulation methodology, we first enter the publishing

42

Chapter 5. Evaluation

phase and allow all videos to be published. In the subscription phase, a percent

age of the peers are chosen to be subscribers. These subscribers subscribe to

videos and automatically start the downloading process. After a preset period of

time, video releases are simulated by allowing peers to watch videos. Requests

are generated following the request crowd patterns previously discussed. Each

pattern generates video requests for 2 hours.

5.2.3 Simulation Results

This section describes the results from the simulations. We first simulate and

evaluate the effect of subscriptions on streaming capacity. We then examine

the effects of our stream prioritization algorithm. Next, we vary the percentage

of peers who watch subscribed videos and measure its effects. The streaming

quality difference between subscribers and non-subscribers is investigated next.

Finally, we investigate the effects of varying the number of movies involved in

the flash crowd.

Subscription Effects on Streaming Quality

We first explore the effects of allowing subscriptions on the quality of video

streams. To measure the effect, we copy Bitvampire's methodology and measure

the segment rejection ratio for viewers. The rejection ratio is defined as the

percentage of segment requests for streaming videos which do not succeed in

reserving bandwidth. The rejection ratio is a good measure of the performance

of the streaming system because a high rejection ratio means a high percentage

of peers are likely to experience pauses in the video, while a low rejection ratio

means few peers are likely to experience pauses.

Figure 5.3, Figure 5.4, and Figure 5.5 show the simulation results for constant

crowd, flash crowd, and periodic flash crowd request patterns respectively. For

43

Chapter 5. Evaluation

Figure 5.3: Constant crowd rejection ratio

each crowd, data is collected for the original Bitvampire algorithm and the

Bitvampire algorithm with subscriptions. We use 4 different parameters for the

time period between publication and release time, which we will call release wait

time (RWT) in the rest of the thesis.

All three crowd patterns are affected by subscriptions in the same way. With

RWT 0, which is the case in a subscription system without any pre-release

distribution capabilities, the subscription system increases the rejection ratio.

This means users are more likely to experience pauses and long wait times.

This occurs because downloaders who would have been idle in a system without

subscriptions now compete with streaming peers for bandwidth.

However, as the RWT is increased to 2 hours, the capacity of the system

becomes greater than the original Bitvampire system without subscription sup

port. In this situation, peers have 2 hours to download the video before release

time, and therefore increase the number of copies of segments on the network.

These peers have also cached some segments, and do not need to request them

after release time. As RWT is increased to 4 hours and 6 hours, the rejection

ratio becomes lower and lower until it is almost 0.

—+—No 5obscritio0.6
hours

RW1 2 hours
0.7

—RW14 hour,
0.6

— RwT S hours
0.5

0.2

0.1

T)me Mu,utesI

44

Chapter 5. Evaluation

o —4-— No Subscription

RWToOhour

03 ——awt6hour,

I
o

-

tune (minutes

Figure 5.4: Flash crowd rejection ratio

Stream Prioritization Effects on Streaming Quality

The next set of simulations evaluates the effects of the stream prioritization

algorithm. In the previous section, we saw that the subscription system has

similar effects on all three crowd patterns. In all future experiments, we will

use only the flash crowd pattern. Like the previous simulations, we will use the

rejection ratio as a measure of the streaming quality experienced by users.

Figures 5.6, 5.7, 5.8, and 5.9 show the rejection ratios for 0 hours, 2 hours,

4 hours, and 6 hours of time before videos are released after publication respec

tively. In all settings, the optimized algorithms maintain a lower rejection ratio

than the unoptimized version. At RWT = 0 hours, we see that the stream

prioritization algorithm is able to perform almost as well as the original Bit-

vampire even though many downloaders are attempting to reserve bandwidth.

All following simulations will use the optimized version of the algorithm.

Subscription Rate Effects on Streaming Quality

With the following set of experiments, we evaluate the effects of the subscription

rate on streaming quality. We define the subscription rate as percentage of peers

45

Chapter 5. Evaluation

Figure 5.5: Periodic flash crowd rejection ratio

who watch subscribed videos in the simulation.

Figure 5.10 shows that with 0 hours between publication and release time,

the rejection rate for all percentages of subscriptions are similar. Peers with

subscriptions to videos have not had a chance to download the video before other

peers start watching the video. Since watching peers have priority and there is

not enough bandwidth in the network for all requests, only the watching peers

succeed in requesting videos. This means that all of the bandwidth available

from suppliers is used for streaming peers, so subscriptions and downloaders do

not affect the system or the streaming rejection ratio.

With 2 hours between publications as shown in Figure 5.11, we see a result

that might appear strange. While having subscriptions results in a significantly

lower rejection ratio than not having subscriptions, a lower percentage of sub

scriptions also results in a lower rejection ratio. The cause for this is that with

only 2 hours between publication and release time of videos, a high subscrip

tion percentage results in a flood of download requests that do not finish before

watching starts. As a result, the later segments in each video have not had a

chance to propagate through the network and get cached.

03

0.8 -

0.7

0.6

. 0.5

—4— No Subscription

——RWT nO hours

— RWT=2houro

—RWT4 hours

.—*-- RWT 6 hours

ri
rgne frsblute5)

46

Chapter 5. Evaluation

Figure 5.6: Stream prioritization effects with RWT = 0 hours

Figure 5.7: Stream prioritization effects with RWT = 2 hours

Figure 5.12 shows the rejection ratios with 4 hours between publication and

release time of videos. We see that in this situation, 25% subscription rate

results in the lowest rejection ratio. This shows a subscription rate of 25% is

the optimal point in this situation where many downloading peers are able to

complete downloading videos before the videos are released. As the subscription

is increased or decreased from this optimal point, the rejection ratio increases.

As we increase the RWT further to 6 hours, we see that the optimal point

is at 100% subscription ratio. This is shown in Figure 5.13. In this case, the

1

0.9

0.8 —4— No Subscription

.2 0.7 ——Ljnoptimized
0.6

0ptimized
.2 0.5

. 0.4

0.3

0.2

0.1

0 100 200 300

Tune (m,nuteu

0.9

0.8
—4-—Na Subscription

0.7
——-Unoptimizeci

•! 0.6
Optimized

0.5

0.4

0.3

0.2

0.1.

0

0 100 200 300

Tune mrnutes)

47

Chapter 5. Evaluation

Figure 5.8: Stream prioritization effects with RWT = 4 hours

Figure 5.9: Stream prioritisation effects with RWT = 6 hours

RWT is long enough that subscribers are almost all capable of downloading the

complete video before release.

From these results, we can conclude that there is an optimal percentage

of subscribers depending on the network capacity and number of requests. If

there is not enough bandwidth for subscribers to download significant amounts

of the video before release time, then a lower subscription rate may result in a

lower rejection ratio. However, we note that with RWT >= 2, rejection ratio

is significantly lower than the system without subscription capabilities.

——No Subscription

—— lJnoptimized

Optimized

0.9

0.8

07

0.6

0.5

0.4

0.2

0.1

a
0 100 200 300

Twne (r,smutesl

—I— No Subscription

—*-- inoptimized

Optimized

0.9

0.8

0.7

0.6

0.5

DA

0.3

0.2

0.1

0

0 100 200 300

Irne Cmiiutes)

48

Chapter 5. Evaluation

Incentives for Subscribing to Videos

We examine the streaming quality difference between subscribers and non-

subscribers. In order to evaluate this, we run the simulation and measure the

percentage of total segments transferred for subscribers and non-subscribers

using various parameters for RWT. The percentage, which we will refer to as

the complete rate, is calculated using percentt requestst/requestsend, where

requests1 is the number of requests at time i and end is when all peers have

stopped streaming videos. A higher percentage of total segments transferred

—4——No Subscription

-*—100%Subscrtption Rate

50%Subsription Rate

—25% Subscription Rate

0.9

0.8

0.7

0.6

0.5

0.4

& 0.3

0.2

0.1

0

0 100 200 300

rime mmLitesJ

Figure 5.10: Subscription rate effects with RWT = 0 hours

——100%5ubscrption Rate

——50%Subtcription Rate

25%Subscription Rate

—10%Subscription Rate

0.3

0.28

0.2
&
1 0.15

0.1

0.05

0

0 100 200 300

Thne Cininutes)

Figure 5.11: Subscription rate effects with RWT = 2 hours

49

Chapter 5. Evaluation

Figure 5.12: Subscription rate effects with RWT = 4 hours

Figure 5.13: Subscription rate effects with RWT = 6 hours

signifies that the set of peers have been more successful in retrieving requested

videos.

Figures 5.14, 5.15, 5,16, and 5.17 show the simulation results for RWT set

tings of 0 hours, 2 hours, 4 hours, and 6 hours respectively. In all of the results,

subscribers have a higher percentage of total segments transferred at all points

in time. This shows that subscribers are more likely to finish streaming videos
earlier with fewer disruptions in the video playback.

We also see that with a RWT setting of 0 minutes, the difference is negligible.

0.025

002

3
0.015

S

0.01

—4--’100%Sjbscnp0on Rate

-*—50%Subscripbon Rate

25%Subscription Rate

—‘—lO%Subscription Rate

0.005

a

0 50 100 150

rime (minutes)

0.025

—4—100%5ubscript4or Rate
0.02

*50%Subtcription Rjte

, 0015 25%SubcriptionRate
C

—10%Subsrption Rate
0.01

00o5

0
o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0— fT 0 TO Tn TO r.. 0 0 0 — TN If TO If TO 0.

r.ne Iminutes)

50

Chapter 5. Evaluation

0.9

0.8

.6 .7

0.6

• 0.5
.6

0.4

8 0.3

0.2

0.1

0

—— Non Subscribers

——5ubscribers

Th,se mi,ute4

1.2

0.8

:! 0.6
.6

(1 0.4

0.2

Figure 5.14: Completion ratio for RWT = 0 hours

‘—4—Non Subscribers

•—— Subscribers

0 15 30 45 60 75 90 105120135150165180195210225240

time Cm.nutes

Figure 5.15: Completion ratio for RWT = 2 hours

As previously mentioned, in this situation with stream prioritization in effect,
subscribers’ download requests do not get accepted and there is little difference
between subscribers and viewers. However, as RWT increases, we note that
there is a noticeable difference between subscribers and non-subscribers. The
smoother playback of video gives peers a natural incentive to subscribe to videos.

51

Chapter 5. Evaluation

Figure 5.16: Completion ratio for RWT = 4 hours

Figure 5.17: Completion ratio for RWT = 6 hours

Effect of Varying the Number of Movies

We measure the rejection ratio for 1, 50, and 100 movies to evaluate the effect of
varying the number of flash crowd movies on streaming quality. It is important
to note that the number of movies in this setting is the number of movies which
receive a large amount of requests after they are released. This number does
not include movies which few people request but exists on the network, which
is not simulated since we only want to see the effects of subscription on flash
crowds.

0.9

0$

. 0.7

0.5

0.4

8 0.3

0.2

0.1

—— Nn Subscribers

—f- Subscribers

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180

Thne Cmi,,utesl

—--Non Subscribers

—f—Subscribers

I

0.9

0.8

.Q 0.7

0.6

0.5
ii

0.4

8 0.3

0.2

0.1

0

0 10 20 30 40 50 50 70 80 90 1001101201301401S0160170180

Th,sc Cm,utee

52

Chapter 5. Evaluation

1.

0

0.9

—-- No Subscription

——RWr0 hours

RW1o 2 hours

‘-*—RW14 hours

—‘—RWTh6hour

0 25 50 75 100 125 150 175

Time (mmutre

Figure 5.18: Rejection ratio for 1 movie

—q—No Subscription

——RWT 0 hours

• RWI=2 hours

RWT4 hours

—RWT6 hours

0

0 50 100 150 200 250 300 350

Tmie Cmaiutesj

Figure 5.19: Rejection ratio for 50 movies

The rejection ratio for 1, 50, and 100 movies are shown in Figures 5.18,
5.19, and 5.20 respectively. With 1 movie, the rejection ratio is decreased to 0

when RWT >= 2. This shows the pre-release system is most effective with a

flash crowd consisting of few movies. With few movies, the segments quickly

propagate through the network and get cached by peers, thus increasing the

bandwidth available for streaming of these segments. With 100 movies, we see

that the rejection ratio is higher than the rejection ratio of 1 movie. With a

larger number of movies, segments do not propagate and get cached as quickly

0.9

0.8

• 0.7

0.6
C
. 0.5

0.3

0.2

0.1

0.8

0.7

0.6

0.5

OA
JL

0.3

0.2

0.1

53

Chapter 5. Evaluation

Figure 5.20: Rejection ratio for 100 movies

since the requests are split amongst a greater number of segments.

In all of the results, rejection ratios for no subscription and RWT = 0 are

very close. As RWT is increased, the rejection ratio is lowered in all three

simulations.

—4—No Subscription

—*—RW1 0 hours

RWt2 hours

—RWT4 hours

—RWT6 hours

0.9

0.8

0.7

• 0.6

0.5

I 0.4

0.5

0.2

01.

0

tune (mHsuteu

54

Chapter 6

Conclusion and Future

Work

6.1 Conclusions

In this thesis, we propose a hybrid peer to peer framework for a subscription and

a pre-release distribution system. This framework enhances peer to peer video

on demand streaming by allowing publishers to publish videos before release

time. This feature allows video playback to remain smooth even in flash crowd

situations. We design a subscription system to allow peers with unreleased

videos to know who to distribute the videos to. An encryption management

system is proposed to prevent users from watching videos before release time.

Finally, we modify the streaming algorithm in a peer to peer video on demand

framework, Bitvampire 120], to support downloading of videos. We optimize

this algorithm by prioritizing streaming peers over downloading peers.

We show the viability of this system by describing implementation details

for creating a prototype using existing frameworks. These frameworks are Bit

vampire, a peer to peer video on demand framework, and FreePastry, a DHT

framework. A GUI prototype is implemented to investigate how users may

interact with the system.

In order to evaluate our system, we modified the simulator used by Bit

55

Chapter 6. Conclusion and Future Work

vampire to support subscriptions. The simulation results show that the stream

prioritization algorithm increases the streaming quality experienced by peers.

The results also show that allowing the pre-release distribution of videos can

significantly increases the quality of video playback in flash crowd situations.

This remains true as the percentage of subscribers and the number of movies

affected by the flash crowd is varied. We also observe that subscribers on aver

age experience better playback quality than non-subscribers, creating a natural

incentive for users to subscribe.

6.2 Future Work

There are several areas that can be interesting to investigate. The first one is

the investigation of peer to peer continuous query systems, such as P2P-DIET

[17]. Continuous query systems generally allow more complex queries to be

made. For example, a user might be able to subscribe to all series starting

with the letter A, or all comedies made by a certain director. Investigation into

the performance difference, whether or not users want this level of subscription

capability, and how to make a user friendly interface for it can lead to interesting

results.

Scalable video is another interesting area of research. Priority drop [18] and

other scalable video approaches allow a lower quality version of the video to be

downloaded first. By combining more video data with the lower quality version,

a higher quality version of the video may be displayed. Using this approach, as

the bandwidth available varies, the playback of the video can still be smooth,

albeit at a lower quality when the bandwidth of the transfer is low. Scalable

video approaches can be integrated into the video download retrieval algorithm.

Instead of always downloading the blocks in order, a scalable video approach

would allow the downloading of a lower quality layer first. The advantage of

56

Chapter 6. Conclusion and Future Work

this is that if there is little or no bandwidth available for streaming the video

and the download of the video is not complete, the user would be able to play

more of the movie using a scalable video approach.

Another possible area of exploration is supporting authentication and per

mission control. In traditional television systems, administrators are able to

control what channels each peer has access to, allowing the traditional business

model of charging for access to videos to be used. In the proposed architecture,

the administrator is unable to prevent peers from transferring data to each other

and is unable to prevent peers from modifying information on the DHT. One

possible solution is for a trusted central server to generate a public key and a

private key using asymmetric cryptography algorithms such as RSA. Asymmet

ric cryptography can be used to allow the central server to sign data with its

private key. With knowledge of the central server’s public key, peers can check

whether or not the central server has signed the data, and thus can determine

if data came from the central server. The algorithms in this framework can be

modified to only accept video information and decryption keys signed by the

central server, thereby preventing unauthorized peers from publishing videos by

modifying the DHT. To allow permission control, each peer receives a signed

certificate from the central server stating his/her permissions, name, and pub

lic key. Whenever a peer, PeerA, requests a video from another peer, PeerB,

he/she must send their certificate to prove they have permission to access the

video. PeerA also sends a personally signed message containing the current

time and the name of PeerB, which PeerB can check using the public key from

PeerA’s certificate. This message allows PeerB to know the request was sent by

PeerA, and not an old request repeated by a malicious peer. This system allows

the central server to control who has access to what channels, while requiring

very little bandwidth from the central server. The central server only needs to

57

Chapter 6. Conclusion and Future Work

be involved in the creation of user accounts and changing of permissions.

Finally, abuse prevention is another interesting direction to investigate. For

example, in algorithms such as stream prioritization, the requester is trusted

and assumed to be telling the truth. However, a malicious or greedy peer may

always send stream requests instead of download requests. A malicious peer may

also flood the network with reservation messages or freeDowriloadBandwidth

messages which causes suppliers to drop downloaders. Peers may also abuse the

system by continuously downloading while only allowing very little upstream

bandwidth to be utilized for sharing. Incentive mechanisms may be used to

prevent this.

58

Bibliography

(1] Babelgum. http: //www babelgum corn.

[21 Bbc iplayer. http://www.bbc.co.uk/iplayer/.

[3] Bittorrent. http: //www .bittorrent. corn.

[4] Joost. http://www.joost.com.

[5] Napster. http //www napster. corn.

[6] Netifix. http: //www. netf lix. corn.

(7] Veoh. http://www.veoh.com.

[8] Youtube. http: //www youtube corn.

[9] S. Acharya and B. Smith. MiddleMan: A Video Caching Proxy Server.

Proceedings of NOSSDAV, 2000.

[10] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application

layer multicast. Proceedings of the OO2 conference on Applications, tech

nologies, architectures, and protocols for computer communications, pages

205—217, 2002.

[11] Y. Chae, K. Guo, MM Buddhikot, S. Sun, and EW Zegura. Silo, rainbow,

and caching token: schemes for scalable, fault tolerant stream caching. Se

lected Areas in Communications, IEEE Journal on, 20(7):1328—1344, 2002.

59

Bibliography

[12] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling conferencing applica

tions on the internet using an overlay muilticast architecture. Proceedings

of the 2001 SIGCOMM conference, 31(4):55—67, 2001.

[13] Y. Chu, SG Rao, S. Seshan, and H. Zhang. A case for end system mul

ticast. Selected Areas in Communications, IEEE Journal on, 20(8):1456—

1471, 2002.

[14] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media

over a Peer-to-Peer Network. Submitted for publication, 2002.

[15] P. Druschel, E. Engineer, R. Gil, Y.C. Hu, S. Iyer, A. Ladd, et al. FreeP

astry. Software available at http://www. cs. rice. edu/CS/Systems/Pas

try/FreePastry.

[16] L. Gong. Project JXTA: A Technology Overview. Sun Microsystems, 2001.

[17] S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: an extensi

ble P2P service that unifies ad-hoc and continuous querying in super-peer

networks. Proceedings of the 2004 ACM SIGMOD international conference

on Management of data, pages 933—934, 2004.

[18] C. Krasic, J. Walpole, and W. Feng. Quality-adaptive media streaming by

priority drop. Proceedings of the 13th international workshop on Network

and operating systems support for digital audio and video, pages 112—121,

2003.

[19] M. Gupta L. Cherkasova. Charactering Locality, Evolution, and Life Span

of Accesses in Enterprise Media Server Workloads. Proceedings of NOSS

DAy, 2002.

60

Bibliography

[20) X. Liu. Bit Vampire: A Cost-Effective Architecture for On-Demand Media

Streaming in Heterogeneous P2P Networks. PhD thesis, The University of

British Columbia, 2005.

[21] B.T. Loo, R. Huebsch, I. Stoica, and J.M. Hellerstein. The case for a hybrid

P2P search infrastructure. Proceedings of the 3rd IPTPS, 2004.

[22] S. Ramesh, I. Rhee, K. Guo, ST Microelectron, and CA San Jose. Mul

ticast with cache (Mcache): an adaptive zero-delay video-on-demand ser

vice. Circuits and Systems for Video Technology, IEEE Transactions on,

11(3):440—456, 2001.

[23] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered streaming.

Proceedings of the 13th international workshop on Network and operating

systems support for digital audio and video, pages 153—161, 2003.

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems, 2001.

[25] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia

streams. INFO COM’99. Eighteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, 3, 1999.

[26] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.

Proceedings of the 2001 SIGCOMM conference, 31(4): 149—160, 2001.

[271 DA Tran, KA Hua, and T. Do. ZIGZAG: an efficient peer-to-peer scheme

for media streaming. INFOCOM 2003. Twenty-Second Annual Joint Con

ference of the IEEE Computer and Communications Societies. IEEE, 2.

61

Bibliography

j28j D. Xu, H.K. Chai, C. Rosenberg, and S. Kulkarni. Analysis of a Hybrid

Architecture for Cost-Effective Streaming Media Distribution. Proceedings

of SPIE, 5019:87, 2003.

[29] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems.

The VLDB Journal, pages 561—570, 2001.

62

