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Abstract 

In sustainable urban planning, non-motorized active modes of travel such as walking are 

identified as a leading driver for a healthy, liveable, and resource-efficient environment. 

Walking is also an integral component of most trips. However, walking receives less 

attention in transportation engineering and planning compared to motorized modes. As 

the global society is becoming more aware of the benefits of active transportation, there 

is an increasing demand for designing and shaping the transportation system to put more 

emphasis on pedestrians. As such, standards and guidelines need to be developed in order 

to provide practitioners with the tools required to objectively evaluate pedestrian oriented 

facilities. However, the tools and methods developed and used for modeling pedestrian 

movement have not yet been developed to a level that can reliably measure pedestrian 

activity and behavior. To encourage walking, there is a need for a solid understanding of 

pedestrian walking behavior. This understanding is central to the evaluation of measures 

of walking conditions such as comfortability and efficiency. The aim of this thesis work 

is to gain an in-depth understanding of pedestrian walking behavior through the 

investigation of walking speed and the spatiotemporal gait parameters (step length and 

step frequency). This microscopic-level analysis provides insight into the pedestrian 

walking mechanisms and the effect of various attributes such as gender and age. The 

analysis relies on automated video-based data collection using computer vision 

techniques. This thesis makes several contributions which include: i) demonstrating the 

feasibility of using computer vision to capture pedestrian movement, ii) investigation of 

pedestrian speed variations with respect to design changes to intersection crossings, iii) 

investigation of the ability of individual pedestrians to change their walking speed as a 

response to pedestrian signal indications, iv) investigation of pedestrian gait parameters 

for various pedestrian and design attributes, and v) development of a methodology for 

classification of pedestrian age and gender using spatiotemporal gait parameters.   
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Preface 

A version of chapter 3 has been presented. H. Hediyeh, T. Sayed, M. H. Zaki and K. 

Ismail, "Before and After Analysis of Pedestrian Crossing Speed Behavior at Scramble 

Phase Signalized Intersections," in Transportation Research Board 91th Annual Meeting, 

Washington, D.C., 2012. The video data were made available to UBC and pedestiran 

tracks were generated by Dr. Karim Ismail and also used in other studies.  

A version of chapter 3 has been accepted for publication. H. Hediyeh, T. Sayed, M. H. 

Zaki and K. Ismail, "Automated Analysis of Pedestrian Crossing Speed Behavior at 

Scramble-phase Signalized Intersections Using Computer Vision Techniques," in 

International Journal of Sustainable Transportation, 2012.  

A version of chapter 4 (Case Study One) has been presented. H. Hediyeh, T. Sayed, M. 

H. Zaki and G. Mori, "Pedestrian Gait Analysis Using Automated Computer Vision 

Techniques," in Canadian Society for Civil Engineering 9th International Transportation 

Specialty Conference, Edmonton, AB, June 2012. The video data were recorded by UBC 

and pedestiran tracks were generated by Dr. Greg Mori and also used in other studies.  

A version of chapter 4 (Case Study One) has been conditionally accepted for publication. 

H. Hediyeh, T. Sayed, M. H. Zaki and G. Mori, "Pedestrian Gait Analysis Using 

Automated Computer Vision Techniques," in the journal of Transportmetrica, 2012.  

A version of chapter 4 (Case Study Two) has been submitted for publication. H. Hediyeh, 

T. Sayed and M. H. Zaki, "Automated Microscopic Analysis of Pedestrian Gait 

Parameters at Urban Signalized Intersections," 2013. Pedestiran tracks used are the same 

tracks used in chapter 3.  

A version of chapter 5 has been submitted for publication. H. Hediyeh, T. Sayed and M. 

H. Zaki, "Automated Classification of Pedestrian Gender and Age using Spatiotemporal 

Parameters of Gait," 2013. Pedestiran tracks used are the same tracks used in chapters 3 

and 4.  
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Chapter One: Introduction 

1.1   Background and Motivation 

In sustainable urban planning, non-motorized active modes of travel such as 

walking are identified as a leading driver for a clean, healthy, liveable, and 

resource-efficient environment (Ismail, et al., 2009). Walking, or active 

transportation in general, has potential benefits such as reduced cardiovascular 

and respiratory disease from air pollution and reduced exposure to vehicular 

traffic injury risks and noise. Air pollution is estimated by Canadian Medical 

Association to cause 21,000 premature deaths as well as 92,000 visits to 

emergency rooms and 620,000 visits to doctor’s office per year in Canada which 

translates into an annual economic cost of $8 Billion (CMA, 2008). Globally, the 

number of motorized vehicles driven on the earth is approximated to be more 

than one billion, which is expected to double in the next two decades (Sperling & 

Gordon, 2008). Worldwide, air pollution results in approximately 800,000 

premature deaths (1.4% of all deaths) per year (OECD, 2008). Shifting from 

private motorized vehicle use to active transportation modes can help reduce the 

direct tailpipe emissions as well as the indirect emissions from vehicle 

manufacturing, fuel extraction and refining, and the construction and expansion 

of roadways (Hosking, et al., 2011) (Litman & Doherty, 2011). A transport system 

having a considerable portion of its mode share consisting of active 

transportation such as walking and cycling is also less vulnerable to future 

interruption in oil supplies (Hosking, et al., 2011).  
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Walking increases physical activity which results in prevention of heart disease, 

diabetes, obesity and cancer (Hosking, et al., 2011). Compared with improving 

vehicle and fuel efficiency, shifting from private motorized vehicles to active 

transportation and public mass transportation modes, in combination with 

improved land use, can have greater immediate health co-benefits (Hosking, et 

al., 2011). Increased physical activity has other health benefits such as weight 

control and helps maintain musculoskeletal and aerobic fitness which can 

eliminate or delay the onset of dependence, disability, and chronic disease 

(Morency, et al., 2007). Physical inactivity is identified to result in 3.2 million 

deaths per year, worldwide, which can be prevented by encouraging the 

adoption of active transportation (Mathers, et al., 2009). Walking which results in 

moderate increases in breathing and heart rates is known to significantly reduce 

mortality rate by 43% (Gregg, et al., 2003). Walking is also associated with lower 

mortality rates in adults with diabetes, and walking a minimum of 2 h/week is 

estimated to prevent one out of 61 deaths per year among diabetic adults (Gregg, 

et al., 2003). It is found that among wealthy countries, the rates of obesity are 

lower for those countries which have higher rates of walking and cycling as part 

of their transport system (Litman, 2011).  

As communities are becoming increasingly aware of the benefits associated with 

active non-motorized modes of travel, pedestrian walking behavior research is 

receiving a growing attention from policy makers, researchers and practitioners. 

A better understanding of walking behavior is therefore central to the evaluation 

of measures of walking conditions such as comfortability and efficiency. 

Microscopic pedestrian data can be used to study pedestrian movement in order 

to solve well-entrenched problems in road user behavioral and safety analyses. 

Microscopic models of pedestrian movement increasingly incorporate detailed 
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aspects of pedestrian behavior. A standard way in conducting such studies is to 

capture the movement of pedestrians as they use the transport system. Many 

researchers and practitioners have developed techniques for collecting 

pedestrian data to capture pedestrian movement in order to evaluate the 

characteristics of different facilities in terms of level-of-service, safety, etc. For 

example, there is a relatively large body of literature which investigates the 

walking speed of elderly pedestrians to ensure enough clearance time is 

provided at signalized intersections in order to reduce the potential conflicts 

between pedestrian and motor vehicle.  

The standards and guidelines for design and operation of pedestrian facilities 

should take into account factors such as environmental and pedestrian 

characteristics to ensure acceptable site measures such as safety and level-of-

service. For example, the elderly are found to have slower walking speeds 

compared to younger adults (Gates, et al., 2006) (Knoblauch, et al., 1996); 

therefore, their presence in pedestrian flow is found to have the potential to 

lower the facility’s level-of-service, as a result (Galiza, et al., 2010) (Galiza, et al., 

2011). The design level-of-service does not necessarily reflect the actual 

pedestrian experience if pedestrian diversity is not accounted for (Galiza & 

Ferreira, 2012). There is enough evidence to believe that the global population is 

aging in an increasing rate and the forecasts suggest that a greater population 

segment will be dedicate to elderly in a near future. It is estimated that in most 

Organization for Economic Co-operation and Development (OECD) countries, 

one in every four people will be aged 65 or older by 2030 and the population of 

elderly aged over 80 will triple by 2050 (OECD, 2001). According to the 2006 

Census, an increase of 11.5% in the number of Canadians aged 65 and older was 

observed in the previous five years (Martel & Malenfant, 2007).  
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Many tools and methods have been developed for modeling vehicular traffic; 

however, methods and tools to model pedestrian activity have not yet been 

developed to a level to estimate measures such as accessibility, safety, and 

mobility for pedestrians (Pulugurtha & Repaka, 2008). As a result, despite the 

presence of demand for making cities more walkable, the policy makers and the 

planners do not have the required tools to conduct studies which objectively 

measure the costs and benefits of improvements or implementations of 

pedestrian facilities. Standards and guidelines need to be developed in order to 

provide practitioners with the tools required for evaluating the pedestrian 

oriented facilities (James & Walton, 2000). Pedestrian movement is usually 

captured and studied with the intention to discover the impact of pedestrian 

activity on motor-vehicle movement with less attention to the consideration and 

evaluation of walking as a separate means of traveling (James & Walton, 2000).  

 

1.2   Pedestrian Data Collection 

Even though non-motorized modes of transportations, especially walking, are 

receiving growing attention, these modes are not studied to the same extent as 

motorized modes. The lack of quality data is the main reason for the slow 

momentum in pedestrian research. The majority of pedestrian studies consider 

the movement of pedestrians at a macroscopic level which includes investigation 

of pedestrian crowd movement, pedestrian flow rate and density, platoon 

formation, pedestrian evacuation discharge rate at bottlenecks, etc. Few studies 

investigate the pedestrian movement at a microscopic level. To better understand 

the characteristics of macroscopic pedestrian flow such as dynamic lane 
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formation and bottleneck capacity, detailed information on pedestrian flow can 

play an important role (Hoogendoorn, et al., 2004).  

 

1.2.1 Microscopic Pedestrian Data 

Detailed microscopic pedestrian data is required to calibrate pedestrian 

modeling tools such as micro-simulation suits so that the models better and more 

realistically represent the true movement of pedestrians. Examples of such 

movements and behaviors include pedestrian navigation around obstacles 

(Willis, et al., 2004) as well as pedestrian maneuvering and inter-person spacing 

(Kerridge & Chamberlain, 2005). Similar approach is followed in calibration of 

motor vehicle models to enhance movements and behavior such as lane 

changing and car following (Brackstone & McDonald, 1996) (Hoogendoorn, et 

al., 2004).  

In addition, capturing microscopic pedestrian movement enables the evaluation 

of pedestrian facilities in terms of operations so that improvements to existing 

designs can be implemented. For example, capturing microscopic pedestrian 

movement enables the investigation of the ability of individual pedestrians to 

change their walking speed as a response to changes in pedestrian signal 

indications which may be a result of different perceptions of safety (Gates, et al., 

2006) (Stollof, et al., 2007). This can, in return, enhance the safety and 

comfortability of pedestrians and be a driving factor for encouraging walking as 

a means of traveling.  

Gait analysis is also a microscopic-level analysis which allows true estimates of 

objective walking measures such as step frequency and step length for different 
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population segments. It can be used to translate walking distance into units such 

as number of steps or energy expenditure.  Several applications are associated 

with gait analysis such as estimating the impact of trading personal vehicles for 

active transportation modes such as walking (Morency, et al., 2007). Gait analysis 

is also useful in demonstrating the walking costs to different groups of 

pedestrians such as the elderly and the obese, which allows the consideration of 

constraints on the movement ability of some pedestrians. Other direct 

applications are to provide feedback to standard guidelines for pedestrian 

movement such as crosswalk clearance times at intersections and the calibration 

of pedestrian micro simulation models. The goal of this microscopic-level 

analysis is to provide insight into pedestrian walking mechanisms and the effect 

of various attributes such as gender and age. As well, the analysis can help 

investigate the strategies of different pedestrians to control their walking speed.  

 

1.2.2 Automatic Microscopic Pedestrian Data Collection using Video Sensors 

One of the main challenges in conducting detailed analysis on pedestrian 

behavior is the lack of reliable data. This lack of reliable data can have a 

significant impact on several transportation engineering and planning aspects. 

The manual methods currently used in practice for the collection of pedestrian 

data lack the ability to capture microscopic changes in position and speed (Shi, et 

al., 2007). As well, the manual field observation of pedestrian data is labor-

intensive, time consuming, and subject to high errors (Diogenes, et al., 2007) 

(Schneider, et al., 2005).  
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Data extracted from videos are rich in details and the costs associated with 

recording and storing the data are low (Ismail, et al., 2010). Therefore, the 

accurate pedestrian movement data such as speed measurement can greatly 

benefit from automatic tracking of the position of pedestrians in space and time 

(Saunier & Sayed, 2007). Automatic tracking requires computer recognition of 

the position of pedestrians in space with respect to time, and hence, the 

generation of a trajectory for each pedestrian. The benefits of automatic tracking 

of pedestrians include capturing the natural movement of pedestrians and 

minimizing the risk of disturbing the behavior of observed subjects, and the 

relatively higher accuracy and consistency in comparison to manual methods. 

Other benefits of automatic tracking include less resource requirement, and the 

availability of information about the microscopic behavior of pedestrians along 

the traveled distance. For example, microscopic data required for investigating 

the ability of individual pedestrians to change their walking speed as a response 

to pedestrian signal indication can be easily obtained with automatic tracking 

(Ismail, et al., 2009). Automatic tracking also enables the investigation of 

pedestrian gait analysis.  

One reason the manual methods for pedestrian data collection are still preferred 

over automatic methods is that the automatic methods have not yet developed to 

a level that can recognize the diversity among pedestrians such as gender (Jones, 

et al., 2010). It is therefore of great value if additional information such as 

pedestrian gender and age can also be automatically captured by automatic data 

collection methods; this is one of the objectives of this thesis.  
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1.3  Problem Statement and Research Objective 

1.3.1 Problem One: The Use of Computer Vision Techniques to Capture and 

Study Pedestrian Movement 

Computer vision techniques are being widely used to detect and track 

pedestrians. It is of considerable interest to demonstrate the feasibility of using 

these techniques in capturing and studying pedestrian movement. As well, it is 

extremely important to check the accuracy of these techniques in capturing real 

pedestrian movement and to ensure meaningful conclusions are drawn from the 

studies using such techniques. This leads into the following research problem: 

Demonstrate, using real world data, the feasibility and accuracy of using computer vision 

techniques to capture and study the pedestrian movement in open environments.  

 

1.3.2 Problem Two: Pedestrian Walking Speed Behavior at Signalized 

Intersections 

Pedestrian crossing speed at intersections is a characteristic of pedestrian flow 

which influences several intersection design features such as signal timings. To 

plan and design pedestrian facilities such as crosswalks at intersections, it is 

important to predict pedestrian movement under individual pedestrian 

attributes and different external circumstances. Little research has been 

conducted on the influence of the introduction of a scramble phase on pedestrian 

crossing speed. This study attempts to fill this gap with the aim to improve the 

understanding of pedestrian walking behavior at scramble phase signalized 

crossings. In addition, the effect of pedestrian signal indication on pedestrian 

walking speed behavior will also be investigated. For this purpose, the average 
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crossing speed of pedestrians depending on the time they enter the crosswalk 

with respect to the start time of pedestrian signal indications (temporal effect) is 

studied. Similarly, the same speed behavior is analyzed through the first, second, 

third, and the fourth quarter of the crosswalk length. 

To improve the understanding of pedestrian behavior at scramble phase signalized 

crossings by finding average pedestrian crossing speeds across different crosswalk legs, 

and to investigate the ability of individual pedestrians to change their walking speeds as a 

response to how far through the pedestrian signal phase (in terms of time), as well as how 

far through the crosswalk’s length (in terms of position) they are.  

 

1.3.3 Problem Three: Pedestrian Gait Analysis 

Gait analysis is a microscopic-level analysis which allows true estimates of 

objective walking measures such as step frequency and step length for 

pedestrians. It is used to translate walking distance into units such as number of 

steps or energy expenditure. Several applications are associated with gait 

analysis such as estimating the impact of trading personal vehicles for active 

transportation modes such as walking. Gait analysis is also useful in 

demonstrating the walking costs to different groups of pedestrians such as the 

elderly and the obese. This allows the consideration of constraints on the 

movement ability of some pedestrians. Other direct applications are to provide 

feedback to standard guidelines for pedestrian movement such as crosswalk 

clearance times at intersections and the calibration of pedestrian micro 

simulation models.  
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To gain an in-depth understanding of pedestrian walking behavior through the 

investigation of the spatiotemporal gait parameters (step length and step frequency). This 

microscopic-level analysis provides insight into the pedestrian walking mechanisms and 

the effect of various attributes such as gender and age.  

 

1.3.4 Problem Four: Demonstration of Conducting Before-After Pedestrian 

Behavior Studies 

Before-After (BA) studies are conducted in order to evaluate the outcomes of 

engineering countermeasures. In this research, the changes in pedestrian 

crossing speed behavior following the implementation of a pedestrian scramble 

phase will be studied. The research problem is: 

To demonstrate the feasibility of conducting a BA study by investigating the changes in 

pedestrian crossing speed behavior following the implementation of a pedestrian scramble 

phase.  

 

1.3.5 Problem Five: Pedestrian Age and Gender Classification using Gait 

Research shows that attributes such as age and gender have a significant effect 

on pedestrian behavior. Therefore, it is beneficiary to have distributions for 

pedestrian attributes, in addition to simple measures such as exposure. For 

example, in order to ensure an adequate crossing time is provided for safe 

crossings at intersections, it is important to have an estimate for the percentage of 

pedestrians such as the elderly or children who are identified to have mobility 

constraints. Applications of gender and age classification include finding 
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demographic characteristics for facilities such as schools, hospitals, shopping 

centers, and commercial and business districts. Other applications include 

security surveillance, shoppers’ statistics, locomotion and healthcare monitoring, 

and allowing robots to perceive gender. This leads into the following problem 

statement:  

To demonstrate the feasibility of automatic classification of pedestrian age and gender 

using two motion features: pedestrian step frequency and step length.  

 

1.4  Thesis Structure 

This chapter provides an introduction to this thesis which outlines the 

importance and the significance of this research to the rapidly developing field of 

active transportation, as well as the objectives and the problem statements with 

regards to this research work. A through literature review of the existing 

research regarding: the need for pedestrian data collection, automated 

techniques by the use of computer vision for the collection of pedestrian data, 

and pedestrian movement behavior studies, is presented in Chapter 2. Chapter 3 

studies pedestrian movement in terms of walking speed at urban intersections. 

The chapter introduces the methodology used to automatically measure 

pedestrian walking speed. The effect of scramble phasing and pedestrian group 

size, as well as the effect of pedestrian signal indications on pedestrian walking 

speed, is also covered in Chapter 3. Chapter 4 studies the pedestrian movement 

behavior beyond the analysis of walking speed, in terms of spatiotemporal 

parameters of gait: step frequency and step length. The Chapter introduces the 

methodology for automatically extracting step frequency and step length and 
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provides two case studies. In each case study, the distributions of pedestrian gait 

parameters (i.e., the walking speed, step frequency, and step length) are 

provided. Also, the effects of pedestrian attributes such as age, gender, and 

group size, as well as the effects of design attributes and pedestrian signal 

indications on gait parameters are investigated. In Chapter 5, the feasibility of 

using spatiotemporal parameters of gait for the purpose of pedestrian age and 

gender classification is introduced. Chapter 6 is the concluding chapter of this 

thesis.  
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Chapter Two: Literature Review 

2.1   Background 

As walking is receiving considerable attention from policy and transportation 

engineering officials for the purpose of sustainability and public health, there is 

an increasing effort being devoted to the study of pedestrian movements. This 

chapter includes a literature review of studies in transportation engineering and 

other fields which investigate the characteristics of pedestrian movement.  

Walking is a major travel mode and the pedestrian is a key road user. Pedestrian 

studies improve the understanding of pedestrian as a major road user within the 

transport system. To study pedestrian behavior, data is required.  

2.2   Pedestrian Data Collection 

Walking speed has been identified in the literature to be a standard measure of 

pedestrian movement behavior. In other words, to determine the movement 

behavior of pedestrians against pedestrian or environmental attributes such as 

age, gender and weather, researchers mainly categorize attributes and measure 

and compare pedestrian walking speed within each category.  

Data collection methods for counting or measuring the walking speeds of 

pedestrians can be categorized into manual field or video observations and 

automatic techniques. Semi-automatic methods are also employed for 

measurement of pedestrian walking speed. These techniques are briefly 

explained as follows.  
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2.2.1 Manual Field Observations 

Manual data collection using field observations is conducted by observers 

standing on the side of a road or an intersection and recording pedestrian counts 

or measuring walking speed by marking on sheets or using clickers to record the 

number of pedestrian crossings or the time elapsed for pedestrian crossings. 

Manual field observation for pedestrian data collection is labor-intensive and 

limits the number of study sites due to high costs as these counts are typically 

done by two observers, or even three observers per site in cases of heavy traffic 

volumes (Schneider, et al., 2005). The costs associated with this type of data 

collection are too high that some communities do not even gather this 

information (Schneider, et al., 2005). Despite the high costs, manual field 

observations allow the observers to record additional information such as the 

behavior of pedestrians during intersection crossing. However, the accuracy of 

this technique can be potentially low depending on the complexity of the task. 

Diogenes et al (2007) conducted a study which compared the manual on-the-site 

pedestrian count using sheets and counters to manual counts using video 

cameras and found that the on-the-site manual methods underestimated 

pedestrian volumes, systematically, with the error rates ranging from 8 to 25%. 

In cases where pedestrian volume is low, manual on-the-site counts are found to 

be in agreement with manual video counts (Greene-Roesel, et al., 2008). In 

general, as complexity of the counting task increases, the accuracy is found to 

decrease (Greene-Roesel, et al., 2008). The error rates associated with the manual 

on-the-site pedestrian counts are identified to be greater at both beginning and 

end of the data collection period, which reflects the lack of observer’s familiarity 

and experience with the task or fatigue (Diogenes, et al., 2007). 
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2.2.2 Manual and Semi-Automatic Video Observations 

Manual video observations require the observer to view the taped video and 

count or measure walking speeds of pedestrians as they cross imaginary lines. 

Hui et al (2007) conducted a pedestrian study in which they extracted pedestrian 

data such as walking speed, step frequency, and step length, for a sample of over 

1800 pedestrians by observing video files. This method is also labor-intensive, 

but potentially more accurate than manual field observations as the observer can 

view the recorded video multiple times if unsure about the counts or 

measurements. 

Semi-automated methods are done by image processing tools to manually track 

walking pedestrians, as done in (Lam & Cheung, 2000) and (AlGadhi, et al., 

2002), for example. The advantage of this technique over manual methods is that 

once the manual tracking is complete for each pedestrian, the data is then 

physical and can be saved and stored for future validation or used for other 

purposes. However, this method is still labor-intensive in cases where large 

sample sizes are desired. 

 

2.2.3 Automatic Data Collection Methods 

Special equipment is used in automatic data collection methods. Automatic 

methods can be used for long term monitoring of road users for the purpose of, 

for example, discovering the seasonal effect or rush hour effect on traffic volume 

or flow. The initial costs associated with automated data collection are generally 

higher than manual techniques due to equipment, implementation, and 

preparation costs. However, the labor costs and the effort associated with data 
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collection using automatic methods are much lower, especially when large 

sample sizes are desired. 

The technologies commonly used for automatic pedestrian data collection 

include infrared laser technology, ultrasonic sensors, doppler radar, and video 

imaging. Two types of infrared laser technologies to count pedestrians are 

passive and active infrared lasers. Passive infrared detects changes in thermal 

contrast, while active infrared detects obstructions in the laser beam to identify a 

passing object (Jones, et al., 2010). Passive infrared sensors are widely used for 

automatic pedestrian counting. However, they are found to consistently miss 

pedestrians walking in groups, and as a result, undercount pedestrians (Greene-

Roesel, et al., 2008). A no-detection error rate of 12 to 48% is found for passive 

infrared counters (Jones, et al., 2010). Other shortcomings with this device are its 

inability to differentiate between bicyclists, pedestrians and strollers (Greene-

Roesel, et al., 2008). On the other hand, active infrared sensors can distinguish 

between different road users such as pedestrians and bicyclists, and are therefore 

appropriate to be used for shared use pathways (Jones, et al., 2010) (Schneider, et 

al., 2005). The no-detection error rate for active infrared counters is found to be 

15 to 21% (Jones, et al., 2010). Ultrasonic sensors emit an ultrasonic sound and 

sense the presence of an object (usually up to a distance of 9.1 meters) by 

listening to the echo bouncing off that object (Beckwith & Hunter-Zaworski, 

1998). Doppler radars emit a radio wave and sense the presence of an object by 

analyzing the change in the frequency of the radio wave as it bounces back from 

a passing object (Beckwith & Hunter-Zaworski, 1998). Video imaging can detect 

a movement of an object by analyzing the change in pixels of a video image 

(Beckwith & Hunter-Zaworski, 1998). Beckwith and Hunter-Zaworski (1998) 

conducted a study in which they investigated the detection accuracy of 
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ultrasonic sensor, passive infrared sensor, and doppler radar. They found 

detection rates of 47% and 89% for ultrasonic sensors installed at 7.6 and 4.3 

meters from the passing pedestrian traffic, respectively. They also found 

detection rates for doppler radar and passive infrared to be 92% and 94%, 

respectively. 

Video Sensors 

Pedestrian data collection is also possible with the use of video sensors. 

Tsuchikawa et al (1995) proposed a method to automatically collect pedestrian 

count data from video files (with a top view camera) using background 

subtraction. Their method is robust against illumination level changes and its 

accuracy is reported to be as high as 90%.  

2.3  Automatic Collection of Microscopic Pedestrian Data Using 

Computer Vision Techniques 

Collecting reliable pedestrian data is often conducted by manual counts or 

measurements. However, the manual field observation of pedestrian data is 

labor-intensive, time consuming, and subject to high errors (Ismail, et al., 2009). 

Also, the manual methods currently used in practice for the collection of 

pedestrian data lack the ability to capture microscopic changes in position and 

speed (Shi, et al., 2007). Automated video analysis is becoming more popular as 

it overcomes the shortcomings present in the widely used manual methods. 

Automatic tracking of pedestrians in video scenes is possible with the help of 

computer vision techniques (Ismail, et al., 2009). For automatic tracking of 

pedestrian, moving road users must be detected and tracked frame-by-frame and 

classified into pedestrians and non-pedestrians (Ismail, et al., 2009). Data 
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extracted from videos are rich in details and the costs associated with recording 

and storing the data are low (Ismail, et al., 2010). Common problems in this 

challenging task include global illumination variations, shadow handling, and 

multiple-object tracking (Forsyth, et al., 2005). Tracking of road users using 

computer vision is still an open problem and tracking of pedestrians is even 

more challenging than the tracking of other road users (Ismail, et al., 2009). 

Pedestrians are locally non-rigid, and have more variability in shapes and 

appearance compared to vehicles (Forsyth, et al., 2005).  

 

2.3.1 The Tracking Algorithms  

Two tracking algorithms are used in this thesis for detection of walking 

pedestrians: a feature-based tracking system; MM-Track algorithm.  

Feature-based Tracking System  

A Feature-based tracking system is a useful tool for the detection of pedestrians. 

The readers are encouraged to refer to (Saunier & Sayed, 2006) for more details 

about the algorithm. The tracking system was initially developed for vehicle 

detection and tracking as part of a larger system for automated road safety 

analysis. The tracking of features is done through the well-known Kanade-Lucas-

Tomasi feature tracker. One advantage of feature-based tracking over other 

methods such as tracking using flow or tracking using probability is its ability to 

handle partial occlusion. For automatic traction, first, all features, whether 

stationary or moving, are detected. Then, stationary features or features with 

unrealistic motions are filtered out and the remaining features are kept. Next, the 

features that are recognized to belong to a specific object are grouped together; 
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cues such as spatial proximity and common motion are used for grouping 

features. Figure 2.1 shows a sample pedestrian tracking using feature-based 

tracking algorithm. This tracking algorithm was described and validated in a 

previous study (Ismail, et al., 2010). The accuracy of speed measurement from 

the automated system was reported to be acceptable. The root mean square error 

(RMSE) for comparison between automatic and manual speed calculation was 

reported to be 0.0725 m/s. Feature-based tracking and a computer vision system 

developed at the University of British Columbia were the core of the system for 

detection and tracking of pedestrians.  

  

(a) (b) 

Figure 2.1 Sample Pedestrian Tracking using Feature-based Tracking. (a) 

represents the detection of moving features and (b) represents a pedestrian 

object after grouping the features 

 

MM-Track Algorithm  

Another tracking algorithm used for the generation of pedestrian trajectories is 

MM-Track Algorithm. For extraction of such trajectories from videos, all road 

users must be detected, recognized as pedestrians or other road users, and 

tracked frame-by-frame as they move. MM-Track algorithm is a cluster-based 
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appearance modeling and online tracking approach algorithm used for detection 

of pedestrians (Khanloo, et al., 2012). The MM-Track is a hybrid single pedestrian 

tracking algorithm that puts together the advantages of descriptive and 

discriminative approaches for tracking. Readers can refer to (Khanloo, et al., 

2012) for more detail about the algorithm.  

 

2.3.2 Camera Calibration  

Another important component of the system is to create a mapping from world 

coordinates to image plane coordinates using a homography matrix (a camera 

calibration process). This mapping enables the recovery of real-world 

coordinates of points that appear in the video. The matrix parameters specify the 

translation and orientation of the camera coordinates relative to the world 

coordinates. The parameters are obtained by minimizing the difference between 

the projection of geometric entities, e.g. points and lines, onto world or image 

plane spaces and the real-world measurements of these entities. The camera 

calibration process is described in detail in (Ismail, et al., 2010). To summarize, 

corresponding points in world and image spaces are annotated and the positions 

of the points on the world map are used to determine the real-world coordinates 

of those same points in the image space. As well, the true line segments lengths 

are measured from the orthographic image (either from Google map or from 

field measurements). The angular constraints are set by annotating pairs of 

parallel lines such as lane markings or light poles or perpendicular lines such as 

road markings in the image space. Figure 2.2 shows some of these steps. A 

reference grid is shown in Figure 2.3 “to visualize the accuracy of the estimated 

camera calibration parameters” (Ismail, et al., 2010).  
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(a) (b) 

Figure 2.2 Calibration Data. (a) Image Space; (b) World Space. Source: (Ismail, 

et al., 2010) 

 

  

(a) (b) 

Figure 2.3 (a) Sample Grid on Image Space; and (b) Projected Sample Grid on 

World Space 
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2.4  Pedestrian Walking Behavior Studies 

2.4.1 Pedestrian Crossing Speed 

Pedestrian Crossing Speed (PCS) at intersections is a characteristic of pedestrian 

flow which influences several intersection design features such as signal timings. 

To plan and design pedestrian facilities such as crosswalks at intersections, it is 

important to predict pedestrian movement under individual pedestrian 

attributes and different external circumstances (Al-Azzawi & Raeside, 2007). 

Several studies have identified multiple characteristics which influence the PCS. 

Knoblauch et al (1996) investigated the effect of street width, timing of pedestrian 

signal phases, signal cycle length, and pedestrian group size on PCS. They found 

that pedestrians tend to have faster average crossing speed when the cycle length 

is long (probably because longer cycle lengths are used for wider streets) and 

that short Walk (W) intervals result in faster average crossing speed compared to 

moderate or long W intervals. Similar results were found for Don’t Walk (DW) 

intervals. Also, pedestrians who start crossing the intersection on W indication 

continue walking with slower speeds than those who start on Flashing Don’t 

Walk (FDW) or DW indications. They also found that pedestrians walking alone 

tend to have faster average crossing speed compared to those walking in pairs or 

larger groups. Other findings include faster average crossing speeds for wider 

streets compared to narrower streets. Gates et al (2006) conducted a study at 

eleven intersections in Madison and Milwaukee to identify the factors which 

influence crossing speeds of pedestrians. They found that the average crossing 

speed of pedestrians walking alone is higher than those walking in larger 

groups. They also found that pedestrians who start crossing the intersection 

during the FDW and DW indications walk faster than those who start crossing 
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during the W indication. Tarawneh (2001) conducted a study investigating the 

mean and the 15th-percentile PCSs for intersections in Jordan. Factors such as 

street width and group size were found to significantly influence the average 

PCS. He found that pedestrians crossing wider streets tend to have higher 

average speeds. He also found that average crossing speeds of pedestrians 

walking in groups of 3 or more are slower than those walking alone or in pairs; 

however, he did not find the average PCS to be different between those walking 

alone and in pairs. Akcelik and Associates (2001) investigated pedestrian 

movement characteristics at actuated mid-block signalized crossings in Australia. 

They investigated the average walking speed of pedestrians through the first and 

the second half of the crosswalks, and reported a slower walking speed through 

the second half. Ishaque and Noland (2006) compared the average wait time and 

average travel time for pedestrians through the intersection between scramble 

pedestrian crossing and parallel-to-vehicle-phase crossing design using micro-

simulation. The results showed that the average pedestrian wait time is higher in 

scramble crossing design, while the average pedestrian travel time is the same 

for both designs. The conflict between oncoming pedestrian platoons, referred to 

as bi-directional flow effect, is also found to have effects on PCS. Li et al (2010) 

investigated this effect and found that the increase in demand on both sides of 

crosswalk increases pedestrian crossing time as the opposing pedestrian flows 

interact. No studies were found that investigate the crossing speed of pedestrians 

at scramble phases or that compares the crossing speed before and after the 

introduction of a scramble phase. This study attempts to fill this gap. 

It is important to note that the above-mentioned studies are based on manual 

speed measurements by field or video observations. None of the studies 

attempted to use computer vision techniques.  
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2.4.2 Pedestrian Gait 

Gait Data Analysis 

The Quantitative evaluation of Gait parameters has been traditionally 

undertaken manually. For example, Hui et al (2007) manually measured the gait 

parameters for 1882 pedestrians in China. The mean values for walking speed, 

step frequency, and step length were found to be 1.22 m/s, 1.91 Hz, and 0.64 m, 

respectively. A thorough review by Venuti and Bruno (2009) found that walking 

speed has a range of [1.08 to 1.60 m/s] +/- [0.15 – 0.63 m/s], step frequency has a 

range of [1.82 – 2.0 Hz] +/- [0.12 – 0.186 Hz], and step length has a range of [0.75 – 

0.768 m] +/- [0.07 – 0.098 m].  

Several studies investigated the relationship between gait parameters. Yamasaki 

et al (1991) observed that the relationship between stride length and walking 

speed is linear up to speeds of approximately 2.0 m/s for males and 1.83 m/s for 

females and deviates from linearity at higher walking speeds. Crowe et al (1996) 

found that stride frequency and length are both highly correlated with walking 

speed. Hui et al (2007) found walking speed, step length, and step frequency of a 

sample of 1882 Chinese pedestrians to follow normal distributions. They found 

walking speed to be correlated with both step frequency and length, but found 

no apparent relationship between the step length and the step frequency. 

Several researchers investigated the effect of age on gait parameters. Older 

people were reported to have slower walking speeds and shorter step lengths 

compared to younger people (Elble, et al., 1991) (Judge, et al., 1996) (Crowe, et 

al., 1996) (Murray, et al., 1969) (Himann, et al., 1988) (Hageman & Blanke, 1986). 

Mixed results were reported on the relationship between age and the step 

frequency. Elble et al (1991) studied the effect of age on gait parameters for 
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healthy young (30 years old mean age) and old (75 years old mean age) people 

and found that younger people walk faster by increasing their stride length 

rather than stride frequency during both natural and fast walking. Judge et al 

(1996) found older adults (79 years old) to have 10% shorter average step length 

compared to younger adults (26 years old) after correcting for leg length 

differences. Kirtley et al (1985) found decreasing stride length with increasing 

age in men aged 18 to 63. Zijlstra et al (2008) investigated whether the step 

length-frequency relationship of physically active community-dwelling older 

women between ages 54 and 85 changes with increasing age. They found that 

walking speed, stride length, and stride frequency decrease as age increases. 

However, they did not find systematic changes in the step length-frequency 

relationship (ratio of step length to step frequency) as a result of age increase, 

even in complex situations where subjects were given extra tasks to do in 

addition to walking. They concluded that the aging processes is not responsible 

for some older women to reduce step length or increase periods of double limb 

support in order to reduce the challenge of balance control during walking.  

Factors such as gender (Crowe, et al., 1996) (Yamasaki, et al., 1991) (Hui, et al., 

2007), race (Al-Obaidi, et al., 2003), weight (Hills & Parker, 1992), and walkway 

grade (Kawamura, et al., 1991) are also found to have effects on human gait 

during walking. Crowe et al (1996) investigated this effect and found that while 

walking speed does not significantly differ between males and females, females 

have shorter stride length and higher stride frequency compared to males. 

Yamasaki et al (1991) also investigated the difference in the walking patterns of 

males and females and found that, in comparison to males, females tend to 

increase their step frequency in order to speed up, and found that height 

influences this difference in the walking patterns of the two groups. They found 
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that the average step length is significantly shorter for females while step 

frequency is significantly lower for males at speeds 1.5 m/s and greater. 

However, when accounted for height difference between the two groups, these 

differences were not significant at lower walking speeds than 2.17 m/s. Hui et al 

(2007) measured the gait parameters for 1882 pedestrians in China and found 

that, compared to males, females have slightly larger average step frequency, but 

shorter average step length (both significant). They conclude that due to a 

slightly smaller mean step frequency and a relatively larger mean step length 

and mean walking speed of males compared to females, step length is the main 

determinant of waking speed. They indicated, based on observational judgment, 

that the larger mean step length of males is a result of males being taller than 

females. Kawamura et al (1991) investigated the effect of grade on gait 

parameters of 17 healthy young men and found that the most conspicuous 

phenomena in upgrade walking to be in step frequency and the most 

conspicuous phenomena in downslope walking to be in step length, compared to 

level walking. They found step length to significantly decrease at 9 and 12 degree 

slopes in the downslope walking, and increase at 6 and 9 degree slopes in the 

upslope walking, compared to level walking. They found step frequency to 

significantly increase at 6 and 9 degree slopes in downslope direction compared 

to level walking. 

 

Metabolic Energy Expenditure and Mechanics of Walking 

The varying effects of factors on the gait parameters can be explained through 

the metabolic energy expenditure rate and the mechanical power requirements 

during waking. It is also an important element when evaluating the 
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characteristics of walking conditions corresponding to measures such as 

comfortability and efficiency during walking. It is important to study the rate of 

energy expenditure across different pedestrian or infrastructure design attributes 

during walking, as well as the sensitivity of this rate to each step frequency and 

step length.  

Humans have the ability to select walking patterns which minimize their 

metabolic energy expenditure (Holt, et al., 1995) and prefer to walk with a stride 

frequency at which the metabolic cost of walking is lowest (Umberger & Martin, 

2007) (Donelan, et al., 2002) (Cavagna & Franzetti, 1986). Stride frequency is 

identified as a critical parameter which strongly influences metabolic cost of 

walking (O’Halloran, et al., 2010) (Donelan & Kuo, 2003) and that increasing or 

decreasing stride frequency above or below Preferred Stride Frequency (PSF) 

influences the metabolic cost of walking (Donelan & Kuo, 2003) (Russell & 

Hamill, 2007). When stride frequency is varied below and above the PSF, the 

metabolic energy expenditure forms a curve that has a U-shape with its 

minimum close to or at the PSF (Umberger & Martin, 2007) (O’Halloran, et al., 

2010). O’Halloran et al (2010) studied the effect of changing stride frequency 

below and above PSF on the heart rate and ventilatory efficiency (by keeping the 

walking speed constant) and found that heart rate is lowest and ventilatory 

efficiency is greatest at the PSF. Donelan and Kuo (2003) investigated the effect of 

increasing step frequency above PSF by keeping the step length constant at 0.70 

m, and found that a 60% increase in step frequency above PSF of 1.81Hz results 

in a 222% increase (2.3-7.3 W/kg) in the net metabolic power (net metabolic 

power is the power of standing still subtracted from the power of walking). The 

metabolic cost of walking is also found to change with varying stride length 

(Donelan, et al., 2002). 
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As well, there is a relationship between metabolic power expenditure and 

mechanical power requirements during waking. It is believed that the 

mechanical power during walking is also influenced by varying step frequency 

(Umberger & Martin, 2007) (Cavagna & Franzetti, 1986) and step length 

(Donelan, et al., 2002) and that a major determinant of the metabolic cost of 

walking is the mechanical work needed for step-to-step transitions to move and 

redirect the Body Center of Mass (BCM) during double support (Donelan, et al., 

2002) (Neptune, et al., 2004) as well as to raise the BCM in single support 

(Neptune, et al., 2004). For the exchange of body’s potential and kinetic energy 

during single limb support, little muscle work (Neptune, et al., 2004), and 

therefore, little metabolic energy expenditure is required. Umberger and Martin 

(2007) investigated the effect of varying step frequency (by keeping walking 

speed constant) on total mechanical power (based on the work done by lower 

limb joint moments) and efficiency during walking, and found that although the 

net metabolic energy expenditure is optimum at step frequency equal to PSF, the 

mechanical power is optimum at step frequency 11-12% lower than PSF, and the 

mechanical efficiency is optimum at step frequency 8% above PSF (Umberger & 

Martin, 2007). Cavagna and Franzetti (1986) investigated the effect of varying 

step frequency (at a constant walking speed) on the mechanical power spent to 

lift and accelerate the BCM (P_ext) and the mechanical power spent to accelerate 

the limbs relative to the BCM (P_int). They found P_ext to decrease and P_int to 

increase with increasing step frequency. They also found that the step frequency 

which results in the minimum total mechanical power (P_tot = P_ext + P_int) to 

be 20-30% lower than the freely chosen step frequency (i.e. PSF) at the same 

walking speed. Gordon et al (2009) found that decreasing or increasing vertical 

BCM movement below or above subjects’ preferred range increases the metabolic 
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cost of walking due to the increase in the mechanical work at the hip, knee, and 

ankle joints. Donelan et al (2002) investigated the effect of varying step length 

from 0.40 to 1.10 m on the mechanical power and the metabolic energy 

expenditure rate during walking at a constant step frequency of 1.80 Hz, and 

found that both mechanical work and metabolic rates increase with the fourth 

power of step length, and to a lesser extent, with step frequency. They found 

that, in order to increase their walking speeds, humans typically increase their 

step frequency and step length in almost equal proportion, and that, if the only 

determinants of the metabolic cost of walking were the step-to-step transitions 

(i.e. required mechanical work to redirect the BCM velocity), walking at high 

step frequencies and short step lengths would lower the metabolic cost (Donelan, 

et al., 2002).  

During walking, BCM undergoes sinusoidal oscillations in vertical, horizontal, 

and lateral directions due to the external forces acting on the body to displace the 

BCM from a position to another (Crowe, et al., 1996). Crowe et al (1996) found 

the displacement of the BCM by double integration of the ground reaction forces. 

They found this oscillatory distance to be directly affected by the square of the 

period of the walking cycle (i.e. T2 or (frequency)-2). This relationship highlights 

the strong effect of step frequency on the displacement of BCM as increasing 

frequency decreases the BCM oscillation amplitude. The lower BCM 

displacement associated with higher step frequency results in lower mechanical 

power requirement to lift and accelerate the BCM, but higher mechanical power 

requirement to accelerate the limb with respect to the BCM (Cavagna & 

Franzetti, 1986), which may increase or decrease the metabolic power depending 

on which mechanical power requirement change is larger. 
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Browning et al (2006) studied the effect of gender and obesity on energetic cost 

and preferred walking speed and found that both obesity and sex have 

influences on the net metabolic rate of walking. They found the net metabolic 

rate (W/kg) to be 10% higher (per kg) for obese individuals compared to normal-

weight individuals, and 10% higher (per kg) for women compared to men. In an 

earlier study, Browning and Kram (2005) investigated the preferred walking 

speed and energetic cost of walking in obese women and found that obese 

women prefer to walk at speeds which minimize their energy cost per distance, 

even though this strategy requires a relatively higher aerobic effort compared to 

slower walking speeds. They recommend that obese women walk slower than 

their preferred walking speeds for weight management purposes; however, 

slower walking speeds can also be optimized based on step frequency and length 

combination selections which minimize the metabolic energy expenditure as was 

shown by (Zarrugh, et al., 1974). Zarrugh et al (1974) found that within normal 

walking speed range (up to about 2.4 m/s), for any given step length, there is a 

unique step frequency at which the required energy expenditure per unit 

distance is minimum. Browning et al (2005) found that, compared to normal-

weight women, obese women have 11% higher average net metabolic rate 

(significant). 

Browning & Kram (2007) found in a later study that knee-joint loads are larger in 

obese compared to normal-weight subjects and that peak sagittal-plane knee 

moments are reduced by 45% by decreasing walking speed from 1.5 to 1.0 m/s, 

and that the absolute peak sagittal-plane knee moments are equivalent between 

obese and normal-weight subjects at speeds 1.1 and 1.4 m/s, respectively. 

However, even at identical walking speeds, the two groups have the ability to 

select different stride length-stride frequency combinations which may affect the 
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knee joint moments (Russell, et al., 2010) (Allet, et al., 2011) and plantar foot 

pressures and ankle joint moments (Allet, et al., 2011). Russell et al (2010) found 

that, for obese women walking at preferred walking speeds, decreasing stride 

length by 15% below preferred stride length (subsequently increasing stride 

frequency) results in significant reductions in the energy expenditure as well as 

the impulse of the external adduction moment; however, the peak shock during 

foot-ground impact, which may result in knee osteoarthritis, does not 

significantly decrease with this decrease in stride length. Allet et al (2011) found 

that by decreasing stride length by 20% while walking at constant speed results 

in a significant decrease in peak pressure under heel, mid-foot, and toes in 

normal-weight subjects. 

 

Other Applications 

Several applications can benefit from the gait analysis. Accurate pedestrian 

micro-simulation modeling relies on accurate characterizations of human 

movements. Micro-simulation models exist in which the movement of a 

pedestrian in each time step is decided based on the direction of movement and 

step size, with step size being a control parameter to ensure that the positions of 

two pedestrians in a close proximity do not overlap after a position update (Guo, 

et al., 2010). In such models different fractions of full step size are used with the 

full step size being the preferred option according to field experiments. Gait 

parameters are used to calibrate simulation parameters. For instance, simulation 

based on cellular automaton (Burstedde, et al., 2001) requires cell size setting. 

Each cell can be occupied by exactly one pedestrian at a single time step. This 

variability in cell size may be attributable to walking speed, and therefore, step 
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size if a relationship between walking speed and step size exists (Chen, et al., 

2008). There are empirical studies relating the longitudinal space requirements 

between pedestrians to walking speed, which show that a greater space is 

required with increasing walking speed due to the additional space requirement 

for taking a step (Daamen & Hoogendoorn, 2003).  

 

2.4.3 Pedestrian Classification 

There are several methods to classify human attributes. One method is to use the 

“pattern of movement” or gait. Gait is identified as a useful biometric for human 

recognition (Nixon, et al., 1999) (Nixon, et al., 2003) (Ekinci, 2006) (Stevenage, et 

al., 1999) (Boyle, et al., 2011). Pedestrians are recognized to have a unique rhythm 

during walking that is periodic and oscillatory (Mori, et al., 1994) (Yasutomi, et 

al., 1996) (Yoo, et al., 2006) (Nixon, et al., 1999) (Ekinci, 2006) (Crowe, et al., 1996) 

(BenAbdelkader, et al., 2002) (Makihara, et al., 2011) (Davis, 2001). The 

qualitative properties of walking patterns such as periodicity can be used for 

pedestrian detection and behavioral analysis. This unique rhythm (periodic 

oscillatory) can be used for automatic human recognition at a distance 

(BenAbdelkader, et al., 2002) (Nixon, et al., 2003) (Ekinci, 2006), discrimination of 

pedestrians form other moving objects such as bicycles or vehicles (Mori, et al., 

1994) (Yasutomi, et al., 1996), or discrimination of human age (Davis, 2001) 

(Makihara, et al., 2011) and gender (Yoo, et al., 2006) (Makihara, et al., 2011) 

using computer vision techniques. It is possible to identify the class of humans 

from their gait, as step length and step frequency are functions of gender, body 

weight and height (BenAbdelkader, et al., 2002). In early gender classification 

research based on gait, Kozlowski and Cutting (1977) examined the gender 
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classification of walker from moving light displays where human observers 

classified the gender of the walker. Their method resulted in 63% correct 

classification using full body joint markers. Mather and Murdoch (1994) showed 

in a later study that classification of gender can be improved by examining the 

frontal view of the subjects as males tend to swing their shoulders more than 

females and females tend to swing their hips more than males. Their 

classification method resulted in 79% correct gender classification. Davis and 

Gao (2004) introduced an automated method using an adoptive three mode PCA 

for feature extraction from point light displays, with a correct classification rate 

of 95.5%. Yu et al (2009) used human observer to classify gender based on human 

gait in controlled environment where they present a numerical analysis when 

considering different human components such as head and hair, chest, back and 

thigh and found these human components to be more discriminative than other 

components. Their correct classification rates are 94.35% based on upper body 

silhouettes, and around 67% based on lower body silhouettes. However, their 

method still suffers when there are view changes or with changes in clothing and 

footwear. Yoo et al (2006) proposed an automated system for gender 

classification of walking humans from video by utilizing a set of human gait 

data. They used Support Vector Machine classifier to discriminate human gender 

and their method resulted in 96% correct classification rate. The gait signature 

used in (Yoo, et al., 2006) was denoted by a sequential set of two-dimensional 

stick figures. BenAbdelkader et al (2002) used height as well as step length and 

frequency for automatic identification of people. Their method is view-invariant 

and results in a correct classification rate of 65% for non-fronto-parallel 

sequences. They showed that adding height as a feature in addition to the step 

frequency and length improves the performance of their classification method. 
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Gait has also been used for human age classification. Davis (2001) introduced a 

method for discriminating adults (30–52 years of age) from children (3-5 years of 

age) by comparison of the stride parameters using computer vision. They used 

six children and nine adults and computed their relative stride (stride length 

divided by stature) and stride frequency at different speeds from the trajectories 

of marked ankle and head positions. Their results showed strong distinction 

between the relative stride and stride frequency for the two groups and a correct 

classification rate of 93-95% was achieved using a trained two-class linear 

perceptron. Makihara et al (2011) introduced a video-based gait feature analysis 

for human age and gender classification using a large-scale multi-view gait 

database. They used arm swing, posture, and relative size of head for specific 

features for children, stride and body frame for specific features for adult males 

and females, and walking posture, body width, and arm swing for distinctive 

features of the elderly. They correctly classified children from adults at a rate of 

74%, and males from females at a rate of 80%, and even higher when they limit 

the age range for adults.  

Saunier et al (2011) proposed a method for discriminating pedestrians from 

vehicles by comparing the velocity profiles of each road user type. The difference 

in speed profile between a vehicle and a pedestrian was that a pedestrian speed 

profile had oscillatory shape from which step frequency and step length could be 

estimated, while a vehicle speed profile did not have a distinct shape. They 

estimate step frequency and step length of walking pedestrians from the 

oscillations in their speed profiles. They used computer vision techniques for 

tracking road users.  
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Chapter Three: Automated Analysis of Pedestrian Crossing Speed 

Behavior at Scramble-phase Signalized Intersections Using 

Computer Vision Techniques 

3.1   Background 

One of the important areas of pedestrian data collection is the average 

walking/crossing speed measurements. Many transportation applications require 

data of pedestrian walking speed, such as: developing pedestrian simulation 

models, planning and management of crowd movement, estimating facility 

level-of-service, and designing pedestrian signals (Ismail, et al., 2009). Pedestrian 

crossing speed at signalized intersections is an important engineering design 

parameter as it determines the time required for safe pedestrian crossing at the 

intersection (Tarawneh, 2001). 

In this study, the change in crossing speed behavior of pedestrians following the 

implementation of a pedestrian scramble phase is investigated. Pedestrian 

scramble phasing is an exclusive pedestrian phase where pedestrian crossing is 

allowed in any direction across the intersection, during which no vehicle 

movement is allowed. The main benefit of the implementation of a scramble 

phase, as reported in the literature, is that it reduces pedestrian-vehicle conflicts, 

and therefore increases the safety of the intersection (Ismail, et al., 2010) (Bechtel 

& MacLeod, 2004) (Kattan, et al., 2009). However, both vehicles and pedestrians 

usually experience longer delays as a result of the increase in cycle length and 

the decrease in green ratios. Signal timing, as a design feature of an intersection, 

is influenced by the pedestrian walking speed to cross the intersection. 
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Pedestrian crossing speed is used to determine pedestrian clearance time. A 

walking speed of 1.22 m/s (4 ft/s) is recommended for traffic signal timing 

(MUTCD, Revision 1, 2003) (Dewarr, 1999) (HCM, 2000) (McShane, et al., 1998), 

regardless of the characteristics of the design of the intersection or the 

characteristics of the pedestrians crossing the intersection. However, research 

shows that pedestrian speed is influenced by factors such as the traffic, 

environmental, and pedestrian characteristics (Tarawneh, 2001) (Knoblauch, et 

al., 1996) (Gates, et al., 2006) (Akcelik_&_Associates, 2001) (Fitzpatrick, et al., 

2006). Therefore, the recommended speed of 1.22 m/s for signal timing 

calculations may not provide adequate time for all pedestrians to make safe 

crossing maneuvers at signalized intersections. Characteristics such as age, 

gender, group size, pedestrian facility type, weather/season and vehicular traffic 

have been identified to influence pedestrian crossing speed. Little research has 

been conducted on the influence of the introduction of a scramble phase on 

pedestrian crossing speed. This study attempts to fill this gap with the aim to 

improve the understanding of pedestrian behavior at scramble phase signalized 

crossings.  

The accurate pedestrian speed measurement can greatly benefit from automatic 

tracking of the position of pedestrians in space and time (Saunier & Sayed, 2007). 

The automatic tracking of pedestrians for crossing speed measurements requires 

less resource and also provides information about the microscopic behavior of 

pedestrians during the distance traveled. For example, microscopic data required 

for investigating the ability of individual pedestrians to change their walking 

speed as a response to pedestrian signal indication can be easily obtained with 

automatic tracking (Ismail, et al., 2009). The main source of the data in this 

chapter comes from video sensors. The data set used in this study was extracted 
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and used in a previous study (Ismail, et al., 2010) for the automated analysis of 

pedestrian–vehicle conflicts for the same intersection.  

3.2  Methodology 

This section provides information about the characteristics of the studied site, the 

details of the methodology used for collecting data, and the methods and tools 

used for calculating pedestrian crossing speed and validation.  

3.2.1 Site Characteristics 

The study site is a busy downtown intersection located at 8th and Webster 

Streets, city of Oakland, California. 8th Street is a one-way, westbound street, 

with four traffic lanes. Webster Street is a one-way, southbound street, with also 

four traffic lanes. Pedestrian crosswalks are located on all four legs of the 

intersection, with two additional diagonally crossing bays in the scramble phase. 

The intersection layout and the lengths of the crosswalk legs are shown in Figure 

3.1. The intersection was selected to demonstrate the feasibility of automated 

data collection for pedestrian walking speed in this study because of the 

availability of the video data (Ismail, et al., 2010). Pedestrian activity at this 

intersection is high (approximately 3,000 pedestrian crossings per leg, per hour, 

both directions at peak times) (Bechtel & MacLeod, 2004). Pedestrian movement 

in any direction is not allowed during the vehicle phase in the scramble phase 

(Bechtel & MacLeod, 2004). Similarly, vehicle movement is not allowed in any 

direction during the pedestrian phase in the scramble (Bechtel & MacLeod, 2004). 

In addition, vehicles are not allowed to make right-turns-on-red during the 

movement of the intersecting vehicle traffic (Bechtel & MacLeod, 2004). The 

pedestrian signal timing for both pre-scramble and scramble phases are provided 
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in Table 3.1. The crossing legs were categorized into conventional and diagonal 

legs. Pre-scramble phase consists of four conventional crossing legs, and the 

scramble phase consists of two diagonal crossing legs in addition to the four 

conventional crossing legs present in pre-scramble.  

 

Figure 3.1 Case Study Intersection Layout 

 

Table 3.1 Pedestrian Signal Timing for Pre-scramble and Scramble Phases (in 

seconds) 

Phase 
Parallel 

Approach 

Walk                

(W) 

Flash Don't 

Walk (FDW) 

Don't Walk 

(DW) 

Cycle 

Length 

Pre-scramble 

Phase 

8th St 7 8 6 

45 

Webster St 10 9 5 

Scramble Phase 10 18 3 90 
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3.2.2 Data Collection 

Computer vision techniques were used to generate pedestrian tracks. A feature-

based tracking algorithm was used to detect pedestrians as explained in Chapter 

Two. Due to possible tracking interruptions, the pedestrian trajectory database 

included some short tracks that did not cover the majority of the crosswalk 

length. Including these short tracks in the analysis may introduce potential errors 

in the results and therefore it was decided not to use these tracks in the analysis. 

Another issue with tracking is over-segmentation where one pedestrian is 

tracked as more than one object. This can have influence on the results if over-

segmentation is not consistent between all tracked pedestrians. Manual 

observations showed that the degree of over-segmentation was generally small 

and consistent across all crossing legs. Therefore, it was assumed that over-

segmentation will not significantly affect the analysis and, for the rest of the 

paper, the term pedestrian is used to refer to pedestrian object. There were also a 

small number of instances where some pedestrians were not detected by the 

system; however, this is not problematic for speed calculations, but can affect 

pedestrian counting. Although the crossing speeds of pedestrian objects are 

obtained automatically, the system is not capable of determining the pedestrian 

group size for which the pedestrian object is detected in. Therefore, for each 

pedestrian object, the group size was recorded manually. The three pedestrian 

group sizes consist of one pedestrian, two pedestrians, and three or more 

pedestrians. Figure 3.2 shows a sample of the pedestrian tracks used in this 

study.  
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Figure 3.2 Sample Object Tracks in Scramble Phase with 8 Seconds or Longer 

Duration of Detection 

 

Speed measurements were obtained using a script prepared in MATLAB 2010. 

To calculate the speed of each pedestrian object, two imaginary parallel lines 

(screens) are located across a selected section of each crosswalk leg of the 

intersection. Most tracks cross both screens and the speeds of those tracks are 

calculated based on the amount of time a track remains between the two screens, 

as illustrated in Figure 3.3. However, there are some tracks that are not long 

enough to cross both screens (even though they cover the majority of the 

crosswalk length) and only cross one of the two screens and it is important to 

measure speeds for such tracks. To measure the speed for a track that crosses one 

of the two screens, the shortest distance between the intersecting point of track 

with the crossed screen and the point coordinate of the point on the other end of 

the track between the two screens is used. This tool outputs one speed for each 

individual pedestrian object across a crosswalk leg. To find an average 
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Pedestrian Crossing Speed (PCS) through a crosswalk leg, all pedestrian object 

speeds are averaged and a mean speed is obtained.  

 

Figure 3.3 Walking Speed Measurement Method 

 

3.2.3 Validation of Tracking Performance 

It is important to ensure that the automatically measured speeds of the 

pedestrian objects represent the actual pedestrian speeds. To do so, a sample of 

68 pedestrians was randomly selected and their speeds were manually measured 

and compared to the automatically measured speeds of the pedestrian objects. 

The results are shown in Figure 3.4. The Root Mean Square Error (RMSE) is 

found to be 0.07642 m/s, which is considered acceptable.  
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Figure 3.4 Comparison between Automatically and Manually Measured 

Walking Speeds in Scramble Phase 

 

3.3   Analysis and Results 

This section of the paper provides the results of the study. Manual pedestrian 

counts were conducted one hour in both before and after the scramble to 

determine the density changes through the crosswalks. The hourly pedestrian 

traffic flow rates through the entire intersection are 2176 ped/hr and 2228 ped/hr 

for pre-scramble and scramble phases, respectively. Therefore, the difference in 

pedestrian density will not have a significant impact on speed.  
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3.3.1 Comparison between Diagonal/Conventional Crossings before and 

after Scramble Phase 

Table 3.2 shows the results of a comparison between PCS before and after the 

implementation of the scramble phase. Several conclusions can be made from the 

table:  

- The average PCS for the conventional crossings before the scramble phase 

is 1.34 m/s. This value is consistent with the values reported in the 

literature. Tarawneh (2001) reported average PCS of 1.35 m/s for 14-16 m 

long crosswalk. Knoblauch et al (1996) reported 1.37 m/s average crossing 

speed for crosswalks 13.1 to 15.6 meters long (calculated from separate 

values for younger and older pedestrians)  

- The average PCS for the conventional leg crossings after the scramble 

phase is 1.37 m/s. The difference between the PCS for conventional leg 

crossing between the pre and post scramble is statistically significant. This 

small difference could be the result of a decrease in pedestrian flow rate 

on the conventional legs in the scramble phase. Akcelik and Associates 

(2001) reported that the average and the 15th-percentile crossing speeds of 

pedestrians at mid-block signalized crosswalks decrease with increasing 

pedestrian flow rate.  

- The average PCS for the scramble phase diagonal crossings is 1.51 m/s 

which is 10% higher compared to average PCS on conventional legs and is 

statistically significant. This is probably due to the longer lengths of the 

diagonal legs (40% longer). Researchers have shown that longer 

crosswalks result in larger average PCSs compared to shorter crosswalks 

(Tarawneh, 2001) (Knoblauch, et al., 1996).  
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- The average PCS for all crossing types after the scramble is 1.43 m/s, 

significantly higher than the 1.34 m/s before the scramble.  

 

Table 3.2 Statistics for Pedestrian Crossing Speed before and after the 

Scramble Phase 

Movement 

No. 

Pedestrian 

Objects 

Average 

(m/s) 

Stan. 

Dev. 

(m/s) 

P-value (difference in average PCS between column and 

row movement types) 

Scramble (All 

Legs) 

Scramble 

(Conventional 

Legs) 

Scramble 

(Diagonal Legs) 

Pre-scramble  

(All Legs) 

1083 1.34 0.23 <0.0001 0.013 - 

Scramble  

(All Legs) 

1079 1.43 0.28 - - - 

Scramble  

(Conventional Legs) 

591 1.37 0.25 - - <0.0001 

Scramble  

(Diagonal Legs) 

488 1.51 0.29 - - - 

 

 

Figure 3.5 shows the distribution of pedestrian crossing speeds. The 15th-

percentile speeds, used for calculating the minimum pedestrian clearance time, 

are 1.25 m/s and 1.12 m/s for the diagonal legs (scramble) and conventional legs 

(pre and post scramble), respectively. According to Section 4E of Manual on 

Uniform Traffic Control Devices for Streets and Highways (Revision 1, 2003), the 

pedestrian clearance time should be long enough so that the pedestrians who just 
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stepped off the curb at the end of the W phase can make it, at a speed of 1.2 m/s, 

to at least the far side of the crosswalk or to a sufficient width median to wait for 

the next W phase. Based on the observed 15th-percentile speeds, and the 

clearance intervals provided in Table 3.1, longer clearance time is required for 

the intersection after the scramble (unless the DW phase is included in the 

clearance interval). 

Figure 3.5 also shows that there are hardly any pedestrians using the diagonal 

leg crossings at speeds below 1.0 m/s. This may suggest that the slowest walking 

group who may consist of pedestrians with walking difficulties choose not to use 

the diagonal leg crossings. 

 

Figure 3.5 Percentage of Pedestrian Crossings below a Given Walking Speed 
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3.3.2 Effect of Group Size on Pedestrian Crossing Speed 

The comparison results of the PCS before and after the implementation of the 

scramble phase is shown for different group sizes in Table 3.3 and Figure 3.6. 

Several conclusions can be made:  

- Figure 3.6 shows that the average PCS decreases as group size increases in 

both pre-scramble and scramble phases.  

- The average PCS for group sizes 1, 2, and greater than 2 for the pre-scramble 

are 1.35, 1.33, and 1.25 m/s, respectively. The difference in the mean PCS for 

the three group sizes is significant at the 5% level indicating that the group 

size has a significant impact on PCS. Similar results were found by Tarawneh 

(2001), Gates et al (2006) and Knoblauch et al (1996).  

- The average PCS for group sizes 1, 2, and greater than 2 for the post-scramble 

are 1.46, 1.40 and1.29 m/s, respectively. The difference in the mean PCS for 

the three group sizes is significant at the 5% level.  

- The average PCS for diagonally crossing pedestrians walking in groups of 1 

or 2 pedestrians are significantly higher than the conventionally crossing 

pedestrians walking in same size groups. It is interesting to observe that the 

magnitude of the difference between the average speed decreases as group 

size increases (Figure 3.6).  
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Table 3.3 Effect of Group Size on Pedestrian Crossing Speed 

Movement 
Group 

Size 

No. 

Pedestrian 

Objects 

Average 

(m/s) 

Stan. 

Dev. 

(m/s) 

P-value (difference in 

average PCS between group 

sizes) 

Pre-scramble                                    

(All Legs) 

1 677 1.35 0.25 

<0.0001 2 356 1.33 0.19 

>2 50 1.25 0.21 

Scramble                                        

(All Legs) 

1 709 1.46 0.29 

<0.0001 2 302 1.40 0.24 

>2 68 1.29 0.18 

Scramble                                   

(Diagonal Legs) 

1 335 1.54 0.31 

<0.0001 2 139 1.46 0.23 

>2 14 1.26 0.17 

 

 

Figure 3.6 Before-After Average Pedestrian Crossing Speed for Pedestrians 

Walking in Different Group Sizes 
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3.3.3 Comparison between Complying/Non-Complying Pedestrian Crossings 

Automatic tracking can provide useful information about the microscopic 

behavior of pedestrians during the distance traveled. This section investigates 

the walking behavior of pedestrians across time (temporal) and space (spatial). 

This is represented by the ability of individual pedestrians to change their 

walking speeds as a response to how far through the pedestrian signal phase (in 

terms of time), as well as how far through the crosswalk’s length (in terms of 

position) they are. For this purpose, the average crossing speed of pedestrians 

depending on the time they enter the crosswalk with respect to the start time of 

pedestrian signal indications (temporal effect) is studied for both before and after 

the implementation of scramble phase. Similarly, the same speed behavior is 

analyzed through the first, second, third, and the fourth quarter of the crosswalk 

length. It is important to note that the magnitudes of the average pedestrian 

speeds reported in this section do not represent normal walking behavior; that is, 

the sample contains running pedestrians. The behavior of such pedestrians 

usually is not taken into consideration when determining a design pedestrian 

walking speed at an intersection. As a result, a larger average PCS is found 

compared to findings in Table 3.2. 

 

Effect of Starting Time on Average Pedestrian Crossing Speed 

The comparison results of the PCS before and after the implementation of the 

scramble phase are shown in Figure 3.7. Several conclusions can be made: 

- The numbers of pedestrians who start crossing during W, FDW, and DW 

intervals before the implementation of the scramble are 545, 141, and 9 
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pedestrians, respectively. That is, 78% of pedestrians comply with the 

signal indications, while 22% do not. These results are generally consistent 

with the results reported in the literature. Akcelik and Associates (2001) 

reported that 87% of pedestrians started crossing mid-block crosswalks 

during the W indication, while the remaining started during the FDW or 

DW indications. 

- The numbers of pedestrians who start crossing the intersection during W, 

FDW, DW, and DW-veh-green (“safe-side”) intervals after the 

implementation of the scramble are 611, 178, 4, and 75 pedestrians, 

respectively. That is, 70% of pedestrians comply with the signal 

indications, while 30% do not (21% during FDW and DW). 29% of non-

compliers are crossing during the DW-veh-green interval, which is close 

to the value (25%) Bechtel and MacLeod (2004) reported by manual 

observation of the same data. Pedestrian non-compliance to signal 

indications during FDW and DW intervals is similar in both before and 

after the scramble. The increase in the non-compliance in the scramble is 

mainly due to the crossings along the “safe-side” which may be the result 

of longer average delays (due to an increase in cycle length in the 

scramble phase) and/or unjustifiable DW phase along the “safe-side” 

where the opportunity for vehicle-pedestrian conflicts does not exist; the 

DW-veh-green (“safe-side”) phase in the scramble was basically the only 

opportunity given to pedestrians in the pre-scramble phase to cross the 

intersection with a W indication. 

- For both before and after the implementation of scramble, pedestrians 

who start crossing the intersection during W interval have considerably 

lower average speeds compared to those who start crossing during the 
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FDW interval. Knoblauch et al (1996) and Gates et al (2006) also found the 

average walking speed to be lower for pedestrians who start crossing 

during W interval compared to those who start crossing during the FDW 

interval. This difference in speed suggests that pedestrians entering the 

crosswalk during FDW may feel less safe and try to clear the intersection 

by increasing their walking speed. This difference is even larger in the 

after scramble, and this may be due to the longer diagonal crosswalks. 

- The standard deviation of average speed is lower for pedestrians who 

enter the crosswalks during W interval compared to those who enter 

during FDW interval. This larger variability in walking speeds during 

FDW interval (especially towards the end) may reflect varying responses 

of pedestrians to the risk of not completing the crossing safely, with some 

pedestrians significantly increasing their speeds. 
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(a) 

 

(b) 

 

Figure 3.7 Pedestrian Walking Speed Behavior as a Response to Pedestrian 

Signal Indications 
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Spatial-temporal Effect on Average Pedestrian Crossing Speed 

Figure 3.8 shows the average speed of pedestrians who start crossing at specific 

pedestrian signal indications (time) through different sections along the 

crosswalks in before and after the implementation of scramble phase. The figure 

shows that pedestrians slow down as they reach the end of the crosswalk in both 

before and after the scramble. This is consistent with the results reported by 

Akcelik and Associates (2001).  
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(a) 

 

(b) 

 

Figure 3.8 Spatial-Temporal Effect on Pedestrian Walking Speed 
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3.4   Conclusions 

This chapter presented the results of a study conducting a general analysis on 

pedestrian crossing speed behavior using automatic collection of microscopic 

pedestrian data and to study pedestrian speed variations with respect to design 

changes to urban intersection crossings. The context of the study was to 

investigate the effect of scramble design characteristics on pedestrian average 

crossing speed. The ability of individual pedestrians to change their walking 

speeds as a response to how far through the crosswalk’s length (in terms of 

position), as well as how far through the pedestrian signal phase (in terms of 

time) they are, was also studied.  

The results showed that the implementation of a scramble phase at this location 

affects average PCS. The average PCS in scramble phase was determined to be 

significantly larger than the average PCS in pre-scramble phase when crossings 

through all, conventional, or diagonal legs of the scramble. However, there was a 

slight difference between PCS through conventional legs of the scramble and 

pre-scramble, and this slight difference is probably due to the decrease in 

pedestrian flow through the conventional legs of the scramble. It was also shown 

that the diagonally crossing pedestrians have significantly higher crossing speed 

than the conventionally crossing pedestrians in the scramble phase. The results 

also showed that the implementation of scramble influences group walking 

speeds as the average PCS for all group sizes were larger in scramble phase (all 

legs) compared to pre-scramble phase. The average PCS was also shown to be 

larger for diagonally crossing pedestrians compared to conventionally crossing 

pedestrians when walking alone or in pairs, within the scramble phase. It was 

also shown that the average PCS decreases as group size increases in both pre-
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scramble and scramble phases. Pedestrians who started crossing the intersection 

during W indication walked slower than those who started crossing during FDW 

indication. In addition, pedestrians had faster walking speeds through the first 

half of the crosswalk and slowed down as they approached the end of the 

crosswalk. Pedestrian non-compliance to signal indications during FDW and DW 

intervals is similar in both before and after the scramble. The increase in the non-

compliance in the scramble is mainly due to the crossings along the “safe-side” 

which may be the result of longer average delays (due to an increase in cycle 

length in the scramble phase) and/or unjustifiable DW phase along the “safe-

side” where the opportunity for vehicle-pedestrian conflicts does not exist.  

The increasing emergence of sustainability in the transport system is 

encouraging new and innovative designs such as scramble and it is important to 

know how pedestrians react to these designs. There is a considerable need for 

collecting microscopic data to enable a better understanding of pedestrian 

behavior. The automated technique used in this paper can provide a useful tool 

to collect such data. Future research work can include investigating more 

microscopic details of pedestrian walking behavior such as the analysis of gait 

parameters (step frequency and length). As well, there is a need to investigate the 

impact of various pedestrian attributes (age, gender, height, etc.) on walking 

speed and the gait parameters.  
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Chapter Four: Pedestrian Gait Analysis Using Automated 

Computer Vision Techniques 

4.1   Background 

As communities are becoming increasingly aware of the benefits associated with 

active non-motorized modes of travel, pedestrian walking behavior research is 

receiving a growing attention from policy makers, researchers and practitioners. 

A better understanding of walking behavior is therefore central to the evaluation 

of measures of walking conditions such as comfortability and efficiency. Gait 

analysis is a microscopic-level analysis which allows true estimates of objective 

walking measures such as stride frequency and length for different population 

segments. It is used to translate walking distance into units such as number of 

steps or energy expenditure.  Several applications are associated with gait 

analysis such as estimating the impact of trading personal vehicles for active 

transportation modes such as walking (Morency, et al., 2007). Gait analysis is 

also useful in demonstrating the walking costs to different groups of pedestrians 

such as the elderly and the obese. This allows the consideration of constraints on 

the movement ability of some pedestrians. Other direct applications are to 

provide feedback to standard guidelines for pedestrian movement such as 

crosswalk clearance times at intersections and the calibration of pedestrian micro 

simulation models.  

 The current study examines the spatiotemporal gait parameters (i.e., step 

length and step frequency) in order to improve the understanding of pedestrian 

walking behavior in outdoor urban environments. The goal of the microscopic-

level analysis is to provide insight into pedestrian walking mechanisms and the 
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effect of various attributes such as gender and age. The main source of the data 

in this study is collected from video sensors. Data extracted from videos are rich 

in details and the costs associated with recording and storing the data are 

relatively low (Ismail, et al., 2010). The analysis of walking speed, step frequency, 

and step length is performed by means of automated computer vision 

techniques. The benefits of automatic tracking include capturing the natural 

movement of pedestrians and minimizing the risk of disturbing the behavior of 

observed subjects and the relatively higher accuracy and consistency in 

comparison to manual methods. More specifically, gait parameters are computed 

and analyzed across pedestrian gender, age, height, group size, and crosswalk 

grade.  

4.2  Methodology 

This section provides information about the details of the methodology used for 

collecting data, and the methods and tools used for calculating pedestrian gait 

parameters and the validation of the technique. Two case studies are then 

followed to demonstrate the technique: Vancouver, BC and Oakland, California. 

In the Vancouver case study, a feature-based tracking algorithm, and in the 

Oakland case study, an MM-Track algorithm is used for the purpose of 

pedestrian detection.  

 

4.2.1 Data Collection 

A frame-by-frame detection of pedestrians in space and time using computer 

vision can be used to generate pedestrian speed profiles. Each pedestrian step is 
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observed to introduce a periodic fluctuation in the speed profile, and therefore, 

the gait parameters such as step frequency and step length can be computed by 

analyzing the speed signal (Saunier, et al., 2011). Figure 4.1 below summarizes 

the methodology for gait parameters measurement and validation of automatic 

step frequency calculation. 

As illustrated in Figure 4.1 and Figure 4.2, pedestrian trajectories generated by 

feature-based tracking or the MMTrack algorithms in terms of coordination of 

space with respect to time are analyzed and a speed profile is produced for each 

pedestrian object. Each pedestrian speed profile is used to compute an average 

step frequency for that pedestrian. It is Important to note that the walking speed 

profile shown in Figure 4.2 is normalized and smoothened. The position of each 

pedestrian across time is used to compute the average walking speed for that 

pedestrian. Average step length is then calculated, knowing that walking speed, 

step frequency, and step length are found to have the following fundamental 

linear relationship:  

 

Walking Speed = Step Frequency × Step Length  

 

Walking speed is defined as the change in the position of a pedestrian in a unit of 

time. The details of the pedestrian speed measurement method were described in 

detail in Chapter Three. To calculate the speed of each pedestrian object, two 

parallel screen lines are located across the selected study section of the crosswalk. 

The speed of a pedestrian object is calculated based on the time the pedestrian 

object remains between the two screens.  
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Step frequency is defined in this study as the number of times a foot touches the 

ground in a unit of time (i.e. vertical frequency). Stride frequency, however, is 

defined as the number of times the same foot touches the ground in a unit of 

time. Step frequency is therefore twice the stride frequency. Similarly, step length 

is half of stride length. It is assumed that each fluctuation in speed profiles is due 

to a pedestrian taking a step forward. This assumption was validated by visual 

inspection of pedestrians in videos against their speed profiles as the speed of 

pedestrian centroid is lowest at double support phase (with both feet in contact 

with ground) and highest at single support phase, in between the two double 

support phases. Under this assumption, each cycle represents one forward step 

and the reciprocal of the cycle period represents the estimated step frequency. 

An average step frequency is then the mean frequency of a few cycles. 
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Figure 4.1 Pedestrian Gait Parameters Measurement Process 
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Figure 4.2  Pedestrian Gait Parameters Measurement Method 

 

A road-users trajectory T is a finite set of tuples:  

T={(x1,y1,vx1,vy1),…,(xi,yi,vxi,vyi),…,(xn,yn,vxn,vyn)} (4.1) 

With i= {1,…,n}  a discrete temporal index, such that T(i) will return a 4-tuple 

(xi,yi,vxi,vyi), with x and y are the spatial coordinates and vx and vy are the 

corresponding velocities. Associated with each road-user is a movement profile, 

describing the speed variations along the trajectory lifetime. The road users 

speed profiles are represented as time-series, which are obtained from the 

corresponding road-users trajectories. The speed profile S is defined as 
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S=norm(Vx,Vy), with Vx and Vy are the velocities vectors of length n, for the x 

and y coordinates, respectively. Identifying the walking step frequency 

corresponds to detecting the dominant periodicity in the noisy signal of the 

speed profile. This is reduced to the problem of evaluating the power spectral 

density (PSD) of the speed profile (Oppenheim & Schafer, 1999). PSD shows the 

strength of variations in terms of frequency. In its simplest form, PSD estimation 

corresponds to calculating the periodogram of the speed profile signal; i.e., mean 

square of the Discrete Fourier Transform of the signal. It is assumed that the 

sampling did not suffer from aliasing problem. Also, prior to generating the 

power spectrum, the speed signal is first smoothened and normalized (i.e. mean 

speed subtracted form instantaneous speed). Therefore, the power spectrum of 

S[n] is proportional to that of S(t) of the  real pedestrian speed profile. In this case 

the PSD P estimate for each frequency f is given by: 

 

     
 

    
      

 
          

         
        (4.2) 

 

With Fs is the sampling frequency. A sample of pedestrian walking speed 

profiles (smoothened) in addition to their power spectrums are shown in Figure 

4.3. Pedestrian walking speed profiles were also normalized (not shown) as 

required by the power spectral density function. Finally, step length is simply 

found by dividing the walking speed by step frequency. The sample data 

provided in Figure 4.3 were generated from tracks generated using MM-Track 

algorithm.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.3 Smoothened Walking Speed Signal (Bottom); Power Spectrum (Top) 

 

4.2.2 Validation of Tracking Performance 

Due to the existence of noise and other factors in the speed signal, the frequency 

at which the power spectrum shows a maximum may or may not be a correct 

estimate of the step frequency. For example, in Figure 4.3 (c), the power spectrum 

has its maximum at a frequency of about 0.2 Hz which is probably due to the 

increasing trend in the speed profile, not due to pedestrian taking a step. In this 
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case, the step frequency is best represented by the frequency which corresponds 

to the second largest power spectrum. Figure 4.3 (a and b) demonstrate the cases 

as the largest power spectrum represents the estimated step frequency. A similar 

technique used by Saunier et al in (2011) is employed for frequency selection. 

That is, any frequency outside a predefined range and/or of insufficient power 

density (with respect to maximum power density) is filtered out, and the 

frequency with the maximum power density (among the remaining frequencies) 

is selected to represent the pedestrian step frequency. The frequency estimation 

process is shown in Figure 4.4. 

The sufficiency of the power density is defined by comparing the power density 

to a threshold ratio of maximum power (∝∈[0,1]). Saunier et al (2011) considered 

averaging a number of different frequencies within the predefined range and of 

sufficient power, rather than only selecting the frequency with maximum power. 

This may have been related to the quality of tracking in their study. However, 

the tracking quality in this work resulted in one frequency of sufficient power for 

the majority of tracks and eliminated the need for considering the average of 

several values. To find an optimum value for α, 100 pedestrian objects (using 

MM-Track algorithm) were randomly selected and the α value which minimizes 

the Root Mean Squared Error (RMSE) of the estimated frequencies was 

calculated. The estimation of step frequency is sensitive to which section of the 

pedestrian body is detected and where the object centroid is located with respect 

to the pedestrian. If only a leg, a foot, an arm, or a hand is detected and identified 

as pedestrian centroid, then the estimated frequency is the stride frequency (half 

of step frequency), whereas if other sections of the pedestrian body such as head 

or chest are detected and identified as centroid, then the estimated frequency is a 

step frequency. A useful frequency range was selected across which the 
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frequency represents only the step frequency. The range [1.4-2.6 Hz] was found 

to be a representative range of pedestrian step frequency during walking in 

(Saunier, et al., 2011). With constraining the frequency range, an alpha value of 

0.5 was found to be optimum. Out of 100 pedestrian objects, the method 

identified 93 with calculable step frequencies. The range [1.0-3.0 Hz], however, is 

identified to represent the step frequency range for walking in (Niyogi & 

Adelson, 1994). To ensure that the range [1.4-2.6 Hz] is a representative range for 

pedestrian step frequency in this study, different frequency ranges were also 

tested with α set to 0.5. The method does not output an estimated step frequency 

for cases (Figure 4.3 (d), for example) where the maximum power within the 

predefined range does not exceed or equate the threshold α. An α value of 0.5 

was used as the optimized value. Figure 4.5 summarizes the accuracy of the 

automatic step frequency estimation method after using the optimized parameter 

values. The RMSE is 0.061Hz which represents approximately 3.6% error (1.866 ± 

0.068 Hz). 
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Figure 4.4 Walking Step Frequency Estimation Process 
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Figure 4.5. Comparison between Automatically and Manually Measured 

Pedestrian Step Frequencies 

 

4.2.3 Sensitivity Analysis 

Figure 4.6 shows the sensitivities of the RMSE and the number-of-pedestrian-

objects-with calculable-frequencies to the value of α and the pre-defined 

frequency range. As illustrated in Figure 4.6 (a), the RMSE decreases 

substantially up to alpha value of 0.35 and remains relatively constant as alpha 

increases; however, the number of pedestrian objects with calculable frequencies 

decreases as alpha increases. Also, as illustrated in Figure 4.6 (b), the RMSE 

decreases substantially with decreasing the frequency range up to [1.4-2.6 Hz] 

range, and stays constant thereafter. 
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(a) 

 

(b) 

 

Figure 4.6 Sensitivity of Optimization to Alpha (a) and Step Frequency Range 

(b) 

 

 

75

80

85

90

95

100

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r 

o
f 

P
e

d
e

st
ri

an
 O

b
je

ct
s 

w
it

h
 

C
al

cu
la

b
le

 F
re

q
u

e
n

ci
e

s 
(o

u
t 

o
f 

1
0

0
)

R
M

SE
 (

H
z)

Alpha (Ratio of Maximum Power)

Sensitivity of Optimization to Alpha

rmse

number

75

80

85

90

95

100

0

0.05

0.1

0.15

0.2

0.25

0.3

N
u

m
b

e
r 

o
f 

P
e

d
e

st
ri

an
s 

O
b

je
ct

s 
w

it
h

 
C

al
cu

la
b

le
 F

re
q

u
e

n
cy

 (
o

u
t 

o
f 

1
0

0
)

R
M

SE
 (

H
z)

Frequency Range (Hz)

Sensitivity of Optimization to Frequency Range

rmse

number



 

69 

 

4.3   Case Study 1: Vancouver Case Study 

4.3.1 Site Characteristics 

The study location (Figure 4.7) is a busy downtown intersection located at 

Robson and Broughton Streets in downtown Vancouver, British Columbia. 

Robson Street is a northwest-southeast, two-way major street, with two lanes in 

each direction. Parking is permitted along the right lane in each direction with 

time restrictions; no parking is allowed during rush hours or special-event days. 

Broughton street is a northeast-southwest, two-way minor street, with one lane 

in each direction. Parking is allowed along the right side of the street in both 

directions. Vehicular flows are controlled by flashing-green signals along Robson 

Street, and by stop-signs along Broughton Street, with no turning restrictions on 

either approaches. Pedestrian crossing is allowed along all the four legs of the 

intersection, at any time across Broughton, and with actuated control across 

Robson. There is a downward grade in the northwest direction along Robson. 

This study will only focus on pedestrian movement along Robson Street (i.e. 

along northwest-southeast direction). MM-Track algorithm is used for detection 

of pedestrians in this case study.  
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Figure 4.7 Vancouver Case Study Intersection Layout and Sample Pedestrian 

Tracks 

 

4.3.2 Relationship between Walking Speed and Gait Parameters 

First, the relationship between the walking speed and the gait parameters is 

investigated. This can help explain pedestrian strategies to adjust their waking 

speeds in terms of the step length and frequency. Figure 4.8 shows the change of 

walking speed with both step frequency and step length. As shown in the figure, 

the step length seems to have a greater influence on walking speed than step 

frequency due to the larger slope of the best fit line. The regression coefficients 

for Pedestrian Speed vs. Step Frequency and Pedestrian Speed vs. Step Length 

are 0.56m and 1.67s-1, respectively. This indicates that pedestrians usually control 

their walking speeds by adjusting their step length more than they adjust their 
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step frequencies. Similar results were found in (Hui, et al., 2007) (Crowe, et al., 

1996) which indicated that the walking speed is more sensitive to step length 

than to step frequency. Although not stated, the figures presented by Crowe et al 

in (Crowe, et al., 1996) and Hui et al in (Hui, et al., 2007) show a relatively higher 

sensitivity of walking speed to stride length than to stride frequency.  

Standardized regression coefficients were also found using Equation 4.3 so that 

the magnitudes can be better compared between the two regressions in Figure 

4.8. The standardized regression coefficients for Pedestrian Speed vs. Step 

Frequency and Pedestrian Speed vs. Step Length are 0.386 and 0.940, respectively 

(unitless).  

 

  
  

                   

                                   
  (4.3) 

 

Where,   is a gait parameter such as walking speed, step frequency, or step 

length, and    is the actual value of that gait parameter for pedestrian i, and   
  is 

the standardized value of that gait parameter for pedestrian i.  

And, Max{} and Min{} are the maximum and minimum of the entire gait 

parameter arrays for the entire pedestrian population, respectively. 
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(a) 

 

(b) 

 

Figure 4.8 Effect of Pedestrian Step Frequency and Step Length on Walking 

Speed 
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4.3.3 Distributions of Pedestrian Gait Parameters 

Pedestrian step frequency, step length and walking speed were found to 

generally follow the normal distribution (confirmed by the χ2 test) as shown in 

Figure 4.9. The mean values and the standard deviations of walking speed, step 

frequency, and step length for 1090 pedestrians were found to be 1.36 ± 0.19 m/s, 

1.87 ± 0.16 Hz, and 0.73 ± 0.09 m, respectively. 

  



 

74 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.9 Distributions of Pedestrian Gait Parameters 

0

20

40

60

80

100

120

140

160

1
.4

1
.4

5

1
.5

1
.5

5

1
.6

1
.6

5

1
.7

1
.7

5

1
.8

1
.8

5

1
.9

1
.9

5 2

2
.0

5

2
.1

2
.1

5

2
.2

2
.2

5

2
.3

2
.3

5

2
.4

2
.4

5

2
.5

M
o

re

O
b

se
rv

at
io

n

Step Frequency (Hz)

Step Frequency Distribution

-50

0

50

100

150

200

250

300

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5 1

1
.0

5

1
.1

1
.1

5

1
.2

1
.2

5

1
.3

M
o

re

O
b

se
rv

at
io

n

Step Length (m)

Step Length Distribution

0

50

100

150

200

250

300

O
b

se
rv

at
io

n

Walking Speed (m/s)

Pedestrian Walking Speed Distribution



 

75 

 

As well, walking speed was categorized into small ranges, and step length vs 

step frequency plots were created for each speed category. As speed increases, 

the slope of l/f generally increases, suggesting that step length increases more 

than step frequency as pedestrians increase their walking speed. This is 

illustrated in Figure 4.10. 

 

Figure 4.10 Step Length vs. Step Frequency at different Walking Speeds 

(Correlation for each walking speed is greater than 85%) 

 

Average gait parameters were also calculated for 494 pedestrians walking on the 

sidewalk, just before the crosswalk. Average walking speed, step frequency, and 

step length were found for pedestrians walking on the sidewalk to be 1.20 m/s, 

1.83 Hz, and 0.66 m, respectively; these values were significantly lower than the 

corresponding values of 1.36 m/s, 1.87 Hz, and 0.73 m found for pedestrians 

walking on the crosswalk. The increases in average walking speed, step 
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frequency, and step length of pedestrians were 14%, 2%, and 11%, respectively, 

as they moved from sidewalk to crosswalk. A slightly higher average step 

frequency but a considerably higher average step length, along with a 

considerably higher average walking speed, for pedestrians on crosswalk 

compared to pedestrians on sidewalk suggests that pedestrians mainly use step 

length as a control parameter to adjust their walking speeds, or at least to cross 

the street.  

 

4.3.4 Comparison between Gait Parameters across different Design and 

Pedestrians Attributes 

Table 4.1 summarizes the gait parameter values studied in this paper. The 

highlighted cells indicate significance at the 5% level. There is an upgrade in the 

southeast direction which is found to significantly influence the pedestrian 

walking speed and step frequency. In order to evaluate the differences in the gait 

parameters across different pedestrian attributes, it was decided to focus on the 

pedestrians walking in one direction (northwest) to eliminate the effects of the 

grade on gait parameters. Several conclusions can be made from the table as 

follow.  

 

Effect of Grade on Gait Parameters 

The average step frequency and the average walking speed are significantly 

higher for pedestrians walking in the northwest direction (negative slope) 

compared to pedestrians walking in the southeast direction (positive slope), 

while average step length is not significantly different between the two 
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directions. This shows that pedestrians mainly control their walking speeds by 

adjusting their step frequencies when negotiating such a grade. The results are 

consistent with findings of Kawamura et al (1991) in terms of increasing in step 

frequency in the downslope walking, but inconsistent in terms of increasing 

walking speed and non-changing step length in the downslope walking as they 

found that the most conspicuous phenomena in downslope walking to be in step 

length, compared to level walking. This inconsistency may be related to the 

steepness of the grade or the fact that they only studied the walking patterns of 

17 young men. 

 

Effect of Pedestrian Gender on Gait Parameters 

Compared to males, females have a significantly lower average step length but a 

significantly higher average step frequency. Average walking speed is slightly, 

but significantly higher for males compared to females. These results are 

consistent with the findings of (Crowe, et al., 1996) (Yamasaki, et al., 1991) (Hui, 

et al., 2007) in terms of step length and step frequency. This can be attributed to 

the height difference between the two groups (Yamasaki, et al., 1991). Figure 4.11 

shows each step frequency and step length as a function of walking speed, with 

walking speed being categorized in small segments. The results show significant 

differences in step frequencies between males and females at all speeds, and 

significant differences in step lengths between males and females at speeds 

greater than 1.2 m/s. The results suggest that, compared to males, females 

increase their step frequency to increase their walking speed.  
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Effect of Pedestrian Age on Gait Parameters 

The average walking speed, step frequency and step length are significantly 

different between the four age groups. Average step frequency decreases as age 

increases. Pedestrians aged 16 or less have the largest average step frequency and 

shortest average step length compared to all other age groups. Pedestrians in this 

age group (mainly children) were observed in the majority of cases to walk with 

their parents who usually belong to the third age group (36-55). The equal 

average walking speeds between these two age groups suggest that children, 

who usually cannot increase their step lengths beyond certain limits due to their 

short heights, increase their step frequencies substantially in order to increase 

their walking speeds and “catch up” with their parents. Average walking speed 

increases between the first age group (16 or less) and the second age group (16-

35), and decreases thereafter. Average walking speed is the lowest for the oldest 

age group (56+). The results of this study suggest that, compared to older 

pedestrians, younger pedestrians increase their walking speed by increasing 

their step frequency rather than their step length. This is opposite to the findings 

of Elble et al (1991); however, it should be noted that the oldest age group in this 

study consists of pedestrians with 56 years of age or older, with a small sample 

size (n=16). The sample size may not be adequate to make general conclusions 

regarding the gait selection of elderly pedestrians.  

 

Effect of Pedestrian Height on Gait Parameters 

As height increases, the average step frequency decreases and the average step 

length increases, with the differences being statistically significant. The average 

walking speed is not significantly different between different height groups. 
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These finding suggest that, in order to have the same “pace” in speed as other 

pedestrians, shorter pedestrians use faster step frequencies and tall pedestrians 

use longer step lengths. Average height pedestrians have step lengths and step 

frequencies between those of shorter and taller pedestrians. These findings are 

consistent with the findings of Yamasaki et al (1991).  

 

Effect of Pedestrian Group Size on Gait Parameters 

The average step length decreases significantly as group size increases. The 

average step frequency also decreases with increasing group size, but the 

difference is not significant. The significant decrease in average walking speed 

with increasing group size is thus mainly the result of decreasing average step 

length. These findings suggest that step length may be the control parameter for 

people within a group to adjust their walking speeds in order to walk with the 

same “pace” as others within the same group.  

  



 

80 

 

Table 4.1 Pedestrian Gait Parameter Values 

Attribute Variable 

Mean (Standard Deviation) p-value 

Count 
Frequency 

(Hz) 

Length 

(m) 

Speed 

(m/s) 

Frequency 

(Hz) 

Length 

(m) 

Speed 

(m/s) 

Direction 

Northwest 902 1.89 (0.15) 0.73 (0.08) 1.38 (0.18) 

<0.0001 0.481285 <0.0001 

Southeast 188 1.78 (0.18) 0.73 (0.12) 1.29 (0.23) 

Gender 

(Northwest) 

Male 458 1.84 (0.13) 0.76 (0.09) 1.39 (0.19) 

<0.0001 <0.0001 0.0487 
Female 444 1.94 (0.15) 0.71 (0.07) 1.37 (0.17) 

Age 

(Northwest) 

<16 30 2.00 (0.17) 0.67 (0.07) 1.34 (0.14) 

<0.0001 <0.0001 <0.0001 
16-35 628 1.89 (0.15) 0.74 (0.09) 1.40 (0.18) 

36-55 228 1.86 (0.15) 0.72 (0.07) 1.34 (0.16) 

56+ 16 1.79 (0.14) 0.73 (0.04) 1.32 (0.14) 

Height 

(Northwest) 

Short 159 2.00 (0.16) 0.70 (0.07) 1.40 (0.17) 

<0.0001 <0.0001 0.1593 Average 613 1.87 (0.14) 0.73 (0.08) 1.37 (0.18) 

Tall 130 1.80 (0.11) 0.77 (0.09) 1.39 (0.18) 

Group Size 

(Northwest) 

1 162 1.90 (0.15) 0.77 (0.09) 1.46 (0.20) 

0.1555 <0.0001 <0.0001 2 497 1.89 (0.15) 0.73 (0.08) 1.37 (0.17) 

3+ 243 1.87 (0.14) 0.72 (0.08) 1.34 (0.15) 
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(a) 

 

(b) 

 

Figure 4.11 Step Frequency and Step Length of Males and Females as a 

Function of Walking Speed (* indicates statistical significance at 5% level) 
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4.4  Case Study 2: Oakland Case Study 

4.4.1 Site Characteristics 

The study site is a busy downtown intersection located at 8th and Webster 

Streets, city of Oakland, California. The details of the site characteristics were 

discussed in Chapter Three. The crossing legs were categorized into conventional 

and diagonal legs. The same dataset used in Chapter Three are used in this case 

study to further study the pedestrian walking characteristics beyond the analysis 

of walking speed. Again, feature tracking was used for detection of pedestrians 

in this case study. Figure 4.12 shows the study site after the implementation of a 

scramble phase.  

 

Figure 4.12 Study Site after Implementation of Scramble Phase with Sample 

Pedestrian Trajectories 
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4.4.2 Data Collection and Tracking Performance 

A sample of pedestrian speed profiles (smoothened and normalized) in addition 

to their power spectrums are shown in Figure 4.13. Step length is simply 

estimated by dividing the walking speed by step frequency.  

 

 
(a) Speed Signal with no Trend Effect 

 
(b) Speed Signal with Trend Effect 

 
(c) Speed Signal with no Trend Effect 

 
(d) Speed Signal With Dominant Noise 

Components 

Figure 4.13 Smoothened Pedestrian Walking Speed Signal (Bottom); Power 

Spectrum (Top) 
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Even though the accuracy of step frequency estimation on tracks generated using 

MM-Track was validated in Section 4.2, the validation of the estimation in this 

case study is important as the pedestrian tracks in this case study are generated 

using feature-based tracking algorithm. To do so, the step frequencies for a 

sample of 90 pedestrians were manually calculated and compared against 

automatically estimated values. Figure 4.14 demonstrates the comparison 

between manually and automatically calculated step frequencies. The root-mean-

squared-error and correlation variable are found to be 0.0468 Hz and 0.899, 

respectively, which demonstrate a great agreement between the manual and 

automatic methods. The RMSE represents approximately 2.3% error (2.00 ± 

0.0468 Hz).  

 

 

Figure 4.14 Comparison between Automatically and Manually Measured 

Pedestrian Step Frequencies 
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The following sections present the results of this case study which investigates 

the gait selection of pedestrians with respect to attributes such as pedestrian age, 

gender, group size, crosswalk type, and pedestrian signal indication.  

 

4.4.3 Distributions of Pedestrian Gait Parameters 

Gait parameter distributions were found for a sample pedestrian population in 

both before and after the implementation of scramble phasing; however, 

pedestrians walking through the diagonal legs of the intersection in the scramble 

phase were excluded and only the pedestrians walking through the conventional 

legs were considered to ensure the true investigation of each attribute. Pedestrian 

step frequency, step length and walking speed were found to follow the normal 

distribution as shown in Figure 4.15. The mean values and the standard 

deviations of walking speed, step frequency, and step length for 684 pedestrians 

were found to be 1.49 ± 0.21 m/s, 1.95 ± 0.17 Hz, and 0.76 ± 0.10 m, respectively.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.15 Distributions of Pedestrian Gait Parameters 
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χ2 = 13.3 with 22 d.f. 

χ2 (22, 0.95) = 33.9 > 13.3

 O.K. 

 

χ2 = 9.2 with 14 d.f. 

χ2 (14, 0.95) = 23.7 > 9.2

 O.K. 

 

χ2 = 6.5 with 13 d.f. 

χ2 (13, 0.95) = 22.4 > 6.5

 O.K. 
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4.4.4 Relationship between Walking Speed and Gait Parameters 

The same sample population used in the previous section is considered here to 

investigate the effects of pedestrian step frequency and step length on pedestrian 

walking speed. Figure 4.16 illustrates the separate effects of step frequency and 

step length on pedestrian walking speed for female and male pedestrians. As it is 

shown in the figure, the effect of step length on walking speed is greater than the 

effect of step frequency on walking speed, explained by the slope of the best-fit-

lines. This indicates that pedestrians usually control their walking speed by 

adjusting their step length more than step frequency. The higher correlation in 

Figure 4.16 (a) compared to Figure 4.16 (b) indicates that a higher variation in 

walking speed can be explained by changes in step length rather than changes in 

step frequency.  

Standardized regression coefficients were also found using Equation 4.3 so that 

the magnitudes can be better compared between the two regressions in Figure 

4.16. The standardized regression coefficients for Pedestrian Speed vs. Step 

Frequency and Pedestrian Speed vs. Step Length for female pedestrians are 0.612 

and 1.123, respectively (unitless). The standardized regression coefficients for 

Pedestrian Speed vs. Step Frequency and Pedestrian Speed vs. Step Length for 

male pedestrians are 0.780 and 1.070, respectively (unitless).  
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(a) 

 

(b) 

 

Figure 4.16 Effect of Pedestrian Step Frequency and Step Length on Walking 

Speed 
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4.4.5 Comparison between Gait Parameters across Pedestrian Group Size, 

Gender, and Age  

In this section, only the behavior of pedestrians walking through the 

conventional crosswalks, in both before and after the implementation of 

scramble phase, is analyzed.  

Table 4.2 summarizes the gait parameter values (step frequency, step length, and 

walking speed) across pedestrian gender and group size. The following 

observations can be made from the table:  

- For all group sizes combined, as well as for pedestrians walking alone, 

females have statistically significant larger average step frequency, shorter 

average step length, and slower average walking speed compared to 

males. From this it can be concluded that, compared to males, females 

increase their walking speed by increasing their step frequency when 

walking alone.  

- For pedestrians walking in pairs or larger groups, average walking speed 

is not statistically different between males and females, even though 

females have significantly larger average step frequency and shorter 

average step length compared to males. This similarity between the 

average walking speeds may suggest that the majority of the groups 

consist of both genders, and that when in groups, the different genders 

still select their step frequency-step length combination for controlling 

their walking speed as if they are walking alone.  

- Female pedestrians have similar walking behavior when walking alone or 

in groups as none of their three average gait parameter values are 

significantly different across group size.  
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- Male pedestrians walking alone have different walking behavior than 

male pedestrians walking in groups as they have larger average step 

frequency and faster average walking speed. However, males have similar 

average step lengths across group size. This may suggest that male 

pedestrians control their walking speeds by adjusting their step 

frequencies rather than step lengths when walking in groups. 

- For all genders combined, pedestrians walking in groups have lower 

average step frequency and slower average walking speed, but similar 

average step length, compared to pedestrians walking alone.  

 

Table 4.3 summarizes the gait parameter values across pedestrian age. It can be 

observed from the table that the average step frequency, step length, and 

walking speed decrease significantly with increasing age. The decrease is larger 

in magnitude when considering pedestrians older than 55 years of age.  

 

4.4.6 Effect of Scramble Phase on Pedestrian Gait Parameters 

In this section, the sample population consists of pedestrians at the scramble 

intersection, across both conventional and diagonal crosswalks. Table 4.4 shows 

the three gait parameter values for pedestrians walking in the scramble phase. 

Even though slightly larger, the average step frequency for pedestrians walking 

through the diagonal legs of the scramble is not found to be significantly 

different than that through the conventional legs; however, both average step 

length and walking speed are significantly higher for diagonally crossing 

pedestrians. This may suggest that to increase their walking speed, pedestrians 
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usually increase their step length more than step frequency when crossing a 

longer crosswalk.  

 

4.4.7 Comparison of Gait Parameters between Temporally Complying and 

Non-complying Pedestrians  

Table 4.5 summarizes the gait parameter values for temporally complying and 

non-complying pedestrians. The category of pedestrians using the conventional 

legs consists of pedestrians in both before and after the implementation of 

scramble phase, while the category using the diagonal legs consists only of 

pedestrians in the scramble as there were no diagonal legs present in the pre-

scramble. Through the conventional legs, pedestrians who start crossing the 

intersection on Walk (W) indication (temporally complying pedestrians) have 

similar average step frequency, but significantly shorter average step length and 

slower average walking speed, compared to those who start during Flash Don’t 

Walk (FDW) indication (temporally non-complying pedestrians). Through the 

diagonal legs, however, complying pedestrians have significantly lower average 

step frequency, in addition to significantly shorter average step length and 

slower average walking speed. This may suggests that non-complying 

pedestrians use different strategies to increase their walking speeds when using 

different length crosswalks (diagonal/conventional), and that the longer 

crosswalk length encourages the non-complying pedestrians to increase their 

step frequency in addition to increasing their step length in order to increase 

their walking speed and clear the intersection quickly.  
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Table 4.6 summarizes the results of pedestrian gait selection across pedestrian 

age, gender, and group size as a function of pedestrian compliance to pedestrian 

signal indications. The population consists of pedestrians walking through the 

conventional crosswalks, in both before and after the implementation of 

scramble phase. The following can be concluded from the table:  

- When it comes to investigating the behavior of temporally non-complying 

pedestrians, young (16 to 35 years of age) and mid-age (35 to 55 years of 

age) pedestrians behave differently than old pedestrians (56 years of age 

or older). Among the three age groups, compared to the complying 

pedestrians, the non-complying young and mid-age pedestrians have 

significantly higher average step length and walking speed; however, the 

average step frequency does not significantly differ between complying 

and non-complying pedestrians between the young and mid-age groups. 

For old pedestrians, none of the three average gait parameters 

significantly differ between complying and non-complying pedestrians. 

From these findings, it can be concluded that both young and mid-age 

pedestrians increase their walking speeds by increasing their step lengths 

when they are in non-compliance mode, while old pedestrians do not 

change their walking behavior. It is interesting to note that among the 

young and old groups, compared to the compliers, the non-compliers 

have slightly lower average step frequencies and significantly higher 

average step lengths and walking speeds. This may indicate that when 

some pedestrians increase their step length to increase their walking 

speed, they tend to slightly decrease their step frequency.  
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- Compared to males, females increase their step length more than step 

frequency to increase their walking speeds when in non-compliance with 

the signal indications.  

- Pedestrian group size is found to have no significant effect on pedestrian 

walking behavior during non-compliance, as all non-complying 

pedestrians, whether walking alone or in groups, increase their walking 

speeds by increasing their step length more than step frequency.   
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Table 4.2 Gait Parameter Values across Pedestrian Gender and Group Size 

Group 

Size 

Count Step Frequency (Hz) Step Length (m) Walking Speed (m/s) 

Female Male All Female Male All Female Male All Female Male All 

1 264 213 477 
2.03 

(0.15) 

*1.88 

(0.15) 

1.96 

(0.17) 

0.72 

(0.08) 

*0.83 

(0.10) 

0.76 

(0.10) 

1.45 

(0.20) 

*1.55 

(0.23) 

1.50 

(0.22) 

2+ 112 95 207 
2.00 

(0.15) 

*1.80** 

(0.13) 

1.91** 

(0.18) 

0.73 

(0.07) 

*0.81 

(0.08) 

0.76 

(0.09) 

1.46 

(0.18) 

1.46** 

(0.19) 

1.46** 

(0.19) 

All 376 308 684 
2.02 

(0.15) 

*1.85 

(0.15) 

1.95 

(0.17) 

0.72 

(0.08) 

*0.82 

(0.09) 

0.76 

(0.10) 

1.45 

(0.20) 

*1.52 

(0.22) 

1.49 

(0.21) 

* indicates statistically significant difference (1%) compared to the cell directly to the left 

** indicates statistically significant difference (5%) compared to the cell directly above 

( ) values in brackets indicate the standard deviation 

 

 

Table 4.3 Gait Parameter Values across Pedestrian Age 

Age Count 
Step Frequency 

(Hz) 

Step Length 

(m) 

Walking Speed 

(m/s) 

17 to 35 148 2.01 (0.16) 0.80 (0.10) 1.60 (0.20) 

36 to 55 447 *1.94 (0.17) *0.77 (0.09) *1.49 (0.19) 

>55 87 *1.84 (0.15) *0.69 (0.10) *1.28 (0.17) 

* indicates statistically significant difference (1%) compared to the cell directly above 

( ) values in brackets indicate the standard deviation   
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Table 4.4 Gait Parameter Values for Pedestrians Walking in Scramble Phase 

Crosswalk Leg Count 
Step Frequency 

(Hz) 

Step Length 

(m) 

Walking Speed 

(m/s) 

Conventional 247 1.97 (0.17) 0.76 (0.11) 1.49 (0.22) 

Diagonal 213 1.98 (0.18) *0.79 (0.11) *1.57 (0.25) 

* indicates statistically significant difference (1%) compared to the cell directly above 

( ) values in brackets indicate the standard deviation 

 

 

Table 4.5 Gait Parameter Values for Complying and Non-Complying Pedestrians 

Crosswalk Leg 
Pedestrian 

Signal Phase 
Count 

Step 

Frequency 

(Hz) 

Step Length 

(m) 

Walking 

Speed 

(m/s) 

Conventional 
W 559 1.94 (0.17) 0.76 (0.10) 1.47 (0.20) 

FDW 125 1.96 (0.19) *0.80 (0.10) *1.57 (0.23) 

Diagonal 
W 193 1.97 (0.18) 0.79 (0.11) 1.55 (0.24) 

FDW 20 *2.12 (0.17) **0.85 (0.12) *1.80 (0.22) 

* indicates statistically significant difference (1%) compared to the cell directly above 

** indicates statistically significant difference (5%) compared to the cell directly above 

( ) values in brackets indicate the standard deviation 
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Table 4.6 Gait Parameter Values for Complying and Non-Complying Pedestrians across Age, Gender, and 

Group Size 

Attribute 
Attribute 

Range 

Count Step Frequency (Hz) Step Length (m) Walking Speed (m/s) 

W FDW W FDW W FDW W FDW 

Age 

16 - 35 122 26 2.02 (0.16) 1.98 (0.16) 0.78 (0.09) * 0.87 (0.11) 1.57 (0.19) * 1.71 (0.17) 

35 -55 361 86 1.94 (0.17) 1.97 (0.20) 0.76 (0.09) * 0.80 (0.09) 1.47 (0.18) * 1.57 (0.21) 

56+ 75 12 1.85 (0.15) 1.83 (0.15) 0.69 (0.10) 0.70 (0.10) 1.28 (0.17) 1.27 (0.19) 

Gender 
Female 321 55 2.02 (0.15) 2.05 (0.15) 0.71 (0.08) * 0.76 (0.08) 1.44 (0.19) * 1.55 (0.20) 

Male 238 70 1.84 (0.14) ** 1.89 (0.19) 0.82 (0.09) 0.84 (0.11) 1.51 (0.21) * 1.58 (0.25) 

Group 

Size 

1 389 88 1.96 (0.17) 1.97 (0.19) 0.76 (0.10) * 0.79 (0.11) 1.48 (0.21) * 1.56 (0.24) 

2+ 170 37 1.91 (0.17) 1.92 (.018) 0.75 (0.08) * 0.82 (0.08) 1.43 (0.18) * 1.58 (0.19) 

* indicates statistically significant difference (5%) compared to the cell directly to the left 

** indicates statistically significant difference (10%) compared to the cell directly to the left 

( ) values in brackets indicate the standard deviation 

  



 

97 

 

4.5  Conclusions 

A solid understanding of pedestrian behavior is central to the evaluation of 

measures pertaining to walking conditions such as comfortability and efficiency. 

This chapter examined the spatiotemporal parameters of gait (step length and 

step frequency) in order to improve the understanding of pedestrian walking 

behavior across different characteristics such as pedestrian gender, age, group 

size, and pedestrian signal indication. The study used an automated technique to 

estimate the step frequency and step length based on oscillations in walking 

speed profile caused by pedestrian taking forward steps. Collecting reliable 

pedestrian data is often conducted by manual counts or measurements. 

However, the manual field observation of pedestrian data, especially 

microscopic data, is labor-intensive, time consuming, and subject to high errors. 

The use of computer vision techniques for measuring gait parameters has several 

advantages such as capturing the natural movement of pedestrians and 

minimizing the risk of disturbing the behavior of observed subjects, the richness 

of the data that can be extracted, and the relative higher accuracy and 

consistency.  

In two case studies, walking speed was shown to be linearly correlated with both 

step length and step frequency. The analysis confirmed earlier studies which 

conjectured that, in order to increase the walking speed, pedestrians tend to 

increase their step lengths more than they increase their step frequencies. It was 

found in the Vancouver case study that, compared to males, females increase 

their step frequency more than step length to increase their walking speed 

during normal walking conditions without the presence of pedestrian signals. 
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Although similar results were found in the Oakland case study with the presence 

of pedestrian signals, it was found that, compared to males, females increase 

their step length more than step frequency to increase their walking speed when 

in non-compliance with signal indications. It was also found in the Oakland case 

study that older pedestrians do not significantly change their walking behavior 

when in non-compliance with signal indications as their gait parameters did not 

change significantly. This may indicate that the elderly have physical constraints 

which can limit their ability to react to unsafe conditions and improvements to 

the quality of the information provided to the pedestrian at intersections, in 

addition to pedestrian education, can reduce pedestrian non-compliance to 

signal indications and enhance the safety of elderly pedestrians. When walking 

in groups, the pedestrians in the Vancouver case study were found to control 

their walking speed by adjusting their step length, while the pedestrians in the 

Oakland case study were found to control their walking speed by adjusting the 

step frequency. This inconsistency in results between the two case studies when 

investigating the effect of group size on pedestrian gait selection may be due to 

the presence of pedestrian signal controls in the Oakland case study or the 

presence of a negative crosswalk slope in the Vancouver case study.  

Finally, gait parameters were found to be influenced by pedestrian gender, age, 

group size, crosswalk type (length and grade), and pedestrian signal indication.  
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Chapter Five: Automated Classification of Pedestrian Gender 

and Age using Spatiotemporal Parameters of Gait 

5.1   Background 

There is considerable interest in encouraging sustainable modes of transportation 

such as walking. Therefore, a good understanding of walking behavior of 

various pedestrian groups (elderly, children, obese, etc.) is essential to allow for 

better planning and design of pedestrian facilities. Of particular importance is 

the good understanding of the strategies different pedestrians use for efficient 

and comfortable walking and to determine the population norms.  Many studies 

have shown that attributes such as age and gender have a significant effect on 

pedestrian behavior. Therefore, it is beneficiary to have distributions for 

pedestrian attributes, in addition to simple measures such as exposure. For 

example, in order to ensure adequate crossing time is provided for safe crossings 

at intersections, it is important to have an estimate for the percentage of 

pedestrians such as the elderly or children who are identified to have mobility 

constraints. Applications of gender and age classification include finding 

demographic characteristics for facilities such as schools, hospitals, shopping 

centers, and commercial and business districts. Other applications include 

security surveillance, shoppers’ statistics, locomotion and healthcare monitoring, 

and allowing robots to perceive gender.  

Gender can be automatically classified by several methods such as recognition of 

voice (Harb & Chen, 2003), face (Golomb, et al., 1991), and gait (Li, et al., 2008). 

Gait recognition, among other methods, has been identified to be a good 

biometric for human recognition and has gained a considerable interest from 
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researcher in many fields for human classification and recognition. Some earlier 

studies have shown that it is possible to use gait as a biometric to identify human 

age (Davis, 2001) and gender (Yoo, et al., 2006).  

This study examines the performance of a k-NN classifier, a machine learning 

algorithm, for the purpose of the automated classification of the age and gender 

of walking pedestrians. The classification is based on two motion feature vectors, 

pedestrian step frequency and step length, which are automatically extracted 

from the speed profiles of walking pedestrians. This is a non-intrusive method 

and can be conducted at a distance. Computer vision techniques are used to 

automatically detect and track pedestrians in video scenes from an open 

(uncontrolled) environment.. Each pedestrian step is observed to introduce a 

periodic fluctuation in the speed profile, and therefore, the gait parameters such 

as step frequency and step length can be computed by analyzing the speed 

signal. The method has the advantage of only relying on the pedestrian speed 

profile and using a simple classification algorithm.  

 

5.2  Methodology 

In this section, the methodology used in the study for the classification of age 

and gender of walking pedestrians will be explained.  

5.2.1 Computation of Feature Vectors 

The feature vectors used in this study for classification of age and gender are two 

gait parameters: step frequency, and step length. Pedestrian walking speed is 

also considered as a third motion feature to improve the classification rates in 
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some cases. The process steps used in this study to classify pedestrian age and 

gender are shown in Figure 5.1 and Figure 5.2. Automatic tracking of pedestrians 

in video scenes is possible with the help of computer vision techniques. 

Automatic tracking requires computer recognition of the position of pedestrians 

with respect to time, and hence, the generation of pedestrian trajectories. As 

shown in Figure 5.2, two tracking algorithms, namely Feature Tracking and MM-

Track, are used for two different data sets to extract pedestrian tracks. The 

feature tracking and MM-Track algorithms were explained in Chapter Two. 

Another important component of the system is to create a mapping from world 

coordinates to image plane coordinates using a homography matrix (camera 

calibration) which was also explained in Chapter Two. This mapping, common 

for both tracking algorithms, enables the recovery of real-world coordinates of 

points that appear in the video. Pedestrian tracks, which contain information 

about the position of each pedestrian at every frame are then processed and 

instantaneous speeds and speed profiles are generated and the same technique 

used in Chapter Four are used to estimate pedestrian step frequency and length.  

A sample of pedestrian speed profiles (smoothened) in addition to their power 

spectrums are shown in Figure 5.3. Walking speed, the third feature vector, was 

estimated by placing screens around the region of interest and measuring the 

amount of time it takes for the pedestrian track to cross this region as was 

explained in Chapter Three.  
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Figure 5.1 Pedestrian Age and Gender Classification Process 

 

 

Figure 5.2 Pedestrian Age and Gender Classification Method 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.3 Pedestrian Step Frequency Estimation using Walking Speed Profile. 

(a) represents a Female subject aged between 36 and 55 with step frequency of 

2.35 Hz; (b) represents a Male subject aged between 36 and 55 with step 

frequency of 1.76 Hz; (c) represents a Female subject aged between 17 and 35 

with step frequency of 2.28 Hz; (d) represents a Female subject aged over 55 

with step frequency of 1.65 Hz 
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5.2.2 The Classification Algorithm 

The k-Nearest Neighbors (k-NN) algorithm is a suitable tool for binary 

classification. It is a simple machine learning algorithm used for object 

classification based on closest training samples in the feature space. It simply 

assigns a class to an object based on the majority votes of its k nearest neighbors, 

among the training data set of labeled objects. Cover and Hart (1967) were the 

first to introduce the idea of nearest neighbor patter classification in which an 

unclassified sample point is assigned a class based on its closeness to a collection 

of labeled points of known classes. The closeness of the neighbor objects to the 

unknown object is determined from a distance measure (e.g. Euclidean distance). 

An advantage of this instance-based or simple learning classifier is that it only 

approximates the function locally and defers the computation until classification. 

The parameter k is a positive integer and is usually set to a small. Mainly, the 

choice of k and the applied distance measure determine the performance of the k-

NN classifier (Latourrette, 2000). It is shown in (Domeniconi, et al., 2002) that the 

value of k is difficult to predetermine in cases when the data is not uniformly 

distributed. Larger values of k are in general “more immune to the noise 

presented and make boundaries more smooth between classes”, and that 

“choosing the same (optimal) k becomes almost impossible for different 

applications” (Song, et al., 2007). 

Up to three feature vectors are used for age and gender classification: walking 

speed, step frequency, and step length. The algorithm calculates the three-

dimensional feature vectors of the unknown object and calculates the Euclidean 

distance metric from k closest feature vectors of the learning objects. The three 

http://en.wikipedia.org/wiki/Feature_space
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gait parameters for all learning objects and unknown objects are first 

standardized, using Equation 4.3, in prior to feeding to the algorithm.  

 

  
  

                   

                                   
  (4.3, repeated) 

 

Where,   is a feature such as step frequency or step length, and    is the actual 

value of that feature for pedestrian i, and   
  is the standardized value of that 

feature for pedestrian i.  

And, Max{} and Min{} are the maximum and minimum of the entire feature 

arrays for the entire pedestrian population, respectively.  

A majority vote of the k nearest feature vectors determines the probable type of 

any unknown data. This is shown in Figure 5.4.  
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Figure 5.4 Binary Classification in a Two-dimensional Sample Space 

 

Age and gender are each divided into two classes (i.e. Male or Female for gender, 

and Young or Old for age). The Young consists of pedestrians between the ages 

of 16 to 35, while the Old consists of pedestrians older than 55 years of age. 

5.2.3 The Classification Performance 

In this study two performance measures are used to evaluate the performance of 

the classification: Correct Classification Rate (CCR) and Cohen's kappa 

coefficient (κ). Kappa is a statistical tool used to measure the inter-rater 

agreement for categorical items (Strijbos, et al., 2006). The statistic corrects for the 

agreement expected by chance and gives a more robust measure of the 

agreement compared to simple percent correct classification. In this case, κ is 

used to test the significance of the classification results (CCR). Kappa takes 

values in the range of κ ∈[-1,1], with κ = -1 indicating perfectly incorrect 

http://en.wikipedia.org/wiki/Inter-rater_agreement
http://en.wikipedia.org/wiki/Inter-rater_agreement
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classification, κ = 0 indicating true classification totally expected by chance, and κ 

= 1 indicating perfectly correct classification. In general, a κ of 0.6 is considered to 

be a minimum requirement (Landis & Koch, 1977), below which the likelihood of 

agreement by chance is considered significant.  

The equation for κ is:  

  
         

         
     (5.1) 

where,  

   is the CCR, and  

    is the hypothetical probability of classification by chance.  

The variance of kappa, Var(κ), is:  

 

          
 

 
   

   
  

       
  

  
 

      
  

  
   (5.2) 

 

where, N is the total number of objects to be classified, and    is the proportion of 

all assignments in the ith category.  

Under the hypothesis of no correct classification beyond chance and using the 

central limit theorem, the value           may be approximately distributed as 

a standard normal variant (Fleiss, 1971). If           exceeds the critical Z value 

(Z = 2.32 at a significance level of 99%), then the CCR results are significant 

beyond what is expected by chance.  
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The method is demonstrated using two case studies. The first case study uses 

data from Vancouver, British Columbia and the second uses data from Oakland, 

California. Both locations are busy downtown intersections with high pedestrian 

activity. Gender classification was undertaken for both Oakland and Vancouver 

datasets while age classification was done only for the Oakland dataset due to 

limited sample size for old pedestrians in the Vancouver dataset. For gender 

classification in the Oakland dataset, only the pedestrians walking alone were 

taken into consideration while in Vancouver dataset, gender classification was 

conducted for all pedestrian group sizes due to a limited number of pedestrian 

samples walking alone. For age classification in the Oakland dataset, pedestrians 

walking alone or in groups are taken into consideration.  

 

5.3   Case Study 1: Vancouver, British Columbia 

5.3.1 Gender Classification 

Figure 5.5 shows the gait of 801 labeled objects for the Vancouver dataset based 

on gender. The data consists of pedestrians walking alone or in groups. As 

shown, the gait parameters for males and females are concentrated in two 

different regions with some overlap between them. The data was split into 

labeled data (90%) and unlabeled data (10%). 89 unlabeled objects were fed into 

the k-NN algorithm to be assigned a binary classification of male or female. As 

illustrated in Table 5.1, a Correct Classification Rate (CCR) of 78% is achieved 

based on two feature vectors, step frequency and step length. Similarly, a CCR of 

78% is achieved when all three feature vectors are used in classification. In both 

cases 69 out of 89 subjects are correctly classified as male or female subjects. It 
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may be arguable that using walking speed as a feature vector along with step 

frequency and step length may not be a good practice as walking speed is simply 

the product of step frequency and step length.  

The κ statistic was found to be 0.551 and           was found to be 5.19 

regardless of whether two or three feature vectors were used. Even though κ = 

0.551 is smaller than 0.6, the standard normal variant still shows a significant 

gender classification beyond chance (i.e., 5.19 > 2.32).  
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Figure 5.5 Labeled Objects Based on Gender (Vancouver Case Study) 
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Table 5.1 Pedestrian Gender Classification Results (Vancouver Case Study) 

Feature Vector CCR (%) [k=18] 

Step Frequency 

77.53 
77.53 

70.79 - 

Step Length - 61.80 

Walking Speed - - - 

Note: Results in this table are based on characteristics of pedestr ians 

walking alone or in groups 

 

5.4   Case Study 2: Oakland, California 

5.4.1 Gender Classification 

A greater separation between gender gait data is shown in Figure 5.6, compared 

to that in Figure 5.5. The gender gait data here consists only of pedestrians 

walking alone, and this could be the reason for greater separation of the gait data 

points as pedestrians may behave differently by coordinating their walking 

speed when walking in groups. Eighty subjects with unknown gender are 

compared against 272 labeled subjects and the classification rates are 

summarized in Table 5.2. A CCR of 81% is achieved when the two feature 

vectors, step frequency and step length, are used for classification, and a CCR of 

85% is achieved when considering all three feature vectors. The CCRs are higher 

for Oakland dataset compared to those of Vancouver dataset.  

The κ statistic was found to be 0.70 and           was found to be 6.26 when all 

three feature vectors were used. When two feature vectors were used the results 

were still significant (κ = 0.625 and           = 5.55). These results show that the 

CCRs of 85% and 81.25% for gender are significant beyond expectations by 

chance. 
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A better classification rate in this case study compared to the Vancouver case 

study is probably due to the fact that only the pedestrians waking alone are 

considered as there may be unobserved effects of group size on pedestrian 

walking behavior.  
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Figure 5.6 Labeled Objects Based on Gender (Oakland Case Study) 
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Table 5.2 Pedestrian Gender Classification Results (Oakland Case Study) 

Feature Vector CCR (%) [k=26] 

Step Frequency 

85.00 
81.25 

67.50 - 

Step Length - 71.25 

Walking Speed - - - 

Note: Results in this table are based on characteristics of pedestrians 

walking alone 

 

5.4.2 Age Classification 

Figure 5.7 shows the labeled gait data points for young (aged between 17 and 35) 

and old pedestrians (aged older than 55 years of age). A great separation of the 

gait data is obvious from the figure with minor overlap. 50 objects of unknown 

age class are to be classified using 178 labeled objects. The results of the 

classification are shown in Table 5.3. A CCR of 86% was achieved when using the 

two feature vectors, step frequency and step length. Similarly, a CCR of 86% is 

achieved when using all three feature vectors for classification. 43 out of 50 data 

points were correctly classified as young or old subjects when using two or three 

feature vectors for classification.  

The κ statistic was found to be 0.72 and           was found to be 5.09 

regardless of whether two or three feature vectors were used. These results show 

significant age classifications beyond expectations by chance.  
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Figure 5.7 Labeled Objects Based on Age (Oakland Case Study). The Old 

group consists of pedestrians older than 55 years of age and the Young group 

consists of pedestrians aged between 17 and 35 
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Table 5.3 Pedestrian Age Classification Results (Oakland Case Study) 

Feature Vector CCR (%) [k=26] 

Step Frequency 

86.00 
86.00 

76.00 - 

Step Length - 74.00 

Walking Speed - - - 

Note: Results in this table are based on characteristics of pedestrians 

walking alone or in groups 

 

5.5   Conclusions 

In this paper, the feasibility of using the spatiotemporal parameters of gait (step 

frequency and step length) as cues to identify the gender and age of pedestrians 

was investigated in two case studies. Pedestrian walking speed profile was used 

to extract two motion features: step frequency and step length. These motion 

features were used to classify pedestrians according to their gender and age. 

Computer vision techniques were used for the automatic detection and tracking 

of pedestrians in open environment, from which pedestrian speed profile was 

generated. A k-Nearest Neighbors (k-NN) algorithm was used as a classification 

tool. Two performance measures were used to evaluate the performance of the 

classification: Correct Classification Rate (CCR) and Cohen's kappa coefficient 

(κ).  

The results of the study showed statistically significant CCRs of 78% and 81% for 

gender classification in Vancouver and Oakland case studies, respectively, with 

Vancouver case study considering pedestrians walking alone or in groups and 

with Oakland case study only considering pedestrians walking alone. A better 
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classification rate in the Oakland study is probably due to the fact that only the 

pedestrians waking alone were considered as there may be unobserved effects of 

group size on pedestrian walking behavior. The results also showed statistically 

significant CCR of 86% for age classification in Oakland case study where 

pedestrians walking alone or in groups were considered. The CCR for gender 

classification in Oakland case study was improved from 81% to 85% when 

walking speed was also considered as a classification feature, while it did not 

affect the age classification in the same case study or gender classification in the 

Vancouver case study.  

The results are very encouraging, given that only the spatiotemporal gait 

parameters were used as motion features to discriminate between pedestrian age 

and gender. Future work includes exploring other motion features such as lateral 

movement of pedestrians during walking to further improve the classification 

results. This may require adjustments to the camera position and angle to better 

capture specific movements. The use of more advanced classification algorithms 

may also improve the results.  
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Chapter Six: Conclusions and Future Work 

6.1  Summary and Conclusions 

In this thesis, the importance of a need for building a sustainable transport 

system which places more attention towards encouraging non-motorized modes 

of transportation such as walking was introduced. This research can be used as a 

tool for developing objective measures and techniques for capturing and 

studying pedestrian movement. This can help in providing transportation 

planners and officials with the tools and standards required to evaluate 

pedestrian oriented facilities in order to enhance the service quality. This can 

effectively encourage walking as a means of travel.  

A standard approach in conducting pedestrian studies is to capture the 

movement of pedestrians as they use the transport system. One of the main 

challenges in conducting detailed analysis on pedestrian behavior is the lack of 

reliable data. This lack of reliable data can have a significant impact on several 

transportation engineering and planning aspects. Conventionally, pedestrian 

movement is captured using human observers and data such as volume counts 

or walking speed measurements are measured and recorded using manual 

methods. The manual field observation of pedestrian data is labor-intensive, time 

consuming, and subject to high errors. The manual methods currently used in 

practice for the collection of pedestrian data also lack the ability to capture 

microscopic changes in position and speed.  

The accurate pedestrian movement data can greatly benefit from automatic 

tracking of the position of pedestrians. Automatic tracking requires computer 
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recognition of the position of pedestrians in space with respect to time, and 

hence, the generation of trajectories for each pedestrian. The benefits of 

automatic tracking identified in this thesis include capturing the natural 

movement of pedestrians and minimizing the risk of disturbing the behavior of 

observed subjects and the relatively higher accuracy and consistency in 

comparison to manual methods. Other benefits of automatic tracking include less 

resource requirement and information availability about the microscopic 

behavior of pedestrians during the distance traveled.  

6.2   Research Contributions 

6.2.1 The Use of Computer Vision Techniques to Capture and Study 

Pedestrian Movement 

The feasibility and accuracy of using computer vision techniques for detecting 

and tracking pedestrians, and hence, collecting microscopic pedestrian data was 

demonstrated in Chapter 3 and Chapter 4. Microscopic pedestrian data can be 

used to capture and study pedestrian movement behavior in order to solve well-

entrenched problems in road user behavioral and safety analyses. The 

microscopic data included pedestrian walking speed, step frequency, and step 

length.  

 

6.2.2 Pedestrian Walking Speed Behavior at Signalized Intersections 

Pedestrian crossing speed at intersections is a characteristic of pedestrian flow 

which influences several intersection design features such as signal timings. To 

plan and design pedestrian facilities such as crosswalks at intersections, it is 
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important to predict pedestrian movement under individual pedestrian 

attributes and different external circumstances. In Chapter 3, an attempt was 

made to improve the understanding of pedestrian crossing behavior at 

signalized intersections. The ability of individual pedestrians to change their 

walking speeds as a response to how far through the crosswalk’s length (in terms 

of position), as well as how far through the pedestrian signal phase (in terms of 

time) they are, was studied.  

 

6.2.3 Pedestrian Gait Analysis 

Gait analysis is a microscopic-level analysis which allows true estimates of 

objective walking measures such as stride frequency and length for pedestrians. 

An in-depth understanding of pedestrian walking behavior through the 

investigation of step length and step frequency was demonstrated in two case 

studies in Chapter 4, which can be used to provide insight into the pedestrian 

walking mechanisms and the effect of various attributes such as gender and age. 

Distributions for gait parameters were found for a sample pedestrian population 

in both case studies in Chapter 4. Also, the individual effects of step frequency 

and step length on walking speed were investigated. The behavior of pedestrians 

in terms of their selection of step frequency and length in order to change their 

walking speed while crossing the intersection was investigated. This 

investigation took place across pedestrian age, gender, group size, and crosswalk 

grade in the first case study and across pedestrian age, gender, group size, 

crosswalk type, and pedestrian signal indications in the second case study.  
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6.2.4 Demonstration of Conducting Before-After Pedestrian Behavior Studies 

Before-After (BA) studies are conducted in order to evaluate the outcomes of 

engineering countermeasures. In Chapter 3, the changes in pedestrian crossing 

speed behavior following the implementation of a pedestrian scramble phase, 

was studied. In specific, the feasibility of conducting a BA study by investigating 

the changes in pedestrian crossing speed behavior following the implementation 

of a pedestrian scramble phase was investigated.  

 

6.2.5 Pedestrian Age and Gender Classification using Gait 

Research shows that attributes such as age and gender have a significant effect 

on pedestrian behavior. Therefore, it is beneficiary to have distributions for 

pedestrian attributes, in addition to simple measures such as exposure. In 

Chapter 5, the feasibility of automatic classification of pedestrian age and gender 

using two motion features (pedestrian step frequency and step length) was 

demonstrated. The results are encouraging.   
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6.3   Future Research 

In the research presented, pedestrian walking behavior was studied across 

pedestrian or other attributes and the difference in behavior was compared 

across those attributes. Temporal violation was one of the attributes considered 

in this thesis. Spatial violation such as “j-walking” is another important attribute 

to consider when analyzing pedestrian behavior. From the walking behavior of 

pedestrians one may be able to determine the cause of such action, whether it is a 

result of poor design or pedestrian action. This research can be extended to 

analyzing pedestrian walking behavior and its relation to pedestrian safety. This 

can help determine how pedestrians react to unsafe traffic conditions such as 

when they are in traffic conflicts with motor vehicles.  

In this thesis, a methodology for classification of pedestrian age and gender was 

introduced which solely relied on using two major motion features (step 

frequency and step length) to distinguish between pedestrian types. Finding 

additional motion features such as the amplitude of pedestrian lateral 

movement, can greatly improve the classification performance. Research into 

more robust classification algorithms can also improve pedestrian classification.  

Other future research include studying pedestrian walking behavior at different 

pedestrian facilities such as roundabouts, sidewalks, parks, airports, and 

shopping malls and determining a walkability index for each facility. In addition, 

pedestrian gait analysis can be applied to determine the effect of pavement 

condition (such as uneven surface) on pedestrian gait selection. This can provide 

valuable information for redesigning roads and crosswalks to accommodate 

pedestrians with better walking conditions and to help make walking a more 

enjoyable mode of transport. This information can also be directly incorporated 
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into pedestrian simulation models to make pedestrian movement more realistic 

with respect to the available conditions.  

Cycling is another active transportation mode which is gaining considerable 

attention from the public. A similar approach to pedestrian behavior research 

introduced here can be applied to studying the behavior of bicyclists. In addition, 

pedestrian walking behavior can be studied in future research with varying 

pedestrian flow density as opposed to the free-flow (uninterrupted flow) 

scenario studied in this research. Finally, the accurate estimation of gait 

parameters can be very useful for quantifying the positive health impact of active 

modes of transportation such as walking as several researchers have shown that 

the varying effects of factors on the gait parameters can be explained through the 

metabolic energy expenditure rate and mechanical power requirements during 

waking.   
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