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Abstract 

Grid computing is a virtualized distributed computing environment aimed at enabling the sharing of 
geographically distributed resources. Grid resources have traditionally consisted of dedicated super
computers, clusters, or storage units. With the present ubiquitous network connections and the growing 
computational and storage capabilities of modem everyday-use computers, more resources such as PCs, 
devices (e.g., PDAs and sensors), applications, and services are on grid networks. Grid is expected to 
evolve from a computing and data management facility to a pervasive, world-wide resource-sharing 
infrastructure. To fully utilize the wide range of grid resources, effective resource discovery mechanisms 
are required. However, resource discovery in a global-scale grid is challenging due to the considerable 
diversity, large number, dynamic behavior, and geographical distribution of the resources. The resource 
discovery technology required to achieve the ambitious global grid vision is still in its infancy, and 
existing applications have difficulties in achieving both rich searchability and good scalability. In this 
thesis, we investigate the resource discovery problem for open-networked global-scale grids. In 
particular, we propose a distributed semantics-based discovery framework. We show how this framework 
can be used to address the discovery problem in such grids and improve three aspects of performance: 
expressiveness, scalability, and efficiency. 

Expressiveness is the first characteristic that a grid resource-searching mechanism should have. Most 
existing search systems use simple keyword-based lookups, which limit the searchability of the system. 
Our framework improves search expressiveness from two directions: First, it uses a semantic metadata 
scheme to provide users with a rich and flexible representation mechanism, to enable effective 
descriptions of desired resource properties and query requirements. Second, we employ ontological 
domain knowledge to assist in the search process. The system is thus able to understand the semantics of 
query requests according to their meanings in a specific domain; this procedure helps the system to locate 
only semantically related results. 

The more expressive the resource description and query request, however, the more difficult it is to 
design a scalable and efficient search mechanism. We ensure scalability by reconfiguring the network 
with respect to shared ontologies. This reconfiguration partitions the large unorganized search space into 
multiple well-organized semantically related sub-spaces that we call semantic virtual organizations. 
Semantic virtual organizations help to discriminatively distribute resource information and queries to 
related nodes, thus reducing the search space and improving scalability. To further improve the 
efficiency of searching the virtual organizations, we propose two semantics-based resource-integrating 
and searching systems: GONID and OntoSum. These two systems address searching problems for 
applications based on different network topologies: structured and unstructured peer-to-peer overlay 
networks. Queries in the search systems are processed in a transparent way, so that users accessing the 
data can be insulated from the fact that the information is distributed across different sources and 



represented with different formats. In both systems, ontological knowledge is decomposed into different 
coarse-grained elements, and then these elements are indexed with different schemes to fit the 
requirements of different applications. Resource metadata reasoning, integrating, and searching are based 
on the index. A complex query can be evaluated by performing relational operations such as select, 
project, and join on combinations of the indexing elements. 

We evaluate the performance of our system with extensive simulation experiments, the results of which 
confirm the effectiveness of the design. In addition, we implement a prototype that incorporates our 
ontology-based virtual organization formation and semantics-based query mechanisms. Our deployment 
of the prototype verifies the system's feasibility and its applicability to real-world applications. 
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Chapter 1 

Introduction 

1.1 The resource discovery problem in global-scale grids 
A grid is a hardware and software infrastructure that provides users with transparent access to the entire 
set of resources available on the system. Early grid efforts linked supercomputing sites in order to 
provide computational resources to a range of high-performance applications. The grid offers a model for 
solving massive computational problems by making use of the unused resources (mainly C P U cycles 
and/or disk storage) of large number of computers. The focus of grid computing on supporting 
computation across administrative domains sets it apart from traditional computer clusters and traditional 
distributed computing. 

With the prevalence of PCs as well as high-speed network technologies, more and more inexpensive PCs, 
and various devices such as PDAs and sensors at the periphery of networks are joining the grid. Grid 
research is therefore shifting its focus from scientific computing to a pervasive, world-wide resource-
sharing infrastructure. The "grid problem" is defined by Forster as [32]: "Flexible, secure, coordinated 
resource sharing among dynamic collections of individuals, institutions, and resources." This view 
emphasizes the importance of information aspects, essential for resource discovery and interoperability. 
The new generation of grids enables the sharing of a wide variety of resources, including hardware, 
software packages, knowledge information, licenses, specialized devices, and other grid services. These 
resources are geographically distributed and owned by different organizations. The fact that users 
typically have little or no knowledge of the resources contributed by other participants in the grid poses a 
significant obstacle to their use. For this reason, resource discovery is a vital part of a grid system, and an 
efficient resource discovery infrastructure is cmcial to make the distributed resource information 
available to users in a timely and reliable manner. However, resource discovery in large-scale grids is 
very challenging due to the potential large number of resources, and their diverse, distributed, and 
dynamic nature. In addition, it is equally difficult to integrate the information sources with a 
heterogeneous representation format. 

The provision of an information service, as currently envisaged by the grid community, is a first step 
towards the discovery of distributed resources. However, a large part of these efforts have been focused 
on "getting it to work," without directly addressing issues of scalability, reliability, and information 
quality [17]. For example, classical grids always use centralized or static hierarchical models to discover 
resources. The Globus Toolkit [128] is a famous example. Globus users can get a node's resource 
information by directly querying a server application running on that node, or querying dedicated 
information servers that retrieve and publish the resource information of the organization. Although 



interactions between these information servers are supported, the general-purpose decentralized service 
discovery mechanism is still absent. To discover resources in a more dynamic, large-scale, and 
distributed environment, peer-to-peer (P2P) techniques have been used in resent research (e.g., [15, 46]). 
P2P systems offer many benefits, such as adaptation, self-organization, fault-tolerance, and load-
balancing, but they also present several challenges that remain obstacles to their widespread acceptance 
and usage in grids: First, current P2P systems offer limited data management facilities; in most cases, 
searching information relies on simple identifiers or Information Retrieval (IR)-style string matching. 
This limitation is acceptable for file-sharing applications, but in order to support complex resource 
discovery in grids we need richer facilities for exchanging, querying and integrating structured and semi-
structured data. Second, most P2P systems specialize in a single functionality, for example, music 
sharing. More work needs to be done to support the sharing of varieties of resources in grids. Moreover, 
designing a good search mechanism is difficult in P2P systems because of the scale of the system and the 
unreliability of individual peers. 

This thesis seeks to provide a general solution to the above-mentioned problem. It proposes a framework 
to share and discover resources on an unprecedented scale, and for geographically distributed groups to 
work together in ways that were previously impossible. In the remainder of this chapter we introduce the 
resource discovery problem, identify a set of requirements for resource discovery solutions, summarize 
our thesis contributions, and present the roadmap of this thesis. 

1.2 Requirements for resource discovery in large-scale grids 
The recent development of Internet-scale grids poses significant and novel research challenges for 
resource discovery. An effective discovery solution for this environment should meet the following 
requirements: 

Scalability: Because of the participation of PCs and devices such as sensors at the periphery of the 
Internet, the number of nodes and resources involved in a grid may grow from hundreds to millions. The 
increased size of grids raises the problem of potential performance degradation. Consequently, 
applications must be scalable in handling the vast number of nodes and resources involved in grid 
deployment. The system therefore must be capable of spreading load among the participants themselves, 
serving large number of users at a very low cost. 

Expressiveness: Grid resources may be highly diverse: hardware (processor, memory, storage, and 
instruments), software, network bandwidth, data, knowledge, services, etc. Each of these resources may 
have many attributes; for example, a computer resource may have attributes such as operating systems, 
number of CPUs, and speed. Different resources belong to different organizations and have different 
usage policies. Appropriate data schémas must be defined for both resource providers and resource 
requesters. Resource providers need to describe not only the complex attributes but also the usage 
policies of the resources in grids, so that the resource information can be encoded, stored, and searched in 



an efficient manner. Resource requesters need richer query interfaces to accurately describe what they 
want to discover. 

Recall and precision: Recall is a measure of the ability of the system to locate all relevant resources, and 
precision is a measure of the ability of a system to present only relevant resources. In a global-scale grid, 
resources are represented with heterogeneous metadata. The same resource in different nodes can be 
defined differently. For example, one node may use the term processor to represent a computing resource, 
while another node may use CPU to describe it. On the other hand, the same term can also be used to 
represent different resources. For example, the term mouse might represent a computer mouse in one 
node, and rodent in another. There are other relationships between concepts that also need to be 
considered. For example, a query related to operating systems should be able to understand that Windows, 
UNIX, and Macintosh are different types of operating systems. It is important for the discovery scheme to 
determine the relationships among concepts and locate all related resources, however they are 
represented. The system therefore requires a highly expressive logic with sophisticated reasoning 
capabilities. 

Robustness: PCs in the system are not as stable as servers in classical grids; with so many resources in a 
grid, the probability of some resource failing is high. Therefore, node and resource failures are the rule 
rather than the exception. In addition, resources and their status change frequently. The system should 
tailor its behavior dynamically and be able to provide reliable services in a highly dynamic environment, 
locating resources when they are present and meeting the requirements of the application. 

Responsiveness/ freshness of information: Grid resources change much more frequently than web 
pages. Therefore, a grid resource discovery system should update the status of resources much more 
frequently than web search engines do, in order to guarantee the freshness of the resource information. 

1.3 Our solutions and contributions 
In this thesis, we present the design, implementation and evaluation of an effective framework that 
enables flexible resource discovery in large-scale grid environments. The discovery framework tries to 
meet all of the requirements outlined above. Here we briefly present the key techniques we employ to 
realize our proposed system. 

We propose a semantic model that adds semantics to the discovery framework. In the semantic model, 
ontologies are employed to provide a formal conceptualization of domains shared by users. Our goal is 
that queries can be properly interpreted according to their meanings in a specific domain by considering 
relationships between concepts. To address the issues of using domain knowledge in the search process, 
the ontology model includes: (1) an expressive ontological representation to encode the resource 
metadata, (2) an effective mapping formalism along with corresponding reasoning algorithms to integrate 
heterogeneous ontology representations, and (3) a comprehensive semantic query evaluation scheme to 
process complex SQL-like queries. Using an ontology for vocabularies and schémas allows abstraction 



over resources and other concepts and provides a very rich querying and discovery mechanism. Based on 
domain knowledge, an ontology-based search understands the meaning of a user's search request; 
therefore, it overcomes the complexities inherent in natural languages, such as synonyms and 
homonyms/polysemes, and guarantees the precision and recall of the search results. This semantic model 
appeared first in L i et al. [63]. 

However, the more expressive and detailed a query request is, the more difficult it is for the related 
search to be scalable and efficient. We investigate the applicability of a P2P system for discovering grid 
resources. Our discovery system treats each node as a peer providing a distributed lookup service that 
allows other participants to discover resources and maintain resource states. We improve the 
performance of this P2P-based search technique by effective topology formation, efficient indexing 
methods, scalable searching algorithms, and reasonable load-balancing schemes. 

Without a crawler and a centralized index engine, finding particular resources in an Internet-scale system 
is like looking for a needle in a haystack - there is too much to explore. We make this problem much 
more manageable by partitioning the large unorganized search space into multiple well-organized sub-
spaces, in which resources are semantically related. Then queries are executed only within semantically 
related sub-spaces. We call the sub-space as a semantic Virtual Organization (VO). We have proposed a 
hierarchical ontological model - the ontology directory - to facilitate V O formation. The ontology 
directory defines a hierarchy of categories of a domain of interest, which are used to represent the 
semantics of resources. The ontology directory is used as a yellow page or a "rendezvous" for nodes to 
find contacts with similar interests. The domain ontology of the directory does not need to be predefined; 
it spontaneously grows as interest in the network evolves. We implement the hierarchical ontology 
directory with a flat Distributed Hash Table (DHT) overlay, which transforms the ontology category 
entries into a set of numeric keys. It does so in a way that preserves the expressiveness of semi-structured 
data, facilitates an even data distribution through the network, and enables efficient location of ontology 
domains. This ontology directory idea was first propounded in L i et al. [64, 68]. 

To overcome the inherent load-unbalancing problem experienced by the directory overlay, we propose a 
comprehensive load-balancing algorithm that includes an adaptive load redistribution scheme as well as a 
dynamic routing-table reconfiguring scheme. It achieves load balancing by dynamically balancing the 
query-routing load and query-answering load respectively. This balancing algorithm originally appeared 
in L i et al. [70]. 

To efficiently discover resources inside VOs, we propose an ontological resource indexing, integrating, 
and searching framework: GONE) . Existing DHT overlays [121, 90, 102, 88] and the maturing of 
Semantic Web technologies [8, 140, 137] form the foundation of GONID. GONID realizes the 
ontological model we propose through an efficient indexing scheme. It decomposes ontological 
knowledge into atomic elements and then indexes them with DHTs. GONID adds semantics to DHT 
indexing and builds complex query facilities on top of DHTs, while still maintaining the scalability of the 
D H T infrastructure. Ontological reasoning, integrating, and searching are all based on this index. A 



complex query can be evaluated by performing relational operations such as select, project, and join on 
combinations of the indexed atoms. A key advantage of this ontological indexing scheme is its ability to 
index in different granularities, as we distinguish knowledge at different levels of abstractions. The 
resulting prototype system, GONE)-toolkit, verifies the viability of this indexing and searching 
infrastructure. Results related to the GONID system originally appeared in L i et al. [63, 61]. 

Because GONID is constructed on top of a structured DHT overlay, it inherits some inherent D H T 
problems, such as sensitivity to chum, an inability to control the index location, and difficulty in finding 
ontologically related peers. To overcome these problems, we investigate a design alternative and propose 
another search framework, OntoSum. OntoSum utilizes the small-world research results and tries to 
construct small-worlds inside grids based on semantics. In OntoSum, nodes are loosely structured, and 
each of them keeps track of a set of neighbors and organizes them into a multi-resolution neighborhood 
according to their semantic distance. A query is matched against the relevant nodes in the neighborhood. 
Intuitively, the query forwarding "zooms in" towards those regions with minimal ontological distance 
from the query, handing off the query to a node that has better information and is thus better prepared to 
answer the question. This architecture combines the efficiency and scalability of structured overlay 
networks with the connection flexibility of unstructured networks. It achieves full distribution, high 
scalability, robustness, and has been published as L i et al. [69, 62]. 

To further improve the search efficiency inside an ontologically homogeneous cluster, we propose a 
semantics-based query forwarding strategy - the Resource Distance Vector (RDV) routing algorithm. 
The basic idea is to extract the building blocks from the metadata instance and then summarize them to 
form a compact structure. Based on this summarization, we create a routing table to guide the query 
forwarding. Compared with unstructured P2P applications, which are oblivious of the resource location, 
this routing strategy reduces both the query overhead and query latency, and guarantees a higher query 
hit ratio. Compared with DHTs, our approach inherently supports rich queries, and requires no explicit 
control over the network topology or placement of data. The R D V algorithm has been published as L i et 
al. [65, 66, 67]. 

In summary, the primary contributions of this thesis are as follows: 
• We propose a semantic model that adds semantics to the discovery system, thus improving the 

expressiveness and interoperability of the system. 
• We propose effective topology adaptation schemes that reorganize the network according to semantic 

properties of participating nodes, in order to improve system scalability. 
• We design novel indexing and searching algorithms for efficient discovery in networks with different 

underlying structures. 
• We propose a comprehensive load-balancing scheme that effectively balances the system load and 

significantly improves performance. 
• We conduct comprehensive simulation experiments to test all aspects of the designed system. 
• We implement and deploy a prototype system that demonstrates the feasibility of the proposed system. 



1.4 Thesis organization 
The remainder of this thesis is organized as follows: Chapter 2 provides a general survey of related work 
in resource discovery, and background knowledge of the enabling technologies required for our work. 

Chapter 3 describes our approach to the construction of semantic virtual organizations (VOs). We start 
by introducing the concepts of semantic virtual organizations and ontological directories. We then 
describe a DHT implementation of the ontological directory. Then, we present our distributed load-
balancing mechanism, which addresses one of the major problems of the directory overlay. 

In Chapter 4, we present GONID - a framework for semantic resource integration and discovery in 
virtual organizations. We describe our techniques for representing the resource metadata, mapping 
metadata with different representations, and evaluating complex queries. We then present a coarse
grained indexing scheme to efficiently store and retrieve resource metadata in a fully distributed D H T 
overlay. Finally, we describe a prototype implementation of this system. 

A n alternative discovery framework, OntoSum, is detailed in Chapter 5. We first explain our motivation 
for proposing such an alternative to the GONID system, then give an overview of the basic behind it -
creating semantic small-worlds. We develop algorithms to compute the semantic distance between nodes, 
so that nodes can be reorganized to form semantic small-worlds according to their semantic distance 
from one another. Then, we present our searching algorithm applied to these small-worlds, followed by a 
distance-vector-based semantic query routing algorithm, R D V . 

Finally, Chapter 6 presents our conclusions, a discussion of limitations, and suggestions for future work. 



Chapter 2 
Related Work 

and Background Knowledge 

In this chapter, we discuss related work on cross-domain resource discovery, as well as the enabling 
technologies required for our proposed framework. We also cite and discuss the research most relevant to 
our work in subsequent chapters. 

2.1 Existing discovery technologies 
To design a resource discovery system for global-scale grids, we examine existing resource discovery 
approaches, to see if any of these can provide a solution, or generate valuable insights into our discovery 
problem. 

2,1.1 Grid information service 
Infrastructure targeting grid resource information is often referred to as a Grid Information Service (GIS) 
[24], and provides information about resources and services to users. 

Traditionally, a Grid Information Service is mainly based on a centralized or hierarchical model. In the 
Globus Toolkit 2 [31], the Monitoring and Discovery Service (MDS) [24, 29] provides access to static 
and dynamic information about resources. MDS is based on the Lightweight Directory Access Protocol 
(LDAP) [91, 58, 120], and consists of two components: Grid Index Information Services (GIIS) and Grid 
Resource Information Service (GRIS). The resource information is obtained by the information provider 
and is passed on to GRIS. GRIS registers its local information with the GIIS, which registers with 
another GIIS, and so on. MDS clients can get the resource information directly from GRIS (for local 
resources) and/or a GIIS (for grid-wide resources). The MDS hierarchy mechanism is similar to DNS. 
GRIS and GIIS, at lower layers of the hierarchy, register with the GIIS at upper layers, realizing the 
global indexing and discovery. 

Globus Toolkit versions 3 and 4 [128] provides a service-oriented information service, i.e., the Index 
Service. The Index Service leverages service data defined in the Open Grid Services Architecture 
(OGSA) [30] specification to provide services. A l l services are described in a standardized X M L schema, 
called Elements of Service Data (SDEs). The Index Service provides high-level API functionalities to 
register, aggregate, and query SDEs. Users can get a node's resource information by either directly 
querying a server application running on that node, or querying dedicated information servers that 



retrieve and publish the resource information of the organization. Techniques for associating information 
servers, and to construct an efficient, scalable network of directory servers, are left unspecified. 

Condor's Matchmaker [87] uses a centralized mechanism to locate desirable resources. Each node in the 
Condor system advertises its resources and reports resource status to a central manager. The central 
manager then matches resource requesters' queries with resource providers' advertisements. 

Legion [20] takes an object-oriented approach to resource management. It uses Collections to search and 
locate resources in the grid. When a user requests a resource, Legion will query resource information in 
multiple Collections; if it finds several such resources. Legion's resource scheduler will randomly choose 
one of them. 

For small-to-medium scale grids, these centralized or static hierarchical solutions work fine. However, 
for large, up to global-scale grids, these approaches are not efficient and do not scale. Additionally, even 
for smaller grids, a centralized solution will always be a performance bottleneck and a single point of 
failure. Presently, grids have moved from the obscurely academic to the highly popular. As the size of 
the grid grows from tens to thousands or even millions of nodes, the traditional server-based grid 
information service will not scale well. As a remedy, some researchers (e.g., [15] and [46]) advocate the 
use of P2P techniques for implementing scalable grid systems. We now review the state of the art in P2P 
discovery technologies. 

2.1.2 P2P discovery systems 
P2P has recently been recognized as a more natural and flexible approach to sharing resources than the 
traditional client-server model. P2P introduces a paradigm of decentralization and self-organization of 
highly autonomous peers. This new paradigm allows the system to scale to a very high number of 
participating nodes, while ensuring fault-tolerance. 

2.1.2.1 Structured and unstructured routing 
Existing P2P routing algorithms have been classified as "structured" or "unstructured". Each category 
has a few variations where certain features are enhanced to satisfy different application requirements. 

Early versions of Gnutella [129] were unstructured, with queries being flooded throughout the network. 
This method, though simple, does not scale well in terms of message overhead. In addition, it is effective 
in locating popular content, but performs poorly for more rare content. There have been numerous 
attempts to enhance its scalability. For example, Chawathe et al. [21] improved the efficiency of searches 
in unstructured P2P networks by topology adaptation, replication, and flow control. Yang and Garcia-
Molina [118] presented several strategies, such as iterative deepening and the D B F algorithm, to reduce 
the overhead of searching. Another algorithm, called probabilistic flooding [4], was modeled using 
percolation theory. Random-Walks [73, 1] proposed an alternative to flooding for unstructured searches. 



They reduce the amount of network traffic at the cost of search speed. Random-Walks usually employ 
previous experience to help forward the query. 

Structured systems, also called Distributed Hash Tables (DHTs), include Pastry [121], Tapestry [90], 
Chord [102], and the Content Addressable Network (CAN) [88]. They map a content identifier to a key, 
and guarantee that content can be located within a bounded number of hops. These systems have been 
shown to be scalable and efficient, however, there have been two main criticisms of structured systems. 
First, they do not support keyword searches and complex queries as well as unstructured systems. The 
second main criticism of structured systems is their tight control of both data placement and network 
topology, which also makes them more sensitive to failures. 

Recently, hierarchical super-peer systems [119] have been proposed to improve search efficiency. They 
utilize the heterogeneity existing in P2P networks and adopt hierarchy in the form of Ultrapeers 
(Gnutella [129]) or Super-nodes (FastTrack [33). These powerful nodes maintain the indices for other 
nodes, allowing searching to be carried out only among these more powerful nodes. The introduction of a 
new level of hierarchy in the system increases the scale and speed of a query lookup. 

2.1.2.2 Index and lookup 
P2P discovery systems can be classified into the following four categories, according to index and 
lookup differences. 

Exact key match. This is the simplest index and lookup method. The early file-sharing systems belong 
to this category. These systems index file names; to search a file, the user has to provide the exact file 
names as the search key. Because of its limited searchability, few systems continue to use this method. 

Keyword lookup. The most widely referenced P2P systems use this lookup method. For example, 
Gnutella queries contain a string of keywords. Gnutella peers answer when they have files whose names 
contain all the keywords. A few studies extend DHTs to support keyword lookup as well. For example, 
in their paper [93], Reynolds et al. proposed mapping each keyword to a key and publishing links to 
objects based on these keys. A query with multiple keywords has to look up each keyword and return the 
intersection. A l l related peers have to exchange large amount of data to locate the intersection. Systems 
such as eSearch [105] avoid this multiple lookup and intersection by storing the complete keyword list of 
objects on each node, but this may incur more overhead on publishing and storing the keywords. 

Peer information retrieval (IR). The taxonomy of peer IR adopts information retrieval techniques to 
P2P networks to search large text collections. Most peer IR systems adopt the Vector Space Model 
(VSM) [94]. The V S M model is a way of representing documents and queries through the words (terms) 
that they contain. Each term is assigned a weight reflecting its importance in the document. One popular 
weighting scheme is TFIDF weighting [95], which includes the collection of weighting calculations that 
incorporate term frequency (TF) and inverse document frequency (IDF). The similarity of the document 



and query vectors gives an indication of how well a document matches a particular query. P2P IR 
systems such as PlanetP [23] and eSearch [105] leverage the V S M by indexing the vector by distributed 
peers. Latent Semantic Indexing (LSI) [34] tries to overcome the lexical matching problems of V S M by 
using statistically derived conceptual indices instead of individual words for retrieval. LSI assumes that 
there is some underlying structure in word usage that is partially obscured by variability in word choice. 
A truncated singular value decomposition (SVD) [25] is used to estimate the structure in word usage 
across documents. Systems such as pSearch [106] incorporate LSI with the P2P overlay to benefit peer 
IR. Like other information retrieval systems, peer IR is mainly used for full-text (e.g., H T M L , PDF) 
search, but is not applicable to searching other resources. 

Peer data management. Another growing class of P2P systems, called Peer Data Management Systems 
(PDMS) [107], have been motivated by P2P technologies and distributed database systems. In a P D M S , 
every peer maintains a local database associated with a schema. The relationships between the data of 
peers are maintained between pairs of peers. By traversing paths of schema mappings, a query (usually in 
SQL format) over one peer can obtain relevant data from any reachable peer in the network. PeerDB [84] 
is reportedly the first PDMS implementation. PeerDB can be viewed as a network of local databases on 
peers. It allows data sharing without a global schema by using meta-data for each relation and attributes 
of relation entities. To process queries, relations that match the user's search are returned by searching on 
neighbors. After the user selects the desired relations, queries are directed to nodes containing the 
selected relations. Recently, PDMSs using semi-structured data, such as extensible Markup Language 
( X M L ) and Resource Description Framework (RDF) [57, 124], have appeared. For example. Piazza [42, 
108] answers XQuery-based queries [10] through chained directional X M L mappings. Edutella [82, 83] 
provides RDF-based metadata management on a J X T A framework [132]. 

Most PDMSs concentrate on data management such as schema mapping and query processing, and do 
not emphasize the underlying P2P network structure and routing algorithms. For example, PeerDB and 
Piazza do not provide network topology or query routing schemes; they simply assume that queries can 
be answered by forwarding to neighbors. Edutella uses J X T A to broadcast queries to a HyperCup 
topology. The simple P2P structure and routing algorithms used by PDMSs make these systems difficult 
to scale to very large networks. Although research such as RDFPeer [16] provides a DHT-based routing 
scheme to route RDF data, other data management problems such as information integration are not 
addressed. Efficient architectures and routing schemes that can improve the communication efficiency of 
P D M S have got to be developed. 

P2P systems offer many benefits over the traditional client-server model, including better scalability, 
automatic management, fault-tolerance, and load-balancing. Therefore, we use P2P as our underlying 
communication structure. At the same time, P2P systems also present several challenges that preclude 
their widespread acceptance and usage in grids. For example, current P2P systems often lack the ability 
to deploy production-quality services, persistent and multipurpose service infrastructure, complex 
services, robustness, performance, and security. Thus, one of the tasks of this thesis is to overcome these 
problems and make P2P systems better serve grid needs. 



2.1.3 Other discovery protocols 
Domain Name System (DNS) [125] is the most successful wide-area service for location of resources 
based on names. DNS allows nodes on the public Internet to be assigned both an IP address and a 
corresponding domain name. For DNS to work as designed, these names must be globally unique. D N S 
is a hierarchical system; it organizes all registered names in a tree structure. DNS was not designed to 
work with dynamic addressing such as that supported by DHCP [126]. DNS requires that fixed (static) 
addresses be maintained in the database. Its hierarchical organization and caching strategies take 
advantage of the rather static nature of the information to be managed. DNS name resolution and grid 
resource discovery have similar features: both are used to locate resources by giving a description of the 
resources. DNS use names as its search criteria, while resource discovery allows for attribute matching 
and service browsing. In addition, DNS was designed to locate rather static information, while grid 
services are more dynamic. 

Universal Description Discovery and Integration (UDDI) [139] is an open industry initiative, enabling 
businesses to publish service listings and discover each other, and define how services or software 
applications interact over the Internet. It consists of a standards-based set of specifications that allow 
service description and discovery. Businesses populate the registry with descriptions of the services they 
support. UDDI assigns a unique universal identifier (UUID) to each registration and stores them in the 
registry; this can be a dynamic process allowing search and discovery to automatically adapt to available 
services. The current search facilities offered by the latest version of UDDI do not offer any special 
features for finding Web service registries. As a result, it is assumed that Web service clients have prior 
knowledge of the location of the registries. 

Search engines are an important tool for information foraging on the Web. Search engines are suites of 
computer programs that automatically find and download web pages, storing them in a database. They 
include programs that link the database to a user interface, normally in the form of a web page, so that it 
can be interrogated through the Internet, often by a keyword search. The query capability of Web search 
engines is limited to keyword search. Given a set of keywords, a Web search engine returns a ranked list 
of pages that contain the keywords. Since Web data is essentially text, it does not have the rich semantics 
of structured data. As a result, more expressive, database-style queries cannot be supported. A search 
engine has to crawl from the Web periodically in order to maintain an up-to-date index. Most Internet 
search-type lookup services fail to be responsive to updates, for example, Google measures its response 
time to dynamic changes in days. 

Traditional search engines do not consider domain knowledge; they do not understand the meaning of a 
user's search request and the inherent relationships among the terms that a Web document contains. This 
limitation severely curtails their ability to perform a content-based search. Due to the complexity of 
natural language, which contains synonyms and homonyms/polysemes, the precision and recall of the 
search results can hardly be guaranteed. Although present search engines are trying to make up for this 
limitation by means of query expansion or Latent Semantic Indexing (LSI) [34], the core of the problem 



is not being addressed. Employing domain knowledge to assist in the search process is the key to 
semantic search. 

2.1.4 Summary of existing discovery technologies 
In summary, there are many discovery-related technologies, addressing different aspects of resource 
location in networks. Each model has its own advantages and disadvantages. Classical grid information 
service and Web services use centralized or hierarchical solutions, which work fine for small- or 
medium- sized networks, but are not scalable for large-scale networks. DNS requires a global naming 
strategy and was designed to locate rather static information. Search engines are powerful but are unable 
to answer complex queries, respond slowly to new updates, and are not applicable to searching intra-
organization resources. P2P schemes always provide single functionality and rarely achieve both 
scalability and rich searchablility. In view of these defects of existing systems, a new architecture is 
clearly needed. In this thesis, we address some of the major issues of resource discovery in a large-scale 
grid and attempt to provide a solution to these problems. 

2.2 Concepts and enabling technologies 
In this section, we discuss two key enabling technologies required for our proposed discovery framework, 
namely the Semantic Web and P2P overlay networks. 

2.2.1 Semantic Web and ontologies 
In our work, we employ techniques from the Semantic Web to make searching more intelligent. The 
Semantic Web is an evolving extension of the World Wide Web (WWW) in which Web content can be 
expressed not only in natural language, but also in a format that can be read and used by software agents, 
thus permitting them to find, share and integrate information more easily. Proposed by Tim Bemers-Lee, 
inventor of the Web and H T M L , the Semantic Web is his vision of the future of the WWW. The 
development of the Semantic Web proceeds in steps, each step building a layer on top of another. Figure 
2.1, which is adapted from a book by Antoniou et al. [2], shows the main layers of the Semantic Web 
design and vision. The bottom layer is X M L , a language used for writing structured Web documents with 
a user-defined vocabulary. X M L is particularly suitable for sending documents across the Web. RDF is a 
basic data model, like the entity-relationship model, for writing simple statements about Web objects 
(resources). The RDF data model does not rely on X M L , but RDF has an XML-based syntax. Therefore, 
in Figure 2.1, it is located on top of the X M L layer. The RDF schema is based on RDF and provides 
modeling primitives for organizing Web objects into hierarchies. Its key primitives are classes and 
properties, subclass and sub-property relationships, and domain and range restrictions. The RDF schema 
can be viewed as a primitive language for writing ontologies. The next layer represents more powerful 
ontology languages such as O W L [134] that expand the R D F schema and allow representations of more 
complex relationships between Web objects. The logic layer is used to enhance the ontology language 



further and to allow the writing of application-specific declarative knowledge. The proof layer involves 
the deductive process as well as the representation of proofs in Web language and proof validation. 
Finally, the Trust layer will emerge through the use of digital signatures and other kinds of knowledge, 
based on recommendations by trusted agents. 
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Figure 2.1 A layered approach to the Semantic Web (Adapted from Antoniou et al. [2]) 

Ontology 
The Semantic Web relies on ontologies that structure underlying data for the purpose of comprehensive 
and transportable machine understanding. Ontology is defined as "an explicit specification of a 
conceptualization" [39]. Ontologies are (meta)data schémas, providing a controlled vocabulary of 
concepts, each with an explicitly defined and machine-processable semantics. By defining shared and 
common domain theories, ontologies help both people and machines to communicate concisely, 
supporting the exchange of semantics and not only syntax. In general, an ontology of a domain consists 
of the four major components listed below [112]: 

• Concepts: Concepts of a domain are abstractions of concrete entities derived from specific instances 
or occurrences. 

• Attributes: Attributes are characteristics of the concepts that may or may not be concepts by 
themselves. 

• Taxonomy: Taxonomy provides the hierarchical relationships between the concepts. 
• Non-taxonomic relationships: Non-taxonomic relationships specify non-hierarchical semantic 

relationships between the concepts. 

Along with the above four components, ontologies may also consist of instances of each of the concepts, 
and inference rules of the domain. Figure 2.2 illustrates a portion of the ontology for a Computer Science 
Department. It indicates some of the major concepts and their hierarchical relationships only. In general, 
the ontology includes non-taxonomic relationships as well, for example: Student - take - Course, Professor 
- teach -Course, Worker - work - Department 



Figure 2.2 An example of an ontology snippet 

Various meta-languages such as X M L , RDF, and O W L have been developed for encoding the ontologies 
of a domain. Several algorithms or techniques for merging or querying ontologies are undergoing 
development. Tools such as Protégé [85] and OntoEdit [104] have been developed for the construction 
and management of ontologies. Moreover, a wide variety of communities have developed either general 
purpose or domain-specific ontologies for various domains. For example, one part of our framework, the 
OntoSum sub-system, uses a general purpose ontology - WordNet [76] to facilitate computation of the 
semantic distance between different ontologies. 

Resource Description Framework (RDF) 
The Resource Description Framework (RDF) [57, 124] is a World Wide Web Consortium (W3C) 
recommendation for describing Web resources. RDF is a basic data model, like the entity-relationship 
model, for writing simple statements about Web objects (resources). The fundamental concepts of RDF 
are resources, properties, and statements. We can think of a resource as an object, a "thing" we want to 
talk about. Resources may be authors, books, places, rooms, search queries, and so on. Every resource 
has a Uniform Resource Identifier (URI). A URI can be a Uniform Resource Locator (URL) or some 
other kind of unique identifier. Note that an identifier does not necessarily enable access to a resource. In 
general, we assume that a URI is the identifier of a Web resource. Properties are a special kind of 
resource; they describe relationships between resources, for example, "written by", "age", "title" and so 
on. Properties in RDF are also identified by URIs. Statements assert the properties of resources. A 
statement is an object-attribute-value triple, consisting of a resource, a property, and a value. Values can 
be either resources or literals. 

R D F can represent simple statements about resources as a graph of nodes and arcs representing the 
resources, and their properties and values. For example, the group of statements, "there is a person 
identified by http://someURI/contact#me, whose name is Juan L i , whose email address is 
juali@cs.ubc.ca, and who is the creator of the web page http.7/cs.ubc.ca/~juanli" could be represented as 
the RDF graph in Figure 2.3. 

http://someURI/contact%23me
mailto:juali@cs.ubc.ca
http://http.7/cs.ubc.ca/~juanli


httpiZ/cs-ubccanuanli 

Figure 2.3 An example RDF graph 

Figure 2.3 illustrates that RDF uses URIs to identify: 
• Individuals, e.g., Juan L i , identified by http://someURI/People/contact#me 
. Kinds of things, e.g., Person, identified by http://someURI/people/contact#Person 
• Properties of those things, e.g., email, identified by http://someURI/contact#email 
• Values of those properties, e.g., character string "Juan L i " as the value of the name property 

(RDF also uses values from other data types such as integers and dates, as the values of 
properties) 

RDF also provides an XML-based syntax (called R D F / X M L ) for recording and exchanging these graphs. 
Figure 2.4 shows a small chunk of RDF in R D F / X M L corresponding to the graph in Figure 2.3. 

<?xml version^" 1.0"?> 
<rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns :contact=" http ://someURI/contact#"> 

<contact:Person rdf:about="http://someURI/people/contact#me"> 
<contact: name>Juan Li</contact: name> 
<contact:create rdf:resource="http//cs.ubc.ca/~juanli"> 
<contact:email>juanli@cs.ubc.ca</contact:email> 

</contact:Person> 
</rdf:RDF> 

Figure 2.4 An example R D F / X M L description 

Web Ontology Language (OWL) 

R D F only provides users with metadata for describing resources, using named properties and values. It 
does not make any commitment to a conceptual structure or a set of relations to be used. An RDF 
Schema (RDFS) [135] defines a simple structure by introducing relationships like inheritance and 

http://someURI/People/contact%23me
http://someURI/people/contact%23Person
http://someURI/contact%23email
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://someURI/people/contact%23me


instantiation, standard resources for classes, as well as a small set of restrictions on objects in a 
relationship. An RDFS can be viewed as a primitive language for writing ontologies. It is roughly limited 
to a subclass hierarchy and a property hierarchy, with domain and range definitions of these properties. 
Since our system needs to represent more complex relationships between resources and perform useful 
reasoning tasks, we use the O W L language to represent shared models of the resources. 

Web Ontology Language (OWL) [134], a W3C recommendation, is an RDF-based language that 
introduces special language primitives for defining classes and relationships as well as necessary 
conditions (e.g., every human has exactiy one mother) and sufficient conditions (e.g., every woman who 
has a child is a mother) for class membership, as well as general constraints on the interpretation of a 
domain. RDF data can be linked to O W L models by the use of classes and relationships in the metadata 
descriptions. The additional definitions in the corresponding O W L model impose further restrictions on 
the validity and interpretation of the metadata. For example, in OWL, we can say that AssociateProfessor 
and AssistantProfessor are disjoint classes: no individual can be both an associate professor and an 
assistant professor. Faculty as a class can be defined as the equivalence class of Academic Staff. It is 
possible to talk about Boolean combinations (union, intersection, complement) of classes in O W L . 
Similarly, OWL can express more complex properties. It provides more property restrictions by 
<owl:Restriction>. In RDFS, properties can be related via a property hierarchy. O W L extends this 
feature by allowing properties to be denoted as transitive, symmetric or functional, and allows one 
property to be declared to be the inverse of another. O W L also makes a distinction between properties 
that have data-values as their range, and those whose range is other individuals. 

There are three different sub-languages of OWL: OWL-Full , O W L - D L and OWL-Lite, each geared 
toward fulfilling different application requirements. We have adopted O W L - D L as our ontology 
language, because it supports automated reasoning, and, in this regard, has a formal semantics based on 
Description Logic (DL) [5]. DLs are typically a decidable subset of First Order Logic, and are tailored 
towards Knowledge Representation (KR) [81]. They are suitable for representing structured information 
about concepts, concept hierarchies and relationships between concepts. The decidability of the logic 
ensures that sound and complete D L reasoners can be built to check the consistency of an O W L 
ontology, i.e., verify whether there are any logical contradictions in the ontology axioms. Furthermore, 
reasoners can be used to derive inferences from the asserted information, e.g., infer whether a particular 
concept in an ontology is a sub-concept of another, or whether a particular individual in an ontology 
belongs to a specific class. Popular existing D L reasoners in the O W L community include Pellet [99], 
FaCT[44] and R A C E R [41]. 

A l l varieties of O W L use RDF for their syntax. Instances are declared as in RDF, using RDF descriptions 
and typing information. O W L constructors such as owhClass, owhDatatypeProperty, and 
owl:ObjectProperty are specialized instance of their RDFS counterparts. 



2.2.2 P2P overlay networks 
Because of its attractive properties, we employ P2P overlay network as the networking foundation of our 
searching system. In the context of this thesis, P2P is a communications model, in which each peer can 
play dynamic roles: resource requester, resource provider, or query-forwarding router, based on the 
required functionalities among peers. In our work, both of the P2P overlay categories, namely 
unstructured and structured overlays, are used to construct virtual networks on top of the existing 
network. Overlay network technologies facilitate network functionalities and enable P2P applications and 
services to perform their intended operations, independent of their physical locations and logical network 
domains. The basic idea of a P2P overlay was presented in Section 2.1.2. We discuss the most relevant 
P2P overlay techniques in the context of our work in subsequent chapters. 

2.2.3 Summary of enabling technologies 
In summary. Semantic Web and P2P are the two main enabling technologies used in our grid resource 
discovery framework. The Semantic Web addresses the requirement to model, manipulate and query 
information at the conceptual level. It applies ontologies to information to improve the quality of 
information management. Ontologies are used to explicitly represent semantics of resource metadata, and 
enable sophisticated automatic support for acquiring, maintaining and accessing information. P2P 
technologies aim at abandoning centralized control in favor of decentralized organizational principles, 
allowing new degrees of freedom for changing information architectures and exchanging information 
between different nodes in a network. Together, the Semantic Web and P2P allow for combined 
flexibility at the level of information structuring and distribution. In this thesis, we investigate how to 
benefit from this combined flexibility by discussing an ontologically driven search and exploration of 
inter-ontological relationships over a P2P infrastructure. Methodology and tools are developed for 
intelligent access to large quantities of resource information in intra- and extra-virtual organizations, as 
well as Internet-based environments, to employ the full power of ontologies in supporting of resource 
searching and sharing, from both the resource consumer perspective and that of the resource provider. 



Chapter 3 

Virtual Organization Formation 

with an Ontological Model 

If not properly organized, searching an Internet-scale grid for quality resources is like looking for a 
needle in a haystack - we have too large a space to explore. Therefore, as the first step of our discovery 
scheme, we organize and reduce the huge chaotic search space to multiple semantics-based sub-spaces. 
Participants in each sub-space share similar semantic interests, forming semantics-based Virtual 
Organizations (VO). Searching can then be performed on VOs, and queries can be quickly propagated to 
many appropriate members in the V O . This procedure results in a higher precision and recall of search 
results. 

We propose an ontology directory model, the Distributed Ontology Directory (DOD), to help nodes 
locate their VOs of interest. The ontology directory defines a hierarchy of categories of a domain of 
interest that are used to represent the semantics of resources. It is like a yellow page or a "rendezvous" 
point, allowing nodes to find contacts with similar interests. The directory does not need to be predefined; 
it grows spontaneously as network interest evolves. To implement the directory, the system relies on an 
efficient DHT process as a building block. A hierarchy path identifies relations of categories in the path. 
The system transforms the ontology directory path into a set of numeric keys. It does so in a way that 
preserves the expressiveness of the semi-structured data, facilitates an even data distribution through the 
network, enables efficient query resolution, and provides a flexible lookup interface. 

One major problem of this directory overlay is the load unbalance caused by the inherently uneven 
hierarchical namespace and highly variable directory popularity. To solve this problem, we propose an 
effective load-balancing solution, which takes the node heterogeneity and access popularity into account 
to determine the load distribution. Our algorithm achieves load balancing by dynamically balancing the 
query routing load and query answering load respectively. 

The main contributions of this chapter are as follows: 
1. We propose an effective model - the ontology directory - to help cluster grid nodes into VOs in 

order to reduce the search space and thereby improve the search efficiency. 
2. We design an effective strategy to index the hierarchical ontology directory with a flat DHT structure. 
3. We solve a major problem of the DHT ontology indexing: unbalanced loads caused by skewed 

directory popularity. 
Portions of this chapter originally appeared in L i et al. [64, 68, 70]. 



In the rest of this chapter, we introduce the notion of ontological directories in Section 3.1. Then in 
Section 3.2 we describe how to index and search in the directory overlay. In Section 3.3, we explain a 
comprehensive scheme for solving the load unbalancing problem of the directory overlay. Finally, we 
validate our models using simulation in Section 3.4. 

3.1 Concept of ontological directory 
A n open and dynamic grid should allow users to use the grid structure and resources for a wide variety of 
purposes. Grids will be fully exploited only when people can quickly and conveniently build virtual 
organizations (VOs), which are defined as a group of individuals or institutions who share the grid 
resources for a common goal [32]. In order to organize different interests and facilitate the construction 
of VOs, we propose an abstract generic ontological model that guides users in determining the desired 
ontological properties and choosing the "right" VOs to join. The ontology model defines most general 
categories of existence (e.g., existing item, spatial region, dependent part), which essentially form a 
hierarchy where each entry corresponds to a categorical domain. Here we provide a formal definition of 
this ontology model, which we call the ontology directory. 

DEFINITION 3.1 : An ontology directory is a system D=(L,H,r), which consists of. 
• A lexicon: The lexicon L contains a set of natural language terms. 
• A hierarchy H: Terms in L are taxonomically related by the directed, acyclic, transitive, reflexive 
relation H. (H czLxL); 
• A root term r e L. For all I e L, it holds: H(l,R). 

The ontology directory essentially defines a hierarchy where each node corresponds to a lexicon or a 
categorical term. It is almost a rooted tree structure, with rare nodes having multiple parents. The 
subordination relationship between nodes is interpreted as the involvement (topic/subtopic) relationship, 
while the layers of nodes correspond to intuitively perceived levels of abstractness of topics. Each node 
is described by primitives which are generic concepts that include other concepts. An example of a 
primitive is computer that includes software, hardware, networks, and so forth. The hierarchical 
relationship, also called the IS-A relationship, is transitive, i.e., whatever holds for a more general 
concept also holds for a more specific concept, e.g., music is a type of art. Figure 3.1 shows a fragment 
of an example ontology directory. 

It is beneficial to have a common ontology module, because having some common ground for the high-
level general concepts could alleviate the problem of semantic heterogeneity and provide an aggregated 
view of the network. The ontology model allows users to choose the right V O to join, detect new trends, 
or find useful information they did not realize was available. In fact, in the World Wide Web, the global 
directory of web sites, e.g., Google directory, Yahoo directory, and D M O Z [123], has been widely 
adopted. The directory helps the system to create a well-knit ontology structure and makes ontology 
location and browsing efficient. Our ontology directory is different from those global web directories, 
because it is not predefined, but created and extended automatically with network growth and the 



evolution of the ontology. Moreover, the ontology directory loosely defines domain categories; it does 
not expect different communities of users to conform to the same ontology to describe their resources 
and interests. Therefore, it is based on multiple ontologies as opposed to a global ontology. 
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Figure 3.1 Fragment of an example ontology directory 

To implement the ontology directory in a decentralized manner, we need an efficient and scalable 
structure to index and lookup the hierarchical taxonomy. Many applications, such as Canon [35] or 
HIERAS [117], use hierarchical DHTs to index hierarchical data; however, they are not applicable to our 
system. Specifically, in Canon, information is only stored in real nodes (leaf nodes), while all internal 
nodes are purely virtual; however, directory information in our system is stored in real (non-virtual) 
internal nodes. In addition, it is difficult to implement directory browsing inside the Canon network, 
HIERAS constructs the multi-level hierarchy by creating multiple DHT overlays for each subdirectory. 
As mentioned by Artigas et al. [3], "DHTs are mainly designed for very big networks, and the creation of 
several DHTs assigned to sub-domains or layers can represent a burden for the problem that they aim to 
solve". The major problem of the multi-level DHT architecture is that maintaining each level of the 
hierarchy brings extra overhead; it is a waste on subdirectories not large enough. In our work, we 
propose a simple flat DHT structure to index the hierarchical directory. This structure enables 
economical, flexible, and efficient lookup services. 

3.2 DHT-based directory indexing 
In this section, we describe techniques for indexing a hierarchical ontology directory in a flat DHT 
overlay. Our system provides multiple interfaces permitting users to access the directory in different 
ways. 



3.2.1 DHT indexing background 
Distributed hash tables (DHTs) are a class of decentralized distributed systems that partition ownership 
of a set of keys among participating nodes, and can efficiently route messages to the unique owner of any 
given key. A partitioning scheme splits ownership of the key-space among the participating nodes. Each 
node maintains a set of links to others; together these form the overlay network. For any key k, a node 
either owns k or has a link to a node that is closer to k in terms of the key-space distance. Routing of a 
message to the owner of any key k can use a greedy algorithm: at each step, forward the message to the 
neighbor whose ID is closest to k. When there is no such neighbor, then it must have arrived at the 
closest node, which is the owner of k. A typical use of the DHT for storage and retrieval might proceed 
as follows. Suppose the key-space is the set of 160-bit strings. To store a file with a given filename and 
data in the DHT, the S H A l hash of filename is computed, producing a 160-bit key k, and a message put 
(k, data) is sent to any node participating in the DHT. The message is forwarded from node to node 
through the overlay network until it reaches the single node responsible for key k. Any other client can 
then retrieve the contents of the file by again hashing the filename to produce k and asking any D H T 
node to find the data associated with k with a message get(k). While any of the structured DHTs can be 
used for the purpose of our scheme, we use Pastry [90] and Chord [102] as examples in this thesis. In the 
following, we briefly explain the DHT mapping in Pastry and Chord. 

Pastry is a structured P2P routing protocol that implements the DHT abstraction. In a Pastry network, 
each node has a unique, uniform, randomly assigned nodeld in a circular 128-bit identifier space. Given a 
message and an associated 128-bit key. Pastry reliably routes the message to the live node whose nodeld 
is numerically closest to the key. In a Pastry network consisting of A'̂  nodes, a message can be routed to 
any node in less than log 2''N steps on average, where 6 is a configuration parameter. Each node stores 
only O(logN) entries, where each entry maps a nodeld to the associated node's IP address. Specifically, a 
Pastry node's Routing Table is organized into [log 2* A^l rows with ('2*-l) entries each. Each of the (2*-
1 ) entries at the row n of the Routing Table refers to a node whose nodeld shares the first n digits with 
the present node's nodeld, but whose (n+l)th digit has one of the (2''-!) possible values other than the 
(n+\)th digit in the present node's nodeld. Pastry stores multiple candidates per Routing Table entry to 
increase availability. In addition to a Routing Table, each node maintains a Leaf Set, consisting of L/2 
nodes with the numerically closest larger nodelds and L/2 nodes with the numerically closest smaller 
nodelds, relative to the present node's nodeld. L is another configuration parameter. In each routing step, 
the current node forwards a message to a node whose nodeld shares with the message key a prefix that is 
at least one digit (or b bits) longer than the prefix that the key shares with the current nodeld. If no such 
node is found in the Routing Table, the message is forwarded to a node whose nodeld shares a prefix 
with the key as long as the current node but is numerically closer to the key than the current nodeld. Such 
a node must exist in the Leaf Set unless the nodeld of the current node or its immediate neighbor is 
numerically closest to the key. A detailed description of locality-aware routing in Pastry can be found in 
[90]. 



Chord system is another popular DHT algorithm. Nodes in Chord are placed on a Ring. Both node IDs 
and keys are placed on the same ring. The hash function produces an m-bit identifier for both nodes and 
keys for this purpose. Each node has a successor and predecessor . Insertion of a new node between two 
older nodes involves the update of successor of one of those node and predecessor of the other. A key-
value pair is assigned to the first node whose identifier is equal or follows the identifier of the key. For 
the efficiency of searching, Chord use finger table to partition the virtual cycle into l+logN segments. 
This finger table let each machine use 0{log(N)) memory to maintain the topology information. When 
node searches a resource, it first calculates the hash value of the resource name and then determines the 
position of the resource in the virtual cycle of node. 

3.2.2 Ontology directory indexing 
To efficiently index and retrieve the hierarchical ontology directory with a flat DHT structure, we need to 
extend the basic DHT API. The directory path starting from the root is used to represent the ontology 
domain (e.g., /computer science/systems/network). One domain corresponding to a particular V O should 
include contact information for peers in this V O . A direct indexing scheme is to index the full directory 
path as a key, and users can locate a V O by providing the full directory path. However, like navigating in 
a U N I X file system, users rarely input an absolute directory path, but rather browse directories level by 
level and select the more interesting one at each level. Therefore, it is necessary to provide users an 
ontology browsing interface. Moreover, to automatically locate related VOs for nodes, we extract key 
concepts from the joining nodes' ontology and then use them as keys to locate the right directory domain. 
Therefore, we should also provide a keyword-based lookup interface. 

Systems 

^ 

Network 

Architecture"^ 1̂  Protocol j 

Figure 3.2 Fragment of an ontological directory model 

Consider the ontology model in Figure 3.2. It consists of taxonomy paths: 

/computer science 
/computer science/systems 
/computer science/hardware 
/computer science/systems/network 



/computer science/systems/processor 
/computer science/systems/network/architecture 
/computer science/systems/network/protocol 

Some domains may relate to keywords, for example: 
Keywords: cluster, grid, P2P, are related to taxonomy /computer science/system/network/architecture 
Keywords: protocol, TCP, IP are related to taxonomy /computer science/system/network/protocol 

For each path and keyword, a hash value (key) is computed in Pastry using an SHA-1 algorithm. Table 
3.1 shows keys for taxonomy paths and keywords of the model. To make the example simple, we use a 
4-digits (8 bits) identifier space; in reality a much larger identifier space is used, such as 160 or 128 bits. 
Each key is assigned to a node, which is the nearest node to the key in the key-space. For example, as 
listed in Table 3.1, the hashed key of directory path /computer science/system is 0230, and the key is 
stored at node 0213 as shown in Figure 3.3, since node 02I3's id is closest to the key. Each owner node 
of a directory key maintains a Least Recently Used (LRU) cache storing contact information of peers that 
are interested in this directory. To implement the directory browser's functionality, an overlay node that 
is in charge of a directory entry also stores information about that directory's direct children. When the 
user chooses one directory. Pastry routes to that directory entry and retrieves child directory information, 
allowing the directory to be extended dynamically while browsing. An overlay node also stores 
keywords that are hashed to it and links the keywords with related ontology domains. Figure 3.3 shows 
how the directory model above is stored into an example Pastry network. 

Table 3.1 Hash keys of models in Figure 3.2 in a sample 4-digit identifier space 

Hash key Directory path 

1211 /computer science 

0230 /computer science/systems 

3211 /computer science/hardware 

2011 /computer science/systems/network 

1000 /computer science/systems/processor 

1013 /computer science/systems/network/architecture 

0012 /computer science/systems/network/protocol 

2111 Protocol 

0211 TCP 

1201 IP 

2003 Cluster 

0012 Grid 

0032 P2P 



Since nodes might fail and network connections might break, the ontology model stored on its 
corresponding overlay nodes are replicated on its neighbors in the Pastry identifier space. This can be 
done by setting the replica factor/. Whenever a node receives a directory storing request, it will not only 
store the directory locally but also store it to its/immediate leaf nodes. If any node fails or its connection 
breaks, its leaf neighbors will detect it by using the keep-alive messages. 
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Figure 3.3 Storing the ontology model into a Pastry network 

of 6 nodes in an example 8-bit identifier space 

3.2.3 Ontology directory lookup and VO register 
We provide three kinds of lookup interfaces for users: exact lookups, browser-based lookups, and 
keyword-based lookups. A node can use these three interfaces to locate VOs they are interested in and 
join these VOs. 

Exact lookups: This is the simplest form of a lookup. This type of query contains the complete directory 
path of the interest domain, for example "/computer science/system/network/architecture". This 
complete directory path is hashed to a key and then a corresponding lookup of the hashed key on the 
Pastry overlay is executed. 



Browser-based lookups: In this case, users do not need to remember the directory path to locate the 
directory domain of interest. Instead, they can navigate from the root of each hierarchy down to the 
leaves to reach the directory of interest. A user first uses the root Id as the key to locate the node storing 
the root of the ontology model. Since a node storing a directory entry also storing the next level children, 
then users can dynamically expand a directory tree node to browse its child branches. After the user 
chooses an interested branch, the directory path of that branch is used as a key to lookup the next level 
directory. In this way, the tree is expanded until users find the desired directory entries. In reality, the 
root and top level categories are widely cached in most of the nodes in the network; therefore they can be 
quickly located without going through the overlay network. 

Keyword-based lookups: Users can also specify one or more key concepts of their local ontology and 
use the concepts as keys to lookup the corresponding directory in the overlay. Since overlay nodes in 
charge of the keywords keep links to the corresponding directory entries, a keyword-based lookup can be 
converted into an exact lookup. When a user provides multiple keywords, each of them may correspond 
to multiple directories, the intersection (or union) of all directories related to these keywords is returned 
to the user. Domain ontologies and/or external generic ontologies like WordNet [79, 28] can be used for 
keyword semantic query expansion or keyword conceptual indexing in order to improve retrieval 
performance. 

V O register: Since an overlay node in charge of an ontology directory also keeps a cache storing 
information about nodes interested in that ontology directory, a querying node can get contacts of others 
sharing the same interest through this overlay node. The new node can then join the V O by connecting to 
those contacts. At the same time, if its ontology matches the ontology of the V O , this new node can 
register with the V O by adding itself to the cache of the directory overlay node; therefore, in the future, 
others can find it. A node with multiple interests can register with multiple VOs. There are several 
special cases for a node's registration: (1) If a new registering node cannot get enough contacts from the 
interested domain (i.e., the V O is very small), it explicitly routes to the upper- and/or lower- level 
categories to register and get more contacts. (2) If a node cannot find suitable categories satisfying its 
interest (i.e., it is the first node registering this interest), it will try to add this category by applying from 
an authoritative organization. 

Directory overlay maintenance: The directory overlay nodes are also user nodes. We utilize the 
heterogeneity of grid nodes, and promote those stable and powerful ones to join the directory overlay. 
Excluding ephemeral nodes from the directory overlay avoids unnecessary maintenance costs. The 
maintenance of the directory overlay mainly includes adding new directory entries. We assume deleting 
and updating do not occur frequently. When a new joining node cannot find its category of interest, it 
may try to apply to create a new category. If the application is approved by the authoritative 
organizations in the grid, the node will create this category by hashing the directory path to an overlay 
node and informing the parent node to add this entry. Then it hashes each of its main key concepts in the 
ontology to the overlay network. A node joins the directory overlay only when three conditions are 
satisfied: (1) It satisfies the capacity requirements, i.e., it is powerful enough. (2) It is stable for a 



threshold time period. (3) The directory load balancing algorithm (which will be explained in next 
section) requires it to do so. 

3.3 Directory overlay load balancing 
The directory overlay uses a DHT to distribute directories randomly among peers, but the consistent hash 
which used by DHT may cause some peers to have 0(logAO times as many objects as the average peer 
[102]. In addition, peer capacity, such as computational power, storage capacity and network bandwidth 
are quite different among peers. Even with a uniform workload distribution, serious load imbalance 
problems may occur. Further imbalance may happen due to the non-uniform distribution of directory 
entries in the identifier space. The situation is even worse for hierarchical systems such as our 
ontological directory hierarchy: servers hosting nodes at the top of the hierarchy will incur exponentially 
disproportionately more load than servers hosting leaf nodes. Last but not least, directory queries tend to 
be skewed, i.e., certain directories are quite popular as compared to the others. Heavy lookup traffic load 
is experienced at the peers responsible for popular objects, as well as at the intermediary nodes on the 
lookup paths to those peers. When subsequent tasks are then obliviously assigned to the already 
overloaded node, the average response time consequently increases drastically. We aim at balancing the 
highly unbalanced load caused by skewed directory distribution through the use of a comprehensive 
balancing mechanism, which includes an adaptive load redistribution scheme as well as a dynamic 
routing table reconfiguration scheme. 

3.3.1 Existing balancing strategies 
There have been many load balancing schemes proposed for DHT-based systems. Roughly, we divide 
them into four categories: 

The virtual server approach [36, 50, 51] focuses on the imbalance of the key distribution due to the hash 
function. Each physical node instantiates 0(logAO virtual servers with random IDs that act as peers in the 
DHT, which reduces the load imbalance to a constant factor. To address peer heterogeneity, each node 
chooses to create a number of virtual servers proportional to its capacity. Unfortunately, the usage of 
virtual servers greatly increases the amount of routing metadata needed on each peer and causes more 
maintenance overhead. In addition, the number of hops per lookup (and the corresponding latency) 
increases as well. Moreover, it does not take object popularity into account. 

Unlike the virtual server approach, the dynamic ID approach uses just a single ID per node [80, 74, 52, 
116]. The load of a peer can be adjusted by choosing a suitable ID in the namespace. However, all such 
solutions requires IDs to be reassigned to maintain load balance as nodes dynamically join and leave the 
system, resulting in a high overhead because it involves transferring objects and updating overlay links. 

The third class of approaches uses multiple hash functions to balance the load. The power of two 
choices [14] uses two or more hash functions to map a key to multiple nodes and store the key on the 



peer that is the least loaded. In the k-choice [59] load balancing algorithm, the node uses multiple hashes 
to generate a set of IDs and at join time selects an ID in a way to minimize the discrepancies between 
capacity and load for itself and the nodes that will be affected by its joining. While such a strategy is 
simple and efficient, it increases the computational overhead for publishing and retrieving content, since 
multiple hash functions have to be computed each time; in addition, it is a static allocation, and does not 
change in the case that the workload distribution shifts. 

The last category of balancing schemes is by caching and replication [90] [102] [37], Hotspots and 
dynamic streams are handled by using caches to store popular objects in the network, and lookups are 
considered resolved whenever cache hits occur along the path. Pastry [90] and Chord [102] replicate an 
object on the k servers whose identifiers are closest to the object key in the namespace to improve the 
availability, but it also help balance the load of a popular topic. Unfortunately, the last few hops of a 
lookup are precisely the ones that can least be optimized [33]. Moreover, since the query load is 
dynamic, a fixed number of replicas do not work well; if the number is chosen too high, then resources 
may be wasted, and if it is set too low, then these replicas may not be enough to support a high query 
load. 

The most significant load-unbalancing problem of our directory overlay is caused by skewed directory 
popularity. Therefore, we focus on this unbalance problem. Our load-balancing solution partially belongs 
to the last category of the aforementioned schemes. It replicates and dynamically reconfigures the routing 
table to balance the heterogeneous request load - the most significant problem of our directory overlay. 
The existing approaches, especially caching, are orthogonal to our solution. 

3.3.2 Adaptive load balancing scheme 
In this section, we detail our load balancing scheme, focusing on the imbalance caused by heterogeneous 
directory popularity. We propose a comprehensive load balancing strategy, which address this problem 
by dynamically re-distributing the load of hot spots to other "cold spots". Particularly, we distinguish two 
types of load: query answering load and query forwarding load (query load and routing load for short). 
Aiming at balancing these two kinds of load, we propose three balancing strategies: (1) adaptive object 
replication, which targets balancing the query load, and (2) adaptive routing replication and (3) dynamic 
routing table reconfiguration, both aimed at balancing the system's routing load. Each node analyzes the 
main cause of its overloading and uses a particular balancing algorithm to correct its situation. This 
scheme is generic enough to resolve the load balancing problem of general DHT applications. In the rest 
of this section, we use terms peer and node interchangeably to represent the node of a directory overlay. 

3.3.2.1 Load metric 
Our load balancing scheme involves a load metric to gauge the activity of each peer node and make the 
necessary adjustments. Each peer p in the network has a capacity C for serving requests, which 
corresponds to the maximum amount of load that it can support. In this thesis, this is derived from the 



maximum number of queries that can be routed, answered, or queued per second by the peer. It is 
assumed that any arriving traffic that cannot be either processed or queued by the peer is dropped. It is 
also assumed that nodes will be able to define their capacity consistently via a globally ratified/used 
metrics scale. 

A t any given time, the load of peer p is defined as the number of requests received per unit of time. We 
focus on two kinds of requests: query routing requests and query answering requests. Upon receiving a 
routing request, the peer checks its routing table and forwards the query to next hop. If it receives a 
query answering request (meaning that it stores the hashed key locally), it serves that request according 
to the application's needs, for example, for our directory overlay, this may include retrieving sub
directories or registering peers to the VOs. For other applications, this may include answering a complex 
query, or transferring a file, and so on. In this thesis, the current load value L of a node is defined in 
Equation (1) as the sum of its current routing load and its current query load: 

L=L, + Lq (3.1) 

L=( a>^q, + bx^n ) xl (3.2) 

Both the routing and query load can be represented by the number of requests received in unit time. 
Assuming that the unit load is /, and each routing request creates a unit load while each query request 
creates b unit load, then (1) can be converted to (2), in which 2^, is the number of query requests in unit 
time, and X r , is the number of routing requests in unit time. 

For any given peer p, we also define an overloading threshold value. To, which represents the point after 
which additional workload placed on the peer will induce overloading, and trigger load redistribution for 
p. This value can be represented as a portion of the peer's capacity, e.g.. To = 0.8C, which means that p is 
considered overloaded when it reaches 80% of its capacity. We also introduce another load threshold 
value, Ts, that represents the "safe" workload capacity for a peer. A peer will agree to accept redistributed 
load from an overloaded peer only when its load is below T^, e.g., Ts=0.6C. The goal of load 
redistribution is to make the workload on all participating peers fall below their respective Ts in order to 
guarantee that none of them will again be overloaded soon after the redistribution. 

3.3.2.2 The adaptive object replication algorithm 
Nodes storing very popular objects are susceptible to becoming overwhelmed due to external requests for 
those objects. In this case, attempting to redistribute the load via shedding objects and keys to other 
nodes does not guarantee any noticeable improvement, since even one very popular key could overload a 
node. Therefore, we suggest a replication-based method to relieve the load of overwhelmed nodes. By 
replicating the popular keys of overloaded nodes to lightly loaded nodes, we help to balance the network 
load. While this idea of balancing by replication is by itself not new, the when, where, and how we 
propose are. Specifically: When does replication occurs? Where do we locate the candidates to help out 



an encumbered node? And how do the consequences of the redistribution get announced to the rest of the 
system? 

When: Each peer periodically checks its current load via the previously mentioned load metrics. If it is 
above the overloading threshold (i.e., L > To), and this overloading is caused mainly by query loads, it 
wi l l pick a lightly loaded node to replicate its keys thus sharing the load. When more than one peer is 
responsible for a popular key, each responsible peer only manages part of the load, thus reducing the 
chance of overloading. 

Where: Upon detecting that it has crossed the "overload" threshold, a node will issue a replica discovery 
query to the network, broadcasted (with limited steps) down the DHT broadcast tree with the querying 
node as the root. Any lightly loaded node (defined previously as nodes with current load L<r,) in the 
path of the tree will reply with its load information. Once enough responses have been received, the 
overloaded node begins transferring its keys and objects to these candidates, creating replica nodes of 
itself. 

How: Once replicas are created, dissemination of information about the existence of these new replica 
must occur. For prefix-based DHTs like Pastry or Tapestry, the replica information is updated at all the 
peers in the original peer's neighborhood set, leaf set, and routing table. Those nodes in turn update their 
own state based on the information received. Similar to the node joining process, the total cost for the 
replica update in terms of the number of messages exchanged is OilogiN). Similarly, for Chord-based 
DHTs, the replica info is updated at the fingers and predecessors of the related nodes to reflect the 
addition of this replica, requiring 0(log^ N) messages. This process can be carried out asynchronously, 
since the peers in the routing table already have a pointer to the original peers and asynchronous updates 
wil l not negatively affect the correctness of the system. When a query needs to be forwarded to a popular 
key, neighboring nodes can now pick peers in a round-robin fashion from the list of available peers 
holding the key. Thus, the queries for the hot key are now partitioned among the multiple peers storing 
the key. When a popular key later becomes unpopular, the replica nodes can just get rid of the replicated 
keys, using access history to gauge the popularity of the replica. 

3.3.2.3 Adaptive routing replication algorithm 
Replicating popular keys relieves the query answering load of nodes responsible for these keys. 
However, another major source of workload in DHT overlays is caused by relaying queries among 
nodes. A node may be overwhelmed simply by the traffic of forwarding incoming routing queries. For 
example, the last hop neighbors of a popular key can be overloaded by forwarding queries to the popular 
node. While this problem can be partially solved by the aforementioned replication of popular keys to 
disperse the traffic, it cannot completely alleviate the problem since certain nodes in the system might 
still be functioning effectively as traffic hubs for popular sections of the network. To address this 
problem, we propose a balancing scheme which actively redistributes the routing load of an overloaded 
node by duplicating its routing table to other nodes, thereby sharing its routing load. When a node is 



overloaded by routing loads, it will pick a lightly loaded node to replicate its routing table, so that the 
replica node can share its routing load. 

// n is the original node, r is the replica node 
//this function propagates the replica info by updating related nodes' finger tables 
n.propagateRepUca( r) 
{ 

for i=l to m //m is the number of entries in n's routing table 
//find last node p whoes i"' finger might be n 
p=find_predecessor(n-2''' ); 
p. update Jingerjablei n, r, i); 

} 

//ask node n to find id's predecessor 
n.findjpredecessor( id) 
{ 

n'^n; 
while (id0 (n',n'.successor]) 

for i=m down to 1 
if(n'finger[i].node e(n',id) 

n'=n ' finger[ i]. node; 
} 

// ifn is the i"'finger ofp, update p's finger table by adding replica r ton's entry 
p.update_JingerJable(n,r,i) 
{ 

if(n=fmger [ij.node]) 
finger[ i]. node. addEntry( r); 
x=predecessor; //get first node preceding p 
X. update Jlngerjable( n, r, i) ; 

; 
Figure 3.4 Algorithm of replica propagation in Chord 

To let replicas share the responsibility of routing, their information must be propagated to other related 
nodes in the network. For Chord-based DITTs, the replica info is updated at the fingers and predecessors 
of the related nodes to reflect the addition of this replica. Figure 3.4 shows the pseudocode of the replica 
propagation algorithm. The total cost for the replica update in terms of the number of messages 
exchanged is O(log^A0. Similarly, for prefix-based DHTs like Pastry or Tapestry, the replica info is 
updated at all the peers in the original peer's leaf set and routing table. Those nodes in turn update their 
respective routing tables by adding a replica entry to the entry of the original node so that future queries 
can be routed to either the original node or the new node, all the while maintaining system network 
correctness. This process requiring 0('/og2*A')messages exchanged and can be carried out 
asynchronously, since the peers in the routing table already have a pointer to the original peers and 
asynchronous updates will not negatively affect the correctness of the system. Besides load balancing, 
this replication approach can also improve the routing resilience in the face of network failures. 



Figure 3.5 shows an example of the Pastry structure with the replication of routing tables. The query for 
item ID 0221, which is actually served by node 0222, is initiated at node 3012. According to its routing 
table, node 3012 chooses 0021 as the next hop. Node 0021 determines that node 0200 should be the right 
node to forward the query. Since node 0200 has a replica at node 1102, node 0021 may choose 1102 as 
the next hop. When the query is sent to 1102, it uses the duplicated routing table for 0200 to serve the 
query and send the query to the destination node 0222. When node 0200 is exposed to a high load, the 
replicas will share some of the traffic, preventing overload. 
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Figure 3.5 An example of adaptive routing replication algorithm 

3.3.2.4 Dynamic routing load adjusting algorithm 
In addition to the use of replication, another scheme to balance the routing load is by dynamically 
reconfiguring the routing table. In the previously mentioned methods, an overloaded node actively 
redistributes its own load, but in cases where external policies or the network environment prevents the 
redistribution effort, replacing routing table content can help relieve highly loaded nodes. 

This algorithm is tailored specifically for DHTs like Pastry or Tapestry. In those systems, many nodes 
with the same prefix can be potentially filled in a node's routing table; the one in the table is the one that 



is "closest" to this node according to the topological proximity. We propose changing the strategy of 
choosing nodes in the routing table to balance routing load (especially to relieve heavily loaded nodes). 
In lieu of simply choosing according to a proximity metric, we choose according to routing load instead. 
When an overloaded node receives a querying message from its neighbor, it will reply with a message 
indicating its overloaded status. This neighbor, receiving the message, will , at the earliest opportunity 
possible, replace the entry of the overloaded node in its routing table with another node with the same 
prefix. The light-loaded candidate nodes can be learned from forwarded query messages which include 
Ids of passed nodes, or by broadcasting a candidate-discovery query as the aforementioned replicating 
schemes did. By doing so, traffic is shed from the overloaded load as long as it is not the actual "end 
target" of the query request, as the replacement node will be able to direct any queries the original node 
could have, and forwarding traffic is spread out more evenly. 

Continuing from our example in Figure 3.5, in node 1102's routing table, let us assume that a neighbor 
node, 3200, ( r ' row 4* column) is heavily-loaded. When a query passes through node 3012 to 002/ and 
then comes to node 1102, since 3012 shares the identical first digit prefix (3) with the overloaded 
neighbor 3200 in 1102's routing table, the entry of 3200 will be replaced with 3012. This way, the traffic 
to the more heavily loaded 3200 will be redirected to the more free 3012. 

3.3.2.5 Dynamic load splitting algorithm and caching 
It is possible that the whole directory overlay is full - most nodes are experiencing high loads. In practice, 
this is detected when overloaded nodes cannot find a replicating node easily. When this happens, trying 
to use the previously mentioned algorithms to relieve an overloaded node is in vain. Instead, we need to 
add new nodes to the overlay to take some load. When a new node registers to an overloaded overlay 
node in charge of a domain, the overloaded node will split its load and let the new node join the overlay 
network and share part of its load. The sharing can be implemented by letting the new node choose a 
suitable ID (close to the overloaded node) to take some directories or replicate the directories to the new 
node, depending on the nature of the overloading. 

Caching popular directories is another effective solution for alleviating the load of a hot-spot. Caching 
provides a way to speed the performance of domain resolution for subsequent queries of popular 
directories, while substantially reducing query traffic on the network. Caching also helps improve the 
availability of the system by the ability to jump over namespace partitions induced by network failure. 
Our directory overlay uses recursive queries and allows en-route caching of records. After a query has 
been resolved, all the intermediate nodes that forward the query back to the querying node can store a 
local copy. Thus, subsequent queries for the same content that cross any of the nodes with cached copies 
can be answered immediately. As a result, the number of hops needed to resolve a query is decreased. 
Caching is orthogonal to our load balancing scheme; it cannot replace our routing scheme, because 
caching is random and ad hoc, it helps redistribute the load of popular node, but it cannot guarantee to 
avoid overloading. 



3 , 4 Experiments 
In this section, we examine the performance of our proposed directory overlay with simulation 
experiments. Since our directory location problem is similar to key search in a DHT, we do not list the 
general locating performance here, rather, we focus on evaluating how our load balancing algorithm and 
caching improves system performance. 

3.4.1 Methodology 
Data set: We base our simulation framework on a data set of the RDF dump of the open D M O Z 
directory [133], since it consists of realistic data about the content distribution within a large community. 
D M O Z is an open directory project (ODP) maintained by a large community of volunteers on the Web. 
Participants of the open directory project manually categorize web pages of general interest into a topic 
hierarchy. Editors contribute links to web pages, define subtopics and associate related topics to the 
D M O Z topic pages. This kind of metadata is one of the first metadata available on the Web in significant 
quantities and it is useful to provide hierarchically structured access to high-quality content on the Web. 
It is one of the largest efforts to manually annotate web pages, exporting all this metadata information in 
R D F format. Over 65,000 editors are busy keeping the directory reasonably up-to-date, and the ODP now 
provides access to over 4 million web pages in the ODP catalogue. The D M O Z data is available as two 
big RDF dumps, one for category hierarchy information (structure.rdf.u8.gz) and one for links within 
each category (content.rdf.u8.gz). We use the category hierarchy file in this experiment to simulate the 
ontology directory. For the topic distribution we select topics in the first four levels of the D M O Z 
hierarchy. According to a previous research effort [72], the hierarchy topics are distributed with a heavily 
tailed Zipf popularity. 

Query: Since both keyword-based queries and browser-based queries are eventually converted to 
directory-path/sub-path queries, in this experiment, we only generate directory-path queries. Queries are 
generated by instantiating the topics chosen from the set of D M O Z topics. We use both uniform query 
distribution and Zipf distribution to simulate the query requests. 

Topology: The directory overlay is built on Pastry. Each peer in Pastry is assigned a 160-bit identifier. 
The unique key of the directory is generated using SHA-1 [24] secure hashes. For a network of iV peers. 
Pastry routes to the numerically closest peer to a given key in less than log(2bN)steps, where the 
identifiers use a sequence of digits with base 2*. In our simulation, the value of base b is 2. 

Other parameters: Each node is randomly assigned a value C representing its capacity (C=2', / efO, 1, 
2, 3, 4J). A node's current load is represented by the number of query forwarding requests and query 
answering requests it receives per unit time. The load caused by the two kinds of requests has different 
weight to simulate the different costs they would incur. In our experiment, the query load is a simple 
question answering procedure, such that we can set the ratio of the weight of query answering load vs. 
query routing load to 5 (i.e., a:b = 5:1 in Equation 3.2). Given the lightness of the directory locating 

http://structure.rdf.u8.gz


process in the current experiment, this would be a reasonable projection. In the case of more significant 
operations, such as file transfers, the ratio will be larger by several orders of magnitude. 

The simulation is carried out on an overlay network with 10̂  nodes and the directory topics randomly 
distributed throughout the nodes. Queries are issued with different frequencies and distributions (random 
distribution and Zipf distributions with different a value, which represents how skewed the distribution 
is, with a larger a value indicating greater levels of skew). For the purpose of our experiments, the T„ 
(overload) threshold for each node was set at 0.8, and the T, (safety) threshold at 0.6 of its maximum 
capacity. Each experiment is run ten times with different random seeds, and the results are the average of 
these ten sets of results. 

Four different load balancing strategies were evaluated and analyzed: (1) simple Pastry: this is the basic 
Pastry system with no load balancing strategy used (represented by None in the following figures), (2) 
reconfiguring routing table {RR\ (3) duplicating objects/directories {DO), (4) duplicating the routing 
table {DR), (5) integrating all of the previous three balancing schemes {All). The performance metric we 
used is the load/capacity ratio. 

Effect of query distribution 

Figure 3.6 shows the effect of query distribution on a node's load burden (without any balancing 
mechanism used), indicating the mean, T' and 99* percentiles of the peer workload/capacity ratio. This 
percentile represents the workload variances on the peers, such that the greater the difference, the less 
evenly the load is being distributed. In the experiment, we increase the skew degree of the query 
distribution from random to Zipf with a=1.25. We can see that query distribution has a significant impact 
on peer load. The more skewed the query distribution, the more unevenly distributed the load becomes, 
causing some nodes to suffer from a very high load when the query is sufficiently skewed. 

3.4.2 Results 
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Figure 3.6 Percentiles of the ratio of load/capacity under different 
query distributions on a network without any balancing algorithms used (None) 



Performance of load balancing schemes under different query distributions 

Overloading a node can induce an overflow to its request queue, causing new incoming queries to be 
dropped, which in turn deteriorates the system performance. Figure 3.7 shows an overview of the fraction 
of dropped queries under different query distributions and with each of our load balancing schemes. We 
can clearly see that each of our load balancing algorithms reduce the fraction of dropped queries, thus 
improving the system performance. Specifically, algorithm All, which integrates all of the other 
algorithms we presented earlier, experiences the best performance in terms of minimizing the query drop 
rate even under a highly skewed query distribution. 
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Figure 3.7 Fraction of dropped queries under different query distributions and load balancing schemes 

A caveat worth mentioning is that in Figure 3.7, we can see that duplicating routing table entries reduces 
the number of dropped queries more than duplicating objects does. Note that this is dependent on the 
parameters we set, particularly the query load to routing load ratio {a:b=5:l). If the ratio is larger, it 
means that the query answering is more complex compared to the query forwarding, thereby accounting 
for more of the total load. From the figure, we see clear indication of the effectiveness of our proposed 
algorithms. The following is a more in-depth examination of the results of each of our balancing schemes: 

Balancing of routing load 

Figure 3.8 illustrates the performance of each query routing-related balancing algorithm relative to the 
query insertion rate. The network size is lO' and the query distribution is Zipf (a =1). The figure shows 
the percentile of the routing load in terms of query forwarding requests received. As mentioned, the 
smaller the difference, the better the load balancing performs. As we increase the query frequency, the 
variance for all the algorithms becomes larger. This is because query distribution is skewed, so 



increasing the query frequency will result in more unbalanced requests, exacerbating the existing 
imbalance problem. 

While the majority of the experimental results are as we expected, the re-configuring routing table 
scheme contributes surprisingly little to performance gain. We attribute this observation due to the 
following: (1) Prefix requirements for the bottom rows of a node's routing table are more stringent, 
therefore candidates for the replacement nodes of these rows are more difficult to find, resulting in the 
algorithm being unable to efficiently adjust this part of the routing; (2) consequently, the last-hops-
neighbor of a node cannot find replacements to route to that node. This means that neighbors (in Id space) 
of a popular node can not be effectively relieved. 

We can also observe from Figure 3.8 (d) that by integrating all of the schemes together, we are able to 
achieve performance beyond the sum of the benefits from all these algorithms. We surmise that this is 
due to the fact that although duplicating-objects does not balancing routing loads directly, it redistributes 
the load of hot spots, helping to relieve the traffic towards the hot spots and thus avoiding overloading 
the neighborhood with forwarding requests. 
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Figure 3.8 Percentiles of the routing load (in terms of number 

of routing requests) under different query frequencies 

Balancing of query answering load 

Figure 3.9 shows the performance of the adaptive object replication algorithm. We can see that the 
algorithm effectively relieves the overloaded nodes and balances the load because hot items are quickly 
replicated in other nodes in the network. 
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Figure 3.9 Percentiles of the query load (in terms of number of 
query answering requests) under different query frequencies 

Balancing of the whole system load 

Figure 3.10 shows the results of the combined algorithm in balancing system load. The results of the 
experiment clearly indicate a significant and drastic effect on the system load balance. 
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Effect of caching 

Cache can relieve the load of hot spots, thus improving load balancing. Figure 3.11 shows the load 
balancing effect of caching on the system. The experiment runs in two different modes: (1) caching-
disabled, where every query traverses the whole routing path to reach the destination node which replies 
back with an authoritative answer, and (2) caching-enabled, where intermediate nodes can use previously 
cached records to speed up lookups. The experiment is performed without using any other load balancing 
schemes. We see that caching can significantly improve load balancing. 
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Figure 3.11 Effect of caching on load-balancing 

As shown in Figure 3.12, caching can also reduce the latency of searching by reducing the number of 
hops to the destination. 
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Figure 3.12 Effect of caching on query latency 



3.5 Conclusion 
In this chapter, we have presented an ontology-based directory overlay that helps reconfigure the 
network topology to form semantic virtual organizations, so that queries can be focused in semantically 
related organizations only. The ontology hierarchy is indexed in a flat DHT overlay, providing nodes 
with flexible interfaces to locate domains of interest efficiently in a decentralized fashion. To overcome 
the major problem of the DHT-based directory overlay - load unbalance - we have proposed an effective 
scheme to balance load of the directory overlay. This scheme enables the system to achieve good load 
balance even when demand is heavily skewed. Extensive simulation results indicate significant 
improvements in maintaining a more balanced system, leading to improved scalability and performance. 



Chapter 4 

Semantics-based Resource Discovery 

in Virtual Organizations 
In the previous chapter, we presented an ontology-based model to facilitate nodes in forming virtual 
organizations (VOs). The next task is to efficiently share and search inside VOs. Searching and sharing 
within VOs is still very challenging, since the heterogeneous, distributed, dynamic, and large-scale 
properties of the problem still exist. This chapter proposes an infrastructure named Grid Ontology 
Integration and Discovery system (GONID) for efficiently sharing and discovering resources inside VOs. 
P2P and Semantic Web technologies form the foundation of GONID. We propose an ontological 
framework for describing the structure and semantics of resource properties, in order to increase the 
system's expressiveness and interoperability. Specifically, the ontology infrastructure includes (1) an 
expressive metadata model to represent the resource information of V O members, (2) an effective 
mapping formalism along with corresponding reasoning algorithms to integrate heterogeneous metadata 
representations, (3) a comprehensive semantic query evaluation scheme to process complex SQL-like 
queries. The ontological framework is based on an efficient P2P indexing system that indexes the 
dispersed resource ontology knowledge with a decentralized DHT overlay. Ontological knowledge is 
decomposed into atomic elements and then indexed with DHTs. Ontology reasoning, integration, and 
searching are all based on the index. A complex query can be evaluated by performing relational 
operations such as select, project, and join on combinations of the atoms. A key advantage of this 
ontological indexing scheme is its ability to index in different granularities, as we distinguish knowledge 
in different levels of abstraction. The resulting prototype system, GONID-toolkit, verifies the viability of 
this indexing and searching infrastructure, and our evaluation using simulations demonstrates its good 
performance. 

The main contributions of this chapter are as follows: 
1. We propose an ontological model in which resource knowledge can be effectively expressed, 

integrated, and queried. 
2. We design a DHT-based indexing strategy to register and retrieve resource knowledge with different 

degrees of abstraction. 
3. We implement the proposed architecture with a prototype system, the GONID toolkit. 
4. We evaluate the performance of the system via simulation. 
Portions of this chapter have been published as L i et al. [63, 61]. 

In the rest of this chapter, we introduce the semantic building blocks of the system in Section 4.1, 
including the resource metadata representation, integration, and reasoning. In Section 4.2, we describe 



how to pubhsh the metadata information in different granularities on a DHT overlay. In Section 4.3, we 
illustrate how to solve complex SQL-like queries with examples. We explain the prototype 
implementation, deployment, and evaluation in Section 4.4. Finally, we present an evaluation of the 
system's performance and properties in Section 4.5. 

4.1 Semantic building blocks 
A major focus of our discovery solution is to provide intelligent semantic search to overcome the 
problem of traditional keyword-based search. In a traditional search process, a user provides one or more 
keywords, and then the system locates documents/files containing these keywords. The traditional 
searching system does not deal with the domain knowledge; therefore it has difficulty to understand the 
meaning of a user's search request. This severely limits its searchabilities and hardly guarantees the 
precision and recall of the search process. Although recent search engines try to make up this by means 
of query expansion or Latent Semantic Analysis (LSA) [34], the fundamental problem is not addressed, 
because these approaches do not deal with the meaning of the keywords that a user provides, and they do 
not understand the semantic relations among the terms that a document contains with respect to a specific 
domain. 

To overcome these shortcomings of keyword-based search, we employ ontology domain knowledge to 
assist in the search process, so that queries can be properly interpreted according to their meanings in a 
specific domain with the inherent relations between concepts also being considered. In our view, four 
problems must be addressed to use domain knowledge in the V O search: how to represent resource 
metadata, how to mediate schémas between heterogeneous metadata, how to efficiently index and 
retrieve metadata, and how to evaluate complex queries based on the metadata. In the rest of this chapter, 
we will present our solutions to these four problems. 

4.1.1 Ontology-based metadata representation 
Metadata, the data about data, is a crucial element of our V O discovery infrastructure. An effective way 
of locating resources of interest within large-scale resource intensive environments is providing and 
managing metadata about resources. Therefore, the goal in devising a successful metadata description 
scheme is to make it detailed enough and structured enough that users can flexibly customize their 
queries while ensuring that the system is still capable of efficiently locating the related resources. More 
important, metadata should be able to express the meaning of resource information. But meanings can be 
considered as a "locally constructed" artifact, as described by Brasethvik [12], so that some form of 
agreement is required to maintain a common space of understanding. In consequence, our metadata 
requires shared representations of knowledge as the basic vocabulary from which metadata statements 
can be asserted. An ontology, "a shared and common understanding of a domain that can be 
communicated between people and application systems", as considered in modem knowledge 
engineering [38] is precisely intended to convey that kind of shared understanding. An ontological 



representation defines concepts and relationships. It sets the vocabulary, properties, and relationships for 
concepts. The elements accumulate more meaning by the relationships they hold and the potential 
inferences that can be made by those relationships. This capability of formal ontologies to convey 
relationships and axioms make them ideal vehicles for describing the vocabulary for metadata statements, 
providing a rich formal semantic structure for their interpretation. Therefore, we use ontologies to 
represent resource metadata semantics. The combination of metadata description and ontology 
engineering forms the foundation of GONID's semantic architecture. 

To cope with the openness and extensibility requirements, we adopt two W3C recommendations: the 
Resource Description Framework (RDF) and the Web Ontology Language (OWL) as our ontology 
language. As an overview of RDF and O W L appears in Chapter 2, here we briefly emphasize the key 
concepts we use. 

We concentrate on RDF's property of making statements about resources in the form of subject-
predicate-object expressions, called triples in RDF terminology. The subject denotes the resource which 
has a Universal Resource Identifier (URI). The predicate denotes traits or aspects of the resource and 
expresses a relationship between the subject and the object. Predicates in RDF are also identified by 
URIs. The object is the actual value, which can either be a resource or a literal. The concept of triple is 
very important in our work, because our metadata indexing scheme is based on this triple representation. 
Applications can use tools such as Protégé [85] and OntoEdit [103] to construct and manage ontologies 
in RDF format. In fact, RDF is a natural way to index existing documents, such as H T M L files, 
documents, PDF, etc. There is existing research on how to extract RDF triples from documents [40, 6, 
26]; in this thesis, we assume users can use the research result to extract triples from existing documents. 

We use O W L to process the content of information instead of just presenting information. O W L can be 
used to explicitly represent the meaning of terms in vocabularies and the relationships between those 
terms, i.e., an ontology. Our ontological metadata reasoning and mapping are based on OWL-DL. We 
use an example to illustrate an ontology that describes printers. Figure 4.1 shows the basic classes and 
their subclass relationships. Note that the subclass information is only part of the information included in 
the ontology. The entire graph is much larger. Figure 4.2 shows the part of the corresponding O W L 
statements in R D F syntax. 



Product 

Figure 4.1 Classes and subclass-relationships of the printer ontology 

<!DOCTYPE owl [ 

<!ÊN"nTy xsd "http;//www.w3.org/2001/XMLSchema#" > ]> 
<rdf:RDF 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns;rdfs="http://www.w3.org/2000/01/rdf-schemQ#" 

xmlns;xsd="http://www.w3.org/2001/XMLSchema#" 

xmlns;owl =" http: //www.w3 .org/2002/07/owl#" 

xmlns="http;//www.cs.us.ca/~juanli/thesis/printer.owl#"> 

<owl;Ontology rdf :about=""> 

<rdfs:comment>(An OWL ontology example (OWL [)L)</rdfs;comment> 

<rdfs:label> Printer Ontology</rdfs:label> 

</owl:Ontology> 

<owl:Class rdf :IC)="product"> 

<rdfs;comment>Products form a class.</rdfs:comment> 

</owl:Class> 

<owl:Class rdf ;ID="printer"> 

<rdfs:comment> 

Printers are printing and digital imaging devices. 

</rdfs:comment> 

<rdfs;subClassOf rdf :resource="Product"/> 
</owl:Class> 

<owl:Class rdf ;ID="laserPrinter"> 

<rdfs;comment> 

Laserjet printers are those printers that use laser jet printing technology. 

</rdfs:comment> 

http://www.w3.org/2001/XMLSchema%23
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schemQ%23
http://www.w3.org/2001/XMLSchema%23
http://www.w3
http://www.cs.us.ca/~juanli/thesis/printer.owl%23


<owl:intersectionOf rdf ;pûrseType="Collection"> 

<ow\:C\ass rdf;about="#printer"/> 

<owl:Restriction> 

<owl'.onProperty rdf ;resource="#printingTechnology"/> 

<owl:hasValue rdf :datatype="(Sixsd;string"> 

laserjet 

</owl;hasValue> 

</owl;Restriction> 

</owl;intersectionOf> 

</ow\'C\ass> 

<owl:Class rdf:ID="ColorLQSerPrinter"> 

<rdfs:comment> 

Color laser jet printers are color laser jet printers, 

</rdfs;comment> 

<rdfs;subClassOf rdf;resource="#LaserPrinter"/> 

<rdfs:subClassOf rdf :resource="#ColorPrinter"/> 

</owl:Class> 

</rdf.RDF> 

Figure 4.2 A printer ontology in O W L 

4.1.2 Ontology mapping 
For many reasons, different people and organizations tend to use different ontologies. Therefore, VOs 
have to deal with situations where various local ontologies developed independently are required to be 
integrated as a means for extracting information from the local ones. Mapping provides a common layer 
from which several ontologies could be accessed and hence information could be exchanged in a 
semantically sound manner, hi VOs, the task of ontology mapping is to relate the vocabulary of two 
ontologies that share the same domain of discourse in such a way that the logical structure and the 
intended interpretations of the ontologies are respected. 

4.1.2.1 Discovery of mapping candidates 
Before a node can create mappings between its local ontology and other ontologies, it has to first find 
semantically close ontologies; these "close" ontologies have either significant overlap or strong 
relationships with the local ontology. The ontological directory described in the previous chapter helps 
narrow down the candidates to one V O , but nodes in the same V O may not be close enough to establish 
direct mapping relationships. The process of discovering semantically close ontologies is similar to the 
process of discovering other resources, which is explained in Section 4.3.3. The basic idea is to use the 
main conceptual structure of a node's ontology metadata, i.e., its ontology profile, as the discovery 
criteria to search all related ontologies. Then the users can choose the mapping ontologies from the 
results. 



4.1.2.2 Mapping definition 
Based on major O W L ontology elements, we propose two categories of ontology mappings as follows: 

• Class mappings: C , — ^ Q e {= , ç , , 2 , , = J 

Mc : class mapping between class C/ and C2 

: equivalentClass mapping 

: subclass mapping 

: superclass mapping 

: referentialClass mapping 

In order to represent mappings between the classes of source and target ontologies, we have defined four 
mapping patterns: equivalentClass, subClass, superclass, and referentialClass. Two identical classes are 
mapped through equivalentClass. The subclass represents one class in an ontology is a more specific 
form of a class in another ontology, while the superclass means one class is a more general form of 
another class. The subclass and the superclass imply each other: a class A is subclass of a class B , then 
class B is superclass of class A . The equivalentClass also implies a subclass relationship and is always 
stated between two classes: A is the equivalentClass of B, then A is subclass of B , and B is subclass of 
A . When a source ontology class is subclass of a target ontology class, all the instances of the source 
ontology qualify as the instances of the target ontology. The referentialClass pattern implies that the 
involved classes have overlapping content. How these two classes are related is determined through 
further mapping of their datatype property or object property. 

Property mappings: Pj — ^ P^ Mp e {Cp,^p,=p,Jp } 

Mp : property mapping between property P; and P2 

=^ : equivalentProperty mapping 

: subProperty mapping 

3̂  : superProperty mapping 

: inverseProperty mapping 

Property mapping helps to transform properties of a class in the source ontology to corresponding target 
ontology properties. We define the following property mappings: subProperty, superProperty, 
equivalentProperty, and inverseProperty. Similar to the class mappings, the property mappings between 
different ontologies either refer to the same relation or one is a special (or general) case of the other. The 
inverseProperty mapping allows relate "inverse properties"; for example, the isTaughtBy property in one 
ontology is inverseProperty of the teaches property in another ontology. 

As mappings define relationships between classes and properties, they are in fact Obejct Property in 
OWL. The mapping patterns defined can be represented through an O W L ontology shown in Figure 4.3. 



Figure 4.3 OWL-based mapping schema 

An example illustrating the class mapping among four nodes with heterogeneous ontologies is shown in 
Figure 4.4. Node A and Node C have an equivalentClass mapping, stating that the "CPU" and 
"Processor" refer the same concept. Node B and Node D relate through subclass relation, allowing Node 
D to match its instances when the "OS" concept is queried. A referentialClass relation is created 
between the Node A "PC" concept and Node B "Computer" concept. This states that the classes describe 
different aspects of the same higher level concept, and their instances may overlap. They are integrated 
based on the property "name"; thus instances of these different classes can be aggregated if they have 
the same "name". 

Node A 
PC 

name, Location 

hasCPU \ 

CPU 
frequency 

NodeC 

(̂ HnteP^ 

c;̂ AMDJj> 

NodeB 

-OequivalantClass -subclass •<3—C> referentialClass 

Figure 4.4 An example of ontology mapping 



We propose the mapping definition, while the mapping process is beyond the scope of this thesis. 
Generally, it requires manual intervention. Several popular semi-automatic tools such as Protégé-
PROMPT [87] and Chimaera [20] are available for eased ontology mappings. These approaches are 
similar to approaches to mapping X M L schémas or other structured data but tend to rely more heavily on 
features of concept definitions or on explicit semantics of these definitions. They comprise heuristics-
based or machine learning techniques that use various characteristics of ontologies, such as ontology 
structure, lexical components, definitions of concepts, and instances of classes, to give mapping 
suggestions. 

4.1.2.3 Mapping indexing 
The mappings should be stored in the network so that they can be used by inference engines to 
reformulate queries. Since our inter-ontology mappings are also represented as ontologies, they can be 
indexed the same as other ontologies in the network. This allows all participants of the V O to access the 
mapping information. The indexing process is explained in Section 4.2. 

4.1.3 Reasoning 
As mentioned, we use O W L - D L to represent local resource knowledge and mapping. O W L - D L can be 
translated into a Description Logic representation. Therefore, it is possible to perform automated 
reasoning using a Description Logic reasoner (DIG reasoner) on OWL-DL. Our primary objective of 
using the DIG reasoner is to derive additional assertions which are entailed from the base local ontology 
together with any inter-ontology mappings, external ontology information like WordNet, and the axioms 
and rules associated with the reasoner. We can perform various inferences, such as computing the 
inferred super-classes of a class, deciding whether or not one class is subsumed by another, determining 
whether or not a class is consistent (a class is inconsistent if it cannot possibly have any instances), etc. 
For example, if there are two assertions: "UNIX subClassOf OperatingSystem" and "ADC subClassOf 
U N I X " in the original knowledgebase; then we can infer " A I X subClassOf OperatingSystem" and add 
this new assertion into the knowledgebase. 

The following example shows how to use mapping and reasoning to bridge the ontology differences 
between different users. In the example scenario, one user is trying to find "a camera with a 75-300mm 
lens-size, a resolution not less than 5MP, and a cost ranging from 500CAD to lOOOCAD." The search 
agent looks for resources that can fulfill this request. Assume that there exists a mapping ontology, 
which the search process can consult. Suppose a search agent finds the metadata document in Figure 4.5 
at a peer. 

To determine if there is a match between the query and the metadata, the following questions must be 
answered: 

1. What's the relationship between " D C " and "Camera"? 



2. What's the relationship between "focal-length" and "lens-size"? 
3. What's the relationship between "megapixels" and "resolution"? 
4. What's the relationship between "price" and "cost"? 

<DigitalCameraStore rdf:II>="DcShop" 

xmlns:rdf="http7/www.w3.orq/1999/02/22-rdf-svntQX-ns#"> 

<location>4299 No.3 road</location> 

<phone>604-426-9936</phone> 

<catalog rdf;parseType="Collection"> 

<bC rdf:ID="Canon-EOS-Rebel-XTi" 

xmlns=http://www.cs.ubc.ca/~juQnli/cQmera #> 

<lens> 

<focal-length>50-400mm</focal-length> 

<megapixels>10.1 MP</megapixels> 

</lens> 

<body> 

<Body> 

<optical-zoom>3X</ optical-zoom> 

<lcd-monitor-size>2.5in</lcd-monitor-size> 

<shutterSpeed rdf.parseType="Resource"> 

<min>0.003</min> 

<max>1.4</max> 

<units>seconds</units> 

</shutterSpeed> 

</Body> 

</body> 

<price rdf:parseType="Resource"> 

<rdf:value>749.99</rdf:value> 

<currency>C>AC></currency> 

</price> 

</ÙC> 

</catalog> 

</DigitalCameraStore> 

Figure 4.5 Metadata document in a peer 

The search process consults the OWL mapping ontology. This O W L statement tells the search agent that 
a D C is a type of Camera: 

<ow\:C\ass rdf :ID="DC"> 

<rdfs;subClassOf rdf :resource="#Camera"/> 

</ow\.C\ass> 

http://www.w3.orq/1999/02/22-rdf-svntQX-ns%23
http://www.cs.ubc.ca/~juQnli/cQmera


This statement says that focal-length is equivalent to lens-size: 

<owl:DatatypePeroperty rclf;Ii:)="focal-length"> 

<owl;equivalentProperty rdf:resource="#lens-size"/> 

<rdfs:domain rdf:resource="#lens"/> 

<rdfs:range rdf:resource="<&xsd;#string"/> 

</owl: OatatypeProperty> 

This one means that megapixels is a type of resolution: 

<owl:OatatypePeroperty rdf:It)=" megapixels"> 

<owl:subProperty rdf;resource="#resolution"/> 

<rdfs:domain rdf:resource="#lens"/> 

< rdf s; range rdf:resource= "<&xsd;#d eel ma !"/> 

</owl:[5atatypeProperty> 

A n d the following statement tells the agent that price is equivalent to cost: 

<owl:Class rdf :resource="price"/> 

<rdfs;equvalentClassOf rdf:resource="#cost"/> 

</owl:Class> 

With the above mapping ontology, the search agent now recognizes that the resource metadata it found is 
talking about cameras, and it does show the lens-size, the resolution, the cost for the camera, and the 
values for lens-size, resolution, and cost are met. Thus the search agent knows that the metadata 
document is a match. 

4.2 Metadata indexing 

4.2.1 Peer local knowledge repository 
In order to be shared and reused, the ontologies that we use including original metadata knowledge, 
inferred knowledge, and mappings have to be published in repositories for later reference by system 
designers and query agent applications. In our system the ontology knowledge is represented by OWL-
D L and is separated into two parts: the terminological box (T-Box) and the assertion box (A-Box) as 
defined in the description logic terminology. The purpose of distinguishing between the T-Box and A -
Box is to enable different coarse-grained indexing based on these two cases. The T-Box is a finite set of 
terminological axioms, which includes all axioms for concept definition and descriptions of domain 
structure, for example a set of classes and properties. The A-Box is a finite set of assertional axioms, 
which includes a set of axioms for the descriptions of concrete data and relations, for example, the 
instances of the classes defined in the T-Box. Figure 4.6 shows the T-Box and A-Box graph of a Family 
ontology. Examples of A-Box statements are "Betty is a Person", "Betty has-child Doris". This should be 
contrasted with T-Box statements about terminology such as: " A l l Mothers are subclasses of Woman" or 



"There are different types of Human: Man and Woman". T-Box statements tend to be more permanent 
within a knowledge repository. In contrast, A-Box statements are much more dynamic in nature. 
Generally speaking, there are many more A-Box instances than T-Box concepts. Separating the T-Box 
and A-Box enables different coarse-grained knowledge indexing, thus increasing the scalability of the 
system. Both T-Box knowledge and A-Box knowledge are wrapped as RDF statements and stored in the 
R D F knowledge repository. The repository can store the RDF data inside a relational database or text file. 

Brother 

Uncle 

Father Mother 

Grandfather Grandmother 

Sister 

Aunt 

(a) Class hierarchy for the Family T-Box 



Alice: Mother 

has-sibling 

Betty:Mother ( ^ - ~ Charles: Brother 

h Eve 

(c) Depiction of the Family A-Box 

Figure 4.6 T-Box and A-Box graph 

4.2.2 Indexing 
Each peer's local ontology repository makes flexible statements about resources. However, putting an 
ontology document in a peer's repository does not mean that others can find it. The system needs a 
searching scheme to locate desirable resources from distributed repositories. For this purpose, we use a 
DHT-based P2P network which implements a distributed ontology repository for storing, indexing and 
querying resource ontology knowledge. The main purpose of an index is to reduce the number of direct 
accesses to the data while searching. Given a large-scale distributed repository, it is infeasible to do a 
thorough search of the entire component repositories. The indexing on the distributed repositories speeds 
up the searching process by only pushing down queries to information sources we can expect to contain 
an answer. 

The index uses information extracted from the data to facilitate access to this data. The index should 
correspond, in some way, to the queries used to retrieve the data. Therefore, the main issue in choosing 
an indexing scheme is to decide which information to use in an index and how to organize it. Since our 
O W L ontology knowledge is represented with RDF syntax, knowledge indexing is based on indexing 
R D F statements. As mentioned, complex structures can be easily encoded in a set of RDF triples. 
Therefore, our indexing is based on RDF triples in the format of (spo), where s is the subject, p is the 
predicate and o is the object. This indexing scheme is consistent with RDFPeer's RDF data indexing 

The key advantage of our ontological indexing is its ability to handle different granularities. We 
distinguish T-Box knowledge and A-Box knowledge in each peer's local repository as distinguishing 
between schema information and the data themselves. In this way, indices can be created based on these 
two types of knowledge. By the combination of these two indexing schemes an application on top can 
choose which scheme fits the needs of the system best. The system will be able to scale to hundreds of 
thousands of nodes and to large amounts of ontology data and queries. 

[16]. 



4.2.2.1 A-Box indexing 
The purpose of A-Box indexing is to index individual resource information so that the right resources can 
be efficiently located. The basic idea is to divide a resource's RDF description into triples and index the 
triples in a DHT overlay. We store each triple three times by applying a hash function to its subject, 
predicate, and object. In this way, a query providing partial information of a triple can be handled. The 
insertion operation of a triple t is performed as follows: 

Insert(t)=Insert(SHAlHash(t.subject), t), Insert(SHAlHash(t.predicate), t), Insert(SHAlHash(t.object), t) 

For example, the statement t: [< Billy>, <teaches>, < cs213 >} is first indexed by subject, and sends the 
following message to the overlay: 

Insert (key, {("subject", <Billy>), 
("predicate", <teaches >), 
("object", < cs213>)}) 
where key=SHAlHash("< Billy> ") 

In the message, the first attribute-value pair ("subject", < Billy>) is the routing key pair, and key is the 
S H A l hash value of the subject value. Similarly, the triple is indexed by predicate and object as well. 
The target DHT node stores the assertion and possibly generates new assertions by applying the 
entailment rules. These new assertions have to be sent out to other nodes. For example, transitive 
properties, such as ancestorsOf, will have a chaining effect. Thus, after finishing this process, the entire 
set of A-Box knowledge is accessible in a well-defined way over the community overlay. Figure 4.7 
illustrates how the triple is stored into a Chord overlay. Table 4.1 shows an example of indexes stored in 
a node, e.g., node Nn . 

1. request: publish (<Billy>, <teaches>, < cs213>) 

2. compute the three keys: 

Billy 1 
teaches 2 

cs213 10 

3. put the three pairs <key, value> in the DHT 

Nii 
By object: 
<BillY><teaches><cs213> 

By subject: 
<Billy><teaches><cs213> 

By predicate: 
<Billy><teaohes><cs213> 

Figure 4.7 Storing a triple into a Chord overlay 



Table 4.1 A-Box indexes stored at node Nu 

subject related triple 
<compl> <conipl><runs ><winXP> <compl> 

<compl><hasMem > 256M 
<grpl> < grpl><owns><compl> 

predicate related triple 
<owns> <Mike><o wnsxcomp 1 > 

object related triple 
<cs213> < Billy><teaches><cs213> 
<compl> < grp 1 X 0 wnsxcomp 1> 

With this indexing scheme, triples can be retrieved from the DHT by fixing one part of the triple and 
using this part as a retrieval key. The crucial problem of the triple indexing is the violation of the 
assumption that keys will be uniformly distributed over the network. Some elements can be so popular 
that nodes in charge of them get a tremendous load and it may become impossible for any single node in 
the network to store this key. To avoid this kind of situation, we choose not to index those overly 
popular elements. A node must then find an alternative way of resolving the query by navigation to the 
target triples through other parts of the triple. Further load imbalance may be caused by the transitive 
relation, in which the head of the transitive chain may get more load because of the entailment rule 
applied to it. Our load-balancing algorithms proposed in Chapter 3 can be adopted to solve the load-
unbalancing problem. 

A-Box indexing keeps each instance triple, thus queries can be accurately forwarded to the instance level. 
Applications with large storage requiring fast query responses would consider using A-Box indexing. 
The downside of indexing A-Box information is that the oversized indices of individual instances may 
cause large maintenance overhead, thus making the system hard to scale. Moreover, in many cases it 
would not even be applicable to index A-Box knowledge, e.g., when sources do not allow replication of 
their data (which is what instance indices essentially do). To solve this problem, we also provide another 
indexing scheme: T-Box indexing. 

4.2.2.2 T-Box indexing 
Similar to a database schema, a node's T-Box knowledge is more abstract, describing the node's high-
level concepts and their relationships. Basically, the T-Box knowledge includes class elements and 
property elements. It also adheres to the triple (spo) format, while here the subject s is the class (or 
property) in question, p is the predefined O W L predicates describing the attribute of this class (property), 
and o is the value of the attribute of related class (property). Below is an example of a simple T-Box 
ontology describing a simple teaching relationship in the triple format. 

©prefix univ: <http:/w\vw.cs.ubc.ca/~juanli/univ#> 
< univ:Teacher>,< rdf:type>,<owl: dass> 



< miv:Teacher>, <rdfs:subClassOf>, < univ:People> 

< univ:Course>, < rdf.-typo, <owl:class> 

< univ:teach>, < rdf:type>, KowlInverseFunctionalProperty > 
< miv:teach>, <rdfs: domain>, < univ:Teacher"> 
< univ:teach>, <rdfs:range>,< univ:Course "> 
< univ:teach>,<owl:inverseOf>,< univ:isTaughtBy"> 

< univ:isTaughtBy>, < rdf:type>, KowlInverseFunctionalProperty > 
< univ:isTaughtBy>, <rdfs: domain>, < univ:Course> 
< univ:isTaughtBy>, <rdfs:range>, < univ:Teacher> 
< univ:isTaughtBy>, <owl:inverseOf>, < univ:teach> 

The T-Box definition is indexed in the triple format as well. Classes and properties of the T-Box are 
indexed separately. The indexing process is the same as A-Box indexing - storing each triple three times 
by the subject, predicate, and object respectively. The three parts of the T-Box triple are uneven: a T-Box 
has only a limited number of predefined predicates, but many more objects and subjects. For example, 
many classes have a subclass property; each is encoded as a triple with predicate rdf.subClass. When 
indexing by the predicate, all these triples are mapped to the same key and therefore to the same peer in 
the network. This causes overloading of the peer in charge of the key. This problem can be solved by 
simply not indexing the overly popular keys; the query can be resolved by using other information of the 
triple. 

Storing the T-Box definition is only part of the indexing task. Li a V O , many nodes may use the existing 
T-Box instead of defining their own. Therefore, another task of T-Box indexing is to link the T-Box 
triples with nodes using them. This is done by extracting the T-Box concepts from a node's ontology, 
and then using them as the key and the node's Id as the value to do indexing. Table 4.2 shows an 
example T-Box index table maintained by a peer. 

Table 4.2 An example T-Box index table stored in a node 

concept peers involved related T-Box triple 

<0S> n2, ni4, ns <OS><superClasss><UNIX> 
n3i, ni, ... <OS><equivalentClass><OperatingSystem> 

<PC> n7, ... <PC><referentialClass><Computer> 

<UNIX> ns, n2 <OS><superClasss><UNIX> 

<CPU> ni4, ns <Processor>< equivalentClass ><CPU> 

<own> nil , n53 <ownedBy><inverseProperty><own> 

ï\2, ni4, ns ni2, n23, ... <run><equivalentProperty><execute> 
<run> <run><domain><Computer> 

<run><range><OS> 



T-Box indexing only stores the schema information but ignores the individual instances. It has two 
functionalities: it helps answering knowledge schema queries; it also helps filtering the candidate result 
set for individual instance queries. Compared to the instance-level A-Box indexing, T-Box indexing does 
not require creating and maintaining oversized indices since there are far fewer concepts than instances. 
The down side of keeping only the schema information is that query answering without the index support 
at the instance level is much more computationally intensive. Obviously, there is a tradeoff between 
query overhead and indexing overhead. When the system has a high requirement for fast and efficient 
query answering, it has to pay more for the indexing. On the other hand, if the system does not index the 
detailed knowledge, it has to explore more nodes in searching for query results. A n application should 
determine the right indexing granularity that can trade off the cost of maintaining the index against the 
benefit that the index offers for queries. 

4.3 Query evaluation 
Having introduced the metadata indexing scheme, we now turn our attention to how to utilize the index. 
Particularly this section describes how to combine lookup operations from different indexes to process 
queries such as finding mapping ontologies, locating certain resource providers, or answering complex 
questions. During the query processing, users do not need to know where a particular piece of 
information resides. The system behaves as if all the information is available from a single source. The 
query answering system can locate relevant information, retrieve it, and combine the individual answers. 

4.3.1 Overview 
The GONID system uses SPARQL [24] as the query language, but the query evaluation approach is not 
limited to a specific query language. SPARQL is a recursive acronym standing for SPARQL Protocol 
and RDF Query Language. Most uses of the SPARQL acronym refer to the RDF query language. The 
query evaluation process begins with the parsing of a user's query to SPARQL format. Then the query 
in terms of relations in the user's local ontology will be translated into sub-queries using the semantic 
mapping axioms indexed into the overlay. Then each of the sub-queries can be executed at different 
sources in parallel and the query engine can collect returned answers from the sources and combine them 
as the answer to the query. This process is illustrated in Figure 4.8. A l l the steps are straightforward 
except for matching the queries using the distributed index. The next section will explain the matching 
process in detail, and we assume the underlining indexing is based on A-Box indexing. Searching based 
on T-Box indexing is similar and is studied in Section 4.3.3. The system supports two categories of 
queries, T-Box queries and A-Box queries, for querying abstract structural knowledge and concrete 
instance knowledge. Because both T-Box and A-Box knowledge are indexed with RDF, technically 
speaking, processing these two kinds of queries are the same, therefore we do not need to particularly 
distinguish them. In addition, we assume reasoners have extended the source RDF triples with inferred 
triples according to the entailment rules, thus we do not need to worry about reasoning when processing 
queries. 
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Figure 4.8 Query processing 

4.3.2 Processing SPARQL queries 

4.3.2.1 SPARQL query and graph patterns 
The W3C recommendation SPARQL [136] is a query language developed primarily to query RDF 
graphs. The building block for SPARQL queries is graph patterns which contain triple patterns. Triple 
patterns are RDF triples, but with the option of query variables in place of RDF terms in the subject, 
predicate, or object. A solution to a SPARQL graph pattem with respect to a source RDF graph G is a 
mapping from the variables in the query to RDF terms such that the substitution of variables in the graph 
pattem yields a sub-graph of G [130]. More complex SPARQL queries are constructed by using 
projection (SELECT operator), leji join (OPTIONAL operator), union (UNION operator), and 
constraints (FILTER operator) [98]. The semantics for these operations are defined as algebraic 
operations over the solutions of graph patterns [86]. Figure 4.9 shows an example RDF graph structure. 

sample:name sample:teach 

rdf:type 

rdf:type 

Figure 4.9 A sample RDF graph structure 



A typical SPARQL query to find the courses taught by Juan L i over the graph is listed below. 

PREFIX sample:<http://www.cs.ubc.ca/~juan1i/#samp1e > 
SELECT ?course 
FROM <example.rdf> 
WHERE { 

?person sample:name Juan Li . 
^ ?person sample:teach ?course 

The query attempts to match the triples of the graph pattern to the model shown in Figure 4.9. Each 
matching binding of the graph pattern's variables to the model's nodes becomes a query solution, and the 
values of the variables named in the SELECT clause become part of the query results. Next we will 
explain how to solve different SPARQL queries based on our index. 

4.3.2.2 Single triple pattern 
The simplest query is to ask for resources matching one triple pattem. To illustrate how to perform this 
kind of simple SPARQL queries, imagine a query to discover the person who teaches course cs213. In 
SPARQL this query could be written as: 

PREFIX 
sample:<http://www.cs.ubc.ca/~juanl i/#sample > 
SELECT ?person 
WHERE { 
^ ?person sample:teach sample:cs213 

In this query pattem, there is only one triple pattem and at least one part of the triple is a constant. Since 
we store each triple three times based on its hashed subject, predicate, and object values, we can resolve 
the query by routing it to the node responsible for storing that constant. Then the responsible node 
matches this triple against the pattems stored locally and returns results to the requesting node. In this 
example, there are two constants in the triple pattem; the query processor can use either of them as the 
DHT lookup key. For example, we can hash on the object: sample:cs213, then use it as the key to route 
the query. The node in charge of this key in the DHT overlay matches triples indexed locally using this 
pattem, and sends back the matched triples. 

4.3.2.3 Conjunctive patterns 
When the graph pattem is more complex containing multiple triples, or the query contains a group graph 
pattem, then each triple pattern will be evaluated by one or two different nodes. These nodes form a 
processing chain for the query. The first triple pattem is evaluated at the first node, the result is then sent 
to the next node for further processing. This process continues until the last triple pattem is processed. 
An alternative approach is to process pattems in parallel, and all results are sent to one node to do the 
final processing. A system should choose the appropriate approach according to its application. In our 
work, we use the sequential approach since sequentially joining intermediate results saves the traffic for 

http://www.cs.ubc.ca/~juan1i/%23samp1e
http://www.cs.ubc.ca/~juanli/%23sample


transferring large amounts of unrelated data. The sequence to evaluate the triple patterns is crucial. Many 
database researchers have worked on it [48, 96]. Here, for simplicity, we assume that we evaluate the 
query with the original triple pattem order, in which adjacent triple patterns share at least one common 
variable. 

For a query q that has k conjunctive triple patterns (tj, t2, ...tk), the query evaluation proceeds as follows: 
First, ti is evaluated using the single triple pattem processing method mentioned previously. The result is 
projected on the variables with values that are needed in the next query evaluation. Then the query 
together with the next triple sequence number and the intermediate result is sent to the node responsible 
for the next triple pattem. When a node n, receives the query request, n, evaluates the i-th triple pattern f, 
of the query using its local triple index and the intermediate result from previous nodes. Then n, 
computes the intermediate result and projects the result on columns that are needed in the rest of the 
query evaluation (i.e., variables appearing in the triple pattem ?,+y of q). This is a nested loop join on the 
common column for the inner relation. The process recursively repeats until the last triple pattem of q 
is evaluated. Then, the last node rik simply returns the result back to the querying node. We use an 
example to explain this process. The query to find authors who write papers in the field of P2P is listed 
below: 

SELECT ?author 1 
WHERE { ! 

?author : create ?paper . 
I ?paper : category ?cat . 

?cat : labe l P2P 
} _ 

The query evaluation process is illustrated in Figure 4.10. Each event in this figure represents an event in 
the network, i.e., the arrival of a new query request. The query request consists of three parts: (1) the 
original query, (2) the triple pattern to be processed in this node, represented with that triple's sequence 
number in the original query's triple lists, (3) the intermediate result from previous nodes. Initially, the 
intermediate result is empty (0). 



© Query q=?author: 
(?author create ?paper) 
(?paper category ?cat) 
(?cat label P2P) 

X sends the request: (q, 1, 0) in the format: {query, seqNum, intermediateResult) to Ni 
Ni is the node in charge of key hash(create) 

1̂  , Hash(create) 

^ , Nl matches (?author create ?paper) in its triple table R and the result is 
^ projected on subject and object to get the intermediate result Rtmpi 

Rtmpl-flsub, obj6pre=create(R) 

Ni sends request (q, 2, Rtmpi) to N? 

Ç^2^ Hash(category) 

N2 matches (?paper category ?cat) in its triple table R and the result is 

' joined with Rtmpi then projected on the useful columns. 

Rtmp2-nR,^p,.col1,R.obj[Rtmp1°°nsub,obj6pre=category(R)] 

N2 sends request (q, 3, Rtmp2) to N3 

' Hash(label) 

f N3 j N3 matches (?cat label P2P) in its triple table and the result is joined with 

Rtmp2 then projected on the useful columns. 

R-nR,„p2.coll[Rtmp2~nsub6pre=lable '• obj=p2p(R)] 

N3 sends result R back to X 

X 

Figure 4.10 Processing a query with a conjunctive pattern 

(Results are represented as relational algebras. fllProjection, 6:Selection, «':join) 



4.3.2.4 Value constraints 
A constraint, expressed by the keyword FILTER, is a restriction on solutions over the graph pattem 
group in which the filter appears. In the simplest case, the value constraint refers only to variables that 
are bound in the current group and the constraint can be mapped into an equivalent relational expression. 
In this case the constraint may be applied simply by selecting on the appropriate column. For example, if 
we have {?x .age ?y. FILTER(?y > 30) ) we need only to select ?y with value greater than 30. 

Sometimes constraints are placed in optional pattems (explained in next section) with variables that do 
not appear in that block. In this case, since the bindings for that variable are not available at the time the 
intermediate result is selected, the constraint can be transferred to the results processing step. 
Alternatively, if available, the bindings for the variables in question can be joined to the intermediate 
results in which they appear. Delaying the selection of the FILTER constraints is undesirable as it 
increases the size of the intermediate results. 

4.3.2.5 Optional patterns 
SPARQL's OPTIONAL operator as defined by Harris [141] is used to signify a subset of the query that 
should not cause the result to fail if it cannot be satisfied. It is roughly analogous to the left outer join of 
relational algebra. When processing queries with optional pattems, the intermediate results are produced 
for each pattem as before, but in the case of an optional pattem, columns that allow joining onto the 
required pattem must also be projected. 

A query with an optional pattem is shown below. The processing of the query is similar to processing 
other queries mentioned. A node processes the first pattem, the required pattem, and gets the 
intermediate result (Equation 4.1). The query together with the intermediate result is sent to another 
node responsible for the optional pattem, where the optional pattem will be matched with the local triples 
and the result R„p, is outer joined with R^p. The intermediate result of the optional pattem R̂ pt must be 
outer joined, as the bindings may be empty from failed matches in the optional result. A l l simple legal 
optional expressions may be transformed in this way, though a more sophisticated algorithm is required 
to express nested optional graph pattems. 

SELECT ?name ?homepage 
WHERE { ?person :name ?name . 
OPTIONAL { ?person : homepage ?homepage 

R = ̂ con.coiiiRj'^''-Kn,) (4.3) 



4.3.2.6 Disjunctive patterns 
SPARQL provides a means of combining graph patterns so that one of several alternative graph patterns 
may match. If more than one of the alternatives matches, all the possible pattem solutions are found. 
Pattem alternatives are syntactically specified with the UNION keyword. Obviously, this kind of 
disjunctive query could simply be resolved by evaluating each sub-query and then computing the union 
of the results. For example, for the query listed below, the two sub-queries are sent to different 
responsible nodes, which then calculate and return the intermediate results to the querying node, where 
the final result is merged. 

(SELECT ?name ?mbox 
WHERE { 

?person :name ?name . 

^ ?person :mbox ?mbox } UNION { ?person :nibox_shalsum ?mbox } 

4.3.2.7 Query optimization and relaxation 
Query optimization should be performed in the query evaluation process to improve the performance. 
For example, according to the existing research [56], we can rely on algebraic equivalences (e.g., 
distribution of joins and unions) to order the evaluation sequence. We may want to separate the unions 
early to parallelize the execution of the union in several peers. Additionally, selects and projects should 
be pushed down to the lowest possible places, while joins should be evaluated closer to the intermediate 
peers to reduce the size of the result set as early as possible. Furthermore, statistics about the 
communication cost between peers and the size of expected intermediary query results can be used to 
decide which peer and in what order will undertake the execution of each query operator. There has been 
extensive work in query optimization [48, 53, 56]; we can utilize their results in our system. 

The matching manager has the task of finding candidate instances that match the specific query 
constraints, in particular to take into account the concepts, attributes and relationships. It is possible that 
the descriptions of different ontologies referring to the same real-world object can be significantly 
different. As a consequence, real-world objects that are meant to be an answer to a query are not returned 
because their description does not match the query due to insufficient mappings. If a query cannot get 
enough results because of this high heterogeneity, the matching manager can relax the query constraints 
by partially matching the query. At the same time, nodes can extend their mappings based on user 
feedback on the partial results of matching. 

4.3.3 Query processing based on T-Box indexing 
In our previous description of query evaluation, we assume the overlay maintains A-Box indexing. In 
that scenario, instance triple patterns are indexed in the network, and queries for instances can be 



accurately forwarded to the right peers in charge of the triples. If an application only maintains T-Box 
indices, the evaluation process is different. 

For schema (T-Box) queries on T-Box indexing, the evaluation process is similar to the query evaluation 
process we just explained, because T-Box indexing is detailed enough to answer the schema query. For 
example, consider the query pattem: 

SELECT ?c1ass ' 
WHERE { 
?c l ass rd f s : subC lasso f ?someClass 
: teach rdfs:domain ?someClass 

:> ^ ^ 

It asks for the subclasses of a class which forms the domain of a property teach. The processing of this 
query is the same as the evaluation of conjunctive queries as discussed in Section 4.3.2.3. The query will 
first be hashed on property teach to find its domain class, which will then be used to resolve the next sub-
query. 

T-Box indexing cannot be used directly to evaluate queries at the instance level, but it can restrict the 
query to a small set of nodes which are ontologically related to the query. These nodes have the T-Box 
knowledge to understand the query, thus are capable of answering the query. When a node issues an 
instance-level query, the T-Box concepts related to the query are extracted in the form of a keyword list, 
and these keywords are used as parameters to retrieve the relevant peers. We use an example to explain 
this process. The query is shown below: 

SELECT ?author ' 
WHERE { 

?author rd f : type : Person . 
?author :name Juan L i " . 

1> . , 1 

First, the query processor uses the concepts Person and name as keys to locate all nodes related to these 
concepts. Then the query is sent to these nodes for further evaluation. This way, the search scope is 
limited to a number of nodes whose schémas are related to the query, although not all of them can answer 
the query. 

4.4 Prototype implementation 
We evaluate the operability of the presented architecture by implementing a prototype system. In this 
section we discuss the experiences gained and the lessons learned while developing and implementing 
the prototype, GONID toolkit, which realizes the ontology directory service proposed in Chapter 3, and 
the resource integration and discovery framework, GONID, presented in this chapter. 



4.4.1 System architecture 
The architecture of the GONID toolkit is divided into three layers, namely the communication layer, the 
semantic layer, and the GUI layer, as shown in Figure 4.11. The communication layer is dedicated to 
managing the underlying P2P overlay communication, specifically, the directory overlay and the V O 
overlays. We use FreePastry [127], an open source implementation of Pastry, as our underlying P2P 
infrastructure. The directory overlay and the V O overlay are implemented in the same Pastry network. 
The semantic layer manages local ontology knowledge. Its functions include knowledge storing, 
reasoning, mapping, querying, and indexing. The third layer of the system provides a user-friendly 
graphic interface, through which users can browse the existing ontology directories in the network, join 
interested VOs, create and edit ontology metadata, map ontologies, and issue complex queries. The 
implementation of the semantic layer and the GUI layer is built on top of Protégé [85] - a free, open 
source ontology editor and knowledge-base framework. Protégé is written in Java, and provides a plug-
and-play environment that makes it a flexible base for rapid prototyping and application development. 
We implement our functionalities as Protégé plug-ins and all components of the system are integrated in 
the Protégé framework. We choose Java as our development language because both FreePastry and 
Protégé are written in Java. Next we will describe the implementation of the main components of the 
prototype system. 
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Figure 4.11 System architecture of the GONID toolkit 



4.4.2 Main components 

4.4.2.1 Pastry overlay 
We have layered our implementation of the ontology directory overlay and V O overlay on top of 
FreePastry. Our implementation is structured as a transparent layer on top of PAST - FreePastry's D H T 
part. It is customized to efficiently support the insert/modify/delete/query DHT interface for our 
application, and requires no modifications to the underlying Pastry. An object, either a directory or an 
R D F triple, has to be wrapped into a GonidContent class before being stored in the network. 
GonidContent extends PAST ContentHashPastContent, so that PAST can index and retrieve the object. 
To insert or lookup an object, the hash ID (key) of the object should be provided. A hashed ID (key) of 
an object can be obtained by calling PastryIdFactory.buildId(). Then the object can be stored in or 
retrieved from the overlay by calling PAST insert () or lookupi). 

4.4.2.2 User interface 
The system's graphical user interface builds on top of the available plug-ins of the Protégé user interface 
and provides additional graphical components for managing the distributed resource metadata. The 
GONID toolkit extends Protégé by adding two plug-in tabs: (1) the ontology directory browser & VO 
register tab and (2) the VO ontological query tab. Figure 4.12 shows a screenshot of the current state of 
the directory browser &V0 register plugin. The main functionality of the ontology browser is to let the 
user browse the existing ontology hierarchy graphically. There are three panels from left to the right in 
the tab: the domain ontology browsing panel, class browsing panel, and node browsing panel. In the 
domain ontology browsing panel, when a user selects a domain/category, sub-domains within the 
selected domain are listed in an alphabetical order. The class browser shows all the classes and class 
hierarchies defined in a particular ontology domain. When clicking a class, its detailed definition is listed 
in a pop-up window. Corresponding to each class, the node browser lists nodes using that class. A user 
can choose one or more categories and join their corresponding virtual organizations. The query tab 
shown in Figure 4.13 provides a query interface to support sharing and discovering knowledge in VOs. 
In the query panel on the left, users can enter queries in the SPARQL syntax. After a user presses the 
Execute Query button, the query results will be shown on the right panel. Double-clicking on a result 
entry will navigate to the particular individual in the Individuals tab. A more user-friendly query 
interface (e.g., a query wizard) is part of our ongoing work. 
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4.4.3 Ontology management 
Processing local ontology knowledge at the private workspace is carried out as users are working in a 
stand-alone fashion in Protégé. For example, users can use the class editor, property editor, or individual 
editor to edit their local ontologies. They can use reasoners like Racer [41] or Pellet [99] to compute the 
inferred ontology class hierarchy and check consistency. They may use PROMPT to do mappings with 
other ontologies. A l l these local operations can be carried out with the existing Protégé plug-ins. The 
knowledge can be saved in all kinds of formats, and the user can use it locally. 

More importantly, in our system, users can publish their metadata knowledge so that others in the system 
can share it. When a user publishes his/her ontology to the V O , the ontology file is saved into a particular 
directory of the local repository. Then the ontology information is passed to the index engine to index in 
the network. The current implementation supports ontologies in OWL/RDF format. 

4.4.3.1 Parser and index engine 
The function of the indexing engine is to index the local ontology knowledge to the Pastry overlay 
network to be accessed by remote peers. Before indexing, the local ontology file in the O W L / R D F 
format is first passed through an O W L parser which parses the O W L file into triples by using Jena [75, 
131]. The following code snippet illustrates the basic idea of the parsing process. 

// create a Model 
Model model = ModelFactory.createDefaultModel(); 

// l i s t the statements i n the Model 
Stmtlterator i t e r = model.listStatements(); 

// get the subject, predicate, and object of each statement 
while (iter.hasNext0) { 

Statement stmt = iter.nextStatement(); // get next statement 
Resource subject = stmt.getSubject(); // get the subject 
Property predicate = stmt.getPredicate(); // get the predicate 
RDFNode object = stmt.getObject(); // get the object 

} 

The output of the parser - triples are then passed as the input to the index engine. The triple has to be 
wrapped in the GonidContent class, and then it will be indexed three times by hashing the subject, 
predicate, and objeci respectively as the key. 

4.4.3.2 Distributed semantic search engine 
Through the query tab, a user can submit SPARQL queries to the system. A query is matched with local 
ontology by a local query processor, which is implemented by Jena's A R Q engine. A simple query 
matching example is illustrated with following code: 



import com.hp.hpl.jena.query.* ; 

Model model = ... ; 
Strin g queryString = " .... " ; 
Query query = QueryFactory.create(queryString) ; 
QueryExecution qexec = QueryExecutionFactory.create(query, model) ; 
t r y { 

ResultSet r e s u l t s = qexec.execSelect() ; 
for ( ; results.hasNext{) ; ) 
{ 

QuerySolution soin = results.nextSolution() ; 
RDFNode x = soin.get("varName") ; //Get a r e s u l t v a r i a b l e 
Resource r = soin.getResource("VarR") ; //Get a r e s u l t v a r i a b l e 
L i t e r a l 1 = soln.getLiteral("VarL") ; //Get a r e s u l t v a r i a b l e 

} 
} f i n a l l y { qexec.close() ; } 

At the same time, the query will be parsed to triples by Jena's A R Q parser, and then the triples wil l be 
sent to the index engine to match on the Pastry overlay. After finding matches from the Pastry overlay, 
the original SPARQL query will be forwarded to the matching nodes to do the local matching. Results 
are returned back directly to the requester. Currently, we do not implement the ranking of the results. 

4.4.4 GONID toolkit deployment and evaluation 
We installed the GONID Toolkit software on six WinXP computers and six Linux SUSE 10 computers at 
the computer science department of the University of British Columbia. Each physical node runs three 
copies of the software and simulates three virtual nodes, therefore we have in total thirty-six nodes in the 
system. 

We create an experimental scenario to show that GONID does improve the performance of searching. 
We use two Information Retrieval (IR) standards: precision and recall as the performance metrics. 
Precision is defined in Equation 4.4. It measures the purity of the search results, or how well a search 
avoids returning results that are not relevant. The "document" in the IR definition represents a resource 
in our experiment. Recall refers to completeness of retrieval of relevant items, as defined in Equation 4.5. 

\relevantDocumentsnretrievedDocuments\ 
precision = • ; 1 • (4.4) 

I retrievedDocuments \ 
„ \relevantDocumentsri retrievedDocuments \ 

recall = • j j • (4.5) 
I relevantDocuments \ 

Our experiments try to justify two hypotheses: (1) grouping semantically related nodes into VOs and 
using domain ontologies helps to eliminate the semantic ambiguity, thus improving the search precision; 
(2) mappings between parties with different ontologies and reasoning help to extend a concept's semantic 
meaning, thus improving the search recall. 

To make the experiment easy to control, we simplify the ontology data: we use a small-sized vocabulary 
set to generate the ontology data; we fix the mapping relation to the equivalentClass relation and ignore 
all other mapping relations. Specifically, the data is generated as follows: 

file:///relevantDocuments
file:///relevantDocumentsri


We generate a dictionary D containing words. It provides all the vocabulary for the system's 
ontologies. 
In dictionary D, we create a set of semantically equivalent categories, C. In each category, we have c 
keywords which are assumed to represent the same semantic meaning, i.e., any two keywords refer 
to the same meaning. In addition, we randomly pick s words, representing polysemy or homonymy 
(words with multiple meanings); if these words appear in different VOs, they represent different 
meanings. 

We created V {V=3) VOs. Each V O has O {0=10) ontologies, and each ontology includes k (k=5) 
classes. The ontologies are created with the following process: 

for class number i=J to k 

for ontology num j=J to O 

ontology onto_jse1 its class c/ass_ias a keyword randomly picked from a category C,-
end for 

end for 

This procedure creates O semantically related ontologies which can be mapped mutually, because 
each class in an ontology can find mappings from other ontologies. In addition, each class has / (i=6) 
instances. 

Each node joins to 1-3 VOs and keeps one ontology for each V O ; it also maintains m (l<m<3) 
mapping neighbors, i.e., neighbors that map corresponding equivalent classes. The equivalent 
mapping is published so that the query engine can use the mapping to reformulate the query. 

The following simple query form has been used in our experiment. 

SELECT ?x 
WHERE ?x rdfsrtype ClassX; 

We compare the GONID ontology-based search with semantics-free exact-match-based search. For the 
exact-match-based search, a query only matches a keyword without caring about the keyword's specific 
meaning in a V O and the mappings between nodes. For GONID searching, we vary the number of 
mapping neighbors (m) a node maintains from 1 to 3. For all the results returned, we compute the 
precision and recall. The results are shown in Table 4.3. 

Table 4.3 Performance comparison of GONID search and exact-match search 

Exact-Match GONID (,m=l) GONID (OT=2) GONID (/n=3) 
Precision 57% 100% 100% 100% 
Recall 33% 64% 89% 100% 

As shown in Table 4.3, GONID dramatically outperforms exact-match in both precision and recall. 
Because GONID search is executed in semantic VOs, it eliminates the semantic ambiguity problem such 
as polysemy and homonymy. Therefore, all the results returned by GONID search are relevant and the 
precision is 100%. When the number of mappings increases, the recall also increases, as most of the 



relevant relations can be identified. In fact, when each node maintains about 3 mapping neighbors, 
GONID search achieves a 100% recall rate. The result shows that the proposed GONID strategy is 
effective in improving the quality of search. Because of the limited experimental environment: with only 
12 physical nodes in a L A N , we leave the scalability evaluation to simulations presented in the next 
section. 

4.5 Simulation experiments 
We have demonstrated GONED's improved searchability in terms of its expressive query language, 
semantic reasoning, and integration, by theoretical analysis, examples, and a prototype implementation. 
Owing to the lack of access to the semantic environment with many nodes, our system performance 
evaluation falls back to simulations. In this experiment part, we focus on evaluating the performance that 
can be quantitatively measured by simulation. We first describe the experimental setup, and then analyze 
the simulation results. 

4.5.1 Experimental setup 
As it is difficult to find representative real world ontology data, we have chosen to generate test data 
artificially. Our data does not claim to model real data, but shall rather provide reasonable approximation 
to evaluate the performance of the system. Ontology data can be characterized by many factors such as 
the number of classes, properties, and individuals; thus we have generated the test data in multiple steps. 
The algorithm starts with generating the ontology schema (T-Box). Each schema includes the definition 
of a number of classes and properties. The classes and properties may form a multilevel hierarchy. Then 
the classes are instantiated by creating a number of individuals of the classes. To generate an R D F 
instance triple t, we first randomly choose an instance of a class C among the classes to be the subject: 
sub(t). A property p of C is chosen as the predicate pre(t), and a value from the range of p to be the 
object: obj(t). If the range of the selected property p are instances of a class C , then obj(t) is a resource; 
otherwise, it is a literal. 

The queries are generated by randomly replacing parts of the created triples with variables. For our 
experiments, we use single-triple-queries and conjunctive-triple-queries. To create the conjunctive-
queries, we randomly choose a property pi of class C/. Property pi leads us to a class C2 which is the 
range of pj. Then we randomly choose a property pz of class C2. This procedure is repeated until the 
range or the property is a literal value or we have created n (n<3) triple patterns. 

Our dataset uses the following parameters: The total number of distinguished ontologies is 100. We 
assume each node uses 1 to 3 ontologies. Each ontology includes at most 10 classes. The number of 
properties that each class has is at most ^=3. The number of instances of each class at each peer is less 
than 10. Finally, the number of triple patterns in each query we create is either 1 or 3. In our experiment. 



we do not do knowledge reasoning. In other words, we do not augment the RDF graph by inference 
(forward chaining). 

We implement a simulator of Pastry in Java on top of which we developed our indexing and routing 
algorithms. Each peer is assigned a 160-bit identifier, representing 80 digits (each digit uses 2 bits) with 
base b-2. After the network topology has been established, nodes publish their data on the overlay 
network. Then nodes are randomly picked to issue queries. Each experiment is run ten times with 
different random seeds, and the results are the average of these ten sets of results. 

4.5.2 Experimental results 
The system's ability to integrate heterogeneous ontologies, infer new knowledge, and answer all kinds of 
complex queries are illustrated with examples and the prototype toolkit. Here, we are mainly interested in 
three different questions, related to three different aspects of the indexing and searching scheme. First, 
we want to verify the efficiency of answering typical lookup requests. Second, we need to compare the 
overhead of indexing T-box and A-box as well as the overhead of searching based on these two indexing 
schemes. Last, we try to examine one important factor that affects the decision of choosing the index 
granularity. Next we list the major simulation results and provide a brief analysis. 

The first experiment answers the first question showing the number of routing hops as a function of the 
size of the Pastry network. We vary the number of Pastry nodes in the network from 2 ' to 2'**. We run 
two trials of experiments: one trial issues only single-triple-queries, while the other trial issues 
conjunctive-triple-queries. Figure 4.14 shows the average number of routing hops taken as a function of 
the network size for both query patterns. logabA^ is the expected maximum number of hops required to 
route a key in a network containing nodes (In our experiment b=2), therefore, in the figure "log4A'" is 
included for comparison. The results show that the number of route hops scales with the size of the 
network as predicted: for the single triple query, the route length is below log4A ;̂ for conjunctive queries, 
the routing hops is below 31og4A^ as expected. 
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The next experiment compares the performance of the T-Box and the A-Box indexing in terms of 
indexing overhead and query overhead. Each node may randomly choose n (n<3) ontologies from 100 
distinguished ontologies, and instantiate each class with m (m<10) instances. For simplicity, each query 
uses the simple single triple pattern. With this configuration, we see from Table 4.4 that A-Box indexing 
incurs much more overhead than T-Box indexing, and the discrepancy increases as the network size 
increases, for example, A-Box indexing causes several orders of magnitude higher overhead than what 
TBox indexing creates when the network size is 4096. On the other hand, if the system can afford the 
cost of maintaining the large index, A-Box indexing can improve searching efficiency. Table 4.5 shows 
the query overhead in terms of cumulative query messages. It is obvious that with A-Box indexing, 
processing a query requires much less message forwarding overhead than that based only on T-Box 
indexing. 

Table 4.4: Cumulative indexing storage load of T-Box indexing and A-Box indexing 

Network Size 256 512 1024 2048 4096 

Cumulative A-Box index (bytes) 10472400 20732040 39491280 81690660 1.63E+08 

Cumulative T-Box index (bytes) 365497 370939 381086 403625 446060 

Table 4.5: Cumulative query overhead based on T-Box index and A-Box index 

Network Size 256 512 1024 2048 4096 

Cumulative Query messages on A-Box index 17880 22080 21840 24780 26880 

Cumulative Query messages on T-Box index 66120 105360 170880 302940 573960 

We have seen the differences between T-Box indexing and A-Box indexing. An important question is 
how to choose the right indexing scheme for a system. There are many factors to consider, for example, 
the storage capacity of the participating nodes, the nature of the major queries, and even the 
organizations' policy. Another important factor is the degree of heterogeneity of the system's ontology. 
We performed a set of experiments to examine how the ontology variety affects the indexing 
performance. In the experiment, we fixed the network size at 1024. Initially, there are 10 distinguished 
schémas for the participating nodes to choose from, then we increase the number of ontology choices. 
We then examine the indexing and query overhead of both T-Box indexing and A-Box indexing. The 
results are illustrated in Figure 4.15. We notice that the ontology variety does not significantly influence 
the indexing and query overhead based on A-Box indexing, but does have an impact on T-Box indexing. 
For a fixed sized network, the more heterogeneous the ontology, the more effective the T-Box indexing 
becomes. As shown in Figure 4.15 (c), when the system has 100 ontologies to choose from, queries 
based on T-Box indexing cause just a small message load comparable to A-Box indexing in Figure 
4.15(d). This is easy to understand: when nodes have homogeneous ontologies, most nodes have the 
same T-Box knowledge; then indexing T-Box cannot effectively distinguish nodes and guide query 
forwarding. When the system has highly heterogeneous ontologies, T-Box indexing can distinguish 
nodes' ontologies well; therefore query routing is more efficient. 
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4.6 Summary 
In this chapter, we have presented GONID, an ontological framework for resource integration and 
discovery in semantic virtual organizations. One focus of the GONID system is to overcome the 
shortcomings of keyword-based searching, such as limited searchability and low recall and precision. To 
achieve this goal, we have proposed an ontological model that employs ontological domain knowledge to 
assist in the search process. The model provides efficient solutions to resource representation, integration, 
reasoning, indexing, and complex query evaluation. Queries are processed in a distributed and 
transparent fashion, so that the fact that the information is distributed across different sources and 
represented with different formats can be hidden from the users. The resulting prototype system, GONID 
toolkit, verifies the viability of this indexing and searching infrastructure. Simulation experiments have 
demonstrated its performance. 



Chapter 5 
OntoSum -

An Alternative Discovery Scheme 

Chapter 4 describes GONID, a V O discovery scheme based on a structured DHT overlay. The ontology-
based DHT indexing used by GONID allows scalable and efficient lookup, but it also has some 
shortcomings: (1) it is sensitive to chum because of the large overhead incurred in recovering the 
neighbor-relationship; (2) there is no control over where the metadata index is stored; (3) it has limited 
support for richer queries, such as wildcard queries, fuzzy queries, and proximity queries; and (4) since 
each node's ontology is decomposed and dispersed to the network, nodes may not have a complete view 
of others' ontologies. This limitation makes it difficult for nodes to find semantically related nodes in 
order to do ontology mappings. Therefore, if a system is highly dynamic, or needs to provide 
participating nodes full control of the storage of their resources (or the resource index), or has to support 
arbitrary complex queries, or the initial ontology mapping candidates cannot be discovered by using only 
dispersed linguistic features, then the DHT structure may not be an ideal choice. 

In this chapter, we propose a new search architecture, OntoSum, that attempts to overcome the above-
mentioned problems by the use of "semantic small-worlds". OntoSum is based on the observation that 
query transferring in social networks is made possible by locally available knowledge about 
acquaintances. Because of the similarity between grid networks and social networks and the fact that 
human users of grid networks direct grid nodes' links, we argue that grid networks can also utilize this 
phenomenon to discover resources. Peers in OntoSum use their ontology summary to represent their 
expertise; they learn and store knowledge about other peers with a view to their potential for answering 
prospective queries. This way, the network topology is reconfigured with respect to peers' semantic 
properties, and peers with similar ontologies are close to each other. Resources can then be located 
through nodes' current neighbors, rather than by contacting some central hubs (or virtual central hubs, 
such as DHTs). Like the GONID system, OntoSum addresses the routing issues of expressive queries in 
an ontologically heterogeneous environment. But unlike GONID's dependence on a well-organized 
D H T overlay, OntoSum adopts an unstructured overlay; it does not need to maintain a strict network 
topology, thus it is resilient to chum. Additionally, nodes have full control over where their resources (or 
the index of the resources) are stored. Moreover, in theory, it places no constraints on the query format; it 
can deal with any complex and flexible queries. Lastly, since each node indexes its metadata locally, it is 
possible to summarize a node's semantic interest or property from its indices; this facilitates a node 
finding its semantically related peers and performing ontology mapping with them. 

The contributions of this chapter are as follows: 



1. We propose a small-world model based on semantic similarity to facilitate resource discovery and 
sharing. 

2. We propose a novel structure, the Ontology Signature Set (OSS), as a concise summary of nodes' 
ontology schema. Based on OSSs, we design a method to compute the semantic distance (similarity) 
between different nodes. 

3. We propose a topology adaptation algorithm to form semantic small-worlds according to nodes' 
semantic similarity. 

4. We design an efficient semantics-based routing algorithm, R D V , which can further improve the 
performance of searching inside a cluster of the small-world system. 

5. We perform extensive simulation to evaluate system performance. 

Portions of this chapter appeared first in L i et al. [62, 65, 66]. 

The remainder of this chapter is organized as follows: Section 5.1 introduces the concept of semantic 
small-worlds and their advantageous properties. Section 5.2 presents a novel method of computing the 
semantic similarity between different peers. Section 5.3 gives an overview of our semantic small-world 
architecture - OntoSum. Section 5.4 describes the algorithm of organizing nodes to construct the 
OntoSum architecture according to the semantic similarity between nodes. Section 5.5 explains how 
resource discovery is performed in OntoSum, Section 5.6 presents a comprehensive semantics-based 
query routing algorithm, R D V , which works as an improved routing algorithm to forward queries inside 
OntoSum clusters. Simulation experimental results are given in Section 5.7. 

5.1 The concept of a semantic small-world 
A widely-held belief pertaining to social networks is that any two people in the world are connected via a 
chain of six acquaintances {six-degrees of separation) [7]. The quantitative study of the phenomenon 
started with Milgram's experiments [77] in 1960's, in which people were asked to send letters to 
unfamiliar targets only through acquaintances. Milgram's experiments illustrated that individuals with 
only local knowledge of the network (i.e., their immediate acquaintances) may successfully construct 
acquaintance chains of short length, leading to networks with "small-world" characteristics. In such a 
network, a query is forwarded along outgoing links taking it closer to the destination. Randomized 
network constructions that model the small-world phenomenon have recently received considerable 
attention. To model the routing aspects of the small-world phenomenon, Kleinberg constructed a family 
of random graphs [55]. The graphs not only have small diameter (to model the "six degrees of 
separation") but also allow short routes to be discovered on the basis of local information alone (to model 
Milgram's observation that messages can be "routed to unknown individuals efficiently"). In particular, 
Kleinberg considered a 2D n x n grid with n^ nodes. Each node is equipped with a small set of "local" 
contacts and one "long-range" contact drawn from a harmonic distribution. With greedy routing, the 
path-length between any pair of nodes is O(log^n) hops, with high probability. 



Small-world networks exhibit special properties, namely, a small average diameter and a high degree of 
clustering. A small diameter corresponds to a small separation between peers, while a high clustering 
signals tight communities. Small world graphs contain inherent community structure, where similar 
nodes are grouped together in some meaningful way. Intuitively, a network satisfying the small-world 
properties would allow peers to reach each other via short paths while maximizing the efficiency of 
communication within the clustered communities. 

We draw inspiration from small-world networks and organize nodes in our system to form a small-world 
topology, particularly from a semantic perspective. Our objective is to make the system's dynamic 
topology match the semantic clustering of peers, i.e., there is a high degree of semantic similarity 
between peers within the clustered community; this would allow queries to quickly propagate among 
relevant peers as soon as one of them is reached. To construct the semantic small world network depicted 
above, we follow the idea of the Kleinberg experiment: each node keeps many close neighbors (short-
range contacts), as well as a small number of distant neighbors (long-range contacts). The distance metric 
in our system is determined by nodes' semantic similarity. With the semantics-based small-world 
constructed, a query can be efficiently resolved in the semantic cluster neighborhood through short 
semantic paths. 

The preliminary semantic building blocks of OntoSum are similar to those defined in the GONID system 
presented in Chapter 4. We apply ontology to resource descriptions, and adopt RDF/OWL as the 
ontology language. Inference engines are used to derive additional facts from existing knowledge. Four 
class mapping pattems: equivalentClass, subClass, superclass, referentialClass, and four property 
mapping patterns.- equivalentProperty, subProperty, superProperty, inverseProperty are defined to 
represent mappings between ontologies. We distinguish T-Box knowledge and A-Box knowledge in each 
peer's local ontology repository as well. Since all these semantic components have been explained in 
Chapter 4, we do not repeat the description here. Rather, we will present how to determine the similarity 
between ontologies, so that nodes can reconfigure the topology accordingly. 

5.2 Semantic similarity 
Computing the semantic similarity between two peers is very difficult and related research is still in its 
initial stage. It may need technologies from natural language processing, information integration, graph 
matching, etc. It involves measuring the similarity of the syntactical, structural, and semantic aspects of 
the ontology data. There has been extensive research [49, 60, 89] focusing on measuring the semantic 
similarity between two objects in the field of information retrieval and information integration. However 
their methods are very comprehensive and computationally intensive. In this thesis work, we propose a 
simple method to compute the semantic similarity between two peers; this can easily be replaced with 
other advanced functions for a complex system. 



5.2.1 Ontology signature set (OSS) 
To measure the semantic similarity between peers, we need to extract each peer's semantic 
characteristics. The representation of these characteristics should be light-weight, so that they can be 
efficiently exchanged between peers and the similarity based on these characteristics can be easily 
computed. As elaborated in Section 4.2.2, the T-Box part of an ontology defines high-level concepts and 
their relationships like the schema of a database. It is a good abstraction of the ontology's semantics and 
structure. Therefore, our semantic property representation is based on T-Box knowledge. 

5.2.1.1 Primitive ontology signature set 
A naïve approach is to use keywords of a node's T-Box ontology as its ontology summary. For each 
node, we extract the class and property labels from its T-Box ontology, and put them into a set. This set 
is called this node's Ontology Signature Set (OSS). We can measure the similarity of two ontologies by 
comparing the elements of their OSSs. To reduce the size of an OSS, it can be compressed to a compact 
structure: a Bloom filter [9]. With the OSS, we summarize a node's ontology properties as a set of 
keywords. This summarization is simple and concise, but on the other hand, it is not precise; it ignores 
the inherent relationships between T-Box concepts and thus damages the semantic meaning of each 
concept. Next, we present two methods to improve the semantic precision of the OSS. 

5.2.1.2 Extended ontology signature set 
A node's primitive OSS contains only local ontology concept labels. However, a semantic meaning may 
be represented by different labels in different ontologies, while it is also possible that the same literal 
label in different ontologies means totally different things. Therefore, two semantically equivalent 
ontologies may have totally different OSSs, while two similar OSSs may represent two completely 
different ontologies. Ontology comparison based on primitive OSSs may not yield satisfying results. One 
improvement is to extend each concept with its semantic meanings, so that semantically related concepts 
would have overlaps. Based on this intuition, we use the lexical database, WorldNet [78], to extend the 
OSS to include words which are semantically related to the concepts from the original set. In our work, 
WordNet is interpreted and used as a lexical ontology which extends the semantic meaning of the class 
and property labels in question. 

WordNet is the product of a research project at Princeton University. It was conceived as a machine-
readable dictionary, following psycholinguistic principles [28, 78]. Unlike standard alphabetical 
dictionaries which organize vocabularies using morphological similarities, WorldNet structures lexical 
information in terms of word meanings. WordNet maps word forms in word senses using the syntactic 
category as a parameter. Words of the same syntactic category that can be used to express the same 
meaning are grouped into a single synonym set, called synset. For example, the noun "computer" has a 
synset: {computer, data processor, electronic computer, information processing system}. An intuitive 
idea of extending an OSS is to extend each concept with its synset, i.e., its synonyms. Given a primitive 



OSS consisting of a number of ontology concept labels, we lookup each concept in the WordNet lexicon 
and extend each concept with its synonyms in the synset. In this way, two semantically related ontologies 
would have common WordNet terms in their extended OSSs. Besides synonyms, WordNet also includes 
other lexical semantic relations, such as is-a, kind-of, part-of. Among these relations, is-a (represented by 
hyponym/hypemym in WordNet) is the most important relationship; it explains a concept by a more 
general concept. Therefore, we also extend OSS concepts with their hypemyms. 

5.2.1.3 Refined ontology signature set 
After extension, an OSS may get a large number of synonyms for each concept. However, not all of these 
synonyms should be included in the set, because each concept may have many senses (meanings), and 
not all of them are related to the ontology context. For example, consider the noun "computer", it has two 
senses defined in WordNet, hence two synsets, (computer, data processor, electronic computer, 
information processing system} and {calculator, reckoner, figurer, estimator, computer}. Having 
unrelated senses in the OSS will diminish the accuracy of measuring the ontology difference and incur 
higher computation cost for set operations. Therefore, we have to prune the expanded OSS to exclude 
those unrelated terms. 

A problem causing the ambiguity of concepts in OSS is that the extension does not make use of any 
relations in the ontology. Relations between concepts are important clues to infer the semantic meanings 
of concepts, and they should be considered when creating the OSS. Therefore, we utilize relations 
between the concepts in an ontology to further refine the semantic meaning of a particular concept. Only 
words with the most appropriate senses are added to the OSS. Since the dominant semantic relation in an 
ontology is the subsumption relation (super-class, the converse of is-a, is-subtype-of, or is-subclass-of). 
in this development phase of our system, we use the subsumption relation and the sense disambiguation 
information provided by WordNet to refine OSSs. It is based on a principle that a concept's semantic 
meaning should be consistent with its super-class's meaning. We use this principle to remove those 
inconsistent meanings. The refined algorithm to generate the OSS is illustrated with the pseudocode in 
Figure 5.1. 

/* This algorithm generates the r e f i n e d Ontology Signature Set 
OSS for an ontology 0 */ 

createOss(Ontology 0) 
{ 

OSS={}; 
f o r each c e{concepts of ontology 0} 

p^ i s parent concept of c 
add c, p., to OSS 
f o r each Ŝ e {senses of c} 

Ĥ = {hypemyms of SJ 
f o r each Sp̂ e {senses of p J 

i f n Sp,, !=null 
add S<,,Sp<, to OSS 

Figure 5.1 A refined algorithm to generate the Ontology Signature Set 



The algorithm in Figure 5.1 creates the refined OSS by adding the appropriate sense set of each ontology 
concept based on the sub-class/super-class relationships between the parent concepts and child concepts. 
For every concept in an ontology, we check each of its senses; if a sense's hypemym has an overlap with 
this concept's parent's senses, then we add this sense and the overlapped parent's sense to the OSS set. 
In this way, we can refine the OSS and reduce imprecision. 

Possible improvements could be obtained by using other relations in the ontology, such as the meronymy 
relation, written as part-of, representing how objects combine together to form composite objects. 
Besides the is-a and part-of relations, ontologies often include additional types of domain-specific 
relationships that further refine the semantics they model. Using complex relations to refine the meaning 
of the ontology concept is difficult to be performed automatically because too little information is 
available and exploring all the possibilities will greatly slow down the process. The system may provide 
an interface to users to select the right meaning from the possible ones found in WordNet; this is beyond 
our current thesis work. 

5.2.2 Peer semantic similarity 
To compare two ontologies, we define an ontology similarity function based on the refined OSS. The 
definition is based on Tversky's "Ratio Model" [111], which is evaluated by set operations and is in 
agreement with an information-theoretic definition of similarity [71]. Our similarity function is based on 
the normalization of Tversky's model to give a numeric measurement of ontology similarity. 

Definition 5.1: Assume A and B are two peers, and their extended Ontology Signature Sets are S(A) and 
S(B) respectively. The semantic similarity between peer A and peer B is defined as: 

sim(A,B) = 
S{A)mB)\ (5.1) 

SiA)Ç\S(B)\+a\S(A}-S(B)\+P\S(B)-S(A, 

In the above equations, " f l " denotes set intersection, " - " is set difference, while "| |" represents set 
cardinality, "a" and "P' are parameters that provide for differences in focus on the different components. 
The similarity sim, between A and B, is defined in terms of the semantic concepts common to OSS of A 
and B: S(A)^S(B), the concepts that are distinctive to A: S{A)-S{B), and the features that are distinctive to 
B: S(B) - S(A). The parameters a and are non-negative, determining the relative weights of these two 
components. The similarity depends not only on the proportion of features common to the two ontologies 
but also on their unique features and the relative importance varies with the parameters a and ^ These 
parameters allow the model some flexibility, because it can decide whether common or distinctive 
features have more influence. Note that with this definition, similarity is not a symmetric relation, i.e., 
"how similar is A to B" may give a different answer than "how similar is B to A". Employing such an 
asymmetric measurement reflects human judgment: sometimes, we say one object is similar to another 
one, but not vice versa. With the similarity measure specified, we have the following definition: 



Definition 5.2: Two nodes, node A and node B are said to be semantically equivalent if their semantic 
similarity measure, sim(A,B) equals to 1 (implying sim(B,A)=l as well). Node A is said to be 
semantically related to node B, if sim(A,B) exceeds the user-defined similarity threshold t (0<t<l). Node 
A is semantically unrelated to node B if sim(A,B)<t. 

5.2.3 An example 
We use an example to further illustrate how to use the refined OSS and similarity function to measure the 
semantic similarity between two peers. Figure 5.2 shows two partial ontology definitions about 
automobiles. Detailed ontology definitions are omitted here. Table 5.1 and 5.2 list the ontology concepts 
and their synonyms and hypemyms from all senses extracted from WordNet. 

(A) (B) 

Figure 5.2 Parts of two ontologies 

The primitive OSSs of these two ontologies are: 

SA = {auto, truck, racer} 
SB - (car, race car, motortruck} 

These two sets share no common terms, and literally they are totally different. If the similarity function is 
applied to these two sets, the result is 0, meaning they are totally unrelated. Table 5.1 and Table 5.2 
illustrate how to extend the OSSs with right WordNet senses by applying the algorithm in Figure 5.1. 

Table 5.1 WordNet senses and hypemyms for ontology A 

Concept Parent-
concept WordNet senses/synset Hypernyms of senses in WordNet Right 

sense? 

auto car, auto, automobile, machine, 
motorcar 

motor vehicle, automotive vehicle yes 

truck auto 
truck, motortruck motor vehicle, automotive vehicle yes 

truck auto 
hand truck, truck handcart, pushcart, cart, go-cart no 

racer auto 

race driver, automobile driver driver no 

racer auto 
racer, race car, racing car 

car, auto, automobile, machine, 
motorcar 

yes 
racer auto 

racer (an animal that races) 
animal, animate being, beast, brute, 
creature, fauna 

no 
racer auto 

racer (slender fast-moving North 
American snakes) 

colubrid snake, colubrid no 



Table 5.2 WordNet senses and hypemyms for ontology B 

Concept Parent-
concept WordNet senses/synset Hypernym of senses WordNet Right 

sense? 

car 

auto, automobile, machine, motorcar motor vehicle, automotive vehicle yes 

car 
railcar, railway car, railroad car wheeled vehicle no 

car 
gondola compartment no 

car 

cable car, car compartment no 

race car car racer, race car, racing car car, auto, automobile, machine, 
motorcar 

yes 

motortruck car truck, motortruck motor vehicle, automotive vehicle yes 

By extending the two primitive OSSs.- SA andSB, we get the extended OSSs: 5^'and SB': 

SA' = fauto, car, automobile, machine, motorcar, truck, motortruck, racer, race car, racing car} 
SB' = {car, auto, automobile, machine, motorcar, racer, race car, racing car, truck, motortruck} 

Now we can see that these two sets share exactly the same semantic concepts! The similarity function 
based on the extended OSSs are: 

sim.(A, B) = 

sim(B,A) = 

\S(A)[]S(B)\ 11 
\S( A)r\S( B )\+a\S( A)-S( B )\+/i\S( B )-S( A)\ U + Oa+Ofl 

\S(A)nS(B)\ 11 
S( A)r\S( B )\+a\S( B )-S( A)\+fi\S( A)-S( B )\ n+Oa + 0/3 

= 1 

= 1 

This means ontology A and ontology B are semantically equivalent. Note: the equivalent is independent 
of a and ^. With the semantic similarity function defined, we can measure the semantic distance between 
nodes and reconfigure the network topology accordingly to form semantic small-worlds. The next section 
gives a brief overview of our semantic small-world topology. 

5.3 Small-world topology adaptation 
5.3.1 Topology overview 
In Kleinberg's experiment [55], to form a network with small-world characteristics nodes keep many 
"local" contacts and one "remote" contact. Our semantic topology construction is based on this idea. In 
our system, a node distinguishes three kinds of neighbors based on their semantic similarity. A peer A 's 
neighbor, B , can be one of these three types: (1) zero-distance neighbor (or semantically equivalent 
neighbor), if sim(A,B)=l, (2) short-distance neighbor (or semantically related neighbor) if sim(A,B)>t 
(0<t<l is A ' s semantic threshold), (3) long-distance neighbor (or semantically unrelated neighbor) if 
sim(A,B)<t. A node always tries to find as many close neighbors as possible, but it also keeps some long 
distance neighbors to reach out to other ontological clusters. 



Nodes in the system randomly connect to each other through these three types of neighbor links. They 
produce a semantically clustered small-world topology. The cluster structure is not flat but multi-layered; 
nodes with similar ontological topics (short-distance neighbors) form a domain; inside the domain, nodes 
may create smaller clusters if they share the same ontology schema. Figure 5.3 shows a high level view 
of a sample network topology. A l l peers in the medical domain are interested in information related to 
medicine. They may be interested in different aspects of the medical resources, and they may use 
different ontologies to describe their resources. They connect with each other through short-distance 
links. Inside the medical domain, nodes further organize themselves to finer-grained clusters based on 
their ontologies. For example, nodes N i , N 2 , N 5 , and Ng use the same ontology, ontoi (e.g., a medical 
ontology, SNOMED-RT [122]), thus they are zero-distance neighbors and form the same-ontology 
cluster. In the rest of this chapter, we use the term "domain" to represent a group of clusters sharing 
similar ontological topics, and use the term "cluster" to denote the ontologically equivalent cluster. 
Clusters and domains do not have fixed boundaries; they are formed by randomly connecting relevant 
nodes. 

Figure 5.3 A sample network topology 

Peers in our system may pose two kinds of queries, neighbor-discovery queries and resource-discovery 
queries. The neighbor-discovery query is used to construct the semantic small-world topology. When a 
new node joins the network, it issues neighbor-discovery queries to find semantically related neighbors, 
so that it can join their domains and clusters by connecting to them. The resource-discovery query is used 
to locate desirable resources in the network. Once the semantic topology has been created, resource 
discovery can be performed inside local clusters and domains. To efficiently resolve both queries, each 
node maintains finer-grained knowledge of neighbors semantically closer to it, but coarser-grained 
knowledge of neighbors further from it. This reflects the characteristic of our routing strategy, in which 
the query first walks around the network, and once it reaches the target cluster, it zooms in on that cluster 
and investigates its detailed ontology properties. 



5.3.2 Inter-cluster routing table 
The construction of an ontology-based topology is a process of finding semantically related neighbors. A 
node joins the network by connecting to one or more bootstrapping neighbors. Then the joining node 
issues a neighbor-discovery query, and forwards the query to the network through its bootstrapping 
neighbors. The neighbor-discovery query routing is in fact a process of inter-cluster routing and is based 
on the inter-cluster routing table. 

A node's inter-cluster routing table stores the abstract semantic knowledge of its neighboring clusters. 
Specifically, it keeps contacts to those clusters - its short-distance and long-distance neighbors, their 
semantic similarities to this node, and their OSS mapped in a compressed Bloom filter. To reconcile the 
semantic differences between clusters, inter-ontology mappings are also stored in the inter-cluster routing 
table. A query can then be forwarded to a neighbor after being translated according to the inter-ontology 
mapping. A neighbor-discovery query is mainly routed over clusters to quickly locate related clusters. A 
resource-discovery query is always forwarded inside clusters because of the topology's semantic locality 
property. 

Table 5.3 shows the inter-cluster routing table of N2, a node in Figure 5.3. N3, N4, and Ne are short-
distance neighbors of N2 (assume the similarity threshold is 0.6). N7 is a long-distance neighbor which 
links to a semantically unrelated domain. The Ontology Signature Sets of A^2's neighbors are 
compressed into a Bloom filter, thus they are sequences of Os and Is. The last column of the table stores 
the inter-ontology mappings between N 2 and other semantically related neighbors. For example, the last 
column of the first row stores ontology mappings between N2 and N3, which includes equivalent class 
mapping Ca=€a' and equivalent property mapping Pa=Pa'-

Table 5.3 Inter-cluster routing table of node N2 

Neighbor Semantic 
similarity 

Compressed OSS Inter-ontology mappings 

N3 0.8 ont02 [10011010...] C -C ' P -P ' 

N4 0.7 ontos [01101010...] Cm^m'>P2^P2' 

N6 0.6 ont04 [11100010...] C,(ZC,' ... 

N7 0 ont05 [00001010...] none 

To control the overhead of routing table maintenance, a soft-state update mechanism is used to keep the 
routing information up-to-date; nodes periodically probe their neighbors and propagate updated ontology 
information to them. At any given time, the resource routing information may potentially be stale or 
inconsistent, but in the long run, they are good enough to direct query forwarding to the right peers. 



5.3.3 Neighbor discovery query 
A neighbor-discovery query message includes several parts: (1) the querying node's compressed OSSs, 
(2) a similarity threshold which is a criterion to determine if a node is semantically related to the query 
(optional), (3) a query Time To Live (TTL) to gauge how far the query should be propagated, (4) a list of 
clusters (represented by the ontology namespace of the cluster) the query has passed through, so that the 
query will not be forwarded to the same cluster again and again. 

When a node receives a neighbor-discovery query Q which tries to find neighbors for a new joining 
node X, N computes the semantic similarity between X and itself. If is semantically related to X, N will 
send a Neighbor Found reply to X. If the query's T T L has not expired, computes the semantic 
similarity between X and each of its neighbors, and forwards the query to semantically related neighbors. 
If no semantically related neighbors are found, the query will be forwarded to A^s long-distance 
neighbors. The detailed query processing algorithm is illustrated in Figure 5.4. 

/* When a node N receives a neighbor-discovery query Q issued by a 
new joining node X, N calls this function to process the query*/ 

process_neighbor_discovery_query (query 0) 
{ 
1. if Q has been received before, discard it, return 
2. compute the semantic similarity between Xand N, sim(X,N) 
3. \Usim(X,N)=1) 
4. send a reply indicating N is Xs zero-distance neighbor 

the reply also contains Ns zero-distance neighbours 
5. W {threshold<sim(X,N)<1) 
6. send a reply indicating N is Xs short-distance neighbor 
7. if (TTL does not expire) 
8. for each neighbor N, in A ŝ inter-cluster table 
9. compute the semantic similarity sim(X, Nj) 
10. \\{sim(X,Ni)> threshold) 
11. fonward Oto Afy 
12. if no N; found 
13. forward 0 to Ns long distance neighbors 
} 

Figure 5.4 The algorithm of neighbor-discovery query 

A neighbor discovery query aims to locate short-distance and zero-distance neighbors for the querying 
node. Bootstrapping neighbors can be candidates for long-distance neighbors if they are not semantically 
related to the querying node. Information of short-distance and long-distance neighbors is used to 
construct a node's inter-cluster routing table. After a node finds its short-distance neighbors, it will 
contact them to map ontologies with them. Unlike the GONID system in which mappings are globally 
accessible to the network, mappings here are only between the two neighbors, and queries are translated 
whenever passing along short-distance links. 



5.4 Resource discovery in OntoSum 
With the semantic small-world topology constmcted, resource discovery can be efficiently performed. In 
most cases, a resource discovery query can be answered within the querying node's local domain, 
because queries reflect the querying node's ontology interest, and semantically related nodes are within 
the neighborhood of the querying node. When a node issues (or receives) a query, it first chooses its 
zero-distance neighbors to forward the query inside the local cluster. Since they use the same ontology, 
the zero-distance neighbors are the best candidates to forward the query to. Another important step in 
query processing is to reformulate a peer's query over other peers on the available semantic paths. 
Starting from the querying peer, the query is reformulated over the querying peer's short-distance 
neighbors, then over their short-distance neighbors, and so on until the query T T L expires. Because of 
the small-world property, the query can get enough answers within a small number of hops with high 
probability. The query reformulation is according to the inter-ontology mappings. Since the ontology 
mapping between two clusters rarely maps all concepts in one cluster to all concepts in the other, 
mappings typically lose some information and can be partial or incomplete; the reformulated query may 
deviate from the original query's intention, and the query result should be evaluated at the querying node. 
Feedback on query results can be used to improve the quality of inter-ontology mappings. Moreover, 
nodes can leam from query results to update their neighbors. Therefore, when a node updates its 
semantic interests, the system is able to adjust that node's links accordingly. 

Sometimes, users may want to locate resources in other semantic domains. In this case, they would first 
locate the related domain using the inter-cluster routing algorithm; then they can follow procedures just 
mentioned to process the query in that domain. 

The semantic domains and clusters reduce the search time and decrease the network traffic by 
minimizing the number of messages circulating among domains and clusters. Inside the cluster, nodes 
randomly connect with their zero-distance neighbors sharing the same ontology schema. Queries looking 
for particular resources can be routed inside the cluster using flooding- or random-walk- based simple 
forwarding algorithms. To further improve the performance of intra-cluster searching, we propose an 
efficient intra-cluster routing algorithm which is presented in the next section. 

5.5 RDV routing 
To efficiently forward resource discovery queries inside the cluster, we propose the Resource Distance 
Vector (RDV) routing algorithm. The main idea of this algorithm is to build and integrate each node's 
ontological instance summaries. When processing a query, the summaries are used in a pre-processing 
step to find peers that are likely to provide relevant answers to the query. The R D V algorithm can be 
used independently as a semantics-based routing algorithm in a network with a fixed ontology schema. 



5.5.1 Index summarization: triple-filters 
Compared with the whole network, the size of a cluster is relatively small. Therefore, it is possible to 
index more detailed ontology information into the intra-cluster routing table. Unlike the inter-cluster 
routing tables which store abstract T-box knowledge, the intra-cluster routing table records detailed A -
Box knowledge from neighbors inside the same cluster (i.e., zero-distance neighbor). In the rest of this 
section, we use the term "neighbor" to represent zero-distance neighbor. Every peer maintains a resource 
index table, and peers exchange their indices. Queries can then be distributed by relaying based on these 
indices. However, the instance-level indexing can be expensive due to the large number of instances. To 
reduce the overhead of propagating the index information, we propose a lightweight indexing 
summarization scheme based on a concise data structure, the triple filter, which extends the Bloom filter. 
Since many parts of this thesis use the Bloom filter technology, we provide a brief introduction about 
Bloom filters. 

5.5.1.1 Bloom filters 
A Bloom filter is a compact randomized data structure for representing a set in order to support 
membership queries. The basic idea is illustrated in Figure 5.5. For a set A composed of n elements: faj, 
a2,...,aj, a vector v of m bits, initially all set to 0, is allocated to it. Then k independent hash functions, 
h], h2,..., hk, each with range {l,...m} are applied to every element of the set. For each element a in A, the 
bits at positions hi(a), h2{a),...,hk{a) in v are set to 1. A particular bit may be set to / multiple times. To 
determine if an element b is in the set A, we check the bits at positions hjib), h2(b),..., hk(b). If any of 
them is 0, then b is certainly not in the set A. Otherwise we conjecture that b is in the set although there is 
a certain probability that we are wrong. This is called a "false positive". The parameter k and m should be 
chosen such that the probability of a false positive is acceptable. There is a clear tradeoff between m and 
the probability of a false positive rate, which can be estimated by: (1- e"*"̂ "")*. 

Element a: hi(a)=Pi, h2(a)=P2 h3(a)=P3 h4(a)=P4 

Bit Vector v 0 0 1 0 0 1 0 0 1 0 0 1 0 ... 

m bits — 

Figure 5.5 Storing an element a into a Bloom filter with k=4 

5.5.1.2 Triple filters 
A classical Bloom filter is a simple randomized data structure for representing a set and supporting 
membership queries. It is unable to represent structured data like RDF. To address this problem, we 
extend the classical Bloom filter to a structure called a triple filter. As mentioned, the building block of 



R D F statements is a triple including a subject, a predicate, and an object. Any RDF statement can be 
represented by a sequence of triples. A triple filter includes three different Bloom filters: the subject 
filter, the predicate filter, and the object filter. These three filters work together to represent the R D F 
triples and answer triple membership queries. To store an A-Box RDF statement, the statement is first 
decomposed to sequence of triples and these triples in turn can be mapped to the corresponding triple 
filters. For example, in Figure 5.6 an RDF triple: (:JavaProgramming, :creator, Ken Arnold) is mapped to 
the triple filter. In this example, each filter's size is 16 bits, and 3 hash functions {hj, hi, hj) are used to 
map an element to the filter. In reality, the sizes of the subject filter, the predicate filter, and the object 
filter are different, so are the number of hash functions used on these filters. Normally, the object filter 
has larger size and uses more hash functions, while the predicate filter has smaller size and uses fewer 
hashes, because a particular ontology usually has more distinct objects than distinct predicates. To 
identify the existence of a triple, three parts of the triple are mapped to the corresponding filters. If all of 
them are found in the triple fitter, we conjecture that the queried triple exists. However, this conjecture 
may be false, because even when all parts of a triple are found in the filter, these parts may belong to 
different resource instances. Luckily, this false positive does not affect the system fidelity, but relaxes the 
filtering requirements; the query has to be evaluated by the real data source anyhow. 

/z/(:JavaProgramming)=l /72(:JavaProgramming)=3 /z5(:JavaProgramming)=8 

sub 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 2 3 4 5 6 7 8 9 A B C D E F 

^/(:creator)^4. /i2(-creator.)^B^_^ /z^(: creator )=7 

pre 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 

/z/(Ken A r n o l d ^ /72(Ken Amold)=3, hsiKen Arnold) 

obj 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 

Figure 5.6 A triple filter example. The triple <JavaProgramming, .-creator, Ken Amold> 
is mapped to a triple filter by 3 hash functions: h/, hi, and hj 

5.5.2 Routing table 

5.5.2.1 From triple filter to RDV routing table 
The triple filter is a compact summary of a node's local resource information. If a node knew every other 
nodes' resource summary, then it could accurately send a query to exactly the right nodes. Although 
transferring the summary instead of real data can significantly reduce the network traffic, it is still 
prohibitive for every node to know each other in a large system. To solve this problem, we propose a 
distance-vector-based query routing algorithm, R D V , in which a node can make routing decisions by 
knowing only its immediate neighbors and limited resource information. We innovatively constmct the 



R D V routing table (RDVT) based on the triple filters. Specifically, each node in the network keeps a 
modified triple filter for every neighbor (adjacent node) in the overlay topology. A neighbor filter is 
created by merging filters of all nodes d hops away from that neighbor; therefore it keeps track of 
resources reachable via d hops through the overlay network starting with that neighbor. We add distance 
information to the triple filter, so that we can not only know how far away the resource is located, but 
also control how far a node can "see" its neighborhood; together with the neighbor summaries, we can 
determine where to forward a particular query. In a routing table, each entry in the triple filter is not a 
single bit but rather a small counter. Initially, all entries are set to infinity (represented by a special 
number). When a local resource is inserted, the corresponding counters are set to 0, meaning the distance 
is 0, representing a local resource. When the summary is propagated to another node, the counters 
corresponding to each resource are incremented. To control the false positives caused by Bloom filter 
aggregation, we set the maximum value of the counter, which we call the radius. The radius limits the 
number of hops the resource information can be propagated. After a series of propagations, if a resource 
is propagated to a node which is more than radius away, then its entries in the R D V T are set to infinity 
(not available). Because of the small-world theory, nodes are connected with a small number of hops. 
Therefore, a small radius works for our system. As revealed by our experiments, 3 bits per counter 
should suffice. 

The R D V routing table contains both local and neighbouring filters. The first row of the table is the local 
filter containing the index of local resources. The rest of the rows represent resources accessible from 
neighbors but not just the resources of immediate neighbors. Each element in the filter is associated with 
a distance number representing the minimum distance to a related resource (~ represents infinity). Figure 
5.7 shows part of a network and a particular node A's routing table. For brevity, only one of the three 
filters is shown here. The size of the filter vector is two bytes and two hash functions are used to map the 
key. In A ' s routing table, the first row contains two local resources: a, and 02. Resource o/ is mapped to 
indices (2,12) and 02 is hashed to indices (4,10) of the filter, thus those indices are set to 0 in the filter. 
The second row of A's routing table contains resources that can be reached through neighbor B. B has a 
local resource b which is hashed to 0 and 4, therefore positions 0 and 4 are set to 1 in the second row of 
A ' s routing table; this means A can access resource b with 1 hop; also in the same row, we can see 2 and 
3 in some positions, meaning A can reach these resources by 2 hops or 3 hops through node B. These 
resources are not located in node B itself, but in 5's neighborhood. Similarly, the third row of A's R D V T 
records resource information reachable from neighbor C. 



5.5.2.2 Merging of the routing table 
Nodes should be able to exchange their resource information efficiently, so that they can construct their 
routing tables and keep them up-to-date. To save bandwidth, a node merges its local and neighbouring 
filter vectors to one single vector to send to its neighbours, instead of sending the whole table. Since we 
changed the filter from a bitmap to a vector of numbers, we cannot merge them by bitwise or as we 
would merge the standard Bloom filter. Merging of filters must include all resources in each of the 
participating filters, and also keep the right distance information. With this requirement in mind, we 
implement the merge operation by obtaining the smallest counter values from participating filters in the 
corresponding positions. The rationale behind this operation is that if filters representing different 
distances to the same resource are merged, the shortest distance should be recorded. However, different 
resources may overlap on some hash positions. After merging, positions related to a resource may hold 
different distance values, since some positions may overlap with other resources and be changed to a 
smaller value by the merging process. It is not difficult to see that, in the merged filter, a resource's 
distance value would be the largest value among all values of its corresponding hash positions. 

Figure 5.8 shows how node A merges its local and neighbour filter vectors to one vector A ' . It is clear 
that each element of A ' is the minimum of all corresponding elements of A, B, and C. Now let us look at 
a resource c corresponding to positions 3 and 7 in C's vector. Its distance values in C's vector is 3 
{C(3)=3, C(7)=3). Because resource c has a hash position 7 which overlaps with a resource in vector B, 
position 7 is updated to a smaller value, 1, after merging. In the merged vector A', A'(3)=3, A'(7)=1, we 
can see that the larger distance value: 3 in position 3 represents the actual distance to resource c. 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
A ~ 0 0 ~ ~ 0 0 ~ ~ ~ 
B 1 ~ ~ ~ 1 1 2 ~ 3 2 
C ~ 1 ~ 3 ~ 3 ~ 2 2 1 
A' 1 1 0 3 0 1 2 0 0 1 

Figure 5.8 Merging of three filter vectors: A, B, C to one filter vector A ' 



The merging process guarantees that the nearer resource information always gets higher priority in the 
filter, because a position occupied by a nearer resource would never be overwritten by a further resource. 
This property in turn guarantees that increasing radius will not bring more false positives for a limited 
sized triple filter, which will be proved by our experiments as well. 

A node accumulates its local and neighboring resource filter vectors into one vector and exchanges the 
merged vector with its neighbors. By exchanging the merged vectors, we reduce both the amount of 
information transmitted and the storage used. When a merged vector arrives at the next hop, all of its 
distance counters are increased by 7. As mentioned, the radius limits how far the resource information 
can travel. In the merged vector, if an element's value equals radius, we reset the value to infinity ("~" in 
the figure), representing "not available". Since our network possesses the small-world property, nodes 
are connected with a small number of hops; a small radius value is sufficient to gather the 
neighbourhood resource information. This has been verified by our experiments. Using the radius to 
limit the propagation of information also reduces false positives caused by resource information 
aggregation. By accumulating and exchanging routing tables, eventually all resources within the range 
determined by radius are known. 

5.5.2.3 Construction of the routing table 
When a node joins the cluster, it should construct its routing table, R D V T . Neighbours of this new node 
should update their RDVTs to reflect the joining of this new node. Figure 5.9 illustrates the R D V T 
updating process when a new node C joins the network. Node C joins the network by connecting to an 
existing node A in the network. After the connection is established, node C sends its resource indices to 
A. Similarly, A should inform C of all the resources A has knowledge of. Specifically, A merges its local 
and neighbor vectors into one vector and sends it to C. The merged vector of A represents resources 
accessible from A and their shortest distances to A. A does not need to send more information as C does 
not need to know the precise location of these resources, but only that they can be accessed through A. 
After C receives the merged vector from A, it adds 1 hop to each element of the vector, and adds an 
additional row in its R D V T (as shown in Figure 5.9 (b)). After A receives C's resource information and 
updates its routing table, it informs its neighbors (in this case, node B) of the update. In this way, nodes 
can construct and update their RDVTs. 
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(b) 

Figure 5.9 Construction of the routing table 

5.5.2.4 Updating the routing table 
A node's routing table should be updated when the resource information changes. When new resources 
are added to a node, this node calculates the changed positions in its own filter (T' row in its routing 
table) and the merged filter. It then sends these positions out to each neighbor. On receiving such a 
message, each neighbor changes these positions in the row corresponding to that node and computes the 
changes it will make in its merged filter. These changes are sent out as well. The deleting process is more 
complex. Because of the overlapping of different resources, deleting cannot be performed by simply 
setting the related hash positions to infinity. We can solve the problem by using the counting Bloom filter 
proposed by Fan et al. [27], or using the timing-based deletion approach [11]. A resource update can be 
implemented as a deletion followed by an addition. Each node sends updates to and receives updates 



from its directly connected neighbors. Nodes also periodically "ping" their neighbors to make sure that 
they are still alive. To reduce the overhead of transmitting routing information, a soft-state update 
mechanism is used, in which routing information is exchanged periodically. At any given time, the 
resource routing information may potentially be stale or inconsistent. 

5.5.3 Query forwarding 
Based on the routing table R D V T , we propose a so-called resource-distance-vector (RDV) routing 
algorithm. It uses a distance vector approach to route the query to the nearest matching nodes. The 
traditional distance vector approach is not scalable for locating unique nodes in a large network, but this 
modified version is extremely well suited for our resource discovery problem. 

When a node receives a query, it converts the query into a triple sequence and matches the sequence in 
the RDVT. Besides matching local resources, the query is also forwarded to the "right" neighbors. A 
query may be transferred several hops until arriving at the matching node or the query T T L expires. 
Figure 5.10 illustrates a query routing example. We only show one of the three triple vectors. For 
simplicity, the query has only one constraint. The radius is set to 3, so nodes are only aware of resources 
within 3 hops. In this example, node A receives a query for resource e (which is mapped to two positions: 
3 and 6 in the filter). It checks its routing table and finds two matches: through C with 2 hops (€3=2, 
C6=2) and through D with 3 hops (D3=3, D6=3). Since the shortest distance to the resource is 2 through 
neighbor C, the query is forwarded to C. Similarly, C forwards the query to E. E finds a match in its local 
vector, and then it checks the RDF database against the original query. 

Figure 5.10 R D V query routing 

Our routing algorithm works fine with networks containing cycles. Because of cycles, a node may 
receive a query multiple times. To avoid processing queries more than once, every query has a unique 
query ID and every node keeps a list of recently received query IDs. If a query has been received before. 



it will be discarded. Another benefit of recording the query is that it ensures the query does not hit the 
same false positive twice. 

5.5.4 Heuristic jump and caching 
B y setting a radius, we limit the distance a node's resource information can travel. This reduces false 
positives, but at the same time, this causes a node not to have global knowledge of the network but have 
only a local view of the neighborhood. Because of this, a node may not find enough matches from its 
R D V T to forward queries. A naïve solution is to forward the query to some random neighbors even if 
they have no match hoping that these neighbors can find matches from their neighborhood. This method 
is inefficient since a node's neighbor has a neighborhood which largely overlaps its own. If the requested 
resources are scarce in the local area, forwarding the query to another neighbor in this area will not 
substantially increase the chance of resolving a query. To address this problem, we introduce a 
forwarding method called the "heuristic jump." 

This method allows the system to keep additional long-distance links as an addendum to the R D V T . 
When the R D V T cannot resolve the query, the query will "jump" to remote nodes the links point to. To 
discover those long-distance links, the system employs an aggressive caching technique. After finding 
the result of a query, the result travels along the reverse path to the requester. Whenever it is passed 
through a node, it is cached in that location. Every internal node caches the query, the destination node, 
and the distance to that node. We use caching to not only eliminate the need to forward a query which 
may be resolved locally, but also use this cached information as links for future long-distance jumps. 
During the query-forwarding process, when a node cannot find enough matches in its routing table, it 
chooses appropriate long-distance links from its cache and forwards the query accordingly. This 
expedites the searching process by jumping over barren areas. Candidate long-distance nodes should be 
located outside the neighborhood area; i.e., the distance should be greater than radius. In our heuristic, 
we also consider other metrics. For example, the query might "jump" to nodes that answered more 
previous queries, or to nodes that answered similar queries. Our experiment in Section 5.7 shows that 
forwarding by "heuristic jump" improves search efficiency. 

5.5.5 Query evaluation 
Like the GONID system, OntoSum supports SPARQL queries as well. But unlike the GONID system 
which distributes triples of a single resource to different DHT nodes, OntoSum stores a resource's 
description in its original publisher's site. Therefore, the query evaluation in OntoSum may avoid the 
many joins required in GONID. A query is broken up into triple patterns, and then all the triple patterns 
will be hashed and matched with neighboring triple filters. The query is forwarded to nodes whose triple 
filters match the hashed query. At the destination node, the query will be further matched with the 
detailed metadata repository. How to resolve SPARQL queries with triple patterns has been explained in 
the previous chapter. Since we use a similar idea, we do not repeat the explanation. We use one example 



to illustrate the query evaluation process. In this example, a conjunctive query Q is issued to locate 
printers with particular properties: 

Q: {(?printer .-printMethod "Thermal Inkjet"), (?printer .-connectivity : USB)}. 

The two triples in the query are hashed and matched with triple filters. Specifically, .-printMethod and 
.-connectivity are hashed and matched with the predicate filter. Thermal Inkjet and :USB are hashed and 
matched with the object filter. Then the hashed query will be forwarded to nodes, both of whose filters 
match the query. When the query arrives at the destination, it is matched with the local metadata 
repository. If results located are not enough, the query can be relaxed by removing some requirements. 

The above mentioned query processing requires that the queried resource be described and published by 
a single provider. This is the most common case for describing a physical resource such as software 
resources and hardware resources. In practice, most of the queries belong to this case. However, there are 
exceptional cases, in which annotations for one and the same resource may be distributed. This may be 
applicable for describing virtual resources such as information and knowledge. With the evolution of 
their knowledge, participants of the system may add new knowledge to complement the existing 
knowledge base. Thus, one node might store metadata which includes some properties for specific 
resources using an ontology; other nodes could hold metadata that provides different properties for the 
same resources, probably using another ontology. The inter-ontology mapping referentialClass defined 
previously is used to connect ontologies that complementarily describe the same resource. A query 
searching for such resources using multiple dispersed ontologies cannot be processed by simply 
matching neighboring triple filters, because triple filters summarize resources defined with the same 
ontologies. To process such queries, we break the query into multiple sub-queries, and use local 
ontologies to answer the first sub-query, then forward the other sub-queries to nodes which have 
referencialClass mapping with the local ontologies. A l l intermediate results can be returned to the 
querying node and operations such as join, union, or conjunction can be performed on intermediate 
results to get the final result. 

5.6 Experiment 
The semantic building blocks of OntoSum are the same as that of GONID. For example, they use the 
same metadata representation and the same mapping and reasoning strategies. The only difference 
between these two systems is the searching and indexing method. Therefore, our simulation experiment 
in this part focuses on evaluating the performance of searching. In the rest of this section, we will explain 
the experiment setup, and then present the simulation results. 

5.6.1 Setup 
The test data is artificially generated and the procedure follows that of the GONID experiment described 
in Section 4.5.1. In short, the ontology schémas are generated first, and then individuals are created by 



instantiating classes. We assume for simulation purposes that ontologies and queries are associated with 
a specific domain, and all ontologies in the same domain have ontology mappings defined in advance. 
Queries were generated by randomly replacing parts of the created triples with variables. Single triple 
queries and conjunctive triple queries are used as the representative query format in this experiment. 

The simulation is initialized by injecting nodes one by one into the network until a certain network size 
has been reached. The network topology created this way has power-law properties; nodes inserted 
earlier have more links than those inserted later. This property is consistent with the real world situation, 
in which nodes with longer session time have more neighbors. After the initial topology is created, a 
mixture of joins, leaves, and queries are injected into the network based on certain ratios. The proportion 
of join to leave operations is kept the same to maintain the network at approximately the same size. 
Inserted nodes start functioning without any prior knowledge. 

For comparisons, we simulate our searching scheme OntoSum in conjunction with the learning-based 
Shortcut scheme [109] and a random-walk based simple Gnutella scheme [129]. The Shortcut approach 
is chosen as one comparison reference since it is simple yet effective, and many popular applications 
(e.g., [109], [100], [18], [19]) use this approach as their basic routing scheme. Moreover, it is comparable 
to our approach in the sense that it creates clusters on top of the unstructured network. The Shortcut 
approach relies on the presence of interest-based locality to create "shortcuts". Each peer builds a 
shortcut list of nodes that answered previous queries. To find content, a peer first queries the nodes on its 
shortcut list and only if unsuccessful, floods the query. This approach presents a promising 
reorganization method within unstructured P2P networks. Flooding-based Gnutella was chosen as 
another reference approach for its simplicity and prevalence, which, in fact, made it a widely used 
baseline for many previous research efforts. We tested two versions of OntoSum, OntoSum_0 and 
OntoSum_l. The former has no intra-cluster R D V routing table and uses random-walk to forward 
queries inside the cluster; while the latter uses the R D V routing scheme (with radius 1) to forward 
queries inside a cluster. The reason to use / as the value of radius in this experiment is to save memory 
storage to support large-scale test. When radius is 1, the R D V table does not need to maintain distance 
information and it is simplified as a Bloom filter bitmap. How radius affects the system performance is 
evaluated with a separate R D V performance experiment presented in Section 5.6.2.4. 

The resource-discovery query is propagated exponentially, i.e., each node chooses a certain number of 
neighbors (called walkers) to forward the query. The neighbor-discovery query (for OntoSum only) is 
propagated linearly, i.e., only the node that issues the query forwards the query to a certain number of 
walkers, while all other nodes only forward the query to one neighbor. In the rest of the paper, we use the 
term "query" to refer to resource-discovery query. 

The simulation parameters and their default values are listed in Table 5.4. 



Table 5.4 Parameters used in the simulations 

Parameter Range and default value 

network size 2'~2' ' defauU: 10,000 

initial neighbors (node degree) 5 

maximum neighbors 30 

average node degree 14 

T T L 1-20 default 9 

resource-discovery query walkers 3 (propagate exponentially) 

neighbor-discovery query walkers 2 (propagate lineally) 

ontology domains 1-10 defauU: 8 

ontology schémas per domain 1-10 default: 8 

distinct resources per domain 100 

resources per node 1-10 

R D V table radius 1 

die/leave probability per time slice per node 0-21%, 3% default 

resource change probability per time slice per node 20%instance update, 2% schema update 

query probability per time slice per node 5% 

R D V T update frequency every 5 time slices 

sample of nodes to compute diameter 5% 

5.6.2 Results 
In this part, we present the experimental results which demonstrate the performance of our searching 
scheme. 

5.6.2.1 Emergence of the small-world 
As discussed, the topology of the peer network is a crucial factor determining the efficiency of the search 
system. We expect that the OntoSum semantic neighbor discovery scheme will transform the topology 
into a small-world network. To verify this transformation, we examine two network statistics, the 
clustering coefficient and the average network path length, as indicators of how closely the topology has 
approached a "small-world" topology. 

The clustering coefficient (CQ is a measure of how well connected a node's neighbors are with each 
other. According to one commonly used formula for computing the clustering coefficient of a graph (Eq. 
5.2), the clustering coefficient of a node is the ratio of the number of existing edges and the maximum 
number of possible edges cotuiecting its neighbors. The average over all |V | nodes gives the cluttering 
coefficient of a graph (Eq. 5.3). 



maximum # of possible edges between v's neighbors 

CC = — yCCv (5.3) 

The average path length (APL) is defined as the average shortest path across all pairs of nodes (Eq. 5.4). 
The APL corresponds to the degree of separation between peers. For a large graph, measuring distances 
between all node pairs is computationally expensive; therefore an accepted procedure is to measure it 
over a random sample of nodes [113]. In our experiment, we use a random sample of certain percent of 
the graph nodes. We use Dijkstra's algorithm to compute the shortest distance between pairs of nodes. In 
our simulated topology we intentionally make the network strongly connected, so that any pairs of nodes 
have a directed path. 

APL= (5.4) 
|V|-(|V|-1) 

We performed experiments to measure OntoSum's cluster coefficient ( C Q and average path length 
(APL). An interest-based Shortcut topology and a random power-law topology with the same average 
node degree are used as reference topologies. The former has been proved to be a small-world system 
[47]. For the Shortcut scheme, test results are collected after the system has had an extensive training 
process, i.e., nodes have learned as many Shortcuts as possible through query results and the system 
topology has become stable. 

Figures 5.11 and Figure 5.12 show plots of the clustering coefficient and the average path length as a 
function of the number of nodes in the network. The system has two configurations; in Figure 5.11 (a) 
and 5.12 (a), nodes have more ontologies to choose from, while in Figure 5.11 (b) and 5.12 (b), nodes 
have fewer ontological domains. We observe that both the clustering coefficient and the average path 
length of OntoSum are very similar to those of Shortcut. The clustering coefficients of OntoSum and 
Shortcut are much larger than that of the random power-law network, while the average path length of 
OntoSum and Shortcut are almost the same as that of the random network. This indicates the emergence 
of a small-world network topology [113]. Note: Because all of the three topologies are created by 
inserting nodes to the existing system, all topologies show the power-law property to some extent, and 
thus the average path length of all three topologies are smaller than a random network. This set of 
experiments verifies that firstly, well connected clusters exist in the OntoSum system; due to the 
semantic similarity definition, these clusters correspond to groups of users with shared ontological 
interests. Secondly, there is, on average, a short path between any two nodes in the system topology 
graph; therefore, queries with relatively small T T L would cover most of the network. Our later 
simulation experiments will verify this. 
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5.6.2.2 Scalability and efficiency 
We examine the system performance in three different aspects, namely routing scalability, efficiency, 
and accuracy by executing the experiment in different network configurations. The performance is 
measured using the metric of recall rate, which is defined as the number of results returned divided by 
the number of results actually available in the network, as shown in Equation 5.5. 

results retrived 
A (5.5) 

results available 

For comparison, we also implement the leaming-based Shortcut algorithm and random-walk based 
Gnutella algorithm. For the Shortcut approach, we collect query results after sufficient learning has been 
done. To simulate dynamic factors, in each time slice every node has a 5 percent probability to issue a 
query, and a 2 percent probability to leave the system. The probability of new nodes with new resources 
joining the system is the same as the probability of a node leaving. First, we vary the number of nodes 
from 2^ to 2'^ to test the scalability of the routing scheme. The results are listed in Figure 5.13. As we 
expected, both versions of OntoSum get higher recall in all these different sized networks and in both 
static and dynamic environments. In addition, OntoSum's recall decreases less with the increase in 
network size. Figure 5.14 illustrates the system efficiency by showing the relationship between query 
recall rate and query TTL. With a small TTL, OntoSum gets a higher recall rate than the other two 
algorithms. This means that OntoSum resolves queries faster than the others. In Figure 5.15 we show the 
effect of dispatching a different number of walkers to search the network. We can see that with the same 
T T L , OntoSum locates more results with fewer walkers. For example, OntoSum_l gets a recall rate of up 
to 50% with only a single walker in the static network. This indicates that OntoSum routing is more 
accurate and can always find the right node to forward the query to. From Figures 5.13, 5.14 and 5.15, 
we also notice that OntoSum performs better than Shortcut and random-walk in both static and 
moderately dynamic environments. How the system dynamics affect the system performance is further 
evaluated in the next section. 
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As expected, our OntoSum searching scheme performs well as measured by recall rate in both static and 
dynamic networks. OntoSum's small-world topology effectively reduces the search space, and its 
ontology summary guides the query in the right direction. Therefore, OntoSum can locate results faster 
and more accurately. This explains why OntoSum scales to large network size and why it achieves higher 
recall with shorter T T L and fewer walkers. Besides all these reasons, another factor contributing 
OntoSum's overall better recall rate is that OntoSum is able to locate semantically related results that 
cannot be located by the Shortcut and random-walk. Because of the semantic heterogeneity of our 
experimental setup, relevant resources may be represented with different ontologies. OntoSum may use 
its ontology signature set to find semantically related nodes and use the mapping defined to translate the 
query. Therefore, it can locate most of the relevant results. However, for ShortCut and random-walk, 
they have no way to find semantically related resources. Therefore, they can only locate resources 
represented in the same ontology as the ontology of the querying node. 

5.6.2.3 Overhead and adaptability to dynamics 
The good recall performance of OntoSum does not come for free. Generally speaking, the more efficient 
the query searching is, the more the system has to pay for maintaining the system structure or indexing 
the resource information, i.e., there is a tradeoff between query efficiency and maintenance overhead. 
Unlike ShortCut and random-walk approaches, which only create query propagating overhead, OntoSum 



also creates overhead for maintaining the inter-cluster and intra-cluster routing table. We expect the extra 
overhead is reasonable and the saving from query cost exceeds the extra maintenance cost. To verify this, 
we examine the system's overhead in terms of accumulated bandwidth and compare it with that of 
Shortcut and random-walk. System overhead has a close relation with the system dynamics, as a system 
must maintain consistent information about peers in the system in order to operate most effectively. 
Therefore, we measure the system dynamics together with the overhead. To evaluate the adaptability to 
different levels of dynamics, we measure the system overhead under different levels of peer "chum rate" 
and "update rate", referring to the rate of peers leaving/joining the system and the rate of resource 
updates. Experiments in this section are performed on a 10,000-node network. The chum rate is 
represented as the probability for a node to die/leave the system in unit time slice; to maintain the 
constant number of network size we also insert an equal number of new nodes into the system. The 
update rate is the probability for a node to update its resource information in a time slice. 

The experiment shown in Figure 5.16 gives an overview of how dynamics affect the system 
performance. Specifically, it shows the query recall rate under different dynamic configurations. In the 
experiment, we increase the dynamics by increasing the chum rate. From the figure, we find that 
OntoSum performs similarly to the ShortCut algorithm which is proved to be resilient to chum [109]. 
When peers join or leave frequently, the performance of Shortcut and OntoSum deteriorate gracefully. 
Chum does not affect the two schemes dramatically because both algorithms do not depend on a strict 
structure to perform routing as DHTs do. Their unstmctured random topologies provide multiple routes 
to a destination thus increasing the system resilience. In the worst case, they degrade to random-walk. 
Another observation is that when the system is more dynamic, OntoSum_l degrades to OntoSum_0. This 
is easy to understand because when the system is more dynamic, the resource information in the R D V 
table is not accurate. In the worst case, using the R D V table to forward the query is like randomly 
choosing a neighbor to forward to. 
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Figure 5.16 Recall vs. chum rate 

Figure 5.17 shows the accumulated bandwidth overhead of finding 10000 results under different chum 
rates. We use a soft state approach to update the routing table: the routing table is updated periodically 
instead of in real time. From the figure, we can see that in most situations OntoSum produces much less 
overhead then the other two methods, and that OntoSum_l is even better than OntoSum_0. But when the 
system is very dynamic, such as when the dying probability is beyond 20%, OntoSum produces much 



more overhead. When the system is very dynamic, the neighborhood relationship changes frequently, and 
OntoSum creates great amounts of overhead maintaining its routing table. Even worse, the overwhelming 
maintenance overhead does not bring much benefit in this situation, because the newly constructed 
topology will change quickly. Luckily, chum of the nature described above rarely happens in reality 
[101], and we can see from Figure 5.17 that with this chum rate, ShortCut degrades to random-walk. The 
high overhead problem of OntoSum in very dynamic environments can be solved by a simple solution: 
when the network is very dynamic, the system can give up the ontology-based topology construction and 
routing and resort to basic Gnutella random-walk as the solution. 
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(c) Shortcut overhead composition 

0 3 6 9 12 15 18 21 

die/leave possibility per time slice per node 

(d) Random-walk overhead composition 

Figure 5.18 Overhead composition vs. chum rate 

With the same configuration as the experiment in Figure 5.17, Figure 5.18 illustrates the overhead 
composition of each routing approach. Most of the overhead of ShortCut and random-walk is caused by 
query forwarding, and a little overhead is caused by finding neighbors when new nodes are inserted into 
the system. For OntoSum, the neighbor discovery overhead accounts for a higher proportion of the 
overhead when the system is more dynamic. 

We also performed a set of experiments to evaluate the system overhead under various resource update 
rates. The resource update rate is represented by the probability of a resource change per node per time 
slice. There are two types of updates: one is called instance update and the other is called the ontology 
(schema) update. In an instance update, a node keeps its original ontology schema and only updates 
instances of that ontology. In this case, each node changes 20% of its resources per update. An ontology 
update, on the other hand, changes the ontology schema and of course all the related instances. This kind 
of change is a dramatic change: it means the node totally changes its interest, and the practical effect is 
the same as inserting a new node. The rate of these two types of changes is set to 10:1. The R D V routing 
table is updated periodically every five time slices in the simulation. 

Figure 5.19 illustrates the relationship between system overhead and resource update frequency. It is 
clear that the rate of resource updates has a bigger impact on OntoSum_l than on the other algorithms. 
Because OntoSum_l has to update its R D V routing table to reflect the changing resources, this 
unavoidably causes more overhead when resource update is frequent. When the resource update is so 



frequent that the routing table update cannot catch up to the resource update, the information in the 
routing table cannot represent the real resource distribution, and maintaining the routing table becomes 
useless. Therefore, in a very dynamic environment, we recommend the system stop intra-cluster routing 
table updates, and turn to OntoSum_0 as the routing scheme. Because most of the resource updates are 
instance-level updates, OntoSum_0 and ShortCut do not need to change their neighborhood too much, 
and consequently they do not see much overhead. If there are more ontology-level updates, it is like 
inserting more new nodes, and the result would be similar to the result shown in Figure 5.17. Figure 5.20 
illustrates the overhead composition of OntoSum_l and Onto_Sum_0. Because resource changes do not 
affect Short-cut and random-walk much, we do not plot their results. 
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We should understand that the overhead is application dependent. It depends on the quantity of 
resources, the routing table update rate, as well as factors like the compression rate of R D V routing table. 
In our experiments our resource size is between 10 to 200 instances per node. We set OntoSum's R D V 
routing radius as / , which means that inter-cluster routing tables are only exchanged between direct 
neighbors. We do not compress the R D V table during transferring. If a system has more resources than 
this configuration, the system will see more overhead and vice versa. We can see there is a tradeoff 
between query efficiency and indexing overhead. The application should choose a suitable OntoSum 
version for its particular purpose. 

5.6.2.4 Evaluation of RDV routing 
Since R D V can be used as an independent routing algorithm to deal with semantic queries, we perform a 
separate simulation experiment to better examine its performance. In this part of the evaluation, nodes 
share the same ontology definition but with different instances indexed by the R D V table. Three versions 
of R D V with radius range from 7 to J are tested together with a reference random-walk routing 
algorithm. We evaluated the performance of the R D V routing algorithm under both static and moderately 
dynamic environments. Dynamics includes resource change and nodes joining/leaving the system. For 
resource updates, we only add new resources, and do not consider deleting resources for this simulation. 

Table 5.5 Parameters used in the R D V simulation 

Parameter Range and default value 

network size 2^-2''' default: 1000 

average node degree 10 

T T L 1-7 defauU 5 

walkers 3 

resources per node 10 

number of hash functions used for R D V filter {k) 4 

R D V filter size (m) 5KB~2MB 

R D V table radius 1-6 

die/leave probability per time slice per node 0-27%, default:3% 

resource change probability per time slice per node 0-27%, default: 3% 

query probability per time slice per node 5% 

R D V T update frequency every 5 time slice 

General performance 

Figure 5.21 illustrates the query recall rate in different sized networks. We see that the R D V routing 
algorithm dramatically outperforms random-walk routing in both static and dynamic environments, and 
R D V with a larger radius performs better compared with R D V with a smaller radius. We notice that 



dynamics will cause a decrease in the R D V recall rate, especially when the radius is large. Fortunately, 
the drop of the quality is relatively small in moderately dynamic environments. Figure 5.22 shows the 
relationship between recall rate and query TTL. It is clear that R D V achieves better recall rate with fewer 
routing hops. When T T L is smaller than 3, all three versions of R D V get a similar recall rate. This tells 
us an obvious rule: do not set a radius beyond TTL, because it is useless to index resource information 
beyond the searching scope. 

RandomWalk 

RDV1 

RDV2 

RDV3 

512 1024 2048 4096 8192 16384 

node# 

(a) Static environment 

— —•—RandomWalk 

_ -»-RDV1 

— RDV2 

— RDV3 

=V 

16384 

(b) Dynamic environment 
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Adaptability to dynamics and overhead 

Experiments in this section evaluate how dynamics affects R D V s routing performance. The experiments 
are performed in a network with 1000 nodes, and results are collected after finding 100,000 results. It 
can be seen from Figure 5.23 that the performance of R D V degrades as the system becomes more 
dynamic, especially when the radius is large. When resources change or nodes join or leave the network, 
it takes some time to propagate the update to other nodes a few hops away. Our soft-state update 
mechanism increases the latency even longer. Therefore, when the system is very dynamic, the resource 
information in the R D V table may be out-of-date and cannot accurately route queries. 
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Figure 5.23 Recall under different dynamics 

The overhead in terms of accumulated bandwidth is shown in Figure 5.24. The overhead includes 
bandwidth used for forwarding queries and propagating routing table updates. According to the figure, 
the overhead of R D V increases as the system becomes more dynamic, but the overall overhead of all 
three R D V is not high because we fix the routing table update frequency. In most cases, nodes do not 
need to transfer their whole R D V table to neighbors to broadcast the update, but only the hash positions 
related to the updated resources. Therefore, the bandwidth consumption is relatively small. The full table 
update overhead is higher, but it happens infrequently, and with additional compression techniques, the 
overhead can be lowered as well. The overhead is related to the routing table update frequency. In this 
experiment, we set the update frequency to 10 time-slices. When nodes update their routing table more 



frequently, the routing information would be more accurate, and thus the recall would be higher, but the 
overhead would also be higher. 
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Radius 

The radius is an important property affecting the performance of the system. It determines how far 
resource information can be propagated and thus how much a node learns about the network. When 
radius=0, the R D V algorithm degrades to a random-walk algorithm. When radius=l, the R D V routing 
becomes very simple: nodes only exchange their local resource index with their neighbors and they do 
not need to maintain the distance information; therefore, the index can be stored in a bit map instead of a 
numeric vector in which each entry needs several bits. Figure 5.23 (a) and (b) illustrate the influence of 
the radius on query recall in different sized networks. In this experiment, the average node degree is 10. 
For both figures, initially increasing the radius increases nodes' knowledge of the network, thus 
improving the recall rate. When radius grows to three or four, further increasing the radius does not 
result in higher recall rate. As we mentioned, our network exhibits a small-world property; nodes are 
connected with short distances. Therefore, a small radius is enough for most networks to get good 
performance. Besides network size and environment dynamics, another concern for choosing radius 
value is the R D V filter size. When the filter reaches its capacity, increasing radius is a waste. One 
advantage of our R D V filter is that even when the filter has reached its capacity, adding resources from 
longer distance will not introduce more conflicts to the existing resource information, as nearer resource 
information has higher priority in the R D V table. Figure 5.23 (c) shows this situation. In this example, 
we use a small-sized R D V filter (10k) which can only hold up to radius = 2 resources. From the figure, 
we see increasing radius will not increase the recall rate, but on the other hand, neither will it add more 
errors. 
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R D V filter size 

From Figure 5.25(c), we have seen that the filter size has an influence on recall rate. As mentioned. 
Bloom filters have false positives. The number of hash function k and the filter size m should be chosen 
such that the probability of a false positive is acceptable. In this experiment, we set k to 4. We found 
there is a tradeoff between the filter size m and the number of false positives, which is reflected by the 
recall rate in our experiment. We examine the influence of the filter size with respect to recall rate. Some 
critical parameters in this experiment are set as follows: network size: 1000, average resource number 
(triple number) per node: 20, R D V radius: 3. The results in Figure 5.26 show that increasing filter size 
does increase the recall rate to some extent. When the filter has enough space to hold the resource 
information, further increasing the size will not improve the recall. Unlike a Bloom filter's bit map, a 
R D V filter uses a distance vector, and each distance value is represented by 2 bits in this experiment. 

0 



Although we double the space, resources with different distance values can exploit the extra space, thus 
reducing false positives. 
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Figure 5.26 hifluence of R D V filter size 

5.7 Summary 
In this chapter, we have presented an efficient model for sharing and searching semantically 
heterogeneous resources based on an unstructured P2P overlay. In particular, we have proposed a 
semantics-aware topology constmction method to group nodes sharing similar semantics together to 
create small-worlds. For this purpose, we have designed an algorithm to extract a node's ontology 
summary and use that summary to compute the semantic similarity between nodes. With this semantic 
similarity defined, nodes are grouped accordingly, forming semantic virtual domains and clusters. 
Resource information integration and searching can be efficiently performed on top of this topology. In 
addition, we have proposed an intelligent query routing scheme, R D V , which uses a succinct stmcture to 
summarize each node's resource instance information. The routing scheme can route the query accurately 
and quickly. The proposed system was evaluated by simulation, which indicated that the system is 
scalable and efficient. 



Chapter 6 

Conclusions 

This thesis focuses on resource discovery in a global-scale grid environment. We have demonstrated that 
it is possible to meet both the scalability and searchability challenges faced by the resource discovery 
problem in this target environment. Towards this end, we have designed, implemented, and evaluated 
distributed discovery systems that are fully decentralized, scalable to the number of users and resources 
involved, adaptive to heterogeneous resource representations, and capable of handling complex queries. 

6.1 Contributions 
The main contributions of this thesis are as follows: 

Expressive semantic model for efficient resource discovery 

An important characteristic of our search system is the ability to perform effective resource retrieval 
by taking into account the semantic properties of what is being searched for. We have realized this 
intelligent search system by adding the necessary semantic building blocks into the system. We 
examined the employment of ontological domain knowledge to assist in the search process. With this 
knowledge, queries can be properly interpreted according to their meanings in a specific domain; the 
inherent relationships among the concepts are also considered. The semantic model includes (I) an 
expressive ontological representation to encode the resource metadata, (2) an effective mapping 
formalism along with corresponding reasoning algorithms to integrate heterogeneous ontological 
representations, and (3) a comprehensive semantic query evaluation scheme to process complex 
SQL-like queries. 

Effective ontological topology adaptation schemes 

We reorganized the network topology according to participating nodes' ontological properties, so 
that semantically related nodes are topologically close and queries can be efficiently propagated. In 
our system, we always try to optimize the network topology according to this principle. We have 
proposed a hierarchical ontology model - the ontology directory - to facilitate partitioning the large 
unorganized search space into multiple well-organized sub-spaces, which we call semantic virtual 
organizations. In addition, in the OntoSum searching framework, we have designed an algorithm to 
compute the semantic similarity between nodes. This algorithm allows nodes to discover 
semantically related neighbors according to their semantic similarity to construct small-worlds. 
Scalable semantic resource indexing 

Indexing is at the heart of our search system, and determines searching scalability and efficiency. We 
have indexed ontological knowledge to add semantics to the metadata to support reasoning and 
improve query recall and precision. For different application requirements and network topologies, 



we have proposed two different indexing infrastructures: GONID and OntoSum, based on structured 
DHT and unstructured P2P overlays, respectively. GONID builds complex query facilities on top of 
DHTs, while maintaining the scalability of the DHT infrastructure. A key advantage of the 
ontological indexing scheme in GONID is its ability to index at different granularities to adapt to 
different system properties. In OntoSum, nodes are loosely structured, forming small-world 
networks. Each node keeps track of a set of neighbors and organizes these neighbors into a multi-
resolution neighborhood according to their semantic similarities. A query is matched against the 
relevant nodes in the neighborhood. This architecture combines the efficiency and scalability of 
structured overlay networks with the connection flexibility of unstructured networks. 
Efficient complex query resolution 

Based on our semantic indexing and ontology mappings, we can efficiently process SQL-like 
queries, particularly SPARQL queries, in our current implementation. A query in terms of relations 
in the user's local ontology is translated into sub-queries using semantic mapping axioms. Then each 
of the sub-queries can be executed at different sources in parallel. A complex query can be evaluated 
by performing relational operations such as select, project, and join on combinations of the indexing 
triple pattem. The query request is navigated through the network in a reasonable pattem sequence. 
Each pattem can be mapped to an indexing node where the intermediate result can be obtained. The 
intermediate results, together with the rest of the query pattems, are passed on to the next node. In 
this way, a complex query can be processed though this chain. 
Distributed load balancing 

We studied the problem of load imbalance resulting from skewed access distribution, and proposed 
an effective load balancing solution that takes peer heterogeneity and access popularity into account 
to determine the load distribution. Our algorithm manages to achieve load balancing by dynamically 
balancing the query routing load and query answering load. 

6.2 Limitations and future work 
Important problems in large-scale resource discovery remain to be solved. We identify several limitations 
of our work and research directions for future work. Some research directions are a natural continuation 
of this thesis; others are more general problems in resource discovery. 

Our search system focuses on relatively static resource information; however, sometimes we need to 
consider very dynamic information. For example, in computational grids, a scheduler may need to find 
available computational resources with both relatively static requirements, such as system architecture, 
OS version, and access policy, and more dynamic requirements, such as instantaneous load and 
predictions of future availability. In order to deal with dynamic information, we need to add monitoring 
components to our system. Resource monitoring is important for a variety of tasks, such as fault 
detection, performance analysis, performance tuning, performance prediction, and scheduling. Unlike our 
more static forms of metadata, most monitoring data may go stale quickly, and are typically updated 
more frequently than they are read. Our work is optimized for query and not update, therefore it is 



potentially unsuitable for dynamic information storage. The data management system must minimize the 
elapsed time associated with storage and retrieval. There have been many attempts [110, 115, 92, 114, 
24] to address this problem, however, it is still an open problem in large scale grids. Our existing 
architectures and algorithms would be helpful to make the monitoring system scalable across wide-area 
networks and adaptable to a wide range of heterogeneous resources. 

Mapping and integrating heterogeneous information sources is an integral part of a search system. To 
find semantically related nodes to map ontologies in the GONID system, users use their T-Box ontology 
as keys to find other nodes having overlapping ontologies. They can then pick candidates from those 
nodes to do the mapping. This process requires lots of human work. In the future, we plan to make it 
more automatic, and provide more hints or suggestions to users to help them make these decisions. In 
OntoSum, finding semantically related neighbors is accomplished according to their semantic similarity, 
which is defined by comparing the extended Ontology Signature Set. This simple similarity can be 
improved by considering other factors such as nodes' ontological structure, definitions of concepts, and 
instances of classes. 

In our current system, query results are returned to requesters without using any ranking mechanisms. 
There are many techniques for ranking entities on the Web, for example PageRank [13] and HITS [54], 
on X M L documents [45] [22], and on the Semantic Web [97]. However, these techniques cannot be used 
directly to rank our search results because of the different problem nature. We plan to investigate the 
result-ranking problem, so that query results can be ordered based on relevance and importance for users. 
The ranking problem involves a rich blend of semantic and information-theoretic techniques. The 
ordering of the results should be able to vary according to user need. 

Our work aims at processing ontological metadata in the format of OWL/RDF. We plan to extend it to 
metadata in other rich formats, for example multi-attribute multimedia data. There are many other 
potential areas that can benefit from our semantics-based search design. One such area is Information 
Retrieval which includes keyword-based search for text documents, as well as semi-structured X M L and 
R D F documents. The Web Service-based distributed computational model can also benefit from 
semantic search over P2P systems to locate Web Services and compose them dynamically to provide 
more complex services. These designs can also be used for providing discovery services for 
publish/subscribe systems. 

Security is another important issue. For sensitive information, it is necessary to control the access to 
resources or resource metadata. In GONID, resource metadata information is indexed on distributed 
overlay nodes. Unlike local repositories, it is very difficult to enforce access restrictions on distributed 
nodes. Distributed P2P-based access control is another future research topic. A secure system should be 
able to index information with different access restrictions. The owners should be able to specify fine
grained restrictions on who can access their resources, and which users can access what part of the data. 



Finally, it requires a tremendous amount of effort to evaluate a large scale grid resource discovery system 
in a realistic setting. Such an evaluation necessitates not only a large number of nodes but also a huge 
amount of realistic and representative semantic content. So far, we have evaluated our design by 
simulating a large number of networked nodes and experimenting with artificial resource data. These 
evaluations have been very constrained. We also implemented a prototype that we deployed and tested 
on a small network. However, this environment is obviously quite limited. Our long-term goal is to 
release our results to the open-source community and foster a user community, eventually letting the 
users be the final judge of our systems. 
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