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Abstract 

Passive coupling of adjacent structures is known to be an effective method to reduce 

undesirable vibrations and structural pounding effects. Past results have shown that reducing 

the number of dampers can considerably decrease implementation costs and does not 

significantly decrease the efficiency of the system. The main objective of this thesis is the 

optimal design of a limited number of dampers to minimize the inter-story drift. In this 

thesis, we present a bi-level optimization algorithm to find the optimal arrangement and 

mechanical properties of dampers placed between two adjacent buildings to minimize the 

maximum inter-story drift during (simulated) earthquake conditions. 

Under the assumption of equal damping coefficients for all dampers, the optimal 

damping configuration is found via five different approaches: exhaustive search, inserting 

dampers, inserting floors, locations of maximum relative velocity, and a genetic algorithm. 

Through several numerical tests, efficiency and robustness of each optimization method is 

examined. It is shown that the inserting damper method is the most efficient and reliable 

method, particularly for tall structures. It is also found that, assuming equal damping 

coefficients for all dampers, increasing the number of dampers can exacerbate the dynamic 

response of the system. 

Finding an efficient method to optimize dampers’ locations, we focus on the 

optimization of the damping coefficients. Letting the dampers have varying damping 

coefficients, the optimization problem of damping coefficients is an n-dimensional 

optimization problem, whose objective function is provided via a simulation. Therefore, we 

use non-gradient based techniques for the inner-loop of the algorithm. We compare three 

different methods: a genetic algorithm (GA), a mesh adaptive direct search (MADS) 

algorithm, and the robust approximate gradient sampling (RAGS) algorithm. RAGS is a 

derivative free optimization (DFO) method that exploits the structure of the finite minimax 

problem. Using these techniques, we show that there exists a threshold on the number of 

dampers inserted with respect to the efficiency of the retrofitting system. Furthermore, we 

show that using a structured internal subroutine (such as RAGS) for the inner-loop of the bi-

level problem greatly increases the efficiency of the retrofitting system. 
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Preface 

Chapter 3 is based on research work conducted at UBC Okanagan. The original work 

has been published as: 

Configuration optimization of dampers for adjacent buildings under seismic excitations, 

Kasra Bigdeli, Warren Hare, and Solomon Tesfamariam, Engineering Optimization, iFirst 

2012, DOI:10.1080/0305215X.2012.654788. 

Chapter 4 is based on the following research paper, which has been submitted to 

Optimization and Engineering: 

Optimal Design of Damper Connectors for Adjacent Buildings, Kasra Bigdeli, Warren 

Hare, Julie Nutini, and Solomon Tesfamariam. 

 The “robust approximate gradient sampling” algorithm in chapter 4 is originally 

developed by Julie Nutini and it has been published as her MSc thesis, entitled: 

A Derivative Free Approximate Gradient Sampling Algorithm for Finite Minimax 

Problems, MSc thesis, Julie Nutini, 2012, The University of British Columbia. 
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1 Introduction 

Every year thousands of earthquakes occur all over the world. Some of them are so weak 

that they are not felt; on the other hand, some strong earthquakes can destroy a city, damage 

infrastructures (e.g. bridge, buildings) and kill thousands of people. Building collapses are the 

most probable cause of death during an earthquake. Numerous research groups around the world 

are trying to improve building design approaches in order to increase the seismic stability of 

buildings. Consequently, every year design codes change and, buildings designed based on these 

newer guidelines are stronger. However, the majority of buildings are those which have been 

constructed based on older codes. These older buildings are more likely to get damaged during 

an earthquake. One solution is to destruct old buildings and reconstruct them based on newer 

design codes. Another solution is to increase seismic stability of existing buildings which is 

known as seismic retrofitting. Clearly, the former is not economically feasible because of the 

huge cost of construction. On the other hand, the latter can be done within a reasonable budget. 

The following section will review existing retrofitting techniques. 

1.1 Seismic retrofitting methods 

Three key factors for a good retrofitting method are efficiency, cost, and applicability to 

existing structures. Firstly, a good retrofitting method must be able to reduce the risk of damage 

to an acceptable level. Another important factor that must be considered is that a good 

retrofitting method must be economical. And finally, since these methods are to be used for 

existing structures, it is very crucial to take into consideration the amount of work needed to be 

done in order to employ these techniques. 

Numerous methods have been introduced for seismic vibration control. Mainly, they can be 

categorized into four different groups: 

1) passive methods, 

2) active methods, 

3) semi-active methods, and 

4) hybrid methods. 
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Passive methods are those which do not use any external power [1]. They basically change 

mass, stiffness, or damping of the structure. Among those, one can refer to viscous dampers, 

friction dampers, metallic yield braces, fiber reinforced concrete, tuned mass dampers, and so on. 

Passive methods are generally effective, very economical, and since they do not need external 

power, they are reliable during an earthquake that may cause electricity loss. 

On the other hand, active methods, such as active bracing and active mass damper [2], need 

external power. Active vibration control systems consist of three main units: sensors, decision 

making computer unit, and actuators. Sensors measure the dynamic behaviour of the building 

and transmit data to the computer where the required restoring force is calculated. Finally the 

computer transmits an appropriate signal to actuators to generate the required force. Since a 

computer and an external power provide the restoration force, active methods are generally more 

effective than passive methods. But they are less reliable and more expensive due to external 

power requirement and expensive equipment. 

The third class of vibration control methods is called semi-active methods. They are very 

similar to active methods; but instead of actuators, in semi-active methods, restoring force is 

provided by changing mechanical properties of force generating devices such as variable 

stiffness springs [3], or magneto-rheological dampers [4]. Unlike active methods, semi-active 

methods need a very small external power which can be provided by batteries in most cases. As a 

result, they are less expensive and more reliable than active methods. 

Finally, a combination of passive, active and semi-active methods working in parallel is 

called a hybrid method. For example, a hybrid mass damper system [5] is a common hybrid 

vibration control method which consists of a passive tuned mass damper and an actuator. 

1.2 Coupled buildings method 

A decent method to protect tall buildings from earthquake excitations is the coupled building 

method. The coupled building method makes use of the fact that dynamic responses of dissimilar 

structures are different under the same base excitation load. That is to say, under the same 

seismic load, relative displacement and velocity will change between two dissimilar adjacent 

structures. Therefore, if one connects two adjacent buildings using some linkages, the buildings 

will exert force on each other during a seismic event. The original concept of coupling adjacent 
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buildings was first introduced by Klein et al. [6]. Since then, many researchers have been 

investigating various aspects of coupled buildings control method. Furthermore, many full scale 

applications are being constructed. For example, active coupling of buildings was employed to 

connect adjacent buildings in the Triton Square office project in Tokyo in 2001.  

As mentioned earlier, three key factors for a good retrofitting are efficiency, cost and 

applicability to existing structures. Several theoretical and experimental studies have investigated 

the efficiency of coupled adjacent structures. Various devices, such as viscous dampers, 

magneto-rheological dampers, and so on, can be used to connect two adjacent buildings. It has 

been shown that these connectors can significantly reduce hazardous vibrations of the connected 

structures under earthquake load (e.g. see [7–9]). Besides mitigating hazardous vibrations, 

connecting two adjacent structures can reduce the chance of seismic pounding during an 

earthquake [10], [11]. In most metropolitan areas, limited land availability and high demand for 

residency and office buildings, leads to high-rise buildings constructed in close proximity. 

During an earthquake such adjacent buildings are prone to pounding. The damages observed 

from pounding during earthquakes are highly destructive and particularly frequent in dense urban 

centers [12]. For example, severe damage has been observed in the Mexico City earthquake 

(1985), the Loma Prieta earthquake (1989), the Kobe earthquake (1994), and the recent New 

Zealand earthquake (2011) (e.g. see [13–15]). Considering passive connectors, coupled building 

control is a very economical method. Note that not only passive devices, which are less 

expensive, can be used; but also if they are placed between two adjacent structures, one device 

can exert force on two structures which makes this control method even more economical. With 

regards to applicability to existing structures, coupling two adjacent buildings is a relatively easy 

task as it can be done with minimal damage to the interior of the structures since the damper 

connectors are installed between two buildings and the only part of the structure that might need 

reconstruction is the exterior of the building. Therefore installation time and work is much less 

than other passive methods such as installing damper bracing systems. All in all, the vibration 

control method of coupling adjacent structures meets all three main criteria of cost, efficiency 

and applicability. 
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1.3 Literature review 

Since 40 years ago, when the original idea of coupling buildings was introduced [6], many 

researchers have been studying different control methods and devices for coupled buildings. 

Several theoretical and experimental studies have been done on various control strategies, 

passive connectors, active control algorithms, modeling and so on. In what follows, a literature 

review of coupled building vibration control method is presented. Methods for modeling of the 

coupled buildings, including single-degree-of-freedom (SDOF) and multi-degree-of-freedom 

(MDOF) methods are explained. In this section, different connecting devices including passive 

viscous dampers and magneto-rheological dampers are presented. Finally, the main concern of 

this thesis, optimization of coupled building control, is discussed. 

1.3.1 Modeling 

The first step in structural engineering studies is to formulate the mechanical behaviour of 

structures in terms of mathematical equations. No theoretical model perfectly matches the 

reality; however, some models are more accurate than others. Simpler methods usually lead to a 

closed-form solution for the problem. On the other hand, as the model becomes more accurate, 

the solution becomes more complicated and numerical methods must be employed to solve the 

model which increases the solution time. In this section, three popular structural models that 

have been widely used in coupled buildings control are presented: SDOF, MODF, and 

experimental models.  

1.3.1.1 Single‐degree‐of‐freedom	

Single-degree-of-freedom (SDOF) model is the simplest way to model the mechanical 

behaviour of a structure. In this model, each building is modeled by a lumped mass which is 

connected to the ground by a set of springs and dampers. Two adjacent buildings are then 

connected via a connective device which can be a passive, semi-active, or active device. A 

schematic view of this model is shown in Figure  1-1. Although this model is the most basic 

representation of coupled buildings, it can provide some basic results on how two adjacent 

buildings and the linkage between them behave during a seismic event. 
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In [19], two adjacent buildings are modeled as SDOF structures with damping and stiffness 

elements connecting the two buildings. A closed-form equation is presented for passive control 

vibration of the buildings. It is shown that the maximum absolute displacement transmissibility 

of each structure is reduced. 

In order to compare various control methods, Zhu et al. [20] used SDOF models for adjacent 

structures. A closed-form analytical solution is presented for dynamic behaviour of the buildings. 

In their study, four different algorithms are compared: optimal passive, active, two different 

semi-active algorithms. The efficiency of their proposed method is confirmed via a time history 

analysis of El Centro 1940 ground excitation. 

In [21], a methodology to find optimal parameters of Maxwell dampers is presented. Two 

buildings are modeled as SDOF structures and a closed-form analytical solution is derived for 

the required parameters of Maxwell dampers. The efficiency of their proposed method is 

investigated through a filtered white noise in the frequency domain, and El Centro 1940 

earthquake record in the time domain. 

As mentioned earlier, most studies on SDOF structures lead to a closed-form analytical 

solution. Although this type of modeling is not very realistic, closed-form solutions help 

researchers understand the effects of different parameters on the efficiency of their proposed 

method. 

1.3.1.2 Multi‐degree‐of‐freedom	

The multi-degree-of-freedom (MDOF) model is a more accurate model to predict dynamic 

behaviour of buildings under seismic load. In a simple MDOF model, each floor is modeled by a 

lumped mass which is connected to upper and lower floors by a set of spring and damper. 

Heights of buildings do not need to match. Then adjacent buildings are connected to each other 

via connectors which connect (to) adjacent floors. A schematic view of this model is shown in 

Figure  1-2. Unlike the SDOF model, since the MDOF models consider each floor individually, 

various aspects such as the effects of dampers’ distribution can be studied. Furthermore, effects 

of higher modes can be easily investigated. Still, some more complex effects, such as torsional 

motion or three-dimensional analysis, cannot be readily investigated through a simple MDOF 

model. Note that, to investigate these complex behaviours, more advanced models are available 
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such as finite element (FE) models. In general, FE is a sub category of MDOF. Unlike simple 

MDOF models, in an FE model, each floor is modeled by several masses, springs and dampers; 

and this makes the model even more accurate. However, FE models are much more complex 

than MDOF models and the solution time for FE models is longer than simple MDOF models. 

Unless we are interested in complex behaviours such as relative displacement of two nodes on 

the same floor, MDOF models are usually accurate enough for most applications. 

A very good example of MDOF models is a comprehensive study on the seismic response of 

damper connected structures done by Xu et al. [7]. In their study, two adjacent buildings are 

modeled as MDOF structures to which viscous dampers connected. Both time history analysis 

and frequency domain analysis are used to confirm the efficiency of their proposed method. It is 

worth noting that the simulation engine used in the present thesis is adopted from their study.  

Basili et al. [22] proposed a methodology for optimal design of MDOF adjacent buildings 

connected by hysteretic dampers. First, a reduced order model is used to simplify the 

mathematical model. In order to find the optimal parameters, they use an analytical approach that 

they presented earlier for SDOF structures [11].  

In [23], two MDOF structures are connected by MR dampers. Different control algorithms, 

including passive-off, passive-on and semi-active, are used and compared. Four different 

earthquake time history records are used to evaluate the control strategies.  



 

Figure  1-2: Multi-degreee-of-freedom 
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Ok et al. [24] presented an optimization procedure for optimal design of adjacent buildings 

connected by MR dampers. They use MDOF models and analyzed the building in the frequency 

domain under a stationary filtered white noise load. 

In [9], MDOF structures are used in order to investigate the seismic response of two 

adjacent buildings connected by friction dampers. They used four different earthquake time 

history records to evaluate the control strategies. They showed that it is not necessary to connect 

all adjacent floors by dampers.  

Cimellaro and Lopez-Garvia [25] presented a design approach for optimal passive vibration 

control of coupled MDOF structures. They first design an active controller; then by minimizing 

the difference between passive and active controller, they obtained optimal parameters for the 

passive controller. 

In order to investigate the seismic response of coupled buildings with base isolators, 

Matsagar et al. [26] used MDOF structures and analyzed the system in the time domain under 

three different earthquake records. 

In general, MDOF structures are the most common type of modeling used for seismic 

analysis of coupled buildings. Besides the aforementioned studies, many other studies use 

MDOF structures since MDOF models are more accurate than SDOF models, and at the same 

time are relatively simple.  

1.3.1.3 Experimental	models	

Experimental models are designed to confirm the validity of mathematical models including 

SDOF and MDOF models. Although experimental models are usually much smaller than actual 

buildings (i.e. they are scaled down), they are still able to represent the dynamic behaviour of 

buildings under seismic loads. In experimental studies, a building model is designed and built. 

Then in order to simulate the base excitation due to seismic activities, the model is placed on a 

platform which is connected to an electrical motor. This setup is called a shake table model. 

Various shake tables are available commercially with different sizes, output load limits, and 

degrees of freedom including lateral, vertical, and rotational loads.  
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In a very early experimental study by Xu et al [27], two three-story buildings were designed 

and constructed. A series of experiments were conducted and the response of the system was 

recorded each time in order to find the optimal locations and the damping coefficients. 

Christenson et al. [28] presented experimental results for two 2-story buildings which are 

connected by an active controller. The actuator is placed on the second floor and it consists of a 

servo motor (on the right) that is attached to a threaded rod and a bolt (on the left). More than 

50% reduction is observed in peak values transfer function of rigidly connected structures. 

In order to investigate the effects of the number and locations of the dampers, Yang et al. 

[29] conducted a series of experiments with different numbers and configurations of the 

dampers. They used a five-story steel frame building and a six-story steel frame building. They 

found that the use of more dampers does not necessarily result in a better vibration reduction.  

Among other experimental studies on coupled buildings, one can refer to [4], [30–35]. 

1.3.2 Devices 

In order to connect two adjacent buildings, we need to use some mechanical devices that can 

absorb energy. For this purpose, three main classes of connectors are available: passive, active, 

and semi-active. As mentioned earlier, passive devices are generally the cheapest. They usually 

require very little maintenance; and are reliable. Well-known passive devices are viscous 

dampers, metallic yield bracings, and hysteric dampers. On the other hand, active devices are 

expensive but they are the most effective ones. For example, an active mass damper is an active 

control device containing a huge mass which is connected to an actuator which can move the 

mass. Finally semi-active devices are passive devices that can be controlled. Among the most 

popular semi-active devices, one can mention magneto-rheological (MR) dampers and variable 

friction dampers. 

1.3.2.1 Passive	control	

A very popular damping device is the viscous damper. Numerous studies have been done on 

seismic response analysis of adjacent buildings connected by viscous dampers. 
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In [36], a feasibility study for vibration control of coupled buildings is presented. Viscous 

dampers are used to connect two adjacent buildings. It is shown that inter-story drift and floor 

acceleration can be reduced by the use of viscous dampers. 

An actual application of viscous damper connectors is discussed in [33]. A tall building is 

connected to its surrounding large podium structure. Forty viscous dampers are used in order to 

dissipate kinetic energy and reduce the vibration level of the building.  

In [37] and [7], the seismic response of two adjacent buildings connected via a viscous 

damper along with a spring is investigated. They both used frequency domain solution in order to 

solve the problem. They showed that the floor shear force can be reduced by more than 50% if 

viscous dampers are placed between two adjacent buildings. 

Another type of fluid dampers is the Maxwell model-defined fluid damper. Seismic 

responses of adjacent structures connected by Maxwell model-defined fluid dampers are 

investigated in [21], [38], [39]. 

As mentioned earlier, many experimental studies are done on the efficiency of passive fluid 

damper connectors, e.g. see [27], [29], [30], [35]. 

Non-linear hysteric dampers are effective devices that can be used to connect adjacent 

structures. For examples, seismic responses and optimal design of passive MR dampers are 

investigated in [24]. In their study, a stochastic linearization is used in order to estimate the 

dynamic response of the buildings.  

Besides fluid dampers, friction dampers can also be used as passive connectors to dissipate 

kinetic energy of adjacent structures. Among them, one can refer to theoretical studies such as 

[9], [16] and experimental studies such as [4]. 

1.3.2.2 Semi‐active	control	

Another class of control methods is called semi-active control. Of the different semi-active 

devices that can provide resisting force, MR dampers and variable friction dampers are the most 

popular ones for coupled building vibration control.  
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For example, in a recent study [23], the seismic response of adjacent buildings connected by 

MR dampers is investigated. Different control algorithms, including passive-off, passive-on, and 

semi-active algorithms, are implemented and compared.  

Other studies on semi-active control of adjacent buildings are [8], [20], [23], [40–45]. 

1.3.2.3 Active	control	

The last class of control strategies is called active control. In this control method, an external 

power generates the required restoration force. 

A comparison study between passive control and active control for adjacent buildings is 

done in [46], in which each building is modeled as a continuous beam. Using the reduction 

method, the continuous system is converted into an MDOF system. Under a filtered white noise 

load, the efficiency of each method is examined. It is worth mentioning that results from their 

study confirm that the optimal configuration of the dampers is not a convex function; therefore, a 

heuristic optimization method for dampers’ configuration must be able to avoid getting trapped 

into local minima.  

The efficiency of active control methods is also confirmed via experimental studies. For 

example, in [28], an active control approach based on H2/LQG is designed and tested. The 

experimental test is done on two 2-story buildings which are connected by an actuator at the top 

story. 

For more information on the active control of coupled buildings, interested readers are 

referred to [20], [25], [40], [41], [45], [47], [48].  

1.3.3 Optimization 

Optimization is a critical part of every design approach. Engineers want to make the best use 

of their retrofitting techniques. Although several theoretical and experimental studies have 

investigated the mechanical behaviour of coupled buildings, only few papers have examined 

applications of modern optimization tools in designing coupled buildings. Most optimization 

studies done on coupling of buildings simplify the problem to an SDOF model (e.g. [11], [21], 

[38]). This simple model, in most cases, results in a closed-form solution. Some others assume 

that all dampers have similar mechanical properties (e.g. [7], [37], [39]); therefore they reduce 
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the size of the optimization problem to a 1-dimensional problem. As an important outcome of 

this thesis, we will see that this is not a good assumption as it can prevent us from finding the 

global optimal design. In what follows, a general literature review on structural control 

optimization is presented. Then we focus on papers which considers the optimization problem of 

coupled buildings. 

1.3.3.1 Structural	control	optimization	

In this section, few sample works on structural control optimization are discussed and 

reviewed. Several studies have considered the optimization problem of placement of dampers. 

For example, Wongprasert et al. in [49] used a genetic algorithm to find the optimal 

arrangement for a limited number of dampers. Damping coefficients for all dampers are assumed 

to be the same and fixed.  

In a more comprehensive study [50], both the location and size are considered as design 

variables. A genetic algorithm is implemented in order to find the optimal size and configuration 

of dampers to provide a desired performance under seismic loads. 

In [51], a couple of combinatorial optimization techniques were presented and examined. 

Various objective functions were introduced and used. It was shown that a uniform distribution 

of dampers is a sub-optimal arrangement for the dampers and combinatorial optimization 

methods must be used to find the optimal arrangement of dampers. 

In [52], the goal is to minimize the summation of damping coefficients of supplemental 

damping elements added to the structure. The maximum drift is a constraint on the optimization 

problem. In other words, a solution is valid if the maximum drift is less than the allowable drift 

limit. 

Lavan et al. [53] presented a methodology for a multi-objective evolutionary optimal 

seismic design for structures with supplemental energy dissipation devices.  

A systematic procedure is proposed by Takewaki [54] in order to minimize the transfer 

function. A closed-form analytical formulation is derived, and the efficiency of the proposed 

method is discussed.  
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The problem of optimizing the placement of dampers is also investigated in [55], [56]. 

Unlike the optimal placement of dampers, the problem of determining optimal mechanical 

properties of dampers is a continuous optimization problem for which a closed-form solution 

might be achieved. 

For example, Yamada [57] presented a closed-form analytic solution for the optimal design 

of a Maxwell fluid damper to connect two SDOF structures.  

In [58], a minimax optimization is performed to optimize the design parameters of multi-

degree-of freedom tuned-mass-dampers. 

1.3.3.2 Coupled	building	control	optimization	

As mentioned earlier, many modern applications of structural control have been enhanced 

by the use of optimization tools. However, to the best of author’s knowledge, before this thesis, 

no special optimization tool, except genetic algorithms, had been used to find the optimal design 

of coupled adjacent buildings using MDOF models.  

Optimization studies on SDOF structures are rather simple and usually result in closed-form 

analytical solutions, e.g. see [11], [16], [19], [38]. 

On the other hand, optimization studies on MDOF structures are more complicated. For 

example, in order to determine the optimal design of adjacent structures connected by MR 

dampers, Ok et al. [24] used a genetic algorithm to find the optimal size and location of the 

dampers.  

In order to reduce the size of the optimization problem, some papers assume that all dampers 

have the same mechanical properties [7], [37], [39]. Then by plotting the objective function 

versus the design parameters, optimal values are determined.  

In [59], without presenting an optimization procedure, it is assumed that floors with higher 

relative velocity need a higher damping coefficient. It is also assumed that the optimal damping 

coefficients were functions of the relative velocity between the structures; the damping 

coefficients increased from a small value for the base floor to a large value for the top floor. In a 
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similar study by Patel and Jangid [60], they proposed that floors with higher relative velocity are 

the best places to put dampers. However, results from this thesis invalidate this assumption. 

Optimization of coupled structures has also been investigated through experimental studies 

such as [27], [29]. 

Among other studies on optimal design of coupled structures, one can refer to [9], [22], [25]. 

1.4 Motivation 

As mentioned earlier, there is a need for a comprehensive optimization study of coupled 

buildings control. Optimization is a very crucial step in every engineering design as engineers 

always want to make the best use of their techniques. Optimization can also reduce the cost of 

implementation of retrofitting methods which attracts constructors’ interest. For example, 

reducing the number of dampers without significant reduction of efficiency is a clear example 

how optimization can reduce the cost of implementation. It has been shown that we can reduce 

the number of dampers without any significant efficiency loss (e.g. see [29]). Furthermore, some 

studies showed that removing the assumption of equal mechanical properties of dampers can be 

effective (e.g. [59], [60]). The most comprehensive study made on this problem is the genetic 

algorithm optimization for MR dampers done by Ok et al. [24]. They used a genetic algorithm to 

solve the multi objective optimization problem of MR damper connectors. Still no deterministic 

procedure for finding the optimal arrangement is presented for a limited number of dampers. 

All in all, to the best of the author’s knowledge, no deterministic optimization technique is 

available for the design of damper connected buildings. Furthermore, in this thesis, different 

optimization methods, including discrete and continuous methods, are examined. Based on a 

bunch of numberical tests, the proposed methods are compared and the efficiency of each is 

investigated. The lack of optimization studies on coupled buildings control motivated us to 

investigate applications of modern optimization techniques on the control problem of coupled 

buildings. 
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1.5 Overview of this thesis 

In this thesis, MDOF models are considered rather than simple SDOF models to observe the 

effects of non-uniform distribution of dampers. Buildings are modeled as lumped mass MDOF 

structures with linear springs and dampers. We use viscous dampers between two buildings as 

they are known to be effective and economical devices that can be used to connect adjacent 

structures. The dynamic analysis is done under a one dimensional ground excitation which is 

generated by the pseudo-excitation function of Kanai-Tajimi. Five discrete optimization 

algorithms, namely inserting dampers, inserting floors, genetic algorithms, maximum velocity, 

and exhaustive search, are introduced to find the optimal distribution for a limited number of 

dampers. In order to find the optimal design, we also need to find the optimal damping 

coefficients. For this purpose, we first show that the conventional assumption of equal 

mechanical properties for all dampers may result in a sub-optimal solution. Then three modern 

optimization techniques, namely mesh adaptive direct search method, robust approximate 

gradient sampling algorithm, and genetic algorithm, are compared to find the optimal damping 

coefficient of dampers. Finally, these two optimization problems are combined and solved as a 

comprehensive problem where configuration and damping coefficients are to be optimized. 

The remainder of this thesis is organized as follows. In Chapter  2, the modeling of the 

system of coupled buildings is discussed. Assumptions and limitations of the current model is 

discussed and formulations are derived. Chapter 2 also discusses the methodology that we use 

for the simulation including the pseudo-excitation Kanai-Tajimi function, the frequency domain 

solution, the spectral analysis and the objective functions. In Chapter  3, the discrete optimization 

problem of optimal configuration for a limited number of dampers is studied. Chapter  4 expands 

Chapter  3 by adding a new set of design variables which are non-uniform damping coefficients. 

Finally, in Chapter  5, conclusions are made and trends for future work are presented.  
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2 Modeling 

In order to investigate dynamic behaviour of coupled structures, the first step is to model 

coupled adjacent buildings. Modeling is to formulate mechanical behaviour of structures in terms 

of mathematical equations. Three major types of modeling are available: single-degree-of-

freedom (SDOF), multi-degree-of-freedom (MDOF), and finite element (FE). Each of them has 

its own advantages and disadvantages. In general, the more accurate the model is, the more 

complexity will be involved in the model and its solution. Except for simple SDOF systems, 

closed-form solutions are almost impossible to achieve. For most cases, MDOF models provide 

enough information for researchers and engineers to predict the dynamic behaviour of buildings. 

Beside the number of degrees of freedom, linearity and non-linearity are other factors that 

must be defined in the model. Linear models are simpler than non-linear models. However, only 

non-linear models can be used to examine plastic deformations of structures. In linear models, 

the structure is assumed to remain within its linear elastic limit. The basic assumption in linear 

models is that the relationship between force and displacement of each floor is a linear 

relationship. For example, if you double the excitation load and all other parameters remain 

unchanged, the response of the system, including displacement, velocity and acceleration, is also 

doubled.  

Another factor that needs to be taken into consideration is the number of dimensions of the 

model. For example, in order to obtain an accurate response of a real structure, one may use 6-

dimensional FE model which includes three dimensions for displacement and three dimensions 

for rotation. However, such a high level of accuracy is not always required. In order to 

investigate the effect of seismic retrofitting systems, structures usually are modelled via a 1D 

model which only includes the weaker side of the building. Since we know the weaker side of 

the building, we focus on that side.  

2.1 Assumption and limitation 

In order to introduce a model which accurately predicts the dynamic behaviour of coupled 

structures, we must make some necessary assumptions. First off, to ignore torsional effects, the 

buildings are assumed to be symmetric with their center of mass aligned in mid plane. The 
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ground motion and dynamic response of the buildings are assumed to be unidirectional. 

Structural components are assumed to remain in linear elastic region during the seismic event. 

Therefore, no damage (including plastic joints) is assumed to occur. Ground excitation load is 

assumed to be exactly the same for two adjacent buildings. Any slight change in the mechanical 

behaviour of the soil is neglected. Buildings are connected via linear dampers in their weaker 

direction. Dampers are assumed to be perfectly linear. This means the force generated in the 

dampers is linearly dependent to the relative velocity of the two ends of the damper. Also, 

dampers are assumed to remain functional and undamaged throughout the seismic event.  



 

 

Figure  2-1: Schematic dyynamic modeel of two adjaccent building
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2.2 Coupled structures model 

This thesis uses a simple MDOF model in order to model the dynamic behaviour of the 

buildings. Each floor is modelled via a lumped mass which includes the mass of each floor as 

well as the mass of the walls connecting that floor to the upper floor. Then each mass is 

connected to the upper and lower mass with a set of linear springs and linear dampers. A linear 

spring is a mechanical component that generates a force which linearly depends on the relative 

displacement at the ends of the spring. And a linear damper is a mechanical component that 

generates a force which linearly depends on the relative velocity at the ends of the damper. After 

modeling each structure individually, we may now connect these two structures using linear 

dampers. In this thesis, we use a passive viscous damper as damper connectors.  

2.3 Formulation 

As shown in Figure  2-1, buildings 1 and 2 have n + m and n stories, respectively. The mass, 

shear stiffness, and damping coefficients for the ith story are mi1, ki1, and ci1 for building 1 and 

mi2, ki2, and ci2 for building 2. The damping coefficient and stiffness coefficient of the damper at 

the ith floor are cdi and kdi, respectively. The dynamic model for both structures is taken to be a 2n 

+ m degree of freedom system.  

Let )(1 txi  and )(2 txi  be the displacement of the ith floor of buildings 1 and 2 in the time 

domain, respectively. Consequently, )(1 txi  and )(2 txi  represent the velocity, and )(1 txi  and 

)(2 txi  represent the acceleration of the ith floor of buildings 1 and 2, respectively. Now, we may 

write the governing equation of the system: 

)()()()()()( tMEgtXKKtXCCtXM dd     Eq  2-1 

where M, C and K are the given mass, damping and stiffness matrices of the buildings, Cd and Kd 

represent damping and stiffness matrices of the connectors, and X is the displacement vector of 

the system. Also, E is a vector with all elements equal to one, and g(t) is the ground acceleration 

during the earthquake. The details are given as follows: 

],...,,,...,[ 2121)(11 nmn mmmmdiagM  ,  Eq  2-2 
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],...,[ 1 dndd ccdiagC  , Eq  2-11 

],...,[ 1 dndd kkdiagK  , Eq  2-12 

T
nmn xxxxxX ],...,,,...,,[ 2121)(2111   Eq  2-13 

Using different numerical techniques, one may obtain the solution for the dynamic 

behaviour of the buildings for any given earthquake record, i.e. g(t). The next step is to define a 

useful and reliable earthquake record that is to be used for optimization simulations.  

2.4 Ground Motion 

As seen in Eq 2-1, the dynamic response of the system can be obtained for a given 

earthquake record using the equation of the motion in the time domain. However, to find a 

general and reliable prediction for the dynamic behaviour of the buildings, we analyze the model 

in the pseudo-excitation frequency domain rather than the time domain, which is usually 

associated with one specific real earthquake record. Therefore, the seismic load must be defined 

in the frequency domain. In [7], it is shown that the model of coupled buildings can be analyzed 

by calculating the dynamic response of the buildings under a series of harmonic loads. In what 

follows, we explain the simulation procedure. 

Assuming that the ground excitation is a stationary random process, the ground acceleration, 

g(t), can be written as: 

ti
g eStg )()(   Eq  2-14 

where Sg(ω) is the spectral density function of the ground acceleration for a defined frequency of 

ω. In this study, a Kanai-Tajimi filtered white noise function (e.g. see [7], [21], [24]) is used for 

the spectral density function of the ground acceleration: 
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where gg  , and 0S represent the dynamics characteristics and the intensity of earthquake and 

are chosen based on the geological characteristics of a specific zone. Eq 2-15 represents the 

acceleration transfer function of a mass which is connected to the ground with a set of linear 

springs and dampers. The typical shape of a Kanai-Tajimi spectrum is shown in Figure  2-2. 

 

Figure  2-2: Kanai-Tajimi spectral density of ground acceleration 

 

2.5 Solution Procedure 

Considering ground excitation as a series of harmonic loads, one can rewrite the 

displacement vector in the frequency domain as 

tieXtX  )()(  . Eq  2-16 

0 5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10
x 10

-4

Frequency,  (rad/sec)

S
pe

ct
ra

l D
en

si
ty

 o
f 

G
ro

un
d 

A
cc

el
er

at
io

n 
(m

2 /r
ad

.s
ec

3 )



24 
 

Consequently, the velocity and acceleration vectors in the frequency domain are:  

tieXi
dt

tdX
tX  )(

)(
)(  ,  Eq  2-17 

.)(
)(

)( 2
2

2
tieX

dt

tXd
tX   Eq  2-18 

Substituting Eqs 2-16, 17, 18 and 2-14 into Eq 2-1, the governing equation in frequency domain 

is obtained, 

.)()()()()()(2 ti
g

ti
d

ti
d

ti eSMEeXKKeXiCCeXM     Eq  2-19 

Solving for the displacement vector, we find: 

    .)()()()(
12  gdd SMEKKiCCMX 


 Eq  2-20 

Having developed a formula for gS , Eq 2-15, it is now possible to numerically approximate 

the displacement vector in the frequency domain by numerically solving Eq 2-20. Therefore, the 

displacement, velocity and acceleration values are transformed from functions of the time into 

functions of the frequency  , e.g. )(1 ix , )(2 ix , )(1 ix , )(2 ix , )(1 ix , and )(2 ix . As 

before, the first index corresponds to the floor number and the second index corresponds to the 

building number. Since calculated parameters in the frequency domain take complex values, the 

squared magnitude, also known as the auto-spectral density, is used for optimization. For 

example, the auto-spectral density of displacement for the ith floor of the building b is written as: 

 )()()(  ibibxib xconjxS  .  Eq  2-21 

Subsequently, applying integration over the frequency domain will result in statistical 

parameters, which represent the standard deviations of displacement, velocity and acceleration of 

each floor. For instance, for the ith floor of building b, its standard deviation of displacement 

response is 

2/1

)( 



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
 dSxibxib . Eq  2-22 
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To do this, upper and lower limits of )/(20 srad  are imposed. Using a trapezoid rule 

approximation with a step size of 0.02 to the integral in Eq 2-22, one can easily calculate a good 

approximation of standard deviation of the response. It is worth noting that previous studies (e.g. 

[7], [47]) show that the effect of the frequencies greater than )/(20 srad  on the response of the 

structure is negligible. In fact, as we change the frequency from 0 rad/s to 20 rad/s, the 

magnitude of the transfer function of the system becomes 100 times smaller. 

2.6 Objective function  

The most important factor in optimization is the objective function that we would like to be 

minimized. In other words, one may want to minimize the cost; while another one wants to 

minimize the acceleration, or displacement. Particularly, for structural control optimization, 

many objective functions can be considered, such as maximum drift, maximum acceleration, 

cumulative drift, energy absorbed by the structure, damping ratio, cost of the retrofitting system, 

risk of damage and so on. Since throughout this thesis, we do not use the gradient, almost any 

objective function can be used. Note that, the derivative of the response with respect to design 

parameters, i.e. dampers’ location and size, is not available. Therefore, we are not even able to 

use derivatives. In this thesis, two different objective functions are used:  

 F1) the summation of squared inter-story drift, and 

 F2) the maximum value of squared inter-story drift.  

The mathematical formulation of each objective function is: 
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..1

2
11F 


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nj

jd
mni

id  , Eq  2-23 

 }..1:max{},..1:max{maxF 2
2

2
12 nimni idid   , Eq  2-24 

where ibd  is the standard deviation of inter-story drifts, for ith floor of building b, as: 

2/1
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
 dSdibdib   Eq  2-25 
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where Sdib is the auto-spectral density of the drift, and it can be calculated using the frequency 

domain response, as: 

 )()()]()([)( ,1,1  biibbiibdib xxconjxxS     Eq  2-26 

Note that in Eq 2-26, xib(ω) for i=0, representing relative displacement of the ground, is 

equal to zero. In Chapter  3, both objective functions are used and it is shown that the optimal 

design of the damper connectors depends on the objective function we choose. In Chapter  4, for 

the sake of brevity, we only use the maximum drift as the objective function. 

In the next two chapters, different optimization techniques are considered to find the best 

configurations and damping coefficients of a limited number of dampers that minimize the 

desired objective function. 
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3 Configuration optimization 

Past results (e.g. see [16], [29], [60]) have shown that reducing the number of dampers can 

considerably decrease the cost of implementation and does not significantly decrease the 

efficiency of the system. In this chapter, a couple of deterministic combinatorial optimization 

techniques are presented to determine the optimal location for a limited number of viscous 

dampers. 

Heuristic combinatorial optimization methods have been shown to be effective to find 

optimal arrangement of viscous dampers for a single building [51]. Unlike random/evolutionary 

search methods, deterministic methods presented in this thesis always lead to a certain solution 

for each problem. In this chapter, as in [7], [37], [39], each floor can have one damper at most 

and all dampers are assumed to be similar. Considering effects of mechanical properties of 

dampers on the objective function, the final result is a bi-level optimization problem, where the 

objective function depends on the damping coefficient and damper location. In order to compute 

the “best” number of dampers to use, one can compute the optimal damping coefficient and 

damper location for each possible number of dampers, and then select the desired balance 

between cost and damage mitigation. Also, a comparison study is presented to verify the 

effectiveness of the presented methods. 

This chapter introduces two optimization algorithms to determine the optimal configuration 

for a given number of dampers: a damper insertion heuristic and a floor insertion heuristic. For 

the purpose of comparison, this paper includes a non-heuristic approach, exhaustive search, as 

well as a genetic algorithm, and a fifth method, highest relative velocity heuristic, that is based 

on suggestions from [59], [60]. The exhaustive search is guaranteed to be globally optimal, but is 

extremely time consuming. Indeed, in the most difficult cases an exhaustive search is completely 

intractable. The damper insertion and floor insertion heuristics are considerably faster, but not 

guaranteed to return the globally optimal solution. However, numerical tests suggest that they are 

both effective. Results also show that the genetic approach can be considered as a reasonable 

option if convergence rate is more important than accuracy of the results. While for more 

accurate results, the damper insertion method is the best method among the presented methods, 

particularly for tall structures. The final technique (highest relative velocity heuristic) assumes 
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that the best locations for viscous dampers are the floors that have the maximum relative 

velocity. This makes intuitive sense due to the fact that force generated in viscous dampers is a 

function of relative velocity. However, results presented in this study show that this arrangement 

does not generally result in optimal performance. It is also found that increasing the number of 

dampers does not necessarily increase the efficiency of the system. In fact increasing the number 

of dampers can exacerbate the dynamic response of the system. 

In order to examine the efficiency of these techniques, various numerical examples are 

presented. For each method, the total computational effort is examined (both through the 

calculation of the number of simulations required and through CPU-time used for the numerical 

tests). Furthermore, a comparison between the resulting qualities of the final solution using each 

technique is presented. 

3.1 Damping Coefficients Optimization 

It is clear that the standard deviation of displacement ( xib ) for a set of dampers is highly 

dependent on the mechanical properties of the damper connectors since damping and stiffness 

matrices of the connectors in Eq 2-20, Cd and Kd, are dependent on dic  and dik  (Eqs 2-1 and 2-

9,10,11,12). Therefore, to determine the optimal effect of a given damper arrangement, it is 

necessary to determine the optimal damping and stiffness coefficients. Moreover, the optimal 

damping and stiffness coefficients for a set of dampers are dependent on both the number of 

dampers used and on the damper placement. Therefore, for each damper arrangement 

considered, the algorithm must optimize the damping and stiffness coefficients. 

Results from [7], [37] show that the stiffness of the connectors does not change the objective 

function significantly as long as cdi’s are optimal and kdi’s are small. Moreover, the value of xib  

will increase if kdi has a very large value, i.e., rigid connectors. Thus, it is assumed that kdi=0 for 

all d and i. This simplifies the problem while keeping the final result accurate. 

Furthermore, results from [7], [10], [29], [37–39] indicate that it is reasonable to assume that 

all damping coefficients dic  are equal. Therefore, it is assumed that 

....21 nddd ccc    Eq  3-1 
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This reduces the damping coefficient selection problem to a one-dimensional problem of 

computing 1dc . This is accomplished using a standard bisection method. As shown in Figure  3-1, 

the procedure starts with two ultimate points (practically 0LCd  and 1610RCd ) assuming that 

the optimal point is located between them. 

Then the function is evaluated at a new point, say CCd , that lies between CdL  and CdR . The 

bisection method then deletes one of the outer points (CdL  or CdR ) and replaces it with CCd . 

This narrows the search area and is repeated until the desired convergence tolerance (see 

Figure  3-2). Note that the dashed-line box in Figure  3-2 is the procedure that is presented in 

Figure  3-1. To increase the convergence rate, a couple of minor modifications are applied. First, 

results presented in previous studies (e.g. [7]) suggest to use logarithmic values of damping 

coefficient. Second, a Golden-ratio bisection method (see for example [61]) is recommended to 

improve the efficiency of the method.  

 



30 
 

 

Figure  3-1: Set initial values for the bisection method 
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Figure  3-2: Optimizing damping coefficient of dampers using the bisection method 

 

Set k=0 

Evaluation step 

Evaluation step 

 

 

N

No 

Yes 

Yes 

 

Yes 

Start Finish

No 

Set initial values 
(Fig 2) 



32 
 

3.2 Damper Location Optimization 

Assume two adjacent buildings with n and n+m floors, where 0m  and 0n , are coupled 

using a limited number of dampers nnd  . The goal in this section is to explore different 

methods to locate the optimal placement for these dampers. Five different optimal damper 

placement techniques are considered: i) exhaustive search approach, ii) inserting dampers, iii) 

inserting floors, iv) maximum velocity locations, and v) a genetic algorithm. Each damper 

placement technique is explained below. 

3.2.1 Exhaustive search approach 

The simplest, but the most time consuming, approach to determine the optimal damper 

location is to check all possible combinations of a limited number of dampers locations. First, a 

series of all possible combinations is created. Then all objective function values are compared. 

Based on the minimum objective function value, the corresponding configuration can easily be 

found. A schematic diagram of the exhaustive search approach is shown in Figure  3-3. 

Clearly such an exhaustive search must return the global optimum. However, in this 

approach, the number of required simulations N1 is equal to the number of all combinations: 

  !!

!
1

ddd nnn

n
n

n
N











   Eq  3-2 

where n is number of adjacent floors and nd is the number of available dampers. 
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Figure  3-3: Flowchart for exhaustive search optimization approach 
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To reduce the number of required simulations, a simple heuristic method is to find the best 

location of each damper subsequently. First, two buildings with n and n+m floors are assumed to 

be completely unconnected. Running n simulations, the best location to insert a single damper 

can be determined. Fixing a damper at this location, a similar procedure is performed to find the 

best location for the second damper. This procedure iterates until all available dampers are 

inserted to the building. A flowchart presenting this approach is depicted in Figure  3-4.  

The number of required simulations N2 can be calculated as: 








 




2

))1((....)1(
2

2

dd
dd

d

nn
nnn

nnnnN

 Eq  3-3 

where, as before, n is number of adjacent floors and nd is the number of available dampers. 

3.2.3 Inserting floors method 

This approach begins by reducing the number of adjacent floors (n) to the number of 

available dampers (nd). Consequently, two buildings with nd and nd+m floors, which are 

connected on all adjacent floors, are constructed. Next, the algorithm locates the best place to 

insert a pair of adjacent floors without dampers and keep the objective function as low as 

possible. After inserting the first pair, two adjacent buildings with nd+1 and nd +1+m floors, 

which are connected in only nd floors, have been constructed. An analogous procedure is carried 

out to find the best location for a second pair of unconnected adjacent floors. This iterative 

procedure continues until number of floors of the shorter building reaches n. A detailed scheme 

of this method is shown in Figure  3-5.  

The number of required simulations can be calculated as: 

)).(1(3 dd nnnN    Eq  3-4 

Note that, unlike the previous methods, in inserting floors the number of required 

simulations for this approach is not as closely related to the computational effort as pervious 

methods. In particular, in this approach, earlier simulations work with smaller structures while 
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the size of system gradually grows until, at the last iteration, the system has the full-scale 

structure.  

 

Figure  3-4: Flowchart for inserting dampers optimization approach 
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Figure  3-5: Flowchart for inserting floors optimization approach 
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a single simulation on unconnected buildings and then places nd dampers on the nd floors with 

the highest relative velocities. 

The clear advantage of this approach is that only one simulation is required, so computation 

time is extremely short. A primary drawback of this method is that the optimal arrangement does 

not depend on the objective function. Numerical results presented in this chapter show that this 

method generally does not lead to an optimal arrangement for our objective functions. 

3.2.5 Genetic algorithm 

Genetic algorithms are known to be an effective approach to solve many engineering 

optimization problems (see [24], [50], [62], [63] and references therein). Genetic algorithms are 

considered particularly useful when derivative information is not available. In this study, an 

optimization approach based on genetic algorithms is considered to find the best configuration of 

a limited number of dampers.  

The implementation follows a standard Selection, Competition, Reproduction technique 

[64]. The first step is to generate the initial population of points. This is done using a procedure 

which picks random combinations of dampers and it continues until the desired population, i.e. 

number of points, is achieved. In accordance with a genetic algorithm, the next step is to evaluate 

the objective function at all points of the current population. Then, using a competition, some 

points survive and go to the next generation, while the others die. To make up for the dead 

points, a reproduction procedure will generate enough new points. The algorithm uses the 

survivors as the parents to reproduce children. Within the reproduction procedure, a mutation 

step randomly alters some points from one generation to the next generation. Finally, the 

objective function is evaluated at all points of the new generation. The procedure repeats until 

the stopping condition is satisfied. 

3.3 Numerical tests 

In order to illustrate the efficiency and accuracy of each method, various examples are 

studied. At the first stage, the time required for each presented method is examined. At the 

second stage, the quality of the solutions obtained by each method is examined. Before 

discussing the results, the test sets used in this paper are discussed. 
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3.3.1 Test problems 

The test problems are generated by examining three distinct buildings of heights n=10, 

n=20, and n=40. Table  3-1 shows three different sets of mechanical properties of buildings used 

for numerical tests. For all sets, it is assumed that mechanical properties for all floors in each 

building are the same, i.e.: 

jikkccmm

jikkccmm

jijiji

jijiji

,allfor,,

,allfor,,

222222

111111




  Eq  3-5 

Table  3-1: Mechanical properties of buildings 

 Building (a)  Building (b) 

  ma (kg) ka (N/m) 
ca 

(N.s/m) 
 mb (kg) kb (N/m) 

cb 
(N.s/m) 

Set I 1.29E+06 4.00E+09 1.00E+05  1.29E+06 2.00E+09 1.00E+05
Set II 2.60E+06 1.20E+10 2.40E+06  1.60E+06 1.20E+10 2.40E+06

Set III 4.80E+06 1.60E+10 1.20E+06  4.00E+06 2.30E+10 1.20E+06

 

It should also be noted that, for all numerical examples, ground acceleration parameters are 

considered as 324
0 ./1065.4 sradmS  , sradg /15 , 6.0g , sradk /5.1 , and 

6.0k , i.e. the same as [7]. 

Table  3-2 tabulates the 8 different building height relations considered in this research. For 

each case the different building heights are given in fa and fb (denoting number of floors for 

buildings “a” and “b”).  

 

Table  3-2: Different sets for numerical tests 

fa fb Case  
10 10 Case 1  
10 20 Case 2  
20 10 Case 3  
10 40 Case 4  
40 10 Case 5  
20 20 Case 6  
20 40 Case 7  
40 20 Case 8  
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Considering the three sets of mechanical properties (given in Table  3-1), this creates 24 

adjacent building scenarios. For each building scenario, four possible numbers of dampers are 

considered: 1 damper, 25% of floors having dampers, 50% of floors having dampers and 75% of 

floors having dampers (rounding up). More precisely, 

1. if the shorter building is 10 floors, then nd=1, 3, 5 and 8,  

2. if the shorter building is 20 floors, then nd=1, 5, 10 and 15.  

This yields 96 test problems. Solving each problem for objective function 1 and objective 

function 2 gives a grand total of 192 numerical tests. 

For each problem, an optimal damper placement is determined using different techniques 

outlined in section  3.2. However, it should be noted that, due to problem size, the exhaustive 

search was only used on problems where the shorter building was 10 floors. 

3.3.2 Solve time 

Clearly, the time to apply each method is highly dependent on the number of simulations 

required to complete the method. Applying Eqs 3-2, 3-3, and 3-4, the number of simulations 

required for each method is computed. The number of required simulations versus number of 

available dampers is shown in Figure  3-6 to Figure  3-8. (The number of simulations required in 

the maximum velocity method is not plotted, as this number is always 1.) 
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Figure  3-6: Number of required simulations for exhaustive search, inserting 
dampers, and inserting floors, for n=10 

 

 

Figure  3-7: Number of required simulations for exhaustive search, inserting 
dampers, and inserting floors, when n=20 
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Figure  3-8: Number of required simulations for exhaustive search, inserting 
dampers, and inserting floors, when n=40 
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concludes with a full size model, which needs a longer time to complete. As an example, the 

ratios of CPU time to number of simulations for case 5 and objective function 1F  are tabulated in 

Table  3-3. The results show that the CPU time per simulation for the inserting floors method is 

noticeably less than that for inserting dampers, and much more dependent on dn . 

Table  3-3: Sample of CPU time (sec) per simulation 

nd  ID IF 

1 18.4 13.3 
3 16.7 14.5 
5 17.1 14.5 
8 17.1 15.7 

 

3.3.3 Solution quality 

In order to examine the performance and efficiency of the presented methods, 192 different 

problems are solved using four different approaches. It should be noted that the exhaustive 

search approach is not applied to the problems where the shorter building is 20 floors due to 

impractical CPU-times needed for this method to solve such problems. Detailed final results, 

including optimal arrangement and optimal damping coefficients are presented in Table A-1 to 

Table A-6. Also, results for solve time and final objective values for all problems can be found in 

Table A-7 to Table A-12. 

In order to show the efficiency and applicability of each method, performance profiles [65] 

are computed and plotted in Figure  3-9 and Figure  3-10. Recall that performance profiles are 

designed to graphically compare both speed and robustness of algorithms across a test set [65]. 

This is done by plotting, for each algorithm, the percentage of problems that are solved within a 

factor of the best solve time. Mathematically, the performance ratio is first computed by 




 pfor
at

t
r

ap

ap
ap ,

},min{ ,

,
,  Eq  3-6 

where   is the set of all problems,   is the set of algorithms, and apt , is the solving time of 

algorithm a for problem p. The percentage of problems that are solved within a factor   of 

the faster algorithm is next computed by 
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 Eq  3-7 

The percentage a  of all problems solved by algorithm a at   gives an overall assessment 

of the performance of algorithm a. High values of a  near 1  represents fast solve times. High 

values of a , when   is large, represent high success rates. For a good algorithm, the plot of 

)(a  should therefore be found above the other algorithms. For a more detailed description of 

performance profiles can be found in [65]. 

To calculate the performance profile, one needs to define when a method “solves” a specific 

problem. In this paper, a method is considered as a “failed method” if the difference between the 

objective value obtained using that specific method and the best objective value obtained for that 

problem exceeds the defined allowable tolerance. Examining detailed results, it is found that the 

objective function does not significantly affect the solution efficiency; in particular, solution time 

for similar cases (but different objective function) is less than 10%. This is due to the fact that 

both objective functions are black box and no information, beforehand, is available about how 

they change with respect to design variables. 

Results show that, for approximate results (Figure  3-9), the genetic algorithm is almost as 

fast as the damper insertion method. However, the same graph suggests that the genetic 

algorithm can only solve 84% of the problems; while the damper insertion method is successful 

for 99% of the problems. For more accurate results (Figure  3-10), inserting dampers consistently 

ranks as the best method in both speed and robustness. It is worth noting that, in theory, the 

exhaustive search method is able to solve all problems if we do not stop the algorithm until all 

possible combinations of dampers’ arrangements are examined. If that is the case, the exhaustive 

search method finally reaches 100% in Figure  3-9 and Figure  3-10. However, in practice, it is 

impossible to let the algorithm work for 8,000 years. Considering the limit imposed on the 

solution time, exhaustive search is only able to solve 62% of the problems in Figure  3-9 and 

Figure  3-10. 



44 
 

 

Figure  3-9: Performance profiles for inserting dampers, inserting floors, exhaustive 
search, maximum velocity and genetic algorithm, with maximum 
allowable tolerance of 5% 

 

 

Figure  3-10: Performance profiles for inserting dampers, inserting floors, 
exhaustive search, maximum velocity and genetic algorithm, with 
maximum allowable tolerance of 1% 
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3.3.4 Number of dampers 

Through determining the optimal arrangement for a limited number of dampers, one can 

investigate the effect of the number of installed dampers on the efficiency of the system. For the 

sake of comparison, the percentage of improvement, )( dn , is defined, as: 

,%100)(
1

1 



obj

objobj
n dn

d  Eq  3-8 

where 
dn

obj is the objective value when the number of installed dampers is equal to nd and 

1
obj  is the objective value when only one damper is installed. For example, Figure  3-11 and 

Figure  3-12 show the percentage of improvement versus the number of dampers for the 8 

adjacent structures resulting from mechanical property Set I (see Table  3-1). For these tests, it 

can be seen that increasing the number of available dampers does not necessarily improve 

efficiency of the system. Moreover, in many situations, increasing the number of dampers 

actually exacerbates the performance of the system. This inconsistency is due to the assumption 

that all dampers are assumed to have the same damping coefficient (see Eq 21). This assumption 

imposes an additional constraint to the problem that prevents finding the best damping 

coefficients for a given damper configuration. 
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Figure  3-11: Reduction of response vs. number of dampers, F1 as objective 
function 

 

 

Figure  3-12: Reduction of response vs. number of dampers, F2 as objective 
function 
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3.4 Summary 

This chapter considers how to determine an optimal design for the location of a limited 

number of viscous dampers to minimize inter-story drift. First, two buildings are modeled as a 

linear discrete system consisting of a lumped mass, a linear spring and a linear damper for each 

floor (see Chapter 2). The placement of dampers is next framed as the discrete optimization 

problem of minimizing the inter-story drift with two methods of measuring the total inter-story 

drift considered. The resulting problem is a bi-level optimization problem, where the inter-story 

drift for a given damper placement is found by minimizing with respect to the damper 

coefficients. This sub-problem is solved by use of a Golden Ratio bi-section method. 

In this chapter, five approaches are presented to determine the optimal configuration for a 

limited number of dampers: exhaustive search, inserting dampers, inserting floors, maximum 

relative velocity, and genetic algorithm. The exhaustive search method is theoretically the most 

robust method; however, due to the required CPU-time, it is shown to be totally intractable in 

difficult cases. On the other hand, the maximum velocity method is the fastest method since it 

determines the best arrangement in a single simulation. However, the numerical tests show that 

this method does not lead to a reasonable final result. Another drawback of the maximum 

velocity method is that this method is not sensitive to the objective function. A more accurate 

method is the inserting floors method. This method is faster than the inserting dampers method; 

but it is not as accurate as the inserting dampers method. Also, the genetic algorithm method acts 

like the inserting floor method. The convergence rate is very fast; however, results show that it 

might not be a reliable method for more accurate results. All in all, the presented performance 

profiles suggest that the inserting dampers method is the most practical method, providing an 

excellent balance between speed and accuracy. 

Furthermore, the sensitivity of the response to the number of installed dampers is examined 

through finding the objective function for the optimal arrangement for each specific number of 

dampers. Interestingly, the numerical results also show that increasing the number of dampers 

does not necessarily improve the efficiency of the system. In fact, increasing the number of 

dampers can even result in an increased inter-story drift. In Chapter  4, we will see that the reason 

for this is the assumption that all dampers are considered to have the same damping coefficient. 

Although this assumption has been widely used in many studies, the results show that this 
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assumption is not a valid assumption and can lead to very inefficient damping values. Therefore, 

in order to find the optimal solution, it is necessary to remove this assumption and let dampers 

have different damping coefficient. This is done in the next chapter by the use of derivative free 

methods. 
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4 Global optimization 

In the previous chapter, all dampers were assumed to be identical and have the same 

mechanical properties. Therefore a 1-dimensional optimization algorithm (the bisection method) 

was used to find the optimal damping coefficient. It was shown that, if all dampers have the 

same damping coefficients, increasing the number of dampers does not necessarily increase the 

dynamic stability of a structure. Moreover, under these conditions increasing the number of 

dampers may even exacerbate the dynamic behaviour of the buildings. Therefore, we need to 

remove this constraint, and solve the n-dimensional optimization problem of damping 

coefficients.  

In this chapter, a bi-level optimization algorithm is designed to find the optimal arrangement 

and mechanical properties of dampers for an extensive set of test situations. We solve the outer-

loop (optimal damping configuration) using the “inserting dampers'' method, which was shown 

to be a very effective heuristic method in the previous chapter. Under the assumption that the 

dampers have varying damping coefficients, the inner-loop (optimal damping coefficients) is an 

n-dimensional continuous optimization problem. Since a series of simulations and different math 

operators are used to compute the objective value, we are limited to methods that do not require 

derivatives, that is, non-gradient based methods. 

The research area of derivative free optimization (DFO) has progressed greatly in recent 

years. Derivative free methods are useful in situations when gradient information is 

computationally expensive, unreliable or unavailable. As the name suggests, these methods do 

not use derivatives; they only require function evaluations for a given set of input parameters. 

For a thorough introduction into several well-known DFO frameworks, see [66]. 

Genetic Algorithm (GA) is a popular and efficient method for engineering applications. GA 

has been widely used to solve many engineering problems. In this chapter, we use the stochastic 

based GA to have a baseline comparison to previous studies that have principally employed this 

method. Although popular, and generally effective, GA is heuristic in the sense that it does not 

enjoy mathematical convergence analysis. Hence we would like to examine the efficiency of 

DFO methods other than GA. Unlike GA, other DFO methods used in this chapter are proven to 

converge to an optimal point under certain conditions. In particular, we use the powerful mesh 
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adaptive direct search (MADS) algorithm as implemented in MATLAB's global optimization 

toolbox. MADS is a derivative free directional direct-search method with corresponding 

convergence theory [67]. Finally, since the problem of finding the optimal damping coefficients 

takes the form of a finite minimax problem (minimizing the maximum inter-story drift), we test a 

novel robust approximate gradient sampling (RAGS) algorithm. RAGS is a novel robust 

approximate gradient sampling (RAGS) algorithm that is specifically designed for finite 

minimax problems [68]. A detailed description of each algorithm is given in the next section. 

In comparing the efficiency and stability of these three methods, we find that the MADS 

algorithm generally produces the most robust results, while the RAGS algorithm produces highly 

comparable results in significantly less time. While the GA produces respectable results, it is 

generally not found to be competitive with the MADS and RAGS algorithms. In addition, we 

find optimal damping coefficients for 150 test problems and show that there exists a threshold 

for the number of dampers used, where no significant improvement is made if more dampers are 

installed in the retrofitting system. Finally, we show that this threshold is achieved faster for 

MADS and RAGS than for GA. 

4.1 Damper Location Optimization 

The algorithm used for the outer-loop is the inserting dampers method from the previous 

chapter, Section  3.2.2. This is a heuristic algorithm, which was shown to be the most effective 

among others at finding the optimal configuration of dampers. Therefore, in this chapter, the 

inserting dampers method is used to find the optimal configuration of limited number of 

dampers.  

4.2 Damping Coefficients Optimization 

The main purpose of the inner-loop of the optimization algorithm (the dashed box in 

Figure  3-4) is to find optimal damping coefficients of dampers for a fixed configuration of 

damper connectors.  

As derivative information of the objective function is not available for the optimization 

problem, the inner-loop requires the use of a non-gradient based method to find the optimal 

damping coefficients for a fixed configuration of dampers. We consider 3 such methods herein. 
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4.2.1 Genetic algorithm 

The genetic algorithm (GA) is a popular heuristic search method. It is shown to be an 

efficient method, particularly in engineering applications (see [24], [49], [50], [69] and 

references therein). A simple GA consists of several steps, including the generation of initial 

points, selection, competition and reproduction [64]. In this thesis, we use the GA in a standard 

form that is included in the MATLAB global optimization toolbox. 

4.2.2 Mesh adaptive direct search 

The mesh adaptive direct search (MADS) method [67] is a sub category of pattern search 

(PS) methods. In general, PS methods start with an initial point. The objective function is then 

evaluated at a set of points generated by a poll basis within a search radius of the initial point. If 

a point with a lower function value is found, then the algorithm updates the current point and 

loops. If a point with a lower function value is not found, then the search radius is reduced and 

the algorithm loops. Once a desired level of accuracy is achieved, the algorithm terminates. 

Specific to MADS, randomly rotated bases are used in each iteration to provide a more robust 

convergence. 

4.2.3 Robust approximate gradient sampling 

The robust approximate gradient sampling algorithm (RAGS algorithm) is a derivative free 

optimization algorithm that exploits the smooth substructure of the finite minimax problem, 

}.,...,1:max()(where)(min NifxFxF i
x

   Eq  4-1 

In RAGS algorithm we assume each if  is continuously differentiable, but no gradient 

information is available. Conventional DFO methods, like MADS, include a polling step in 

which the objective function is evaluated at certain points around the current point. Then they 

move toward a direction which leads to a decrease in objective function. This is fine; but it is 

likely to get stuck on sharp ridges, e.g. see Figure  4-1. In this figure, the straight dashed line is a 

sharp ridge, the dotted lines represent contour plot of a non-differentiable function, the optimal 

point is represented by a star, and the solid lines are the path of convergence for a DFO method. 
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Figure  4-1: Convergence path of a conventional DFO method for a non-
differentiable function 

 

This becomes even more crucial for minimax problems as they are most likely to have many 

sharp non-differentiable ridges. RAGS uses a random sampling to generate an “approximate 

subdifferential” that reflects the shape of the function including sharp ridges. This can prevent 

the algorithm from getting stuck on sharp ridges. In other words, when the current iterate is close 

to a point of non-differentiability, RAGS algorithm is likely to move along non-differentiable 

ridges. The design and implementation of the RAGS algorithm is not within the scope of this 

thesis. See [68] for further information. 

4.3 Numerical tests 

In this section, we present results for various numerical problems for damper-connected 

structures. The number of required simulations and quality measures of the previously presented 

non-gradient based methods are compared. 
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4.3.1 Test problems 

In order to compare the presented methods, three different sets of mechanical properties and 

five different sets of heights for the buildings are considered. These are provided in Table  3-1 

and Table  3-2. Note that due to limited computational resources, only five heights (of total eight 

heights) are tested in this chapter.  

In Table  3-2, fa and fb represent the number of floors for buildings a and b, respectively. For 

all numerical examples, to generate the ground excitation spectrum, we use the following values 

for the ground acceleration parameters used in Eq 2-15: ௚߱ ൌ ௚ߦ ,ݏ/݀ܽݎ	15 ൌ 0.6, and ܵ଴ ൌ

4.65 ൈ 10ିସ݉ଶ/݀ܽݎ.  .ଷ (These parameter values are the same as those used in [7], [37], [39]ݏ

For each of the 3 sets of mechanical properties, the number of dampers changes from 1 to 10. 

Therefore, incorporating all 5 building height combinations, a total of 150 test problems are 

generated, representing a wide range of situations. Each problem is solved via a combination of 

the inserting dampers method and a non-gradient based method (either GA, MADS or RAGS). 

Optimal arrangements and damping coefficients, as well as corresponding objective functions are 

determined. 

4.3.2 Solution time and quality 

In order to compare the presented methods, 150 test problems, which are defined in the 

above paragraph, are solved using the presented DFO methods. Note that these problems cover 

different sets of materials, different heights for the buildings, and different number of dampers; 

therefore it is expected that the results represent a wide range of problems.  

 Table B-1 to Table B-3 show the number of function calls required and the optimal 

objective function values obtained using various methods. For the sake of brevity, optimal design 

variables, including configurations of dampers and damping coefficients, are not included.  

Note that in Table B-1 to Table B-3, instead of reporting solution times in seconds, the 

number of performed simulations is reported. Each simulation would take approximately 2 

seconds. However, as test problems are sequentially stored in MATLAB's memory for the sake 

of solving one problem after the other, MATLAB's processing speed decreases, and the 

simulations for the later problems take longer than for the very first problems. All in all, the 

number of simulations can be considered as a solid alternative for solution time (e.g. see [70]).  
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Clearly, the rate of convergence is a crucial factor for any optimization algorithm. In 

Figure  4-2, Figure  4-3 and Figure  4-4, we present sample convergence rates for Building Height 

I, Material Sets I, II and III, when connecting all adjacent floors, i.e., 10 dampers. In each figure 

we plot the objective value (a) and minimum objective value (b) for each function call. 

We see in Figure  4-2, Figure  4-3 and Figure  4-4, as GA is a stochastic based method, that 

GA evaluates the objective function at a wide range of points, resulting in a large range of 

function values. For the MADS algorithm, we see a similar variation in objective value range, 

with multiple spikes in the objective value as the number of function calls increases. We can see 

that RAGS converges quickly, with minimal objective value variation. This becomes even more 

evident in Figure  4-5, Figure  4-6, and Figure  4-7. Overall, we can see that, for these examples, 

RAGS converges much faster than GA and MADS. Furthermore, RAGS is shown to terminate 

with fewer function calls than MADS.  

 

Figure  4-2: Objective value vs. function call for Material I and Height I 
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Figure  4-3: Objective value vs. function call for Material II and Height I 

 

 

Figure  4-4: Objective value vs. function call for Material III and Height I  
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Figure  4-5: Convergence of the objective function vs. function calls for Material I 
and Height I 

 

 

Figure  4-6: Convergence of the objective function vs. function calls for Material II 
and Height I 
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Figure  4-7: Convergence of the objective function vs. function calls for Material III 
and Height I 

 

In order to investigate the overall performance of the presented methods, we use a 

performance profile [65] as explained in the previous chapter. As in the previous chapter, a 

method is considered as a “failed method” if the difference between the objective value obtained 
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problem exceeds the defined allowable tolerance. Performance profiles for the presented 
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several local minima. 
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Figure  4-8: Performance profiles for GA, MADS, and RAGS, with maximum 
allowable tolerance of 5% 

 

 

Figure  4-9: Performance profiles for GA, MADS, and RAGS, with maximum 
allowable tolerance of 2% 
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Figure  4-10: Performance profiles for GA, MADS, and RAGS, with maximum 
allowable tolerance of 1% 
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This inspires us to consider how many dampers are required by each of the algorithms to 

find an optimal solution. The optimal solution is taken to be the overall lowest value found by all 

three algorithms. We use 15 test problems (3 sets of mechanical properties and 5 sets of building 

heights). The results for a solution found within 5% and 1% of the optimal solution are displayed 

in Figure  4-14 and Figure  4-15. 

 

Figure  4-11: Objective value vs. number of installed dampers for Material I and 
Height I 
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Figure  4-12: Objective value vs. number of installed dampers for Material II and 
Height I 

 

 

Figure  4-13: Objective value vs. number of installed dampers for Material III and 
Height I 
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In Figure  4-14, there is clearly a cluster of problems solved within a tolerance of 5% using 

1-5 dampers. We see that MADS solves all 15 problems with 5 dampers or less and RAGS 

solves 14 of the 15 problems with 4 dampers or less. The problem that RAGS “did not solve” 

(DNS) was also one of the two problems “not solved” by GA. The DNS problem for RAGS 

found no additional function value decrease from its solution for 1 damper. Thus, we suspect that 

the initial iterate for the algorithm was close to a local minimum. For both problems that GA 

”did not solve”, a tolerance of approximately 7% was found with respect to the optimal solution. 

In Figure  4-15, we see a cluster of problems solved within a tolerance of 1% using 2-6 

dampers. We note that the problem which required 9 dampers for MADS to solve was the same 

problem that RAGS (and GA) ”did not solve” in Figure  4-14. The problem that required 10 

dampers for RAGS to solve was the other problem that GA ”did not solve” in Figure  4-14. 

It is clear that using a structured internal subroutine for the inner-loop of the bi-level 

problem presented in this thesis greatly increases the efficiency of the retrofitting system with 

respect to the number of dampers used. Although the different methods find a wide range of 

objective values for each number of dampers, the curve of lower bound of the objective function 

is still a decreasing function. For example, in Figure  4-13, we observe a couple of bumps in the 

plot. At first glance, we may conclude that the results obtained by MADS indicate that by 

increasing the number of dampers, we decrease the efficiency of the system. This is due to the 

different convergence rates of the presented optimization algorithms for different numbers of 

dampers. In other words, although these methods are multi-dimensional, a not-so-good starting 

point can prevent them from finding the true optimal solution. A quick fix for this issue would be 

to set the initial point of the next problem (one more damper) to the optimal point of the previous 

problem, with the additional damper position (increased dimension) set to zero. This will 

guarantee that all graphs obtained by each algorithm will be decreasing. However, in order to 

have an unbiased comparison in the presented results, a unique initial point for design variables 

is used for all test problems.  
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Figure  4-14: Cumulative number of dampers required with maximum tolerance of 
5% 

  

 

Figure  4-15: Cumulative number of dampers required with maximum tolerance of 
1% 
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4.4 Summary 

This chapter presents a comprehensive optimization procedure that can be used to design 

damper connected structures. In particular, two adjacent buildings are considered as lumped 

mass models connected to each other using discrete viscous dampers. A pseudo excitation 

formula is used to generate an earthquake load in a frequency domain. Considering a linear 

behaviour of the buildings, the dynamic response of the whole system is found. Using the 

dynamic response of the system, we calculated the desired objective function, i.e., the maximum 

inter-story drift.  

The optimization procedure consists of two parts including discrete and continuous 

optimizations. An outer-loop (discrete optimization algorithm) finds the best configuration of a 

limited number of dampers between two buildings; an inner-loop (continuous optimization 

algorithm) finds the optimal damping coefficients of the dampers. We considered three different 

algorithms (GA, MADS and RAGS), which can be used for the continuous optimization 

problem. In order to compare speed and robustness of these non-gradient based methods, 150 test 

problems were generated and solved via these three methods. Results showed that RAGS is the 

fastest method, while MADS is the most robust method. The robustness of MADS likely comes 

from its heuristics to avoid getting trapped in local minima; (such heuristics present an obvious 

direction of future study for the RAGS algorithm).  
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5 Conclusion 

This thesis considers how to determine an optimal design for the size (damping coefficient) 

and location of a limited number of viscous dampers to reduce damage from vibrations of 

adjacent structures during earthquake conditions. First, coupled buildings are modeled as a linear 

discrete multi-degree-of-freedom system consisting of a lumped mass, a linear spring and a 

linear damper for each floor. A pseudo excitation formula is used to generate an earthquake load 

in the frequency domain. Considering a linear behaviour of the buildings, the dynamic response 

of the whole system is found. Using the dynamic response of the system, we calculate the 

objective function. The optimization problem of damper connectors is done in two steps, location 

optimization and damping coefficients optimization. The placement of dampers is framed as the 

discrete optimization problem of minimizing the inter-story drift. On the other hand, 

determination of optimal damping coefficients is a continuous optimization problem. The 

resulting problem is a bi-level optimization problem, where the inter-story drift for a given 

damper placement is found by minimizing with respect to the damper coefficients. Based on a 

cluster of numerical tests, the proposed optimization approaches are compared and efficiency of 

them is examined. As an important outcome of this thesis, it is found that some methods are 

more robust and more efficient than other methods, such as genetic algorithm and maximum 

velocity, that had been used to find the optimal arrangement and mechanical properties of the 

damper connects. 

In Chapter 3, we focus on the discrete optimization problem of dampers placement. Five 

approaches are presented to determine the optimal configuration for a limited number of 

dampers: exhaustive search, inserting dampers, inserting floors, maximum relative velocity, and 

genetic algorithm. The exhaustive search method is theoretically the most robust method; 

however, due to the required CPU-time, it is shown to be totally intractable in difficult cases. On 

the other hand, the maximum velocity method is the fastest method since it determines the best 

arrangement in a single simulation. However, the numerical tests show that this method does not 

lead to a reasonable final result. Another drawback of the maximum velocity method is that this 

method is not sensitive to the objective function. A more accurate method is the inserting floors 

method. This method is faster than but not as accurate as the inserting dampers method. Also, the 

genetic algorithm method acts like the inserting floor method. The convergence rate is very fast; 
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however, results show that it might not be a reliable method for more accurate results. All in all, 

the presented performance profiles suggest that the inserting dampers method is the most 

practical method, providing an excellent balance between speed and accuracy. 

Furthermore, Chapter 3 examines the sensitivity of the response to the number of installed 

dampers through finding the objective function for the optimal arrangement for each specific 

number of dampers. Interestingly, the numerical results show that increasing the number of 

dampers does not necessarily improve the efficiency of the system; it can even exacerbate the 

dynamic behaviour of the buildings. The most likely reason for this is that, in Chapter  3, we 

assumed that all dampers have the same damping coefficient. Therefore the optimization 

problem of damping coefficients is a single variable problem which is solved by the use of a 

Golden Ratio bi-section method. Although this assumption has been widely used in many 

studies, presented results show that this assumption is not a valid assumption and can lead to 

very inefficient damping values. 

In Chapter 4, we remove the assumption of equal damping coefficients. Therefore the 

resulting optimization problem of damping coefficients becomes a continuous optimization 

problem with nd independent design variables where nd is the number of dampers. Since a series 

of simulations are used to compute the objective value, we are limited to methods that do not 

require derivatives, that is, non-gradient based methods. In Chapter 4, we use three non-gradient 

based algorithms including genetic algorithm (GA), mesh adaptive search method (MADS), and 

robust approximate gradient method (RAGS). In order to compare speed and robustness of these 

non-gradient based methods, 150 test problems were generated and solved via these three 

methods. Results showed that RAGS is the fastest method, while MADS is the most robust 

method. The robustness of MADS likely comes from its heuristics to avoid getting trapped in 

local minima; (such heuristics present an obvious direction of future study for the RAGS 

algorithm). Nevertheless, it is apparent that by exploiting the structure of the finite minimax 

problem, RAGS converges to a high quality solution in a fraction of the time of MADS and GA. 

Furthermore, Chapter 4 investigates the efficiency of the retrofitting system with respect to 

the number of dampers used. In Chapter 3, it was shown that when assuming equal damping 

coefficients, increasing the number of dampers may exacerbate the dynamic behaviour of the 

buildings. In Chapter 4, we removed the assumption of equal damping coefficients and found 
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that there exists a threshold for the number of dampers and the resulting efficiency of the system. 

Additionally, for 15 test problems, we showed that MADS and RAGS use a smaller number of 

dampers to find optimal (or close to optimal) solutions than GA, reiterating the benefit of using a 

structured internal subroutine for the inner-loop of our bi-level problem. 

5.1 Future work 

This thesis is limited to linear behaviour of the structures, lumped mass models, and viscous 

dampers. In order to determine more accurate results, we may need to improve the model used in 

this thesis. For example, instead of the simple MDOF model, a comprehensive 2- or 3-

dimensional finite element model is recommended for more accurate results. Since the linear 

model is not able to include damages and plastic hinges, a non-linear model can be used. In that 

case, non-linearity of some construction materials such as concrete can be included in the model 

which can improve the accuracy of the model. Finally, different damping devices may be 

considered. In this thesis, we considered a linear viscous damper with no stiffness element. 

However, we know that commercial dampers do not follow this linear relationship between force 

and velocity. Instead, a non-linear (polynominal) relationship can be used to calculate the force 

generated in commercial dampers. Furthermore, different types of dampers are commercially 

available other than viscous dampers. Among them, one can refer to friction dampers, metallic 

yield dampers, and Magnetorheological dampers. Mathematical models have been developed to 

represent the mechanical behaviour of different types of dampers and they can be replaced with 

the viscous damper model used in this thesis. 

In terms of optimization techniques, we can categorize them into discrete and continuous 

optimization methods. Various discrete optimization techniques can be developed to find the 

optimal arrangement of dampers. For example, we may develop a robust version of inserting 

dampers method by checking the first damper after all dampers are inserted, as: 

1- Apply the inserting dampers method and find the optimal configuration. 

2- Set the first iteration: i=1. 

3- Remove the ith damper and calculate the objective value. 

4- Put the damper back in the building, i=i+1 go to step 3, until all dampers are checked. 

5- Sort dampers by the level of usefulness, the least useful one is the one which almost has 

no negative effect if one removes it. 
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6- Remove the least useful damper. 

7- Search for the best place to put this damper. 

8- Put the damper at the best location. 

9- Follow a similar procedure for the next least useful damper. 

10- Keep on until all dampers are relocated. 

Furthermore, step 1 can be replaced with a random initial guess. These methods can be used 

to find the optimal arrangement of dampers. Note that, in general, discrete heuristic methods are 

not proven to result in the global optimal solution. 

Besides the discrete optimization loop that is used to find the optimal configuration of the 

dampers, we use a derivative free optimization (DFO) method to find optimal damping 

coefficients of the dampers. In this thesis, we use three different DFO methods including GA, 

MADS, and RAGS. There are several other DFO methods which have been shown to be very 

effective in solving engineering problem. Among them, one can refer to the Nelder-Mead 

method, simulated annealing, and particle swarm optimization. It would be interesting to apply 

such methods and compare them in terms of efficiency and robustness. Another challenging 

issue in this thesis was the existence of local minima. Different techniques, such as multiple 

random restarts, may be used in order to avoid getting stuck in local minima. 

All in all, it seems that the biggest issue is the solution time, particularly when we let 

dampers have different damping coefficients. Any change that decrease the solution time will be 

a very important improvement. A simple method is to use the assumption of equal damping 

coefficients to find the optimal configuration of dampers. Then, by applying a DFO method, we 

may find the optimal damping coefficients of the dampers. However, it is possible that the 

optimal configuration found under the assumption of equal damping coefficients prevents us 

from finding the global optimal solution. On the other hand, the difference between the global 

minimum and the sub-optimal solution found by this approach might be negligible. Hence, for a 

fair judgement, a convincing number of problems must be solved and results must be compared. 

Another method is to use a function to approximate the relationship between the damping 

coefficients and the height. For example, we may use a linear function, ܥௗሺ݅ሻ ൌ ܽ ൈ ݅ ൅ ܾ, where 

 ,ௗሺ݅ሻ is the damping coeffient of the damper installed at the ith floor. The function parameters, aܥ
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and b, must be determined by a DFO method. In other words, by doing this, we reduce the size 

of the optimization problem from nd to 2, where nd is the number of dampers. 

Last, but not least, it should be noted that the basic optimization idea used in this thesis can 

be used for different structural problems. For example, instead of adjacent buildings, one can 

solve the problem of dampers placement for a single building; or even for a simple beam. The 

simple lumped mass model used in this study not only represents adjacent buildings, but also it 

can be used to model the mechanical behaviour of different structures such as lateral vibrations 

of two parallel beams and so on. The bi-level optimization method introduced and used in this 

thesis enables us to use similar methodology for finding the optimal location and size of 

actuators on different structures, such as aerospace structures, plates, shells, panels, etc.  
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Appendices 

Appendix A: Results for Optimization of Configuration of Dampers 

 

Table A-1: Optimal design, mechanical properties of set 1 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 1 1 ID 3.01E+07 [0000100000] 2.58E+07 [0000100000] 

IF 3.01E+07 [0000100000] 1.57E+07 [0000000100] 

ES 3.02E+07 [0000100000] 2.58E+07 [0000100000] 

MV 1.17E+07 [0000000001] 1.22E+07 [0000000001] 

GA 3.02E+07 [0000100000] 2.58E+07 [0000100000] 

3 ID 1.83E+07 [1010100000] 7.33E+06 [0010100001] 

IF 1.45E+07 [0110010000] 9.01E+06 [0101000010] 

ES 1.83E+07 [1010100000] 8.35E+06 [0011000010] 

MV 4.49E+06 [0000000111] 4.45E+06 [0000000111] 

GA 1.37E+07 [1001001000] 9.47E+06 [0110000001] 

5 ID 1.06E+07 [1111100000] 5.93E+06 [0111100001] 

IF 1.14E+07 [1111010000] 5.55E+06 [0111010001] 

ES 1.14E+07 [1111010000] 7.80E+06 [1111000010] 

MV 3.25E+06 [0000011111] 3.06E+06 [0000011111] 

GA 1.06E+07 [1111000100] 8.22E+06 [1111000100] 

8 ID 4.49E+06 [1111111100] 3.36E+06 [1111110011] 

IF 4.49E+06 [1111111100] 3.36E+06 [1111110011] 

ES 4.49E+06 [1111111100] 3.37E+06 [1111110011] 

MV 2.67E+06 [0011111111] 2.42E+06 [0011111111] 

GA 4.06E+06 [1111110101] 3.57E+06 [1111111001] 

Case 2 1 ID 1.26E+07 [0000000001] 1.15E+07 [0000000001] 

IF 1.90E+07 [0000001000] 1.63E+07 [0000001000] 

ES 1.26E+07 [0000000001] 1.16E+07 [0000000001] 

MV 1.26E+07 [0000000001] 1.16E+07 [0000000001] 

GA 1.26E+07 [0000000001] 1.16E+07 [0000000001] 

3 ID 3.21E+07 [0001100001] 4.07E+07 [0001100001] 

IF 3.82E+07 [0010010001] 4.28E+07 [0010100001] 

ES 3.22E+07 [0001100001] 4.09E+07 [0001100001] 

MV 7.44E+07 [0000000111] 7.78E+07 [0000000111] 

GA 4.60E+07 [0010000101] 5.10E+07 [0100010001] 

5 ID 2.58E+07 [0111100001] 3.43E+07 [0111100001] 

IF 2.89E+07 [1101100001] 4.07E+07 [1110010001] 

ES 2.58E+07 [0111100001] 3.43E+07 [0111100001] 
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MV 3.32E+07 [0000011111] 3.64E+07 [0000011111] 

GA 3.32E+07 [1101001001] 3.43E+07 [0111100001] 

8 ID 2.44E+07 [1111111001] 3.09E+07 [1111111001] 

IF 2.44E+07 [1111111001] 3.09E+07 [1111111001] 

ES 2.45E+07 [1111111001] 3.12E+07 [1111111001] 

MV 1.93E+07 [0011111111] 2.25E+07 [0011111111] 

GA 2.45E+07 [1111111001] 2.37E+07 [1111110011] 

Case 3 1 ID 1.74E+07 [0000000001] 1.43E+07 [0000000001] 

IF 1.74E+07 [0000000001] 1.43E+07 [0000000001] 

ES 1.75E+07 [0000000001] 1.43E+07 [0000000001] 

MV 1.75E+07 [0000000001] 1.43E+07 [0000000001] 

GA 1.75E+07 [0000000001] 1.43E+07 [0000000001] 

3 ID 1.37E+07 [1010000001] 1.31E+07 [1100000001] 

IF 1.37E+07 [1010000001] 7.15E+06 [0100000011] 

ES 1.37E+07 [1010000001] 1.30E+07 [1100000001] 

MV 6.46E+06 [0000000111] 5.23E+06 [0000000111] 

GA 1.37E+07 [1010000001] 9.17E+06 [1000010001] 

5 ID 7.91E+06 [1110000011] 6.59E+06 [1110000011] 

IF 7.91E+06 [1110000011] 6.59E+06 [1110000011] 

ES 7.91E+06 [1110000011] 6.52E+06 [1110000011] 

MV 4.49E+06 [0000011111] 3.66E+06 [0000011111] 

GA 7.65E+06 [1101000011] 6.52E+06 [1101000101] 

8 ID 4.92E+06 [1111100111] 3.94E+06 [1111100111] 

IF 4.92E+06 [1111100111] 3.63E+06 [1111001111] 

ES 4.92E+06 [1111100111] 3.92E+06 [1111100111] 

MV 3.82E+06 [0011111111] 2.99E+06 [0011111111] 

GA 5.21E+06 [1111110011] 3.76E+06 [1111010111] 

Case 4 1 ID 3.85E+07 [0000000001] 3.52E+07 [0000000001] 

IF 5.60E+07 [0000000100] 4.65E+07 [0000000100] 

ES 3.88E+07 [0000000001] 3.50E+07 [0000000001] 

MV 3.88E+07 [0000000001] 3.50E+07 [0000000001] 

GA 3.88E+07 [0000000001] 3.50E+07 [0000000001] 

3 ID 4.12E+07 [1001000001] 4.49E+07 [1001000001] 

IF 4.12E+07 [1001000001] 4.49E+07 [1001000001] 

ES 4.12E+07 [1001000001] 4.45E+07 [1001000001] 

MV 1.90E+07 [0000000111] 1.53E+07 [0000000111] 

GA 3.89E+07 [0110000001] 4.45E+07 [1010000001] 

5 ID 2.44E+07 [1101000011] 2.60E+07 [1101000011] 

IF 2.49E+07 [1101000101] 2.94E+07 [1101001001] 

ES 2.41E+07 [1100100011] 2.67E+07 [1100100011] 

MV 1.85E+07 [0000011111] 1.26E+07 [0000011111] 

GA 2.28E+07 [1010010011] 2.58E+07 [1101000011] 

8 ID 1.45E+07 [1111100111] 1.49E+07 [1111010111] 
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IF 1.44E+07 [1111010111] 1.49E+07 [1111010111] 

ES 1.45E+07 [1111100111] 1.50E+07 [1111100111] 

MV 1.21E+07 [0011111111] 1.10E+07 [0011111111] 

GA 1.42E+07 [1110101111] 1.49E+07 [1111010111] 

Case 5 1 ID 2.67E+07 [0000000001] 2.22E+07 [0000000001] 

IF 2.67E+07 [0000000001] 2.22E+07 [0000000001] 

ES 2.67E+07 [0000000001] 2.22E+07 [0000000001] 

MV 2.67E+07 [0000000001] 2.22E+07 [0000000001] 

GA 2.67E+07 [0000000001] 2.22E+07 [0000000001] 

3 ID 2.51E+07 [1100000001] 2.14E+07 [1100000001] 

IF 1.80E+07 [0010100001] 1.66E+07 [0011000001] 

ES 2.50E+07 [1100000001] 2.14E+07 [1100000001] 

MV 9.94E+06 [0000000111] 8.46E+06 [0000000111] 

GA 1.38E+07 [0100000011] 1.00E+07 [0000010101] 

5 ID 1.28E+07 [1110000011] 1.09E+07 [1110000011] 

IF 1.36E+07 [1101001001] 1.23E+07 [1110001001] 

ES 1.27E+07 [1110000011] 1.09E+07 [1110000011] 

MV 6.96E+06 [0000011111] 5.95E+06 [0000011111] 

GA 1.16E+07 [1100100011] 7.38E+06 [0100100111] 

8 ID 7.04E+06 [1111001111] 6.08E+06 [1111001111] 

IF 7.78E+06 [1111011101] 6.76E+06 [1111011101] 

ES 7.01E+06 [1111001111] 6.07E+06 [1111001111] 

MV 5.81E+06 [0011111111] 4.97E+06 [0011111111] 

GA 6.65E+06 [1101101111] 5.88E+06 [1110101111] 
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Table A-2: Optimal design, mechanical properties of set 1 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 6 1 ID 3.04E+07 [00000000010000000000] 2.64E+07 [00000000010000000000] 

IF 3.04E+07 [00000000010000000000] 1.43E+07 [00000000000000000100] 

MV 1.24E+07 [00000000000000000001] 1.28E+07 [00000000000000000001] 

GA 3.05E+07 [00000000010000000000] 2.63E+07 [00000000010000000000] 

5 ID 1.24E+07 [11001010010000000000] 6.53E+06 [00011100010000000001] 

IF 1.09E+07 [00110101000100000000] 7.40E+06 [00111000100000000010] 

MV 2.89E+06 [00000000000000011111] 2.86E+06 [00000000000000011111] 

GA 9.94E+06 [01010001010010000000] 7.10E+06 [10001100010000000100] 

10 ID 6.31E+06 [11111111011000000000] 4.64E+06 [11111110110000000001] 

IF 6.76E+06 [11111110110010000000] 3.09E+06 [01111111000000000111] 

MV 1.81E+06 [00000000001111111111] 1.72E+06 [00000000001111111111] 

GA 4.38E+06 [01110111101001000100] 2.94E+06 [00110111101011000001] 

15 ID 2.93E+06 [11111111111111100000] 2.10E+06 [11111111111100000111] 

IF 2.81E+06 [11111111111110100100] 1.99E+06 [11111111111000001111] 

MV 1.50E+06 [00000111111111111111] 1.36E+06 [00000111111111111111] 

GA 2.74E+06 [11111111111101010100] 2.09E+06 [11111111111010001101] 

Case 7 1 ID 1.21E+07 [00000000000000000001] 1.12E+07 [00000000000000000001] 

IF 2.91E+07 [00000000010000000000] 2.48E+07 [00000000010000000000] 

MV 1.55E+07 [00000000000000010000] 1.38E+07 [00000000000000010000] 

GA 1.21E+07 [00000000000000000001] 1.13E+07 [00000000000000000001] 

5 ID 2.37E+07 [00000011110000000001] 3.49E+07 [00100001011000000001] 

IF 2.89E+07 [01010001001000000001] 4.09E+07 [11000100001000000001] 

MV 3.66E+06 [00000000000001111100] 3.18E+06 [00000000000001111100] 

GA 2.81E+07 [01001001001000000001] 3.24E+07 [00000101101000000001] 

10 ID 2.02E+07 [11110111110000000001] 2.82E+07 [11110101111000000001] 

IF 1.54E+07 [11101010111000000011] 2.16E+07 [11110110000011000011] 

MV 1.62E+07 [00000000001111111111] 1.83E+07 [00000000001111111111] 

GA 1.45E+07 [00101011101101000011] 2.52E+07 [00111011110110000001] 

15 ID 1.23E+07 [11111111111110000011] 1.55E+07 [11111111111110000011] 

IF 1.10E+07 [11111011111110000111] 1.37E+07 [11111011111110000111] 

MV 9.98E+06 [00000111111111111111] 1.17E+07 [00000111111111111111] 

GA 1.11E+07 [11111011111100011011] 1.37E+07 [11101111111100101011] 

Case 8 1 ID 1.84E+07 [00000000000000000001] 1.49E+07 [00000000000000000001] 

IF 1.49E+07 [00000000000000100000] 2.04E+07 [00000000000000100000] 

MV 1.83E+07 [00000000000000000001] 1.50E+07 [00000000000000000001] 

GA 1.83E+07 [00000000000000000001] 1.50E+07 [00000000000000000001] 

5 ID 1.24E+07 [11100100000000000001] 1.23E+07 [11101000000000000001] 

IF 8.66E+06 [01011000000000001001] 7.48E+06 [01101000000000010001] 

MV 4.20E+06 [00000000000000011111] 3.42E+06 [00000000000000011111] 
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GA 7.91E+06 [01001010000000000101] 5.69E+06 [00100010001000001001] 

10 ID 4.80E+06 [11111110000000000111] 4.17E+06 [11111110000000000111] 

IF 4.62E+06 [11111100001000000111] 3.26E+06 [11111000000100001111] 

MV 2.52E+06 [00000000001111111111] 2.02E+06 [00000000001111111111] 

GA 4.88E+06 [11111011000000100011] 3.28E+06 [10011010111000001011] 

15 ID 2.91E+06 [11111111110000011111] 2.26E+06 [11111111100000111111] 

IF 2.88E+06 [11111111100100011111] 2.17E+06 [11111110010100111111] 

MV 2.11E+06 [00000111111111111111] 1.65E+06 [00000111111111111111] 

GA 2.83E+06 [11111101100110101111] 2.18E+06 [11111110100100111111] 
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Table A-3: Optimal design, mechanical properties of set 2 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 1 1 ID 5.33E+07 [0000100000] 2.81E+07 [0000001000] 

IF 5.33E+07 [0000100000] 2.81E+07 [0000001000] 

ES 5.33E+07 [0000100000] 2.81E+07 [0000001000] 

MV 2.30E+07 [0000000001] 2.10E+07 [0000000001] 

GA 5.33E+07 [0000100000] 2.81E+07 [0000001000] 

3 ID 4.36E+07 [1100100000] 1.05E+07 [0001001010] 

IF 3.96E+07 [1010100000] 1.13E+07 [0001010010] 

ES 4.36E+07 [1100100000] 1.13E+07 [0001010010] 

MV 8.43E+06 [0000000111] 7.48E+06 [0000000111] 

GA 3.73E+07 [1100010000] 1.21E+07 [0010010010] 

5 ID 2.50E+07 [1111100000] 7.55E+06 [0011011010] 

IF 2.00E+07 [1111001000] 7.17E+06 [0011010101] 

ES 2.00E+07 [1111001000] 8.71E+06 [0110101010] 

MV 5.84E+06 [0000011111] 5.10E+06 [0000011111] 

GA 1.31E+07 [1011010100] 8.71E+06 [0110101010] 

8 ID 7.72E+06 [1111111010] 5.60E+06 [1111011110] 

IF 7.72E+06 [1111111010] 4.89E+06 [0111111011] 

ES 7.72E+06 [1111111010] 4.89E+06 [0111111011] 

MV 4.89E+06 [0011111111] 4.13E+06 [0011111111] 

GA 7.36E+06 [1111110101] 5.05E+06 [1011111101] 

Case 2 1 ID 6.24E+07 [0000000001] 5.21E+07 [0000000001] 

IF 6.24E+07 [0000000001] 5.21E+07 [0000000001] 

ES 6.24E+07 [0000000001] 5.21E+07 [0000000001] 

MV 6.24E+07 [0000000001] 5.21E+07 [0000000001] 

GA 6.24E+07 [0000000001] 5.21E+07 [0000000001] 

3 ID 3.13E+07 [0000110001] 4.81E+07 [1100000001] 

IF 2.74E+07 [0010000011] 2.70E+07 [1000000011] 

ES 3.13E+07 [0001010001] 4.81E+07 [1100000001] 

MV 2.40E+07 [0000000111] 1.93E+07 [0000000111] 

GA 3.18E+07 [0100001001] 3.62E+07 [0100100001] 

5 ID 2.04E+07 [1000110011] 2.45E+07 [1110000011] 

IF 1.92E+07 [0011010011] 2.45E+07 [1110000011] 

ES 2.07E+07 [1001100011] 2.45E+07 [1110000011] 

MV 1.74E+07 [0000011111] 1.35E+07 [0000011111] 

GA 2.07E+07 [1001100011] 1.82E+07 [0100110011] 

8 ID 1.39E+07 [1011110111] 1.36E+07 [1111001111] 

IF 1.42E+07 [1110110111] 1.36E+07 [1111001111] 

ES 1.41E+07 [1111001111] 1.36E+07 [1111001111] 

MV 1.30E+07 [0011111111] 1.13E+07 [0011111111] 
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GA 1.41E+07 [1111001111] 1.36E+07 [1111001111] 

Case 3 1 ID 8.03E+07 [0000000001] 6.57E+07 [0000000001] 

IF 8.03E+07 [0000000001] 6.57E+07 [0000000001] 

ES 8.03E+07 [0000000001] 6.57E+07 [0000000001] 

MV 8.03E+07 [0000000001] 6.57E+07 [0000000001] 

GA 8.03E+07 [0000000001] 6.57E+07 [0000000001] 

3 ID 9.23E+07 [0011000001] 7.29E+07 [0011000001] 

IF 9.43E+07 [0100100001] 7.15E+07 [0100100001] 

ES 9.23E+07 [0011000001] 7.29E+07 [0011000001] 

MV 3.46E+07 [0000000111] 2.60E+07 [0000000111] 

GA 8.61E+07 [0010010001] 7.53E+07 [0110000010] 

5 ID 7.89E+07 [1111000001] 7.01E+07 [1111000001] 

IF 7.61E+07 [1110100001] 6.65E+07 [1110100001] 

ES 7.89E+07 [1111000001] 7.01E+07 [1111000001] 

MV 4.48E+07 [0000011111] 2.03E+07 [0000011111] 

GA 4.94E+07 [0001110011] 3.81E+07 [1100100011] 

8 ID 4.17E+07 [1111110011] 3.26E+07 [1111110011] 

IF 4.17E+07 [1111110011] 3.26E+07 [1111110011] 

ES 4.17E+07 [1111110011] 3.26E+07 [1111110011] 

MV 3.36E+07 [0011111111] 2.00E+07 [0011111111] 

GA 4.37E+07 [1111110101] 3.26E+07 [1111110011] 

Case 4 1 ID 5.42E+08 [0000100000] 1.86E+08 [0000000100] 

IF 4.31E+07 [0000000010] 1.62E+08 [0000000010] 

ES 5.42E+08 [0000100000] 1.86E+08 [0000000100] 

MV 2.63E+07 [0000000001] 1.41E+08 [0000000001] 

GA 5.42E+08 [0000100000] 1.86E+08 [0000000100] 

3 ID 1.89E+08 [0000110001] 1.96E+08 [0000100101] 

IF 3.04E+08 [0010000101] 1.64E+08 [0110000001] 

ES 1.98E+08 [0001010001] 1.73E+08 [0001010001] 

MV 3.60E+08 [0000000111] 1.92E+08 [0000000111] 

GA 2.22E+08 [0000101001] 2.13E+08 [0010000101] 

5 ID 1.39E+08 [0011110001] 1.27E+08 [0001110101] 

IF 2.09E+08 [1101001001] 1.62E+08 [1110000101] 

ES 1.49E+08 [0101110001] 1.34E+08 [0101110001] 

MV 1.89E+08 [0000011111] 1.34E+08 [0000011111] 

GA 1.37E+08 [0111100010] 1.39E+08 [0010111001] 

8 ID 1.37E+08 [1111111001] 1.05E+08 [1111110101] 

IF 1.37E+08 [1111111001] 1.05E+08 [1111110101] 

ES 1.37E+08 [1111111001] 1.13E+08 [1111111001] 

MV 1.13E+08 [0011111111] 8.74E+07 [0011111111] 

GA 1.46E+08 [1101111101] 1.13E+08 [1111111001] 

Case 5 1 ID 2.79E+08 [0000000001] 1.86E+08 [0000000001] 

IF 2.79E+08 [0000000001] 1.86E+08 [0000000001] 
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ES 2.79E+08 [0000000001] 1.86E+08 [0000000001] 

MV 2.79E+08 [0000000001] 1.86E+08 [0000000001] 

GA 2.79E+08 [0000000001] 1.86E+08 [0000000001] 

3 ID 1.62E+08 [0100100001] 1.54E+08 [0100100001] 

IF 1.46E+08 [0010000101] 1.30E+08 [0010000101] 

ES 1.51E+08 [0010010001] 1.54E+08 [0100100001] 

MV 1.17E+08 [0000000111] 9.58E+07 [0000000111] 

GA 1.86E+08 [1000010010] 1.34E+08 [0001010001] 

5 ID 1.26E+08 [1100110001] 1.21E+08 [1100110001] 

IF 1.04E+08 [1010100011] 9.58E+07 [1010100011] 

ES 1.32E+08 [1101010001] 1.25E+08 [1101010001] 

MV 7.93E+07 [0000011111] 7.01E+07 [0000011111] 

GA 1.13E+08 [1010010101] 1.35E+08 [1110100001] 

8 ID 7.62E+07 [1111110011] 7.29E+07 [1111110011] 

IF 7.53E+07 [1111011011] 7.06E+07 [1111101011] 

ES 7.62E+07 [1111110011] 7.29E+07 [1111110011] 

MV 6.04E+07 [0011111111] 5.55E+07 [0011111111] 

GA 7.15E+07 [1101111011] 6.84E+07 [1110111011] 
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Table A-4: Optimal design, mechanical properties of set 2 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 6 1 ID 7.44E+07 [00000001000000000000] 5.21E+07 [00000000100000000000] 

IF 7.44E+07 [00000001000000000000] 2.75E+07 [00000000000000010000] 

MV 2.39E+07 [00000000000000000001] 2.21E+07 [00000000000000000001] 

GA 7.44E+07 [00000001000000000000] 5.21E+07 [00000000100000000000] 

5 ID 2.18E+07 [10010101000100000000] 1.21E+07 [00101100100000000010] 

IF 2.66E+07 [01111000000010000000] 1.13E+07 [00101010010000000010] 

MV 5.32E+06 [00000000000000011111] 4.76E+06 [00000000000000011111] 

GA 2.48E+07 [01101000110000000000] 1.19E+07 [10010010010000000010] 

10 ID 1.29E+07 [11111111100100000000] 7.93E+06 [11111110101000000010] 

IF 1.19E+07 [11111111100000100000] 4.94E+06 [00111111010000010011] 

MV 3.28E+06 [00000000001111111111] 2.82E+06 [00000000001111111111] 

GA 1.07E+07 [11111101101000100000] 6.00E+06 [11011101110000000110] 

15 ID 4.76E+06 [11111111111110010010] 3.60E+06 [11111111111100000111] 

IF 4.76E+06 [11111111111110010010] 3.42E+06 [11111111111000001111] 

MV 2.70E+06 [00000111111111111111] 2.30E+06 [00000111111111111111] 

GA 4.61E+06 [11111111101111100100] 3.76E+06 [11111111111101000110] 

Case 7 1 ID 6.11E+07 [00000000000000000001] 5.27E+07 [00000000000000000001] 

IF 7.45E+07 [00000000000000100000] 8.03E+07 [00000000000000100000] 

MV 6.11E+07 [00000000000000000001] 5.27E+07 [00000000000000000001] 

GA 6.11E+07 [00000000000000000001] 5.27E+07 [00000000000000000001] 

5 ID 3.27E+07 [11100000000001000001] 2.07E+07 [11000000000001000011] 

IF 3.23E+07 [11010000000000100001] 3.05E+07 [11100000000000100001] 

MV 1.50E+07 [00000000000000011111] 1.21E+07 [00000000000000011111] 

GA 2.42E+07 [00110000000010010001] 1.61E+07 [00001000000010100011] 

10 ID 1.32E+07 [11110000000011110011] 1.07E+07 [11110000000011001111] 

IF 1.53E+07 [11111100000001010101] 1.20E+07 [11111000000001011011] 

MV 8.78E+06 [00000000001111111111] 7.42E+06 [00000000001111111111] 

GA 1.34E+07 [10011110000001111001] 8.67E+06 [00011000001110011111] 

15 ID 8.25E+06 [11111000001111111111] 7.24E+06 [11111100000111111111] 

IF 8.82E+06 [11111110010010111111] 7.57E+06 [11111110000011111111] 

MV 6.88E+06 [00000111111111111111] 6.00E+06 [00000111111111111111] 

GA 7.71E+06 [01111000011111111111] 7.33E+06 [11111001100011111111] 

Case 8 1 ID 7.06E+07 [00000000000000000001] 6.04E+07 [00000000000000000001] 

IF 1.15E+08 [00000000000001000000] 6.36E+07 [00000000000000000010] 

MV 7.06E+07 [00000000000000000001] 6.04E+07 [00000000000000000001] 

GA 7.06E+07 [00000000000000000001] 6.04E+07 [00000000000000000001] 

5 ID 6.95E+07 [00001011001000000001] 6.24E+07 [01001010001000000001] 

IF 7.50E+07 [00110010001000000001] 3.69E+07 [00000100110000000011] 

MV 1.88E+07 [00000000000000011111] 1.48E+07 [00000000000000011111] 
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GA 6.78E+07 [00010010010100000001] 6.36E+07 [01100001001000000001] 

10 ID 5.21E+07 [11111111001000000001] 5.00E+07 [11111111001000000001] 

IF 3.95E+07 [11011011100010000011] 3.32E+07 [11111001011000000011] 

MV 2.75E+07 [00000000001111111111] 1.05E+07 [00000000001111111111] 

GA 4.57E+07 [11111000110101000001] 3.28E+07 [00111111101000001001] 

15 ID 2.82E+07 [11111111111110000011] 2.07E+07 [11111111111100000111] 

IF 2.82E+07 [11111111111110000011] 2.07E+07 [11111111111100000111] 

MV 2.05E+07 [00000111111111111111] 1.05E+07 [00000111111111111111] 

GA 2.61E+07 [11111101101111010011] 2.25E+07 [11111111111100100011] 
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Table A-5: Optimal design, mechanical properties of set 3 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 1 1 ID 1.54E+08 [0001000000] 5.92E+07 [0000001000] 

IF 1.54E+08 [0001000000] 5.92E+07 [0000001000] 

ES 1.54E+08 [0001000000] 5.92E+07 [0000001000] 

MV 4.45E+07 [0000000001] 4.42E+07 [0000000001] 

GA 1.54E+08 [0001000000] 5.92E+07 [0000001000] 

3 ID 6.24E+07 [0101100000] 2.22E+07 [0001001010] 

IF 7.87E+07 [1010100000] 2.39E+07 [0001010010] 

ES 7.53E+07 [0110100000] 2.39E+07 [0001010010] 

MV 1.64E+07 [0000000111] 1.59E+07 [0000000111] 

GA 7.53E+07 [0110100000] 3.32E+07 [0101000010] 

5 ID 5.31E+07 [1111100000] 1.68E+07 [0011101010] 

IF 5.31E+07 [1111100000] 1.84E+07 [0110101010] 

ES 5.31E+07 [1111100000] 1.84E+07 [0110101010] 

MV 1.14E+07 [0000011111] 1.07E+07 [0000011111] 

GA 2.53E+07 [1011010010] 1.59E+07 [0011011010] 

8 ID 1.60E+07 [1111111100] 1.23E+07 [1111101110] 

IF 1.60E+07 [1111111100] 1.26E+07 [1111110101] 

ES 1.60E+07 [1111111100] 1.26E+07 [1111110101] 

MV 9.72E+06 [0011111111] 8.71E+06 [0011111111] 

GA 1.49E+07 [1111110110] 1.26E+07 [1111110101] 

Case 2 1 ID 1.06E+08 [0000000001] 8.63E+07 [0000000001] 

IF 1.06E+08 [0000000001] 8.63E+07 [0000000001] 

ES 1.06E+08 [0000000001] 8.63E+07 [0000000001] 

MV 1.06E+08 [0000000001] 8.63E+07 [0000000001] 

GA 1.06E+08 [0000000001] 8.63E+07 [0000000001] 

3 ID 6.75E+07 [0010100001] 7.93E+07 [1100000001] 

IF 5.38E+07 [0010000011] 4.51E+07 [1000000011] 

ES 7.88E+07 [1001000001] 7.93E+07 [1100000001] 

MV 4.01E+07 [0000000111] 3.22E+07 [0000000111] 

GA 5.17E+07 [0001000011] 3.76E+07 [0000100011] 

5 ID 4.35E+07 [1010100011] 4.01E+07 [1110000011] 

IF 4.57E+07 [1101000011] 4.01E+07 [1110000011] 

ES 4.73E+07 [1110000011] 4.01E+07 [1110000011] 

MV 2.86E+07 [0000011111] 2.22E+07 [0000011111] 

GA 4.42E+07 [0110100101] 3.12E+07 [0110001011] 

8 ID 2.94E+07 [1111100111] 2.25E+07 [1111001111] 

IF 2.94E+07 [1111100111] 2.25E+07 [1111001111] 

ES 2.94E+07 [1111100111] 2.25E+07 [1111001111] 

MV 2.47E+07 [0011111111] 1.84E+07 [0011111111] 
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GA 2.94E+07 [1111100111] 2.25E+07 [1111001111] 

Case 3 1 ID 1.15E+08 [0000000001] 9.89E+07 [0000000001] 

IF 1.15E+08 [0000000001] 9.89E+07 [0000000001] 

ES 1.15E+08 [0000000001] 9.89E+07 [0000000001] 

MV 1.15E+08 [0000000001] 9.89E+07 [0000000001] 

GA 1.15E+08 [0000000001] 9.89E+07 [0000000001] 

3 ID 1.41E+08 [0011000001] 1.47E+08 [0011000001] 

IF 1.41E+08 [0100100001] 1.54E+08 [1000100001] 

ES 1.41E+08 [0011000001] 1.47E+08 [0011000001] 

MV 4.78E+07 [0000000111] 3.88E+07 [0000000111] 

GA 1.52E+08 [0110000001] 1.37E+08 [0000110001] 

5 ID 1.11E+08 [0111100001] 1.39E+08 [1111000001] 

IF 1.22E+08 [1110100001] 1.39E+08 [1110100001] 

ES 1.11E+08 [0111100001] 1.39E+08 [1111000001] 

MV 5.66E+07 [0000011111] 3.02E+07 [0000011111] 

GA 1.08E+08 [1110001001] 7.93E+07 [1001100011] 

8 ID 7.59E+07 [1111111001] 7.44E+07 [1111110011] 

IF 7.59E+07 [1111111001] 7.44E+07 [1111110011] 

ES 7.59E+07 [1111111001] 7.44E+07 [1111110011] 

MV 5.00E+07 [0011111111] 3.88E+07 [0011111111] 

GA 7.59E+07 [1111111001] 7.44E+07 [1111110011] 

Case 4 1 ID 2.99E+07 [0000000001] 2.61E+07 [0000000001] 

IF 3.32E+07 [0000000010] 2.96E+07 [0000000010] 

ES 2.99E+07 [0000000001] 2.61E+07 [0000000001] 

MV 2.99E+07 [0000000001] 2.61E+07 [0000000001] 

GA 2.99E+07 [0000000001] 2.61E+07 [0000000001] 

3 ID 5.14E+08 [0010010001] 4.21E+08 [0001010001] 

IF 5.59E+08 [0100100001] 5.77E+08 [1001000001] 

ES 5.14E+08 [0010010001] 4.21E+08 [0001010001] 

MV 1.31E+09 [0000000111] 1.03E+09 [0000000111] 

GA 5.59E+08 [0100100001] 4.58E+08 [0010010001] 

5 ID 4.43E+08 [1010011001] 3.72E+08 [1001011001] 

IF 4.88E+08 [1101001001] 5.70E+08 [1110000101] 

ES 4.57E+08 [1100101001] 3.44E+08 [1010110001] 

MV 4.88E+08 [0000011111] 4.04E+08 [0000011111] 

GA 4.63E+08 [0010010111] 3.72E+08 [1100110001] 

8 ID 3.14E+08 [1111111001] 2.83E+08 [1111111001] 

IF 3.14E+08 [1111111001] 2.83E+08 [1111111001] 

ES 3.14E+08 [1111111001] 2.83E+08 [1111111001] 

MV 7.72E+06 [0011111111] 6.65E+06 [0011111111] 

GA 3.60E+08 [1111011101] 2.98E+08 [1110111101] 

Case 5 1 ID 5.31E+08 [0000000100] 4.17E+08 [0000000100] 

IF 5.70E+08 [0000000010] 3.42E+08 [0000000010] 
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ES 5.31E+08 [0000000100] 4.17E+08 [0000000100] 

MV 2.52E+08 [0000000001] 1.59E+08 [0000000001] 

GA 5.31E+08 [0000000100] 4.17E+08 [0000000100] 

3 ID 2.94E+08 [0000100101] 2.79E+08 [0000100101] 

IF 3.35E+08 [1000100001] 3.31E+08 [1000100001] 

ES 3.24E+08 [0100010001] 3.14E+08 [0100010001] 

MV 3.88E+08 [0000000111] 3.46E+08 [0000000111] 

GA 3.24E+08 [0100010001] 2.92E+08 [0010010001] 

5 ID 2.57E+08 [1100100101] 2.52E+08 [1100100101] 

IF 2.13E+08 [1010100011] 2.09E+08 [1010100011] 

ES 2.57E+08 [1100101001] 2.55E+08 [1100101001] 

MV 2.09E+08 [0000011111] 1.96E+08 [0000011111] 

GA 2.52E+08 [1101010001] 2.52E+08 [1101010001] 

8 ID 1.56E+08 [1110110111] 1.52E+08 [1110110111] 

IF 1.56E+08 [1110110111] 1.57E+08 [1111011011] 

ES 1.57E+08 [1110111011] 1.56E+08 [1110111011] 

MV 1.36E+08 [0011111111] 1.34E+08 [0011111111] 

GA 1.56E+08 [1110110111] 1.74E+08 [1110111101] 
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Table A-6: Optimal design, mechanical properties of set 3 

      Objective Function F1   Objective Function F2 

Scenario nd Method Cd Arrangement   Cd Arrangement 

Case 6 1 ID 1.56E+08 [00000001000000000000] 1.11E+08 [00000000100000000000] 

IF 1.56E+08 [00000001000000000000] 5.44E+07 [00000000000000001000] 

MV 4.81E+07 [00000000000000000001] 4.75E+07 [00000000000000000001] 

GA 1.56E+08 [00000001000000000000] 1.11E+08 [00000000100000000000] 

5 ID 4.61E+07 [00111001010000000000] 2.50E+07 [00011100100000000001] 

IF 4.61E+07 [00111010000100000000] 2.81E+07 [00110101000000000100] 

MV 1.08E+07 [00000000000000011111] 1.03E+07 [00000000000000011111] 

GA 4.70E+07 [00111000110000000000] 2.55E+07 [10001100010000000010] 

10 ID 2.69E+07 [11111111010100000000] 1.68E+07 [11111101110000000001] 

IF 2.70E+07 [11111111100010000000] 1.31E+07 [01111111010000000101] 

MV 6.76E+06 [00000000001111111111] 6.19E+06 [00000000001111111111] 

GA 1.81E+07 [01111111001100001000] 1.21E+07 [11001111100100001100] 

15 ID 1.02E+07 [11111111111111001000] 7.67E+06 [11111111111100000111] 

IF 9.98E+06 [11111111111110100010] 7.29E+06 [11111111111000001111] 

MV 5.51E+06 [00000111111111111111] 4.89E+06 [00000111111111111111] 

GA 9.32E+06 [11111111111011000101] 7.10E+06 [11111111100110011011] 

Case 7 1 ID 1.08E+08 [00000000000000000001] 8.91E+07 [00000000000000000001] 

IF 1.65E+08 [00000000000000100000] 1.39E+08 [00000000000000100000] 

MV 1.08E+08 [00000000000000000001] 8.91E+07 [00000000000000000001] 

GA 1.08E+08 [00000000000000000001] 8.91E+07 [00000000000000000001] 

5 ID 6.55E+07 [11100000001000000001] 3.62E+07 [11000000000100000011] 

IF 5.75E+07 [01101000000001000001] 5.21E+07 [11100000000001000001] 

MV 2.53E+07 [00000000000000011111] 2.04E+07 [00000000000000011111] 

GA 7.61E+07 [11100100000000000001] 3.69E+07 [10010000001000000110] 

10 ID 2.94E+07 [11111100001000100011] 2.07E+07 [11111000000101000111] 

IF 2.89E+07 [11111100000010010011] 2.00E+07 [11111000000010010111] 

MV 1.58E+07 [00000000001111111111] 1.24E+07 [00000000001111111111] 

GA 2.62E+07 [11110010001010000111] 1.75E+07 [01110100001010001111] 

15 ID 1.72E+07 [11111110001110101111] 1.26E+07 [11111110000101111111] 

IF 1.75E+07 [11111111001010101111] 1.25E+07 [11111110000011111111] 

MV 1.33E+07 [00000111111111111111] 1.00E+07 [00000111111111111111] 

GA 1.76E+07 [11111111010100101111] 1.31E+07 [11111110001011101111] 

Case 8 1 ID 1.13E+08 [00000000000000000001] 9.89E+07 [00000000000000000001] 

IF 1.76E+08 [00000000000001000000] 1.44E+08 [00000000000000100000] 

MV 1.13E+08 [00000000000000000001] 9.89E+07 [00000000000000000001] 

GA 1.13E+08 [00000000000000000001] 9.89E+07 [00000000000000000001] 

5 ID 1.13E+08 [00010010101000000001] 1.34E+08 [10001001001000000001] 

IF 1.20E+08 [00101001010000000001] 1.30E+08 [01001001001000000001] 

MV 2.96E+07 [00000000000000011111] 2.40E+07 [00000000000000011111] 
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GA 1.10E+08 [00000101101000000001] 1.10E+08 [00001110000001000001] 

10 ID 8.42E+07 [11110111101000000001] 6.92E+07 [11111001101000000011] 

IF 6.14E+07 [01110101111000000011] 6.92E+07 [11110110001100000011] 

MV 3.67E+07 [00000000001111111111] 1.75E+07 [00000000001111111111] 

GA 7.10E+07 [11110010011011000001] 9.77E+07 [11111011101000000001] 

15 ID 4.60E+07 [11111111111110000011] 4.45E+07 [11111111111100000111] 

IF 4.60E+07 [11111111111110000011] 4.45E+07 [11111111111100000111] 

MV 3.07E+07 [00000111111111111111] 2.96E+07 [00000111111111111111] 

GA 3.90E+07 [11011111101111000111] 4.23E+07 [11101111111010100111] 
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Table A-7: Results for mechanical set 1 and objective function F1 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  49.0 78.9 48.2 4.8 92.2  10.1 10.1 10.1 12.4 10.1 

 3  132.0 107.7 762.0 4.7 86.7  8.7 8.7 8.7 12.1 9.6 

 5  197.5 126.8 1490.6 4.7 88.0  8.6 8.2 8.2 11.9 8.6 

 8  248.5 82.1 257.2 4.1 84.6  9.5 9.5 9.5 10.6 9.7 

Case 2 1  72.8 98.2 77.4 6.2 121.9  43.3 49.2 43.3 43.3 43.3 

 3  192.8 175.1 893.5 5.8 117.6  20.0 21.2 20.0 42.4 27.2 

 5  295.6 194.5 1834.9 5.4 175.2  18.7 19.3 18.7 29.0 21.7 

 8  380.0 133.9 326.2 6.1 115.2  20.5 20.5 20.5 24.5 20.5 

Case 3 1  73.3 99.6 73.2 5.8 123.2  15.9 15.9 15.9 15.9 15.9 

 3  236.5 205.8 1072.8 6.9 163.7  15.1 15.1 15.1 16.2 15.1 

 5  380.8 256.6 2132.6 6.1 151.9  15.4 15.4 15.4 16.4 15.5 

 8  526.1 166.8 362.6 6.4 136.4  15.9 15.9 15.9 16.5 15.9 

Case 4 1  175.0 230.8 192.6 10.8 224.9  81.9 85.3 81.9 81.9 81.9 

 3  506.0 430.9 3264.3 10.3 250.1  57.3 57.3 57.3 77.2 59.4 

 5  798.6 491.5 6216.6 14.2 271.1  59.4 60.9 59.3 69.1 60.1 

 8  1065.7 394.5 1109.2 12.8 263.3  63.5 63.6 63.5 66.9 64.2 

Case 5 1  183.8 239.9 203.0 10.3 209.7  59.4 59.4 59.4 59.4 59.4 

 3  451.4 406.6 2202.3 10.3 207.7  60.1 65.1 60.1 63.4 61.5 

 5  682.3 433.9 4332.7 10.3 200.8  63.1 67.0 63.1 66.6 64.1 

 8  887.0 282.8 1096.7 10.3 205.2  67.5 70.3 67.5 69.4 68.0 

Case 6 1  247.9 224.7 - 8.1 323.2  17.7 17.7 - 21.4 17.7 

 5  1156.0 667.7 - 7.7 322.3  14.7 13.9 - 21.3 15.1 

 10  1996.8 978.1 - 7.8 303.9  13.7 13.6 - 20.6 15.3 

 15  2511.8 782.3 - 7.8 805.0  15.5 15.6 - 18.4 15.7 

Case 7 1  427.1 522.9 - 16.2 658.6  85.2 107.0 - 179.9 85.2 

 5  1981.4 1433.3 - 15.2 651.4  30.7 32.0 - 93.8 31.8 

 10  3621.3 1969.0 - 15.2 1256.6  30.7 33.3 - 46.4 34.6 

 15  4116.1 1566.8 - 14.3 999.6  34.0 35.6 - 41.1 37.4 

Case 8 1  466.7 484.4 - 16.2 681.1  29.6 62.5 - 29.6 29.6 

 5  2862.0 1745.2 - 15.2 766.9  26.6 27.1 - 30.4 27.1 

 10  5704.5 2721.5 - 16.2 2843.1  27.0 27.2 - 29.5 27.3 

 15  6486.4 2161.7 - 16.2 881.7  27.9 27.9 - 29.1 28.2 
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Table A-8: Results for mechanical set 1 and objective function F2 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  46.3 75.6 51.4 4.3 85.9  97.9 107.8 97.9 98.3 97.9 

 3  122.8 101.3 578.7 4.3 87.0  95.1 94.9 94.8 98.9 95.1 

 5  182.0 116.4 1270.0 4.6 83.3  94.6 94.7 94.5 100.0 94.7 

 8  241.5 83.7 218.9 4.6 86.4  95.0 95.0 95.0 96.4 95.2 

Case 2 1  76.2 97.4 75.0 6.1 124.8  525.9 625.0 525.9 525.9 525.9 

 3  201.4 163.5 871.0 5.8 121.3  278.6 281.7 278.6 528.6 296.6 

 5  290.0 195.0 1797.3 6.1 125.3  271.5 285.3 271.5 379.8 271.5 

 8  371.8 124.5 318.8 6.2 115.5  292.8 292.8 292.8 334.0 301.4 

Case 3 1  72.1 94.7 73.5 6.2 123.0  254.8 254.8 254.8 254.8 254.8 

 3  203.2 162.7 880.6 5.9 124.8  252.8 255.7 252.8 259.9 258.7 

 5  299.4 194.7 1837.1 5.9 122.7  256.2 256.2 256.2 266.1 260.0 

 8  392.6 134.7 318.4 5.4 119.0  263.5 263.6 263.5 268.1 263.8 

Case 4 1  160.7 236.7 191.1 11.1 199.5  1833.8 2061.3 1833.8 1833.8 1833.8 

 3  423.5 394.8 2127.8 11.0 199.2  1558.3 1558.3 1558.3 1823.5 1574.8 

 5  626.4 417.5 4139.4 10.3 299.3  1615.3 1676.2 1608.7 1797.4 1615.3 

 8  828.4 284.8 904.8 9.1 194.3  1730.0 1730.0 1730.0 1805.9 1730.0 

Case 5 1  167.7 218.9 204.2 9.7 199.6  1466.9 1466.9 1466.9 1466.9 1466.9 

 3  439.5 376.4 2329.1 10.3 208.2  1459.5 1549.1 1459.5 1544.5 1578.4 

 5  650.6 430.6 4675.2 10.4 389.8  1519.6 1581.2 1519.6 1602.7 1569.6 

 8  865.7 295.2 865.9 10.3 212.6  1609.7 1667.1 1609.7 1652.6 1615.4 

Case 6 1  238.3 195.9 - 8.2 323.9  321.1 336.5 - 323.9 321.1 

 5  1108.2 730.8 - 7.7 462.9  303.8 303.7 - 333.8 305.9 

 10  1900.0 937.5 - 7.7 314.9  303.6 305.5 - 339.8 307.4 

 15  2380.0 788.9 - 8.2 487.7  306.0 306.9 - 320.0 307.0 

Case 7 1  420.0 504.1 - 17.1 673.9  1997.7 2653.6 - 4059.5 1997.7 

 5  1964.7 1345.5 - 15.2 655.9  910.6 930.5 - 2299.3 916.4 

 10  3351.1 1893.6 - 15.2 654.5  943.7 1025.7 - 1236.2 1000.3 

 15  4223.4 1595.0 - 16.3 654.7  995.5 1016.3 - 1137.1 1047.9 

Case 8 1  436.4 506.9 - 17.1 679.5  928.6 1627.9 - 928.6 928.6 

 5  2040.7 1346.0 - 16.1 1295.6  870.3 888.6 - 940.8 898.9 

 10  4023.3 1896.7 - 15.3 641.5  885.9 893.6 - 938.7 908.6 

 15  4573.1 1597.2 - 16.2 660.0  909.6 911.9 - 931.9 911.3 
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Table A-9: Results for mechanical set 2 and objective function F1 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  47.6 58.9 58.9 4.6 88.2  4.7 4.7 4.7 5.1 4.7 

 3  130.5 88.9 572.0 4.6 128.0  4.3 4.3 4.3 4.9 4.3 

 5  192.5 113.0 1187.9 4.6 85.9  4.3 4.3 4.3 4.7 4.4 

 8  250.0 83.0 263.8 4.1 82.6  4.4 4.4 4.4 4.6 4.4 

Case 2 1  80.3 107.3 76.3 6.1 127.1  2.4 2.4 2.4 2.4 2.4 

 3  247.5 213.0 1051.6 6.1 144.8  2.4 2.4 2.4 2.4 2.4 

 5  371.8 237.5 2271.4 6.9 152.1  2.4 2.4 2.4 2.4 2.4 

 8  500.3 186.4 460.7 8.1 166.8  2.4 2.4 2.4 2.4 2.4 

Case 3 1  77.8 87.6 74.3 6.9 125.1  5.0 5.0 5.0 5.0 5.0 

 3  256.9 197.1 1038.2 6.3 128.5  3.3 3.5 3.3 4.8 3.5 

 5  388.9 240.2 2465.1 10.2 163.0  3.2 3.2 3.2 4.5 3.7 

 8  513.8 176.0 469.7 8.7 169.8  3.5 3.5 3.5 3.9 3.5 

Case 4 1  184.5 254.9 202.8 12.8 221.7  38.6 44.2 38.6 47.4 38.6 

 3  478.3 390.4 2649.0 9.7 183.3  28.4 31.0 28.3 37.6 28.6 

 5  669.6 457.8 4925.3 9.1 253.4  27.2 28.0 27.2 31.2 31.5 

 8  845.5 293.5 883.6 10.3 194.6  27.0 27.0 27.0 29.1 27.8 

Case 5 1  191.6 242.0 212.9 10.3 235.7  19.3 19.3 19.3 19.3 19.3 

 3  459.2 404.2 1958.1 9.7 183.4  12.3 13.0 12.2 15.6 14.9 

 5  673.1 475.9 4816.5 9.1 196.9  12.4 12.7 12.4 13.8 12.7 

 8  867.7 295.6 904.3 10.3 296.6  12.8 12.9 12.8 13.2 12.9 

Case 6 1  252.7 203.4 - 8.5 324.0  7.1 7.1 - 7.9 7.1 

 5  1155.5 619.0 - 8.1 469.8  6.4 6.2 - 7.7 6.4 

 10  1975.3 872.3 - 7.6 793.6  6.3 6.3 - 7.7 6.4 

 15  2490.3 729.1 - 8.1 309.4  6.7 6.7 - 7.2 6.7 

Case 7 1  441.0 597.5 - 16.2 680.9  4.5 4.9 - 4.5 4.5 

 5  2392.3 1707.1 - 17.1 1325.9  4.0 4.1 - 4.5 4.1 

 10  4320.9 2646.8 - 19.0 932.3  4.1 4.1 - 4.1 4.1 

 15  5523.5 2250.9 - 21.1 1400.8  4.1 4.1 - 4.2 4.1 

Case 8 1  438.8 487.8 - 14.2 670.8  10.3 10.9 - 10.3 10.3 

 5  2448.3 1547.1 - 17.1 827.8  6.1 6.2 - 10.0 6.2 

 10  4398.2 2301.4 - 20.0 921.7  6.0 6.4 - 8.6 6.4 

 15  5557.3 1897.6 - 20.3 1380.1  6.4 6.4 - 7.5 6.8 
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Table A-10: Results for mechanical set 2 and objective function F2 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  47.3 76.3 52.7 4.9 86.3  40.1 40.1 40.1 40.5 40.1 

 3  129.0 106.1 604.3 4.6 83.7  39.8 39.8 39.8 40.1 39.8 

 5  191.1 120.4 1332.3 4.6 83.7  39.7 39.7 39.7 39.8 39.7 

 8  247.2 84.1 225.1 4.6 85.2  39.7 39.7 39.7 39.7 39.7 

Case 2 1  75.9 101.7 69.8 6.2 117.5  41.5 41.5 41.5 41.5 41.5 

 3  211.8 170.3 894.2 6.4 121.2  41.6 41.9 41.6 42.3 42.4 

 5  316.0 191.6 1927.7 6.6 129.9  42.1 42.1 42.1 43.1 42.9 

 8  409.2 146.8 328.2 5.9 123.8  43.2 43.2 43.2 43.9 43.2 

Case 3 1  76.9 99.3 73.1 6.2 118.4  65.6 65.6 65.6 65.6 65.6 

 3  204.4 165.0 887.0 6.2 120.4  55.9 57.3 55.9 65.9 63.4 

 5  305.8 187.8 1786.6 5.8 115.4  55.4 56.1 55.4 65.4 61.1 

 8  392.1 130.7 312.2 5.9 115.8  59.8 59.8 59.8 63.9 59.8 

Case 4 1  146.7 226.3 181.7 8.0 171.0  1035.1 1045.2 1035.1 1068.5 1035.1 

 3  395.7 366.6 2469.5 8.5 171.8  746.2 810.0 704.7 922.9 777.6 

 5  594.2 435.0 4928.6 9.7 178.6  722.9 780.2 695.7 794.5 703.7 

 8  789.4 263.9 813.4 9.8 195.8  724.1 724.1 707.8 750.0 707.8 

Case 5 1  160.3 222.1 181.3 9.2 190.8  503.6 503.6 503.6 503.6 503.6 

 3  442.2 382.7 2030.6 9.7 187.2  360.8 383.3 360.8 448.8 362.3 

 5  654.2 438.6 4662.6 9.7 203.9  365.8 374.3 364.1 408.1 366.2 

 8  855.0 288.3 826.8 10.9 206.6  377.5 380.0 377.5 392.9 382.2 

Case 6 1  243.3 232.1 - 8.2 313.2  121.9 133.3 - 123.1 121.9 

 5  1105.8 593.1 - 8.3 312.0  118.3 118.4 - 123.9 118.6 

 10  1912.7 854.4 - 8.7 306.9  118.4 118.6 - 126.5 118.4 

 15  2397.3 840.8 - 8.2 624.0  118.7 118.8 - 121.6 119.0 

Case 7 1  436.0 509.6 - 17.1 654.3  144.7 168.2 - 144.7 144.7 

 5  2011.4 1348.8 - 15.3 681.2  140.4 140.6 - 145.4 141.2 

 10  3515.8 2005.8 - 16.3 648.3  141.7 142.3 - 143.3 142.9 

 15  4412.5 1867.2 - 17.3 682.0  143.8 144.2 - 146.8 144.4 

Case 8 1  436.7 499.1 - 16.1 648.1  257.1 261.4 - 257.1 257.1 

 5  1933.2 1350.6 - 18.1 942.3  210.2 219.3 - 260.3 210.8 

 10  3419.4 2143.3 - 13.3 634.0  216.0 215.9 - 248.3 221.0 

 15  4233.3 1916.5 - 13.4 635.2  221.3 221.3 - 240.3 223.6 
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Table A-11: Results for mechanical set 3 and objective function F1 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  48.0 74.8 59.8 4.9 90.0  5.4 5.4 5.4 6.2 5.4 

 3  135.5 137.2 600.2 4.6 133.0  5.0 4.9 4.9 5.9 4.9 

 5  199.6 134.9 1516.1 4.9 88.9  4.8 4.8 4.8 5.7 5.2 

 8  257.5 82.6 211.4 4.3 87.0  5.2 5.2 5.2 5.5 5.2 

Case 2 1  69.8 96.4 73.0 5.8 120.9  4.6 4.6 4.6 4.6 4.6 

 3  214.0 177.1 963.3 6.3 133.3  4.4 4.5 4.4 4.7 4.5 

 5  344.2 260.9 2246.3 5.8 154.5  4.4 4.4 4.4 4.7 4.5 

 8  497.4 205.2 473.3 6.2 166.9  4.5 4.5 4.5 4.7 4.5 

Case 3 1  77.4 99.2 74.8 6.9 125.3  8.4 8.4 8.4 8.4 8.4 

 3  224.1 179.2 1003.1 6.2 148.8  5.5 5.8 5.5 8.3 5.9 

 5  339.7 200.0 2361.7 8.8 158.4  5.2 5.3 5.2 7.8 6.1 

 8  447.0 152.4 446.5 9.0 232.3  5.8 5.8 5.8 6.8 5.8 

Case 4 1  174.0 246.9 192.2 9.8 191.7  86.2 93.5 86.2 86.2 86.2 

 3  436.8 419.4 2057.7 9.7 184.7  60.0 62.2 60.0 94.7 62.2 

 5  658.7 465.2 5046.8 9.7 204.6  58.8 58.8 58.3 68.8 63.5 

 8  1027.3 287.7 791.2 10.9 298.2  59.7 59.7 59.7 95.6 60.4 

Case 5 1  206.3 237.0 202.3 8.5 230.6  61.9 68.7 61.9 97.6 61.9 

 3  580.7 434.7 2358.8 10.9 203.2  25.5 24.9 24.5 35.5 24.5 

 5  788.5 500.5 4399.2 9.1 190.9  25.5 26.2 24.9 28.4 25.2 

 8  978.4 335.2 949.8 9.7 196.0  26.8 26.8 26.4 27.3 26.8 

Case 6 1  230.9 229.7 - 8.2 328.3  8.3 8.3 - 9.8 8.3 

 5  1175.5 657.2 - 8.2 338.7  7.3 7.2 - 9.7 7.3 

 10  1989.2 904.2 - 8.1 475.4  7.2 7.2 - 9.7 7.6 

 15  3079.2 816.3 - 8.2 326.2  7.9 7.9 - 8.8 8.0 

Case 7 1  590.4 550.1 - 16.2 669.0  8.3 9.7 - 8.3 8.3 

 5  3160.8 1796.1 - 17.1 845.2  7.6 7.6 - 8.6 7.7 

 10  6004.7 2838.0 - 16.4 1445.8  7.7 7.7 - 8.0 7.7 

 15  8066.9 2549.5 - 17.2 1457.6  7.8 7.8 - 8.0 7.8 

Case 8 1  596.9 505.1 - 17.9 649.6  16.1 17.8 - 16.1 16.1 

 5  3143.1 1459.4 - 16.2 841.1  9.4 9.4 - 16.1 9.5 

 10  5618.2 2101.7 - 22.0 875.9  9.4 9.8 - 13.7 10.4 

 15  7092.7 1882.5 - 20.2 884.2  10.0 10.0 - 11.9 10.6 

 

 

 

  



96 
 

Table A-12: Results for mechanical set 3 and objective function F2 

    CPU time (sec)    Objective Value F1 x 1E7 

Scenario nd  ID IF ES MV GA  ID IF ES MV GA 

Case 1 1  55.4 51.5 59.4 4.6 84.8  50.2 50.2 50.2 50.7 50.2 

 3  169.1 92.2 626.6 4.3 85.4  49.9 49.9 49.9 50.3 50.0 

 5  253.5 113.5 1506.6 4.6 86.7  49.9 49.9 49.9 50.0 49.9 

 8  340.8 78.8 240.8 4.9 81.8  49.9 49.9 49.9 49.9 49.9 

Case 2 1  68.2 95.1 72.7 5.7 119.9  75.1 75.1 75.1 75.1 75.1 

 3  186.5 168.0 883.3 6.2 125.3  75.0 75.6 75.0 76.4 76.2 

 5  276.8 199.0 1929.4 5.9 125.3  76.0 76.0 76.0 77.9 76.9 

 8  359.3 154.3 339.2 6.7 122.1  78.0 78.0 78.0 79.2 78.0 

Case 3 1  69.5 96.0 73.8 5.8 119.0  108.9 108.9 108.9 108.9 108.9 

 3  182.8 161.9 844.3 6.2 115.7  86.7 92.4 86.7 109.7 92.7 

 5  264.6 184.9 2152.9 5.6 110.6  84.8 86.2 84.8 109.4 97.5 

 8  344.9 124.3 302.8 5.5 110.5  94.3 94.3 94.3 106.0 94.3 

Case 4 1  183.1 241.7 210.5 9.8 200.5  2074.8 2219.0 2074.8 2074.8 2074.8 

 3  587.7 399.9 2138.8 9.7 196.1  1466.3 1679.2 1466.3 2364.2 1471.5 

 5  856.5 457.1 5333.8 10.9 201.6  1476.9 1710.2 1472.7 1718.2 1473.4 

 8  1049.8 299.8 907.0 10.3 198.2  1522.7 1522.7 1522.7 2260.9 1553.5 

Case 5 1  197.9 226.4 192.6 8.5 191.6  1583.2 1697.0 1583.2 2251.7 1583.2 

 3  473.4 391.9 2157.5 10.5 218.9  692.7 667.6 661.0 961.4 661.1 

 5  795.6 441.2 4947.1 10.9 194.7  690.8 703.2 673.7 774.5 676.6 

 8  1011.0 296.6 881.4 9.1 188.9  723.7 716.8 713.6 739.5 728.4 

Case 6 1  230.1 208.9 - 8.3 315.8  153.0 162.6 - 155.9 153.0 

 5  1051.7 596.8 - 7.7 322.4  148.9 148.8 - 158.1 149.2 

 10  1827.7 876.6 - 8.3 474.8  148.8 148.8 - 163.2 149.7 

 15  2298.9 816.8 - 7.3 337.5  149.8 149.9 - 154.7 150.7 

Case 7 1  506.4 471.8 - 15.2 638.2  257.6 323.0 - 257.6 257.6 

 5  2284.1 1389.6 - 15.2 668.8  254.0 254.7 - 267.5 259.3 

 10  3967.9 2026.9 - 16.2 707.1  257.5 257.2 - 263.6 258.3 

 15  4777.8 1681.6 - 14.4 991.5  261.1 261.0 - 265.4 262.0 

Case 8 1  495.5 503.4 - 15.2 640.2  399.6 506.5 - 399.6 399.6 

 5  2196.1 1314.5 - 16.6 1254.6  307.2 307.6 - 411.8 321.1 

 10  3786.0 1832.3 - 15.5 636.1  319.6 322.7 - 394.5 319.8 

 15  4658.7 1608.2 - 12.9 1887.4  329.6 329.6 - 373.7 340.5 
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Appendix B: Results for Optimization of Damping Coefficients 

 

Table B-1: Number of function calls and objective values found for Material Set 1 

Objevtive value Number of function calls 

Case nd GA MADS RAGS GA MADS RAGS 

1 1 1.02E-06 1.01E-06 1.01E-06 3.80E+02 2.72E+02 2.03E+02 

2 9.27E-07 8.92E-07 8.88E-07 1.03E+03 9.30E+02 8.37E+02 

3 8.89E-07 8.73E-07 8.66E-07 1.87E+03 1.85E+03 1.46E+03 

4 8.59E-07 8.36E-07 8.40E-07 2.85E+03 3.01E+03 2.30E+03 

5 8.30E-07 8.21E-07 8.20E-07 3.90E+03 4.45E+03 3.06E+03 

6 8.23E-07 8.23E-07 8.04E-07 4.95E+03 6.22E+03 3.89E+03 

7 8.21E-07 8.22E-07 8.02E-07 5.93E+03 8.19E+03 4.75E+03 

8 8.40E-07 8.25E-07 8.04E-07 6.77E+03 1.03E+04 5.60E+03 

9 8.38E-07 8.22E-07 8.07E-07 7.40E+03 1.13E+04 6.21E+03 

10 8.53E-07 8.41E-07 8.09E-07 3.50E+02 6.95E+02 5.52E+02 

2 1 4.36E-06 4.33E-06 4.33E-06 3.80E+02 2.79E+02 1.70E+02 

2 1.79E-06 1.72E-06 1.72E-06 1.10E+03 8.73E+02 5.71E+02 

3 1.90E-06 1.72E-06 1.72E-06 2.00E+03 1.88E+03 1.66E+03 

4 1.87E-06 1.72E-06 1.71E-06 2.98E+03 3.68E+03 2.97E+03 

5 1.76E-06 1.72E-06 1.73E-06 4.06E+03 6.00E+03 4.36E+03 

6 1.77E-06 1.72E-06 1.73E-06 5.11E+03 9.00E+03 6.38E+03 

7 1.84E-06 1.71E-06 1.73E-06 6.16E+03 1.31E+04 9.19E+03 

8 1.88E-06 1.71E-06 1.74E-06 7.00E+03 1.66E+04 1.16E+04 

9 1.89E-06 1.73E-06 1.74E-06 7.63E+03 1.87E+04 1.35E+04 

10 1.96E-06 1.71E-06 1.77E-06 3.50E+02 1.51E+03 1.21E+03 

3 1 1.67E-06 1.59E-06 1.59E-06 3.70E+02 2.66E+02 1.64E+02 

2 1.62E-06 1.53E-06 1.52E-06 1.02E+03 7.29E+02 7.24E+02 

3 1.56E-06 1.52E-06 1.51E-06 1.86E+03 1.37E+03 1.72E+03 

4 1.54E-06 1.51E-06 1.51E-06 2.84E+03 2.03E+03 2.81E+03 

5 1.54E-06 1.52E-06 1.52E-06 3.89E+03 2.93E+03 3.91E+03 

6 1.55E-06 1.52E-06 1.52E-06 4.94E+03 4.13E+03 5.23E+03 

7 1.54E-06 1.52E-06 1.52E-06 5.92E+03 5.78E+03 6.44E+03 

8 1.54E-06 1.52E-06 1.53E-06 6.76E+03 8.01E+03 7.79E+03 

9 1.54E-06 1.54E-06 1.53E-06 7.39E+03 9.67E+03 8.85E+03 

10 1.57E-06 1.52E-06 1.54E-06 3.50E+02 1.81E+03 5.13E+02 

4 1 8.24E-06 8.21E-06 8.19E-06 4.05E+02 3.22E+02 1.54E+02 

2 5.87E-06 5.58E-06 5.56E-06 1.07E+03 1.05E+03 6.40E+02 

3 5.57E-06 5.48E-06 5.47E-06 1.92E+03 2.19E+03 1.25E+03 

4 5.57E-06 5.45E-06 5.44E-06 2.94E+03 3.96E+03 1.85E+03 

5 5.47E-06 5.44E-06 5.43E-06 3.99E+03 6.22E+03 2.60E+03 
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6 5.46E-06 5.43E-06 5.42E-06 5.04E+03 9.05E+03 3.40E+03 

7 5.46E-06 5.42E-06 5.42E-06 6.02E+03 1.18E+04 4.17E+03 

8 5.44E-06 5.42E-06 5.43E-06 6.86E+03 1.45E+04 4.94E+03 

9 5.53E-06 5.42E-06 5.45E-06 7.49E+03 1.76E+04 5.67E+03 

10 5.66E-06 5.43E-06 5.46E-06 3.50E+02 1.93E+03 4.87E+02 

5 1 5.96E-06 5.94E-06 5.94E-06 3.85E+02 3.12E+02 1.53E+02 

2 5.86E-06 5.86E-06 5.87E-06 1.05E+03 1.01E+03 7.56E+02 

3 5.94E-06 5.86E-06 5.87E-06 1.93E+03 2.10E+03 1.77E+03 

4 5.89E-06 5.86E-06 5.87E-06 2.93E+03 4.35E+03 3.42E+03 

5 6.17E-06 5.86E-06 5.88E-06 3.98E+03 7.13E+03 5.17E+03 

6 5.96E-06 5.86E-06 5.89E-06 5.03E+03 1.18E+04 7.05E+03 

7 6.22E-06 5.86E-06 5.89E-06 6.01E+03 1.61E+04 8.84E+03 

8 5.97E-06 5.86E-06 5.91E-06 6.85E+03 2.10E+04 1.05E+04 

9 6.14E-06 5.86E-06 5.92E-06 7.48E+03 2.58E+04 1.16E+04 

10 6.40E-06 5.86E-06 5.92E-06 3.50E+02 3.55E+03 8.20E+02 
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Table B-2: Number of function calls and objective values found for Material Set 2 

Objevtive value Number of function calls 

Case nd GA MADS RAGS GA MADS RAGS 

1 1 4.81E-07 4.69E-07 4.68E-07  4.25E+02 2.98E+02 1.53E+02 

 2 4.65E-07 4.49E-07 4.33E-07  1.06E+03 8.71E+02 5.75E+02 

 3 4.46E-07 4.27E-07 4.21E-07  1.90E+03 1.88E+03 1.42E+03 

 4 4.33E-07 4.17E-07 4.12E-07  2.88E+03 3.41E+03 2.26E+03 

 5 4.20E-07 4.09E-07 4.03E-07  3.93E+03 5.12E+03 3.24E+03 

 6 4.14E-07 4.05E-07 4.03E-07  4.98E+03 6.57E+03 4.50E+03 

 7 4.18E-07 4.03E-07 4.02E-07  5.96E+03 8.00E+03 5.68E+03 

 8 4.16E-07 4.03E-07 4.02E-07  6.80E+03 1.01E+04 6.50E+03 

 9 4.21E-07 4.03E-07 4.02E-07  7.43E+03 1.19E+04 7.26E+03 

 10 4.26E-07 4.12E-07 4.04E-07  3.50E+02 9.30E+02 4.60E+02 

2 1 2.43E-07 2.43E-07 2.43E-07  3.55E+02 3.24E+02 1.96E+02 

 2 2.41E-07 2.37E-07 2.36E-07  1.03E+03 1.05E+03 5.50E+02 

 3 2.38E-07 2.37E-07 2.36E-07  1.90E+03 2.20E+03 1.04E+03 

 4 2.37E-07 2.36E-07 2.36E-07  2.88E+03 3.46E+03 1.43E+03 

 5 2.37E-07 2.37E-07 2.37E-07  3.93E+03 4.48E+03 1.89E+03 

 6 2.37E-07 2.38E-07 2.37E-07  4.98E+03 5.28E+03 2.26E+03 

 7 2.37E-07 2.36E-07 2.37E-07  5.96E+03 6.16E+03 2.81E+03 

 8 2.37E-07 2.38E-07 2.38E-07  6.80E+03 7.18E+03 3.29E+03 

 9 2.37E-07 2.40E-07 2.38E-07  7.43E+03 7.63E+03 3.78E+03 

 10 2.42E-07 2.41E-07 2.38E-07  3.50E+02 1.72E+02 3.07E+02 

3 1 5.35E-07 4.99E-07 4.99E-07  4.10E+02 3.08E+02 1.23E+02 

 2 4.68E-07 3.32E-07 3.22E-07  1.06E+03 1.04E+03 6.11E+02 

 3 3.82E-07 3.24E-07 3.19E-07  1.95E+03 2.13E+03 1.74E+03 

 4 3.50E-07 3.21E-07 3.19E-07  2.95E+03 3.69E+03 3.28E+03 

 5 3.42E-07 3.20E-07 3.18E-07  4.02E+03 5.12E+03 4.37E+03 

 6 3.61E-07 3.13E-07 3.17E-07  5.07E+03 7.20E+03 5.78E+03 

 7 3.33E-07 3.11E-07 3.21E-07  6.05E+03 9.16E+03 7.93E+03 

 8 3.35E-07 3.15E-07 3.16E-07  6.93E+03 1.09E+04 1.05E+04 

 9 3.41E-07 3.20E-07 3.15E-07  7.56E+03 1.27E+04 1.23E+04 

 10 3.54E-07 3.24E-07 3.13E-07  3.50E+02 1.40E+03 1.20E+03 

4 1 3.89E-06 3.86E-06 3.86E-06  3.90E+02 2.99E+02 4.09E+02 

 2 3.50E-06 2.74E-06 2.74E-06  1.06E+03 9.54E+02 8.51E+02 

 3 2.74E-06 2.68E-06 2.72E-06  1.95E+03 1.89E+03 1.66E+03 

 4 2.75E-06 2.66E-06 2.70E-06  2.95E+03 3.38E+03 2.90E+03 

 5 2.77E-06 2.64E-06 2.71E-06  4.00E+03 5.00E+03 4.04E+03 

 6 2.73E-06 2.62E-06 2.70E-06  5.08E+03 7.17E+03 5.38E+03 

 7 2.75E-06 2.62E-06 2.71E-06  6.06E+03 8.99E+03 6.51E+03 

 8 2.79E-06 2.61E-06 2.70E-06  6.90E+03 1.09E+04 7.56E+03 

 9 2.77E-06 2.61E-06 2.71E-06  7.53E+03 1.26E+04 8.55E+03 
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 10 2.78E-06 2.61E-06 2.71E-06  3.50E+02 9.81E+02 5.73E+02 

5 1 2.06E-06 1.93E-06 1.93E-06  4.15E+02 2.99E+02 1.99E+02 

 2 1.65E-06 1.24E-06 1.24E-06  1.09E+03 9.45E+02 6.99E+02 

 3 1.52E-06 1.23E-06 1.23E-06  1.94E+03 2.05E+03 1.42E+03 

 4 1.31E-06 1.22E-06 1.22E-06  2.94E+03 3.46E+03 2.28E+03 

 5 1.22E-06 1.21E-06 1.22E-06  3.99E+03 6.59E+03 3.24E+03 

 6 1.25E-06 1.21E-06 1.22E-06  5.04E+03 9.52E+03 4.25E+03 

 7 1.26E-06 1.21E-06 1.22E-06  6.02E+03 1.22E+04 5.28E+03 

 8 1.25E-06 1.21E-06 1.22E-06  6.86E+03 1.54E+04 6.13E+03 

 9 1.27E-06 1.21E-06 1.22E-06  7.49E+03 1.89E+04 6.84E+03 

 10 1.26E-06 1.21E-06 1.23E-06  3.50E+02 1.42E+03 4.21E+02 
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Table B-3: Number of function calls and objective values found for Material Set 3 

Objevtive value Number of function calls 

Case nd GA MADS RAGS GA MADS RAGS 

1 1 5.39E-07 5.42E-07 5.37E-07  3.85E+02 2.93E+02 1.59E+02 

 2 5.22E-07 5.16E-07 5.16E-07  1.02E+03 1.16E+03 6.35E+02 

 3 5.03E-07 4.81E-07 4.79E-07  1.86E+03 2.41E+03 1.63E+03 

 4 5.04E-07 4.80E-07 4.68E-07  2.84E+03 3.89E+03 2.82E+03 

 5 4.84E-07 4.74E-07 4.60E-07  3.89E+03 5.85E+03 4.17E+03 

 6 4.83E-07 4.61E-07 4.62E-07  4.94E+03 8.35E+03 5.53E+03 

 7 4.84E-07 4.68E-07 4.59E-07  5.92E+03 1.01E+04 7.02E+03 

 8 4.70E-07 4.62E-07 4.63E-07  6.76E+03 1.30E+04 7.93E+03 

 9 4.72E-07 4.68E-07 4.59E-07  7.39E+03 1.42E+04 9.09E+03 

 10 4.87E-07 4.65E-07 4.59E-07  3.50E+02 1.37E+03 6.10E+02 

2 1 4.70E-07 4.64E-07 4.62E-07  3.95E+02 2.73E+02 1.17E+02 

 2 4.41E-07 4.40E-07 4.54E-07  1.06E+03 1.13E+03 3.02E+02 

 3 4.39E-07 4.40E-07 4.50E-07  1.91E+03 2.56E+03 8.36E+02 

 4 4.40E-07 4.37E-07 4.43E-07  2.89E+03 4.56E+03 1.56E+03 

 5 4.38E-07 4.35E-07 4.40E-07  3.94E+03 6.42E+03 3.54E+03 

 6 4.38E-07 4.36E-07 4.39E-07  4.99E+03 8.29E+03 5.25E+03 

 7 4.38E-07 4.38E-07 4.39E-07  5.97E+03 1.04E+04 6.73E+03 

 8 4.40E-07 4.40E-07 4.38E-07  6.81E+03 1.31E+04 8.30E+03 

 9 4.40E-07 4.41E-07 4.38E-07  7.44E+03 1.60E+04 9.42E+03 

 10 4.50E-07 4.51E-07 4.38E-07  3.50E+02 1.04E+03 7.15E+02 

3 1 8.98E-07 8.41E-07 8.41E-07  4.15E+02 2.90E+02 1.56E+02 

 2 8.09E-07 4.97E-07 4.91E-07  1.08E+03 9.46E+02 7.02E+02 

 3 6.49E-07 4.94E-07 4.91E-07  1.95E+03 1.93E+03 1.49E+03 

 4 5.04E-07 4.93E-07 4.91E-07  2.99E+03 3.35E+03 2.57E+03 

 5 5.28E-07 4.85E-07 5.00E-07  4.11E+03 5.34E+03 3.58E+03 

 6 4.97E-07 4.95E-07 5.08E-07  5.22E+03 7.33E+03 5.25E+03 

 7 5.11E-07 4.85E-07 5.09E-07  6.27E+03 8.94E+03 7.20E+03 

 8 5.04E-07 4.90E-07 5.10E-07  7.19E+03 1.18E+04 9.60E+03 

 9 5.14E-07 4.92E-07 5.09E-07  7.82E+03 1.36E+04 1.34E+04 

 10 5.78E-07 4.88E-07 5.11E-07  3.50E+02 1.31E+03 9.55E+02 

4 1 8.63E-06 8.64E-06 8.62E-06  4.25E+02 3.17E+02 2.02E+02 

 2 8.65E-06 6.51E-06 8.63E-06  1.08E+03 9.89E+02 1.06E+03 

 3 6.11E-06 6.10E-06 8.67E-06  1.95E+03 2.14E+03 2.20E+03 

 4 6.17E-06 5.87E-06 8.70E-06  2.97E+03 4.03E+03 3.57E+03 

 5 6.32E-06 5.84E-06 8.70E-06  4.02E+03 6.57E+03 5.95E+03 

 6 8.73E-06 5.80E-06 8.73E-06  5.07E+03 1.01E+04 8.42E+03 

 7 6.47E-06 5.81E-06 8.77E-06  6.15E+03 1.23E+04 1.08E+04 

 8 6.35E-06 5.79E-06 8.78E-06  7.03E+03 1.60E+04 1.29E+04 

 9 6.36E-06 5.72E-06 8.81E-06  7.93E+03 1.82E+04 1.46E+04 
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 10 6.19E-06 5.71E-06 8.82E-06  5.00E+02 1.19E+03 1.10E+03 

5 1 6.85E-06 6.21E-06 6.19E-06  4.65E+02 2.98E+02 2.84E+02 

 2 5.60E-06 3.20E-06 3.20E-06  1.13E+03 1.16E+03 8.13E+02 

 3 3.60E-06 2.46E-06 2.47E-06  2.07E+03 2.33E+03 1.59E+03 

 4 3.40E-06 2.41E-06 2.43E-06  3.11E+03 3.96E+03 2.44E+03 

 5 2.68E-06 2.37E-06 2.41E-06  4.31E+03 6.95E+03 3.37E+03 

 6 2.56E-06 2.36E-06 2.39E-06  5.42E+03 9.31E+03 4.48E+03 

 7 2.41E-06 2.36E-06 2.38E-06  6.47E+03 1.28E+04 5.57E+03 

 8 2.41E-06 2.35E-06 2.38E-06  7.35E+03 1.65E+04 6.60E+03 

 9 2.57E-06 2.35E-06 2.38E-06  7.98E+03 1.93E+04 7.28E+03 

 10 2.66E-06 2.34E-06 2.39E-06  3.50E+02 2.30E+03 3.67E+02 

 


