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Abstract 

 

The aim of this study is to evaluate the response of underground power transmission cables 

subjected to earthquake induced permanent longitudinal and lateral ground movements. The 

experimental work related to this research involved full-scale physical modeling. The testing 

facility used for this project comprises a 2.5 m x 3.8 m soil chamber, with the capacity to 

subject buried transmission cables to large relative displacements. The buried cables were 

subjected to axial and transverse soil movements, and the corresponding longitudinal and 

horizontal transverse soil loads were measured. A total of 15 axial pullout tests and 10 lateral 

pullout tests were conducted for the cable with different burial depths. In the absence of 

guidelines available for buried underground cables, the results of the full-scale experimental 

studies, which provide first-hand information on the cable-soil interaction behaviour, were 

compared with the response predicted from previous research work and also those based on 

current pipeline design guidelines such as ASCE (1984) to assess the applicability of those 

guidelines for buried power transmission cables.  

To better understand the cable-soil interaction behaviour, 3D numerical models were created 

to simulate the longitudinal and transverse experimental test set-ups. Numerical models, with 

the help of parameters derived from the laboratory element testing, were calibrated and 

validated based on the experimental testing. A parametric study was conducted to study the 

effect of the cable/soil relative stiffness, the material model parameters, burial depths and 

cable/soil interface friction on the response of buried cables. Furthermore, numerical models 

were developed to study the effect of out-of-straightness in the cable on the longitudinal soil 

loads. An analytical procedure, verified with numerical simulation, was developed to 

calculate the additional axial soil loads on the buried cable with out-of-straightness. 

Based on the results of experimental and numerical simulation, nonlinear longitudinal and 

horizontal transverse soil spring models were developed. Then, the response of buried cable 

subjected to the longitudinal and transverse permanent ground deformation was assessed as a 



iii 

 

function of different ground deformation parameters. Finally, analytical procedures were also 

developed for the quick assessment of the response of the buried cable subjected to PGD.  
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Chapter  1: Introduction 

 

1.1 Background 

 

With increased use of underground cables for transmission of electrical power, the 

performance of buried power transmission cables in areas prone to ground deformations is an 

important engineering consideration for the utility owners since the failure of such systems 

could cause property damage and business disruptions. Permanent ground deformation 

(PGD) might result from creeping ground, landslides, slope instability, and earthquake-

induced ground movement including lateral spreading or fault movements.  A large 

differential ground movements are able to create detrimental strains in underground cables, 

joints, and terminations that disrupt the operation of buried power transmission cables. 

The performance of buried power transmission cables is affected by the magnitude and 

pattern of ground deformation, the orientation of cable with respect to ground deformation, 

and more importantly the cable-soil interaction behaviour. Therefore, a thorough 

understanding of the cable-soil interaction will form a key step in the evaluation of the 

response of buried power transmission cable to the ground movements.  

Current knowledge on the response of buried power cables subjected to ground movement is 

scarce although there may be some findings from investigations performed by private entities 

for specific uses that are either not published and documented or cannot be generalized to 

other conditions. Guidelines such as ASCE (1984), PRCI (1994) and ALA(2001) provide 

provisions that are mainly intended for steel pipeline or polyethylene gas pipeline and their 

applicability to buried power cables is in enquiry for different reasons. First, the cable 

structure has different mechanical properties from the lifeline structure studied previously. 

Second, the power cables are buried in a thermal backfill material that also has different 

characteristics from the surrounding soil of studied lifeline so far.  
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1.2 Scope and Objective of the Thesis 

 

With this background, the main objective of this research is to understand the response of 

buried power transmission cable subjected to ground movements. To accomplish this 

objective, three-phase research program was conducted to gain improved understanding of 

the cable-soil interaction problem. 

1.2.1 Phase 1: Experimental Studies 

 

The main goal of this phase is to provide all necessary information to evaluate the response 

of buried power transmission cables subjected to permanent longitudinal and transverse 

ground movement. In order to achieve this goal, experimental studies have been conducted 

with the following objectives:  

 to simulate and capture the longitudinal and horizontal transverse soil loads on the 

buried cable; 

 to identify the key parameters influencing longitudinal and transverse soil loads on 

buried power transmission cables; 

 to  compare the previously published analytical and experimental studies with the 

measured results and to review the applicability of the current approaches for pipeline 

design to the cable-soil interaction problems; 

 to characterize the soil loads on the buried cable in terms of simple mathematical 

model.  
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1.2.2 Phase 2: Numerical Simulation of Cable-Soil Interaction 

 

The controlled experimental studies in phase-1 not only will contribute to a better 

understanding of cable-soil interaction but also they can be used to validate and calibrate 

numerical models. Developing the numerical models is one of the important aspects of cable-

soil characterization since the experimental studies cannot cover the full range of cases that 

might be encountered in practice and consequently are limited with respect to the cable 

diameter, length, stiffness and soil properties. 

The validated numerical model with the controlled experimental studies can be employed to 

investigate the effects of different soils and geometric parameters affecting cable-soil 

interaction. In addition, the numerical simulation will allow understanding and capturing the 

soil-cable interaction behaviour in a fundamental manner. Therefore, the goal of numerical 

simulation can be summarized into the following sections: 

 to investigate the nonlinear, stress-level dependent, and dilation of soil behaviour; 

 to calibrate the numerical model with controlled experimental studies; 

 to perform parametric studies for different cable-soil interaction scenario. 

1.2.3 Phase 3: Application of Results 

 

Although modeling the cable-soil interaction by using continuum finite elements is a better 

approach to analyze the cable response subjected to the ground deformation, modeling the 

cable-soil interaction by representing the soil as nonlinear soil springs 1) provide less 

computational analysis time for a buried cable subjected to hundred meters of ground 

deformation and 2) and are more appealing in the engineering practice. The results from 3-D 

finite element analyses coupled with experimental studies are used to calibrate the non-linear 
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springs in the longitudinal and transverse direction. The results are, then, used to assess the 

response of the cable network to the permanent ground deformation. The finite element 

program ABAQUS is employed to model the buried power transmission cables subjected to 

the transverse and longitudinal PGD. The goals of this phase of study can be summarized 

into the following sections: 

 to investigate the response of buried power transmission cables subjected to 

transverse and longitudinal PGD and to perform parametric studies ; 

 to identify the effect of ground deformation parameters on the buried cable response; 

 to present closed form analytical formulations and to propose design flowcharts for 

assessing the behaviour of the cable subjected to longitudinal and transverse PGD. 

1.3 Thesis Organization 

 

This thesis is organized into 6 chapters and 2 appendices as follow: 

Chapter 1: 

 In this chapter, which is this chapter, the introduction, background, scope and motivation, 

and organization of the thesis are discussed. 

Chapter 2: 

This chapter describes a review of literature on the topics that can be related to the buried 

cable-soil interaction such as pipe-soil interaction or anchor-soil interaction from 

experimental, analytical and numerical perspectives.  

Chapter 3:  

This chapter presents the full-scale experiment of the buried cable-soil interaction which has 

included the transverse and longitudinal loading of buried cables. The experimental test set-
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up, test preparation, measurements, testing method, and the limitation of the experimental 

testing are discussed in this chapter. The results of experimental testing are compared with 

the previous studies and with commonly used approach in practices. The results of laboratory 

element testing on the thermal backfill material for numerical simulation are also presented.   

Chapter 4:  

In this chapter, a numerical model using the finite element code ABAQUS is developed 

based on the large scale test results in the axial and lateral pullout tests. A parametric study 

using finite element method is presented to investigate the effect of different parameters on 

the longitudinal and transverse soil loads on buried cable. 

Chapter 5: 

 In this chapter, the response of the buried cable subjected to the permanent ground 

deformation is investigated through a numerical simulation. The effect of the ground 

deformation parameter on the response of buried cable is investigated. Closed-form 

analytical formulation is presented and validated to calculate the response for the longitudinal 

and transverse permanent ground deformation. Also, the methodology to calculate the 

response of the buried cable for the longitudinal and transverse permanent ground 

deformation is presented.    

Chapter 6: 

This chapter presents a conclusion of this research. It also describes the methodology to 

assess the performance of the buried power transmission cable subjected to earthquake 

induced permanent ground deformation. Recommendations for the future work are also 

provided. 

Appendix A:  

The detail results of axial and lateral pullout tests are presented in this chapter. The results of 

laboratory direct shear tests are presented here.   
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Appendix B: 

 In this section, the theory of the element type, material model, contact element, and analysis 

type which were used in Chapter 4 are fully presented. Most of the focus of this appendix is 

on the plasticity theory of Mohr-Coulomb and Drucker-Prager material models for the 

calibration of the soil model.  
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Chapter  2: Literature Review 

 

Since limited studies on the cable-soil interaction exist the literature reviews are focused on 

the relevant topics such as pipe-soil interaction or the behaviour of vertical anchor. These 

studies are mainly divided in two categories: experimental studies and numerical/analytical 

studies. In each category the longitudinal and horizontal transverse soil loads are examined. 

Also a brief review of current guidelines for buried pipelines is included in this section.     

2.1 Review of Analytical and Numerical Studies  

 

In this section, the early approach to obtain the response of the pipeline to the horizontal 

transverse movements, adapted from the analytical results of the vertical anchors, piles, 

retaining walls, and foundations was first reviewed. Studies on the lateral response of the 

pipeline buried in the medium to dense material showed that that the behaviour of pipeline 

can be broadly categorized into the shallow and deep failure mechanisms. In shallow failure 

mechanisms, a passive wedge developed in the front the pipeline extends to the surface while 

in deep failure mechanisms the passive wedge confines in the soil ( Audibert (1977)).  

Rankine theory as described by Terzaghi (1946) can be used to calculate the ultimate 

horizontal transverse of a shallow vertical anchor plate by assuming a complete development 

of passive and active regions in the front and back of anchor plate respectively. Furthermore, 

in order to provide the vertical equilibrium due to side shear on the vertical anchor plate, 

Terzaghi assumed the passive wedge formed a parallel shape to the tie rod as shown in 

Figure 2-1. Thus ultimate resistance of anchor plate can be obtained: 

aspu PPPT           Eqn. 2-1 

Where Pp and Pa are the Rankine passive pressure and active pressure and Ps is the side shear 

resistance. 
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Hansen (1961) developed two different models for the ultimate lateral resistance estimation 

of deep and shallow rigid piles. The shallow rigid piles were assumed to behaves as a 

retaining wall and the deep rigid piles was modeled as a strip footing at the corresponding 

depth. At the intermediate depth, the ultimate lateral resistance was measured by an empirical 

interpolation function. Furthermore, the analytical model for piles was assumed to be 

vertically restrained and only horizontal equilibrium was satisfied. This assumption results in 

overestimation of calculation of ultimate lateral resistance in case that buried structure tend 

to rise upward. Hansen used a composite rupture zone in front of anchor plate consisting of a 

straight line starting from the base of the anchor in combination with a Rankine and 

logarithmic spiral Prandtl zone as shown in Figure 2-2. Hansen analytical model was adopted 

by Audibert (1977) to predict transverse soil restraints on buried pipeline.  

Ovesen (1964) adopted a failure rupture plane for a vertical anchor plate as proposed by 

Hansen. Unlike Hanson analytical model, his formulation accounted for both vertical and 

horizontal force equilibrium.  The results of this analysis were summarized as earth pressure 

coefficients on design charts. Later Trautmann and O‟Rourke (1983) adapted a model 

developed by Ovsen to buried pipeline problems. 

Rowe and Davis (1982) investigated the behaviour of thin and rigid anchor plates with 

horizontal and vertical axis in cohesion less soil. Their investigations were based on the 

numerical simulation of elasto-plastic finite element analysis. The soil behaviour was 

assumed to have a Mohr-Coulomb failure criterion and either an associated flow rule or non-

associated flow rules were considered. The effects of friction angle (), the dilation angle 

(), anchor embedment, and the initial stress state were considered. They proposed an 

expression that anchor plate capacity can be derived from a basic anchor capacity with a 

number of modification factors as expressed by Eqn.2-2.  

Rk RRRFF ...'
          Eqn. 2-2 

The basic anchor capacity (F) was defined for the case of smooth anchor in nondilatant soil 

(=0) and with coefficient of earth pressure at rest k0=1. The basic anchor capacity can then 
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be corrected by Rk RRR ,,   for the effects of initial stress state, soil dilatancy () , and anchor 

roughness respectively. They observed that the dilation angle had a significant effect on the 

ultimate capacity while the effect of the coefficient of the soil at rest for typical value of 

1K4 0 . on the anchor capacity is less than 10%. Furthermore, the effect of roughness on 

the collapse capacity of anchor plate with vertical axis is negligible. However, its effect on 

the anchor with horizontal axis in shallow depth is significantly influenced. Finally, their 

studies included graphs and tables of the anchor capacity in different conditions.    

Hsu et al. (1996) estimated the transverse soil restraint on the pipeline buried in loose sand 

by adopting the approach for vertical anchor plate. They replaced the pipeline with the virtual 

vertical anchor plate placed at the pipeline centerline with the height equal to pipeline 

diameter. They assumed a planar sliding surface at the front of the pipeline and they used an 

implicit limiting equilibrium to calculate the lateral soil restraint on the pipeline. Trial sliding 

surfaces with different angle were examined. Horizontal and vertical equilibrium of forces on 

the soil wedge were formulated along with the constraint that the minimum soil restraint 

must be achieved as shown in Figure 2-3. The forces in soil wedge are as follows; R1 is the 

resultant of active earth pressure on the soil wedge, W is the weight of soil wedge, R2 is the 

resultant of shear and normal force on the trial sliding surface with angle of , and Pu is the 

lateral soil restraint. 

Popescu et al. (2002) carried out a number of full scale experiments of pipe-soil interaction at 

Center for Cold Oceans Resources Engineering (C-CORE). The tests consisted of 24 full-

scale tests of axial and lateral loading tests using rigid pipeline and 3 tests of moment 

bending using a flexible pipe. The outer diameter and the length of the pipe for lateral 

loading was 0.328 m and 3 m respectively, and the outer diameter, the wall thickness and the 

length of the pipe for moment bending test was 0.203 m, 3.175 mm and 5.8 m respectively. 

Lateral and axial soil-pipeline interaction tests were conducted on pipeline buried in the 

dense/loose sand with the minimum void ratio of 0.47 and maximum void ratio of 0.84, and 

in kaolin clay with 37 kPa and 19 kPa at compacted water content of 37% and 33% 

respectively. The average shear wave velocity was measured to be 199 m/s in firm clay and 
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167 m/s in the soft clay. Based on their experimental tests, they observed that the failure 

mechanism in loose sand was local punching failure and the failure mechanism in the dense 

sand was a general shear failure. Numerical model using ABAQUS/Standard was validated 

and calibrated based on the experimental studies. In their numerical models, the modified 

Cam-Clay (MCC) model and non-associated Mohr-Coulomb (NAMC) model were used for 

clay and for sand respectively. The details of the parameter calibration for MCC model can 

be found in Popescu et al. (1999). The details of the parameter calibration for NAMC model 

can be found in Nobahar et al. (2001) and Popescu et al. (2001). Based on their numerical 

analysis, they concluded that their model can satisfactory simulate their experimental tests.  

Popescu and Nobahar (2003) conducted 3D finite element analysis of pipe-soil interaction to 

see the effect of ground water effects. To calibrate and verify their numerical model, they 

used the results of lateral tests performed by Hurley and Phillips (1999). Hurley and Philips 

(1999) used dry dense material with a relative density of 95% and the density of 1984 kg/m
3
 

and submerged sand with the relative density of 66% and the density of 1864 kg/m
3
. Hurley 

and Phillips observed that 60 % reduction in the peak forces occurred due to saturation.  

Popescu and Nobahar (2003) used the finite element code ABAQUS in their numerical study. 

Sand materials were modelled using an extended Mohr-Coulomb model with the apparent 

friction angle and cohesion. The friction angle for the dense sand was reported 53 degrees. 

Since they believe that the larger friction angle is often attributed to apparent cohesion and 

interlocking, they limited the friction angle to 44 degrees with an equivalent cohesion to 

compensate the larger friction angle using expressions developed by Craig (1987) in the p-q 

plane as 

)sin()tan(     

cos

a
c            Eqn. 2-3 

in which  and c are the friction angle and cohesion , and a are the modified shear strength 

parameters. For their numerical studies, =34.8˚ and a=7.23 kPa were calculated. The 
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dilation angle,, was estimated using Rowe (1962) expression as a function of constant 

volume friction angle (cv) 

cv

cv






sinsin1

sinsin
sin




         Eqn. 2-4 

The elastic modulus and soil poison‟s ratio were selected as 9000 kPa and 0.33 (Popescu 

2001). The friction coefficient at soil/pipe interface was μ=tan(0.6)=0.5 was used.  For the 

saturated sand with relative density of 65 %, the peak friction angle was reduced to 41 

degrees and due to the presence of water the smaller cohesion c=2.5 kPa were used in the 

analysis. The soil elastic modulus was reduced based on the effective stress at the pipeline 

level according to Lambe and Whitman (1969) 

kPaE 6650)( 5.0           Eqn. 2-5 

Although the results of their numerical simulation agree well with experimental data, the 

introduction of the apparent cohesion to compensate the large dilation angle is unjustified. 

Since dilation occurs in the dense material, the large friction angle can be better compensated 

by definition a dilation angle (). 

Guo and Stolle (2005) used a two-dimensional plane strain finite element to investigate the 

lateral pipe-soil interaction in sand. They used ABAQUS finite element program for the 

numerical simulation. In their finite element analyses, the effects of pipe diameter (size 

effect), model scale, stress level, and soil properties were studied through a parametric study. 

Two types of constitutive models are used for soil: a classical elasto-perfectly plasticity 

model with constant dilation angle and an elasto-plastic hardening model. Their results 

showed that the pipe responses are not sensitive to the hardening model. Their study on the 

soil dilatancy shows that it increases the horizontal bearing capacity factor (Nh). Their 

analysis showed that the effect of dilatancy on Nh  can be described by 

)(.)( 0NRN hh             Eqn. 2-6 
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in which Nh () is the horizontal bearing capacity for the soil with dilation angle ( ) and R 

is the dilation factor described as 

 sin).(.
D

H
24012301R          Eqn. 2-7 

By proportionally varying H and D, the scale effects were investigated to study the validity 

of the small scale model test to full-scale in situ pipeline. Based on a parametric study, the 

variation of horizontal force factor Nh with respect to reference horizontal force factor Nh0, 

defined for the pipe with diameter of D0=0.33 m and H0/D0=2.85, was established as 

00

m

0

s   , )
10

1
1(91.0

H

H

D

D

sN

N

mh

h                 Eqn. 2-8-a,b 

2.2 Review of Experimental Research Studies 

 

The early experimental study on pipeline dates back to the research by Audibert and Nyman 

(1977). Audibert and Nyman studied the performance of conduits buried in both loose and 

dense air-dried Carver sand. Three sizes of conduits with diameter of 25, 60, and 111 (mm) 

were selected. Each pipe was buried at different embedment ratios to study the effect of 

burial depth. The limited size of testing apparatus just allowed the burial depth of up to 50 

cm. The embedment ratios considered in their tests were 1, 3, 6, 12, and 24 for small 

diameter conduits and 1 and 2 for large diameter conduits. These testing arrangements helped 

them to 1) quantify the influence of embedment depth, pipe diameter, and soil density 2) find 

an analytical expression for pipe-soil interaction behaviour. Based on their experimental 

results, the rectangular hyperbolic curves were presented to simulate the pipe soil interaction 

(p-y curve). The p-y curves were expressed as non-dimensional parameters relating the 

normalized force ( P ) with normalized displacement ( y ) as depicted by Eqn.2-9. 

y85501450

y
p

.. 
                                     Eqn. 2-9 
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in which P and y  are the normalized parameters defined as 

 
up

p
p    and 

uy

y
y            Eqn. 2-10 

yu is the displacement where the maximum soil restraint (pu)  is mobilized.  Their 

experimental results showed a similar failure mechanism to those observed by Brinch Hansen 

(1961) model footing tests. In addition, the ultimate soil resistances of buried pipes were 

shown that they were in a good agreement with the Hanson studies. Hanson ultimate load 

bearing capacity is expressed by: 

qu ZNq                                                                       Eqn. 2-11 

Where  is the unit weight of soil , Z is the depth to the center of pipe and Nq is the bearing 

capacity factor. The bearing capacity factor was expressed as a function of internal friction 

angle () and the normalized depth to pipe diameter ratio. Figure 2-4 showed the variation of 

Nq versus Z/D as adapted by Audibert. 

Trautmann and O‟Rourke (1985) studied the response of buried pipes to lateral ground 

movements through experimental investigations. Two pipe sizes with diameter of 102-mm 

and 324-mm were tested in buried Cornell filter sands at five burial depth ratios of 1.5, 3.5, 

5.5, 8, and 11. To observe the effect of the soil density, three different densities of 14.8, 16.4, 

and 17.7 kN/m
3
 were prepared to simulate the condition of compact, medium, and loose 

sands. The effect of several parameters including pipe burial depth, soil density, pipe 

roughness, and pipe diameter were evaluated. The test data were presented as a non-

dimensional force (Nh) versus a non-dimensional displacement (Y/D). The test results were 

compared by other experimental and analytical studies which were mainly on the vertical 

anchor or pile due to lateral movements. They observed that the Hansen (1961) theoretical 

results overestimate the maximum restraint force by 150- 200% while Ovesen (1964) and 

Rowe and Davis (1982) agree closely with their experimental test results. They argue that the 

discrepancy between the results obtained by Hansen and their results is due to the assumption 

regarding full vertical restraint. Hanson theoretical model was based on vertical restraint and 
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horizontal mobilization while the Ovsen model was accounted for vertical equilibrium. The 

force-displacement relationships were modeled by a two constant rectangle hyperbola as 

expressed by Eqn. 2-6. 

Y830170

Y
F






..
                  Eqn. 2-12 

in which hNHDLFF /)/(  ; )//()/( DYDYY f ; Y= the displacement measurement; and F= 

the force measurement at each Y. They suggested that force-displacement curve for any 

combination of pipe burial depth and soil friction angle can be obtained by properly 

estimating the hN  value and DY f /  ratio. For application purposes, they presented a plot for 

calculating the Nh value as a function of embedment ratio (H/D) and friction angle () as 

shown in Figure 2-5.  

Hsu (1994) conducted 120 tests on pipes buried in local sand from the Da-Du riverbed in 

Taiwan. The large-scale drag box of 1.83  1.83 1.22 m
3
 was utilized to investigate the 

effect of  soil densities, burial depths, pipe diameter and relative velocity of pullout force on 

the pipe lateral soil restraints.
 
He used pipes with outside diameters of 38 mm up to 229 mm. 

The results of dimensionless lateral soil restraints for different burial depth and pipe diameter 

positioned between the experimental studies by Audibert et al (1977) and Trautmann (1985). 

In addition, he observed that increasing the pullout rate leads to increase in the maximum 

lateral soil restraint. However, he concluded that this increase is not significant, for instance 

increasing the pullout rate 10 times leads to increase in maximum soil restraints less than 5%. 

Also, he presented a power law relationship to correlate the pullout rate with the maximum 

soil restraint. In his continuation of his study, Hsu (1996) studied the soil restraint on the 

oblique pipeline in loose sand with internal friction angle of 33 and average density of 15.20 

kN/m
3
 in the same chamber as described above. Pipe diameters of 38.1, 76.2, 152.4, and 

228.6 mm with normalized burial depth of 1.5 and 3.5 were tested with inclination angle 

between 0 to 90 degrees with angular increment of 10 degrees.  He observed that maximum 

lateral soil restraints and corresponding displacements increase as the oblique angle 

increases. The maximum soil restraints show a power law relationship with the pullout 
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velocity rate. He also presented a force-displacement relationship as two constant hyperbolic 

as described by Eqn.2-13. The constant value a and b are given as the function of oblique 

angle. Based on his observation, the constant value a increases while the constant b decreases 

with oblique angle respectively.  

Yba

Y
F




              Eqn. 2-13 

Hsu et al (2006) studied the soil restraints on the oblique movement of 0.61 (m) long  steel 

pipes with diameters of 152.4, 228.6, and 304.8 buried in dense sand. They showed that the 

longitudinal and transverse soil restraint of the oblique pipes can be obtained by measuring 

the longitudinal soil restraint of axial pipeline and transverse soil restraint of lateral pipeline 

and calculating their corresponding values in the direction of pipes by multiplying the cosine 

and sine value of oblique angle respectively. Furthermore, they also observed that the 

dimensionless longitudinal and transverse ultimate forces are independent of the pipe 

diameters up to 304.8 mm. Figure 2-6 shows the  longitudinal and transverse soil restraints  

for oblique pipe with the angle of  as described by Hsu. 

Pauline et al (1997) performed large-scale testing on buried pipelines performed at the Center 

for Cold Oceans Resources Engineering (C-CORE) at the Memorial University of 

Newfoundland, St. John‟s, Newfoundland, Canada in the mid-1990‟s on steel pipe with 

outside diameter of  324 (mm).  They used the experimental results to calibrate their 

numerical simulation. Popescu et al (1999) and Popesue et al (2002) used the same facility at 

C-CORE to study the pipe-soil interaction behaviour. 

Anderson (2004) studied the Polyethylene (PE) gas pipelines at the University of British 

Columbia research facilities. He investigated a longitudinal soil restraints on the straight and 

branch PE pipes with diameter of 60 mm and 114 mm buried in loose and dense Fraser River 

Sand. He observed that the longitudinal soil restraints on PE pipes buried in loose sand were 

over predicted by ASCE (1985), ALA (2001) and PRCI (2004) while the results in dense 

sand showed that they were over predicted by those guidelines. However, the  author made a 
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limited comment about the effect of normal stress on pipe, or coefficient of lateral earth 

pressure (K). 

Turner (2004) investigated the effect of moisture content on the lateral soil restraints on 

buried steel pipes with external diameter of 119 mm. He used the same facility at Cornell 

University and used Cornell sand as a testing material with burial depth ranging from 6 to 20 

diameters. He observed that the maximum lateral soil restraint in moist sand is approximately 

twice the value generated under dry sand condition. He argued that the  failure pattern in dry 

sand conditions show the distinct regions of heave and subsidence while the soil deformation 

pattern in moist sand conditions show a mass movement of soil which is pushed forward and 

up. Based on his research, a series of new curves were presented compatible with the work 

by Trautmann and O‟ Rourke (1985) as shown in Figure 2-7. Furthermore, the tests results 

on sand with 4 % and 8 % moisture contents show load displacement curve, that the 

maximum soil restraint and their corresponding displacement are almost identical.  

Karimian (2006) performed a series of experimental studies at the University of British 

Columbia Facilities on relatively large steel pipe to assess the longitudinal and transverse soil 

restraints. The steel pipes with outside diameter 18-in buried in the Fraser River Sand were 

tested. The axial pullout tests were conducted in loose and dense sand with the average 

density of 1430 kg/m
3
 to 1600 kg/m

3
 respectively with less than 1 % moisture content. The 

lateral pullout tests were performed on dense sand with 1% up to 10 % moisture content. He 

observed that the longitudinal soil restraint in the case of loose sand were comparable with 

the results of ASCE (1984) guidelines. However, the longitudinal soil restraints in the case of 

dense sand were much higher, approximately three times greater, than recommended value 

by ASCE guideline. By monitoring the normal soil stresses on the pipe surface during axial 

pullout test, numerical simulations were calibrated to investigate the effect of different 

parameters on the coefficient of earth pressure at rest (K). In his numerical studies the effect 

of soil dilation at the interface with parameters such as burial depth, pipe diameter and soil 

parameters were investigated. His studies showed that, first, the effect of soil dilation is 

higher for small diameter pipes. Second, the effect of soil dilation is higher for shallow burial 
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depth. Furthermore, he showed that the use of two-layers of geotextile wrapping provides an 

effective means of reducing axial loads on pipelines.   

 Weerasekara (2007) studied the performance of buried MDPE (medium-density 

polyethylene) natural gas pipeline subjected to ground displacements. The large scale facility 

test at University of British Columbia was used to investigate the longitudinal and transverse 

soil restraints on PE pipes of diameter 60 mm and 114 mm buried in Fraser River Sand with 

burial depth equal to 60 cm. He observed that that the axial pullout of PE pipes were 

significantly affected by the flexibility of PE pipes. The analytical closed-form formulations 

were provided for the longitudinal response of PE pipes that can adequately capture the 

experimental response. The developed frictional force resistance along per unit length of the 

pipe was expressed by: 

DHT             Eqn. 2-14 

in which D, H , and  are the pipe diameter, the burial depth, and the soil density. Parameter 

  was defined as a function of the relative displacement between pipe and surrounding soil. 

Basically, the parameter   replaced the expression 0.5(1+k) tan, which is used in guideline 

such as ASCE (1984), ALA (2001), or Honegger and Nyman (2004), to include the effect of 

normal stresses and the interface friction angle. Three-stage interaction model was proposed 

for the parameter  . In obtaining the parameter ,  the results from a number of direct shear 

tests which were conducted by O‟Rourke et al. (1990) on the mobilized interface friction 

angle () and also the experimental results which were conducted by Karimian (2006) on the 

K value were used.  The value for the interface friction angle is assumed to be 20˚.  The K 

value of 2.4 and K value of 1.4 were selected for a pipe with the diameter of 60 and 114 mm 

pipe when the displacement was about 500 mm ( region I and II)  and they were degraded to 

the value of 1.9 and 0.9 for the diameter of 60 and 114 mm pipe ( region III).  It should be 

mentioned that K value for the P.E.  Pipes were selected smaller than the steel pipe due to the 

smoother surface leading to a lesser amount of dilation. The more detail of his studies can be 

found in Weerasekara and Wijewickreme (2008). 
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Wijewickreme and Karimian (2009) studied the response of buried steel pipelines subjected 

to relative axial soil movement. Their study was based on the results of axial full-scale 

testing conducted by Karimain (2006). They reported that measured axial soil loads on the 

pipeline buried in loose material are comparable to those obtained by commonly used 

guideline (ASCE 1984). However, they observed that the axial soil loads on the pipeline 

buried in the dense material are almost two times higher than those predicted by commonly 

used guideline. With the help of pressure transducers mounted around the buried pipeline, 

they monitor the variation of the soil pressure on the pipeline during the axial pullout tests. 

They observed that the soil pressure undertaken during axial pullout testing of the pipeline 

buried in the dense material was higher than the initial values due to the constrained dilation 

during shear deformation. The plane strain numerical models were developed in the FLAC 

2D program to study the effect of the dilation on the axial soil loads on the pipeline. In order 

to analytically model the dilation around the pipeline, they expanded the pipeline radially by 

the same thickness of a shear zone during axial pullout test as depicted in Figure 2-8 . The 

thickness of shear zone was measured by monitoring the movement of colored sand placed in 

the vicinity of the pipe. Observation showed that a annular zone with thickness of 1.2 to 2.8 

mm was affected during axial pullout testing. The validated numerical models were used to 

obtain the equivalent lateral earth pressure (k) for different soil dilation levels, pipe diameter 

and burial depth, which can be used to determine the soil loads on the pipeline. 

2.3 Summary of Literature Review 

 

The review of literature shows that significant amount of studies have been conducted on the 

pipe-soil interaction either from numerical simulation or experimental testing perspectives. 

However, to the author‟s knowledge, most of studies were undertaken on the steel and 

polyethylene gas or water pipeline system, and current understanding on the response of the 

buried power transmission cable to the ground movement is incomplete and the applicability 

of the current guideline such as ASCE (1984) is in question since the cable structure has a 

different mechanical properties from the lifelines structure studied previously. Secondly, the 
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power cables are buried in a thermal backfill material that also has different characteristics 

from the surrounding soil of studied lifeline so far. In recognition of those needs, a three-

phase study was conducted. The next following chapters describe in details the methodology 

and the results of this study. 
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Figure 2-1 :  Failure pattern in vertical anchor plate as assumed by Terzaghi. 

 

Figure 2-2: The failure pattern as described by Hansen(1961) 

 

Figure 2-3: The approach by Hus for estimation of the horizontal transverse soil restraint 



21 

 

 

Figure 2-4: Variation of bearing capacity factor (Nq) as a function of (H/D) developed by Hansen (1961) 

and adopted by Audibert (1971) 

 

Figure 2-5: Horizontal bearing capacity as a function of friction angle and embedment depth ratio 

developed by Ovesen(1961) and adopted by Trautmann (1983) 
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Figure 2-6: Schematic view of pipeline with oblique angle  

 

Figure 2-7: Horizontal bearing capacity of buried pipes for dry and moist sands as a function of 

embedment ratio and friction angle developed by Turner (2004) 
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Figure 2-8:  The analytical modeling of dilation effect, after Wijewickreme et al. (2009). 
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Chapter  3: Experimental Study 

 

In this chapter, experimental studies on the buried power transmission cables subjected to 

ground movements will be described. The first part of this chapter consists of experimental 

modeling aspects which include the experimental setup, methodology, measurements, and 

limitations. The second part of chapter describes the results of experimental studies and 

discussions.  

3.1 Physical Modeling Aspects 

 

Depending on the direction of the relative movement between buried cable and soil, four 

modes of soil loads on the buried cable can be distinguished as shown in  

Figure 3-1: 1) longitudinal, 2) horizontal transverse, 3) vertical bearing, and 4) vertical uplift 

(ASCE 1984). In this experimental research, the differential ground movements are imposed 

independently in the longitudinal and horizontal transverse directions to the cable alignment 

to characterize the cable-soil interaction.  A total of 15 axial pullout tests and 10 lateral 

pullout tests were conducted to simulate the longitudinal and horizontal transverse soil loads 

on cables respectively with different burial depths using the experimental facility at the 

University of British Columbia.  The results from controlled experimental studies contribute 

to developing a reliable database for developing and validating numerical models to capture 

the response of buried cables under general field loading conditions.  

 This chapter presents the full-scale experimental studies to characterize the longitudinal and 

horizontal transverse soil loads on the cable. The experimental test set-up, test preparation, 

measurements, testing method, and the limitation of the experimental testing are discussed in 

this chapter. The results of experimental testing are compared with the previous studies and 

with commonly used approach in practices. 
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3.1.1 Review of Materials Tested 

3.1.1.1 Thermal Backfill Material 

 

The cables for pullout testing were buried in a specially prepared backfill soil (called 

“thermal backfill”). The backfill material is identical to that commonly used in the field 

installations by BC-Hydro.  The material was supplied by Lafarge from Pitt-River Quarries 

in Pitt, Meadows, B.C.. The results of trace metal analysis on this material, conducted by 

SOILCON Laboratories Ltd, Richmond, B.C. is given in Table 3-1, and the units are in 

micrograms per gram. 

Grain size distributions obtained from particle size analysis of the thermal backfill are shown 

in Figure 3-2.  The envelope (limits) of grain size distribution as specified by BCTC for their 

field applications is overlain in Figure 3-2 for comparison; as may be noted, the grain size 

distribution of thermal backfill material used for testing is well within the allowable limits 

specified by BCTC.  The particle sizes D10, D30, D50, and D60 are 0.09, 0.5, 1.51 and 2.2 mm 

respectively. The coefficient of uniformity (Cu) and the coefficient of curvature (Cc) are 24 

and 1.3 respectively; the thermal backfill material can be classified as well-graded coarse 

material with little fines.     

The compaction characteristics of thermal backfill were assessed by means of a Modified 

Proctor test. Figure 3-3 shows the dry density-water content relationship. The optimum water 

content (wopt ) at which the maximum dry density of dry =21.7 kN/m
3 

(2.17 g/cm
3
) can be 

achieved is  6.7%.        

3.1.1.2 Power Transmission Cable 

 

The power transmission cables for testing were provided by BCTC. The cables can be 

described as smooth aluminum-sheath oil-filled type. The cable consists of a jacket, 

aluminum sheath, insulation, and conductor. A typical cross section of the power 
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transmission cable is shown in Figure 3-4. The jacket protects the cable from environmental 

effects and external loads. An aluminum sheath is placed between the jacket and insulation.  

It is understood that the purpose of this sheath is to reduce the electromagnetic effect arising 

from the conductors during power transmission and also to keep the internal configuration of 

the cable intact. A layer of insulation paper is present between the inner conductors and 

aluminum sheath.  The inner core of the cable is comprised of inner conductors, which are 

standard helically-bundled copper wires.  The transmission cable is designed to operate at 

230 kV.  

3.1.2 Characterization of Key Properties of Tested Material 

3.1.2.1 Characterization of Shear Response of Thermal Backfill Material 

 

Since the thermal backfill is a specially prepared crushed rock material, it was considered 

important to have material-specific strength parameters (friction angles) for the interpretation 

of the results from buried cable-soil interaction pullout testing and numerical simulations.  

Considering the particle size and high angularity, it was judged reasonable to use the direct 

shear apparatus to obtain the shear strength parameters. 

A series of conventional direct shear tests, as described in more detail in Lamb (1991), were 

conducted. The tests were performed on both the dry and moist thermal backfill with water 

content (w) of about 4 % (Note: this moisture content is comparable to the water content of 

the thermal backfill used in full scale testing). 

The dry thermal backfill were prepared at three different density levels: dense (with 

specimen density of 17.9 kN/m
3
), medium dense (density of 16 kN/m

3
), and the loose 

(density of 13.9 kN/m
3
). It should be mentioned that the limited size of the direct shear test 

apparatus and the high angularity of thermal backfill material prevents preparing a high 

density specimen due to the possibility of crushing thermal backfill material. After 

performing sieve test to measure the crushability of specimen after each direct shear test, it 

was concluded to prepare the specimen at three levels of densities. The dense specimens 
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were prepared by placing thermal backfill in lifts of 20 mm in the shear box and compacting 

each layer with a square-shaped wooden tamper. During preparing specimen, it was noticed 

that although same preparing methods used two levels of densities, which were called dense 

and medium, were created. The small size of direct shear test and the large particle size of 

thermal backfill material causes the variation in the density.  Since density affects the friction 

angle, the higher density corresponds to dense specimen and a level lower than the dense 

material refers to medium density. The loose thermal backfill material was prepared by 

pouring it evenly through a funnel and from a drop height of about 15 to 20 mm.  The 

vertical loads were selected in such a way that they could cover the range of anticipated 

stress levels (6 kPa to 50 kPa) in the soil adjacent to the cables under typical burial depths.  

The dense specimen under moist conditions was also prepared following essentially the same 

approach as that used for the preparation of the dry material. After placement, the moist 

specimen was kept undisturbed for 24 hours in the direct shear box prior to being sheared to 

simulate the condition of the experimental studies. 

Figure 3-5 and Figure 3-6 present typical plots of normalized shear stress versus horizontal 

shear displacement, and vertical normal displacement versus horizontal shear displacement 

observed during direct shear testing of dry thermal backfill.  As can be seen, dense and 

medium dense thermal backfill specimens exhibit a peak shear resistance followed by a 

progressive reduction in shear resistance as interlocking is overcome up to the point of shear 

failure.  The measured peak shear force vs. normal forces from the test on dry thermal 

backfill is shown in Figure 3-7.  The estimated average peak friction angles ('max) for the 

three soil density conditions (dense, medium dense, and loose) are about 59°, 53°, and 44°, 

respectively. The observed relatively high value of peak friction is attributable to the excess 

energy required to overcome (dilation) the interlocking between particles and rearrangement 

of particles in this very angular material made of crushed rock. The shear stress versus 

normal stress observed at large shear strains for these tests is depicted in Figure 3-8. The 

large–strain friction angle at ultimate state ('cv) appears to be about 42°, which is close to the 

peak friction angle obtained for the loose material as expected.  
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The results from direct shear tests conducted on dense thermal backfill under moist 

conditions (w = 4%) are shown in Figure 3-9 and Figure 3-10 for two levels of vertical stress 

(19.3 kPa and 32.7 kPa).  The results obtained from the testing of the dry thermal backfill are 

also overlain in the same graph for comparison. Although the moist thermal backfill seems to 

offer a slightly higher resistance in the test conducted under a low stress level, generally 

speaking, the shear strength characteristics of the moist thermal backfill seems to be similar 

to those derived from tests conducted under dry conditions. 

3.1.2.2 Characterization of Shear Response of Thermal Backfill-Cable Interface 

 

Direct shear testing was also undertaken to determine the interface frictional characteristics 

between the thermal backfill material and buried cable. A square coupon of the cable‟s outer 

layer was cut out and prepared for this purpose.  The coupon was trimmed so that it would 

exactly fit the bottom part of the direct shear box (76 mm by 76 mm). The coupon was 

positioned in the shear box so that its surface was flush with the bottom edges of the direct 

shear box. The crushed stone was placed on top of the coupon using the same sample 

preparation as described in the direct shear test on crushed stone. The tests were performed in 

two density levels, medium dense and dense thermal backfill material with 16 kN/m
3
 and 

17.9 kN/m
3
, respectively.  

The measured peak shear stress vs. vertical stress obtained for medium and dense thermal 

backfill during interface testing is shown in Figure 3-11. Also shown in this figure are the 

data for these tests at large displacement levels.  As may be noted, the average peak interface 

friction angle for dense and medium thermal backfill are about 38° and 33°, respectively. The 

average interface friction angle at large strain levels was taken as 29°.  Based on this, the 

interface friction factor (f = /) would be about 0.64. 
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3.1.2.3  Characterization of Cable Mechanical Properties 

 

Two cable types as shown in Figure 3-4, namely type C1 and type C2 were used in the 

experimental studies. The Type C1 cable has 900 kcmil copper conductors with an overall 

diameter of 89 mm (3.5 inches), and the Type C2 cable is 1500 kcmil copper conductors with 

an overall diameter of 100 mm (4 inches). The cable Type C1 was used throughout axial 

pullout tests, and Type C2 was used for lateral pullout testing.  

In order to obtain the mechanical characteristics of the power transmission cable, two sets of 

the tests were conducted. An axial compression test was carried out to determine the axial 

elastic properties and axial yield strength of the composite cable. The axial compression test 

was conducted by using Baldwin 60,000 lb Universal Testing Machine at the UBC structural 

laboratory.  The tested cable sample was prepared by trimming to provide a length to 

diameter ratio of 2.5. This ratio was considered suitable in order to mobilize compressive 

strength with minimal effect from end platens, while minimizing the opportunity for buckling 

failure of the specimen. The test set up is shown in Figure 3-12. The force-displacement 

curve for a power transmission cable is shown in Figure 3-13. 

The flexural properties of buried cable were obtained by performing standard three-point-

bending test. Figure 3-14 shows the three point bending test set up. Power transmission cable 

was cut to fit between the two supports of the apparatus. The clear distance between the two 

supports were 780 mm, and they restrain vertical and out of plane movements. A 

displacement-controlled movement was applied at the midpoint of the cable. The required 

force and corresponding displacement were measured. Figure 3-15 shows the force-

displacement curve of the buried transmission cable.  
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3.1.3 Experimental Apparatus 

 

The physical full-scale model pullout testing to study the subject buried cable-soil interaction 

was undertaken at the large soil chamber at the University of British Columbia. The device 

has been already utilized to study the pipe-soil interaction effects in buried steel and 

polyethylene pipelines (Wijewickreme et al. 2009; Wijewickreme and Weerasekara 2007). 

The testing apparatus was modified to enable buried cable-soil interaction studies. The 

details of testing chamber, loading apparatus, sample preparation, and instrumentation are 

briefly described in the following sections.  Additional details of the testing apparatus can be 

found in Anderson (2004) and Karimian (2006).   

3.1.3.1 Testing Chamber 

 

As noted by Anderson (2004), the dimensions of the soil testing chamber were selected to 

satisfy the following criteria: 

 the width and the length of the soil chamber must be adequate enough to allow the 

full development of the active and passive soil wedges during lateral pullout testing; 

 the chamber must have reasonable dimensions so that the effects of side and end 

walls on the soil deformation during axial pullout test would be minimized, and 

 the chamber height must be selected in relationship to its length, since a deeper burial 

depth would require a longer chamber dimension during lateral pullout testing.  

Based on the numerical simulations and classical soil wedge considerations, the final 

dimensions of the testing chamber were chosen as 3.8 m (length), 2.5 m (width) , and 2.5 m 

(height).  
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Figure 3-16 shows a photograph depicting the overall dimensions of the testing chamber.  As 

may be noted, the walls of the testing chamber are made of plywood (with thickness of 19 

mm) and restrained/stiffened by timber beams (90140 mm), placed at every 300 mm. The 

wall system is supported by modular steel frames consisting of W15037 sections, placed at 

every 1.2 m dimension intervals along the four sides of the chamber. In the upright part of 

the modular, steel frames are buttressed by a diagonal HSS 89893.8 element welded to the 

base plate, which are then bolted to the concrete strong-floor of the structures laboratory. 

Furthermore, the interior of the plywood walls are lined with smooth stainless steel sheets to 

minimize potential side friction between the wall and the soil backfill.  

3.1.3.2 Loading Mechanism 

3.1.3.2.1 Loading apparatus 

 

The loading apparatus consists of two hydraulic actuators which can apply loads in a 

displacement-controlled manner. The system has two double-acting hydraulic actuators, each 

having a capacity of 418 kN (93 kips), with a digital hydraulic control system. The actuator 

has a flexibility of applying different displacement rates. The displacement capacity of 

actuator is limited to 600 mm. The hydraulic power is provided by an in-house hydraulic 

system with the maximum oil flow capacity of 75 lit/min. The actuators are trunnion-

mounted to the pedestal which is bolted to the strong floor. This arrangement positions the 

height of the actuator axis at 700 mm above the strong floor level.  

 The control system of the hydraulic cylinders consists of the following components: 

 Delta RMC controller, model RMC100-S2-ENET; 

 Synchronous serial interface (SSI) module and Temposonic position sensor, and 

 PQ Servo-Proportional Valve Controller. 
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RMCWIN, a powerful motion controller software, is used to drive the RMC controller. It 

allows the user to setup, configure, and control the motion of several axes. Command values 

such as displacement or displacement rates are given in the RMC software. The signal is then 

sent to servo valve via RMC controller to adjust the valve opening to control the amount of 

oil flow. The SSI module with Temposonic position transducer probes the actual position of 

the actuator and sends feedback to the controller until the actual position and target position 

are equal. Furthermore, SSI unit enables the synchronization of more than one axis when 

they are operated at the same time, which is an important consideration in lateral pullout 

tests. Figure 3-17 shows the schematic figure of the control system. 

3.1.3.2.2 Coupling system 

 

The main clamping mechanism connecting the load cell to buried cable in axial pullout test 

consists of two split-metal-collar pieces.  When bolted together these split-collars form a 

hollow cylinder with the diameter smaller than buried cables (89 mm) and with the length of 

25 cm. The two halves were bolted around the buried cable with three equally spaced 

clamping bolts at each side as shown in Figure 3-18.  The inner parts of the coupling were 

thread-marked to increase the friction and essentially prevent any possibility of the buried 

cable sliding out from the coupling during testing. 

The coupling system for lateral pullout tests consists of four parts: the end clamps at each end 

of the buried cables, connecting steel cables, shackles, and the couplings at each end of the 

actuators. The end clamps have a very similar structure to the coupling system in the axial 

pullout test. They comprise of two-split-metal collar pieces that in combination forms a 

hollow cylinder with the diameter smaller than the buried cable (100 mm) and with a length 

of 10 cm. The split-collars are tightly secured around the buried cable (at each end) with two 

equally spaced high strength bolts at each side. A given end clamp is connected through a 

loose shackle to a 29 mm (1-1/8-inch) diameter steel cable.  The steel cables are passed 

through the vertical slots provided in the soil chamber wall so that connection can be made 

through another coupling to a load cell connected to the actuator shaft. Figure 3-19 shows the 
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coupling system for a lateral pullout test. The vertical slots are sealed with MLC, close cell 

foam material, to prevent any “flowing out” of the backfill material during lateral pullout 

testing. 

3.1.3.3 Instrumentation 

 

All measurements during testing were primarily focused on the buried cable. The 

instrumentation used included devices for measuring pullout force, displacements at various 

cable segments, and strains. The following sections provide details related to some of the key 

instrumentation. 

3.1.3.3.1 Pullout force measurement  

 

The axial pullout force and lateral pullout force were measured using load cells connecting 

the actuator shaft to cable via couplings described in Section 3.3.2.2 above. Baldwin-Lima-

Hamilton Corp. SR-4 load cells with a maximum load capacity of 90 kN (20,000 lbs) were 

used. The load cell was operated at an excitation voltage of 10 volts. All load cells were 

calibrated over the range of expected axial and lateral loads, up to 50 kN.   

3.1.3.3.2 Displacement measurement 

 

Displacement of the actuator during testing was monitored using a Temposonic linear 

position sensor type RP.  Point displacements were also measured at various locations along 

the buried cables using Celesco-PT101 cable extension position transducers, also called 

string potentiometers (SP).  The SPs had a capacity of measuring displacements up to 2.0m 

with very high resolution. The displacement transducers were subjected to an excitation 

voltage of 5 volts. The SPs were connected to the buried cables with very thin extension 

cables, so that the displacements would be communicated to the transducer with minimal 

drag forces arising from the backfill soil. 
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3.1.3.3.3 Strain measurement 

 

Point strains along the buried cables were measured using KFEL-5-1-120-C1 high elongation 

stain gauge manufactured by Kyowa, Japan, (up to 15 % strain). The Loctite 414 

cyanoacrylate adhesives were used to place the strain gauges on the cables.  Further detail on 

strain gauge selection, and specialized procedure for surface preparation and mounting 

procedures for bonding has been reported by Anderson (2004). 

3.1.3.3.4 Data acquisition system 

 

All measurement from load cells, string potentiometers, and strain gauges were collected 

using a National Instruments NI SCXI-1001 signal conditioning board, Texas, Austin, with 

Daisylab software (Data Acquisition System Library). Data were recorded at a relatively high 

frequency of 1 Hz (1 samples per second) in order to capture any potential sudden rapid 

changes that might result during the tests.  However, after review, data were later post-

processed to obtain manageable file sizes.   

3.1.4 Preparation of Specimens and Cable-Soil Interaction Testing 

3.1.4.1 Material Handling and Cable Placement 

 

The procedure used for the placement of soil backfill is similar to that previously used for 

sand backfill at UBC by Anderson (2004), Karimian (2006), and Weerasekara (2007). The 

same procedure was maintained throughout all tests in axial and lateral pullout tests. 

The amount of thermal backfill required to achieve the specific burial depth varied 

approximately between 10 to 20 m
3
 depending on the type of the test. The backfill material 

was stored in large bulk-storage bags (with a capacity of 0.9 m
3
) in an enclosed area in a 

structural laboratory. The bags were moved to the location of the chamber by the overhead 
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crane. Once a bag is positioned at a specific location, the backfill material is released from 

the bag under gravity into the chamber through a chute as depicted in Figure 3-20.  The lower 

end of the chute was held to allow a fall height of about 20 cm for the material. (Note: a 

“pull-string” system allows opening the chute at the bottom of the bags). Once the soil flow 

out of the bag has commenced, the opened chute was traversed over the footprint of the box 

using the overhand crane to spread the material.  

The material was placed in lifts of ~12 cm thickness and levelled with a rake.  Each lift was 

compacted by using a ½-ton smooth roller with three passes in north-south and east-west 

directions. Following placement of each layer, soil density measurements were taken using 

density pans.   

3.1.4.2 Testing Procedure 

 

Typical cable layout configurations for lateral and axial pullout tests on transmission cables 

are shown in Figure 3-21. In axial and lateral pullout testing, the transmission cables are 

aligned parallel to larger and shorter chamber dimensions, respectively.  The tests were 

conducted with cables pulled out in a displacement-controlled manner with a servo-hydraulic 

actuator as described in the Loading Mechanism section. The rates of displacement were set 

at 3.6 cm/hr for both axial and lateral pullout tests.  

Fifteen (15) longitudinal and ten (10) transverse soil deformations were simulated in the 

pullout tests.  The test program is summarized in Table 3-2 and Table 3-3. As may be noted, 

several tests were repeated to increase the statistical robustness of collected data.  To 

distinguish between tests, each test is designated with a number as an identification code. The 

identification code carries information on: the cable type, burial depth, and a digit showing 

the number of replication in a particular set. For example the Test No. C1-B2-03 would 

suggest that a test was performed on the cable C1 with burial depth B2, and this is the third 

test in this set.  A similar labelling approach was utilized to name the lateral pullout tests. 
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3.1.5 Experimental Limitation and Implementation of the Axial and Lateral Pullout 

Test 

 

A controlled environment to investigate the cable-soil interaction is a key consideration in 

the experimental program. As with any experimental study, limitations exist in the 

interpretation of the test results and the applicability of test results to the field condition. 

Indeed, the limitations, shortcoming, and possible errors during experimental studies should 

be identified for test result interpretations and the applicability of test results to real-scenario 

field condition. The two important shortcomings associated with the current cable-soil 

interaction experimental studies are the effect of boundary conditions and the effects arising 

from the pulling system mechanism. 

3.1.5.1 Effect of Boundary Conditions 

 

It is most preferable if the real field condition can be simulated by the physical modeling 

tests. However, the limitation on the scale of the experimental studies forces the size of the 

chamber to the manageable size by introducing artificial boundary conditions. When 

selecting the chamber size several key parameters are considered to minimize the effect of 

the boundary condition. The box size should be large enough to allow the free formation of 

the active and passive soil wedge in the lateral pullout test, and also allow the free 

development of the displacement zones during axial pullout test.  

3.1.5.1.1 Effect of sidewalls  

 

The observation of sand particle movement during axial pullout test by Karimian (2006) 

indicated that the only small annular zone in the vicinity of the pipe is influenced during axial 

pullout ( 1.2 to 2.8 mm).This observation implied that the sidewalls, located 1.25 m away 

from the buried cable, would not influence the response of the buried cable during axial 
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pullout test. In the lateral pullout test; however, the sidewalls create different mobilized 

friction force. In the previous studies on the pipe-soil interaction, the problem of the sidewall 

friction was reduced by introducing material for sidewall with reduced interface friction 

angle. For instance, Trautmann and O‟Rourke (1983) used a glass material, Paulin (1998) 

used steel material, and Karimian (2006) used stainless steel sheets attached to the plywood 

panel to reduce the sidewall friction force.  In the current study, the same procedure as 

described by Karimian (2006) was used. The 20 Ga 304 stainless steel sheets were used to 

cover the plywood panel. The frictional force at the side wall can be roughly estimated by 

considering a failure wedge as shown in Figure 3-22. As shown, the passive wedge can be 

simplified as a triangular shape with the failure surface of 45˚-/2=24° with the horizon. In 

calculating the angle of the failure wedge, the friction angle assumed to be cv=42˚. The 

magnitude of the mobilized frictional force according to this assumption can be calculated as 

 cot3
0f Hfk

6

1
F           Eqn. 3-1 

In which,  is the density of the thermal backfill material, H is the buried depth, k0 is the 

coefficient of the lateral earth pressure, and f is the coefficient of friction angle between the 

thermal backfill material and steel panel. If k0 and f assumed to be 0.5 and tan(.6)  

,respectively, the mobilized friction force (Ff) for different burial depth ranging from 0.3 m to 

1.2 m can be estimated as .04 to 2.81 kN respectively. The maximum computed sidewall 

friction force is an order of 4% of the total soil loads on the buried cable during lateral 

pullout test.   

3.1.5.1.2 Effect of front/rear walls 

 

The direct measurement of stresses on the chamber wall by Karimian (2006) indicated that 

no noticeable stress changes during axial pullout test were observed. With the knowledge that 

current tests were conducted on the buried cable with much smaller diameter (89 mm) in 

comparison to Karimian‟s tests, which was on pipelines having a diameter of 457 mm, it can 
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be concluded that the effects of sidewall and front/rear wall would not influence the results of 

the current axial pullout tests. In the lateral pullout tests, the front and rear walls should allow 

the formation of the active and passive wedge freely as shown in Figure 3-22. Observations 

of the surface deformation of the thermal backfill material during lateral pullout tests showed 

that the active and passive wedge freely formed well within the chamber. The size and the 

shape of the failure surface can also be evaluated either by the aid of the numerical 

simulation or the limit equilibrium analysis. In the limit equilibrium analysis, depending on 

the upper bound or lower bound equilibrium analysis, the failure surface can follow either the 

velocity characteristics or the stress characteristics. If the planar failure surfaces as suggested 

by Rankine is assumed, passive wedges would be inclined to the horizontal angle of 45°-

/224° and 45°-/236° for the stress characteristics and velocity characteristics 

respectively, in which the friction angle () and dilation angle () were assumed to be 42˚ 

and 18˚. The buried cable axis during lateral pullout test was positioned 2.5 m from the front 

wall which is more than the necessary length to form a passive wedge based on the above 

simplified procedure.  

Under the field condition, the power transmission cable is buried in the trench of thermal 

backfill material which is surrounded by a native soil in contrast to the experimental studies 

in which the cable is surrounded only by thermal backfill material. Since only a small region 

immediately around the buried cable is influenced during axial pullout tests, the condition in 

the test simulates the axial soil loads on the cable. However, the passive wedge for a cable 

with a larger burial depth during lateral pullout test can be extended to as much as 2.7 m. 

That means in the field condition the failure surface crosses not only the thermal backfill 

material zone but may also cross the local soil surrounding the trench. Since the buried power 

transmission cable traverses a large area with variable soil properties, it is difficult to perform 

a test with the exact field condition. If the local soil condition is sandy material, the results of 

experimental tests can be conservative since the thermal backfill material has a higher 

friction angle and density than a sandy material. 
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3.1.5.2 Effect of Pulling System Mechanism 

 

As mentioned before, the coupling system for the lateral pullout tests consisted of the end 

clamps which were connected by the 5/8 inch (16 mm) steel rope sling to the actuators. The 

modulus of elasticity of the steel rope sling was 120000 N/mm
2
 (±5000 N/mm

2
). Based on 

the mechanical and geometric properties of the steel rope sling, its axial stiffness (AE/L) for a 

length of 3 m is 5.7 MN/m, which shows that the rope sling elongates .011 (m) at the peak 

force of 65 kN when the cable end moves .3 m. As such it is reasonable to assume that the 

rope sling is inextensible.  

The steel cable and thermal backfill material were passed through ducts in order to reduce the 

friction force between them.  Those ducts only extended 2 m from the front wall so they 

didn‟t interfere with the buried cable movement during lateral pullout test. Thus, only a half 

meter of the rope sling was in contact with just the thermal backfill material, and this length 

was also decreasing during the lateral pull test. The measured axial pullout force of the 

buried cable can be used to calculate the amount of the axial pullout force of the rope sling. 

Based on the conventional formula, the axial soil load is proportional to the diameter and the 

length of the buried cable. Thus, the soil loads on the rope sling was an order of 2% of the 

soil loads on the buried cable which can be negligible. 

The rope sling was connected through the shackle to the buried cable. This type of the 

connection creates a flexible hinge, which permits the buried cable deforms easily and it also 

keeps the direction of applied load the same during lateral pullout test. The other benefit of 

using a flexible hinge is to allow the possible vertical uplift of the buried cable during lateral 

pullout tests.    

3.1.5.3 Other Possible Associated Errors 

 

The other possible associated error can be related to the variation of the density in each test 

and throughout all the axial and lateral pullout tests. Achieving a uniform density is an 
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important consideration in the experimental tests since the change in the density would affect 

the friction angle, dilatancy, the stresses around the buried cable, and finally the pattern of 

the failure during the axial and lateral pullout test. In order to achieve specimen with uniform 

density, a systematic and consistent approach was developed to prepare the specimen for all 

tests. The reader is referred to the specimen preparation for more detail. The pan test, using 

bowls placed during thermal backfill compaction, was used to measure the local density and 

moisture content of thermal backfill material at four random points at different layers. In this 

test, a pan with the known volume was placed in the soil and then the thermal backfill 

material was poured into the box and compacted. The pan was removed and the local soil 

density and moisture content were measured. Table 3-2 and Table 3-3 show the mean density 

and corresponding standard variation of density in the axial pullout and lateral pullout tests 

respectively. The average soil density ranges from 19.2 to 20 kN/m
3
 in the axial pullout test 

and from 19.2 to 20.1 kN/m
3
 in the lateral pullout test. The effect of density changes in the 

results of the axial and lateral pullout tests will be investigated by the numerical simulation in 

the later phase of this study. 

 

3.2 Experimental Testing on the Buried Cable Subjected to Longitudinal and 

Transverse Ground Movements 

 

This section describes the results from axial and lateral pullout tests on buried cables as well 

as comparison between other studies and the current study. As mentioned previously, two 

types of test are conducted: 1) the axial pullout tests simulate the longitudinal soil loads on 

the buried cable and 2) lateral pullout tests simulate the transverse soil loads on the buried 

cable. 
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3.2.1 Axial Pullout Testing 

 

Axial pullout tests were performed on the cable type C1 with diameter of 89 mm buried in 

dense thermal backfill as in procedures in the earlier sections of this report.  Tests were 

conducted at four different burial depths (H) equal to 30, 60, 100, and 120 cm to investigate 

the effects of burial depth on longitudinal soil restraint - the burial depth (H) is the depth of 

the centreline t the surface.  The axial pullout loads, the corresponding leading and tailing 

displacement were measured for each test. The test results are typically reported herein in 

terms of axial load vs. axial displacement responses under different burial depth levels, the 

axial displacement corresponds to the leading part of the cable or front displacement. 

3.2.1.1 Results of Axial Pullout Testing  

 

Detailed results of all axial pullout tests are reported in Appendix A. Figure 3-23 depicts the 

average axial pullout response observed for burial depths of 30, 60, 100, and 120 cm; the 

plotted displacement represents the displacement of the leading end of the cable. As shown, 

the characteristic force-deformation curve for all tests shows a peak in axial pullout force at 

relatively low pullout displacement (5 to 7 mm), followed by a drop of axial force.   

After experiencing the initial drop, the pullout resistances on cables increase with further 

increase in axial displacement.  In connection with this observation, it is worthwhile noting 

that most of the transmission cables had a slight initial curvature at the time of installation in 

the soil chamber for testing, which is likely an artifact from being placed curved for a long 

time in a reel as supplied by the cable manufacturer.  In spite of concerted efforts expended, 

it was not possible to remove this curvature and straighten the cable prior to installation for 

pullout testing. It appears that, at larger axial displacements, the presence of the inherent 

curvature (out-of-straightness) of the cable would likely have promoted the development of 

some passive soil restraint in addition to the “shaft friction” - in turn, contributing to the 

increase in the observed axial soil resistance at larger cable movements. The out-of-
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straightness can be purely horizontal, purely vertical, or a combination of the two. The level 

of the ascent of the axial pullout force (with increasing relative axial displacement) can be 

argued to be dependent on the degree of the out-of-straightness.  As may be noted from the 

axial force-displacement curves in Appendix A, some tests exhibit an increased amount of 

increase in axial pullout force with further increasing in axial displacement; this may be 

indicative of the total randomness of the amount of the out of straightness.  This hypothesis 

requires further investigation prior to confirmation. 

Figure 3-24 shows the trailing end versus leading end displacement of the buried cables 

during test C1-B1-05.  The observed, almost 1:1 slope of  the relationship indicates that the 

trailing end of the cable moved in harmony with the front end during axial pullout process.  

In essence, the observation confirms that the overall axial stiffness of the cable is sufficiently 

large to allow the cable to behave as a rigid body for the tested length. This figure and similar 

tailing-end and leading-end displacement measurement in other tests, as depicted in 

Appendix A, confirms that the failure occurs simultaneously along the interface of the buried 

cables and surrounding soil over the tested length.  

In order to facilitate the comparison of test results with other studies and guidelines such as 

ASCE (1984), the axial pullout force and displacement are expressed as a non dimensional 

quantity. The displacement is normalized with respect to the buried cable diameter. The axial 

force is normalized to the average soil density, buried cable diameter, length of the cable 

buried in the box, and burial depth as depicted by following equation: 

HDL

F
N a

a


           Eqn. 3-2 

In which Fa= axial pullout force; = the average crushed stone density; L= the cable length; 

D= cable diameter and H=burial depth 

A quick examination of the above equation with ASCE (1984) equation for longitudinal soil 

restraints would suggest that the dimensionless quantity (F/HDL) is a reflection of the soil 

normal stress and soil frictional components (i.e., k and tan ), and such representation also 
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provides an opportunity to effectively compare results from tests conducted at different burial 

depths. As per ASCE(1984) longitudinal soil restraint can be expressed as a function of Na 

as: 

 tan)(
2

k1
NF aaxial


          Eqn. 3-3 

in which δ= interface friction angle and '' / vhk   (coefficient of lateral earth pressure) is 

defined as the ratio of horizontal stress to the vertical stress. '
h and '

v are the horizontal and 

vertical effective stresses. The coefficient of lateral earth pressure strongly depends on soil 

properties and the stress history of the soil (Northcutt (2010)). Jacky (1948) proposed a 

formula for a coefficient of lateral pressure at rest (k0) for sand as a function of internal 

friction angle () as follows: 

sin10 k           Eqn. 3-4 

The non-dimensional axial pullout force versus non-dimensional displacement is shown in 

Figure 3-25 for different burial depths of 30, 60,100, 120 cm, and ASCE formula. The k0 

value in ASCE is derived from Jacky‟s equation with the friction angle of 53° and interface 

friction angle of 38° as obtained from laboratory direct shear test. This interpreted 

information in the figure clearly suggests that the average normal stresses on the cable during 

axial pullout are much larger than those typically estimated for coefficient of lateral earth 

pressure at rest using conventional approaches. It is of interest to note that these observations 

are similar to those observed by Karimian (2006) for steel pipes buried in dense sand, where 

the peak axial soil resistance observed on buried steel pipes were noted to be several-fold (in 

excess of 2 times) higher than the predictions from guidelines. As can be seen in Figure 3-25, 

the predicted value for axial pullout force is very sensitive to the variation of the assumed 

value for k. 

With direct measurement of soil stresses on pipes during full-scale testing combined with 

numerical modeling, Wijewickreme et al. (2009) have demonstrated that this increase is 



44 

 

primarily due to significant increase of overall normal soil stresses on the pipelines as a result 

of constrained dilation of dense soil during interface shear deformations. It appears that the 

limitations in the current approaches for the estimation of axial soil loads on steel pipes in 

dense soils may also exist for the cables buried in dense soils.  

Using the angle of interface friction () obtained from direct shear testing and the first peak 

axial force from pullout testing, it is possible to back-calculate values for the coefficient of 

lateral earth pressure (k) as depicted in Figure 3-26 as a function of burial depth ratio (H/D). 

The figure shows the k value gradually decays with increasing H/D ratio.  This observation is 

similar to findings by Karimian (2006) during numerical modeling of constrained-dilation 

during axial pullout testing of steel pipes in dense sand. 

3.2.2 Lateral Pullout Testing 

 

Lateral pullout tests were performed on the cable Type C2 (having a diameter of 100 mm) 

buried in dense thermal backfill material. Tests were conducted at four burial depths equal to 

30, 60, 90, and 120 cm. Measurements included lateral pullout forces, the horizontal 

displacement at both ends of cable, and displacement at selected locations along the cable. 

The displacement were measured using string potentiometers (i.e., string potentiometer 

locations are shown as points A, B, C and D in  Figure 3-21(b); in this, thin steel wires were 

attached to the transmission cable at the desired locations, and they were passed through the 

soil to the outside of the box and then attached to the string potentiometers.  In some lateral 

pullout tests, strain gauges were also mounted on the cable (at the same locations as those 

used for the string potentiometers) to measure axial strains in the back and front sides of the 

transmission cable. The primary results include lateral pullout force and displacement at both 

cable ends. 
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3.2.2.1 Results of Lateral Pullout Testing  

 

The results from lateral pullout testing are given in Appendix A. The lateral pullout forces 

are reported as the sum of the forces measured from each load cell connected to each end of 

the cable during pulling. Force-displacement data for lateral loading are summarized in 

Figure 3-27 for burial depth ratios (H/D) of 3, 6, 9, and 12.  Clearly, the lateral pullout forces 

increase by an increase in burial depth ratio.  In order to facilitate the comparison of test 

results with other studies and guidelines such as ASCE (1984), the lateral pullout force and 

displacement are expressed as a non-dimensional quantity. The lateral force is normalized to 

the average soil density, buried cable diameter, length of the cable buried in the box, and 

burial depth as depicted by following equation: 

HDL

F
N L

h


           Eqn. 3-5 

in which FL=the measured lateral force; and H, D, and L are as previously defined. 

Displacement is expressed as the non dimensionless quantity Y/D, the ratio of displacement 

cable ends to the diameter of the cable. Figure 3-28 depicts the non-dimensional force-

displacement curve for lateral pullout test for different burial depth ratios (3, 6, 9, and 12). 

Arrows on the curve represents the maximum dimensionless force. The maximum 

dimensionless force, which will be called the horizontal transverse force factor thereafter, is 

depicted in Figure 3-29 as a function of burial depth. The current test results are compared 

with experimental studies by Trautmann and O‟Rourke (1985), Audibert and Nyman (1977) 

and Karimian (2006) in Figure 3-30. The many differences in their experimental studies such 

as material density, friction angle, and pipe diameter cause the disparity among the individual 

results. The main cause of differences between our test results and reported studies by 

O‟Rourke and Karimian is the higher friction angle and dilation angle associated with the 

thermal backfill material.  

Two analytical models were proposed by Audibert and Nyman (1977) and Trautman and 

O‟Rourke (1983) to calculate the horizontal force factor (Nh) for buried pipeline. Audibert 
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and Nyman used Hansen (1961) model developed for vertical piles and Trautman and 

O‟Rourke (1983) used Ovesen (1964) model developed for vertical plate anchors. The results 

of their analysis are reported in ASCE (1984). Figure 3-31 shows the variation of the 

horizontal force factor as a function of H/D for soil with different friction angle based on the 

model of Hansen (1961) and Figure 3-32 shows the variation of the horizontal force factor as 

a function of H/D for soil with different friction angle based on the model by Ovesen (1964). 

The horizontal transverse force factor of the current study is also compared with the 

analytical work of Ovesen (1964) and Hansen (1961) for =45˚ as shown in Figure 3-31 and 

Figure 3-32. The comparison shows that Ovesen model under predict the test results by 20 

%, while Hansen model over predict the tests results as much as 100 %. The assumption in 

the Hansen analytical model regarding the vertical restraints causes the exaggerated 

overprediction of test data while satisfying vertical equilibrium as the Ovesn model causes a 

more reasonable prediction.  It is important to note that the disparity in the test results with 

Ovesen model arises from two reasons.  The Ovesen prediction considers a 2-dimensional 

plane-strain movement whereas the lateral pullout test simulated in the chamber in fact is a 

three dimensional cable-soil interaction problem.  In addition, the friction angles for thermal 

backfill are much higher; as such, it is not surprising to see an observed lateral resistance to 

be larger than Ovesen analytical model. As can be seen, the suggested design values for Nh 

fall below those of current test results.  

3.2.3 Summary of Experimental Testing Results 

 

The main objective of the current research was to study the contributing factors and key 

parameters influencing the response of the buried power transmission cables subject to 

permanent ground deformation.  A systematic full-scale laboratory testing program was 

undertaken using a large soil chamber to examine this topic. The research findings are 

intended to provide a database for development of guidelines and criteria to assess the 

performance of the buried power transmission cables, and validation of numerical models. 

The research work has generated several key findings related to the characterization of 
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longitudinal and horizontal transverse soil restraints, the applicability of the current 

guidelines, and the methods that have been developed for pipelines to buried power 

transmission cables. A series of tests were conducted where buried cables were subjected to 

longitudinal and transverse pullout. The test results have been compared with the predictions 

from the ASCE (1984) guidelines and other similar studies for assessing the performance of 

buried pipelines under relative ground movements.  

Some of the key findings are summarized below 

 Under relative axial movements, power transmission cables buried in dense sand 

exhibited a load-displacement response involving a relatively nonlinear increase to a 

peak point followed by strain-softening behaviour, and increase in pullout resistance.  

 The peak soil loads under relative axial soil movements on cables buried in dense soil 

were noted to be under-predicted by the current approaches used for buried pipeline 

design; this is likely due to the increased soil normal stresses on the cable due to 

constrained soil dilation not accounted by the current approaches. It appears that the 

limitations in the current approaches for the estimation of axial soil loads on steel 

pipes in dense soils may also exist for the cables buried in dense soils.  In using the 

ASCE (1984) approach, the determination of the lateral earth pressure coefficient (k) 

that adequately represents the normal soil pressure on the cable seems to present a 

challenge. 

 The maximum axial pullout force depends on the cable diameter, the interface friction 

angle, soil density, burial depth, and the coefficient of earth pressure (k). Studies 

show that the correct estimation of the normal earth pressures on the structural 

element is crucial in determining the axial soil resistance against pullout. Based on 

the test results, the variation of the coefficient of the earth pressure as a function of 

burial depth was developed.   

 “Out-of-straightness” of cables seems to be another important consideration that 

affects the development of axial soil loads on cable at relatively large soil 
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movements. Depending on the degree of “out-of-straightness”, the axial soil 

resistance can increase the apparent initial peak axial soil restraints.  Therefore, it is 

prudent to account for alignment curvatures when assessing the buried power 

transmission cables subjected to relative axial soil ground movements. 

 The load-displacement curves for the buried power transmission cables subjected to 

the horizontal transverse movement were developed using tests conducted at varying 

embedment ratios (3, 6, 9, and 12) were developed. The load response curves show a 

rectangular hyperbola shape, i.e., the load increases nonlinearly and gets to the 

asymptotic value. The test results show that the horizontal force factor (Nh) varies as a 

function of friction angle and embedment ratio (H/D ratio). The new database 

provides an opportunity to characterize the transverse horizontal soil restraint for 

buried power transmission cables.  

 The lateral pullout test results were compared with other experimental, analytical 

studies, and ASCE 1984 guidelines. The comparison between the current test results 

and Trautmann and O‟Rourke (1983) result shows that their method under-predict the 

maximum transverse soil loads on the buried cable. The comparison between the 

current test results and Audibert and Nyman shows that their method over-predicts 

the maximum transverse soil loads on the cable as much as 100%. 

 In an overall sense, the test results contribute to developing a reliable database for 

validating numerical models to capture the response of underground power 

transmission systems subjected to permanent ground deformation. 
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Table 3-1: Results of chemical soil analysis ( Test results were provided by Soilcon Laboratory Ltd.)  
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Figure 3-1: Modes of soil loads on the buried cable 
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Figure 3-2: Grain size distribution of the thermal back fill material and grading limits as specified by 

British Columbia Transmission Corporation (BCTC). 
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Figure 3-3: The results from Modified Proctor testing of thermal backfill material. 

 

Figure 3-4: Cross section of tested power transmission cable ( Left: schematic drawing, Right: 

photograph of Type C1 and Type C2 cable) 

Jacket 

Aluminum Sheath 

Copper Conductor 

Paper Insulation 

Type C2 

Type C1 



52 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

Horizontal  Displacement (mm)


/ 

v

Loose

Medium dense

Dense

v=19.3 kPa

 

Figure 3-5: Variation of normalized shear stress during direct shear loading of a loose (13.90 kN/m
3
), 

medium dense (16 kN/m
3
), and dense (17.90 kN/m

3
) thermal backfill material . 
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Figure 3-6: Vertical displacement of top cap during direct shear loading of a loose (13.9 kN/m
3
), medium 

dense (16 kN/m
3
), and dense (17.90 kN/m

3
) thermal backfill material. 
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Figure 3-7: Peak shear stress versus normal stress from direct shear testing of a loose (13.9 kN/m
3
), 

medium dense (16 kN/m
3
), and dense (17.9 kN/m

3
) thermal backfill material 
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Figure 3-8:  Peak shear stress versus normal stress from direct shear testing of a loose (13.9 kN/m
3
), 

medium dense (16 kN/m
3
), and dense (17.9 kN/m

3
) thermal backfill material 
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Figure 3-9:  Variation of normalized shear stress during direct shear loading of a moist and dry thermal 

backfill material for vertical stress level of 19.3 kPa 
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Figure 3-10: Variation of normalized shear stress during direct shear loading of a moist and dry thermal 

backfill material for vertical stress level of  32.7 kPa 
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Figure 3-11: Results of Direct shear test on the interface friction angle between  thermal backfill material 

and buried cable. 

 

 

Figure 3-12: Compression test set up of power transmission cable 
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Figure 3-13: Force-displacement results of compression test on power transmission cable 

 

 

 

Figure 3-14: Three-point-bending test setup of power transmission cable 
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Figure 3-15: Force-displacement result of three-point bending test of power transmission cable 
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Figure 3-16: Configuration of soil-cable interaction testing chamber 
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Figure 3-17: Schematic configuration of the actuator controlling system. 

 

 

 

 

 

 

 

 

 

Figure 3-18: Clamping mechanism in axial pullout test 
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Figure 3-19: Clamping mechanism in lateral pullout test 

 

Figure 3-20: Loading preparation phase, bulk bag suspended by overhand crane. 
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Figure 3-21: Photograph and schematic diagram showing typical test set up for: (a) axial pullout testing; 

and (b) lateral pullout testing (SP= String Potentiometer, SG=Strain Gauge). 
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Table 3-2: Axial pullout testing program 

Test 

No. 
Test ID 

Burial 

Depth (cm) 

Cable Size 

(mm/in) 

Average  Soil 

Density 

(kN/m
3
) 

Standard 

Deviation of 

Density 

H/D Data 

1 C1-B1-D01 60 89 mm (3.5") 19.2 0.25 6.75 N.R 

2 C1-B1-D02 60 89 mm (3.5") 19.2 0.36 6.75 N.R 

3 C1-B1-D03 60 89 mm (3.5") 19.8 0.18 6.75 R 

4 C1-B1-D04 60 89 mm (3.5") 19.7 0.22 6.75 R 

5 C1-B1-D05 60 89 mm (3.5") 19.6 0.24 6.75 R 

6 C1-B1-D06 60 89 mm (3.5") 19.7 0.18 6.75 R 

7 C1-B2-D01 100 89 mm (3.5") 20.0 0.30 11.25 R 

8 C1-B2-D02 100 89 mm (3.5") 19.7 0.14 11.25 R 

9 C1-B2-D03 100 89 mm (3.5") 19.9 0.20 11.25 R 

10 C1-B2-D04 100 89 mm (3.5") 19.2 0.35 11.25 R 

11 C1-B2-D05 100 89 mm (3.5") 19.6 0.28 11.25 R 

12 C1-B3-D01 120 89 mm (3.5") 19.4 0.43 13.5 R 

13 C1-B3-D02 120 89 mm (3.5") 19.2 0.34 13.5 R 

14 C1-B4-D01 30 89 mm (3.5") 19.9 0.28 3.4 R 

15 C1-B4-D02 30 89 mm (3.5") 19.6 0.13 3.4 R 

16 C1-B4-L01 30 89 mm (3.5") 19.9 0.25 3.4 N.R 

 

 

 

 

 

 

 

 

N.R: Not Reported , R: Reported 
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Table 3-3: Lateral pullout testing program 

Test No. Test ID. 
Burial 

depth 

(cm) 

Cable size 

(mm/in) 

Average 

density 

(kN/m
3
) 

Standard 

deviation of 

density 

H/D 

1 C2-B1-D01 30 100 mm (4") 20.0 0.32 3 

2 C2-B1-D02 30 100 mm (4") 19.7 0.18 3 

3 C2-B1-D03 30 100 mm (4") 19.8 0.21 3 

4 C2-B2-D01 60 100 mm (4") 19.9 0.28 6 

5 C2-B2-D02 60 100 mm (4") 20.1 025 6 

6 C2-B2-D03 60 100 mm (4") 19.8 0.38 6 

7 C2-B3-D01 90 100 mm (4") 19.3 0.32 9 

8 C2-B3-D02 90 100 mm (4") 19.2 0.34 9 

9 C2-B3-D03 90 100 mm (4") 19.3 0.27 9 

10 C2-B4-D01 120 100 mm (4") 19.8 0.21 12 

 

 

   

Figure 3-22:  A simplified assumption to calculate the side friction force in the soil-cable interaction 

chamber. 
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Figure 3-23: Average axial pullout force versus cable leading displacement for burial depth 30,60,100, 

and 120 cm.  
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Figure 3-24: Observed axial displacement of cable at the front and back ends in Test C1-B1-03 
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Figure 3-25:  Comparison of test results with predictions using ASCE (1984) formula 
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Figure 3-26: Variation of the back calculated value of k with burial depth ratio 
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Figure 3-27: Response of the buried cable in lateral pullout tests for burial depth of 3,6, 9, and 12. 
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Figure 3-28: Non-dimensional force-displacement data for embedment ratio of 3, 6, 9, and 12. 
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Figure 3-29: Plot of horizontal transverse force factor (Nh) versus burial depth ratio (H/D) for all tests  
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Figure 3-30: Comparison of the current lateral pullout tests with experimental studies by Trautmann and 

O’Rourke  (1985), Audibert and Nyman (1977),  Karimian (2006). 
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Figure 3-31: Comparison of current studies (red line) with analytical models based on the Hansen ( 1961),  

adapted from ASCE (1984) 
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Figure 3-32: Comparison of current studies (red line) with analytical models based on the Ovesen ( 1964), 

after Trautmann and O’Rourke (1983), adapted from ASCE (1984) 
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Chapter  4:  Numerical Simulation of Cable-Soil Interaction 

 

Numerical models are critically important in analysis of the cable-soil interaction problem. 

Experimental studies conducted with selected cable diameter, length, stiffness and soil 

properties provide a good opportunity to validate numerical model. Once validated and 

calibrated, the numerical models can be employed to investigate the effects of different soils 

and geometric properties affecting cable-soil interaction. The numerical simulation will allow 

capturing the complexities in the soil behaviour in a fundamental manner. With this 

background, a numerical model was developed and the goals of this numerical simulation can 

be summarized as follows: 

 Investigate the effects of nonlinear, stress-level dependent, and dilative soil 

behaviour on cable-soil interaction; 

 Calibrate the numerical model with controlled experimental studies; 

 Perform parametric studies for different cable-soil interaction scenario. 

The cable-soil interaction is numerically modeled using nonlinear finite element program 

ABAQUS Ver. 6.7-1. (Hibbitt et al., 2007).  ABAQUS is a software package that enables 

engineering problems with nonlinearity in material and geometry to be simulated. Extensive 

rich element libraries as well as the implicit and explicit methods of analysis make this 

software a good option for our numerical simulation. The reader is referred to Appendix B 

for a thorough descriptions on the element, material, contact types, and the method of 

analysis used in this section, and they are not described here.  

This chapter consists of two main parts. In the first part, the numerical analysis of the lateral 

pull test is undertaken, and in the second part, the numerical analysis of the axial pullout test 

is conducted.  
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4.1 Numerical Simulation of Lateral Cable Pullout Testing 

4.1.1 Elastic Analysis of Soil-Cable Interaction 

 

The aim of this section is to present an examination of the initial part of the load-deformation 

curve (initial tangent stiffness) of the buried cable response with the help of controlled 

experimental and numerical simulation results. Initially, an analytical formula derived for a 

beam resting on linearly deformable elastic media will be reviewed with particular attention 

on the response of the beam resting on the elastic half space subjected to concentrated load at 

both ends. The analytical formula is revised to capture the initial tangent stiffness of the 

buried cable during lateral pullout test, and subsequently verified with the numerical 

simulation. The study of the initial tangent stiffness will help to effectively calibrate the 

numerical models with experimental studies. 

Various soil response idealizations are discussed in detail by Selvadurai (1979). The soil 

idealizations include the Winkler model, elastic continuum, and two parameter models.  In 

this part, our attention is focused on widely used model in practices, the Winkler model. The 

Winkler model is the simplest idealization of the soil medium. This model assumes that the 

contact pressure (p) at the soil structure interface is directly proportional to the soil 

deformation, i.e. 

)(.)( xykxp            Eqn. 4-1 

where k is usually termed as a coefficient of subgrade reaction. In essence, the soil medium 

in Winkler model is virtually replaced by infinite set of uncoupled springs with the stiffness 

(k). The important feature of this model is that only the loaded region deforms and the 

displacement outside the loaded region is zero. It is apparent that this model cannot be a good 

representation of the soil medium. However, studies have shown that many engineering 

problems can be adequately idealized by Winkler model if the correct estimation of the 

coefficient of subgrade reaction can be achieved (Selvadurai).  
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Biot (1937) derived a solution for an infinite beam on an isotropic elastic medium subjected 

to a concentrated load by using elastic theory. Based on a comparison between the maximum 

moments by rigorous classic elasticity theory and formulation by Winkler model, the 

coefficient of subgrade reaction was suggested as a function of soil elastic parameters (Es, vs) 

and beam flexural stiffness (EbIb).  
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Vesic (1961) investigated the validity of the Winkler‟s hypothesis for a finite beam and 

examined the amount of error imparted by the Winkler‟s theory. He suggested a similar 

expression to the Biot‟s expression for the coefficient of subgrade reaction as 
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for a relatively long beams (L/D >10). 

Results by Vesic indicate that the long beam analysis based on the Winkler‟s model gives 

accurate results, but the Winkler‟s hypothesis does not account the results for short beams. 

Vesic used the characteristic length (λL) to determine the limit that Winkler‟s hypothesis 

remains correct, where λ is a defined as 

bb

4

IE4

k
           Eqn. 4-5 

According to the characteristic length (λL), beams were classified into four categories:  
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Class I. Short beams              λL<0.8 

Class II. Beams with medium length               0.8<λL<2.25 

Class III. Moderately long beams   2.25<λL<5.00 

Class IV . Long beams           λL>5.00 

Results by Vesic (1961) indicate that an analysis based on the Winkler‟s model gives 

reasonable results for class II, III, and IV. 

4.1.1.1 The Static Stiffness of Rigid Beam in Elastic Half Space 

 

The vertical and horizontal static stiffness (kh and kv) of embedded rigid cylindrical 

foundation in the elastic homogeneous half-space are taken from Pais and Kausel (1988) as 

follows: 
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
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h
5401
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



      Eqn. 4-6 

where G  is the soil shear modulus; h is the burial depth; and  a is the foundation radius. The 

static stiffness for a buried cable can be approximated by defining the equivalent foundation 

radius ( a ). It can be defined by equating the projected area of buried cable in the horizontal 

or vertical directions to the area of the circle with the equivalent radius as follows: 



LD
a            Eqn. 4-7 

where L and D is the buried cable length and its diameter. 
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4.1.1.2 The Static Stiffness of Flexible Beam on Elastic Half Space 

 

The bending of a beam of finite element length on an elastic foundation as shown in Figure 

4-1 was obtained by Timoshenko (1960). The flexibility of the beam causes non uniform 

deformation along the beam length. For instance, the deflections at the ends and mid point 

can be obtained as a function of characteristics length and applied load by the following 

expression: 
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LL

2

L

2

L

k

p4
ymid







sinsinh

coscosh


         Eqn. 4-9 

with the damping factor  

4

bb IE4

k
           Eqn. 4-10 

where k denotes the coefficient of subgrade reaction. The above expressions can be arranged 

to derive kt=p/y, where y is the end displacement. The stiffness (kt) for the beam ends can be 

rewritten as: 


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coshcos

sinhsin






        Eqn. 4-11 

The variation of kt with regard to characteristic length (L) is shown in Figure 4-2. In this 

graph the kt is normalized to kL/2. As can be seen in this graph, the normalized kt  decreases 

by increasing characteristic length. The normalized kt stiffness approaches unity for a small 

characteristic length ( 0L  ) and approaches zero for a large characteristic length L . 

An important feature of this graph is that for ( 351L . ), the normalized kt stiffness can be 

assumed unity with less than 10 % error, for characteristic length ( 2L351  . ) it drops 
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rapidly in a linear fashion, and for characteristic length 8L   monotonically decreases to 

zero. By substituting the corresponding value for k, the kt  for a limiting case of a rigid beam 

( 351L . ) can be obtained as   
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         Eqn. 4-12 

For the characteristic length greater than 351. , the kt can be adopted by analogy with Vesic‟s 

expression for a beam on elastic half space. The complete description of this analogy can be 

found in next chapter. Therefore, the kt stiffness can be derived as: 
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Figure 4-3 and Figure 4-4 illustrate the variation of the kt versus the ratio of the soil elastic 

modulus to the cable elastic modulus 089EcEs .)/( , and also versus the characteristic length 

( L ) respectively. This ratio between elastic modulus 089EcEs .)/(  is selected to resemble the 

analytical formulation for kt. In both figures, the cut off line, corresponding to the rigid beam 

behaviour (small L ), is also depicted to show that the using Vesic‟s formula is justified for 

sufficiently long beams.  

In order to investigate the suitability of the analytical formula to predict kt stiffness, 

numerical simulations were conducted. Furthermore, this model will serve later as a 

prototype for a calibration of numerical simulation with the experimental studies. A 

numerical model of the beam-soil interaction model with the burial depth of 0.9 m was built. 

The beam is assumed to be an elastic hollow cylinder with the diameter of 0.1 m, thickness 

of 0.01 m, and 2.15 m long. This dimension resembles the lateral cable pullout testing. The 

soil is an isotropic elastic media with s=0.3. The numerical model is depicted in Figure 4-5. 

The pullout forces (P) are applied at both cable ends, and the corresponding force-

displacement curve is obtained for various model parameters. The main model parameter 
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selected in this study is the beam elastic modulus (Ec or Eb) and the soil elastic modulus (Es). 

Since beam with different flexibility can be simulated by assigning different value for Ec , the 

soil modulus of elasticity is set to the conventional values of 1,10, and 100 MPa, and the 

beam elastic modulus is varied to cover the beam with rigid behaviour and the beam with 

cable like behaviour. Figure 4-6 shows the variation of kt stiffness as a function of 089EcEs .)/(  

for the soil with the elastic modulus of 1,10, and 100 MPa. The horizontal axis is selected as 

089EcEs .)/(  since the analytical formula for initial kt suggests this relation. The analytical 

formula is also depicted with solid line in the same figure to verify the analytical formula 

prediction for the kt stiffness. As can be seen, the analytical formula gives satisfactorily 

prediction for kt stiffness. The application of the proposed analytical formula will be 

discussed in the next chapter in the effect of the out-of-straightness on the axial soil force on 

the cable. 

4.1.2 Nonlinear Analysis of Cable-Soil Interaction  

 

The previous section deals with the elastic analysis of the soil cable interaction. In this 

section, the nonlinear response of cable-soil interaction will be investigated. The cable and 

soil are modeled independently in ABAQUS program, and they interact with each other via 

the contact element. The detail of this modeling is as follows.  

The numerical modeling of the cable is preferably performed by an equivalent cable. This 

modeling method is preferred to the detail modeling of the whole cable since the aim of finite 

element modeling is to simulate the load-deformation curve of the cable response as 

observed during the experimental studies. Secondly, the equivalent cable adequately captures 

the flexural and axial stiffness of the cable providing the necessary information to simulate 

the cable-soil interaction. 

The interface between soil and cable is an important consideration in modeling the 

interaction between the buried cable and surrounding soil. As such, the buried cable cannot 

be modeled using the one dimensional elements such as beam, or truss elements. The best 
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approach to develop the equivalent cable idea is to assess the mechanical properties of cable 

compartment individually contributing to the flexural and axial stiffness of the cable. The 

real cable section consists of: polyethylene jacket, aluminum sheath, paper insulation, and 

copper core. The oil impregnated paper insulation has a protective purpose and has no 

significant mechanical properties. However, it can create a confinement around the copper 

core to provide stability for the core while in compression. The polyethylene jacket and 

aluminum sheath, located at the outer surface of the cable, are components contributing to the 

flexural stiffness and axial stiffness of the cable. The copper core, located at the center of the 

cable, is mainly responsible for the axial stiffness of the cable. Observation during 

experimental testing and evidence from three-point-bending tests indicate that the cable 

flexural stiffness is not substantial in compare to axial stiffness of the cable. Indications of 

this statement are the ability to coil the cable around the reel and low maximum point force 

in the three-point bending test. Therefore, the effect of the flexural behaviour of buried cable 

can be ignored for a long cable.  

Based on the above, the equivalent cable was represented by creating a hollow section with 

the same diameter as the cable so that the interacting surface is retained. The thickness of the 

hollow section was assumed to be the total thickness of the polyethylene jacket and 

aluminum sheath. The material properties of the hollow cross section were estimated by 

calibrating with experimental results. The equivalent elastic modulus (Eeq), which will be 

used as Ec, is assumed to be the parameter required to create a match between numerical 

simulation and experimental data. Then a beam element is coupled coaxially to the hollow 

section structure. The beam has the same mechanical properties as the copper core, i.e., the 

area and moment of inertia. Consequently the buried cable finite element modeling resulted 

in a hollow section with the diameter of 100 mm and thickness of 10 mm. A uniform mesh of 

fully integrated 8-node continuum C3D8 element was used. Figure 4-7 shows the mesh 

configuration of the hollow section. Core is modeled with the beam element B31, 2-node 

element with linear interpolation function. Kinematics coupling is applied to constrain the 

degree of freedom of nodes on the hollow section to that of the beam so that the translation 
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movements of nodes on the hollow section occur together with inside core nodes as shown 

Figure 4-8. 

Soil was modeled as a continuum three dimensional medium using C3D8 element. The 

dimension and boundary conditions of the model were defined similar to the condition of 

full-scale tests. As described in Chapter 3, length and width of soil model were selected as 

3.75 m and 2.15 m respectively, and the height of soil model varies depending on burial 

depth. Soil nodes on the boundary are restrained against lateral movement, but are allowed to 

move vertically. The mesh configuration for the soil was selected so that the numerical 

results were not mesh-sensitive. Some key criteria considered in selecting an appropriate 

mesh configuration are: the convergence, the analysis time and accuracy. After examining 

several mesh configurations for convergence and minimum analyses time, those mesh 

configurations as shown in Figure 4-9 were selected. Two constitutive material models were 

selected to represent the soil behaviour: the Mohr-Coulomb and Drucker-Prager material 

models. The description of these two material models is presented in details in Appendix B. 

The results of analysis by those two material models are presented separately in the next 

sections. 

4.1.2.1 Numerical Simulation Using Mohr-Coulomb Material Model 

 

The Mohr-Coulomb material model in ABAQUS shows an elastic behaviour in the small 

strain range when the stress state is within the yield surface, and exhibits the plastic 

behaviour when the stress state is on the yield surface. The elastic part of the Mohr-Coulomb 

plasticity model uses linear isotropic elasticity based on the Cauchy stress model. The model 

requires the elastic modulus (E), Poisson‟s ratio (), friction angle (), dilation angle (), 

meridional eccentricity, and deviatoric eccentricity to describe the elastic and plastic 

behaviour of the material. The summary of Mohr-Coulomb model parameters is presented in 

Table 4-1. The table shows that some parameters are set to their conventional values and 

others are set to a range. 
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In general, the soil Young‟s modulus for different types of soils is a function of confining 

pressure, initial stress state, stress history, long term and short term loading, and relative 

density (Dr), (Das 1979).  Modulus of elasticity is often obtained from deviator stress versus 

axial strain curve from a tri-axial laboratory test. Two types of modulus can be defined for 

such a curve: the tangent or secant modulus. Those two modulus types are not constant for a 

soil and they must be defined based on the stress level. Since the Mohr-Coulomb material 

model in ABAQUS is elastic until the stress state reaches to the yield surface, a secant elastic 

modulus should be selected to represent the soil elastic behaviour (Karimian 2005). For 

instance, Byrne et al. (1987) and Karimian (2005) used one third of tangent modulus in their 

numerical works as a secant elastic modulus. Since no triaxial testing data is available for the 

thermal backfill material the typical range of the soil elastic modulus and Poisson‟s ratio for 

loose and dense sandy and gravelly material, as indicated by Das (1979), are used as a 

guideline for performing the parametric study in this research. The representative value of the 

soil tangent elastic modulus varies in the range of 20,000 to 200,000 kN/m
2
 for loose and 

dense sandy and gravelly material respectively and the representative values for Poisson‟s 

ratio vary in the range of 0.1 to 0.4. It should be mentioned those typical values vary 

depending on the stress history, stress level, density, and etc.  Byrne et al. (1987) showed that 

Poisson‟s ratio varies between 0.1 to 0.5 for small strain levels and strains at failure for a 

sand mass. In this research, the constant Poisson‟s ratio of 0.3 is assumed. Two different soil 

elastic moduli Es=6,000 and Es=60,000 kN/m
2
 are selected in the parametric study. The 

variations in the friction angle and dilation values are discussed in part 4.1.2.1.2 of this 

section. 

4.1.2.1.1 The effect of cable/soil relative stiffness  

 

The aim of this part is to study the effect of cable/soil relative stiffness on the force-

displacement curve during lateral pullout tests. Most of the previous numerical studies were 

performed on the plane strain condition such as the problem of the rigid pipeline system 

where the pipeline remains straight during pullout; however, cases exist which the plane 



79 

 

strain assumption is invalid such as the current study of the buried cable response. The three 

dimensional numerical simulation in this section gives this opportunity to investigate further 

the effect of the three dimensional analysis of the lifeline system. Studies on the response of 

the cable buried in the elastic medium shows that the relative flexural stiffness of the cable to 

the soil stiffness plays an important key parameter to define the response of buried cable 

during lateral movement. As mentioned by Selvadurai (1971), characteristic length (L) is 

the best parameter to characterize the relative stiffness of the cable-soil system. The 

characteristic length (L), used here in this study to account for the relative cable-soil 

stiffness parameter, is defined as 
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Different values of the characteristics length are the representative of different relative cable-

soil stiffness. In order to investigate the effect of the relative cable-soil stiffness together with 

the effect of soil plasticity on the horizontal transverse response of the buried cable, 

numerical analyses were performed which results were summarized in four graphs(Figure 

4-10 to Figure 4-13). Two graphs are plotted for the soil with the elastic modules of 6 MPa 

,the friction angle of 41° and two different dilation angles. Figure 4-10 shows the force-

displacement response of cable with the burial depth of 0.9 m with characteristic lengths 

ranging from 6  to 40, the soil material model has the friction angle of =41° with associated 

flow rule (=38°). It should be noted that Mohr-Coulomb material model implemented in 

ABAQUS program does not allow = for associated flow rule. Figure 4-11 shows the 

force-displacement response for the same parameter but with the non-associated flow rule 

( 21 ). Two other graphs were also prepared for the soil with the elastic modulus of 60 
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MPa, different characteristic lengths ranging from 11 to 74 and the other remaining 

parameters remained the same as before. Figure 4-12 shows the force-displacement curve 

when the flow rule is associated and Figure 4-13 shows the force-displacement curve when 

the flow rule is non-associated ( 21 ). As can be seen from those graphs, the following 

observation can be concluded: the load-displacement curves follows a hyperbolic shape, and 

its shape is influenced by the cable/soil relative stiffness, curves with small L approaches to 

the asymptotic value at lower displacement. However, the asymptotic values are less affected 

by changes in the L parameter, and smaller L tends to have a  higher asymptotic value than 

a larger L. 

4.1.2.1.2 The effect of friction angle and dilation parameters  

 

As discussed in appendix B, Mohr-Coulomb material model requires many variables to 

define both the yield surface and potential surface. The most important variables, which 

significantly influences the yield and potential functions, are friction angle () and dilation 

angle (). These two parameters can be directly related to the results of the laboratory 

element testing such as direct shear tests or triaxial tests. A numerical model as described in 

the previous section was used in this section. The aim of numerical studies in this part is to 

assess the effect of the material model parameters on the load-deformation curve. In order to 

assess the effect of individual model parameters on the response of the buried cables, 

systematic numerical finite element analyses were performed as follows: based on the 

laboratory element testing on the thermal backfill material, an estimation of Mohr-Coulomb 

material parameter can be established. Successively, the sensitivity studies were performed 

around those estimated parameters. The ( ) parameter was varied from 33° to 47 °, and  in 

order to assess the effect of the flow rule, both the non-associated and associated flow rule 

were considered. When the non-associated flow rule is selected the representative parameter 

() was changed to different values provided that (<). It should be noted that the 

numerical stabilities in the ABAQUS program does not allow   close to  ; consequently, 

the maximum limit for   without any numerical instabilities was achieved if (≤-3°).  
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The load-deformation relationships given by the finite element analyses for embedment 

depth ratio H/D=9 is shown in Figure 4-14 and Figure 4-15. Figure 4-14 shows this 

relationship for different friction angle and the associated flow rule, and Figure 4-15 shows 

the same relationship for different friction angle non-associated flow rule with =20°. The 

load-deformation curve in each plot follows a hyperbolic curve with the horizontal 

asymptote. Larger value of friction angle and dilation angle parameters cause the load-

deformation curve ending up at a higher plateau, and they also tend to increase the curvature 

of load-deformation curve. In order to clearly assess the effect of these two parameters on the 

peak value of the load-displacement curve, graphs were prepared showing the variation of the 

horizontal force factor (Nh) as a function of the dilation angle and as a function of a friction 

angle for a specific case of cable with burial depth of 0.9 m and L=21. Figure 4-16 shows 

the variation of the horizontal force factor with friction angle (Nh-), the graphs are shown 

for different dilation angle. As depicted, the horizontal force factor for the specific dilation 

angle is an ascending function of friction angle. Figure 4-17 shows the variation of the 

horizontal force factor with the dilation angle. The same relationship as observed for (Nh-) 

also exists between the horizontal force factor and dilation angle (Nh- ); however, the 

amount of increase in the Nh factor due to increase in the dilation angle is much less than the 

amount of increase in the Nh factor due to increase in the friction angle. This observation can 

be realized by fitting a line through the points in each graph. The fitted line in the Nh- curve 

with constant dilation angle has five times greater slope angle than that in the Nh- curve 

with constant friction angle.      

4.1.2.1.3 Calibration and verification of numerical models 

 

The results of sensitivity analyses and the results of the targeted laboratory element testing on 

the thermal backfill material were used to calibrate the numerical models with the 

experimental tests. First, the numerical results are calibrated with the experimental results of 

cables with burial depth of 0.9 m, and then they are validated by means of comparing the 
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results of finite element analysis with the experimental results of lateral pullout tests with 

burial depths of 0.3, 0.6 and 1.2 m. 

The results of targeted laboratory element testing indicates that the thermal backfill material 

has the constant volume friction angle of 41° and the dilation angle can reach up to 20°, 

depending of the amount of compaction, according to Bolton equation as described in 

Appendix B. Numerical calibrations were started off with the help of laboratory element 

testing and other soil parameter models. The comparisons of different numerical simulation 

models reveal that the numerical model with the friction angle =39º, dilation angle =18º, 

L=37, and Es=10 MPa can adequately represent the load-deformation curve of experimental 

results for embedment ratio of 9 as depicted in Figure 4-18. The square root of sum of square 

was used to define the best possible match between different numerical simulation and 

experimental study results. The small friction angle for the numerical model might be 

attributed to the fact that the rigid boundary conditions in the direct shear tests create an over 

constraint for the soil; therefore, the soil behaves stronger than the real condition when the 

soil has the softer boundary condition. Typical displacement contours, obtained at the end of 

geostatic analysis and after 30 cm pulling of the buried cable, are shown Figure 4-19. The 

displacement contours of the soil after 30 cm pulling of cable shows that the active and 

passive wedges are not interfered by the presence of fixed boundaries. This observation 

implies that the back and front wall allow the complete formation of the active and passive 

wedges.  

The test results of experimental studies of different burial depths give this opportunity to 

verify the numerical models. Numerical models with different burial depths were constructed 

and the same material parameter model as obtained in the model calibration was used for the 

material model properties. Figure 4-20 shows the comparison of the load-displacement curve 

of experimental tests and that of numerical simulation. As the comparison reveals, the 

numerical model can adequately predict the load-displacement curve for other burial depths.  

One of the drawbacks of the experimental tests is the limited size of the soil chamber to 

obtain the response of the buried cable for the large burial depth. After the verification of 
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numerical models with experimental test results, the numerical model was extended fur to 

cover the cable with the different burial depths that load-deformation curve are not available. 

Numerical simulations were conducted for the cable with the embedment ratio of 15 and 18. 

Figure 4-21 shows the load-deformation curve for the cable with different burial depth 

ranging from 3 to 15.  The horizontal force factors (Nh) for the cable with different burial 

depth were calculated, and they were presented as a function of burial depth as shown in 

Figure 4-22. Also, the horizontal force factors as obtained by experimental test were depicted 

in the same figure.   

4.1.2.2 Numerical Simulation Using Drucker-Prager Material Model 

 

The other material model which extensively used in the geotechnical engineering is the 

Drucker-Prager model. In this part, the numerical simulations with the Drucker-Prager 

material model are conducted to investigate the response of buried cable. The mesh 

configuration and model dimension are selected the same as the one selected for numerical 

simulation with Mohr-Coulomb material model. To achieve this goal, parametric studies 

were performed to study the effect of the cable/soil relative stiffness, the effect of Drucker-

Prager material model, and the effect of the flow rule on the load-displacement curve. Table 

4-2 summarizes model parameters used in the numerical simulation, and the details of this 

investigation are described in the following section.  

4.1.2.2.1 The effect of soil/ cable relative stiffness  

 

Similar to the numerical simulation with Mohr-Coulomb material model, at first the effect of 

soil/cable relative stiffness is evaluated. The parameter L presents the soil/cable relative 

stiffness, and it varies to cover the very flexible cable behaviour to the rigid cable behaviour. 

Two types of the soil model are assumed, the non-dilatant soil model with associated flow 

rule and dilatant soil model with the non-associated flow rule. In order to reduce the number 

of the parameters, the friction angle ( parameter in the Drucker-Prager model) is set to be 
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47°, the soil elastic modulus (Es) is set to 6 MPa and 60 MPa, and the burial depth is 0.9 m. 

Those values are set to be representative of the conventional values for thermal backfill 

material.  

The load-deformation curves for the cable with different characteristic lengths (L) are 

shown in Figure 4-23 to Figure 4-26. Figure 4-23 and Figure 4-24 show the load-

displacement curve for soil with elastic modulus of 6 MPa and the soil model with non-

dilatant flow and dilatant flow respectively. The next two graphs, Figure 4-25 and Figure 

4-26, are prepared for the soil with the elastic modulus of 60 Mpa, and the soil model with 

non-dilatant flow and dilatant flow respectively. Those graphs can be compared with respect 

to their maximum asymptote value and corresponding displacement at which the load-

deformation curves get to their maximum value. As can be observed, the buried cable with 

lower L value reaches to its asymptote value at lower displacement, and the corresponding 

asymptote value is larger than its counterpart with higher L value. Also, the maximum 

asymptote value occurs at a lower displacement for higher Es even the value of L is the 

same. The flow rule affects the shape of the load-displacement curve. The load-deformation 

for material model with dilatant flow has a higher plateau value. In the following section, the 

effect of material model parameters will be investigated further. 

4.1.2.2.2 The effect of friction angle and dilation parameters  

 

The effects of friction angle ( parameter) and dilation angle (  parameter) on  the load-

deformation curve were investigated by setting the other parameters to their conventional 

value and varying  and   parameters. The elastic soil modulus is set to 6 MPa, L value is 

set to 0.8, friction angle () varies from 35° to 50°, and different flow rules are studied. 

Figure 4-27 shows load-displacement curves of non-dilatant soil for different friction angles 

(), and Figure 4-28 shows the load-displacement curve of dilatant soil (=25°) for different 

friction angles (). To show the effect of dilation angle on the load-displacement curve, 

Figure 4-29 is prepared for the friction angle of (=47°). As presented in those graphs, the 
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load-deformation curve is significantly affected by the changes in the friction angle () value, 

especially the asymptote value. However, the dilation angle does not change the asymptote 

value significantly as the friction angle does, and it tends to change the load-deformation 

shape, i.e., the path that load-displacement curve gets to its asymptote value. 

4.1.2.2.3 Calibration and verification of numerical models 

 

Numerical simulation with Mohr-Coulomb material model indicated that the experimental 

test results can be adequately achieved by using =39° and =18°. This information is used 

to facilitate the calibration of the numerical simulation based on the Drucker-Prager material 

model. As mentioned in Appendix B, many relations can be found relating the Mohr-

Coulomb material model parameters to the Drucker-Prager material model parameters. The 

most recognized expressions are those which matched under plane strain conditions or under 

the triaxial stress conditions. Those expressions express the relationship between  and c of 

the Mohr-Coulomb material model to  and d of Drucker-Prager model. For instance, under 

the plane strain condition the Mohr-Coulomb parameters can be converted to Drucker-Prager 

parameters for associated flow (those relationships were described in more details in 

Appendix B) 






2129

33

tan

)tan(
)tan(



  and 
2129

c33
d

tan

       Eqn. 4-16 

 Using the relationships under the plain strain condition, the Drucker-Prager parameters can 

be obtain as =45.7° and d0 for the associated flow rule and =47.5° and d0 for non-

associated flow rule. However, few relationship exists that can directly relate the dilation 

angle of Mohr-Coulomb model to that of Drucker-Prager model. One of this few relationship 

for obtaining the Mohr-Coulomb dilation angle ( CoulombMohr ) based on the Drucker-Prager 

dilation angle ( agerDruc Prker  ) under the plain strain conditions and the associated flow rule in 

the Drucker-Prager material model (   agerDruc Prker)( ) is : 
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This equation can be used to approximately back calculate the Drucker-Prager dilation angle 

based on the CoulombMohr . This formula gives 632agerDrukcer .)( Pr  .These estimations of the 

Drucker-Prager model parameter facilitates the calibration of the numerical model to the 

experimental test results. The comparisons of different numerical simulation models reveal 

that the numerical model with the friction angle of (=49˚), dilation angle of (=33˚), 

L=37.0, and Es=10 MPa can adequately represent the load-deformation curve of 

experimental results for embedment ratio of 9 as depicted in Figure 4-30. Figure 4-31 shows 

the comparison of the load-displacement curve of experimental tests and that of numerical 

simulation for burial depth of 30, 60, and 120 cm. As can be seen, a close match between the 

numerical simulation and experimental tests for different burial depth can be achieved. 

However, comparison between the validation by Mohr-Coulomb and Drucker-Prager models 

(Figure 4-31 and Figure 4-20) shows that Mohr-Coulomb material model provides the closer 

match to experimental test results.  

4.2 Numerical Simulation of the Longitudinal Behaviour of the Cable-Soil Interaction 

 

Numerical modeling was undertaken to capture the overall response of the longitudinal 

behaviour of the buried cables. It also helps to determine some important characteristics of 

the cable-soil behaviour in more fundamental manner. 

4.2.1 Issues Relating the Longitudinal Behaviour of the Buried Cable 

 

As mentioned in the experimental study of the cable-soil interaction, three important 

behaviours of the cable-soil interaction observed in the axial pullout tests are: 1) the cable‟s 

front and tailing ends move together in harmony, 2) the axial pullout force experiences the 

peak and follows a drop at low displacement, and 3) the axial pullout force increases by 
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further increase in the axial pullout displacement. The first observation can be inferred as the 

simultaneous frictional force mobilization along the cable shaft, and can be attributed to the 

large axial stiffness of the cable. The second observation is due to the shear-induced 

volumetric strains in region around the cable affecting the normal stress distribution around 

the cable. The third observation is attributed to the out-of-straightness of the cable. A full 

discussion about dilation around the pipeline in dense material can be found in 

Wijewickreme et al (2009).  The aim of this section is to develop a numerical model that can 

assess the effect of out-of-straightness on the longitudinal behaviour of the buried cable.  

4.2.2 Developing of Numerical Model 

 

The longitudinal behaviour of the buried cable with the out-of-straightness can be 

investigated by analyzing the axial pullout response of the cable with different layout 

patterns. The aim of this numerical simulation is to quantify how the cable‟s out-of-

straightness can affect the longitudinal behaviour of the buried power transmission cable in 

compared to the response of the straight cable. 

 As indicated earlier, the cable out-of-straightness can naturally occur during cable 

installation. In order to investigate the effect of the cable‟s out-of-straightness, two models 

were analyzed: the straight cable and various cables with different layout shapes. The 

response of the straight cable was selected as the bench mark analysis to explain any 

disparity in the response of the curved cable. The selection of the curved shape of the buried 

cable was challenging since: 1) the shape of the cable is irregular and no definite shape can 

be assigned to it, 2) the amount of curvature is unknown, and 3) the cable is curved 

arbitrarily in the three-dimensional space. In considering these issues, the cable with 

horizontal out-of-straightness with the maximum offset at midpoint as shown in Figure 4-32 

was assumed. The cable was curved with the maximum offset in the middle and was 

straightened out at two ends. The mathematical formula assigned to the cable shape was 
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in which max is the maximum offset in the middle of the cable and L is the cable length. The 

cable with the offset was produced by connecting the points by a spline curve generator, 

available in the ABAQUS 6.7.1 drawing tools. The spline curve generator produces a 

continuous cubic function between points. The amount of the offset (max ) in the center of the 

cable was varied from 0 (cm)  to 5 (cm). The length of the cable (L) is assumed to be the 

same as the length of the chamber box in the experimental study (L=3.75 m).  

The same modelling approach as described previously in the numerical simulation of the 

lateral pullout test was used herein to model the cable structure. The cable was replaced by 

the equivalent cable. The equivalent cable consists of the hollow cylindrical section to model 

its flexural behaviour with the coaxial rod element to model its axial behaviour.   The soil 

model was created by cutting through the cable shape so that the perfect fit between the soil 

and the buried cable was formed. Figure 4-33 depicts the mesh configuration for the cable 

with the burial depth of 30 cm and horizontal offset of 5 cm. The model was divided into two 

segments at the cable centerline to show the layout of the cable. The samples of the mesh 

configuration for the cable-soil interaction model for the cable with burial depth of 30, 60, 

90, and 120 cm are depicted in Figure 4-34. Eight-node quadrilateral continuum element 

(C3D8) was used to model both the cable and the soil. As can be seen, the finer mesh was 

used in the zone around the buried cable. The interface between the buried cable and the soil 

was modelled by a contact element. The Coulomb friction model with the constant friction 

coefficient of f was used to model the tangential behaviour. The normal behaviour of the 

contact element was defined as a “hard contact”. A detailed description of the contact models 

are presented in Appendix B. For the nonlinear analysis, the Mohr-Coulomb material with 

the non-associated flow rule as obtained in the lateral pullout simulation part (=39° and 

=18°) was selected for the soil.  

Analysis is performed into two steps. In the first step, geostatic analysis was performed to 

obtain the initial stress in all soil elements and on the cable interface. In the second step, the 
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cable was pulled out from the chamber. Implicit static analysis was performed to measure the 

deformation and corresponding load required for the cable pullout.  In the next part, 

numerical simulations are conducted to investigate the effect of different parameters on the 

longitudinal behaviour of the buried cable.  

4.2.2.1 The Effect of the Cable Out-of-Straightness on the Longitudinal Soil Loads 

on the Cable 

 

The effect of out-of-straightness on the longitudinal behaviour of cable/soil interaction is 

investigated by creating three numerical models. The first model is the buried straight cable 

(/L=0%), the second model is the buried curved cable with the maximum horizontal offset 

of 2 cm (/L=0.53%), and the third model is the buried curved cable with the maximum 

horizontal offset of 5 cm (/L=1.33%). The maximum limit of /L=1.33% is selected since 

larger horizontal offset activates horizontal lateral soil restraint, and it obscures the 

interpretation of results. Figure 4-35 shows the longitudinal response of the cable for burial 

depths of 30, 60, 90, and 120 cm when the cable has an offset ratio of /L=0%, /L=0.53%, 

and /L=1.33%. This graphs are prepared when the interface soil/cable friction angle (f) is 

0.7, the soil elastic modulus is Es=10 Mpa, and the relative soil/cable stiffness () is 4.7/m. 

As can be seen, the axial pullout force in the cable increases with the burial depth. Also, the 

cable without horizontal offset has no stiffness hardening, i.e., after yielding occurs the axial 

pullout force remains the same. However, the cable with larger horizontal offset shows a 

greater stiffness hardening ratio after yielding. Figure 4-36 shows the normal contact stresses 

at the cable/soil interface after geostatic analysis and after 30 cm pulling of the cable. Those 

figures clearly show an increase in the normal stress after pulling out the cable by 30 cm, and 

consequently increase the axial pullout force.  
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4.2.2.2 The Effect of the Cable Flexibility  

 

As demonstrated in the previous section, offset ratio tends to increase the stiffness hardening 

in axial load-deformation curve for the cable with different burial depths. Two extreme cases 

can be assumed for the cable rigidity: a very flexible cable and the rigid cable. The rigid 

cable does not deform and it creates more stress to the surrounding soil. However, a very 

flexible cable easily deforms and it less stress normal stresses imposed on the interacting soil. 

In order to understand this effect, two soil models with elastic modulus of Es=10 and Es=20 

MPa are considered. The same nonlinear parameters were assumed for the soil Mohr-

Coulomb model (=39˚ and =18˚). Three configurations are assumed for the cable 

(/L=0%, /L=0.53%, and /L=1.33%). Figure 4-37 shows the longitudinal load-deformation 

curve for the soil with Es =10 MPa and the cable with the flexibility factor of =4.7, 3.0, and 

2.5 /m.   

Figure 4-38 shows the longitudinal load-deformation curve for the soil with Es =20 MPa and 

the cable with the flexibility factor of =5.6, 3.7, and 3.0 /m. The flexibility factors () for 

two soil models are different since  is a function of the Ec/Es ratio. Changing in the soil 

elastic modulus affects the Ec/Es ratio and consequently changes the flexibility factor. As 

apparent in those graphs, the cable with offset ratio has a larger increase in the axial pullout 

force. Furthermore, the cable with smaller flexibility factor, i.e. rigid cables, has more 

stiffness hardening since smaller flexibility factors represent more rigid cable. Comparing the 

results of the axial pullout force for the soil with elastic modulus of 10 and 20 MPa shows 

that the soil with higher elastic modulus creates more axial pullout force. In order to conceive 

the importance of the soil elastic modulus, two numerical analyses are conducted. In this 

analysis, two soil models are selected with elastic modulus of 10 and 20 MPa. However, the 

cable elastic properties are changed so that the same flexibility factor  obtained. Figure 4-39 

compares the axial pullout force for the same flexibility factor (i.e. Ec/Es=constant) but for 

the soil with different elastic modulus to demonstrate the importance of elastic soil modulus. 
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As can be seen, the soil with higher soil elastic modulus creates more stiffness hardening in 

the load-deformation curve. 

4.2.2.3 The Effect of the Cable/Soil Interface Friction Angle 

 

All the previous results were performed when the interface cable/soil friction angle(f) is 0.7. 

In order to study the effect of interface cable/soil friction angle on the longitudinal load-

deformation curve, analyses were performed for the cable with offset ratios (/L=0%, 

/L=0.53%, and /L=1.33%), burial depth of 60 cm (H/D=6.7), and the soil elastic modulus 

(Es=10 MPa). The results of these analyses are shown in Figure 4-40. As predicted, 

increasing the interface cable/soil interface friction angle causes an increase in the axial 

pullout force. The increase in the axial pullout force can be linearly interpolated between 

different interface cable/soil friction angles. The numerical simulation results and 

experimental results are compared in Figure 4-41 for burial depth of 30 and 60 cm. In the 

numerical simulation, the interface soil/cable friction (f) is 0.7, and the offset ratio is 1.33 %. 

It should be mentioned the amount of offset in the experimental studies is unknown, and it is 

difficult to compare the results of experimental and numerical simulation. However, the 

results of numerical simulation with 1.33% offset ratio matches the mean of the experimental 

studies.   

4.2.3 Summary of the Chapter 

 

This chapter investigates the response of the buried power transmission cables in the 

horizontal transverse and longitudinal directions through numerical simulations. The aim of 

the numerical model was mainly to study the ability of numerical simulation to predict the 

response of the buried cable and to gain an understanding on the effect of different 

parameters on soil loads on buried cables. Two separate numerical models were developed 

for the horizontal transverse and the longitudinal directions to simulate the experimental 

results of lateral pullout and axial pullout tests.  
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In the numerical simulation of lateral pullout tests, numerical models were developed 

according to the lateral pullout test setup. The effects of different factors such as soil model 

types (Mohr-Coulomb and Drucker-Prager models), soil parameter models (soil elastic 

modulus, friction angle ( ,), dilation angle ()), relative soil/cable stiffness, and burial 

depth (H)) on the response of the buried power transmission cables were investigated. With 

the help of laboratory element testing on the thermal backfill material, the numerical model 

was calibrated to the burial depth of 90 cm. Then, the numerical simulation was validated for 

other buried depths of 30, 60, and 120 cm.  Some of the key findings and observations from 

numerical simulations are summarized herein: 

 Although Drucker-Prager material model provides a smooth yield surface offering 

best numerical convergence in compared to the Mohr-Coulomb material model, the 

Drucker-Prager model parameters cannot directly be related to the physical terms. In 

contrast, the Mohr-Coulomb model parameters can be directly related to the results of 

laboratory element testing such as direct shear tests causing the calibration of 

numerical models simpler. Besides that, the validation results show that both material 

models are capable to predict the result of the experimental studies. 

 Parametric studies were performed to investigate the effect of different parameters on 

the response (load-deformation) of the buried cable. It was found that the 

representative parameter for the friction angle ( or ) in both Drucker-Prager and 

Mohr-Coulomb models is the most influential parameters affecting the response of 

the buried cables,  especially the horizontal force factor (Nh).  

 The horizontal force factor (Nh) for Mohr-Coulomb and Drucker-Prager models with 

dilatant behaviour are greater than their counterparts with non-dilatant behaviour. 

However, the effect of the dilation parameter in both models is much less than the 

effect of the friction angle parameter. This finding is similar to those observed by 

Guo and Stolle (2005). 
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 Flexibility factor parameter () is defined to characterize the relative cable/soil 

stiffness. The effect of this parameter on the load-deformation curve of the buried 

cable was investigated to compare the response of the flexible and rigid pipeline. 

Studies show that the horizontal force factor for the rigid  cable (small  L) has a 

slightly higher than the horizontal force for the flexible cable (large L). However, 

the effect of the cable flexibility on the load-deformation curve is on the displacement 

in which the response curve gets to its plateau. The response curve for a rigid cable 

reaches to its plateau at smaller displacement than the response curve for a flexible 

cable. 

 Studies showed that a successful calibrated model requires the best selection of the 

dilation angle, friction angle, and modulus of elasticity in order to achieve the best 

match to the experimental results. 

 Using the validated model, a family of load-deformation curves is developed for the 

soil with different friction angle, dilation angle, burial depths, and flexibility factors. 

In lieu of experimental test results, the numerical simulation results provide a reliable 

database to estimate the soil loads on the buried cable in the horizontal transverse 

direction. The next chapter will examine in further details the use of this database in 

the evaluation of the response of the buried cable to the transverse permanent ground 

deformation.  

In the numerical simulation of axial pullout tests, numerical models were developed 

according to the axial pullout test setup. The main aim of the numerical studies was to 

characterize the effect of out-of-straightness on the longitudinal response of buried power 

transmission cable. The effect of out-of-straightness was studied by creating a numerical 

model for the cable with different offset ratios (/L), and its longitudinal response was 

compared to the benchmark longitudinal response of straight cables. Furthermore, the effects 

of out-of-straightness with the effects of other parameters such as burial depths, interface 

cable/soil friction, and the relative stiffness of the cable/ soil on the longitudinal response of 
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buried cable were studied. Some of the key findings and observations from these numerical 

simulations are summarized herein. 

 Cable with out-of-straightness creates more soil loads on the buried cable. The 

amount of soil loads increases by an increase in the relative cable/soil movement. 

Furthermore, it was found that as offset ratio values increase the longitudinal soil 

loads on the buried cable increase.  

 Non-straight cables with smaller flexibility factor () creates more longitudinal soil 

restraints. Studies show that cables with the same flexibility factors but with larger 

soil elastic modulus (Es) creates more longitudinal soil restraints. 

 Interface soil/cable friction (f) was found to be a key parameter in determining the 

soil loads on the buried cable in both the yielding and hardening phase in the load-

deformation curve. 

 Parametric studies on the effect of the burial depth on the longitudinal soil loads on 

the buried cable show that the burial depth has a pronounced effect on the yielding; 

however, its effect on the hardening part of load-deformation is insignificant.  

 The result of the numerical simulation provides a database to develop a method to 

estimate the amount of soil loads on the buried cable with different flexibility factors. 

The next chapter will discuss in further details the use of the database in the 

evaluation of the response of the buried cable to the longitudinal permanent ground 

deformation. 
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Figure 4-1: Beam on elastic foundation subjected to concentrated loads at both ends 

 

Figure 4-2: The variation of the kt stiffness with respect to the characteristic length (λL), assuming a 

constant k. 
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Figure 4-3: The kt stiffness variation of a beam with the diameter of 0.1 m and the length of 2.15 m buried 

in the homogenous elastic soil (νs=0.3)  with the burial depth of 0.9 m. 
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Figure 4-4:The kt stiffness-λL curve for a beam with the diameter of 0.1 m and the length of 2.15 m 

buried in the homogenous elastic soil (νs=0.3)  with the burial depth of 0.9 m. 
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Figure 4-5: The numerical model of the beam and soil to calculate Kt stiffness.  

 

Figure 4-6: kt stiffness comparison between the analytical prediction and numerical simulation for the 

beam with the burial depth of 0.9 m and different flexural rigidity. 

 

Figure 4-7: Mesh configuration of  hollow section used to model the equivalent cable 
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Figure 4-8: Beam core constraint applied to  hollow section to form “equivalent cable”  
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Figure 4-9: Mesh configurations used to model cable-soil interaction for different burial depths 
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Figure 4-10: Load-deformation curve for the buried cable with different L. (Mohr-Coulomb Model, 

Es=6 MPa, =41°, =38 °) 
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Figure 4-11: Load-deformation curve for the buried cable with different L . (Mohr-Coulomb Model 

,Es=6 MPa, =41°, =21 °) 
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Figure 4-12: Load-deformation curve for the buried cable with different L. (Mohr-Coulomb Model 

,Es=60 MPa, =41°, =38 °) 
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Figure 4-13: Load-deformation curve for the buried cable with different L. (Mohr-Coulomb Model 

,Es=60 MPa, =41°, =21 °) 
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Figure 4-14: Load-deformation curves for the cable with the burial depth of ( 0.9 m) with different φ 

parameter and associated flow rule(Mohr-Coulomb Model) 
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Figure 4-15: Load-deformation curves for the cable with the burial depth of ( 0.9 m) with different φ 

parameter and non-associated flow rule =20°( Mohr-Coulomb Model) 
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Figure 4-16: Variation of horizontal force factor (Nh) with friction angle for cable with burial depth of 0.9 

(m), Mohr-Coulomb Model, Es=6 MPa, and L=21. 

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45

Dilation Angle (ψ)

H
o
ri

zo
n

ta
l 
F

o
rc

e 
F

a
ct

o
r(N

h
)

φ=35˚

φ=38˚

φ=41˚

φ=44˚

φ=47˚

 

Figure 4-17: Variation of horizontal force factor (Nh) with dilation angle for cable with burial depth of  

0.9 (m) , Mohr-Coulomb Model, Es=6 MPa, L=21. 
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Figure 4-18: Calibration of numerical simulation with test results of experimental studies of H/D=9, 

Es=10 MPa, L=37. 
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a) Displacement contours after geostatic analysis 
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Figure 4-19: Displacement contours a) after geostatic analysis and b) after 30 cm pulling of the cable with 

burial depth ratio of H/D=9, Es=10 MPa, L=37. 

b) Displacement contours after 30 cm pulling of the cable 
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Figure 4-20: Validation of numerical simulation with test results of experimental studies of H/D=3, 6, 12, , 

and =39°, =18 °. 

 

Table 4-1 Mohr Coulomb parameters 

General Plasticity 

 1900 (kg/m
3
)  33° to 47° 

Elasticity  5° to -3° 

Es Variable Meridional eccentricity 0.1 

s 0.3 Deviatoric eccentricity )sin/()sin(   33e  
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Figure 4-21: Load-deformation curve for a cable with the different burial depth, φ=39°, =18°, Es=10 

MPa, L=37. 
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Figure 4-22:Variation of  horizontal force factor  as a function of the burial depth, numerical simulation 

and experimental studies. 
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Table 4-2: Drucker-Prager model  parameters 

General Plasticity 

 1900 (kg/m
3
)  (deg) 35° to 50° 

Elasticity  (deg) 5° to ° 

Es Variable Flow Potential eccentricity 0.1 

s 0.3 K 1 
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Figure 4-23: Load-deformation curve for the buried cable with different L. (Drucker-Prager Model, 

Es=6 MPa, =47°, and non-dilatant soil) 
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Figure 4-24: Load-deformation curve for the buried cable with different L. (Drucker-Prager Model 

,Es=6 MPa, =47°, and dilatant soil (=30°) ) 
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Figure 4-25: Load-deformation curve for the buried cable with different L. (Drucker-Prager Model, 

Es=60 MPa, =47°, and non-dilatant soil) 
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Figure 4-26: Load-deformation curve for the buried cable with different L. (Drucker-Prager Model, 

Es=60 MPa, =47°, and dilatant soil(=30°) ) 
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Figure 4-27: Load-deformation curve for the buried cable for different friction angle () (Drucker-

Prager Model, Es=6 MPa, non-dilatant soil) 
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Figure 4-28: Load-deformation curve for the buried cable for different friction angle () (Drucker-

Prager Model, Es=6 MPa, dilatant soil (=25°)) 
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Figure 4-29: Load-deformation curve for the buried cable for different dilation angle () ( Drucker-

Prager Model, Es=6 MPa, =47°) 
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Figure 4-30: Calibration of numerical simulation with test results of experimental studies of H/D=9, 

Es=10 MPa, L=37. 
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Figure 4-31: Validation of numerical simulation with test results of experimental studies of H/D=3, 6, and 

12, Es=10 MPa, L=37. 
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Figure 4-32: Horizontal offset in the buried cable with out-of-straightness 

 

 

Figure 4-33: The mesh configuration of the soil for the cable with burial depth of  30 cm with the 

maximum horizontal offset of h=5 cm. 
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Figure 4-34: Mesh configuration for buried cables with out-of-straightness for burial depth of 30, 60, 90, 

and 120 cm. 
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Figure 4-35: The effect of out-of-straightness on the longitudinal response of the cable with different 

burial depths ( H=30, 60, 90, and 120 cm), f=0.7, Es=10 MPa, =4.7/m. 
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Figure 4-36: Normal contact stresses at the soil/cable interface after geostatic analysis and after 30 cm 

pulling out the cable with the burial depth of 90 cm,  f=0.7, Es=10 MPa, =4.7/m. 
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Figure 4-37: The effect of the cable flexibility ( parameter) on the longitudinal response of the buried 

cable with different offset ratio (/L=0, /L=0.53 %, and /L=1.33%). ( Es=10 MPa, f=0.7 =38˚, and 

=18˚) 
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Figure 4-38: The effect of the cable flexibility ( parameter) on the longitudinal response of the buried 

cable with different offset ratio (/L=0, /L=0.53 %, and /L=1.33%).( Es=20 MPa, f=0.7,=38˚, and 

=18˚) 
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Figure 4-39: The effect of soil elastic modulus on longitudinal soil loads on buried cable with 

=4.7,3.0,2.5/m. 
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Figure 4-40: The effect of the cable/soil interface friction angle on the longitudinal response of the cable 

with offset ratio of (/L=0, /L=0.53 %, and /L=1.33%). 
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Figure 4-41: Results of experiential tests in comparison with results of numerical simulation for the offset 

ratio of 1.33 %, f=0.7, Es=10 MPa, =38˚, =18˚,and =4.7 /m and burial depth of 30 and 60 cm. 
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Chapter  5: Application of Results 

 

5.1 Introduction 

 

Observed damages to buried lifeline systems in the past can be attributed either to the 

permanent ground deformation (PGD) or transient ground deformation (TGD). TGD refers to 

the ground deformation caused during the seismic wave propagation whereas PGD refers to 

the permanent ground movement caused by surface faulting or secondary effects causing 

ground failure (landslide or liquefaction induced lateral spreading). PGD affects lifeline 

system in the localized geographical area with higher rates of damage; however, TGD affects 

the lifeline system over a broad area with lower rates of damage (Eguchi (1982)). The buried 

power transmission cables like other buried lifeline can be damaged by both PGD and TGD. 

This section only focuses on the approach and the necessary tools to obtain the response of 

the buried power transmission cables subjected to PGD. Generally, the response of buried 

lifeline to any arbitrary PGD is measured by decomposing the ground deformation into 

longitudinal and transverse components, and then combining the response computed for each 

component. The longitudinal component of ground movement is parallel to the orientation of 

the buried lifeline whereas the transverse component of ground movement is perpendicular to 

the orientation of the buried lifeline. The response of buried power transmission cable 

subjected to any arbitrary PGD can be measured by the similar procedure established for 

other lifelines. 

 It is well recognized that liquefaction-induced PGD, particularly lateral spreading, causes 

significant damage to buried lifelines (Hamada and O‟Rourke 1992). For instance, Figure 5-1 

depicts the power transmission cable buried in the non-liquefiable soil with mild slope 

underlain by a saturated liquefiable soil with shallow water table. As the underlying deposit 

becomes liquefied the lateral spreading occurs and the upper layer moves down the slope 

toward a steep free face as an intact block. However, the underground power transmission 
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cables may not comply with the movement of the soil block, and the relative movement of 

the buried cable and ground strains the underground cable. The induced strain in the buried 

cable can be described as a function of the magnitude amount of ground deformation, the 

width, and the pattern of the permanent ground deformation (O‟Rourke and Nordberg 1992).  

It is worthwhile to review some of the approach to determine the magnitude of PGD, spatial 

extent of the ground deformation and the shape of ground deformation due to liquefaction 

induced lateral spreading.  

The magnitude of PGD due to liquefaction induced lateral spreading is the subject of the 

ongoing research. Finite element models (Elgamal 2000), simplified analytical models 

(Newmark 1965), and empirical models have been proposed for predicting the magnitude of 

PGD. Empirical models provide a simple and reliable approach to predict the magnitude of 

PGD. Hamada et al (1986) propose an empirical formula to calculate the horizontal ground 

displacement based on the failure observed in 1964 Niigata and 1983 Nihonkai-Chubu 

earthquake. The magnitude of ground displacement (DH) was expressed as a function of the 

thickness of the liquefiable layer (Hliq) and the ground slope (  ) as 

375.0 liqH HD           Eqn. 5-1 

Other empirical models such as Bardet et al (2002), Bartlett and Youd‟s MLR model (1992) 

and Youd and Perkins‟ LRL model (1987), are widely used in the prediction of the 

magnitude of PGD, more detailed of these models can be found in Kramer (1996). 

The pattern of ground deformation (i.e. the distribution of PGD along the lifeline axis) is 

another important parameter to consider. O‟Rourke and Liu (1995) discussed different 

idealized PGD pattern for the analysis of the buried pipeline to the longitudinal PGD. Based 

on the previous study by Flores-Berrones and O‟Rourke (1992), they studied the response of 

buried pipelines to five idealized patterns shown in Figure 5-2. They found that the block 

pattern yielded the largest strains in the pipeline and they used the block pattern for the 

determination of circumstances leading to the damage of pipelines. For the analysis of the 

pipeline subjected to the transverse permanent ground deformation, different researchers 
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proposed different approximations for the distribution of the PGD along the pipeline axis. 

O‟Rourke (1988) used the beta probability density function whereas Suzuki (1988) used the 

cosine function to a power n. Later Liu and O‟Rourke (1997) used the Suzuki (1988) model 

with n=2 with the following mathematical equation to assess the behaviour of the pipeline to 

the transverse PGD. 

))
2

cos(1()(
w

x
x


          Eqn. 5-2 

Figure 5-3 shows the comparison between the Suzuki (1989), Liu and O‟Rourke (1997), and 

O‟Rourke (1988). 

The spatial extent of PGD zones (i.e. the length of lateral spread zone) was shown to be the 

most important parameters influencing the response of the buried pipeline to transverse and 

longitudinal PGD (O‟Rourke and Nordberg 1992). The spatial extent of PGD must be 

calculated based on the expected plan area of liquefaction which depends on the geotechnical 

and topographical conditions of the area. Unfortunately, the information on the spatial extent 

of PGD is scarce and the current empirical data shows extensive variations. For instance, 

Suzuki and Masuda (1991) by using data from 1983 Nihonkai and 1964 Niigata earthquake 

presented the magnitude and the spatial extent of the PGD. They observed that widths (L) 

were distributed in the range of 80 m to 600 m with the lateral displacement () typically less 

than 2 m with the average ground strain (/L) .002</L <.03. Because of these variations, the 

expected length and width of a lateral spread zone should be measured depending on the area 

that liquefied.  

With the background knowledge regarding to ground deformation parameters (magnitude, 

pattern, and spatial distribution), a thorough study is performed to investigate the response of 

the underground cable to the permanent ground deformation. This investigation consists of 

two parts: the first part addresses the response of the underground cable to the longitudinal 

PGD, and the second part addresses the response of the underground cable to the transverse 

PGD.  As mentioned previously, buried cables have different characteristics from other 
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pipeline situation that they must be specifically addressed such as its out-of-straightness and 

bending flexibility. Most of the analyses in this section are performed in a format which is 

applicable to the cable with different mechanical properties with emphasis on the type of the 

cable used in the experimental study.  

5.2 The Response of Buried Cable Subjected to Earthquake-Induced Longitudinal 

Permanent Ground Deformation 

 

The objective of this section is to define the approach to quantitatively calculate the cable 

response due to the longitudinal PGD. Since the buried cable would typically have out-of-

straightness during cable installation, the main focus of this study is how to account for the 

cable out-of-straightness in the prediction of longitudinal soil loads on the cable. In order to 

achieve this goal, a bench mark problem as created in Chapter 4 for finite element analysis 

was used to develop the procedure to calculate the longitudinal soil loads on the buried cable. 

This procedure is then expanded to investigate the influence of parameters such as the 

amount of ground deformation, the width of ground deformation, the cable offset ratio, and 

the cable shape on the response of the real underground cable. Finally, a flowchart 

illustrating the procedure is presented to estimate the maximum axial force and axial strain in 

cables with out-of-straightness subjected to the longitudinal PGD. 

As demonstrated during the numerical simulation of the axial pullout tests, the longitudinal 

load-deformation curve consists of two distinct regions. These two regions are separated by 

the yield point. The yield point definition is selected herein since the load-deformation curve 

of the axial pullout testing has a similar behavior to the result of tension testing of the steel. 

The yield point is defined when the soil loads on the buried cable are completely mobilized, 

which occurs at small relative cable/soil displacement. The amount of yield force and the 

corresponding yield displacement depend on the cable/thermal backfill material interface 

friction (f), the burial depth ratio (H/D), density, and normal stress distribution on the cable. 
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Hoeg (1968) found that the normal stresses on the buried cable depend on compressibility 

ratio (C) and the flexibility (F) as: 

)1(
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          Eqn. 5-3 
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The compressibility (C) and flexibility (F) factors are a function of Es , Ec (the soil and 

equivalent cable modulus of elasticity), s , c ,(the soil and equivalent cable Poisson‟s ratio), 

and R is the cable radius. The yield point as shown in Chapter 4 can be related to commonly 

used approach (ASCE 1984) for the determination of the longitudinal soil loads on the buried 

pipeline which is  
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HFaxial 


        Eqn. 5-5 

The above formula assumes that longitudinal soil load is completely mobilized throughout 

the length (L) and the coefficient of lateral earth pressure (k) determines average stress 

distribution on the pipeline.  

The second part of the load-deformation curve is the hardening region. Hardening is defined 

as increases in the amount of load after yielding achieved. The post yield stiffness of the 

hardening region depends on all the factors contributing to the yield point and it also depends 

on the offset ratio (o.r.), as illustrated in Figure 5-4. Figure 5-5 shows typical idealized 

normal stress distribution for two buried cables, one at rest and the other subjected to the 

longitudinal movement (L). As cable moves the normal stresses on the cable increases, thus 

the longitudinal soil force acting on the cable increases.  

When the cable is straight, it can be assumed that the longitudinal soil load can be presented 

by the elasto-plastic or complete plastic behaviour as the commonly used approach in 
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practice for other pipelines (ASCE 1984). In order to calculate the additional soil loads on the 

cable due to out-of-straightness, the variation in normal forces on the buried cable should be 

first calculated. This can be accomplished by defining the coefficient of subgrade reaction in 

the horizontal transverse direction. Vesic (1961) presented the coefficient of subgrade 

reaction (kv) for the case of the vertically loaded beam on the surface of the elastic foundation 

based on the continuum elastic analysis. The coefficient of subgrade (kv) was expressed as a 

function of the relative beam stiffness to the soil stiffness as 
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The coefficient of subgrade reaction can be extended to the case of the beam on the elastic 

half space but subjected to the lateral loading. This is accomplished by knowing that the ratio 

of the horizontal static stiffness to the vertical stiffness of the disk foundation on the 

homogenous half-space is 
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Therefore, the coefficient of subgrade reaction for the foundation subjected to the lateral 

loading can be obtained as 
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The presented coefficient of subgrade reactions in the vertical and horizontal directions 

accounts for surface foundation. For the foundation with the burial depth H, the coefficient of 

subgrade reaction can be approximated by using the cone model theory as established by 

Meek and Wolf (1994).  The cone model theory is based on the one-dimensional theory of 

wave propagation. The soil underneath a foundation is replaced by an opening cone. The 

opening of the cone is calculated so that it provides the same static stiffness as the exact 

analytical result of the foundation on the elastic half space. The parameter Z0 controls the 
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opening of the cone. For the surface foundation resting on the elastic half space with the 

shear modulus of G and Poisson‟s ratio (ν), the static stiffness and corresponding Z0 for 

vertical or translation motions can be obtained as 
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For the case of the foundation with burial depth of H, the following superposition approach 

was attempted. First, the static stiffness of the foundation in the full elastic space was 

obtained. Second, the stresses at the distance H is calculated based on the cone model 

concept as depicted in Figure 5-6-b. With the knowledge that the stresses on the surface of 

the buried foundation must be zero, an imaginary foundation was created so that it cancels 

the stresses resulting from the foundation in the full elastic space as depicted in Figure 5-6-c. 

With this superposition, the static stiffness of the foundation with burial depth of H can be 

obtained as: 
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As indicated in the above expression, the translational static stiffness equals to 2kH for the 

very deep beam and equals to kH for the surface beam. Once the static stiffness of the 

foundation with the burial depth H was estimated, the coefficient of subgrade reaction (kH) 

for the horizontal lateral direction can be calculated as: 
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In order to verify the validity of the estimation of the coefficient of subgrade reaction (kH) in 

the horizontal lateral direction, the problem of the buried cable subjected to two concentrated 

loads as shown in Figure 5-7 is selected. For the sake of comparison, the properties (such as 

the cable length and cable diameter) of this problem are selected to resemble the lateral 

pullout test configuration. The force-deformation relationship for the small movement of the 

cable‟s end (the elastic case) is calculated by two approaches. In the first approach, the 

problem was solved by the finite element analysis and the ratios of the force to the 

corresponding displacement (kt=P/Δ) were measured for the soil with elastic modulus (Es). 

In the other approach, the response of the buried cable was calculated by using the soil spring 

with the proposed coefficient of subgrade reaction (kH). The ratio of the force to its 

corresponding displacement (kt) can be found as (Timoshenko 1960) 
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Figure 5-8 illustrates the variation of the ratio of kt stiffness nomralized to the soil elastic 

modulus as a function 089EcEs .)/( . Herein, (Ec) and (Eb) are the cable elastic modulus. Also, 

the results of the finite element analysis were included in Figure 5-8 to compare the results of 

both cases. As can be seen, a good agreement between the F.E. analysis results and the 

analytical results with the coefficient of subgrade reaction (kH) is achieved 

when 45.0)/( 089. EcEs . For instance, this condition requires that Ec<7.9×10
10

 for the soil 

with elastic modulus of Es=10
7
 which the tested buried cable characteristics satisfies this 

condition.    
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5.2.1 Prediction of the Amount of Lateral Soil Loads during Cable Longitudinal 

Movement 

 

As observed during the experimental studies and demonstrated by numerical simulation, the 

cable‟s offset creates an increase in the normal stresses and consequently increases the axial 

pullout force. In order to gain more insight and to predict the effect of cable‟s offset on the 

amount of soil loads on the cable, analytical formulation with the help of the coefficient of 

subgrade were provided. The benchmark of this study is the results of numerical simulation 

of the axial pullout test which were conducted for different burial depths and offset ratios. As 

mentioned previously in the F.E. analysis of axial pullout tests, the cable shape is assumed to 

have a maximum offset in the middle and approaches to zero offset at the margins with the 

shape of 











otherwise

LxL
L

x
s

xs

0

2/2/)(cos
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2 
         Eqn. 5-14 

in which s is the cable offset and L is the cable length. The cable with this shape is modeled 

by a beam element with longitudinal and horizontal transverse soil springs. The problem is to 

understand how much the axial pullout force increases as the cable moves longitudinally by 

(L). Figure 5-9 shows the initial and subsequent cable configuration after the longitudinal 

movement (L). This figure shows that the cable longitudinal movement causes cable 

deformation and mobilization of the horizontal transverse soil spring.  

In order to calculate the amount of force mobilizations in the horizontal transverse soil 

springs, a straight cable resting on the horizontal transverse soil springs is assumed to be 

subjected to the differential displacement of )()( LxSxS  for every longitudinal cable 

movement (L).  In this way, the problem of the axial movement of the cable is replaced by 

the problem of the cable subjected to the lateral soil movement as shown in Figure 5-10. 
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To establish the geometry of a cable subjected to the longitudinal movement, an infinitesimal 

element of length dx located at distance x from the centerline is considered. The basic 

differential equation of the elastic curve can be obtained as    

)(
4

4

xq
dx

zd
EI           Eqn. 5-15 

in which )(xq  is ))()()(( xzxsxsk LH   .  

The complete solutions of the infinite, semi-infinite, and finite beam on elastic foundation 

with different patterns of loading are presented in Timoshenko (1960) and Hetenyi (1946). 

The deflection of the infinite beam subjected to the concentrated load was derived by 

Timoshenko (1960) as 

))sin()(cos(
8

)(
3

xxe
EI

p
xz x 



         Eqn. 5-16 
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It is worth mentioning that the solution of the beam with finite length can be considered as 

infinitely long if )5( L , which normally buried cable falls into this category. This solution 

for a concentrated load can be expanded by using the principle of superposition to an 

arbitrary loading (q(x)). Figure 5-11 shows an infinite beam on the elastic foundation 

subjected to the arbitrary loading q(x) limited to portion of the beam with length L.   

The deflection at point A, positioned x from centerline, produced by an element of qdy, can 

be obtained by substituting qdy for P. 
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Therefore, the deflection at point A due to the distributed load over length L can be 

calculated as 

dyyyeyxqdyyyeyxqxz y
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in which xA is the location of point A. By knowing the cable deformation at any point, the 

change in the axial pullout force as a function of longitudinal displacement (L ) due to 

increase in the horizontal transverse force can be calculated as 

dxxzxsxskfF
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2/

2/
)()()(..        Eqn. 5-20 

in which, f is the interface friction coefficient between the thermal backfill material and the 

cable. It should be noted that ΔFL calculated by this method must be added to the mobilized 

longitudinal friction force (F0L).  

The procedure to obtain ΔFL is implemented in Mathcad (ver. 14.0) software. The increase in 

the axial pullout force is calculated for different burial depth ratios and different offset ratios 

as a function of the longitudinal cable displacement. In order to investigate the accuracy of 

this formulation, the comparison is made between the numerical F.E. analysis results and 

currently developed analytical formulation for burial depth ratios of H/D=10.0 and H/D=6.7, 

and offset ratios of o.r.=0.53 % and o.r.=1.33 % as shown in Figure 5-12. The comparison 

results show that the current analytical solutions slightly overestimate the axial pullout force 

for large longitudinal displacement (L). This overestimation is caused by: firstly, the 

coefficient of horizontal lateral subgrade reaction (kH) is developed for linear media around 

the buried cable. The media immediately around the cable can behaves nonlinearly 

particularly for a large offset ratio as shown in Figure 5-12-b. Secondly, the soil spring is a 

rough representation of the soil behavior around the buried cable. However, the analysis 

performed by the coefficient of subgrade reaction (kH) generally gives a reasonable 

estimation of the axial pullout force.  
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5.2.2 Estimation of the Additional Axial Soil Loads on the Cable with Out-of-

Straightness 

 

The purpose of this section is to understand the amount of increase in the longitudinal soil 

loads for a longer underground cable subjected to longitudinal PGD. The experimental test 

and finite element analysis were limited to the certain cable length (3.75 m), and it is almost 

impractical to use those methods to investigate the effect of out-of-straightness on the axial 

force in the long cables due to its analysis cost (time or monetary). On the other hand, the 

analysis with coefficient of the horizontal lateral soil subgrade provides a fast analysis 

alternative with reasonable approximation in prediction of the axial soil loads on the cable 

with out-of-straightness. It also gives this opportunity to perform parametric study to 

investigate the effect of variables such as cable lengths, cable shape and the offset ratio on 

the response of underground cables subjected to longitudinal PGD.  

5.2.2.1 Methodology and Results of Analysis 

 

A simple analytical procedure was developed to calculate the additional increase in the axial 

pullout force for the small scale buried cable (L=3.75 m) with out-of-straightness. The same 

analytical procedure is used to predict the longitudinal soil loads for a long scale cable. The 

assumptions in the analytical procedure are: 1) the soil behaviour in the horizontal lateral 

direction is idealized by the soil spring with coefficient of subgrade reaction (kH), 2) the 

flexural behaviour of the cable is assumed to be linear, 3) the cable is assumed to be axially 

rigid for the time being, the axially elastic and inelastic cable are discussed later, and 4) the 

amount of the offset value is assumed to be small. 

The cable layout shape is among the most difficult parameters to determine since the small 

bending flexibility of the cable causes the cable to form an arbitrary shape during laying 

operation. For the simplicity of this investigation, the buried cable laying shape is assumed to 

have a sine function whose amplitude is the amount of the offset and the distance between 
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peaks is L as shown in Figure 5-4. It is evident that the cable shape as a sinusoidal function 

never happens in reality; however, its features such as its periodic shape make the 

investigation easier. Even with a simplified shape, still significant complexity exists. Many 

combinations of sinusoidal shapes can be assumed for the buried cable. For instance in the 

length Lt of the longitudinal ground movement, the cable can have a different number of the 

peaks depending on the length L. Another issue is the assumption on the boundary of the 

ground movement, i.e., the ground movement regions can coincide with peak, zero crossing, 

or somewhere between those points for the cable with sinusoidal shape. With this 

information, a preliminary investigation was performed to figure out the conditions in which 

the maximum longitudinal soil load on the cable with sinusoidal shape occurs and use those 

conditions for the next phase of study. 

5.2.2.1.1 Additional increase in the longitudinal soil loads on the axially rigid cable 

 

The bending flexibility of the cable and the cable manufacturing requirement dictate the 

distance between the offset peaks (L). For instance, one can expect a larger L for the steel 

pipeline than for the cable used in the power transmission lines since the bending stiffness of 

the steel pipeline is higher than that of the cable. Based on the experience with the power 

transmission cable, the minimum length (L) can be limited to 3 m, and the length of ground 

movement (Lt) varies from 9 m to 243 m. The parameter n is defined as the ratio of Lt to 2L 

to find the number of the peaks in the length Lt. Furthermore, as discussed before, the 

boundary of ground movement can coincide with zero offset or maximum offset, or 

anywhere between those points. For this problem, the two limiting cases are only considered. 

The schematic description of this problem is shown in Figure 5-13. As shown in this figure, 

the cable has a sinusoidal shape which its periodic shape is controlled by parameter L and its 

amplitude is controlled byL . 

 In order to understand the additional increase in the axial soil restraint (ΔFL), the problem of 

a buried cable with length Lt pulling out from a block of soil mass or a buried cable subjected 

to a block of soil movement with length Lt is evaluated. Figure 5-14 shows cable shapes 
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meeting the above criteria. In this figure, the region of the soil mass movement with the 

width (Lt) moves by L. Those figures are different from each other with respects to: 1) the 

boundary conditions and 2) the number of the positive and negative peaks in the region (Lt). 

Figure 5-14-a shows a soil mass which its starting and ending parts coincide with the 

maximum cable offset while Figure 5-14 -b shows a soil mass whose starting and ending 

parts coincide with the zero offset. The same difference is created in Figure 5-14 -c and 

Figure 5-14 -d. The difference between the first two figures (a and b) and the second two 

figures (c and d) are the number of the positive and negative peaks in the region, a and b 

have even numbers of the positive and negative peaks while c and d have  uneven numbers of 

the positive and negative peaks. Figure 5-14-e and Figure 5-14-f are different from Figure 

5-14 -d and Figure 5-14-b in which the starting point of the soil mass coincides with zero 

offset and the ending part coincides with maximum offset.  

Analyses are performed for each type of the cable layouts (a to f) as depicted in Figure 5-15 

to investigate the effect of cable‟s shape on the longitudinal soil loads on the cable. Figure 

5-15-a shows an increase in the axial force (ΔFaxial) as a function of the longitudinal 

movement of the soil mass (L) for the buried cable with n=3, L=8 m, and o.r.=0.63%. Figure 

5-15-b shows the same information but for the buried cable with n=5, L=8 m, and 

o.r.=0.63%. Results of the analysis show that the patterns b and c result in the maximum 

axial soil loads on the cable. Inspection of those patterns shows that the starting and ending 

points of the soil mass in both patterns coincide with the zero offset while in other patterns 

they do not coincide with zero offset. The reason that those patterns leads to such an increase 

in the axial force can be understood by referring to Figure 5-16. Two limiting cases are 

depicted in this figure in which the soil mass boundaries coincide with the zero offset (Figure 

5-16-a) and the soil mass boundaries coincide with the maximum offset (Figure 5-16-b). By 

examining the relative movement of the cable and its original position, as shown as dotted 

lines, it can be observed that more soil loads subjects the cable when the soil mass region 

coincides with zero offset since the sinusoidal function has a greater rate of change at zero 

crossing. The second observation is related to the situation when uneven numbers of positive 

and negative peaks are located in the region of the soil mass movement (Lt). This situation 



136 

 

leads to a larger soil loads on the cable in compare to the situation where even numbers of 

positive and negative numbers exist in the region of soil mass movement. 

In summary, in order to achieve a maximum axial soil load on the cable, 1) the region of the 

soil mass movement should be bounded by the zero offset at both ends, and 2) the length of 

the region of soil movement (Lt) should be an odd multiplier (2n-1) of L. With the 

understanding of which shape leads to a larger longitudinal soil loads on the cable, a 

thorough parametric study is performed to investigate other influential parameters, including 

offset ratios (o.r.), L, and Lt.  

To investigate the effect of the width of ground movement on the axial soil loads on the 

cable, four widths are selected as Lt=9, 27, 81, and 243 (m). For each width, cables with 

different sinusoidal shape can be assumed. However, only those shapes creating maximum 

axial loads are considered. For instance, Figure 5-17 shows a region of the ground movement 

with length Lt and three cables (Lt / L =1, 3, 9) with offset value (Δ).  

Figure 5-18 shows the variation of an additional increase in the axial soil loads on a cable 

with the maximum offset value (Δ) of 5 cm and the minimum distance between peaks (L=3 

m) as a function of the block of soil movement. Since the horizontal lateral subgrade 

coefficient is developed for a linear behavior of the soil the result of this analysis can be 

linearly interpolated to the cable with different offset value. By inspecting each graph, the 

largest increases in the axial soil loads are when the Lt/L ratio has the largest value. Also 

comparisons between the maximum value of the developed axial soil loads on the cable for 

different widths of the soil movement (Lt) show that the length (L) is an influencing 

parameter. As the length L decreases the axial soil loads on the cable increases. The width of 

the soil movement (Lt) is not important parameter in this problem since the cable has a small 

bending stiffness, and most of the relative cable/soil deformation is located at the margin of 

the ground deformation zone. To elucidate this condition, consider an infinite beam on the 

elastic foundation subjected to the uniform ground deformation (ug) with the length of Lt as 

depicted in Figure 5-19. A very flexible beam deforms to ug in the region of (Lt -2L’). 

However, the beam does not conform to the ground deformation at margins (L’). The same 
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analogy can be made when the cable is subjected to non-uniform ground deformation. 

Therefore, the length of the ground deformation region is not important parameter in the very 

flexible beam. Based on the result of analysis, it can be concluded that 1) an increase in the 

soil movement (L) increases the axial soil loads on the cable, 2) a decrease in the distance of 

the cable offset peaks (L) increases the axial soil loads on the cable, and 3) the cable length 

(Lt) does not have much effect on the axial soil loads on the cable.  

5.2.2.1.2 Additional increase in the longitudinal soil loads on the axially elastic cable 

 

In the previous analysis, the uniform amount of ground deformation (L) is assumed 

throughout the region of the ground movement (Lt). However, the axial deformation of the 

cable reduces the relative movement of the cable and surrounding ground; thus, it affects the 

amount of the soil loads on the cable. It can be easily shown that if the cable and the 

surrounding ground move together, no soil loads apply on the cable. The good approximation 

for the distribution of the ground movement can be a quadratic function with the maximum 

value at one end (-Lt/2) and zero at the other end (Lt/2) as expressed by the following 

reduction function 

2)
2

1
()Re( 

tL

x
x          Eqn. 5-21 

The reduction function Re(x) can be interpreted as a displacement profile of the buried cable 

with the shaft friction (F0) subjected to the concentrated load at one ends causing the 

maximum unit axial displacement. Figure 5-20 shows the cable with sinusoidal shape 

subjected to the mass of the ground movement with the length Lt. The amount of the ground 

movement is (L) at one ends and it approaches to zero with the reduction function Re(x).  

The same plots as illustrated in Figure 5-21 are prepared for this situation when the ground 

movement is not uniformly distributed along the width Lt due to the cable axial deformation. 

The widths of soil movement region are selected as Lt=9, 27, 81, and 243 (m).The amount of 

the offset is selected as 5 cm and the minimum value of the distance between the offset peak 
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is selected as 3 m. Comparing the results of the Figure 5-18 and Figure 5-21 shows that in the 

latter case the amount of increase in the axial soil loads on the cable is almost 50% less than 

the axially rigid cable. 

5.2.2.1.3 Additional increase in the longitudinal soil loads on the axially inelastic 

cable 

 

In the interpretation of Re(x) function, it is mentioned that Re(x) is an elastic axial 

deformation of the cable with the shaft friction of F0 subjected to the concentrated load 

causing the unit displacement. However, the cable can yield, depending on the amount of the 

yield strength (Ty) and ground deformation (ug), and behaves inelasticity. In order to 

investigate the effect of the inelastic axial deformation of the cable, bilinear behaviour, as 

depicted in Figure 5-23, is considered for the axial behaviour of the cable. By setting the 

coordinate at the center of the Lt region, the following expressions can be obtained for the 

inelastic axial deformation of the cable.  
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in which  is the hardening slope of the axial-force deformation, Lt is total length of the cable 

or the region of the ground deformation, and 0/ FTL yy  . Figure 5-22 shows the axial 

deformation of the cable for two ratios of Lt/Ly=2 and 8/7.Analyses are attempted to compare 

the results of increase on the longitudinal soil loads on the cable for different Lt/Ly. Figure 

5-24 shows the proposed reduction function for the cable with different Lt/Ly=4, 2, and 1 and 

the table showing the corresponding axial soil load increase for Lt =9 m, Lt /L =3, =0.1, Δ=5 
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cm, and L=0.5 m. Results show that the Lt/Ly ,and consequently the yielding of the cable, is 

not a determining factor in the calculation of the amount of the increase in the additional 

longitudinal soil loads on the cable due to out-of-straightness. It should be noted that the 

results are for the case when Es=10 Mpa and =4.5 /m. The results are definitely varied for 

other cases as it will be described in the following section. 

5.2.3 Other Parametric Studies 

 

The previous results are obtained for the parameter =4.5 /m. The  parameter describes the 

relative stiffness of the cable to the surrounding medium. In this section, the effect of this 

parameter on the amount of the axial soil load increase (ΔFaxial ) due to longitudinal ground 

movement is investigated. In order to narrow down the parametric study, the following 

assumptions based on the previous study are used: 

The shape of the cable is assumed to be sinusoidal with L=3 m and =5 cm. The ratio of Lt / 

Ly=2.The parameter  varies from 1.5 to 4.0 /m to cover different cable and soil stiffness.  

Figure 5-25 shows the results of analysis for the buried cable subjected to the block of soil 

movement with length Lt=9 and 27 m for different  parameters. It can be seen that by 

increasing the  parameter the effect of the Lt on the ΔFaxial decreases since large value of  

parameter corresponds to very flexible bending cable. Furthermore, the analysis shows that 

the largest increase in the ΔFaxial occurs for the cable with small . All in all, the purpose of 

these graphs is to demonstrate the importance of  parameter in the increase in the axial soil 

loads on the cable, and the analysis should be performed for specific case of cable-soil to 

obtain the increase in the axial force due to longitudinal permanent ground movement. The 

following sections will be discussed the steps necessary to obtain the response of the buried 

cable subjected to longitudinal PGD. 
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5.2.4 Implementation of the Result of Analysis in Practice 

 

In this section, a methodology to assess the performance of the buried cables subjected to the 

longitudinal permanent ground deformation is presented. The permanent ground deformation 

is normally characterized by three parameters: the length of ground deformation, the 

magnitude of ground deformation, and finally the shape or pattern of the ground movement. 

Figure 5-26 shows the cable subjected to the block pattern of the ground movement with 

width Lt and amount of ground deformation (ug). 

The soil behaviour surrounding the cable is modeled by a plastic spring with the amplitude of 

F0. The axial behaviour of the cable is presented by a bilinear model as shown in Figure 5-23 

with the yield strength (Ty) and stiffness hardening ( EA). For the time being, it is assumed 

that the cable has no out-of-straightness. Depending on the amount of ground deformation 

and the length of ground deformation, a compliant and non-compliant cable can be identified 

(O’Rourke (1995)). The non-complaint cable happens when the amount of ground 

deformation is large and the width of ground deformation is small. In this case, the cable 

deformation is less than the subjected ground deformation. On the other hand, the complaint 

cable happens when the amount of ground deformation is small and the width of ground 

deformation is large. In this case, the cable deformation at some part of ground deformation 

region is equal to ground deformation. The critical length (Lcrit) distinguishing the boundary 

between complaint and non-complaint behaviour can be formulated as a function of cable 

axial stiffness (EA), cable axial hardening (), the longitudinal soil-cable interaction 

behaviour (F0), and the ratio of yield axial force to F0 (Ly=2Ty/F0). For the case of non-

yielding cable, the critical length can be calculated as 
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Depending on the length of the ground deformation (Lt) compared to (Lcrit) , the maximum 

axial force in the cable can be calculated and then compared with the cable yield strength 

(Ty). 

      Lt<Lcrit     Eqn. 5-25 

      Lt>Lcrit     Eqn. 5-26 

The combination of the length (Lt) and the amount of ground deformation (ug) cause yielding 

in the cable. For the situation when maxT  is greater than yT , the yielding in the cable occurs 

and new critical ground deformation length should be calculated. By referring to Figure 5-27, 

the new critical ground deformation for yielding cable can be expressed as a 

2/12
0 ))/4(( ygycrit LFAEuLL          Eqn. 5-27 

Where Ly=2Ty/ F0  

By knowing the new critical ground deformation length, the maximum axial strain can be 

obtained as 
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Figure 5-28 outlines the procedure to obtain the axial stain in the underground cable due to 

the longitudinal permanent ground deformation. As shown in Figure 5-28, at first step the 

yield ground deformation (Ly) and an elastic critical ground deformation 

2/1
0 )/(2 FAEuL gcrit  should be obtained. By comparing the minimum of Lt and Lcrit to Ly, 

the possible yielding in the cable can be investigated. The reason for obtaining the minimum 

of those values is that the maximum possible axial force (Tmax) in the cable is a function of 

Lcrit. By following the procedure outlined in Figure 5-28, the axial strain for a straight cable 

2/).( 0max tLFT 

2/).( 0max critLFT 
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can be derived. At the final stage, the effect of out-of-straightness can be added as an 

additional force (ΔFaxial ) to the maximum axial force resulting from a straight cable analysis. 

The following procedure describes in details the approach to calculate ΔFaxial 

1) determine the cable properties ( Eb, D) and burial depth ratio (H/D) 

2) determine the soil properties ( Es, s) 

3) calculate coefficient of subgrade reaction (kH) 

4) determine the soil/cable interaction behaviour (F0) as table Table 5-1  

5) calculate parameter   

6) define a shape for the cable (s(x)), as a guideline the results of preliminary analysis on 

the cable with sinusoidal shape can be used. 

7) determine the length L1. This length is defined as the distance between zero tensile 

forces to the maximum tensile force as shown in Figure 5-27. It is worth mentioning 

that
critLL 5.01  . 

8) determine Ly and the ratio of L1/Ly to define Re(x) function. 

9) using proposed analytical formulation to measure the increase in the axial soil loads 

(ΔFaxail) for the relative cable /ground deformation (u) at the maximum tensile force 

(
guu 5.0 ) 

10) finally, the calculated increase in the axial force (Δaxial ) should be added to 

calculated max for the axial stain in the straight cable as shown in Figure 5-28. 

Clearly this additional force (ΔFaxail) increases axial tension in the cable and it possibly 

changes the critical length calculation. At this stage, the new interface friction factor (F0 ) is 

proposed by assuming first the additional axial force is uniformly distributed on the length L1 
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and then adding this value to the initial value of interface friction force and recalculating the 

new critical length as depicted in  Figure 5-28. 

5.2.5 Summary of the Response of Buried Cables to Longitudinal PGD 

 

The methodology is presented to calculate the buried power transmission cable response 

subjected to the longitudinal block pattern of PGD. In this methodology, the maximum axial 

force should be first calculated for the straight cable and then the additional force due to out-

of-straightness is added. Several parametric studies are performed to investigate the effect of 

the cable length, cable offset ratio, cable shape, and  parameter on the additional axial soil 

loads on the cable due to out-of-straightness. It is found that  parameter and offset ratio are 

the most important parameters in measuring an additional increase in the axial soil loads on 

the cable. The effect of width of ground deformation (Lt) on the additional increase in axial 

force depends on  parameter. It is found that for the large value of  parameter, which the 

power transmission cable is in this category; Lt is not a significant parameter.  

5.3 The Response of Buried Cable Subjected to Earthquake-Induced Transverse 

Permanent Ground Deformation 

5.3.1 Representation of Soil Spring Behaviour in the Transverse Direction 

 

In the analyzing the cable with out-of-straightness to the longitudinal PGD, an approach was 

discussed to obtain the horizontal transverse soil spring. Since that study was conducted for 

the cable with small out-of-straightness, the linear assumption for the soil spring was valid. 

However, the assumption of the linear soil is unjustifiable when the soil subjected to large 

deformation due to large movement of the buried cable. This section presents an approach to 

obtain the horizontal lateral soil spring for the soil and cable with different mechanical 

properties. The method consists of following two steps: 1) the response of the buried cable 
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(i.e. the load-deformation curve) is measured by either numerical simulations or experimental 

testing; 2) the nonlinear spring model is obtained by calibrating the response of the buried 

cable to that of numerical simulation or experimental testing. In order to accomplish this 

goal, a numerical model was developed in ABAQUS 6-7.1. The soil and the cable behaviour 

are represented by macro element models. Macro element models provide the least expensive 

yet most efficient analysis method that it is widely used in engineering practices. 

ABAQUS standard provides pipe soil interaction (PSI) element to model the interaction 

between the pipe and its surrounding soil. The PSI elements are formulated for the two-

dimension (PSI24, PSI26) and three-dimension (PSI34, PSI36) problems. One edge of PSI 

elements is attached to the interacting structure, such as the pipe, and the other edge is 

connected to the far-field, such as the ground surface. Figure 5-29 shows the two-

dimensional PSI24 element with four nodes. 

PSI elements only have a displacement degree of freedom. The relative displacement (Δu) 

between the far-field (Uf) and the interacting structure (Us) causes strains in the element 

according to its defined behaviour. The behaviour is expressed by the force per unit length in 

three independent directions (longitudinal, transverse horizontal and horizontal vertical). The 

spring behaviour can be either linear or nonlinear as depicted in Figure 5-29. The advantage 

of PSI element over other conventional spring models is that the same behaviour can be used 

for a uniform and non-uniform mesh. For this analysis, the buried cable-soil interaction 

behaviour is modeled with PSI34 element. The PSI element is defined so that one edge of the 

element shares nodes with the buried cable, and the other nodes on the other edge represent a 

fix surface. The type of behaviour for the spring model in the longitudinal and lateral 

direction will be discussed in the next section.  

5.3.1.1 Soil-Cable Modelling 

 

 The behaviour of the soil spring model in the horizontal transverse can be represented by 

rectangular hyperbolic model or bilinear model. The rectangular hyperbolic model was first 
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introduced by Kondner (1963) and it was used later by Audibert and Nyman (1977) and by 

Trautmann and O‟Rourke (1983) to represent the soil behaviour in the horizontal transverse 

direction. Elasto-plastic model can be used conveniently in the commercial software with 

reasonable accuracy. This model is defined by two-unknown parameter, the yield force and 

corresponding yield displacement.  

5.3.1.1.1 Longitudinal behavior of the PSI element 

 

A detailed study on the behaviour of the longitudinal soil spring is presented in the response 

analysis of the buried cable subjected to the longitudinal PGD. By revisiting the load-

deformation curve of the axial pullout test, three distinct regions can be identified as depicted 

in Figure 5-30. As mentioned previously, the hardening part of load-deformation curve 

occurs at large displacement. The buried cable subjected to only horizontal lateral PGD 

activates the small part of load-deformation curve since it undergoes a small longitudinal 

movement. Thus, the hardening part of this graph can be ignored. The elasto-plastic model as 

shown in Figure 5-30 is the reasonable selection to model the longitudinal behaviour of the 

PSI element. The darker curve shows the typical load-displacement curve as observed in the 

experimental studies, and the lighter curve shows the conservative idealization of the 

longitudinal soil behaviour in the form of the elastically-perfectly plastic.  

Its behaviour (yield force and yield displacement) can be easily obtained from the mean 

response of buried cables in the experimental axial pullout test. Since the displacement at the 

pulling head and the tailing end are equal the spring behaviour can be obtained by calculating 

the axial force per unit length. The results of this idealization are tabulated in the Table 5-1 

for different burial depths. 

5.3.1.1.2 Modeling of the cable 

 

One of the inexpensive approaches, with regard to analysis time ,to obtain the overall 

response of the buried cables is to model the buried cable with a beam element. ABAQUS 
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offers a wide range of the three-dimensional beam elements with the linear (B31), quadric 

(B32), and cubic (B33) interpolation functions. Furthermore, ABAQUS provides an 

alternative formulation for beams undergoing large deformation that they have significant 

axial rigidity such as a flexing long pipe or cable. The geometrically nonlinear analyses of 

this type of the problem are better solved by using hybrid elements (B31H, B32H, B33H). 

The material nonlinearity of the beam cross section can be considered by using a general 

beam section behaviour, i.e., the beam section‟s response to axial, shear, bending, and torsion 

is described by defining axial force (N), bending moment (M11, M22), shear (V), and torsion 

(T) as a function of axial strain (ε11), curvature (k11,k22), shear deformation( ), and twist (Ф) 

respectively.  

)( 11NN  , )( 1111 kMM  , )(TT  , and )(VV   

When the section‟s behaviour is defined in this way, no interactions between these nonlinear 

behaviours are assumed. Therefore, this assumption is only valid if the section response 

behaviour can be uncoupled. Since the axial behaviour of the buried cable is dominant the 

section behaviour of the buried cable can be approximated by this method of modeling, 

uncoupling the axial and bending behaviours.  

5.3.1.1.3 Cable axial behaviour characterization  

 

The result of the standard compression test on the buried cable is used to define its axial 

behaviour model (N-ε). The load-displacement curve as described in the experimental section 

can be modeled by the bi-linear curve, with the yield resistance of 160 N and stiffness 

hardening of 2%. In the case that experimental study is not available the simple strength of 

material concept can be used to find the axial behavior of the cable. Given that the copper 

core with elastic modulus of (Eco) and yield strength of (Fyco), and aluminum shield with 

elastic modulus of (Eal) and yield strength of (Fyal), are the only parts participating in the 

compression resistance of the buried cable. The behavior of the buried cable can be 

approximated by the tri-linear behavior curve with the yield strength and the yield strain as: 
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5.3.1.1.4 Cable flexural behaviour characterization 

 

The flexural behavior of the cable is not important issue for modeling this type of the cable 

since the axial behavior of the cable plays more important role in the overall response of the 

cable. However, the flexural behavior characterization is required for the numerical 

simulation. The load-displacement curve of three-point-bending testing, as described in the 

experimental part, was used to approximate the flexural behavior of the buried cable. A 

simply supported beam with the span of 78 cm was created in the ABAQUS, and nonlinear 

static analysis was performed by applying a monotonically increasing displacement at the 

cable midpoint. The flexural behavior (M-) of the cable is back-calculated by seeking the 

best match between the midpoint displacement obtained from numerical simulation and the 

one obtained from experimental studies (3.1.2.3). The results of this match, as shown in 

Figure 5-32, led to the quad-linear relationship curve for the moment-curvature (M11-k11) as 

depicted in Figure 5-33. 

5.3.1.2 Method of Analysis and Calibration of Results 

 

 The results of the lateral pullout tests were summarized as a load-displacement curve for the 

cable with different burial depths. Numerical models with the same characteristics of the 

experimental testing were created separately for the cable with different burial depths to 

achieve the same load-displacement curve. The cable modeled as a beam element (B31H 

type) with the length of 2.15 (m), and the nonlinear type PSI element was used to define the 

interaction model. The behavior in the longitudinal direction was obtained as discussed in the 

previous section, and the behavior in the horizontal transverse direction was defined as an 
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elasto-plastic behavior. The unknown parameters, i.e., yield strength and corresponding yield 

displacement, of the horizontal transverse behavior of the soil spring were obtained with 

calibration of the numerical simulation with the experimental studies so that the best possible 

match between load-displacement curves from experimental studies and those from 

numerical simulations can be achieved. Since each load-displacement curve approaches an 

asymptote value, referring to the experimental lateral pullout tests, the yield strength can be 

readily obtained, and the yield displacement remains the only unknown.  

The loading on the buried cable is caused by a displacement applying to the cable‟s ends. 

The geometric nonlinearity was included in the analysis to consider the effect of the finite 

displacement. The geometric model of the buried cable with the loading mechanism and the 

boundary condition is depicted in Figure 5-34.  

The load-displacement curves of this analysis are depicted in Figure 5-35 for different burial 

depths. Each figure shows the results of experimental lateral pullout tests and the results of 

numerical calibration for different yield displacements to find the best match. Table 5-2 

summarizes the calibration results for the soil spring model in the horizontal transverse 

direction.  

5.3.2 Analyzing the Buried Cable Subjected to the Horizontal Transverse Permanent 

Ground Deformation 

5.3.2.1 Introduction 

 

 The response of buried pipeline subjected to the transverse PGD was studied previously by 

O‟Rourke (1988), Suzuki et al (1988), Kobayashi et al (1989), and Liu and O‟Rourke (1996). 

Brief discussions of their assumptions and results are presented herein. O‟Rourke (1988) 

studied the response of X-60 grade steel pipe (with diameter of 24 inch and wall thickness of 

3/8 inch) to the PGD. The PGD pattern was assumed to have a beta probability distribution 

function with the width (W) and the amount of ground deformation (). The maximum tensile 

and compression strains were calculated for three widths (W=10, 30, and 50 m) as a function 
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of the maximum soil displacement. He concluded that the width of PGD has a greater 

influence on the tensile strains. Suzuki et al (1988) studied the response of X-50 grade steel 

pipe (with diameter of 24 inch and the wall thickness of ½ inch) to the transverse PGD. 

Several PGD patterns were assumed as a cosine function to the power of n1. Their physical 

model is very similar to that of T. O‟Rourke (1988); however, Suzuki model assumed a 

longer pipe so that the axial force formed in the pipe due to PGD can be transferred to the 

ground. They analyzed the pipe for different ground deformation widths (W=10, 30, and 50 

m) and different ground displacements (< 2m).  They observed that the ground deformation 

with width of around 30 m created the maximum tensile strain in the pipe.  

Liu and M. O‟Rourke (1996) studied the response of X-52 grade steel pipe (with diameter of 

24 inch and the wall thickness of 3/8 inch). They used the nonlinear soil springs and 

Ramberg-Osgood stress-strain relationship for the pipe material. The pattern of ground 

deformation was assumed to be cosine function to the power of 2. They analyzed the 

response of the pipe to three different widths of ground deformation (W=10, 20, and 50 m) 

and ground movements with different intensity.  Based on their analysis, they concluded that 

the width of PGD, followed by the transverse soil spring resistance, pipe diameter, steel 

grade, wall thickness, PGD pattern, anchor length, and the longitudinal soil spring resistance 

are the most influential parameters affecting the response of the buried cable. Furthermore, 

the closed-form analytical formulations were developed to estimate the maximum tensile 

strain in the buried pipeline.  

5.3.2.2 Description of Numerical Model 

 

The primary objective of this section is to gain an understanding on the parameters that 

influence the response of the buried cable, and elucidate some features of the response which 

are limited to the buried cable.  The cable performance is expected to be influenced by, 1) 

cable mechanical properties, 2) the soil/cable interaction behavior, and 3) the transverse PGD 

deformation parameters. This study focuses mainly on the effects of the ground deformation 

parameters; namely the amount of the PGD and width of PGD zones (W and D). In order to 
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accomplish this goal, two cables with the burial depth ratios of 6 and 10 were selected for the 

analysis. The cable structure has the same mechanical properties as the one used in the 

experimental lateral pullout tests, which were also used to calibrate the behavior of the 

transverse soil springs. The analyses were performed by the finite element program 

ABAQUS 6.7-1. The PSI element was used to model the interaction behavior between the 

cable and the soil. The behavior of PSI element in the longitudinal and transverse directions 

was obtained as the bilinear behavior as calibrated with experimental tests. The nonlinear 

general beam section was used to define the moment-curvature (M-) and the axial-

deformation (N-ε) relationship of the buried cable. The cable was modeled as a continuous 

long beam with the mentioned mechanical properties. The length of the cable was long 

enough to reduce the effect of boundary conditions. In each analysis, strains at the ends of the 

cable were checked to confirm that the strains were small enough. This makes sure that the 

location of anchor points was not influencing the analysis results. The ground deformation 

was applied to the other end of the PSI element to simulate transverse PGD. The pattern of 

ground deformation as proposed by Suzuki (1988) with n=2 was selected. By keeping the 

pattern of the ground deformation constant and by increasing the amount of the ground 

deformation monotonically, the responses of the buried cable were conducted for different 

ground displacements. The analysis considers both the material and geometric nonlinearities 

in the buried cable.  

5.3.2.3 Results of Numerical Analysis   

5.3.2.3.1 Cable deformation 

 

The first observation is related to how the buried cable is deformed when it is subjected to 

the ground with increasing levels of movement. Figure 5-36 shows that the buried cable 

matches to the pattern of ground movement up to the certain level, after that the buried cable 

does not match to the ground movement pattern anymore and eventually the maximum 

deformation in the cable reaches to a certain plateau deformation (Dpl). For instance, Figure 

5-37 shows the maximum cable deformation as a function of the ground movement. As can 
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be seen, the cable approaches to plateau deformation (2 m) after the ground moves about 3.8 

m. For small amount of the ground deformation, the cable does not resist to any lateral 

movement since the cable has a small bending rigidity. Thus, any resistance to the lateral 

movement is attained by developing the tension force in the cable. In this phase, no relative 

movement between the cable and ground is observed until the cable starts resisting to the 

lateral movement. Thereafter, the relative movement of the cable and the ground causes the 

activation of the lateral soil spring resistance. Since the behavior of the soil springs is an 

elasto-plastic type, spring force can be yielded when the relative movement of the cable and 

ground deformation exceeds the yield displacement of the soil spring. There is a point that 

the most of the lateral soil springs in the region of the width of ground deformation (W) are 

yielded, and this is the time that the cable reaches to its plateau deformation. As cable 

deforms, the axial stains are developed due to cable stretching and curvature until the cable 

reaches to its plateau deformation. This observation was also captured by Liu and O‟Rourke 

(1996) for the buried pipeline.  

5.3.2.3.2 Cable axial strain 

 

The response of the buried cable is defined as the developed axial force, axial strain, bending 

moment and corresponding curvature due to the PGD. Figure 5-38 shows the cable 

deformation with the burial depth of 60 and 100 cm when subjected to PGD with the width 

of 10 and 20 m. Figure 5-39 shows the relative deformation of the cable and the ground 

movement. In those figures, the cables subjected to the PGD with the width of 20 m are 

analyzed to the maximum ground deformation of 8 m whereas the cables subjected to the 

PGD with the width of 10 m are analyzed to the maximum ground deformation of 3 m since 

cables subjected to the wider PGD requires more ground deformation to show any resistance 

to the ground movement. The positive and negative relative movements occur to balance out 

the normal forces acting on the buried cable. The positive portion of the graph indicates that 

the soil pushes the cable whereas the negative portion of the graph indicates that the cable 

pushes the soil. In order to locate the distance at which the positive and negative relative soil 
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movement occurs, the distance from centerline is normalized with respect to the width of 

ground deformation (2x/W).   Inspecting those graphs show that the changing occurs at 

distance ratios of 0.5-0.6. Understanding this location helps to analytically formulate the 

problem which will be discussed later.  

Figure 5-40 shows the axial force and bending moment profiles in the cable with the burial 

depth of H=60 cm subjected to PGD with the width of 10 m and 20 m, and maximum ground 

deformation of 3 m. As can be seen, the maximum axial force occurs close to the center of 

the PGD zones and its value decreases as it approaches to margins. After a certain ground 

deformation (Dy), the axial force profile in the cable remains constant although ground 

deformation increases. Since axial behavior of the cable is assumed to have a bilinear 

behavior with a small stiffness hardening the axial force profile in the cable starts roughly 

from yield force (Ty).  

Figure 5-41 shows the axial strain in the cable with burial depth of H=60 and H=100 

subjected to PGD with the width of 10 m and 20 m. As can be seen, the maximum axial 

strain does not occur at the center of PGD zones. It roughly happens at 2x/w=0.5-0.6 

depending on the width of PGD and burial depth and decreases toward margins. Inspecting 

the curvature profile, it can be seen that the curvature at point around 2x/W=0.5-0.6 is zero 

indicating that this point is an inflection point. This point (2x/w=0.5-0.6) has interesting 

features: it is an inflection point, the maximum strain occurs at this point, and it is a point that 

a change in the positive and negative relative displacement happens there. 

Tracking the cable deformation profile during PGD with increasing amount of ground 

deformation shows that the cable deformation matches the ground movement up to certain 

deformation. Comparison between the cable lengthening due to this deformation and the 

cable original length can be used to determine the amount of axial deformation. The axial 

deformation can be simply expressed as 

 
0

0
0

2)(1
L

Ldx
dx

dy
S         Eqn. 5-32 
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By using the first and second terms of Maclaurin series for the square root and substituting 

the assumed shape of the ground deformation, the axial deformation can be obtained as 

W

D

dx

dy
S

8
)(

2

1 22
2 
         Eqn. 5-33 

Inspecting this equation shows that the cable lengthening is inversely proportional to the 

width of ground deformation (W).  This indicates that wider PGD creates less axial stain than 

narrower PGD. However, this expression is valid provided that the cable does not reach to its 

plateau deformation and the cable does not yield. As mentioned earlier, the cable reached to 

its plateau ground deformation does not match the ground deformation; thus, the axial 

deformation is not proportional to the power two of ground deformation (D
2
). On the other 

hand, since the axial force profile of the cable remains more or less constant after the cable 

yields the axial strains due to axial lengthening is concentrated in the small regions of the 

plastic link. As can be seen, the plastic links are more or less limited to the half the width of 

PGD; thus, the narrower PGD causes more axial strain (ΔS/2W). For instance, as shown in 

Figure 5-41, the axial strain of the cable with burial depth of 100 cm subjected to the PGD 

with the width of 10 m creates greater axial strain than PGD with the width of 20 m. 

However, the axial strain for the cable with burial depth of H=60 cm shows a larger axial 

strain for wider PGD. Since the shallow cable subjected to narrower PGD reaches to its 

plateau deformation at smaller ground deformation; thus, the above equation does not hold. 

For instance, the axial strain of the cable with burial depth of 100 cm is greater than the axial 

strain of the cable with burial depth of 60 for the same width of PGD. In order to 

quantitatively compare the axial strain in the buried cable, the following condition should be 

considered: 1) if the axial behavior in the cable reaches to its yield behavior and 2) if the 

cable transverse deformation reaches to its plateau deformation. It is obvious that those 

considerations depend on the ground deformation parameters (W and D), the axial 

characteristics of the cable (yield strength and strain), and cable-soil interaction model in the 

longitudinal and transverse directions.  
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5.3.2.4 Description of Analytical Approach 

 

As observed in the numerical analysis of the buried cable, two critical ground deformation 

and cable deformations can be defined that influence the buried cable response. The ground 

deformation level outsets the axial yielding in the buried cable (Dy), and the maximum 

transverse deformation of the cable (Dpl). In order to establish the analytical approach to 

determine those deformations, previous analytical procedures by M. O‟Rourke (1989, 1997) 

were reviewed. Their analytical approach was specifically presented for the steel pipeline 

with elastic behavior. The analytical approaches presented herein are for the cable with 

nonlinear behavior, and are based on the results of numerical simulation as conducted in the 

previous section 

5.3.2.4.1 Yield ground deformation (Dy)  

 

As the buried cable subjected to the transverse ground deformation, the axial force is 

developed. The forces acted on the infinitesimal piece of the cable are shown in Figure 5-42. 

In this figure, T is the axial force,  is the slope of tangent line to the cable deformation, FL is 

the longitudinal soil restraint and FT is the transverse soil restraint. The equilibrium in the 

longitudinal direction can be written as 

0)cos()(  dsFTddTT L  or   0 dsFdT L      Eqn. 5-34 

The results of numerical analysis show that the yielding outsets in the center of PGD. 

Furthermore, the yielding occurs when the ground deformation is still small. Thus, the cable 

transverse deformation can be assumed to match the ground deformation, and the maximum 

axial deformation of the cable can be written as 

W

D
u

8

22

max


           Eqn. 5-35 
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Since the longitudinal behavior of soil spring is a bilinear behavior as the distance increases 

from the center of ground deformation zone the linear behavior can be expected while near to 

the center of ground deformation zone plastic behavior can be assumed. Let‟s assume beyond 

distance xt from the center of the ground movement zone the longitudinal soil spring is linear. 

Therefore, the axial force and corresponding axial displacement can be written as 



 

 
otherwise       

x         x 
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1

Tmax

Tg xxk
L

eT

xfT
xT        Eqn. 5-36 

and 





 

 
Otherwise                       

xx          5.0
)( )(

T
22

max

Tg xxk

yl

ylgy

e

xkxu
xu




     Eqn. 5-37 

in which 

yLTgTy

yL

L
g

g

L

gL

T xkxu
AE

F
k

k

F
T

kF

T
x 


)5.01(     ,      ,     ),

1
( 22

max1
max   

εy is the axial yield strain of the cable with axial rigidity (EA). yL is the yield displacement of 

the longitudinal soil restraint with the maximum value FL. Figure 5-43 shows a good 

agreement of the developed analytical formula for the axial deformation with those obtained 

from numerical simulations for the cable with the burial depth of 60 cm subjected to PGD 

with the width of 10 m. With the knowledge obtained from numerical simulation that the 

axial yielding occurs at small ground deformation, the amount of the ground deformation 

creating the axial yielding in the buried cable can be obtained by 

max2max

22
8

8
u

W
Du

W

D
y

y




        Eqn. 5-38 

Figure 5-44 shows the axial force in the cable at a center of PGD region as a function of the 

amount of ground deformation as obtained from numerical simulation. The aim of this figure 

is to obtain the amount of ground deformation causing yielding in the cable (Dy), and 
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compare it to the one proposed by analytical formulation. As shown in Figure 5-44, 

analytical procedure predicts Dy considerably well.  

5.3.2.4.2 Plateau cable deformation (Dpl)  

 

An increase in the amount of ground deformation (D>Dy) leads to the accumulation of axial 

strain in the cable in the plastic region . After certain ground deformation, as demonstrated 

by numerical simulation, the cable does not conform to the ground deformation and it 

eventually yields to its maximum deformation (Dpl). In this section, we try to provide a 

simple analytical tool to calculate Dpl. Plateau ground deformation (Dpl) has an important 

feature in the buried cable response evaluation since the maximum axial strain which can be 

occurred in the buried cable can be calculated.  

The cable transverse deformation reaches to its plateau deformation when the soil-cable 

interaction elements are yielded. This problem resembles a cable structure with uniform 

loading as shown in Figure 5-45. The differential equation governing the static of a cable 

subjected to a uniform loading can be written as 

0
2

2

T

F

dx

yd T           Eqn. 5-39 

in which T0 =T cos() is the constant horizontal force component. The solution of to the 

differential equation provides a quadratic shape. The cable sag (h) can be calculated as 

0

2

8T

WF
h t           Eqn. 5-40 

The numerical analysis of the buried cable shows that the buried cable deformation zone is 

not limited to the PGD zone, and it extends beyond the PGD width (W). The relative cable-

ground deformation shows that the ground deformation lags behind the cable deformation 

after distance (x=0.5-0.6(W/2)) from the center of the ground deformation zone, these two 
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regions are shown as “thrust” and “heave” zones in Figure 5-46. The “thrust and heave” 

zones are required to happen irrespective of the assumed shape of the ground deformation to 

balance out the exerted normal forces on the buried cables. 

 

Cable deformation plateau (Dpl) can be calculated by using the cable theory. Three steps 

should be performed: 1) the region of “thrust” and “heave” should be identified. It was 

observed that those regions are isolated depending on the width of PGD and burial depth, at 

distance 2x/W=0.5 -0.6. 2) from the previous formulation, the axial force profile in the cable 

should be calculated. Since the axial force in the cable is not constant due to the longitudinal 

soil resistance, the average horizontal force in the regions of “thrust” and “heave” should be 

calculated. 3) Finally, the amount of sag can be calculated as  

T

xF
h T

8

)2( 2
1           Eqn. 5-41 

in which 2x1 and T are the width and the average axial force in  “thrust” or  “heave”  region 

respectively. For instance, Figure 5-47 illustrates the schematic representation to calculate 

the (h1, h2) value and correspondingly maximum cable ground deformation (Dpl=h1+h2).  

Figure 5-48 shows the transverse deformation of the cable profile with burial depth of 60 and 

100 cm subjected to PGD with the width of 10 as calculated from numerical simulations. In 

these numerical analyses, the amount of ground deformation increases until the cable 

deformation reaches to its plateau. The results of analytical formulation are shown in this 

figure with the table showing parameters used to calculate plateau deformation (Dpl). As can 

be seen, the analytical formulation results are in a good agreement with the numerical 

simulation result.   

Analytical formulations of two levels of deformations (Dy , Dpl ) can be used in the quick 

assessment of  buried power transmission cable  response subjected to transverse PGD. For 

the amount of the ground deformation (D<Dy), the buried cable will operate in the elastic 

Thrust Zone 
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range. When the amount of the ground deformation approaches (D=Dy), the first yield in the 

buried cable will form. For the amount of the ground deformation (Dy<D), the plastic link is 

developed with maximum strain concentration in the plastic link. The maximum strain in the 

cable due to transverse PGD scenario occurs when the cable reaches to its plateau 

deformation. It can be said that for the amount of ground deformation greater than Dpl  the 

rate of increase in the axial strain will be decreased until the cable reaches to its plateau 

deformation.  

5.3.3 Summary of the Response of Buried Cable to the Transverse PGD 

 

From the results of experimental study, the soil-cable interaction spring model in the 

horizontal transverse direction is developed for the cable with burial depth of 30, 60, 90, and 

120. The methodology is introduced to determine the soil-cable interaction behaviour for the 

cable and backfill with different characteristics.  

The response of the buried cable to transverse PGD scenario is evaluated. The result of 

numerical simulation shows that, in the order of importance, the amount of ground 

deformation, width, and burial depths are the most significant parameters affecting the 

response of the buried cable. 

Investigation shows that the buried cable subjected to transverse PGD are subjected to both 

bending strains and axial strains. However, the axial strain due to stretching are more 

pronounced.  

Based on the observation from numerical simulation, two levels of deformations are 

introduced for the buried cable; namely: Dy the amount of ground deformation causing 

yielding in the cable and Dpl the maximum possible deformation of the cable. Figure 5-49 

provides the flowchart to approximately obtain the response of buried cable subjected to 

transverse PGD. The calculated response can be used to determine whether further detailed 

analysis is required.  
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Figure 5-1:Longitudinal soil restraint on the buried cable due to liquefaction induced ground movement 

with a) gently sloping ground and b) a free face, adapted from Raunch(1997). 

 

Figure 5-2: Idealized pattern of longitudinal PGD, after O’Rourke (1995) 
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Figure 5-3: Idealized pattern of transverse PGD, after Liu and O’Rourke (1996). 

 

Figure 5-4: Definition of the offset ratio 
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Figure 5-5: Schematic representation of the axial pullout force increase in the cable with out-of-

straightness. 
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Figure 5-6: Cone model method to calculate the static stiffness of the foundation with burial depth H 
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Figure 5-7: Horizontal Cable subjected to the two concentrated load at ends 
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Figure 5-8: Kt stiffness comparison between the analytical prediction and numerical simulation for the 

cable with length of 2.15 m and burial depth of 0.9 m. 
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a) Initial cable configuration 

b) Cable configuration after L longitudinal movement 

 

Figure 5-9: Buried cable subjected to the longitudinal movement, showing the activation of the horizontal 

transverse soil springs 
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Figure 5-10: Simplified model for the cable with out-of-straightness subjected to the  longitudinal 

movement 
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Figure 5-11: Beam on the elastic foundation subjected to an arbitrary loading q(x). 
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a) axial pullout force in the cable for the offset ratio 0.53% 
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b)  axial pullout force in the cable for the offset ratio 1.53% 

Figure 5-12: Comparison between results of finite element analysis and developed analytical formulation 

in prediction the axial force in the cable, Es=10 Mpa, =4.7 /m. 
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Figure 5-13:  The cable with burial depth ratio (H/D) subjected to the soil mass movement with the length 

Lt 
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Figure 5-14: Different laying patterns of the buried cable subjected to the movement of the soil mass with 

length Lt, in this figure Lt  is drawn for n=3. 
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Figure 5-15: Prediction of an increase in the axial force (ΔFaxial) in the buried cable with different laying 

patterns as shown in Figure 5-14, a) results for n=3, L=8 m, b) results for n=5 , L=8 m 
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Figure 5-16: Schematic of the buried cable when the boundary of the soil movement coincides with zero 

offset (a) or coincides with maximum offset (b). 
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Figure 5-17:  Schematic representation of three cables with the maximum offset Δ and Lt/L=1, 3, and 9 

subjected to the mass of the soil movement with the width Lt. 
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Figure 5-18: The effect of Lt/L ratio on the increase in the axial force in the cable 
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Figure 5-19: A very flexible Beam on elastic foundation subjected to the uniform ground deformation 
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Figure 5-20: Elastic cable subjected to the mass of the ground movement with non-uniform distribution 

of the ground movement 
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Figure 5-21: The effect of Lt/L ratio on the increase in the axial force in the cable, non-uniform ground 

displacement 
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Figure 5-22: Inelastic cable subjected to the mass of the ground movement with non-uniform distribution 

of the ground movement. 
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Figure 5-23: Bilinear representation of the axial behavior of the cable 
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Figure 5-24: Prediction of increase in the axial force in the cable for Lt/Ly=1, 4/3, 2, and 4 for 0.5 m of 

the ground movement. 
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Figure 5-25: Prediction of an increase in the axial force (ΔFaxial) in the buried cable for =1.5,2,3, and 4/m  

a) Lt=9m and b) Lt=27m 
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Figure 5-26 :   The buried cable subjected to the longitudinal block pattern of the soil movement   
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Figure 5-27:  Cable deformation and axial force for the critical length of ground deformation: a) cable 

deformation; b) axial force 
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Figure 5-28: Procedure to calculate the total axial strain subjected to the longitudinal permanent ground 

deformation. 
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Figure 5-29:  Four nodded PSI elements to model the soil-cable interface behavior. 

Table 5-1: Summary table of the bilinear representation of the longitudinal behaviour of soil springs for 

different burial depths. 

D (mm) H (m) H/D F/L (kN/m) y (mm) 

89 30 3.3 1.6 3 

89 60 6.7 2.2 3 

89 100 11.1 2.8 3 

89 120 13.3 3.5 3 
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Figure 5-30: Typical load-deformation curve and corresponding elasto-plastic behavior of  longitudinal 

soil springs. 
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Figure 5-31: Representation of the axial behaviour of the buried power transmission cable. 
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Figure 5-32: Results of experimental three-point-bending test and calibrated numerical simulation with 

the moment curvature as depicted in Figure 5-33. 
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Figure 5-33: The proposed moment-curvature for the buried cable 

PSI

unstrained 

PSI element

strained 

PSI element

Deformed 

buried cable

H

Unreformed buried cable

PSI

unstrained 

PSI element

strained 

PSI element

Deformed 

buried cable

H

Unreformed buried cable

 

Figure 5-34: Buried cable, modeled in ABAQUS, subjected to the end displacement 
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Table 5-2: Summary table of the bilinear representation of the horizontal transverse behavior of soil 

springs for different burial depths. 

D (mm) H (mm) H/D Nq 

( F/HDL) 

y(mm) y/H 

100 300 3.0 14.2 10 .033 

100 600 6.0 18.4 20 .033 

100 900 9.0 21.5 30 .033 

100 1200 12.0 26.8 35 .029 
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Figure 5-35: Results of calibration of the horizontal spring model with experimental testing for cable with 

different buried depth ratio (H/D=3,6,9, and 12) 
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Figure 5-36: The cable deformation profile with the burial depth of H=60 cm, subjected to the permanent 

ground deformation of W=10 m and different amount of ground deformation (D=0.3, 0.6, 1.2, 2.4, and 3.0 

m). 

 

Figure 5-37: Maximum cable deformation as a function of the ground deformation for the cable with 

buried depth of H=60 cm, W=10 m. 
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Figure 5-38: The deformation of the cable with burial depth of 60 and 100 cm subjected to PGD with the 

width of 10 and 20 m 
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Figure 5-39: The relative movement of the cable and the ground deformation for H=60 cm and H=100 

cm. 
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Figure 5-40: Axial force and bending moment profile in the cable with the buried of depth of H=60 cm 

subjected to PGD with the width of 10 and 20 m. 
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Figure 5-41: Axial strain in the cable for burial depths of 60 and 100 (cm) subjected to PGD with the 

width of 10 and 20 (m) and different ground deformation 
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Figure 5-42: Forces acted on the infinitesimal piece of the cable 
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Figure 5-43:  Verification of the proposed formula with the numerical simulation to predict the axial 

deformation development in the cable with the burial depth of 60 cm and subjected to PGD with width of 

10 m. 
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Figure 5-44: Prediction of the amount of the ground deformation causing the axial yielding in the cable 

with burial depth of 60 cm subjected to PGD with the width of 10 m. 
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Figure 5-45: Cable structure loaded by the vertically uniform load (FT). 
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Figure 5-46: The relative deformation of the ground and the buried cables and the formation 

of the “thrust” and “heave” 
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Figure 5-47: Analytical formula representation of the plateau deformation 
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Figure 5-48:  Verification of the predicted Dpl for the case of cable with burial depth of 60 and 100 cm 

subjected to PGD with the width of 10 m. 
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Figure 5-49: Procedure for calculation the axial strain in the buried power transmission cables subjected 

to the transverse ground movement 

 

 

 

 

 

D: maximum cable deformation, ug: maximum ground deformation, a: maximum axial strain due to axial force, 

b: maximum axial strain due to bending, R: the radius of the cable, FL: the longitudinal soil restraint, W: the 

width of ground deformation. 

*    a  is approximated based on the assumption of the perfectly plastic behavior of the longitudinal soil restraint 

**  a  is approximated based on the assumption that the maximum axial strain occurs at x=W/4 and the length 

of plastic link is W/2 as observed by numerical simulations as depicted in Figure 5-41. 
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Chapter  6: Summary and Conclusions 

 

This dissertation presented a study on the response of the underground power transmission 

cable subjected to the earthquake-induced PGD. The motivation behind this research was to 

provide the analysis methodology for utility owners to obtain the response of buried cable 

subjected to PGD. Since the knowledge regarding the cable-soil interaction was new, a three-

phase study was conducted. 

In the first phase, large full-scale experimental studies were conducted to characterize the 

cable-soil interaction behaviour. The testing facility included 1) a 2.5 m height,  2.5 m width, 

and 3.75 m length soil chamber, 2) two 418 kN actuators for pulling out the cable ends in the 

displacement controlled manner with the rate of 3.6 cm/hr, and 3) load cells and string 

potentiometers to measure the pullout loads and displacement at the cable ends. By the 

assumption that every PGD can be decomposed into two components of a longitudinal and a 

transverse ground movement, a series of axial pullout tests, simulating the longitudinal soil 

loads on the cable, and lateral pullout tests, simulating the horizontal transverse soil loads on 

the cable, were conducted. The results of those experimental studies were expressed as a 

load-deformation curve for different burial depths. The results of experimental studies were 

compared to those of the previous studies and guidelines that specifically obtained for other 

pipeline systems,in terms of load-deformation curve and the maximum soil loads on the 

buried lifeline. In this phase, the following key conclusions were made: 

 The experimental tests provided new information on the cable-soil interaction 

behaviour in the longitudinal and horizontal transverse directions. The comparison 

between test results and the current guideline (ASCE 1984) shows that the current 

guideline underestimates the soil loads on the cable.  

 The response of the cable in the axial pullout tests shows that load-deformation curve 

consists of: 1) the almost linear region up to the peak load, 2) the strength degradation 

region, and 3) the hardening region. The first and second regions are a typical 
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response of every buried pipeline in a dense material. However, the cable with out-of-

straightness activates additional longitudinal frictional force along the buried cable 

due to an increase in the normal stress on the buried cable. Consequently, the 

hardening region of the load-deformation has created. The effect of out-of-

straightness on the longitudinal soil loads on the cable is a new feature and it has been 

addressed in the current guidelines (ASCE 1984 , PRCI , and ALA).  

 The response of the buried cable in the lateral pullout tests shows that the load-

deformation curve follows the rectangular hyperbola. The horizontal force factor (Nh) 

measured for the cable with different burial depth during lateral pullout tests indicates 

that the recommended value for Nh  by ASCE (1984) guideline underestimates the soil 

loads on the cable.    

In the second phase of this research, 3-D numerical models were developed to simulate the 

results of the axial and lateral pullout tests. The soil was modelled as a continuum medium 

and the cable was modelled as an equivalent cylinder in finite element code ABAQUS. In the 

numerical simulation of lateral pullout tests, numerical models using Mohr-Coulomb 

material model and Drucker-Prager material model were calibrated and validated with the 

help of laboratory element testing. Also, parametric studies were performed to study the 

effect of the following factors on the load-deformation curve:  1) the effect of the cable-soil 

relative stiffness by introducing L parameter, 2) the effect of material types (Mohr-Coulomb 

or Drucker-Prager model) 3) the effect of material model parameters ,i.e., friction angle( or 

) and dilation angle(), and 4) the effect of dilatant and non-dilatant characteristic of soil. A 

family of load-deformation curves was developed for the cable with different flexibility 

buried in the soil with different friction angle and dilation angle. 

 In the numerical simulation of axial pullout tests, numerical model, using Mohr-Coulomb 

material model, was developed. The effect of out-of-straightness was assessed by introducing 

the offset ratio (/L). Numerical models with different offset ratios, burial depths, interface 

cable/soil friction angles, and cable/soil relative stiffness were investigated. Studies show 

that the cable/soil relative stiffness and the amount of offset ratios are the most significant 
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variables. A family of load-deformation curves was created for the cable with different offset 

ratio and cable/soil relative stiffness.  

In the third phase of this study, the response of the buried cable subjected to the PGD was 

assessed. This phase of research consists of two sections,1) a buried cable subjected to the 

longitudinal PGD and 2)a buried cable subjected to the horizontal transverse PGD. For the 

cable subjected to the longitudinal PGD, the following studies were performed: 

 Based on the experimental testing and numerical simulations, a longitudinal nonlinear 

spring model was developed. The nonlinear soil spring model was presented as an 

elasto-plastic behaviour in which the yield force and yield displacement were 

calibrated to the experimental axial pullout tests.  

 The procedure, which was tested against the numerical simulation models, was 

defined to account for the effect of the out-of-straightness on the longitudinal soil 

loads on the buried cable by developing 1) a horizontal transverse coefficient of 

subgrade reaction, and 2) an analytical expression to calculate the additional increase 

in the longitudinal soil loads on the buried cable.  

 The response of the straight cable to the longitudinal PGD with the block pattern of 

ground movement was formulated analytically. The cable axial behaviour was 

represented by a bilinear behaviour. In this formulation, the ground deformation was 

characterized by the width and amount of ground deformation, and the length of 

ground deformation zone (Ly) causing a yield in the cable was determined.  

 The response of the non-straight cable subjected to the longitudinal PGD with the 

block pattern of ground movement was formulated analytically. Also, the influence of 

the layout shape by assuming a sinusoidal shape was investigated. The main 

parameters of this study were offset ratio, the corresponding length in which offset 

occurs, the length of ground deformation zone, and the boundary condition. The study 

showed that in the case of the cable with small bending flexibility, the offset ratio is 
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the most important parameter and the length of ground deformation zone is the least 

significant parameter to consider.  

 Parametric studies were performed to identify the effect of different parameters such 

as offset ratio, the cable/soil relative stiffness () and the width and the amount of 

ground deformation on the longitudinal soil loads on the cable. The research showed 

that the offset ratio and the cable/soil relative stiffness ratio play an important 

parameter in estimating the additional longitudinal soil loads on the non-straight 

cable. 

For the cable subjected to the horizontal transverse PGD, the following studies were 

performed: 

 Based on the experimental studies and numerical simulations the nonlinear horizontal 

transverse soil springs with elasto-plastic behaviour were developed for the cable 

with different burial depths. 

 Parametric studies were performed to investigate the effect of the ground deformation 

parameter on the response of buried cables. Analytical formula, tested with numerical 

simulation, was developed to obtain the response of the buried cable. The analytical 

formula can reasonably predict the ground deformation creating a yielding in the 

cable (Dy) and the maximum cable deformation (Dpl).   

 An approximate procedure to obtain the response of buried cable subjected to the 

PGD event was formulated as a flowchart. This flowchart can be used as an 

approximate method to determine whether further detailed analysis is required.  

6.1 Recommendation for Future Research 

 

 A number of experimental studies, as axial pullout tests, are recommended for the 

next step of this research to characterize the effect of out-of-straightness on the 
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longitudinal soil loads on the pipeline with different relative soil/pipeline stiffness. In 

this study, a pipeline with pre-defined shape is buried in the controlled full-scale 

experimental environment to investigate the effect of different parameters including 

offset ratios, burial depths and soil/pipeline relative stiffness ratio. The results of the 

experimental studies can be compared with the results of numerical simulation model, 

developed in this thesis to study those factors. 

 As mentioned in Chapter 3, the current experimental lateral pullout tests assumed the 

cable is buried in the environment full of thermal backfill material. However, the 

cable is buried in the thermal backfill material surrounded by native soils. Therefore, 

a number of experimental studies, as lateral pullout tests, are suggested to investigate 

the effect of native soils on the horizontal transverse soil loads on the buried cable. It 

should be mentioned the results of lateral pullout tests in this research provide a 

conservative result since thermal backfill material normally have a higher friction 

angle than the native material.  

 In this thesis, a longitudinal and horizontal transverse soil loads on the buried cable 

were examined separately, and the results can be combined for any oblique relative 

soil/cable deformation. In order to study this assumption, a series of experimental and 

numerical simulations are suggested for the next phase of this research. In the future 

study, a cable with different oblique angles buried in different burial depths should be 

tested. 

 The numerical simulation in this study considered the Mohr-Coulomb and Drucker-

Prager material model. However, those material models consider the failure in the soil 

as a shear and neglected the fact that soil material can be failed in the compression. A 

set of triaxial testing on the thermal backfill material is required to define a mean 

effective yield stress (Pb) variation with the volumetric plastic strain to calibrate the 

CAP plasticity model as describe in Appendix B. This plasticity models are required 

for the numerical simulation of the behaviour of the cable in the larger burial depth 

with the chance of punching failure.  
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 In this research as mentioned in Chapter 5, for the sake of simplicity, it is assumed 

that the non-straight cable only have a sinusoidal shape with the amplitude () and 

offset ratio /L subjected to block pattern of ground movement, and find the shape 

creating the largest increase in the soil loads on the cable. For the next phase of this 

study, it is recommended that the effects of offset ratio for the cable with different 

laying shape and different cable/soil stiffness ratio are investigated. 

 It is recommended for the next phase of this study to define performance criteria 

which can be strain levels corresponding to the safe operational level, repairable 

damage level, and failure level. By defining those service levels, the fragility curves 

can be developed for assessing the seismic vulnerability of buried transmission lines 

which helps the utility owners to estimate the associated risk and to allocate resources 

for the seismic mitigation of the buried power transmission cables.   

 To better understand the longitudinal soil loads on the cables is to perform field tests. 

The benefit of the field tests is to take advantage of the natural cable laying shape to 

characterize the effect of out-of-straightness. A pulling-out mechanism should be 

designed to employ displacement at cable ends and corresponding load-deformation 

curve should be obtained. The results of the field tests can be compared to the 

procedures outlined in the thesis to calculate longitudinal soil loads on the cable.  

 Studies showed that the reliable estimation of normal stresses on the cable during 

ground movement leads to a better prediction of longitudinal soil loads on the cable. 

For the next part of this study, the experimental research program is recommended to 

monitor the normal stresses on the cable at several locations during longitudinal 

ground movements to finally estimate the longitudinal soil loads on the cable. 
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Appendix A: Test Results  
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Figure A- 1: Variation of normalized shear stress with shear displacement in direct shear test at 

normal stress of 32.7 kPa 
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Figure A- 2: Variation of  vertical displacement with horizontal shear displacement in direct shear 

test at normal stress of 32.7 kPa 
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Figure A- 3: Variation of normalized shear stress with shear displacement in direct shear test at 

normal stress of 19.3 kPa 
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Figure A- 4: Variation of vertical displacement with horizontal shear displacement in direct shear 

test at normal stress of 19.3 kPa 
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Figure A- 5: Variation of normalized shear stress with shear displacement in direct shear test at 

normal stress of 5.9 kPa 
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Figure A- 6: Variation of  vertical displacement with horizontal shear displacement in direct shear 

test at normal stress of 5.9 kPa 
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Figure A- 7: Response of the buried cables in axial pullout test, Test C1-B1-D03 
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Figure A- 8: Response of the buried cables in axial pullout test, Test C1-B1-D04 
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Figure A- 9: Response of buried cables in axial pullout test, Test C1-B1-D05 
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Figure A- 10: Response of buried cables in axial pullout test, Test C1-B1-D06 
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Figure A- 11: Response of buried cables in axial pullout test, Test C1-B4-D01 
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Figure A- 12: Response of buried cables in axial pullout test, Test C1-B4-D02 
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Figure A- 13: Response of buried cables in axial pullout test, Test C1-B2-D01 
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Figure A- 14: Response of buried cables in axial pullout test, Test C1-B2-D02 
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Figure A- 15: Response of buried cables in axial pullout test, Test C1-B2-D03 
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Figure A- 16: Response of buried cables in axial pullout test, Test C1-B2-D04 
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Figure A- 17: Response of buried cables in axial pullout test, Test C1-B2-D05 

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400

Y ( mm)

A
x

ia
l 

P
u

ll
-O

u
t 

F
o

r
c
e
 (

k
N

)

C01-B3-D01

 

Figure A- 18: Response of buried cables in axial pullout test, Test C1-B3-D01 
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Figure A- 19: Displacement of the leading and tailing ends of buried cable with burial depth of 60 cm 
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Figure A- 20: Displacement of the leading and tailing ends of buried cable with burial depth of      

100 cm 
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Figure A- 21: Displacement of the leading and tailing ends of buried cable with burial depth of      

120 cm 
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Figure A- 22: Displacement of the leading and tailing ends of buried cable with burial depth of  30 

cm 
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Figure A- 23: Response of buried cables in Lateral Pullout test, Test C2-B4-D01 
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Figure A- 24: Response of buried cables in Lateral Pullout test, Test C2-B3-D03 
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Figure A- 25: Response of buried cables in Lateral Pullout test, Test C2-B3-D02 
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Figure A- 26: Response of buried cables in Lateral Pullout test, Test C2-B3-D01 
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Figure A- 27: Response of buried cables in Lateral Pullout test, Test C2-B2-D03 
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Figure A- 28: Response of buried cables in Lateral Pullout test, Test C2-B2-D02 
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Figure A- 29: Response of buried cables in Lateral Pullout test, Test C2-B2-D01 
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Figure A- 30: Response of buried cables in Lateral Pullout test, Test C2-B1-D03 
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Figure A- 31: Response of buried cables in Lateral Pullout test, Test C2-B1-D02 
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Figure A- 32: Response of buried cables in Lateral Pullout test, Test C2-B1-D01 
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Appendix B: Finite Element Description 

B.1. Element Selection 

 

A wide variety of three dimensional solid continuum elements are available in ABAQUS. 

Each element has a certain characteristics that must be selected according to a particular 

application. The three-dimensional elements in ABAQUS are classified by first-or 

second-order elements; tetrahedral/triangular prism (wedge)/hexahedral (brick) elements; 

full or reduced integration; regular/hybrid/incompatible mode formulations. The 

quadratic hexahedra with reduced integration (C3D20R) are a good selection to model 

the soil continuum. This element provides higher accuracy than its counterpart the 

element with linear interpolation function.  However, the element performs poorer when 

subjected to sever distortion. The reduced integration of this element results in a more 

accurate results than its equivalent full integration element. Since the reduced integration 

element is susceptible to hourglassing, program provides an option to control 

hourglassing in this element. Unlike the tetrahedral elements the brick element is less stiff 

and a very fine meshing is not required. Furthermore, brick element has a better 

convergence rate than triangle element. However, brick element is sensitive to its initial 

element shape and it performs better when it is almost rectangular. Figure B- 1 shows the 

node ordering of the C3D20 element with 20 nodes and C3D8 element with 8 nodes. 

 

Figure B- 1: Node ordering of C3D20 and C3D8 elements 
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B.2. Material Selection 

 

Before discussing the material models, it is worthwhile introducing some basic 

definitions, which are repeatedly will be mentioned during the following sections. Most 

of the failure criteria are formulated based on the stress invariants which are independent 

of the choice of coordinate systems. The invariant of the state of the stress tensor ij  can 

be expressed by forming the characteristics equation. 

0III 32
2

1
3           Eqn. B- 1 

where I1, I2, and I3 are the invariant of the stress tensor ij . The term I1 is mostly used in 

the material formulation that their strength is dependent on the hydrostatic pressure. The 

stress tensor ij  is also expressed as a summation of the hydrostatic stress and deviatoric 

stress ( ijS ). The hydrostatic pressure deviatoric stress can be imagined as stresses causing 

volumetric changes and shape change respectively.  

ij1ijij I
3

1
S           Eqn. B- 2 

The invariant of the deviatoric stress tensor also can be obtained by forming the 

characteristics equation.  

0JSJSJS 32
2

1
3         Eqn. B- 3 

where J1, J2, and J3 are the invariant of the deviatoric stress tensor ijS . I1 and J2 are used 

to define octahedral stresses which are very important in the theory of plasticity.  

Octahedral stresses are stresses acting on the octahedral plane having equal angles with 

each of the principle stresses. Shear stress on this plane is octahedral shear stress )( oct  , 
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normal stress on this plane is octahedral normal stress )( oct , and the direction of the 

octahedral shear is defined by the similarity angle () . Their relation with I1, J2 and  J3 

can be expressed by the following relation: 

1oct I
3

1
          Eqn. B- 4 

 2oct J
3

2
          Eqn. B- 5 

23
2

3

J

J

2

33
3

/
)cos(          Eqn. B- 6 

A geometric interpolation of stress invariants can be better presented with reference to 

Figure B- 2.If vector op represents the state of stress in the principle-stress space, on 

vector corresponds to the octahedral normal stress )( oct  and np vector corresponds to 

octahedral shear stress )( oct . Since the decomposition of the state of stress in the 

octahedral plane always corresponds to the shear part of the state of stress the octahedral 

plane is therefore called the deviatoric plane. A geometric interpolation of the similarity 

angle () can be best understood in the deviatoric plane by projecting the principle axes 

onto this plane. The similarity angle is interpreted as the angle measured from the 

positive principle axis to deviatoric stress vector np. 

The stress state space is bounded by the three dimensional failure surfaces. The shape of 

any failure surface can be described by two plane shape, commonly referred as the 

meridian and cross section plane. The meridian plane is formed by intersecting the failure 

surface with the plane consisting of the normal to deviatoric plane (hydrostatic axis) with 

constant similarity angle (). Therefore different such plane can be found ranging from 

=0 to 60. The plane corresponding to =0 is called the tensile meridian plane and the 

plane corresponding to =60 is called the compressive meridian plane. In addition, the 

plane corresponds to =30 is often called the shear meridian. On the other hand the cross 
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section plane is formed by intersecting the failure surface with the deviatoric plane. For 

more description, the reader is referred to Chen (1982).  

B.2.1. Mohr-Coulomb Plasticity 

 

The Mohr-Coulomb failure criterion is one of the oldest failure criterion even older than 

Tresca and Von-Mises failure criteria. It is widely used in geotechnical problems since 

the strengthening of the soil due to the hydrostatic pressure is considered in the model.  

  

 

Figure B- 2: (a) Decomposition of the state of stress, (b) Deviatoric plane 

The classic Mohr-Coulomb assumes a straight line relating the shear stress to the normal 

stress. 

)tan( C          Eqn. B- 7 
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Where C and  denotes the cohesion and the internal friction angle respectively. It 

assumes that failure occurs when the largest Mohr‟s circle is just tangent to the Mohr-

Coulomb envelop failure criterion. Therefore, the effect of the intermediate stress is 

ignored.  If the maximum principal and minimum principle stresses happen in the (1) and 

(3) directions respectively ( 321   ). The Mohr-Coulomb failure can be rearranged 

as the following equation.  

0c
2

1

2

1
3131  )cos()sin()()(       Eqn. B- 8 

Substituting the principle stresses with their corresponding stress invariant ( I1, J2, ) the 

Mohr-Coulomb leads to the stress invariant form of the Coulomb criterion.  

0c
33

J

3
JI

3

1
F 2

21  )cos()sin()cos()sin()sin( 





   Eqn. B- 9 

ABAQUS uses the same formulation for the Mohr-Coulomb failure criterion. For the 

simplicity, it introduces notation p, q, and Rmc which is defined as 

)tan()cos()sin(
)cos(

),( 









33

1

33

1
Rmc  ,

3

I
p 1 , and 2J3q   Eqn. B- 10 

The Mohr-Coulomb criterion can be written as 

0cpqRF mc  )tan(),(         Eqn. B- 11 

Mohr Coulomb yield surface is the irregular hexagonal shape. Figure B- 3  represents the 

shape of the Mohr-Coulomb yield surface in meridional and deviatoric planes. Mohr-

Coulomb plasticity is only available in ABAQUS/Standard.  
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Figure B- 3: Presentation of Mohr-Coulomb yield surface in (a) meridional plane and (b) deviatoric 

plane ( adapted from ABAQUS)` 

B.2.2. Drucker-Prager Plasticity 

 

Von Misses yield criterion has a smooth yield surface; however, it is pressure-

independent model which is mainly developed for metal plasticity. On the other hand 

Mohr coulomb yield criterion is pressure-dependent model, however, the hexagonal yield 

surface causes the numerical difficulties at its corner. Druker-Prager model can be 

regarded as a model that has a smooth yield surface like Von-Misses model and is 

suitable for pressure-dependent martial like soil and concrete (Chen (1990)).  The 

Drucker-Prager yield surface assumes the following equation 

0kJIF 21          Eqn. B- 12 

where  and k are Drucker-Prager constants that they control the size of the surface. 

Drucker-Prager yield surface can be reduced to Von-Misses yield criterion or J2 plasticity 

by neglecting the pressure-dependent term (I1) or assuming   as zero. Furthermore,  
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Drucker-Prager model can approximate Mohr-Coulomb failure surface by adjusting 

Drucker-Prager constants ( and k ) to Mohr-Coulomb constant parameters (C and ). 

ABAQUS Drucker-Prager model can have three different forms in the meridional plane: 

a linear, hyperbolic, or exponent form. Linear form of Drucker-Prager model depends on 

the third invariant of the deviatoric stress (J3). The linear yield surface of Drucker-Prager 

model can be defined by first introducing two auxiliary parameters ( r and t) which is 

defined as: 

3
1

3J
2

27
r )(          Eqn. B- 13 

)))((( 3

q

r

k

1
1

k

1
1

2

q
t         Eqn. B- 14 

where k is the constant that correlates the yield surface to the third deviatoric stress 

invariant. In order to ensure the convexity, k value assumes the range 01k7780 ..  . The 

upper bound of k corresponds to a condition that the yield surface is independent of  third 

deviatoric stress invariant, i.e., a classical Drucker-Prager model with a circular shape in 

the deviatoric plane. Figure B- 4 shows the effect of the k parameter on the shape of the 

yield surface in the deviatoric plane. 

1
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3

K=1

K=0.8
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Figure B- 4: Drucker-Prager model in the deviatoric planes for different k value ( adapted from 

ABAQUS) 
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The linear Drucker-Prager criterion assumes a linear dependence between t and p as 

follows: 

0dptF  )tan(         Eqn. B- 15 

where  and d are the soil‟s friction angle and cohesion in the p-t plane as shown in 

Figure B- 5. 



d

p

t



d

p

t

 

Figure B- 5: Linear Drucker-Prager model  (adopted from ABAQUS) 

B.2.3. Drucker-Prager Plasticity Model With  Cap( CAP Model)  

 

ABAQUS offers Drucker-Prager model with cap which is called CAP plasticity model 

hereafter. CAP yield surface has a linear Drucker-Prager form (Fs) in the t-p plane which 

is bounded by the elliptical cap function (Fc). A smooth transition function (Ft) between 

those surfaces is provided to facilitate the numerical implementation. CAP plasticity 

model provides the inelastic volume decrease due to compaction and inelastic volume 

increase due to dilation depending on where the material yields on the failure surface. 

Figure B- 6 illustrate the shape of the CAP plasticity in t-p plane. The trace of the CAP 

model in the deviatoric plane is the same shape as Drucker-Prager model as depicted in 

Figure B- 4. The linear part of the CAP model, which is the Drucker-Prager shear failure 

surface, is written as 
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0dptFs  tan         Eqn. B- 16 

The cap yield surface is written as 

0PdR

1

Rt
ppF a

22
ac 



 )tan()

cos

()( 






    Eqn. B- 17 

Where parameter R (between .0001 and 1000.0) controls the shape of the cap and 

parameter  (between .01 and .05) defines the smooth transition between the shear failure 

surface and cap yield surface. Pa is the evolution parameter expressed as a function of Pb. 

tanR1

Rdp
p b

a



          Eqn. B- 18 

Pb is a hydrostatic compression yield stress that it is used to obtain its evolution as a 

function of the volumetric plastic strain ( pl
vol ).  The transition yield surface is written as 

0PdPd1tppF a
2

a
2

at  )tan())tan)(
cos

(()( 



  Eqn. B- 19 



d

p

t

pa

Linear Drucker-Prager function (Fs)

Elliptical CAP 

function (Fc)

Transition function (Ft)

d+pa tan()

(d+pa tan())
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R(d+pa tan())


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Figure B- 6: CAP plasticity model as adapted from ABAQUS 
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In sum, friction angle () and cohesion (d) is needed to define the Drucker-Prager shear 

failure surface, cap eccentricity parameter (R) and Pb is required to define the CAP 

failure surface, and the parameter () is needed to define the transition surface. The 

Drucker-Prager model is available in both ABAQUS/Standard and ABAQUS/Explicit.  

B.3. Flow Rule and Hardening Rule 

 

When the state of the stress reaches to the yield surface the plastic strain ( p ) will be 

developed. For the sake of mathematical simplicity, a flow rule is introduced which 

related the plastic strain increments ( pd ) to the current state of stress. The flow rule can 

be easily established by defining a plastic potential function G in the form: 








G
d p          Eqn. B- 20 

The plastic potential function can take a form of a yield surface which is called an 

associated flow rule or it can take a completely different form which is named as a non-

associated flow rule. During a plastic flow the yield surface can be modified. The 

hardening rule dictates how the yield surface is changed. The most basic types of 

hardening rule are isotropic hardening and kinematic hardening. In the isotropic 

hardening rule, the yield surface is assumed to expand uniformly as plastic straining 

occurs. However, in the kinematic hardening rule, the yield surface translates. Figure B- 

7 illustrates the isotropic hardening rule in two dimensions besides the equivalent one 

dimensional isotropic hardening material. Figure B- 8 shows the kinematic hardening rule 

in two dimensions besides the one dimensional kinematic hardening.  
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Figure B- 7: Isotropic hardening in the two dimension stress plane and one dimension stress-strain 

behaviour 

 

Figure B- 8: Kinematic hardening in the two dimension stress plane and one dimension stress-strain 

behavior 
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B.3.1. Plastic Flow in ABAQUS Mohr-Coulomb Yield Criterion  

 

ABAQUS adopted the plastic potential function (G) as proposed by Menetrey and 

Willam (1995).  

)tan()),(()tan((  pqeRCG 2
mw

2
0       Eqn. B- 21 

Where Rmw is defined as a function of the similarity angle ( ) ,deviatoric eccentricity (e), 

,friction angle ( ), and Rmc. 

),(

cos)()(cos)(

)(cos)(
),( 








3
R

e4e5e141e2e12

1e2e14
eR mc

2222

222

mw




   Eqn. B- 22 

Menetrey potential function has a hyperbolic shape in the meridional plane. At high 

confining pressure the potential function forms a straight line and at low hydrostatic 

pressure it curves. The rate at which the hyperbolic function approaches to the straight 

line controls by the parameter  which is called meridional eccentricity. When  is close 

to zero the flow potential in the meridional stress tends to form a straight line as shown in 

Figure B- 9. 
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Figure B- 9: The effect of the  on the shape of the Menetrey potential function in the meridional 

plane 
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Menetrey potential function has a smooth elliptic function in the deviatoric stress plane. 

Its shape in controlled by the deviatoric eccentricity (e) that describes the “out-of-

roundness”. The condition of convexity and smoothness requires that 0.5<e<1. The upper 

bound value of e=1 corresponds to Von-Mises yield surface. As mentioned before, 

ABAQUS assumes two separate yield function and potential function for Mohr-Coulomb 

plasticity which means the non-associated flow rule. Eccentricity parameter (e) can be 

found as a function of friction angle () so that the yield surface and the potential flow 

function matches each other for a specific similarity angle. For instance, if the user wants 

that the meridional compression and meridional tension of Mohr-Coulomb failure 

criterion matches those for Drucker-Prager failure criterion the following relationship 

between (e) and () is necessary.  
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
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e          Eqn. B- 23 
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Figure B- 10: The effect of the deviatoric eccentricity(e) on the plastic potential function in the 

deviatoric plane 
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B.3.2. Plastic Flow in ABAQUS Drucker-Prager Yield Criterion 

 

Plastic flow (G) for linear ABAQUS Drucker-Prager model is defined in p-t plane as:  

)tan(ptG           Eqn. B- 24 

where   represents a dilation angle. As shown previously in Figure B- 5, the Drucker-

Prager failure criterion is a straight line forming an angle  with the hydrostatic pressure 

(p) axis. Flow potential function also assumes a linear form in the t-p plane but with an 

angle   with respect to hydrostatic pressure as illustrates in the Figure B- 11. 

Furthermore, the shape of flow potential function in the deviatoric plane is the same as 

the shape of the yield surface. That means that the plastic strain rate is normal to the yield 

surface in the deviatoric plane while in general is not perpendicular to the yield surface 

except for the case of associated flow rule as shown in Figure B- 11-a. 
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Figure B- 11: Associated and Non-associated flow rule for linear Drucker-Prager Model 
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B.3.3. Plastic Flow in ABAQUS CAP Plasticity Model 

 

Plastic potential function for CAP plasticity model is formed by two separate functions: 

one on a cap surface and the other on a shear and transition surface. The potential 

function on a cap surface is the same form of the yield surface, implying associated flow 

rule on a cap part as expressed by Gc potential function.  
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       Eqn. B- 25 

The potential function on the shear and transition region is expressed by Gs function as 

expressed by the following equation. 
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 Eqn. B- 26 

The potential function takes a form different than yield function on those region, 

implying non-associated flow rule. Those two potential functions create a smooth and 

continuous surface. Figure B- 12 illustrates the plastic potential surface for CAP 

plasticity model in t-p plane.   
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Figure B- 12: Plastic potential function for CAP model, adapted from ABAQUS 
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B.4. Calibration of Plasticity Models  

ABAQUS offers three material model that they are able to reproduce the material 

behaviour of the granular material. The previous section elaborately discusses the 

mathematical formulation for Mohr-Coulomb, Drucker-Prager, and CAP plasticity 

models. The following table is summarized the input parameters for each plasticity 

model.  

B.4.1. Calibration of Mohr-Coulomb Plasticity Model 

Mohr-Coulomb plasticity is normally calibrated by using the test results from the element 

testing using direct shear apparatus. Typical results of the direct shear testing (DST) 

include mobilized soil shear strength ()-horizontal displacement (h) curve at different 

level of vertical force as shown in Figure B- 13-a for a typical compacted granular 

material. Corresponding to the horizontal displacement, a friction angle and cohesion can 

be determined by mapping mobilized shear strength and associated vertical stress into  -

 plane as shown in Figure B- 13-b for horizontal displacement A and B. This mapping 

can be performed for each level of horizontal box movement. Consequently, the friction 

and cohesion curve can be defined as a function of horizontal displacement. Popescu et al 

(1999) used this method to define a hardening/softening rule for sand model in ABAQUS 

standard. In order to define the hardening rule in ABAQUS Mohr-Coulomb model, the 

relationship between plastic strain magnitude and C is required. However the DST results 

give a soil strength parameter as a function of horizontal box displacement. To relate the 

soil strength parameter to plastic strain magnitude, a numerical simulation of DST are 

employed to express the dependency of soil shear strength parameter as a function of 

plastic strain magnitude( ) which is defined as 

pl
ij

pl
ij

3

2
           Eqn. B- 27 
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Based on the good match between the DST results and numerical simulation, the soil 

strength parameters are expressed as a function of plastic strain.  

Material Model Name 
Yield surface parameters 

Potential surface 

parameters 

Hardening 

Parameters 

Mohr-Coulomb Model 

Friction angle (), 

Cohesion (c) 

 

Deviatoric 

Eccentricity (e) 

Meridional 

Eccentricity () 

Dilation angle () 

 

)( plfc   


t

0

plpl d  

Modified Drucker-

Prager Model 

Friction angle (), 

Cohesion (d) 

K value 

K value 

Dilation angle () 

 

)( plfd   


t

0

plpl d  

CAP Plasticity Model 

Friction angle (), 

Cohesion (d) 

K value 

Transition parameter () 

Cap eccentricity 

parameter (R) 

Evolution Parameter 

(Pb) 

K value 

Transition 

parameter () 

Cap eccentricity 

parameter (R) 

Evolution 

Parameter (Pb) 

)(
pl
volb fP   



 

233 

 

 

Figure B- 13: (a) Typical direct shear testing results for compacted granular material (b) Mapping 

mobilized shear strength and corresponding vertical stress to  - plane   

 

Figure B- 14: Mobilization of soil shear strength as a function of horizontal displacement 

Dilation angle can be obtained through Rowe stress- dilatancy theory or Bolton empirical 

method. Rowe (1962) defined the stress-dilatancy for a biaxial compression of an 

assembly of particles, such as rods, uniform spheres, and glass marbles. He expressed the 

relationship among the applied stress ratio ( 31   / ), the true inter particle friction angle, 

the geometry of the particle rearrangement and the rate of change of unit volume relative 

to the longitudinal strain for a given assembly. The angle of dilation is defined as the rate 

of plastic volume change to the rate of plastic shear strain change as 
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








d

d v)sin(          Eqn. B- 28 

By minimizing the ratio between the incremental plastic work by principal stresses 

( 21  , ) the dilation angle is defined as 

cv

cv

1 




sinsin

sinsin
)sin(




         Eqn. B- 29 

where cv  is the critical friction angle or constant volume friction angle and  is a 

mobilized friction angle. 

Bolton (1986) proposed an empirical formulation relating the angle of shearing () to 

dilation angle () and the friction angle at critical state(crit), based on the test results of 

17 different sands.  Those relations are expressed by two different formulas for the case 

of plane strain and triaxial test as: 

Plain strain: Rcrit I580   .        Eqn. B- 30 

Triaxail Rcrit I3         Eqn. B- 31 

where IR is a relative dilatancy index which is related to the rate of dilation by the 

following equation. 

R
1

v I30
d

d
.






         Eqn. B- 32 

By observing that the dilation angle is dependent on the density and confining  pressure, 

he expressed the relative dilatancy index as a function of relative density( Dr) and the 

mean effective stress as 

1p10DI rR  )ln(         Eqn. B- 33 
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B.4.2. Calibration of Drucker-Prager Plasticity Model 

 

Results of DST and triaxail testing can be used to calibrate the ABAQUS Drucker-Prager 

model. As mentioned before, the main differences between Mohr-Coulomb and Drucker-

Prager plasticity models lies on how those models treat the intermediate stress. The 

Mohr-Coulomb failure criterion is independent of intermediate stress while the Drucker-

Prager model depends on it. There are several ways to approximate the Drucker-Prager 

model by Mohr-Coulomb model. The most commonly approach is to match the Mohr-

Coulomb parameters with Drucker-Prager model in the plain strain condition. The 

matching can be performed by assuming plane strain condition in one direction  

( 0d
pl

1  ) for Drucker-Prager model. This assumption creates a constraint that  expressing 

the yield criterion based on the two principle stresses. Finally comparing the obtained 

new Drucker-Prager criterion with Mohr-Coulomb yield criterion leads to a relationship 

between (d,c,, and ) as 
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tantan
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
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




   
Eqn. B- 34 

As can be seen, the relations between two model parameters are set by knowing the 

dilation angle. To investigate the effect of dilation angle, two extreme cases , nondilatant 

flow (=0) and associated flow rule (=), are examined. The following expressions can 

be established for nondilatant flow 

 sin)tan( 3    and      cos3
c

d
        Eqn. B- 35 

and for associated flow rule 
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
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These two extreme cases gives almost equal value for Drucker-Prager model (,d) for the 

case of low friction angle. However, their discrepancy increases by increasing the friction 

angle. For instance, the friction angle of o50 gives Drucker-Prager friction angle of 

0550. degrees for associated flow and 053  for nondilatant flow. 

Another way to approximate Drucker-Prager model with Mohr-Coulomb failure criterion 

is to match them in triaxail compression and tension. However, this matching method is 

suitable for a material with a low friction angle ( 22 ).  

B.4.3. Calibration of CAP Plasticity Model 

 

The CAP plasticity model requires information about friction angle () and cohesion (d) 

parameters for a Drucker-Prager shear failure surface part as discussed in the previous 

section. The elliptical cap can be calibrated by hydrostatic compression test to obtain the 

mean effective yield stress (Pb) variation with the volumetric plastic strain ( )(
pl
volpbpb  ) 

as shown in Figure B- 15, this can be used to express hardening/softening law. The 

transition region requires the parameter R, varies between .0001 and 1000.0, which can n 

be obtained from triaxial tests at high confining pressure.  

 

Figure B- 15: Typical results of Hardening/Softening rule for CAP plasticity model calibration 
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B.5. Contact Modelling 

 

Buried cable and its surrounding soil are interacted with each other by defining the 

contact simulation model. Three steps are required to define the contact modelling in 

ABAQUS. The first step involves defining contact surfaces and designating the master 

surface and slave surfaces, the slave surface is normally attached to deformable bodies. 

Then, the surfaces that might be interacted are identified as contact pairs. Finally the 

constitutive model for interacting surfaces is defined. The constitutive model relates the 

transmitted forces, shear or normal forces, between two interaction surfaces as a function 

of clearance distance and over-closure.  

The mechanical contact property for normal behaviour can be classified as a “hard” or 

“soft” contact. In “hard” contact the pressure-over closure relationship assumes the 

behaviour as depicted in Figure B- 16-a. When the two surface are in contact any contact 

pressure can be transferred between two surfaces and no pressure will be transferred 

when the two surfaces are separate. The “hard” contact minimizes the penetration of 

slave surface into the master surface.  On the other hand, in “Softened” contact, a 

constitutive model representing the contact pressure-over closure and clearance 

relationship is defined as shown in Figure B- 16-b.  

ABAQUS uses three different methods to handle the pressure-over closure contact 

constraint numerically. The direct method strictly enforces the defined pressure-over 

closure constraint. The penalty method approximates the pressure-over closure constraint, 

therefore, it is less accurate and it needs less iterations. The augmented Lagrange method 

uses the same approximation as the penalty method but it performs extra iteration to 

enhance the accuracy. The appropriate selection of the constraint enforcement method 

depends on the type of pressure-over closure behaviour, convergence and accuracy 

issues.      
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Figure B- 16: Pressure-Over closure relationship in ABAQUS 

In addition to normal forces, two contacting surfaces also transfer shear forces. The shear 

forces can be obtained from friction models. Friction model define the mechanical 

contact property in the tangential direction. The more basic form of friction model is a 

Coulomb friction model. In this model, two contacting surfaces are sticking together and 

developing shear stresses up to the certain limits or critical shear stresses ( crit ). At this 

point the two surfaces are prone to slide relative to one another. The critical shear stresses 

is defined as a function of contact pressure and coefficient of friction angle () as follows 

Pcrit            Eqn. B- 37 

ABAQUS uses the equivalent shear stresses ( 2
2

2
1eq   ) in Coulomb friction models 

to check slip/stick calculation, where 21  , are the two perpendicular components of shear 

forces on the contacting surface. The Coulomb friction model forms a region that 

contacting surfaces can be either in the sticking or slipping region, depending on the 

value of equivalent shear stresses as shown in Figure B- 17-a. Often some elastic slip 

deformation can be allowed while in the sticking part before the shear stresses reaches to 

critical shear stress as shown in Figure B- 17-b.   
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Figure B- 17: Basic Coulomb friction model, adapted from ABAQUS 

ABAQUS also offers a friction model allowing to define the static and kinetic friction 

coefficient ( ks  , ). This model assumes that the coefficient of friction angle () reduces 

exponentially from static friction angle to kinetic friction angle by defining the decay 

coefficient (dc)  as depicted in the following equation 

eqcd

ksk e





 )(        Eqn. B- 38 

Where eq  is the equivalent slip rate. Figure B- 18 shows the exponential decay function 

as implemented in ABAQUS.   
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Figure B- 18: Exponential decay friction coefficient function, adapted from ABAQUS 
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To enforce frictional constraint, ABAQUS uses different schemes depending on the 

analysis type, implicit or explicit analysis. Since the implicit analysis is utilized 

throughout this research, only the methods available in implicit will be discussed. The 

stiffness method (penalty method) and Lagrange multiplier method are the algorithm to 

enforce the tangential constraint. The penalty method requires the definition of the elastic 

slip (e) regardless of the selection of the friction model, i.e., the friction model with no 

elastic slip. Selection of the Small and large value of the elastic slip depends on the 

accuracy and convergence problem. The large value of the elastic slip means a faster 

convergence at the expense of accuracy. Problems with small elastic slip, for instance no 

slipping in the sticking state, are better dealt with Lagrange multiplier method. ABAQUS 

by default uses the elastic slip as a fraction of the characteristic contact surface length ( il ) 

by using the slip tolerance (Ff). The selection of slip tolerance is based on the trade-off 

between the accuracy and efficiency, the pre default value is  .005. As mentioned, for the 

problems that stick-slip frictional behaviour is necessary and no elastic slip is desirable 

the Lagrange method is more suitable. However, the Lagrange method is more 

computationally expensive and it needs more iteration to converge. Other than these 

cases, the stiffness method works acceptably well in most problems.   

B.6. Analysis Procedure 

 

A large class of problems can be solved with ABAQUS. Each problem requires a specific 

analysis procedure, depending on the nature of the problem. The simulation of the the 

buried cable soil interaction problem can be analyzed utilizing the static stress analysis or 

quasi-static analysis. The static analysis in the ABAQUS includes both linear and 

nonlinear problems. Types of nonlinearity that can be solved are material nonlinearity, 

geometric nonlinearity, such as large displacement problems, and boundary nonlinearity, 

such as contact problems. Since the response of buried-cable soil interaction must be 

assessed up to its ultimate stage some instabilities would occur. Such instabilities might 

arise from sever distortions of elements in the vicinity of the buried cable. This localized 
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instability terminates the analyses. For this class of problems, the analysis can be 

switched to quasi-static analysis or it can still be performed by static analysis with the aid 

of artificial damping. In unstable elements the local velocity increases and strain energy 

wants to transfer the neighbouring elements. Introducing the artificial viscous damping 

force prevents the localized transfer of the strain energy developing in the unstable 

element. The viscous force (Fv) is defined as vcMFv
* ,where *M is the artificial mass 

matrix with a unit density, C is the damping matrix, v is the local velocities., added to the 

global equilibrium equations. ABAQUS provides an automatic stabilization and issues 

warning massage if the amount of damping force is large and it may affect the solution in 

ways that are not desirable.   

Alternatively, the nonlinear static problems can be handled by the explicit dynamic 

analysis in the form of quasi static analysis. The explicit dynamic analysis should be used 

with caution so that the effect of the inertia effects is minimal. To achieve this aim, the 

loads must be applied so slowly to avoid any excitation of the finite element model due to 

the wave propagation. Therefore the quasi-static explicit analysis requires a very small 

time increment, usually 100 times of the first vibration mode, to minimize the effect of 

inertia forces. The simulation of buried cable soil interaction is mostly performed by 

static analyses; however, whenever the convergence is an issue the analysis is switched to 

explicit quasi static analysis. 

B.7. Geostatic Stress Analysis 

 

A geostatic field analysis is the first step of any geotechnical analysis. This step is an 

important step since the soil behaviour is dependent on the confining stresses. Geostatic 

stress state in ABAQUS checks whether the initial stress state is in equilibrium with 

applied loads and boundary conditions. If the equilibrium does not occur, ABAQUS will 

iterate to obtain an equilibrium stress field that balances the prescribed conditions. In the 
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beginning of each analysis, gravity loads are applied in this step to the finite element 

model of buried-cable soil interaction. 

 


