SPOIL MANAGEMENT AND REVEGETATION SUCCESS ON WASTE ROCK DUMPS AT A SOUTHERN INTERIOR B.C. COPPER MINE by KATHERINE GOULD GIZIKOFF B.Sc. (Agriculture), University of Br i t i sh Columbia, 1981 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Interdisciplinary Studies, Resource Management Science) We accept this thesis as conforming to the required standards THE UNIVERSITY OF BRITISH COLUMBIA January, 1990 (g) Katherine Gould Gizikoff , 1990 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Kf<,0VdRCJE NAl\f fl-6£M£MT $ClENC£~ The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT The primary aim of t h i s study was t o i n v e s t i g a t e v e g e t a t i o n production and s o i l management f a c t o r s i n f l u e n c i n g forage establishment on the waste rock dumps a t a Southern I n t e r i o r B.C. copper mine. T o t a l p l a n t cover on the waste rock dumps ranged from l e s s than 5 t o g r e a t e r than 80 percent. Vegetation and s p o i l from the major reclaimed s i t e s were analyzed t o determine p o s s i b l e causes f o r the d i f f e r e n c e s i n p l a n t cover. Test case areas, which v a r i e d i n p r o d u c t i o n , topography, and treatment, were then s e l e c t e d f o r an i n v e s t i g a t i o n i n t o the r e l a t i o n s h i p s between s p o i l and ve g e t a t i o n v a r i a b l e s . Waste rock and overburden g l a c i a l t i l l m a t e r i a l s were g e n e r a l l y low i n N, P, and Mg. S p o i l N and K l e v e l s v a r i e d throughout each reclaimed s i t e , l i k e l y as a r e s u l t of f e r t i l i z e r placement. S i g n i f i c a n t p o s i t i v e r e l a t i o n s h i p s were found between s p o i l N and grass cover and s p o i l K and both grass and legume cover. P l e v e l s i n legumes from most f e r t i l i z e d s i t e s were s t i l l i n a d e f i c i e n c y range. A negative r e l a t i o n s h i p between coarse fragment content and legume cover was observed. High coarse fragment content, accompanied with low water h o l d i n g c a p a c i t y and dry c l i m a t i c c o n d i t i o n s , suggests t h a t moisture d e f i c i e n c i e s are l i k e l y a c r i t i c a l problem f o r re v e g e t a t i o n success, p a r t i c u l a r l y on the lower p o r t i o n s of the slope faces. High bulk d e n s i t y values on the f l a t t e r r a c e s i n d i c a t e d t h a t compaction could be impeding root growth. M u l t i v a r i a t e c l u s t e r a n a l y s i s , based on t o t a l percent p l a n t cover and percent composition legumes, was used t o c a t e g o r i z e a l l study s i t e s i n t o f o u r v e g e t a t i o n production groups: low cover, grass cover, mixed grass and legume cover, and high production legume dominated cover. S p o i l c h a r a c t e r i s t i c s t h a t d i f f e r e n t i a t e d between groups were: N, P, K, Mg, pH, coarse fragment content, and bulk d e n s i t y . This c l a s s i f i c a t i o n system w i l l a s s i s t i n i d e n t i f y i n g the management requirements of each v e g e t a t i o n type, such as: l e v e l and type of f e r t i l i z a t i o n , overburden capping t o reduce coarse fragment content, and s c a r i f i c a t i o n . M u l t i p l e r e g r e s s i o n a n a l y s i s was used t o generate equations f o r p r e d i c t i n g biomass production from s p o i l N, P, K, Mg, pH, and coarse fragment content. Reclamation c o s t s were estimated and i t was demonstrated t h a t grass cover and mixed grass and legume cover types were the most d e s i r a b l e . Although c o s t s per hectare were lowest f o r the low cover type, e f f i c i e n c y of reclamation d o l l a r s ( d o l l a r s i nvested per tonne forage produced) was a l s o lowest f o r t h i s type. Establishment of a legume dominated cover type may not be d e s i r a b l e due t o forage q u a l i t y c o n s i d e r a t i o n s : Cu:Mo r a t i o s i n legume f o l i a g e averaged l e s s than the recommended 2:1 f o r c a t t l e g r a z i n g . i v TABLE OF CONTENTS ABSTRACT i i ACKNOWLEDGEMENTS v i i i LIST OF TABLES v i LIST OF FIGURES v i i 1.0 INTRODUCTION 1 1.1 Aims and R a t i o n a l e 1 1.2 Layout of Thesis 4 1.3 Environmental S e t t i n g 6 1.4 Revegetation Program 9 PART I - BACKGROUND STUDY 2.0 EVALUATION OF REVEGETATION SUCCESS 13 2.1 Revegetation R e s u l t s 13 2.1.1 Vegetation Establishment 13 2.1.2 B o t a n i c a l Composition 16 2.1.3 F o l i a r Elemental Concentration 20 2.1.3.1 Macronutrients 21 2.1.3.2 M i c r o n u t r i e n t s 25 2.2 S o i l Factors I n f l u e n c i n g Revegetation Success 30 2.2.1 Chemical C h a r a c t e r i s t i c s 32 2.2.2 P h y s i c a l C h a r a c t e r i s t i c s 36 2.3 E v a l u a t i o n of Revegetation Success 38 PART I I - TEST CASE STUDY 3.0 METHODS AND MATERIALS 41 3.1 S i t e S e l e c t i o n 41 3.2 Sampling Design 44 3.3 Vegetation Production 45 3.4 F o l i a g e Sampling and A n a l y s i s 45 3.5 S o i l Sampling and A n a l y s i s . . 47 3.6 Data A n a l y s i s 50 4.0 DIFFERENCES IN REVEGETATION SUCCESS AND SPOIL CONDITIONS BETWEEN SITES 53 4.1 V e g e t a t i o n a l D i f f e r e n c e s Between S i t e s 53 4.2 Inherent D i f f e r e n c e s i n S p o i l 60 4.2.1 Waste Rock and Overburden C h a r a c t e r i s t i c s 60 4.2.2 Inherent D i f f e r e n c e s Between S i t e s 62 4.2.2.1 P h y s i c a l C h a r a c t e r i s t i c s 62 4.2.2.2 Chemical C h a r a c t e r i s t i c s 68 4.2.2.3 F o l i a g e Chemistry 69 V 4.3 F e r t i l i t y D i f f e r e n c e s Between S i t e s 77 4.3.1 S p o i l Chemistry 77 4.3.2 F o l i a g e Chemistry 81 4.4 Summary 85 5.0 RELATIONSHIPS BETWEEN SITE CONDITIONS AND REVEGETATION SUCCESS 88 5.1 U n i v a r i a t e R e l a t i o n s h i p s 88 5.2 M u l t i v a r i a t e R e l a t i o n s h i p s 97 5.3 S p a t i a l R e l a t i o n s h i p s - C l u s t e r A n a l y s i s 100 5.2.1 Vegetation C a t e g o r i z a t i o n 100 5.2.2 D i f f e r e n c e s Between Vegetation Groups. . . .102 5.2.3 D i s c r i m i n a n t A n a l y s i s 104 5.2.4 M u l t i p l e Regression A n a l y s i s 106 6.0 MANAGEMENT SCENARIOS 107 6.1 S p o i l C l a s s i f i c a t i o n 107 6.2 Reclamation Costs and Production I l l 6.3 Reclamation S t r a t e g i e s and End Land Use . . . . . .116 7.0 SUMMARY AND CONCLUSIONS 123 LITERATURE CITED 128 APPENDICES 142 LIST OF APPENDICES Appendix A. 1985 F o l i a g e Data 143 Appendix B. P i c t u r e s of S i t e s Selected For Test Case Study. . .144 Appendix C. Summarized Data For Each Test Case S i t e 148 C l Means and Ranges f o r S p o i l , F o l i a g e and Vegetation V a r i a b l e s 149 C. 2 Percent C o e f f i c i e n t s of V a r i a t i o n 159 Appendix D. Miscellaneous Data Sets 160 • D. l A v a i l a b l e S o i l Phosphorus 161 D.2 Water Retention Data 163 D.3 S o i l Carbon 164 v i LIST OF TABLES 1.1 Species Included i n Seed Mixes 1972 1981 . , 10 2.1 Macronutrient Levels i n F o l i a g e 22 2.2 M i c r o n u t r i e n t Levels i n F o l i a g e 26 2.3 General S p o i l C h a r a c t e r i s t i c s 32 3.1 S i t e H i s t o r i e s 42 3.2 S o i l and F o l i a g e Samples C o l l e c t e d 45 3.3 S o i l A n a l y s i s Methods 48 4.1 Percent Cover of Species and Biomass Y i e l d on High Producing Vegetation Types . 56 4.2 Percent Cover of Species and Biomass Y i e l d on Moderate Producing Vegetation Types 57 4.3 Percent Cover of Species and Biomass Y i e l d on Low Producing Vegetation Types 59 4.4 C h a r a c t e r i s t i c s of Waste Rock and Overburden 60 4.5 Inherent C h a r a c t e r i s t i c s D i f f e r e n t Between S i t e s . . . . 63 4.6 Inherent C h a r a c t e r i s t i c s D i f f e r e n t Between Vegetation Types 64 4.7 Elemental Levels i n F o l i a g e 65 4.8 S p o i l Nitrogen, Phosphorus, and Potassium 78 4.9 Nitrogen, Phosphorus, and Potassium L e v e l s i n F o l i a g e . . 81 4.10 Summary of S p o i l D i f f e r e n c e s Between S i t e Types 85 4.11 Summary of S p o i l D i f f e r e n c e s Between S i t e s 86 4.12 Summary of S p o i l D i f f e r e n c e s Between Vegetation Production Types 87 5.1 Species Cover C o r r e l a t i o n s With S p o i l 95 5.2 S i g n i f i c a n t M u l t i p l e Regression Models f o r P r e d i c t i n g Biomass Y i e l d and % Legume or Grass Cover From S p o i l Data 98 5.3 S i g n i f i c a n t M u l t i p l e Regression Models f o r P r e d i c t i n g Legume cover or Composition For I n d i v i d u a l F l a t S i t e Data 98 5.4 S i t e A l l o c a t i o n t o C l u s t e r Groups 100 5.5 Mann-Whitney U Test: S i g n i f i c a n t D i f f e r e n c e s Between Vegetation Groups 102 5.6 S p o i l and F o l i a g e C h a r a c t e r i s t i c s of C l u s t e r Groups. . .103 5.7 D i s c r i m i n a n t A n a l y s i s : P r e d i c t e d Group Membership. . . .105 5.8 S i g n i f i c a n t M u l t i p l e Regression Models f o r P r e d i c t i n g Biomass Y i e l d and % Legume or Grass Cover W i t h i n C l u s t e r Groups 106 6.1 S p o i l C l a s s i f i c a t i o n System For Determining Management Options and P r e d i c t i n g Vegetation Types 108 6.2 Estimated Costs of A e r i a l Broadcast A p p l i e d Seed and F e r t i l i z e r 112 6.3 Estimated 1989 Costs of Revegetated Methods Employed f o r Test Case S i t e s 116 6.4 Example M a t r i x I l l u s t r a t i n g Management or Revegetation Options f o r Four S i t e s 118 v i i LIST OF FIGURES 1.1 L o c a t i o n of Study Area 2 1.2 I n g e r b e l l e and Copper Mountain Mining Areas 3 1.3 Overview of Study Design 5 1.4 Monthly Temperature Means f o r the Mine S i t e 8 1.5 Annual P r e c i p i t a t i o n and F r o s t Free Days 8 1.6 D i s t r i b u t i o n of Revegetation Costs 11 2.1 V a r i a b i l i t y i n Vegetation Cover on a S l o p i n g S i t e . . . . 14 2.2 V a r i a b i l i t y i n Vegetation Cover on a F l a t S i t e 14 2.3 R e l a t i v e Cover of Species on Waste Rock Dumps 17 2.4 Cu:Mo R a t i o s i n Species on Waste Rock Dumps 30 3.1 O r g a n i z a t i o n of Data Sets and S t a t i s t i c s 51 4.1 Vegetation Types on Sl o p i n g S i t e s 55 4.2 Vegetation Types on F l a t S i t e s 55 4.3 Coarse Fragment Content on Sl o p i n g S i t e s 65 4.4 Coarse Fragment Content on F l a t S i t e s 65 4.5 Boron and S u l f u r Levels i n M^ s a t i v a from WD3 75 4.6 Cu:Mo r a t i o s i n M^ . s a t i v a 76 4.7 Cu:Mo r a t i o s i n A^ . c r i s t a t u m and F\_ rubra 77 4.8 Comparison of S p o i l Nitrogen Between Vegetation Types. . 80 4.9 Phosphorus Levels i n s a t i v a 84 5.1 T o t a l Data Set: C o r r e l a t i o n s Between S p o i l or F o l i a g e and Vegetation 89 5.2 F l a t S i t e s : C o r r e l a t i o n s Between S p o i l or F o l i a g e and Vegetation 90 5.3 S l o p i n g S i t e s : C o r r e l a t i o n s Between S p o i l or F o l i a g e and Vegetation 91 5.4 S p o i l pH or Ca C o r r e l a t i o n s w i t h F o l i a g e M i c r o n u t r i e n t s 92 5.5 C o r r e l a t i o n s Between Species 94 5.6 C o r r e l a t i o n s Between F o l i a g e N, P, and K 95 5.7 O v e r a l l R e l a t i o n s h i p s Between S p o i l Parameters and Vegetation Cover 96 5.8 S c a t t e r p l o t of K versus Legume Cover on WD3 99 5.9 Vegetation C h a r a c t e r i s t i c s of C l u s t e r Groups 101 6.1 Revegetation Costs and Biomass Production 114 v i i i ACKNOWLEDGEMENTS P a r t i a l funding f o r t h i s research was provided by the B.C. Science C o u n c i l and Newmont Mines L t d . I wish t o express my s i n c e r e thanks t o the many s t a f f and students of the Department of S o i l Science p a r t i c u l a r l y , Bernie Von S p i n d l e r and Evelyne Wolterson f o r t h e i r a s s i s t a n c e i n the l a b o r a t o r y , and Dr. Hans S c h r e i e r f o r h i s guidance throughout the course of t h i s study. I owe a s p e c i a l thank you t o my parents, Robert S. and Barbara E. Gould, and my husband, B l a i r M.S. G i z i k o f f , f o r t h e i r f a i t h and encouragement throughout the d u r a t i o n of t h i s study. DISCLAIMER The o p i n i o n s presented i n t h i s document are e n t i r e l y those of the author and may not r e f l e c t those of Newmont Mines L t d . or S i m i l o Mines L t d . 1 1.0 INTRODUCTION 1.1 AIMS AND RATIONALE The primary aim of t h i s study was t o i n v e s t i g a t e the s o i l and management f a c t o r s i n f l u e n c i n g r e v e g e t a t i o n success on the waste rock dumps a t S i m i l c o Mines L t d . S i m i l c o Mines L t d . , formerly Newmont Mines L t d . , Similkameen D i v i s i o n , i s an open p i t copper mine s i t u a t e d on the Similkameen R i v e r , 16 k i l o m e t r e s south of P r i n c e t o n B.C. (Figure 1.1). When mining was completed on the i n a c t i v e I n g e r b e l l e area (Figure 1.2) i n 1981, more than 50 percent of the area d i s t u r b e d was waste rock dumps. Reclamation of these dumps began i n 1972. As of the time of the f i e l d study i n 1986, approximately 80% of the I n g e r b e l l e rock dumps, 173 hectares, had r e c e i v e d a e r i a l broadcast a p p l i c a t i o n s of f e r t i l i z e r and agronomic grass/legume seed. Vegetation surveys conducted by the M i n i s t r y of Energy, Mines and Petroleum Resources on the t r e a t e d s i t e s (MEMPR 1980) i n d i c a t e d sporadic v e g e t a t i o n establishment. I d e n t i f i c a t i o n of the key s p o i l parameters which are i n h i b i t i n g p l a n t establishment, p r o d u c t i v i t y , and q u a l i t y was needed t o provide i n f o r m a t i o n f o r future r e v e g e t a t i o n attempts. An e v a l u a t i o n of reclamation methods and Figure 1.1 Lo c a t i o n of Study Area Figure 1.2 Ingerbelle and Copper Mountain Mining Areas Inactive Active to a s s o c i a t e d c o s t s would a l s o a i d reclamation planning. This research was designed t o address these i s s u e s . S p e c i f i c a l l y , the o b j e c t i v e s were t o : 1) assess the s t a t u s of v e g e t a t i o n production and q u a l i t y on the waste dumps, 2) i n v e s t i g a t e the p h y s i c a l and chemical p r o p e r t i e s of the waste dump s p o i l and i d e n t i f y p o s s i b l e growth l i m i t i n g c h a r a c t e r i s t i c s , 3) determine r e l a t i o n s h i p s between s p o i l p r o p e r t i e s and re v e g e t a t i o n success, 4) develop options f o r s p o i l management and propose a methodology f o r e v a l u a t i o n of reclamation s t r a t e g i e s . 1.2 LAYOUT OF THESIS Figur e 1.3 provides an overview of the study design. A general background study was i n i t i a t e d i n 1985 i n an attempt t o gain i n s i g h t i n t o p o s s i b l e causes f o r the v a r i a b i l i t y i n veg e t a t i o n establishment and production on the I n g e r b e l l e waste rock dumps. Re s u l t s from t h i s study are summarized and compared w i t h recent l i t e r a t u r e i n Chapter 2. A d d i t i o n a l data are presented i n Appendix Figure 1.3 Overview of Study Design PHASE I: BACKGROUND STUDY AIRPHOTO INTERPRETATION ON SITE EVALUATION OF REVEGETATION SUCCESS COMPILATION OF PAST SITE TREATMENTS IDENTIFICATION OF AREAS SUCCESSFULLY REVE6ETATED IDENTIFICATION OF POSSIBLE FACTORS INFLUENCING REVEGETATION SUCCESS PHASE II: TEST CASE STUDY SELECTION OF TEST CASES SLOPING SITES FLAT SITES UNTREATED SPOIL IDENTIFY DIFFERENCES BETWEEN AREAS OF HIGH, MODERATE, AND LOW PRODUCTION; DIFFERENT TREATMENTS; FLAT AND SLOPING SITES IDENTIFY DIFFERENCES BETWEEN ROCK AND OVERBURDEN DETERMINE RELATIONSHIPS BETWEEN ESTABLISHED VEGETATION AND SPOIL PARAMETERS IDENTIFY INHERENT SPOIL CHARACTERISTICS DETERMINE THE INFLUENCE OF MANAGEMENT ON REVEGETATION SUCCESS DEVELOP MANAGEMENT SCENARIOS IDENTIFYING FUTURE RECLAMATION OPTIONS AND COSTS 6 Several waste rock s i t e s were s e l e c t e d f o r a more i n t e n s i v e i n v e s t i g a t i o n i n 1986. The t e s t case s i t e s chosen f o r study v a r i e d i n age, treatment and v e g e t a t i o n cover. P h y s i c a l and chemical s p o i l c h a r a c t e r i s t i c s were i n v e s t i g a t e d ; v e g e t a t i o n and s p o i l d i f f e r e n c e s between s i t e s p l u s r e l a t i o n s h i p s between b i o p h y s i c a l parameters were determined. Methods used f o r f i e l d sampling, l a b o r a t o r y a n a l y s i s , and s t a t i s t i c a l a n a l y s i s are described i n Chapter 3. R e s u l t s from t h i s p o r t i o n of the study are presented i n Chapters 4 and 5: Chapter 4 summarizes s i g n i f i c a n t d i f f e r e n c e s between s i t e s f o r the s p o i l and v e g e t a t i o n parameters measured; Chapter 5 i d e n t i f i e s the r e l a t i o n s h i p s found between the s p o i l and v e g e t a t i o n parameters. Based on the r e s u l t s from the 1985 background study and the 1986 t e s t case study, s p o i l treatment options were analyzed. Chapter 6 d i s c u s s e s p o s s i b l e f u t u r e management s t r a t e g i e s and a s s o c i a t e d r e c l amation c o s t s . Conclusions are summarized i n Chapter 7. 1.3 ENVIRONMENTAL SETTING The P r i n c e t o n area has a semi-arid c l i m a t e c h a r a c t e r i s t i c of the southern i n t e r i o r of B.C. St r o n g l y i n f l u e n c e d by a rainshadow produced by the Cascade Mountain range t o the west, the t o t a l annual p r e c i p i t a t i o n averages only 350 mm, 62 % of which i s 7 high as 38°C and low as -41°C. The f r o s t f r e e p e r i o d averages 87 days. Weather data i s c o l l e c t e d d a i l y a t the mine s i t e . The mine's p r e c i p i t a t i o n and temperature data f o r the p e r i o d between 1976 and 1986 are summarized i n Figures 1.4 and 1.5. S i m i l c o l i e s a t the southern end of the I n t e r i o r P l a t e a u , near i t s j u n c t i o n w i t h the Cascade Mountains. The area i s c h a r a c t e r i z e d by g e n t l y rounded h i l l tops and r o l l i n g land broken by numerous deeply i n c i s e d r i v e r v a l l e y s . The property l i e s between the I n t e r i o r Douglas F i r and Ponderosa Pine Bunchgrass b i o g e o c l i m a t i c types ( K r a j i n a 1979). E l e v a t i o n i s between 900 and 1800 meters. Primary use of the area p r i o r t o mining was as w i l d l i f e h a b i t a t and w i l d e r n e s s w i t h a l i m i t e d h i s t o r y of s e l e c t i v e l o g g i n g . Mule deer (Odocoileus hemionus hemionus) and e l k (Cervus canadensis n e l s o n i ) are f r e q u e n t l y seen on the property throughout the year. Crown g r a z i n g permits f o r c a t t l e surround the mine property. Revegetation of waste dumps has been p r i m a r i l y d i r e c t e d toward p r o v i d i n g s e l f - s u s t a i n a b l e g r a z i n g areas f o r w i l d l i f e and c a t t l e . The steep canyon carved by the Similkameen R i v e r separates the two areas of mining. Mining was completed on the west s i d e of the Similkameen R i v e r , the I n g e r b e l l e area, i n 1981. A c t i v e p i t mining i s ongoing at Copper Mountain, on the west s i d e of the r i v e r . Figure 1.4 Monthly Temperature Means for the Mine Site 1976 to 1986 Summary JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC M O N T H L Y M E A N T E M P E R A T U R E S Figure 1.5 Annual Precipitation and Frost Free Days 1976 to 1986 600 200 500 400 -300 1986 -0 1986 •• •• 1985 6 150 100 1 985 150 >00 PRECIPITATION mm FROST FREE DAYS T E N Y E A R A V E R A G E S A N D R A N G E 9 Preto (1972) and Macauly (1970) have summarized bedrock geology f o r the area. Ore from both mining areas are N i c o l a V o l c a n i c s of Upper T r i a s s i c Age deposited i n a marine environment. The orebodies are e s s e n t i a l l y disseminated s u l p h i d e d e p o s i t s , u s u a l l y w i t h l e s s than 5% t o t a l s u l p h i d e s . Copper m i n e r a l i z a t i o n i s e s s e n t i a l l y i n the form of c h a l c o p y r i t e - b o r n i t e w i t h andesite the t y p i c a l host rock. Molybdenite occurs i n small amounts i n the north end of the ore body only; samples assaying from n i l t o 0.012% Mo. S u r f i c i a l geology has been described by Nasmith (1962). Overburden t h i c k n e s s ranges from 2 t o 20 f e e t . Widespread g l a c i a l t i l l and g l a c i a l f l u v i a l d e p o s i t s are a r e s u l t of an ice-sh e e t covering the area d u r i n g P l e i s t o c e n e time (Macauley, 1970). In a d d i t i o n , sand d e p o s i t s from temporary l a k e s are formed north of the I n g e r b e l l e d e p o s i t . 1.4 REVEGETATION PROGRAM The reclamation of I n g e r b e l l e waste rock dumps began i n 1972. The program has p r i m a r i l y c o n s i s t e d of capping s i t e s w i t h overburden and a e r i a l broadcast seeding and f e r t i l i z i n g . Seed mixtures contained as many as 17 species and v a r i e t i e s of grasses and i n o c u l a t e d legumes (Table 1.1). Seed was u s u a l l y a p p l i e d i n the 10 Table 1.1 Species included in Seed Mixes 1972 -1981 Scientific Name Common Name Percentage of (cultivar, if known) Mix by Weight Medicago sativa 'Rambler' and 'Rhizoma' Alfalfa 10-20 Onobrychis viciaefotiat 'Melrose' Sainfoin 10-20 Astragatus OUT 'Oxley' Cicer Milkvetch 3-5 Lotus corniculatus 'Leo' Birdsfoot Trefoil 5 Trifofium hybritCum, pratetuse, repots Alsike, Red, and White Clover 5-10 Bromus incrmis 'Carlton' Smooth Brome 2-3 Ttstuta rubra 'Boreal' Red Fescue 10-20 Poa comprcssa 'Reubens' Canada Bluegrass 5 Poa pratmsis Kentucky Bluegrass 5 AgTopyron riparium 'Sodar' Streambank Wheatgrass 0-5 Acjropyron trichopkorum. 'Greenleaf Pubescent Wheatgrass 3-5 Agropyron cristatum 'Fairway' Crested Wheatgrass 3-10 AgTOpyron dongatum 'Orbit' Tall Wheatgrass 5-10 Ftstuca arundinacea 'Alta' Tall Fescue 0-3 Ttstuca ovina Hard Fescue 0-8 LoCium perennt Perennial Ryegrass 9-13 f a l l , a t an approximate r a t e of 100 kg/ha. I n i t i a l seeding attempts were u s u a l l y supplemented w i t h ammonium n i t r a t e f e r t i l i z e r . S pring a p p l i c a t i o n s of maintenance f e r t i l i z e r were scheduled t o be repeated f o r three years; however, some o l d e r s i t e s have r e c e i v e d up t o s i x a p p l i c a t i o n s of f e r t i l i z e r . Rates of maintenance f e r t i l i z a t i o n w i t h ammonium n i t r a t e , calcium phosphate and potash mixes r a t e s ranged from 3 00 t o 500 kg/ha. Although N:P205:K20 r a t i o s have v a r i e d somewhat over the years, the f e r t i l i z e r mix g e n e r a l l y contained a higher p r o p o r t i o n of ni t r o g e n , such as a 3:2:1 r a t i o . The m a j o r i t y of rev e g e t a t i o n d o l l a r s at S i m i l c o have been spent on maintenance f e r t i l i z a t i o n . The costs of the re v e g e t a t i o n p r a c t i c e s t y p i c a l l y employed on an I n g e r b e l l e rock dump i n 1989 d o l l a r s are approximately $2500/ha, of which g r e a t e r than 65% i s a t t r i b u t e d t o f e r t i l i z a t i o n (Figure 1.6). Past re-seeding and r e -f e r t i l i z i n g of areas u n s u c c e s s f u l l y revegetated through i n i t i a l attempts has d r a m a t i c a l l y increased reclamation c o s t s . Figure 1.6 Distribution of Revegetation Costs S E E D APPLICATION 2% S E E D INITIAL FERTILIZER FERTILIZER APPLICATION MAINTENANCE FERTILIZER M. FERTILIZER APPLICATION Excludes overburden salvage and replacement c o s t s 12 E v a l u a t i o n s of re v e g e t a t i o n success have been l i m i t e d t o v i s u a l observations by the M i n i s t r y of Energy, Mines and Petroleum Resources. I n c o n s i s t e n c i e s i n v e g e t a t i o n cover on the dumps were thought t o be a r e s u l t of e i t h e r v a r i a b i l i t y i n s p o i l n u t r i e n t s t a t u s , water a v a i l a b i l i t y , or seed placement (MEMPR 1983). A f t e r 12 years of reclamation e f f o r t s , an i n v e s t i g a t i o n i n t o the f a c t o r s governing reclamation success was r e q u i r e d t o a i d futu r e reclamation planning. A background study was i n i t i a t e d i n 1985 i n an attempt t o i d e n t i f y the v a r i a t i o n i n v e g e t a t i o n production and q u a l i t y and t o i d e n t i f y p o s s i b l e growth l i m i t i n g c h a r a c t e r i s t i c s of the waste dump s p o i l . R e s u l t s from t h i s study are summarized i n the f o l l o w i n g s e c t i o n . 13 2.0 BACKGROUND STUDY - EVALUATION OF REVEGETATION SUCCESS 2.1 REVEGETATION RESULTS 2.1.1. VEGETATION ESTABLISHMENT An e x t e n s i v e v e g e t a t i o n reconnaissance was conducted i n 1985. Using a l a r g e s c a l e (1:5000) b l a c k and white a i r photograph, v e g e t a t i o n polygons were l o c a t e d on 11 major reclaimed s i t e s on the I n g e r b e l l e dumps. Reclamation s i t e s surveyed range i n s i z e from 2 t o 16 ha. Using a s t r a t i f i e d random sampling method, 400 p l o t s of a 4 x 4 meter s i z e were l o c a t e d w i t h i n the v e g e t a t i o n polygons. In each p l o t exposed bare s o i l , l i t t e r cover, and f o l i a r cover of dominant p l a n t species were estimated, c o n s i s t e n t w i t h the MEMPR survey methodology (MEMPR 1980). On the s l o p i n g s i t e s , p l a n t cover decreases w i t h slope length (Figure 2.1). Species d i v e r s i t y , f o l i a r cover, and legume establishment were g r e a t e s t on the upper p o r t i o n s of the slope faces. Three v e g e t a t i o n types were d i s t i n g u i s h e d : upper slopes - legumes were most abundant w i t h t o t a l f o l i a r cover of 60 t o 90%; middle slopes - v e g e t a t i o n composition was mainly sod grasses at the e x c l u s i o n of legume growth; and, 14 Figure 2.2 V a r i a b i l i t y i n Vegetation Cover on a F l a t S i t e 15 lower slopes - p l a n t cover was minimal, averaging l e s s than 20%, and p r i m a r i l y only one or two s p e c i e s . P l a n t cover on the f l a t s was a l s o sporadic (Figure 2.2). Polygons i d e n t i f i e d i n c l u d e d those w i t h a low v e g e t a t i o n cover (0 t o 20%), moderate cover of grasses (20 t o 65%), or a dense cover of p r i m a r i l y legumes (30 t o 80%). P r o d u c t i v i t y , which i s t o be not l e s s than t h a t on the a d j o i n i n g l a n d , i s the only s e t c r i t e r i a o u t l i n e d i n the Mining Act (1981) f o r e v a l u a t i n g r e v e g e t a t i o n success. The 1985 survey i n d i c a t e s t h a t i f averaged on a s i t e b a s i s , p l a n t cover f a l l s w i t h i n a 30 t o 60% range. With legume and bunchgrass species used i n the re v e g e t a t i o n of the mine s p o i l , 50% p l a n t cover may be a r e a l i s t i c g o a l . Vegetation cover, however, was not uniform on any one s i t e and l a r g e p r o p o r t i o n s of some s i t e s were bare. The r e s u l t s from the survey were used t o i d e n t i f y 'problem' areas t h a t may r e q u i r e f u r t h e r reclamation work. For the purpose of t h i s d i s c u s s i o n , some general conclusions can be drawn from the data obtained: 1) t o t a l p l a n t cover on each s i t e was v a r i a b l e , ranging from l e s s than 5 t o more than 80%; 16 2) only a s e l e c t group of species present i n the seed mix were abundant on a l l s i t e s , and each s i t e v a r i e d somewhat i n dominant s p e c i e s ; 3) there were d i f f e r e n c e s , both w i t h i n and between s i t e s , i n terms of percent legume composition; and, 4) n a t i v e species were not abundant. Many f a c t o r s could be c o n t r i b u t i n g t o the v a r i a b i l i t y i n v e g e t a t i o n cover: u n i f o r m i t y of seedbed, g r a z i n g (DePuit and Coenenberg 1980), and placement of seed, f e r t i l i z e r and s o i l amendments ( C u r r i e r 1975). A p e l l e t group study i n 1986 (Gould 1986) i n d i c a t e d t h a t few s i t e s d i f f e r e d i n amount of w i l d l i f e use. Uneven placement of seed may c o n t r i b u t e t o the v a r i a b i l i t y i n cover; however, most o l d e r s i t e s have been reseeded, and n a t u r a l reseeding has a l s o had time t o occur. I t i s more l i k e l y t h a t v a r i a b i l i t y i n the chemical or p h y s i c a l c h a r a c t e r i s t i c s of the waste rock and overburden, common i n mine s p o i l s (Fyles 1979), has had a gr e a t e r impact on u n i f o r m i t y of v e g e t a t i o n establishment. 2.1.2 BOTANICAL COMPOSITION From the general seed mix, the species which are most adaptable t o the l o c a l c l i m a t e and s p o i l c o n d i t i o n s could be i d e n t i f i e d (Figure 2.3): the most common species e s t a b l i s h e d are M_j. s a t i v a . 0. 17 v i c i a e f o l i a . A. c r i s t a t u m . A. trichophorum. B. inermis. F. rubra, P. compressa and p r a t e n s i s . These r e s u l t s are s i m i l a r t o those from other mine s p o i l r e v e g e t a t i o n t r i a l s i n a r i d areas of B.C.'s i n t e r i o r (Hathorn e t a l . 1979, Walmsley 1977, Jones 1985, Figure 2.3 Relative Cover of Species on Waste Rock Dumps A. c r is ta tum 4% F, rubra 4% P. c o m p r e s s a 4% Other spp, 3% Li t ter 11% .,•4 « A, t r ichophorum 5% A, c icer 5% O, v ic iaefo l ia 4% M . sa t iva 12% E x p o s e d soi l 4 8 % G a v e l i n 1979). The droughty c h a r a c t e r i s t i c s of the I n g e r b e l l e s p o i l i s evident from the success of the Agropyrons (Rowell 1978, Hanson 1972, Phol 1968, LeRoy and K e l l e r 1972). Some d i f f e r e n c e s i n species establishment among s i t e s were noted. L i m i t e d establishment of some grass species may be a r e s u l t of 18 s p o i l n u t r i e n t s t a t u s and s i t e f e r t i l i z a t i o n h i s t o r y . Various species such as EL. inermis (Berg and Vogel 1968) , P_j_ p r a t e n s i s (Bennet e t a l . 1978), F\_ elonqatum (Bennet et a l . 1978) and L . perenne ( B u c k e r f i e l d s 1980) are not only l e s s drought t o l e r a n t than the Agropyrons, but a l s o have high N f e r t i l i z a t i o n requirements. S e veral s t u d i e s have i n d i c a t e d a change i n grass species composition w i t h v a r y i n g s p o i l N content (Bradshaw et a l . 1964). Species such as B^ . inermis has been observed t o increase i n ve g e t a l cover under heavy f e r t i l i z a t i o n (Rowell 1978), whereas, s e v e r a l species of Poa and Agropyron (Rowell 1978) as w e l l as F . rubra (Watson e t a l . 1980) have performed b e t t e r on low-f e r t i l i z a t i o n p l o t s . On the I n g e r b e l l e waste rock dumps, dominant legume species a l s o v a r i e d somewhat among s i t e s . The most abundant legume species on the waste dumps were M^ . s a t i v a , 0^ . v i c i a e f o l i a and A_j_ c i c e r . Dominance between the three species d i f f e r e d between s i t e s . R e l a t i o n s h i p s between the establishment of some legume species and s o i l c h a r a c t e r i s t i c s have been observed: A^ . c i c e r has a higher t o l e r a n c e f o r coarse t e x t u r e d a l k a l i n e (Smoliak et a l . 1975, H a f e n r i c h t e r e t a l . 1968) and shallower s o i l s (Smoliak et a l . 1975) than M^ . s a t i v a ; and 0^ . v i c i a e f o l i a has a higher s a l i n i t y t o l e r a n c e than M_;. s a t i v a or c i c e r (Tayki e t a l . 1977). These inherent s p o i l c h a r a c t e r i s t i c s may have i n f l u e n c e d species d i f f e r e n c e s between s i t e s as these species are known t o have s i m i l a r f e r t i l i t y 19 requirements. Other legumes, such as L_j_ c o r n i c u l a t u s and T r i f o l i u m . may have been unsuccessful a t establishment on the rock dumps due t o t h e i r higher moisture requirements (Berg 1968, V o r i e s and Sims 1977, LeRoy and K e l l e r 1972). L i t e r a t u r e summaries, such as those by Watson e t a l . (1980) and Richardson (1987), provide coverage of research r e s u l t s on species establishment from v a r i o u s regions and mine s p o i l types. Determining causes of v a r i a b i l i t y i n species success proves t o be d i f f i c u l t due t o the v a r i e t y of i n f l u e n c i n g f a c t o r s . Although most species s u i t a b l e t o the l o c a l c l i m a t e c o n d i t i o n s or general s p o i l c h a r a c t e r i s t i c s can u s u a l l y be determined from l i t e r a t u r e or seed t r i a l s , performance on heterogeneous mine s p o i l i s u n p r e d i c t a b l e . D i f f e r e n c e s i n legume composition between reclaimed s i t e s were observed on the I n g e r b e l l e waste rock dumps. The r e l a t i v e abundance of grass t o legumes i n the stand can be a f f e c t e d by f e r t i l i z a t i o n (Fleming 1973) , p a r t i c u l a r l y w i t h n i t r o g e n , which has been observed t o favour grass production through competition (Macyk 1974, Rowell 1978). Good growth of legumes has been observed at low f e r t i l i z e r a p p l i c a t i o n r a t e s (Rowell 1978). V a r i a b i l i t y i n legume and grass composition on a s i t e c o uld be a t t r i b u t e d t o uneven placement of f e r t i l i z e r ; whereas d i f f e r e n c e s observed between s i t e s may have been i n f l u e n c e d by d i f f e r e n t h i s t o r i e s of f e r t i l i z a t i o n treatment. In a d d i t i o n t o f e r t i l i t y , inherent s p o i l c h a r a c t e r i s t i c s may c o n t r i b u t e t o legume and grass composition. Grasses are g e n e r a l l y more t o l e r a n t than legumes t o adverse s o i l c o n d i t i o n s such as a c i d i t y / a l k a l i n i t y , high metal c o n c e n t r a t i o n s , s a l i n i t y , low and high moisture contents (Michaud 1981). 2.1.3 FOLIAR ELEMENTAL CONCENTRATION In 1985, f o l i a g e samples were randomly s e l e c t e d from the dominant sp e c i e s . Where p o s s i b l e , f o l i a g e samples of agronomic species were a l s o c o l l e c t e d from unmined areas adjacent t o the study s i t e . Mean values obtained f o r each species are presented i n Appendix A. The reclamation o b j e c t i v e i n c l u d e s e s t a b l i s h i n g p a l a t a b l e forage f o r g r a z i n g ; t h e r e f o r e , forage q u a l i t y was i n v e s t i g a t e d . Elemental content can a l s o i n d i c a t e n u t r i e n t d e f i c i e n c i e s c o n t r i b u t i n g t o re v e g e t a t i o n f a i l u r e . The sample s i z e f o r some species was l i m i t e d . S i g n i f i c a n t d i f f e r e n c e s were determined u t i l i z i n g Mann-Whitney U Tests (p<0.05). Legumes had higher elemental l e v e l s than grasses with the exception of P, Mn, and B. There were s e v e r a l elemental d i f f e r e n c e s noted between legume species but r e l a t i v e l y few d i f f e r e n c e s noted between grass s p e c i e s . With the exception of Mo, n e i t h e r legume nor grass species had values s i g n i f i c a n t l y d i f f e r e n t from the c o n t r o l samples. Low l e v e l s of N i n grasses, and P and K i n legumes, i n d i c a t e d inadequate f e r t i l i z a t i o n f o r optimum growth. In a d d i t i o n , low f o l i a g e l e v e l s of Mg, Zn and Fe, were observed and i n d i c a t e d inherent low a v a i l a b i l i t y of these elements i n the s p o i l . Forage q u a l i t y c o n s i d e r a t i o n s f o r c a t t l e n u t r i t i o n i n c l u d e : low P and Mg i n most f o l i a g e samples and high Ca:P and low Cu:Mo r a t i o s i n legumes. The f o l l o w i n g s e c t i o n s (2 .1.3.1 and 2.1.3.2) summarize the data obtained and comparative r e s u l t s from other s t u d i e s . 2.1 .3 .1 MACRONUTRIENTS Table 2.1 i n d i c a t e s the recommended l e v e l s of v a r i o u s elements i n forage f o r beef c a t t l e consumption p l u s l e v e l s recommended f o r p l a n t h e a l t h and maximum production. For comparison, values obtained i n grass and legumes on the waste rock dumps are a l s o presented. The mean N values i n grasses from reclaimed s i t e s were below 1.55%, a l e v e l considered t o be N d e f i c i e n t i n v a r i o u s grasses (Jones 1966). B i inermis. known f o r i t s higher f e r t i l i t y requirements (Berg and Vogel 1968) , had the highest N val u e s , 1.51%, and Poa and Festuca had the lowest v a l u e s , 1.15 % and 1.10 %, r e s p e c t i v e l y . 22 Table 2.1 Macronutrient Levels i n Foliage ELEMENT LEVELS IN FOLIAGE FROM RECLAIMED SITES Grasses (n=39) Legumes (n=71) X range X range SUFFICIENT CONCENTRATIONS IN MATURE LEAF TISSUE FOR PLANT HEALTH * Grasses Legumes BEEF CATTLE REQUIREMENTS ** Acceptable Range N (%) 1.29 a 0.56-2.46 3.12 b 1.41-4.02 2.40-2.75 >3.0 >0.95 P (%) 0.18 0.07-0.32 0.21 0.14-0.33 0.20-0.40 0.20-0.40 >0.14 K (%) 1.35 a 0.64-2.19 1.75 b 0.53-3.37 >0.7 >2.0 0.5-0.7 Ca (%) 0.24 a 0.14-0.50 1.98 b 0.40-3.01 0.57-1.75 1.0-3.0 1.8-4.4 Mg (%) 0.09 a 0.04-0.55 0.29 b 0.16-0.56 0.08-0.30 0.3-0.7 0.05-0.25 Ca/P 3.1 a 0.4-2.9 8.0 b 1.9-16.0 - - 1:1-7:1 K/Ca+Mg 1.94 a 0.41-3.29 0.39 b 0.19-0.89 - - <2.0:1 VARIOUS SOURCES: * Nelson and Barber 1964; Rhykerd and Overdahl 1972; Bingham 1966; Chapman 1966; Embleton 1966; Ulrtch and Ohki 1966; Bickoff et a l . 1972 ** Ca l l et a l . 1978; Butcher et a l . 1979; National Research Council 1984; Grunes et a l . 1970; Kubota 1981; Tingle and E l l i o t t 1975. ab i d e n t i f i e s s i g n i f i c a n t differences (Mann-Whitney U Test, p<0.05) between legumes and grasses Although low N values i n grasses could i n d i c a t e inadequate f e r t i l i z e r supplements and a competitive advantage of the n i t r o g e n -f i x i n g legumes, the i n f l u e n c e of stage of m a t u r i t y , season of year and c l i m a t i c f a c t o r s (Fleming and Murphy 1968) must be considered when comparing species N l e v e l s w i t h those recorded from other s t u d i e s . Phosphorus l e v e l s were a l s o found t o be marginal; l e v e l s of l e s s than 0.20 t o 0.25% i n most legumes (Rhykerd and Overdahl 1972) and 0.18% i n grasses (Bingham 1966) are considered inadequate f o r maximum production. p_j_ v i c i a e f o l i a and B^ . inermis had the highest P l e v e l s : over 0.24%. The P l e v e l s of VL_ s a t i v a obtained i n t h i s study 0.21% are comparable w i t h those obtained i n other P d e f i c i e n t B.C. mine s p o i l s (Hackinen 1986, Gardiner and S t a t h e r s 1979). Erdman and Ebens (1979) considered low P l e v e l s i n s p o i l m a t e r i a l t o be n o n - l i m i t i n g t o land reclamation w i t h A_;_ c r i s t a t u m as low P l e v e l s i n t h i s species (Heinrichs and Carson 1956) and other n a t i v e grasses on normal range s i t e s commonly occur (Church et a l . 1971, Knox and Watkins 1958). Low herbage P l e v e l s are of a concern w i t h ruminant n u t r i t i o n where l e s s than 0.13 t o 0.14% i s considered inadequate ( C a l l et a l . 1978, Butcher e t a l . 1979). The Ca:P r a t i o i n animal n u t r i t i o n i s w e l l recognized and values between 1:1 and 7:1 i n the feed are considered s a t i s f a c t o r y (NRC 1984). Some Ca:P r a t i o s i n the legumes samples exceeded these l e v e l s . Erdman and Ebens (1979) suggest t h a t P s u p p l i e d as bone meal, a common p r a c t i c e i n c a t t l e o p e r a t i o n s , could become common p r a c t i c e i n l i v e s t o c k operations on mine s p o i l . K l e v e l s were s i g n i f i c a n t l y higher i n legumes than grasses, i n d i c a t i v e of K r i c h s o i l s (McNaught 1958); i n h e r e n t l y h i g h l e v e l s of exchangeable K i n mine s p o i l are not uncommon. Many legume samples, however, were found t o be s t i l l l e s s than the 1.5% d e f i c i e n t l e v e l ( U l r i c h and Ohki 1966) . Aj_ c i c e r samples had the hig h e s t K co n c e n t r a t i o n s , averaging 2.74%, and some Aj_ c i c e r samples exceeded the maximum t o l e r a b l e f o r c a t t l e consumption, 3.0%. A l l grass species had mean K values i n a d e s i r a b l e range, averaging above 0.7% ( U l r i c h and Ohki 1966), w i t h B. inermis averaging the highest K l e v e l s , 1.85%, and |\_ rubra the lowest, 1.10%. Reclaimed s i t e s had not been f e r t i l i z e d w i t h Mg, hence, f o l i a g e values r e f l e c t inherent Mg a v a i l a b i l i t y . Mg d e f i c i e n c i e s r e p o r t e d l y occur i n grasses at herbage l e v e l s l e s s than 0.08% (Embleton 1966, B i c k o f f e t a l . 1972) and i n legumes a t l e v e l s l e s s than 0.3% (Rhykerd and Overdahl 1972, Nelson and Barber 1964). No d i f f e r e n c e s were observed between grass species and the average Mg l e v e l was 0.09%. The legumes, which r e q u i r e c o n s i d e r a b l e amounts f o r maximum growth (Smith and Dobrenz 1982), appear t o co n t a i n marginal l e v e l s . Mg l e v e l s averaged 0.32% i n O^ v i c i a e f o l i a and 0.27% i n M_i. s a t i v a ; h i g h e s t l e v e l s were found i n A^ . c i c e r . 0.44%. The a p p l i c a t i o n of K f e r t i l i z e r may have c o n t r i b u t e d t o low Mg l e v e l s i n the legumes ( B i c k o f f et a l . 1972). Many samples, p a r t i c u l a r l y i n the grasses, had Mg values l e s s than 0.20%, a c r i t i c a l l e v e l f o r d e t e r r i n g hypomagnesia (grass tetany) i n ruminants (Kubota 1981). High Ca and p r o t e i n i n t a k e can aggravate the s e v e r i t y of Mg d e f i c i e n c y and increase Mg requirements (Scott 1972). Grass tetany can a l s o be a s s o c i a t e d with r a t i o s of K t o Ca and Mg, on a m i l l i e q u i v a l e n t per kilogram b a s i s , g r e a t e r than 2 (Grunes et a l . 1970). Most r a t i o s i n the legumes and grasses sampled were l e s s than 2, t h e r e f o r e , hypomagnesia i n c a t t l e g r a z i n g on these s i t e s i s u n l i k e l y . Mean Ca l e v e l s i n grasses were 0.24%, lower than those recommended by Chapman (1966) where d e f i c i e n c y symptoms i n a v a r i e t y of grasses occurs a t values l e s s than 0.35%. No d i f f e r e n c e s between grass species were observed. Ca l e v e l s i n legumes were w i t h i n the d e s i r e d range f o r optimum p l a n t growth; IL s a t i v a had s i g n i f i c a n t l y higher Ca l e v e l s (2.25 %) than A i c i c e r (1.27 %) and CK. v i c i a e f o l i a (1.45%). 2.1.3.2 MICRONUTRIENTS Table 2.2 provides the l e v e l s of s e v e r a l m i c r o n u t r i e n t s i n legumes and grasses observed i n 1985. There are some common m i c r o n u t r i e n t d e f i c i e n c i e s a s s o c i a t e d w i t h a l k a l i n e and calcareous s o i l , such as Fe, Mn, A l , Zn, and B (Lucas and Knezek 1972, Dijkshoon and VanWijk 1967). Trace element l e v e l s i n herbage are g e n e r a l l y more s p e c t a c u l a r l y i n f l u e n c e d by s p o i l mineralogy than macronutrients (Fleming 1973); however, L a v k u l i c h e t a l . (1975) analyzed n a t i v e v e g e t a t i o n on one of the I n g e r b e l l e waste dumps and observed s i m i l a r elemental composition t o those of adjacent unmined s i t e s . 26 Table 2.2 Micronutrient Levels i n Foliage ELEMENT LEVELS IN FOLIAGE FROM RECLAIMED SITES Grasses (n=39) Legumes (n=71) X range X range SUFFICIENT CONCENTRATIONS IN MATURE LEAF TISSUE FOR PLANT HEALTH * Grasses Legumes BEEF CATTLE REQUIREMENTS ** Acceptable Range Fe (mg/kg) 41 a 15-208 68 b 33-215 20-250 30-250 50-500 Mn (mg/kg) 27 10-70 34 12-143 15-100 20-500 20-50 Cu (mg/kg) 8 a 4-29 16 b 7-62 >5 5-20 4-10 Zn (mg/kg) 11 a 3-23 19 b 7-35 15-70 25-150 20-100 B (mg/kg) 12 10-20 13 10-110 5-25 20-100 -Mo (mg/kg) 3 a 0.9-7.8 23 b 4-138 0.3-5 0.1-5 >0.5 Cu:Mo 2.8 a 0.8-8.3 1.4 b 0.1-6.6 - - >4:1 Sources: * Bickoff et a l . 1972; Jones 1972; Shetron 1983; Gupta 1979; Chapman 1966; Rhykerd and Overdahl 1972; Nelson and Barber 1964; Pendias and Pendias 1985; Manitoba Provincial S o i l s Testing Lab 1982. ** National Research Council 1984; Agriculture Canada and Province of B.C. 1981; Bickoff et a l . 1972; Jones 1972; Miltimore and Mason 1971; Rhykerd and Overdahl 1972; Pope 1971. ab i d e n t i f i e s s i g n i f i c a n t differences (Mann-Whitney U Test, p<0.05) between legumes and grasses Manganese d e f i c i e n c i e s , o f t e n a s s o c i a t e d w i t h w e l l - d r a i n e d , calcareous s o i l s ( B i c k o f f et a l . 1972), were not r e f l e c t e d i n f o l i a g e sampled i n 1985 (Table 2.1); legume Mn l e v e l s were w i t h i n t h a t recommended by Jones (1972) . Zn and Fe l e v e l s were lower than those recommended. Highest Zn and Fe values were obtained i n the legumes; no d i f f e r e n c e s between legume species was observed. The a c q u i s i t i o n of Fe may be c r i t i c a l l y important at the onset of N f i x a t i o n i n legumes (Brown and J o l l e y 1986) and Fe l e v e l s of less than 50 ppm considered d e f i c i e n t i n M_j_ sativa (Fleming 1973) . Values obtained must be evaluated with the consideration that Fe and Mn s o i l contamination i s a factor of greater s i g n i f i c a n c e than with other elements (Bickoff et a l . 1972). I t has generally been found that coarse-textured, sandy s o i l s low i n organic matter are d e f i c i e n t i n B for crops with high requirements, such as M^ . sativa (Tisdale and Nelson 1975) . Boron values obtained i n 1985 did not d i f f e r between grasses and legumes, and were within the range recommended for plant health (Table 2.1) . Copper d e f i c i e n c i e s reportedly occur on calcareous (Lucas and Knezek 1972) and coarse textured s o i l s (Kubota 1983). Sampling by Lavkulich et a l . (1975), revealed Cu was generally higher i n the Ingerbelle waste rock mine s p o i l than the background s o i l s but there was a large v a r i a b i l i t y . Foliage content of Cu i s usually influenced by the available Cu supply (Bickoff et a l . 1972); however, the higher s p o i l Cu was not r e f l e c t e d i n f o l i a g e Cu l e v e l s observed i n 1985. Cu l e v e l s were s u b s t a n t i a l l y higher i n the legumes as opposed to grasses, and were within the ranges recommended for plant health and c a t t l e n u t r i t i o n (Table 2.1 and 2.2) . The only element found to be s i g n i f i c a n t l y higher i n mine s p o i l 28 v e g e t a t i o n than c o n t r o l samples from the 1985 sampling was Mo. Legume Mo l e v e l s averaged above those recommended f o r c a t t l e consumption. Of the legumes sampled, M_j_ s a t i v a had the lowest Mo co n c e n t r a t i o n s , 13 ppm; CK. v i c i a e f o l i a and A^ . c i c e r had the highest Mo l e v e l s , 67 and 45 ppm, r e s p e c t i v e l y . Hackinen (1986), studying Mo l e v e l s on copper mine t a i l i n g s i n southern B.C., a l s o found 0. v i c i a e f o l i a t o have s i g n i f i c a n t l y higher Mo l e v e l s than Medicago; however, Mo l e v e l s i n t h a t study were s u b s t a n t i a l l y higher, averaging 304 ppm f o r Onobrychis and 141 mg/kg f o r Medicago. As i n the Hackinen study, the grasses from the I n g e r b e l l e waste rock dumps had lower Mo l e v e l s r e l a t i v e t o the legumes w i t h no d i f f e r e n c e s between speci e s . Legumes, p a r t i c u l a r l y M e l i l o t u s s p e c i e s , g e n e r a l l y accumulate more Mo than grasses (Munshower and Newman 1978, Kubota 1975, Allaway 1977). Imbalances of n u t r i e n t elements on mine s p o i l may produce problems. D i e t a r y imbalances of Cu and Mo are c r i t i c a l t o g r a z i n g ruminants (Underwood 1977) and a r a t i o g r e a t e r than 2:1 of Cu:Mo i s recommended (M i l t i m o r e and Mason 1971). R a t i o s can be i n f l u e n c e d by season, p l a n t s p e c i e s , and a v a r i e t y of s i t e c h a r a c t e r i s t i c s (Kretschmer and A l l e n 1956, Bardshad 1951, Munshower and Neuman 1978) . F o l i a g e Mo l e v e l s tend t o increase w i t h age of p l a n t (Bardshad 1951) where f o l i a r copper d e c l i n e s w i t h advancing m a t u r i t y ( P i p e r and Beckwich 1949, Munshower and Neuman 1978). As Mo a v a i l a b i l i t y increases w i t h i n c r e a s i n g pH, a c i d forming f e r t i l i z e r s , such as ammonium sulphate have been shown t o reduce Mo concentration i n herbage (Williams and Thornton 1972, Lopez-Jurado and Hannaway 1985, Bardshad 1951, Mulder 1954, Stout et a l . 1951) . P f e r t i l i z a t i o n may also increase Mo, thought to be the formation of a complex phospho-molybdate anion which i s absorbed more e a s i l y by the plant than the molybdate anion alone (Williams and Thornton 1972, Bardshad 1951, Stout et a l . 1951) and reduce Cu uptake by plants (Agriculture Canada 1981, Touchton et a l . 1980). Plant s e l e c t i o n i s a fea s i b l e option on the Ingerbelle waste rock dumps. Figure 2.4 i l l u s t r a t e s the ranges of Cu:Mo r a t i o s obtained for each species i n 1985 fol i a g e sampling. Small ranges i n values for some species, i l l u s t r a t e d i n Figure 2.4, i s r e f l e c t i v e of the lim i t e d sample s i z e . A l l legume species averaged Cu:Mo r a t i o s of les s than the recommended 2:1; however, M_j_ sativa had the highest r a t i o s , averaging 1.81. A l l other legumes sampled had s i g n i f i c a n t l y higher Mo l e v e l s than ML. sativa, and hence, low Cu:Mo r a t i o s averaging less than 1. There were no differences i n Cu:Mo r a t i o s between grasses from reclaimed s i t e s and the unmined s i t e s . Only the Agropyrons had s i g n i f i c a n t l y higher Cu:Mo r a t i o s , 3.58, than the other grasses, which averaged 1.87. 30 10 Figure 2.4 Cu:Mo Rat ios in Spec ies on Waste Rock Dumps C U / M O 0 I M A X I MIN -£ M E A N c r i t i c a l level Medicago Onobrych is Ast ragalus s a m p l e n u m b e r s - 5 0 11 6 Lotus G r a s s spp* Agropyron 4 7 17 I n c l u d e s Poa, Bromus, a n d F e s t u c a ' M i l t i m o r e a n d M a s o n 1971 2.2 SOIL FACTORS INFLUENCING REVEGETATION SUCCESS Mine s p o i l s commonly have chemical and p h y s i c a l c h a r a c t e r i s t i c s u n d e s i r a b l e f o r p l a n t growth. Analyses of I n g e r b e l l e s p o i l samples conducted i n the 1970's p r i o r t o f e r t i l i z a t i o n ( L a v k u l i c h et a l . 1975, MEMPR 1978) i n d i c a t e d a moderately a l k a l i n e s p o i l , low i n organic matter, and d e f i c i e n t i n N and P; the p h y s i c a l c h a r a c t e r i s t i c s , such as high coarse fragment content and low water h o l d i n g c a p a c i t y , were suggested as more l i m i t i n g t o growth than n u t r i e n t s t a t u s . To determine a more up-to-date p i c t u r e of the n u t r i e n t s t a t u s of the I n g e r b e l l e mine waste, composite s p o i l samples were c o l l e c t e d from v a r i o u s v e g e t a t i o n polygons i n 1985. As only one sample was analyzed from each v e g e t a t i o n type, r e l a t i o n s h i p s t o v e g e t a t i o n establishment could not be assessed; however, p o s s i b l e n u t r i e n t d e f i c i e n c i e s and other u n d e s i r a b l e c h a r a c t e r i s t i c s could be i d e n t i f i e d . General s p o i l c h a r a c t e r i s t i c s are summarized i n Table 2.3. Results from the analyses i n d i c a t e d a great range i n chemical p r o p e r t i e s as a consequence of the heterogeneous c h a r a c t e r i s t i c s t y p i c a l of mine waste (Fyles 1979, L a v k u l i c h e t a l . 1975, Gough and Severson 1983). F e r t i l i z a t i o n appears t o have increased n u t r i e n t l e v e l s , y e t low l e v e l s of N, P, and K l e v e l s s t i l l e x i s t . C o n s istent w i t h previous s t u d i e s , a high coarse fragment content and high bulk d e n s i t y were observed i n d i c a t i n g a p o s s i b l e impedance t o root growth. The i n t e r a c t i o n s of s p e c i f i c s o i l v a r i a b l e s on growth w i l l vary from landscape t o landscape (Murray 1977). Various t o p o g r a p h i c a l f a c t o r s such as exposure (Lloyd 1985, Walmsley 1977), aspect (Lloyd 1985) and slope (Clark 1969) have been found t o i n f l u e n c e p l a n t establishment and growth. The impacts of topography upon r e v e g e t a t i o n success on the I n g e r b e l l e waste rock dumps, however, was not evaluated i n 1985. 32 Table 2.3 General Overview of Spoil Characteristics ADJACENT 'UNMINED SITES REVEGETATED SITES SLOPE FACES FLAT SITES UNTREATED SPOIL DESIRABLE RANGE* pH (H20) pH (CaCl) EC mmhos/cm 6.6-6.9 5.9-6.2 0.12-0.28 7.9-8.3 7.1-7.4 0.32-1.16 7.6-8.4 6.8-7.5 0.32-1.32 7.6-8.3 6.8-7.4 0.40-2.55 6.0-7.0 <4.0 X Organic Matter 3.3-4.8 0.6-1.8 0.9-1.7 0.5-0.6 >3.0 X Total N N03-N ppm .060-.090 4-10 .015-.042 1-18 .005-.063 1-19 .001-.014 1-8 >20 AvaiI. P ppm 85-113 28-123 2-94 1-12 >40 K meq/100gm Mg meq/100gm Ca meq/100gm Na meq/100gm Total Cations meq/100gm 0.47-0.58 0.84-1.39 5.93-9.12 <0.05 7.22-11.07 0.31-0.65 1.38-1.93 9.72-18.30 0.05-0.09 11.52-20.39 0.19-0.46 0.81-4.80 12.21-16.08 0.06-0.08 14.52-19.40 0.22-0.33 1.03-2.44 7.25-14.80 0.04-0.07 8.49-17.17 >0.31 >0.82 XCoarse Frag. Bulk Dens.g/cm3 Texture 35-55 1.45 SiCL 63-100 1.33-2.05 SL 61-98 1.70-2.16 SL 63-100 SL * Desirable range for forage production from Neufeld (1980) 2.2.1 CHEMICAL CHARACTERISTICS A n a l y s i s of 1985 s o i l samples i n d i c a t e d s p o i l pH was near n e u t r a l i t y t o a l k a l i n e , ranging from 7.2 t o 8.4. A l k a l i n i t y may be a c o n t r i b u t i n g f a c t o r i n b o t a n i c a l composition. The more s t r o n g l y a l k a l i n e waste rock s p o i l may a l s o be l i m i t i n g v e g e t a t i o n p r o d u c t i o n i f Fe and Zn a v a i l a b i l i t y i s low as i n d i c a t e d by f o l i a g e l e v e l s . Morton (1976) determined t h a t the c a t i o n exchange c a p a c i t y was low but comparable t o t h a t of a normal sandy loam s o i l : around 6 meq/IOOgm (Murray 1977). Both s o i l exchangeable calcium and 33 magnesium l e v e l s range from moderate t o very h i g h . Crop production i s not considered t o be a f f e c t e d as long as Mg does not exceed Ca on an e q u i v a l e n t b a s i s ( D o l l and Lucas 1973). In g e n e r a l , the mine wastes tended t o have higher amounts of exchangeable Ca and r a t h e r s i m i l a r Mg and K than c o n t r o l samples ( L a v k u l i c h et a l . 1975). Even though s o i l a v a i l a b l e Mg may appear adequate, high l e v e l s of some elements, such as Ca, K, or Mo may decrease M^ s a t i v a Mg (Rhykerd and Overdahl 1972) . As M_j_ s a t i v a r e q u i r e s considerable amounts of Mg f o r maximum growth (Smith and Dobrenz 1982) and the exchangeable c a t i o n balance i s low w i t h respect t o Mg, the low f o l i a g e Mg may r e f l e c t l i m i t e d Mg a v a i l a b i l i t y . Much a t t e n t i o n has been given t o s o i l n u t r i e n t s t a t u s i n the reclamation f i e l d . Increases i n herbage y i e l d , r oot y i e l d and N content of herbage have been observed on reclaimed s p o i l through high N a p p l i c a t i o n s (WoodMansee et a l . 1979, Palmer e t a l . 1986). Legumes, however, r e p o r t e d l y provide a more c o n s i s t e n t and evenly d i s t r i b u t e d supply of N (Palmer e t a l . 1986). S p o i l a n a l y s i s i n 1985 i n d i c a t e d very low N and P l e v e l s and moderate K l e v e l s on the untreated I n g e r b e l l e waste rock. S o i l n i t r a t e - N l e v e l s i n 1985 samples were low i n the untreated s p o i l , f e r t i l i z e d s p o i l , and undisturbed s i t e s sampled. Highest l e v e l s were observed on those s i t e s most r e c e n t l y f e r t i l i z e d . Low n i t r a t e - N l e v e l s were not unexpected c o n s i d e r i n g the low l e v e l of N m i n e r a l i z a t i o n expected on the dry s p o i l s a t the time of sampling ( T i s d a l e and Nelson 1975). T o t a l N l e v e l s , although not r e f l e c t i v e of N a v a i l a b i l i t y , were perhaps more i n d i c a t i v e of N accumulation i n the f e r t i l i z e d s i t e s when compared t o the untreated waste; however, t h e r e was an extremely wide range i n t o t a l N valu e s . S o i l phosphorus i n the s o i l comes l a r g e l y from weathering of the mineral a p a t i t e , r e l e a s e through the a c t i o n of m y c o r r h i z a l f u n g i , or f e r t i l i z a t i o n . Adequate phosphorus l e v e l s are c r i t i c a l t o legume establishment (Harapiak and F l o r e 1984, Johnson e t a l . 1977, Vogel and Berg 1973) . On c o a l waste rock and g l a c i a l t i l l overburden of pH about 8 i n the west Kootenays, higher P a p p l i c a t i o n s have been shown t o r e s u l t i n s i g n i f i c a n t l y higher M. s a t i v a biomass, increased legume dominance, P content, and higher n i t r o g e n f i x a t i o n (Gardiner and Stathers 1979). In a study w i t h apparently adequate s p o i l P l e v e l s , McGinnies and C r o f t s (1986) found P a p p l i c a t i o n s c o n t i n u a l l y increased M;. s a t i v a y i e l d s . A v a i l a b l e phosphorus i n the I n g e r b e l l e samples was v a r i a b l e , from very low on untreated s i t e s , t o high on h e a v i l y f e r t i l i z e d s i t e s . F e r t i l i z a t i o n appears t o have increased n u t r i e n t l e v e l s yet there i s obvious v a r i a b i l i t y which i s l i k e l y due t o f e r t i l i z e r placement or p l a n t uptake (Table 2.3). Depending on s p o i l mineralogy, K d e f i c i e n c i e s are l e s s frequent. The 1985 samples indicated mostly moderate l e v e l s of exchangeable K. Ziemkievicz (1979) found that i f K influenced the botanical composition of the stand: the legumes had become d r a s t i c a l l y less abundant on reclaimed areas and deficiency symptoms were observed, possibly due to competition with the grasses for K. Although the Ingerbelle waste rock dumps have been f e r t i l i z e d with N and P, l e v e l s of these nutrients i n the s p o i l remain low and may have contributed to the low N concentrations i n f o l i a g e . These nutrient d e f i c i e n c i e s appear as possible contributors to revegetation f a i l u r e . With legumes having higher P and K requirements (Rhykerd and Overdahl 1972) and lower N requirements (Jones and Walters 1972) than grasses, the l e v e l and proportion of nutrients added i n f e r t i l i z e r may contribute s u b s t a n t i a l l y to grass:legume composition. Fyles (1979) working on very d e f i c i e n t coal s p o i l s i n the east Kootenays, found no s i g n i f i c a n t e f f e c t from N or P applications apparently due to moisture l i m i t a t i o n s . Through waste rock weathering or f e r t i l i z a t i o n , P may not necessarily increase i n a v a i l a b i l i t y on calcareous s o i l s due to immobilisation with Ca 2 + (Ziemkievicz 1979). D e t r i t a l decomposition can occur slowly on mine s p o i l s , immobilizing N and P; although f e r t i l i z a t i o n accelerates d e t r i t a l decomposition, long periods of maintenance f e r t i l i z a t i o n may be required (Ziemkievicz 1979, Shetron 1983). 2.2.2 PHYSICAL CHARACTERISTICS Most reclamation practices involve amelioration of the physical as well as chemical c h a r a c t e r i s t i c s of mine waste rock i n h i b i t i n g vegetation establishment (Murray 1977) ; however, because of the d i f f i c u l t problems with s p o i l heterogeneity and hence r e p r o d u c i b i l i t y of data, physical parameters are r a r e l y used alone to assess the p o t e n t i a l productivity of s p o i l s (Omodt et a l . 1975). The physical properties of waste material that are of a p a r t i c u l a r concern i n a reclamation program include: texture/stoniness, density/porosity, colour, and e r o d i b i l i t y (Michaud 1981). The 1985 survey indicated coarse fragment contents (>2mm) ranging from 63% to more than 95%. These r e s u l t s are comparable to those found by Morton (1976) which ranged from 74 to 90%. Problems occur with waste rock material because of the lack of s o i l size p a r t i c l e s , therefore, capping with a more suitable growth medium, such as t i l l , i s often required (Packer and Aldon 1978). The lower portion of the slope faces often have a higher coarse fragment as a r e s u l t of s i z e segregation through dumping (Murray 1981). Stoniness i s not a d i r e c t l i m i t a t i o n to growth (Knight 1967) and minespoils with a higher coarse fragment content may have a pr o d u c t i v i t y equal to or higher than pre-mine s o i l s (Ashby et a l . 1982). Smith et a l . (1976) reported that productivity was not se r i o u s l y reduced by up to 75% coarse fragments by weight i n minespoils. Berg and Barrau (1978) found the presence of coarse 37 fragments t o reduce r u n o f f and e v a p o r a t i o n l o s s i n c e r t a i n c a s e s . Morton (1976) c o n c l u d e d t h a t t h e a v a i l a b l e w a t e r h o l d i n g c a p a c i t y o f t h e waste r o c k s p o i l i s low (0.21 cm3/cm3) . When c o r r e c t e d f o r t h e 85% c o a r s e fragment c o n t e n t , AWSC was o n l y 0.03 cm p e r cm. Average sandy s o i l has an AWHC o f a p p r o x i m a t e l y 6% (Murray 1977). Morton (1976) d e t e r m i n e d t h a t p a r t i c l e d e n s i t y and minimum a e r a t i o n p o r o s i t y were comparable t o t h a t o f a normal sandy loam s o i l ( F r i e d and B r o e s h a r t 1977). B u l k d e n s i t y v a l u e s o b t a i n e d f o r f l a t s i t e s were h i g h , b u t c o n s i s t e n t w i t h Morton's (1976) r e s u l t s w h i c h ranged from 1.59 t o 1.98 gm/cm3. R e p r o d u c i b l e b u l k d e n s i t i e s c o u l d n o t be o b t a i n e d on t h e s l o p e f a c e s . Morton c o n c l u d e d t h a t , due t o t h e h i g h c o a r s e fragment c o n t e n t , i n t e r p r e t a t i o n o f comp a c t i o n from b u l k d e n s i t y v a l u e s was d i f f i c u l t . B u l k d e n s i t i e s i n n a t u r a l s o i l s a r e i n t h e o r d e r o f 1.5 g/m3 (Sims e t a l . 1984). The problems i n s p o i l r e c l a m a t i o n caused by compaction from heavy equipment (used f o r l e v e l l i n g ) have been r e c o g n i z e d (Omodt e t a l . 1975). B u l k d e n s i t y , t h e mass u n i t volume o f a m a t e r i a l , can i n d i c a t e s o i l i n f i l t r a t i o n and p e r m e a b i l i t y (Gee e t a l . 1978). H i g h l y compacted s p o i l s i n f l u e n c e p l a n t e s t a b l i s h m e n t by i n h i b i t i n g r o o t p e n e t r a t i o n and d e c r e a s e p o r e s p a c e f o r a i r and w a t e r ( M e i d i n g e r 1979). S u r f a c e s c a r i f i c a t i o n , whether t h r o u g h h a r r o w i n g o r r i p p i n g , t o l o o s e n 38 s u r f a c e m a t e r i a l can s e r v e t o b r e a k s u r f a c e c r u s t o r reduce c o m p a c t i o n , r e s u l t i n g i n overcoming m e c h a n i c a l impedance t o r o o t growth ( M i l l e r and G u t h r i e 1982) and c r e a t i n g f a v o u r a b l e m i c r o s i t e s f o r seed g e r m i n a t i o n (Michaud 1981). W i t h t h e e x c e p t i o n o f c a p p i n g s l o p e f a c e s w i t h o v e r b u r d e n t i l l , no att e m p t has been made t o overcome any p h y s i c a l impediments t o p l a n t growth on t h e I n g e r b e l l e waste r o c k dumps. Morton (1976) and L a v k u l i c h e t a l . (1975) n o t e d t h a t t h e p h y s i c a l c h a r a c t e r i s t i c s s u ch as c o m p a c t i o n and w a t e r h o l d i n g c a p a c i t y would be l i m i t i n g f a c t o r s t o p l a n t growth on some I n g e r b e l l e waste r o c k s i t e s . 2.3 EVALUATION OF REVEGETATION SUCCESS The p r o d u c t i v i t y approach t o a s s e s s i n g r e c l a m a t i o n s u c c e s s has a l i m i t e d a p p l i c a b i l i t y f o r d e t e r m i n i n g l o n g - t e r m s u c c e s s . E s t i m a t i o n o f v e g e t a t i o n c o v e r on I n g e r b e l l e waste r o c k dumps, i n d i c a t e d t h a t p r o d u c t i o n on any one s i t e was v a r i a b l e . A l t h o u g h f o r a g e p r o d u c t i o n i s easy t o measure, i t p r o v i d e s l i t t l e i n d i c a t i o n o f t h e q u a l i t y o f t h e s o i l o r how t h e m i n e s p o i l i s m a t u r i n g t o p r o v i d e l o n g - t e r m s u c c e s s o f t h e ecosystem (Munshower 1982). P r e d i c t i o n o f l o n g - t e r m s u c c e s s b e n e f i t s from t h e e v a l u a t i o n o f p l a n t growth and f u n c t i o n a l c a p a c i t y o f t h e e n t i r e l a n d s c a p e . The f u n c t i o n a l a n a l y s i s approach t o e v a l u a t i n g r e c l a m a t i o n s u c c e s s (Johnson 1980; Monenco Consultants 1983) i d e n t i f i e s the factors that i n t e r a c t to control the vegetation performance. This requires i d e n t i f i c a t i o n and measurements of the key factors, including topographic and s o i l parameters, to i d e n t i f y the functional properties of minespoil ecosystems. This approach also f i t s well into monitoring and management programs (Munshower and Fisher 1984). The background study i d e n t i f i e d both inherent and management factors possibly contributing to revegetation success. Key inherent c h a r a c t e r i s t i c s of the rock dumps included: - nitrogen and phosphorus: low s p o i l and f o l i a g e concentrations, even on f e r t i l i z e d s i t e s , indicated possible d e f i c i e n c i e s ; - magnesium: low f o l i a g e Mg concentrations indicated possible d e f i c i e n c i e s . Although s p o i l Mg appeared adequate, uptake of Mg may have been influenced by high s p o i l Ca l e v e l s ; - micronutrients: d e f i c i e n c i e s such as Fe and Zn may be influenced by a l k a l i n i t y of s p o i l material; and, - physical s p o i l c h a r a c t e r i s t i c s : coarse fragment content and compaction may be a f f e c t i n g water a v a i l a b i l i t y and root growth. A study was conducted i n 1986 i n an attempt to i d e n t i f y more c l e a r l y the key parameters influencing revegetation success by determining s p o i l differences between s i t e s which varied i n vegetation cover, and, by i d e n t i f y i n g s p o i l r e lationships to vegetation. Methods and r e s u l t s from the study are presented i n the following sections. 41 3.0 METHODS AND MATERIALS 3.1 SITE SELECTION To d e t e r m i n e t h e key s p o i l v a r i a b l e s i n f l u e n c i n g r e v e g e t a t i o n s u c c e s s , c a s e s t u d y a r e a s v a r y i n g i n v e g e t a t i o n p r o d u c t i o n , t o p o g r a p h y , and t r e a t m e n t were s e l e c t e d f o r f u r t h e r i n v e s t i g a t i o n . Based on t h e 1985 v e g e t a t i o n s u r v e y and a i r p h o t o i n t e r p r e t a t i o n , s i t e s d i f f e r i n g i n t o t a l v e g e t a t i o n c o v e r and c o m p o s i t i o n o f legumes were s e l e c t e d f o r c o m p a r i s o n . I n a d d i t i o n , s i n c e h i g h and low v e g e t a t i o n c o v e r p o l y g o n s c o u l d be i d e n t i f i e d w i t h i n each r e c l a i m e d s i t e , s a m p l i n g was con d u c t e d t o d e t e r m i n e s p o i l d i f f e r e n c e s between v e g e t a t i o n t y p e s w i t h i n s i t e s , as w e l l as t o compare between s i t e s . A d i s c u s s i o n o f t h e v e g e t a t i v e c h a r a c t e r i s t i c s o f t h e t e s t c a s e a r e a s i s p r o v i d e d i n S e c t i o n 4.1. L l o y d (1985) i d e n t i f i e d t h r e e t o p o g r a p h i c a l c l a s s e s f o r e v a l u a t i o n and p l a n n i n g o f d i s t u r b e d l a n d i n a s o u t h e r n i n t e r i o r B.C. copper mine: f l a t a r e a s , w i t h a 0 t o 4 degree s l o p e such as a r o c k dump t e r r a c e ; s l o p i n g a r e a s , o f 25 degrees o r g r e a t e r such as a r o c k dump f a c e ; and u n d u l a t i n g a r e a s , where to p o g r a p h y i s v a r i e d . Both f l a t and s l o p i n g s i t e s were s e l e c t e d from t h e I n g e r b e l l e dumps i n an a t t e m p t t o i d e n t i f y t h e s p o i l f a c t o r s , s p e c i f i c t o a s i t e t y p e , w h i c h may be i n f l u e n c i n g p l a n t growth s p e c i f i c t o each s i t e t y p e . To determine the i n f l u e n c e of management on re v e g e t a t i o n success, reclamation s i t e s d i f f e r i n g i n treatment (overburden capping and f e r t i l i z a t i o n ) were a l s o s e l e c t e d . In t o t a l , two s l o p i n g s i t e s and f o u r f l a t s i t e s were chosen (Table 3.1). Table 3.1 S i t e H i s t o r i e s FERTILIZER HISTORY SITE VEGETATION SURFACE YEAR NUMBER TOTAL kg/ha LAST YEAR SITE TYPE TYPES MATERIAL SEEDED APPLIC. N-P2O5-K20 FERTILIZED WASTE DUMP 1 FLAT H,L # TILL/WASTE ROCK 1979 WASTE DUMP 2 FLAT M WASTE ROCK 1976 WASTE DUMP 3 FLAT H,L TILL/WASTE ROCK 1976 WASTE DUMP 3B FLAT H.L TILL/WASTE ROCK 1976 3 585-135-100 1984 5* 650-250-150 1979 5* 650-250-150 1979 0 3450 FACE SLOPE H,M,L TILL/WASTE ROCK 1979 3 585-135-100 1984 3150 FACE SLOPE H,M,L TILL/WASTE ROCK 1976 5* 650-250-150 1979 * F e r t i l i z e d t w i c e i n 1977: once i n s p r i n g , once i n f a l l ** As of sampling date i n 1986 # D e n s i t y of v e g e t a t i o n cover: H - hi g h ; M - moderate; L - low Overburden t i l l was a p p l i e d t o a l l s l o p i n g s i t e s i n the reclamation program; however, as slope l e n g t h and amount of overburden a p p l i e d v a r i e d between s i t e s , t i l l coverage throughout the le n g t h of slope a l s o v a r i e d between s i t e s . The h i s t o r y of f e r t i l i z e r treatment d i f f e r s between the two s l o p i n g s i t e s . The slope s i t e s chosen f o r i n v e s t i g a t i o n i n c l u d e d : 43 S3450 - i n i t i a l l y revegetated i n 1979 w i t h 2 follow-up f e r t i l i z e r a p p l i c a t i o n s ; and S3150 - revegetated i n 1976 w i t h 4 follow-up f e r t i l i z e r a p p l i c a t i o n s . Overburden was s p o r a d i c a l l y a p p l i e d t o the surfaces of the f l a t s i t e , only i n areas of heavy t r u c k t r a v e l . The treatment of the f l a t s i t e s vary i n terms of t o t a l f e r t i l i z e r or overburden a p p l i e d . The f l a t s i t e s chosen f o r i n v e s t i g a t i o n i n c l u d e d : WD1 - capped and revegetated i n 197 9 w i t h 2 follow-up a p p l i c a t i o n s of f e r t i l i z e r ; WD3 - capped w i t h overburden and revegetated i n 1976 w i t h 4 follow-up f e r t i l i z e r a p p l i c a t i o n s ; WD2 - s i m i l a r f e r t i l i z a t i o n treatment as WD3; however, no overburden capping; and WD3B - capped w i t h overburden and seeded ( a c c i d e n t a l l y ) i n 1976; however, no f e r t i l i z a t i o n . Waste Dumps 1 and 3 are comparable i n age and treatment t o Slope Faces 3450 and 3150 and were s e l e c t e d t o compare between s i t e types. Waste Dumps 2 and 3B, however, were s e l e c t e d t o compare t o the other f l a t s i t e s because of t h e i r unique reclamation treatment. 44 3.2 SAMPLING DESIGN Twelve p l o t s , 16m2, were randomly l o c a t e d w i t h i n each v e g e t a t i o n type. W i t h i n the p l o t s , s o i l and f o l i a g e samples were c o l l e c t e d , and v e g e t a t i o n biomass production 1 measured (Table 3.2). Twelve overburden and twelve waste rock samples were s u b j e c t i v e l y c o l l e c t e d as untreated c o n t r o l s . Untreated s p o i l samples were c o l l e c t e d t o compare between: 1) reclaimed and unreclaimed s p o i l , and 2) waste rock and overburden c h a r a c t e r i s t i c s . E v a l u a t i o n of the p h y s i c a l c h a r a c t e r i s t i c s of the s p o i l was l i m i t e d as samples were c o l l e c t e d from s t o c k p i l e sources and not subjected t o compaction and p a r t i c l e segregation which may occur during r e c l a m a t i o n . As mine s p o i l s are extremely heterogenous (Sims et a l . 1984, F y l e s 1979) samples were s u b j e c t i v e l y c o l l e c t e d w i t h the purpose of determining the range of c h a r a c t e r i s t i c s , not t o determine average valu e s . 1985 v e g e t a t i o n survey d i d not i n c l u d e biomass measurements. 45 Table 3.2 S o i l and F o l i a g e Samples C o l l e c t e d SITE VEGETATION TYPE/ PRODUCTIVITY M. s a t i v a FOLIAGE SAMPLES A. c r i s t a t u m F. rubra SOIL SAMPLES FLAT SITES WD1 HIGH 12 - 12 12 LOW 12 - 12 12 WD 2 MODERATE 12 12 - 12 WD3 HIGH 12 12 12 12 LOW 12 12 12 12 WD3B HIGH 12 12 12 LOW - - - 12 SLOPING SITES 3450 HIGH 12 12 12 12 MODERATE 12 12 12 12 LOW - 12 - 12 3150 HIGH 12 - 12 12 MODERATE - 12 - 12 LOW - - - 12 UNRECLAIMED OVERBURDEN - - - 12 WASTE ROCK - - - 12 TOTAL 108 84 96 180 3 . 3 VEGETATION PRODUCTION Measurements of t o t a l above ground biomass production were made i n a 0.25 m2 p l o t s u b j e c t i v e l y placed w i t h i n the 4x4 meter p l o t at a re p r e s e n t a t i v e l o c a t i o n . F o l i a g e was d r i e d at 70°C f o r 24 hours then weighed. 3.4 FOLIAGE SAMPLING AND ANALYSIS P l a n t t i s s u e samples were c o l l e c t e d from each p l o t . Both legume and grass samples were c o l l e c t e d as they d i f f e r i n t h e i r n u t r i e n t legume, and A^ . cristatum and F\_ rubra, representing the dominant grasses, were selected for f o l i a r analysis. Not a l l species were av a i l a b l e i n each vegetation type thus l i m i t i n g comparisons. Samples were clipped i n the l a t t e r h a l f of June 1986. Grasses were clipped approximately 5 cm above ground l e v e l p r i o r to seed head emergence. ML. sativa was clipped 1/3 of the way down the plant, p r i o r to 1/10 bloom as recommended by Jones (1972). The c o l l e c t e d samples were placed i n brown paper bags, dried f o r 24 hours at 70°C, then ground i n a Braun coffee grinder. P r i o r to analysis, the fo l i a g e was again ovendried for 3 hours at 70°C. The Parkinson and A l l e n (1975) wet oxidation method was used for digestion of the f o l i a g e . Elemental l e v e l s i n the digest solution was then determined using flame atomic absorption (A.A.) spectroscopy. Solutions were analyzed for Ca, Mg, K, Fe, Mn, Cu, Zn, and Al l e v e l s . The ICP unit (Inductively Coupled Argon Plasma Emission Spectrophotometer) was also used to determine Mo l e v e l s and confirm A.A.levels i n the digest solutions. A Technicon Auto Analyzer II was used to c o l o r i m e t r i c a l l y determine N and P l e v e l s . M. sativa samples from WD3 only were analyzed for t o t a l s u l f u r by Leco (Bremner and Tabatabai 1971) and Boron by the Azomethine-H method. As l e v e l s obtained were not within deficiency ranges, and no differences between vegetation polygons of the s i t e were observed, no further S or B analyses was conducted on remaining samples. 3.5 SOIL SAMPLING AND ANALYSIS S o i l samples were c o l l e c t e d from the top 0-2 0 cm of the waste rock dump surfaces at the center of each 16m2 p l o t . Compaction and coarse fragment content of the s p o i l discouraged sampling at lower depths. The samples were a i r dried and passed through a 2 mm sieve. Due to sandy texture and undeveloped structure of material, crushing of aggregates was not necessary. Weighing of the coarse as well as f i n e material (<2 mm) gave an estimate of percent coarse fragment content. S o i l texture and colour was evaluated i n the f i e l d . Bulk density was calculated from an additional s o i l sample c o l l e c t e d at the same locati o n . On a l l s o i l samples, laboratory analyses included pH, t o t a l N, t o t a l C, a v a i l a b l e P, and exchangeable cations. Table 3.3. i d e n t i f i e s methods employed for each analysis. On a s e l e c t i v e number of samples, additional analyses included: Inorganic C, Cation Exchange Capacity, Total S, and Olsen's Available P. Samples were ground to 100 mesh p r i o r to Total and Inorganic C and S analysis. Due to the calcareous nature and the low organic content i n the s p o i l samples, determination of organic carbon was expected to be problematic (Black et a l . 1965). On selected samples, determination of organic carbon was attempted through c a l c u l a t i n g the difference 48 between the percent Leco t o t a l carbon and the percent i n o r g a n i c carbonate carbon determined by a Coulometrics Carbon Dioxide Coulometer (Tiessen et a l . 1983). However, r e s u l t s were not s a t i s f a c t o r y due t o the v a r i a t i o n i n accuracy of C determination between the Leco and Coulometer methods and the v a r i a b i l i t y i n C l e v e l s i n samples. R e s u l t s are summarized i n Appendix C. Table 3.3 S o i l A n a l y s i s Methods Used S o i l P r o p e r t y Method Reference PH i n H 20 and .01 M C a C l 2 (2:1 s o i l : l i q u i d ) B l ack et a l . 1965 T o t a l C Leco, dry-combust i o n Bremner and Tabatabai 1971 C03-C Coulometrics COj Coulometer T i e s s e n et a l . 1983 T o t a l N Semi-micro K j e l d a h l , c o l o u r i m e t r i c autoanalyzer Jackson 1958; Black et a l . 1965 A v a i l a b l e P Bray 1 a c i d e x t r a c t , NH^F Olsen b i c a r b o n a t e e x t r a c t Watanable & Olsen 1965 Olsen et a l . 1954 Exchangeable C a t i o n s & CEC Displacement by NH^OAc Chapman 1965 To t a l S Leco, dry-combust i o n Bremner and Tabatabai 1971 Texture Hand t e x t u r i n g USDA 1951 Bulk D e n s i t y F i e l d V o l u m e t r i c K l i n k a 1981 Colour Munsell c o l o u r c h a r t USDA 1951 Water R e t e n t i o n Porous p l a t e e x t r a c t i o n , 1/3 and 15 bar Richards 1965; Hi H e r 1980 In a d d i t i o n t o t o t a l c a t i o n s , CEC was evaluated on overburden and waste rock samples f o r comparative purposes. In a l l cases, t o t a l e x t r a c t a b l e c a t i o n s exceeded the CEC due t o high l e v e l s of CaC03 i n the s p o i l . CEC was not determined on a l l samples as CEC i n unweathered s p o i l m a t e r i a l w i l l be dynamic throughout the weathering of the m a t e r i a l and hence bear l i t t l e r e l a t i o n s h i p t o the n u t r i e n t h o l d i n g p o t e n t i a l of the s p o i l m a t e r i a l . T o t a l S was determined on WD3 s p o i l and f o l i a g e samples and on the overburden and waste rock c o n t r o l samples. As the WD3 f o l i a g e S l e v e l s were not i n a d e f i c i e n c y range, and no d i f f e r e n c e s were observed between s p o i l S from high and low production areas, no f u r t h e r analyses on remaining samples were conducted. These r e s u l t s are summarized i n Appendix C. To determine s o i l a v a i l a b l e P on calcareous s o i l s , the Olsen's bicarbonate e x t r a c t a n t (Olsen et a l . 1954) i s g e n e r a l l y recommended (Yee 1979) . Both the Bray (Bray and Kurtz 1945) and the Olsen methods were attempted on a s e l e c t number of samples f o r comparison purposes: s i x untreated c o n t r o l samples and 24 samples from the WD3 reclaimed s i t e . R e s u l t s are summarized i n Appendix C. The Bray method e x t r a c t e d approximately three times more P than the Olsen's method on these mine s p o i l samples. As the Olsen P l e v e l s obtained were considered too low t o be u s e f u l f o r s t a t i s t i c a l a n a l y s i s , and c o n s i d e r i n g t h a t the 24 samples from the WD3 reclaimed f l a t s i t e i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e s between v e g e t a t i o n production polygons, or r e l a t i o n s h i p t o f o l i a g e P, the Bray e x t r a c t a n t (1:10) was used f o r the remaining samples. 3.6 DATA ANALYSIS O r g a n i z a t i o n o f d a t a s e t s and s t a t i s t i c a l a n a l y s e s t h a t were used i n t h i s s t u d y i s i l l u s t r a t e d i n F i g u r e 3.1. A l l s t a t i s t i c a l a n a l y s i s was c a r r i e d out on a PC-microcomputer. Data was e n t e r e d on Lotus-123 s p r e a d s h e e t s and a n a l y z e d u s i n g t h e SPSS-PC package. D e s c r i p t i v e s t a t i s t i c s such as mean, maximum, minimum, and s t a n d a r d d e v i a t i o n s were c a l c u l a t e d on a l l d a t a s e t s and s u b - s e t s . The d i f f e r e n c e s between two s e t s o f d a t a were d e t e r m i n e d u s i n g t h e Mann-Whitney U T e s t s o f S i g n i f i c a n c e ( S i e g e l 1956). A l l c o m b i n a t i o n s were r e - r u n f o r s i g n i f i c a n c e u s i n g ANOVA, homogeneity o f v a r i a n c e , and Student-Newman-Kuels t e s t s as p a r a m e t r i c s t a t i s t i c s a r e g e n e r a l l y more p o w e r f u l f o r c o m p a r i s o n s . C o n f i d e n c e l e v e l s were s e t a t 0.95 f o r a l l c a s e s . D i f f e r e n c e s i d e n t i f i e d i n t h e f o l l o w i n g S e c t i o n s were found t o be s i g n i f i c a n t t h r o u g h b o t h p a r a m e t r i c and n o n - p a r a m e t r i c a n a l y s e s . Spearman's c o r r e l a t i o n s were c a r r i e d o u t t o d e t e r m i n e p o s s i b l e r e l a t i o n s h i p s between each v a r i a b l e . C o r r e l a t i o n s were r u n on a l l d a t a s e t s . R e s u l t s a r e summarized i n C h a p t e r 5, i l l u s t r a t i n g r e l a t i o n s h i p s between v e g e t a t i o n , s p o i l , and f o l i a g e . I n a d d i t i o n , key v a r i a b l e s , as i d e n t i f i e d from s i g n i f i c a n c e t e s t s and c o r r e l a t i o n s , were used t o r u n m u l t i p l e r e g r e s s i o n a n a l y s i s i n an a t t e m p t t o c o n s t r u c t e q u a t i o n s p r e d i c t i v e o f v e g e t a t i o n r e sponse w i t h v a r y i n g s i t e c o n d i t i o n s . Figure 3.1 Organization of Data Sets and S t a t i s t i c s 51 D I F F E R E N C E S B E T W E E N TEST CASE A R E A S C H A P T E R 4 RESULTS E N T I R E DATA S E T U N T R E A T E D S P O I L 2 R E C L A I M E D A R E A S 3 2 S P O I L T Y P E S 2 S I T E T Y P E S W A S T E O V E R B U R D E N F L A T S L O P I N G R O C K S I T E S 4 S I T E S 4 WD1 W D 3 W D 3 B W D 2 3 4 5 0 3 1 5 0 * 5 5 5 5 5 H H H M H H L L L M M 13 V E G E T A T I O N T Y P E S L L RELATIONSHIPS B E T W E E N P A R A M E T E R S C H A P T E R 5 R E S U L T S R E C L A I M E D A R E A S 7 L I N E A R R E L A T I O N S H I P S S P A T I A L R E L A T I O N S H I P S 8 4 V E G E T A T I O N T Y P E S F L A T S I T E S 7 S L O P I N G S I T E S 7 M2 a W D l W D 3 W D 3 B W D 2 3 4 5 0 3 1 5 0 7 7 7 7 7 7 H H H M H H _ L _ L _ L M L M L indicates data sets; descriptive s t a t i s t i c s done for each set H, M, L indicates production vegetation types for each s i t e Mann-W U tests between untreated and reclaimed samples Mann-U U tests between sp o i l types Mann-W U tests between s i t e types 2 Way ANOVA: s i t e types/sites and s i t e types/vegetation types Mann-W U tests between s i t e s 2 Way ANOVA: sites/vegetation types 1 Way ANOVA between vegetation types for each s i t e Mann-W U tests between a l l pairs of spo i l and vegetation types 1 Way ANOVA between high, mod., and low vegetation types of different s i t e s Correlation and multiple regression analysis on each data set Cluster analysis of data from reclaimed s i t e s into four vegetation groups Mann-W U tests between vegetation groups Multiple regression analysis on each group data set Multivariate c l u s t e r analysis by the average distance method (Ward 1963) was used to re-categorize a l l plo t s into four vegetation groups. Mann-Whitney U-Tests were used to i d e n t i f y s i g n i f i c a n t differences between the groups and confirm the key variables. Multiple regression analysis was also used to i d e n t i f y r e l a t i o n s h i p s between s p o i l and vegetation variables i n each vegetation group. 53 4.0 DIFFERENCES IN REVEGETATION SUCCESS AND SPOIL CONDITIONS BETWEEN SITES One of the o b j e c t i v e s of the t e s t case study was t o i d e n t i f y which s p o i l f a c t o r s , i f any, were s i g n i f i c a n t l y d i f f e r e n t between s e l e c t e d v e g e t a t i o n types, and, attempt t o determine i f d i f f e r e n c e s were a r e s u l t of inherent s p o i l v a r i a b i l i t y or a r e s u l t of f e r t i l i z e r management. This s e c t i o n c h a r a c t e r i z e s the v e g e t a t i o n types of each of the s i t e s chosen f o r i n v e s t i g a t i o n , and then summarizes the d i f f e r e n c e s i n s p o i l i nherent and f e r t i l i t y p r o p e r t i e s between each s i t e . 4.1 VEGETATIONAL DIFFERENCES BETWEEN SITES Three v e g e t a t i o n types were i d e n t i f i a b l e on most of the reclaimed s i t e s and were c a t e g o r i z e d as f o l l o w s : 1) high producing areas w i t h a t o t a l f o l i a r cover of g r e a t e r than 45% and a composition of legumes g r e a t e r than 50%; 2) moderate producing areas w i t h a f o l i a r cover of greater than 3 0% and a composition of grasses g r e a t e r than 75%; and 3) low producing areas w i t h a f o l i a r cover of l e s s than 30% c o n s i s t i n g of e i t h e r legume, grass, or mixed cover. 54 There was a p r e d i c t a b l e v e g e t a t i o n p a t t e r n on the slopes (Figure 4.1) : high producing areas of dense legume cover were u s u a l l y on the upper o n e - t h i r d p o r t i o n s of the slopes where overburden depth was g r e a t e s t ; - biomass y i e l d and species d i v e r s i t y decreased w i t h slope l e n g t h ; grass cover was dense i n the middle of the slope; and, on the lower slope p o s i t i o n s , where overburden coverage was minimal, there was very l i t t l e v e g e t a t i o n e s t a b l i s h e d . On the f l a t s i t e s , s i m i l a r high and low production areas were i d e n t i f i a b l e , but s p o r a d i c a l l y l o c a t e d . U n l i k e the s l o p i n g s i t e s , 3450 and 3150, percent composition of legumes d i d not d i f f e r between the high and low producing areas of WD3 and WD1 (Figure 4.2) . F o l i a r cover and biomass was not s i g n i f i c a n t l y d i f f e r e n t between the p r o d u c t i v e areas of the s i t e s which had been capped w i t h overburden and f e r t i l i z e d , w i t h the exception of WD1, the newer f l a t s i t e (Table 4.1). R e l a t i v e t o WD1, grass cover was s i g n i f i c a n t l y higher on the o l d e r , more h e a v i l y f e r t i l i z e d s i t e WD3. T h i s t r e n d was a l s o found between the s l o p i n g s i t e s ; however, Figure 4.1 Vegetation Types on Sloping Sites % COVER 100h 3450-H 3450-M 3450-L 3150-H 3150-M 3150-L S I T E S LEGUMES H GRASSES WM DETRITUS Figure 4.2 Vegetation Types on Flat Sites % COVER 100F 80 h 56 Table 4.1 Percent Cover of Species and Biomass Y i e l d On High Production Areas FLAT SITES SLOPING SITES UD3B UD1 WD3 3450 3150 M. sativa 12 b 12 b 33 ab 50 a 36 ab 0. v i c i a e f o l i a 1 b 33 a 3 b 2 b 3 b A. cicer 47 a 0 b 5 b <1 b 6 b LEGUMES 60 a 45 b 41 b 52 ab 44 b (STD) (11) (15) (12) (12) (13) A. cristatum 2 b 1 b 8 a <1 b 3 b A. trichophorum 5 a 0 b 2 b 6 a 10 a F. rubra 4 b 4 b 10 a 6 ab 9 a B. inermis 1 b 0 b 0 b 4 a 0 b P. comoressa 2 a 3 a 4 a 10 a 6 a P. Dratensis 3 a 2 a 0 a 4 a 4 a GRASSES 18 ab 10 b 24 a 27 a 32 a (STD) (12) (7) (8) (6) (6) FOLIAR COVER 77 a 55 b 65 ab 79 a 76 a (STD) (4) (11) (14) (12) (10) BIOMASS* 5.11 a 2.78 b 4.49 a 4 .61 a 5.13 a (STD) (1.06) (.63) (1.33) ( .64) (1.58) * above ground biomass, dry matter y i e l d (T/ha) s i g n i f i c a n t differences (p<0.05) between values in a column are indicated by different l e t t e r s d i f f e r e n c e s were not s i g n i f i c a n t . The s i t e WD3B, which was capped w i t h overburden but not f e r t i l i z e d , had the highest cover of legumes. Higher composition of legumes i n mixed stands i s commonly observed at lower f e r t i l i z a t i o n l e v e l s (Rowell 1978, Macyk 1974). Species d i f f e r e n c e s were evident between s i t e s . M^ . s a t i v a was c o n s i s t e n t l y the dominant legume species on the s l o p i n g s i t e s , whereas, the dominant legume on the f l a t s i t e s v a r i e d between M. s a t i v a . O. v i c i a e f o l i a . and L c i c e r (Table 4.1). Grass species e s t a b l i s h e d were s i m i l a r between the f l a t and s l o p i n g s i t e s . 57 S i t e WD2 had only a waste rock surface but had been e x t e n s i v e l y f e r t i l i z e d . This s i t e , high i n grass cover, was s i m i l a r i n v e g e t a t i o n c h a r a c t e r i s t i c s t o the moderate production areas of 3450 and 3150 (Table 4.2). There were no s i g n i f i c a n t biomass or cover d i f f e r e n c e s between the three s i t e s c l a s s i f i e d as Table 4.2 Percent Cover of Species and Biomass Yie l d on Moderate Production Areas FLAT SITE SLOPING SITES WD 2 3450 3150 M. sativa 5 a 2 a 9 a 0. v i c i a e f o l i a 1 a 3 a 0 a A. cicer 0 a <1 a 0 a LEGUMES 6 a 5 a 0 b (STD) (8) (8) (0) A. cristatum 13 ab 3 b 23 a A. trichoohorum 25 a 0 b 19 a F. rubra 0 b 10 a 5 ab B. inermis 0 b 13 a 6 ab P. compressa 0 b 10 a 8 a P. pratensis 0 a 2 a 0 a GRASSES 38 b 41 b 61 a (STD) (11) (10) (13) FOLIAR COVER 43 a 45 a 62 a (STD) (5) (12) (14) BIOMASS* 1.56 a 1.98 a 2.26 a (STD) (.62) (.75) (.54) * above ground biomass, dry matter y i e l d (T/ha) s i g n i f i c a n t differences (p<0.05) between values i n a column are indicated by different l e t t e r s moderately p r o d u c t i v e . Agropyron species dominated the o l d e r s i t e s , WD2 and 3150, whereas, the newer slope, 3450, was dominated by Festuca, Bromus, and Poa. These l a t t e r three species are known have higher n u t r i e n t and moisture requirements than the Agropyrons and may r e f l e c t the s i t e s d i f f e r e n c e s i n moisture a v a i l a b i l i t y or 58 the e f f e c t of more recent f e r t i l i z e r a p p l i c a t i o n . The low p r o d u c t i v i t y areas d i f f e r e d between the s l o p i n g s i t e s and the f l a t s i t e s i n terras of percent legume composition and t o t a l f o l i a r cover: lower slope p o s i t i o n s c o n s i s t e d e n t i r e l y of sporadic grass cover (Figure 4.1); whereas on the f l a t s i t e s , percent composition of legumes was not s i g n i f i c a n t l y d i f f e r e n t between the low and high y i e l d i n g areas (Figure 4.2). The lower slope p o s i t i o n of s i t e 3150 had s i g n i f i c a n t l y l e s s v e g e t a t i o n cover than 3450 (Table 4.3) and the longer slope length of 3150 may have been a c o n t r i b u t i n g f a c t o r . Vegetation c h a r a c t e r i s t i c s were s i m i l a r between the low production areas of the f e r t i l i z e d f l a t s i t e s . The u n f e r t i l i z e d s i t e , WD3B, however, had s i g n i f i c a n t l y l e s s v e g e t a t i o n cover. Seed d i s t r i b u t i o n may have been a s i g n i f i c a n t f a c t o r c o n t r i b u t i n g t o v a r i a b i l i t y i n v e g e t a t i o n cover on t h i s s i t e as r e v e g e t a t i o n occurred through a c c i d e n t a l seeding. V a r i a t i o n s i n r e v e g e t a t i o n success may be r e f l e c t i v e of f e r t i l i z e r management, or inherent d i f f e r e n c e s i n overburden and waste rock c h a r a c t e r i s t i c s . S p o i l and f o l i a g e samples from each v e g e t a t i o n type were examined i n an attempt t o i d e n t i f y causes f o r v e g e t a t i v e d i f f e r e n c e s i n production between s i t e s and v e g e t a t i o n types. 59 Table 4.3 Percent Cover of Species and Biomass Yie l d On Low Production Areas FLAT SITES SLOPING SITES WD3B WD1 WD3 3450 3150 M. sativa 0 b 1 b 4 a 0 b 0 b 0. v i c i a e f o l i a 0 b 5 a 2 b 0 b 0 b A. cicer 2 a 1 a 3 a 0 a 0 a LEGUMES 2 b 7 a 9 a 0 b 0 b (STD) (2) (6) (3) (0) (0) A. cristatum 0 a 0 a 1 a 1 a 1 a A. trichophorum 0 a 0 a 1 a 0 a 0 a F. rubra 0 a 3 a 4 a 3 a 0 a B. inermis 0 a 3 a 1 a 2 a 0 a P. compressa 0 a 1 a 0 a 2 a 0 a P. pratensis 0 a 0 a 0 a 2 a 0 a GRASSES 0 b 8 a 7 a 11 a 1 b (STD) (0) (6) (6) (9) (1) FOLIAR COVER 2 b 15 a 16 a 11 a 1 b (STD) (2) (8) (16) (9) (1) BIOMASS* 0.02 b 0.69 a 0.67 a 0.22 ab 0.01 b (STD) (.04) (.41) ( .32) (.18) (.01) * above ground biomass, dry matter y i e l d (T/ha) I t was hypothesized that: 1) vegetat ive d i f ferences between the s i t e types ( f l a t s and slopes) were a r e s u l t of inherent d i f ferences i n waste rock or overburden, s p o i l compaction, and/or topography; 2) vegetat ive d i f ferences between s i t e s of the same type were the r e s u l t of inherent d i f ferences i n waste rock or overburden, and/or d i f f e r e n t amounts of f e r t i l i z e r appl ied; and 3) vegetat ive d i f ferences wi th in each s i t e were a r e s u l t of inherent d i f ferences i n waste rock or overburden, and/or v a r i a b i l i t y i n f e r t i l i z e r placement. 60 The f o l l o w i n g s e c t i o n s address these hypotheses by i d e n t i f y i n g the inherent and f e r t i l i t y d i f f e r e n c e s between each area i n v e s t i g a t e d . 4.2 INHERENT DIFFERENCES IN SPOIL 4.2.1 WASTE ROCK AND OVERBURDEN CHARACTERISTICS Unreclaimed s p o i l samples were c o l l e c t e d t o determine the range of c h a r a c t e r i s t i c s f o r waste rock and overburden. Table 4.4 i l l u s t r a t e s the v a r i a b i l i t y of the chemical and p h y s i c a l p r o p e r t i e s f o r both s p o i l types. G e n e r a l l y , the p h y s i c a l and chemical c h a r a c t e r i s t i c s of the waste rock samples were more v a r i a b l e than the overburden t i l l . E v a l u a t i o n of the p h y s i c a l c h a r a c t e r i s t i c s of the unreclaimed s p o i l was l i m i t e d as samples were c o l l e c t e d from free-dumped s t o c k p i l e sources and not subjected t o the compaction, c r u s h i n g , and p a r t i c l e segregation which may occur during reclamation (Lloyd 1985). Values obtained f o r a v a i l a b l e water storage c a p a c i t y were comparable t o those obtained by Morton (1976); there were no d i f f e r e n c e s between the overburden and waste rock samples. There was a wide range of percent coarse fragment content i n the s p o i l samples. Overburden t i l l averaged the lowest coarse fragment content by weight; however, both m a t e r i a l s i n d i c a t e d l e v e l s up to 97%. Table 4.4 Characteristics of Waste Rock and Overburden UNRECLAIMED WASTE ROCK UNRECLAIMED OVERBURDEN Grand X Range X CV X Range X CV Mean X CV pH (H20) 8.4 * 7.8 - 9.0 2 8.0 7.4 - 8.8 5 8.2 5 pH (CaCl2) 7.7 * 7.4 - 7.9 2 7.4 7.2 - 7.7 2 7.6 3 Total Carbon, X 1.43 * 0.79 - 2.55 32 0.77 0.37 1.17 26 1.10 44 Total S, X 0.95 * 0.19 - 2.29 80 0.18 0.01 - 0.30 54 0.57 Total N, X 0.005 * 0.001 - 0.011 60 0.013 0.007 - 0.018 32 0.009 62 Available P, mg/kg 2 * 0 - 8 108 9 5 - 14 32 5.5 80 Exchangeable Cations 31.0 * 23.9 - 42.5 18 23.6 16.9 29.0 14 27.4 22 K meq/100gm 0.42 * 0.10 - 0.57 29 0.22 0.08 - 0.34 35 0.32 44 Ca meq/100gm 23.64 16.55 - 31.57 18 21.66 15.6 - 26.56 15 22.65 17 Mg meq/100gm 6.72 * 1.39 - 13.89 67 1.66 1.03 - 3.28 36 4.19 98 Na meq/100gm 0.20 • 0.05 - 0.35 43 0.10 0.04 - 1.44 34 0.14 55 CEC meq/100gm 20.2 • 10.0 - 34.5 36 14.8 7.6 - 19.2 25 17.5 36 Texture SL - LS SL - LS SL - LS X Coarse Fragment 83 * 62 - 97 13 65 47 - 95 23 74 13 Water Retention, cm3/c 1/3 Bar 0.13 0.10 - 0.15 13 0.12 0.11 - 0.14 8 0.13 14 15 Bar 0.066 0.046 - 0.088 18 0.057 0.049 - 0.070 11 0.062 24 * Identifies significant differences between waste rock and overburden, Mann-Whitney U Test (p<0.05) There were s e v e r a l inherent chemical c h a r a c t e r i s t i c s which d i f f e r e d between overburden and waste rock. Inorganic carbon and pH l e v e l s averaged higher i n waste rock samples. Both s p o i l types had high calcium l e v e l s . Magnesium and potassium l e v e l s were v a r i a b l e i n both s p o i l types, w i t h some l e v e l s f a l l i n g below those recommended f o r maximum grass and legume growth (Nuefeld 198 0). Although n i t r o g e n and phosphorus l e v e l s were s i g n i f i c a n t l y d i f f e r e n t between the two m a t e r i a l s , a l l values obtained are very low w i t h respect t o p l a n t requirements, c h a r a c t e r i s t i c of mine s p o i l s (Bauer e t . a l . 1978). The v a r i a b i l i t y w i t h i n each s p o i l m a t e r i a l may i n f l u e n c e r e v e g e t a t i o n success. The high coarse fragment content and high a l k a l i n i t y of some of both m a t e r i a l s may be u n d e s i r a b l e f o r p l a n t growth. Inherent v a r i a b i l i t y i n the magnesium and potassium l e v e l s of both s p o i l types may a l s o be an important f e r t i l i t y f a c t o r i n f l u e n c i n g v e g e t a t i o n response. 4.2.2 INHERENT DIFFERENCES BETWEEN SITES 4.2.2.1 PHYSICAL CHARACTERISTICS Overburden was a p p l i e d t o a l l s l o p i n g s i t e s t o improve the seedbed by decreasing the coarseness of the s u r f a c e ; however, there was s t i l l a s i g n i f i c a n t l y higher percent coarse fragment content found on the s l o p i n g s i t e s r e l a t i v e t o the f l a t s i t e s (Table 4.5). This was assumed t o be a r e s u l t of increased r a t e of p h y s i c a l weathering 63 on the f l a t s i t e s due t o the crushing of surface m a t e r i a l by heavy equipment. The waste rock and overburden t i l l dumped over the c r e s t of the s l o p i n g s i t e s r e s u l t s i n s i z e segregation and accumulation of coarse m a t e r i a l on the lower p o r t i o n s of the slope (Murray 1977). D i f f e r e n c e s i n coarse fragment content between the v e g e t a t i o n types on the s l o p i n g s i t e s were observed (Table 4.6, Figure 4.3). The tren d s , however, were s i g n i f i c a n t only on the 3150 s i t e . Coarse fragment content, highest on the lower p o r t i o n s of both slopes, Table 4.5 Inherent Characteristics Different Between Sites pH (H20) X STD pH (CaCl2) x STD Calcium meq/100g x~ STD Bulk Density g/cm3 x" STD SLOPE SITES 3450 8.5 a 0.2 7.5 a 0.1 22.3 ab 3.4 -3150 8.4 a 0.2 7.5 a 0.1 21.4 ab 2.1 -MEAN 8.4 0.2 7.5 0.1 21.8 2.8 -FLAT SITES ^ UD1 8.1 b 0.8 7.2 b 0.5 18.1 b 3.2 1.84 a 0.10 WD3 8.8 a 0.2 7.7 a 0.1 21.8 ab 3.0 1.85 a 0.10 WD3B 8.9 a 0.5 7.8 a 0.1 25.7 a 2.3 1.76 b 0.13 WD 2 7.8 b 0.3 7.1 b 0.2 18.7 b 3.5 1.82 a 0.09 MEAN 8.4 1.0 7.5 0.4 21.4 4.3 1.82 0.11 GRAND MEAN 8.4 0.7 7.5 0.3 21.7 3.7 -64 Table 4.6 Inherent Characteristics Different Between Vegetation Types Magnesium Sodium Total Carbon Coarse Fractions meq/100 gm meq/100 gm % % X STD X STD "x STD X STD SLOPE SITES 3450-H 1.78 cd 0.40 0.05 c 0.01 1.24 c 0.18 69 d 6 -M 1.53 cd 0.50 0.05 c 0.01 1.18 c 0.15 73 c 8 -L 1.48 cd 0.23 0.05 c 0.01 1.06 d 0.14 74 c 9 3150-H 2.02 c 0.57 0.07 c 0.01 1.07 d 0.26 75 c 7 -M 1.60 cd 0.45 0.06 c 0.02 1.22 c 0.20 80 b 9 -L 1.82 c 0.77 0.07 c 0.02 1.02 d 0.26 89 a 7 MEAN 1.71 B 0.53 0.06 B 0.02 1.13 0.21 77 A 10 FLAT SITES WD1-H 1.48 cd 0.52 0.05 c 0.03 0.99 d 0.18 63 ef 9 -L 0.94 e 0.43 0.05 c 0.04 0.80 d 0.30 66 de 10 UD3-H 1.49 cd 0.52 0.05 c 0.03 1.63 a 0.51 67 de 8 -L 1.90 c 1.12 0.13 b 0.10 1.26 c 0.29 58 f 7 UD3B-H 5.60 a 0.95 0.06 c 0.01 1.37 b 0.12 58 f 5 -L 2.60 b 1.68 0.10 be 0.05 1.11 d 0.18 60 f 9 WD 2 1.22 d 0.79 0.29 a 0.10 1.36 b 0.48 84 ab 12 MEAN 2.17 A 1.75 0.10 A 0.10 1.22 0.41 65 B 12 GRAND MEAN 2.26 2.10 0.92 0.08 1.17 0.36 72 13 may be a factor l i m i t i n g legume growth through e f f e c t s on water i n f i l t r a t i o n , moisture storage, and nutrient losses ( M i l l e r and Guthrie 1982, Lloyd 1985). Coarse fragment content was s i g n i f i c a n t l y higher i n a l l vegetation types on the 3150 slope r e l a t i v e to the 3450 slope. This may be a Figure 4.3 Coarse Fragment Content on Sloping Sites PERCENT COARSE FRACTIONS >2mm I M A X I M U M I M I N I M U M -Jr M E A N 3450-H 3450-M 3450-L 3150-H 3150-M 3150-L SITE AND VEGETATION T Y P E Figure 4.4 Coarse Fragment Content on Flat Sites PERCENT COARSE FRACTIONS >2mm I M A X I M U M I M I N I M U M -Tr M E A N o ' WD1A WD3 WD3B WD2 SITE AND VEGETATION T Y P E r e s u l t of v a r i a b i l i t y i n coarse fragment content of t i l l and/or the s l i g h t l y longer slope length of 3150. The higher coarse fragment content and r e s u l t a n t lower water h o l d i n g c a p a c i t y on the 3150 s i t e may have r e s u l t e d i n the v e g e t a t i v e d i f f e r e n c e s between the two s i t e s , such as: lower biomass production on the lower slope p o s i t i o n of 3150; and, dominance of the more drought r e s i s t a n t Agropyron species on the 3150 s i t e (Table 4.2). S p a t i a l segregation of m a t e r i a l on the f l a t s i t e s was not as obvious. Only on WD3 was there a d i f f e r e n c e i n coarse fragment content between v e g e t a t i o n types. This may i n d i c a t e t h a t coarse fragment content was not c o n s i s t e n t l y a key f a c t o r c o n t r i b u t i n g t o the v a r i a b i l i t y i n production on f l a t s i t e s . As a r e s u l t of v a r i a t i o n i n amount of overburden a p p l i e d , however, there were coarse fragment d i f f e r e n c e s between f l a t s i t e s . Figure 4.4 i l l u s t r a t e s the r e l a t i v e coarse fragment content of each f l a t s i t e . Overburden capping may have c o n t r i b u t e d t o v e g e t a t i v e d i f f e r e n c e s between s i t e s : no s i g n i f i c a n t d i f f e r e n c e s i n coarse fragment content were found between WD3 and WD1 s i t e s ; coarse fragment content was found t o be lowest on the dense legume covered WD3B s i t e ; and, coarse fragment content was h i g h e s t on the WD2 grass s i t e (Table 4.6, Figure 4.4). The data on the f l a t s i t e s appear to support the f i n d i n g s on the s l o p i n g s i t e s : increased grass composition appears r e l a t e d t o 67 increased coarse fragment content. WD2 and midslope 3150, found t o have comparable v e g e t a t i o n cover of Agropvron s p e c i e s , had a s i m i l a r percentage of coarse fragments (Table 4.6, page 64). WD3B, dense legume cover, had the lowest coarse fragment content of a l l v e g e t a t i o n types, whereas WD3 and WD1 were comparable t o the high producing area of 3450 and 3150 s l o p e s . Compaction as w e l l as coarse fragment content may be a f a c t o r i n f l u e n c i n g v e g e t a t i o n by i n h i b i t i n g r oot p e n e t r a t i o n and water p e r m e a b i l i t y (Lloyd 1985, Ashby et a l . 1982). Higher rock fragment content i n compacted s o i l s i ncreases h y d r a u l i c c o n d u c t i v i t y , improving e f f e c t i v e n e s s of f e r t i l i z e r management (Magier and Ravina 1982). V i s u a l l y , the f i n e r overburden m a t e r i a l appeared t o r e s u l t i n a smoother, compacted surface on the f l a t s i t e s . Bulk d e n s i t y was d i f f i c u l t t o evaluate on the s l o p i n g s i t e s and r e s u l t s were not r e p r o d u c i b l e . For t h i s reason, bulk d e n s i t y was evaluated only on the f l a t s i t e s where compaction was considered t o be a more severe problem. D i f f i c u l t i e s are encountered i n attempting t o determine compaction through bulk d e n s i t y values from reclaimed s i t e s , however, due t o the high percent coarse fragments i n the s p o i l m a t e r i a l (Lloyd 1985, Morton 1976). There were no s i g n i f i c a n t d i f f e r e n c e s i n bulk d e n s i t y values between v e g e t a t i o n types of a s i t e . Bulk d e n s i t y values averaged 68 1.84 g/cm3 f o r WD3, WD1 and WD2 (Table 4.5, page 63). On the WD3B s i t e , b u lk d e n s i t y was s i g n i f i c a n t l y lower, averaging 1.75 g/cm3. This may be due t o the 'end-dump1 l o c a t i o n of the s i t e where heavy equipment t r a v e l was l i m i t e d . Combined w i t h lowest coarse fragment content, compaction could be an i n f l u e n t i a l f a c t o r i n s u c c e s s f u l legume establishment on WD3B through improving water and n u t r i e n t a v a i l a b i l i t y and roo t p e n e t r a b i l i t y . 4.2.2.2 CHEMICAL CHARACTERISTICS Due t o the d i f f e r e n c e s and v a r i a b i l i t y i n chemical c h a r a c t e r i s t i c s of waste rock and overburden, d i f f e r e n c e s between v e g e t a t i o n types and s i t e s were expected. Fewer d i f f e r e n c e s i n inherent chemical c h a r a c t e r i s t i c s of the s p o i l were found between the v e g e t a t i o n types on the s l o p i n g s i t e s than the f l a t s i t e s . This may be r e f l e c t i v e of the capping of the slope s i t e s ; overburden placement on the f l a t s i t e s was somewhat more s p o r a d i c a l l y placed. Exchangeable magnesium and sodium were s i g n i f i c a n t l y higher on the f l a t s i t e s than s l o p i n g s i t e s and, both magnesium and sodium l e v e l s d i f f e r e d between f l a t s i t e s (Table 4.6). Exchangeable magnesium, v a r i a b l e i n waste rock and overburden, was not a p p l i e d t o any s i t e s i n the f e r t i l i z e r program. D i f f e r e n c e s i n magnesium and sodium l e v e l s between f l a t s i t e s i s l i k e l y a r e s u l t of d i f f e r e n c e s 69 i n overburden capping. The highest magnesium l e v e l s were observed on the WD3B legume s i t e , and the highest sodium l e v e l s on the WD2 grass s i t e . On WD1 and WD3B, magnesium l e v e l s were higher on the h i g h producing areas; however, t h i s t r e n d was not evident on WD3 or the s l o p i n g s i t e s . Comparison of i n o r g a n i c C l e v e l s between f l a t s i t e s was complicated by the v a r i a b i l i t y of the parameter i n the waste rock and overburden m a t e r i a l . The u n f e r t i l i z e d s i t e had s i g n i f i c a n t l y h igher t o t a l carbon l e v e l s than the other s i t e s (Table 4.6, page 64) . On both s i t e types, t o t a l carbon l e v e l s tended t o be higher on the more pr o d u c t i v e and grassy v e g e t a t i o n types. This may be more r e f l e c t i v e of ve g e t a t i o n establishment i n c r e a s i n g organic carbon content than an inherent s p o i l c h a r a c t e r i s t i c . As i n d i c a t e d i n Table 4.5 (page 63), the WD2 and WD1 s i t e s are l e s s a l k a l i n e than the other f l a t or s l o p i n g s i t e s . There were no apparent d i f f e r e n c e s i n pH or calcium l e v e l s between high and low p r o d u c t i v i t y areas i n each s i t e , t h e r e f o r e , i n d i c a t i n g t h a t , although a l k a l i n i t y could be a p o s s i b l e f a c t o r c o n t r i b u t i n g t o ve g e t a t i v e d i f f e r e n c e s between s i t e s , i t i s not l i k e l y t o v a r i a b l e v e g e t a t i o n cover on each s i t e . 4.2.2.3 FOLIAGE CHEMISTRY Grass magnesium l e v e l s ranged from 0.06% t o 0.23% i n FL. rubra and from 0.03% t o 0.10% i n A. c r i s t a t u m (Table 4.7); a d e f i c i e n t l e v e l Table 4.7a Elemental Levels In Foliage M. sativa _ Ca % _ Mg % _ Ca:Mg Fe ppm Mn ppm _ Zn ppm Cu ppm Mo ppm X STD X STD X STD X STD X STD STD X- STD X STD SLOPING SITES 3450 2.61 a 0.44 0.27 ab 0.04 9.9 1.5 61 ab 16 22 c 10 19 b 8 17 a 4 15 a 8 3150 2.45 a 0.36 0.22 b 0.06 11.6 2.9 103 a 41 34 b 12 21 b 6 18 a 5 12 ab 4 MEAN 2.56 A 0.42 0.25 0.05 10.4 2.2 75 33 26 12 20 7 17 A 4 14 7 FLAT SITES WD1 2.44 a 0.85 0.24 b 0.07 10.5 2.6 91 a 69 45 b 17 26 b 8 9 be 1 7 b 3 WD 3 1.84 b 0.43 0.27 ab 0.06 7.1 1.7 50 b 16 78 b 7 23 b 5 7 c 2 12 ab 6 WD3B 2.17 ab 0.40 0.32 a 0.11 7.2 1.5 53 b 22 36 c 8 17 c 2 10 b 2 11 ab 3 WD2 2.18 ab 0.34 0.30 a 0.06 7.4 1.2 67 a 26 44 a 8 39 a 12 10 b 1 15 a 6 MEAN 2.15 B 0.63 0.27 0.08 8.3 2.5 67 46 38 14 26 10 9 B 2 11 6 GRAND MEAN 2.29 0.60 0.26 0.07 9.0 2.6 70 42 34 14 24 9 12 5 12 6 Significant differences (p<0.05) between values in a column are indicated by different letters O Table 4.7b Elemental Levels In Foliage F. rubra Ca % Mg % Ca:Mg _ Fe ppm Mn ppm Zn ppm Cu ppm Mo ppm X STD X STD X STD "x STD X STD X STD X STD X STD SLOPE SITES 3450 0.66 a 0.10 0.17 a 0.03 4.0 0.5 65 34 52 a 11 5 b 2 13 ab 3 8 b 4 3150 0.58 b 0.12 0.17 a 0.04 3.5 0.3 60 20 59 a 20 9 ab 1 17 a 6 14 a 7 MEAN 0.63 A 0.11 0.17 A 0.03 3.8 0.5 63 30 54 A 15 6 B 3 14 A 4 10 A 6 FLAT SITES WD1 0.36 c 0.06 0.09 b 0.02 3.9 0.8 43 19 60 a 18 16 a 5 8 b 2 7 b 14 WD 3 0.35 c 0.05 0.09 b 0.01 3.7 0.6 52 22 39 b 10 13 a 4 8 b 2 2 c 1 WD38 0.33 c 0.06 0.13 ab 0.03 2.5 0.3 39 20 39 b 4 6 b 2 5 c 1 5 c 1 WD2 MEAN 0.35 B 0.06 0.10 B 0.02 3.6 0.8 46 21 47 B 17 12 A 5 7 B 2 5 B 9 GRAND MEAN 0.46 0.16 0.13 0.04 3.7 0.7 52 26 50 16 10 5 10 5 7 8 Significant differences (p<0.05) between values in a column are indicated by different letters H Table 4.7c Elemental Levels In Foliage A. cristatum Ca % Mg % Ca:Mg Fe ppm _ Mn ppm Zn ppm Cu ppm _ Mo ppm X STD X STD X STD X STD X STD X STD X STD X STD SLOPE SITES 3450 0.36 a 0.06 0.05 0.01 7.8 1.8 40 b 16 28 8 3 b 3 7 b 1 4 3 3150 0.35 a 0.10 0.07 0.02 4.8 0.9 110 a 84 24 7 4 b 4 18 a 11 5 4 MEAN 0.35 A 0.08 0.07 0.02 5.6 1.7 92 A 79 25 7 4 B 4 15 A 11 5 4 FLAT SITES WD1 WD3 0.27 b 0.07 0.06 0.01 4.4 0.8 20 b 9 23 6 6 b 3 6 b 1 2 2 WD3B WD 2 0.34 a 0.12 0.07 0.01 5.9 1.9 34 b 10 23 5 13 a 5 3 c 1 1 1 MEAN 0.30 B 0.10 0.07 0.01 4.6 1.3 24 B 11 23 6 8 A 5 5 B 1 2 2 GRAND MEAN 0.33 0.10 0.07 0.02 5.2 1.6 63 69 24 7 6 5 10 10 4 3 Significant differences (p<0.05) between values in a column are indicated by different letters i n grasses i s recognized as 0.8% (Embleton 1966, B i c k o f f et a l . 1972) . Magnesium l e v e l s i n F^ . rubra have been found t o be s i g n i f i c a n t l y higher than A. c r i s t a t u m i n other s t u d i e s (Tingle and E l l i o t t 1975, Hackinen 1986). Magnesium l e v e l s i n M^ . s a t i v a on a l l s i t e s were found t o be low, ranging from 0.14 t o 0.57% (Table 4.7). Only s i t e s WD2 and WD3B had mean magnesium l e v e l s above the c r i t i c a l value of .30% (Rhykerd and Overdahl 1972) and WD3B had highest s p o i l magnesium l e v e l s . Grass magnesium l e v e l s d i d not f o l l o w s i m i l a r trends i n d i f f e r e n c e s between s i t e s . No d i f f e r e n c e s i n f o l i a g e Mg were observed between high and low production. Calcium d i d not appear l i m i t i n g t o p l a n t growth as f o l i a g e l e v e l s obtained were above those recommended f o r optimum p l a n t h e a l t h (Table 4.7). K:Ca+Mg r a t i o s f o r a l l species on each s i t e were w e l l below the c r i t i c a l r a t i o of 2:1 (Grunes et a l . 1970) and, t h e r e f o r e , d i d not i n d i c a t e a problem w i t h hypomagnesia. Although there were no s i g n i f i c a n t d i f f e r e n c e s i n s p o i l calcium l e v e l s between s i t e s types, M_j_ s a t i v a and F^ . rubra calcium l e v e l s were higher on the s l o p i n g s i t e s than the f l a t s i t e s . There were few d i f f e r e n c e s i n f o l i a g e calcium l e v e l s between s i t e s and no d i f f e r e n c e s between v e g e t a t i o n types of each s i t e . There were some m i c r o n u t r i e n t d i f f e r e n c e s i n f o l i a g e between the s i t e s , p o s s i b l y a r i s i n g from d i f f e r e n c e s i n s p o i l a l k a l i n i t y ; Mn, Fe, and Zn d e f i c i e n c i e s are more common on a l k a l i n e s o i l s (Lucas and Knezek 1972, Dijkshoon 1967). s a t i v a Fe l e v e l s ranged from 29 t o 319 ppm and Grass Fe l e v e l s range from 5 ppm t o 346 ppm; recommended Fe l e v e l s f o r legumes and grasses i s g r e a t e r than 50 ppm and 25 ppm, r e s p e c t i v e l y (Jones 1972). Legume Mn values ranged from 10 ppm t o 88 ppm and grass Mn values ranged from 14 ppm t o 101 ppm; recommended Mn l e v e l s i s g r e a t e r than 2 0 ppm f o r legumes and 10 ppm f o r grasses (Jones 1972) . Mean Fe and Mn l e v e l s f o r both species were above the recommended values. M_;_ s a t i v a Fe and Mn and F. rubra Mn l e v e l s were highest on the lowest pH s i t e , WD1. As production was g r e a t e r , however, on the more a l k a l i n e WD3 and WD3B s i t e s , i t was not concluded t h a t Mn and Fe d e f i c i e n c i e s were c o n t r i b u t i n g s u b s t a n t i a l l y t o r e v e g e t a t i o n d i f f e r e n c e s between s i t e s . Only on WD1 and WD2, the low pH s i t e s , were Zn l e v e l s i n Mj. s a t i v a g r e a t e r than 25 ppm, the f o l i a r c o n c e n t r a t i o n considered d e f i c i e n t f o r many p l a n t s (Chapman 1966). The suggested range f o r c a t t l e feed i s 20-40 ppm (NRC 1984). Zn l e v e l s i n both grass species were lower than these l e v e l s . Festuca Zn l e v e l s were higher than A. c r i s t a t u m . w i t h the highest l e v e l s i n both species found on the s l o p i n g s i t e s . There were. no d i f f e r e n c e s i n s p o i l pH between v e g e t a t i o n types w i t h i n s i t e s , and correspondingly, there were no d i f f e r e n c e s between v e g e t a t i o n types i n legume or grass m i c r o n u t r i e n t l e v e l s . 75 A l f a l f a has r e l a t i v e l y high requirements of both B and S (Tisdale and Nelson 1975, Radet 1966). Boron and Sulfur i n a l f a l f a were examined on the high and low productivity areas of the higher pH s i t e , WD3. At high pH, borate adsorption to s o i l p a r t i c l e s increases giving r i s e to B deficiency (Rammah et a l . 1984) . Levels of greater than 20 ppm B and 0.20 % S i n a l f a l f a i s desirable. Boron and S l e v e l s indicated no deficiency problems and no differences between vegetation types (Figure 4.5). Figure 4.5 Boron and Sulfur in M. Sativa from WD3 60 50 40 30 20 10 0 BORON ppm % SULFUR x 100 BORON S U L F U R 60 50 40 30 - 20 I M A X I MIN 10 -£ M E A N HIGH LOW HIGH LOW HIGH AND LOW PRODUCTION AREAS ON W D 3 76 Mo a v a i l a b i l i t y i ncreases w i t h i n c r e a s i n g s o i l pH, t h e r e f o r e , Cu:Mo r a t i o s were expected t o be l e s s on the lowest pH s i t e s , WD2 and WD1. FL. rubra and s a t i v a Mo l e v e l s were lowest on WD1, and A. c r i s t a t u m Mo was lowest on WD2 (Table 4.7). A l l Cu:Mo r a t i o s i n a l f a l f a , however, were below 2:1; only on s i t e WD1 d i d some range higher than 4:1 (Figure 4.6). A. c r i s t a t u m and FL. rubra d i d not f o l l o w s i m i l a r trends (Figure 4.7 and 4.8). Highest Cu:Mo r a t i o s i n FL_ rubra were observed on s l o p i n g s i t e s due t o higher f o l i a g e Cu. R e s u l t s correspond w i t h the 1985 background study t h a t i n d i c a t e d h i g h est Cu:Mo r a t i o s i n Agropyrons; however, d i f f e r e n c e s between species may a l s o r e s u l t from v a r y i n g species m a t u r i t y when sampled (Bardshad 1951). Figure 4.6 Cu:Mo Ratios in tyi Sativa Cu:Mo RATIO 12 10 I Maximum I Minimum -Jr Mean 8 6 4 2 0 WD 1 3450 3150 WD 3B WD 2 WD 3 SITES 2 5 2 0 1 5 1 0 Figure 4.7 Cu:Mo Ratios in A Cristatum and H Rubra Cu:Mo RATIO T F lA A I Maximum I Minimum i- Mean A WD 1 3450 3150 WD 3B WD 2 WD 3 SITES 77 4 . 3 SPOIL FERTILITY DIFFERENCES BETWEEN SITES 4.3.1 SPOIL CHEMISTRY Potassium was s i g n i f i c a n t l y higher on the s l o p i n g s i t e s than f l a t s i t e s (Table 4.8). This trend was not observed f o r n i t r o g e n and phosphorus, suggesting t h a t the d i f f e r e n c e s observed f o r potassium may have been i n f l u e n c e d by the inherent d i f f e r e n c e s i n potassium l e v e l s of overburden and waste rock. Comparisons of the s i t e s i n d i c a t e d t h a t there were no s i g n i f i c a n t d i f f e r e n c e s i n s o i l n i t r o g e n , phosphorus, and potassium l e v e l s between WD3 and WD1 or between 3150 and 3450 (Table 4.8) although the WD3 and 3150 s i t e s had r e c e i v e d more f e r t i l i z e r . This i s not 78 Table 4.8 Spoil Nitrogen, Phosphorus, and Potassium TOTAL 1 % X i STD AVAILABLE P mg/kg x" STD EXCHANGEABLE K meq/100gm x STD SLOPE SITES 3450-H -M -L 0.036 b 0.036 b 0.025 d 0.011 0.008 0.007 46 ab 72 ab 70 ab 30 48 42 0.55 b 0.51 be 0.42 c 0.18 0.10 0.08 3150-H -M -L 0.030 c 0.043 a 0.019 d 0.014 0.020 0.006 37 b 127 a 94 ab 25 85 76 0.58 b 0.66 a 0.41 c 0.18 0.29 0.09 MEAN 0.031 0.015 74 62 0.52 A 0.19 FLAT SITES WD1-H -L 0.033 be 0.018 de 0.014 0.009 54 ab 89 ab 36 99 0.43 c 0.30 d 0.12 0.11 WD3-H -L 0.045 a 0.014 e 0.029 0.003 49 ab 58 ab 18 42 0.50 be 0.31 d 0.13 0.04 WD3B-H -L 0.022 d 0.008 f 0.008 0.002 4 c 5 c 2 2 0.57 b 0.28 d 0.15 0.05 UD2 0.043 a 0.030 85 ab 21 0.41 c 0.10 MEAN 0.026 0.022 49 53 0.40 B 0.15 GRAND MEAN 0.029 0.019 53 57 0.44 0.18 Significant differences (p<0.05) between values in a column are indicated by different letters s u r p r i s i n g due t o the many s i t e f a c t o r s c o n t r i b u t i n g t o n u t r i e n t a v a i l a b i l i t y , such as: n i t r o g e n and phosphorus i m m o b i l i z a t i o n i n d e t r i t u s , phosphorus f i x a t i o n i n calcium carbonate, and v a r i a b l e inherent l e v e l s of potassium before f e r t i l i z a t i o n . N i trogen and phosphorus l e v e l s observed on the u n f e r t i l i z e d s i t e , WD3B, were s i g n i f i c a n t l y lower than the other s i t e s . Although legumes have a r e l a t i v e l y high requirement f o r P, the u n f e r t i l i z e d s i t e has the highest of legume production. Gardner and Stathers (1979) observed t h a t although l a r g e phosphorus f e r t i l i z e r 79 a p p l i c a t i o n s on P d e f i c i e n t mine s p o i l d i d enhance legume y i e l d , a h i g h number of legume se e d l i n g s d i d e s t a b l i s h w i t h no f e r t i l i z a t i o n . Although g r e a t e r amounts of phosphorus are r e q u i r e d by legumes than grasses, grass growth may be more l i m i t e d by low phosphorus supply where legume uptake of phosphorus i s enhanced by i t s deeper r o o t system and p o s s i b l e m y c o r r h i z a l a s s o c i a t i o n s (Hayman 1986). The f e r t i l i z e r h i s t o r y of the s i t e s may have c o n t r i b u t e d t o d i f f e r e n c e s i n legume:grass composition (Fleming 1963, Rowell 1978). The d i f f e r e n c e s i n a p p l i c a t i o n r a t e s of n i t r o g e n t o the s i t e s may have c o n t r i b u t e d t o the d i f f e r i n g grass t o legume r a t i o s between s i t e s : legume cover was highest on the u n f e r t i l i z e d s i t e , and grass cover was highest on the more h e a v i l y f e r t i l i z e d s i t e s . There were d i f f e r e n c e s i n n u t r i e n t l e v e l s between high and low y i e l d i n g areas of a l l s i t e s (Table 4.8 and Figure 4.8). Nitrogen and potassium l e v e l s were s i g n i f i c a n t l y h i gher on a l l the high production areas of each s i t e . Although t h i s may be a r e s u l t of f e r t i l i z e r placement, i t may a l s o be a r e s u l t of legumes c o n t r i b u t i n g t o higher l e v e l s through: 1) n i t r o g e n f i x a t i o n ; and 2) a b i l i t y of legume r o o t systems t o explore a g r e a t e r s o i l area, thereby u t i l i z i n g n u t r i e n t s otherwise l o s s e d through l e a c h i n g . In a d d i t i o n , n i t r o g e n l e a c h i n g and v o l a t i l i z a t i o n l o s s e s may be lower on densely vegetated p o r t i o n s of the s i t e s . Therefore, higher n i t r o g e n and potassium l e v e l s i n high producing areas of each s i t e 80 may be e i t h e r r e s u l t i n g i n , or p a r t i a l l y a r e s u l t o f , enhanced legume and grass growth. These trends were not observed w i t h P. There were no s i g n i f i c a n t d i f f e r e n c e s i n s p o i l n i t r o g e n and potassium l e v e l s between the upper slope legume and mid slope grass v e g e t a t i o n types on the s l o p i n g s i t e s ; however, both n i t r o g e n and potassium l e v e l s were s i g n i f i c a n t l y lower on the lower slope s e c t i o n s of both s i t e s . On the s l o p i n g s i t e s , movement of n u t r i e n t s from upper p o r t i o n s of the face t o lower slope p o s i t i o n s may be o c c u r r i n g . This may have c o n t r i b u t e d t o the higher n i t r o g e n l e v e l s recorded f o r the mid-slope p o s i t i o n r e l a t i v e t o the upper legume area of the 3150 s i t e . 100 80 60 40 Figure 4,8 Comparison of Spoil Nitrogen Between Vegetation Types TOTAL SOIL NITROGEN Kg/Ha I M A X I M IN -f- M E A N 20 -H L WD1 H L WD3 H L WD3B M WD2 H M L 3450 H M L 3150 WROB CONTROLS 81 4.3.2 FOLIAGE CHEMISTRY The legume and grass n i t r o g e n , phosphorus, and potassium l e v e l s f a l l below c r i t i c a l ranges on both s i t e types (Table 2 page 23, and Table 9a, b, and c) . Between s i t e types, n i t r o g e n i n JL. s a t i v a and hj_ c r i s t a t u m . and potassium i n A. c r i s t a t u m were highest on the f l a t s i t e s . These r e s u l t s d i d not f o l l o w s p o i l n i t r o g e n and potassium p a t t e r n s and may be a r e s u l t of v a r y i n g p l a n t maturity between the two s i t e types due t o topo g r a p h i c a l i n f l u e n c e s . Table 4.9a Nitrogen, Phosphorus, and Potassium Levels i n Foliage M. sativa % Nitrogen ~ STD % Phosphorus 7 STD % Potassium x* STD SLOPE SITES 3450-H -M -L 3.35 2.96 b c 0.30 0.54 0.22 0.20 b c 0.04 0.05 1.91 1.80 a ab 0.18 0.30 3150-H -M -L 2.97 c 0.27 0.18 c 0.03 1.44 b 0.15 MEAN 3.09 B 0.42 0.20 0.04 1.72 0.30 FLAT SITES WD1-H -L 3.69 3.34 a b 0.31 0.24 0.24 0.21 b be 0.04 0.05 1.59 1.52 be c 0.24 0.22 WD3-H -L 3.43 3.56 b ab 0.30 0.44 0.22 0.23 b b 0.03 0.04 1.81 1.79 ab ab 0.20 0.15 WD3B-H -L 3.50 ab 0.30 0.20 c 0.03 1.68 b 0.12 UD2 3.71 a 0.75 0.27 a 0.06 1.98 a 0.31 MEAN 3.54 A 0.43 0.23 0.05 1.73 0.26 GRAND MEAN 3.39 0.48 0.22 0.05 1.73 0.27 Significant differences (p<0.05) between values in a column are indicated by different l e t t e r s Table 4.9b Nitrogen, Phosphorus, and Potassium Levels in Foliage F. rubra % Nitrogen "x STD % Phosphorus T STD % Potassium x" STD SLOPE SITES 3450-H -M -L 0.96 0.81 b c 0.26 0.21 0.13 0.12 b b 0.04 0.04 1 0 38 97 a c 0.40 0.24 3150-H -M -L 1.02 b 0.31 0.13 b 0.02 1 40 a 0.31 MEAN 0.93 0.27 0.13 0.04 1.25 0.37 FLAT SITES WD1-H -L 1.28 1.08 a b 0.27 0.23 0.17 0.14 a ab 0.05 0.03 1 1 24 08 b cd 0.20 0.16 WD3-H -L 1.30 0.81 a c 0.28 0.13 0.11 0.09 be c 0.02 0.01 1 0 18 96 c d 0.13 0.07 WD3B-H -L 1.02 b 0.16 0.08 c 0.01 1 29 b 1.29 WD 2 - - - - -MEAN 1.10 0.28 0.12 0.04 1 15 0.18 GRAND MEAN 1.03 0.29 0.12 0.04 1 19 0.27 Significant differences (p<0.05) between values in a column are indicated by different l e t t e r s Table 4.9c Nitrogen, Phosphorus, and Potassium Levels i n Foliage A. cristatum % Nitrogen 7 STD % Phosphorus x" STD % Potassium 7 STD SLOPE SITES 3450-H -M -L 0.56 c 0.12 0.10 b 0. 05 0 59 c 0.12 3150-H -M -L 0.75 be 0.61 c 0.67 c 0.26 0.11 0.18 0.08 b 0.12 a 0.11 a 0. 0. 0 02 04 04 0 0 0 72 b 60 c 62 c 0.16 0.07 0.10 MEAN 0.65 B 0.19 0.10 0 04 0 63 B 0.13 FLAT SITES WD1-H -L - - - -WD3-H -L 1.07 a 0.93 ab 0.28 0.14 0.10 b 0.09 b 0.02 0.02 0 0 91 a 74 b 0.15 0.15 WD3B-H -L -- - -WD 2 0.83 b 0.11 0.12 a 0 01 0 .80 ab 0.08 MEAN 0.94 A 0.22 0.10 0 02 0 82 A 0.15 GRAND MEAN 0.77 0.25 0.10 0 03 0 .71 0.16 Significant differences (p<0.05) between values in a column are indicated by different tetters 84 Foliage N, P, and K l e v e l s followed the trends observed i n s p o i l : few differences were noted between WD3 and WD1 or between 3150 and 3450, but, low P l e v e l s i n both M^ . sativa and P\_ rubra were observed on the u n f e r t i l i z e d s i t e , WD3B. Phosphorus l e v e l s i n M. sati v a were highest on the WD2 s i t e which had a high s p o i l P concentration and low pH (Figure 4.9). I t was only on t h i s s i t e that P l e v e l s i n Mj_ sativa averaged above the c r i t i c a l l e v e l for maximum y i e l d . Although having a s i m i l a r f e r t i l i z a t i o n history as WD3, the high coarse fragment content on WD2 may have contributed to a higher P concentration i n s o i l . On a l l s i t e s P l e v e l s i n both species of grasses average less than the recommended l e v e l s for maximum y i e l d (0.18%), and dietary requirement for c a t t l e (0.14%). Phosphorus l e v e l s i n F\. rubra were highest on the most recently f e r t i l i z e d f l a t s i t e , WD1. 0.4 0.3 0.2 0.1 Figure 4.9 Phosphorus Levels in M. Sativa % PHOSPHORUS CRITICAL L E V E L I M A X I MIN •3E- M E A N WD3B WD1 WD3 WD2 SITES 3450 3150 Rhykerd and Overdahl 1972 85 Nitrogen and potassium contents of both grass species sampled were i n the low or d e f i c i e n t ranges (Table 4.9b and 4.9c). F o l i a g e n i t r o g e n and potassium l e v e l s f o l l o w s i m i l a r trends as s o i l n u t r i e n t s : the n i t r o g e n and potassium l e v e l s i n f o l i a g e were higher on the more pr o d u c t i v e v e g e t a t i o n areas of the s i t e s ; s i g n i f i c a n t d i f f e r e n c e s , however, were p r i m a r i l y l i m i t e d t o |\_ rubra f o l i a g e . Few s i g n i f i c a n t d i f f e r e n c e s i n M_;_ s a t i v a f o l i a g e were noted between v e g e t a t i o n types. 4.4 SUMMARY As a r e s u l t of d i f f e r e n c e s i n overburden capping treatments, which were c o n s i s t e n t on both slope s i t e s but only s p o r a d i c a l l y a p p l i e d on some of the f l a t s i t e s , there were inherent s p o i l d i f f e r e n c e s between s i t e types. These inherent d i f f e r e n c e s i n c l u d i n g p h y s i c a l c h a r a c t e r i s t i c s such as coarse fragment content and chemical c h a r a c t e r i s t i c s such as magnesium and sodium l e v e l s (Table 4.10). Table 4.10 S p o i l P r o p e r t i e s D i f f e r e n t Between S i t e Types SLOPING SITES FLAT SITES Coarse Fragments Mg, Na D i f f e r e n t s u r f a c e treatments of f l a t s i t e s have c o n t r i b u t e d t o inherent p h y s i c a l d i f f e r e n c e s between s i t e s such as coarse fragment content and bulk d e n s i t y and inherent chemical d i f f e r e n c e s such as 86 a l k a l i n i t y , f o l i a g e m i c r o n u t r i e n t s , s p o i l and f o l i a g e calcium, s p o i l and f o l i a g e magnesium,and sodium. These f a c t o r s may be c o n t r i b u t i n g t o v e g e t a t i v e d i f f e r e n c e s between s i t e s , such as high e r legume production on WD3B, a s i t e w i t h the lowest coarse fragment content, highest s p o i l magnesium, no f e r t i l i z a t i o n , and high e s t pH; and high grass (Agropyron) cover on WD2, a s i t e with a coarser waste rock s u r f a c e , low pH and higher l e v e l of f e r t i l i z a t i o n . Between slope s i t e s , only coarse fragment content d i f f e r e d , l i k e l y due t o d i f f e r e n c e s i n slope l e n g t h , which may have c o n t r i b u t e d moisture d e f i c i e n c i e s on 3150 and, as a r e s u l t , biomass d i f f e r e n c e s between s i t e s on the lower slope p o s i t i o n s . Table 4.11 summarizes the s p o i l d i f f e r e n c e s between s i t e s . Table 4.11 Spoil Properties Different Between Sites 3150 WD1 WD2 WD3 WD3B 3450 Coarse Frags Coarse Frags Coarse Frags pH, Na Coarse Frags Coarse Frags P 3150 //////////// Na Coarse Frags P WD1 //////////// //////////// Coarse Frags Na PH Coarse Frags Bulk Dens. pH, Ca, Mg, P WD 2 //////////// //////////// //////////// Coarse Frags PH Coarse Frags Bulk Dens. pH. Ca, Mg, P, Na WD3 //////////// //////////// //////////// //////////// Coarse Frags Bulk Dens. Mg. P Blank boxes indicate no sig n i f i c a n t differences between s i t e s (p<0.05) 87 Coarse fragment content was the only inherent v a r i a b l e t h a t d i f f e r e d between v e g e t a t i o n types on the sl o p e s . High coarse fragment content may p l a y an important r o l e i n l i m i t i n g legume cover and o v e r a l l production on lower slope p o s i t i o n s by c o n t r i b u t i n g t o moisture d e f i c i e n c i e s . Between high and low production v e g e t a t i o n types, s p o i l n i t r o g e n and potassium are s i g n i f i c a n t l y d i f f e r e n t and grass n i t r o g e n and potassium and legume potassium f o l l o w s i m i l a r p a t t e r n s (Table 4.12). Low l e v e l s of grass n i t r o g e n and potassium r e f l e c t e d s p o i l n i t r o g e n and potassium l e v e l s . s a t i v a f o l i a g e does not r e f l e c t these d i f f e r e n c e s w i t h i n s i t e s probably as a r e s u l t of deeper r o o t i n g and nod u l a t i o n . Regardless of l e v e l of P f e r t i l i z a t i o n , a l l Mi s a t i v a phosphorus l e v e l s were below c r i t i c a l range. Table 4.12 Spoil Properties Different Between Vegetation Types FLAT SITES Hod. Low High Coarse Fragments Na C, Mg, N, K Hod ///////////// SLOPING Mod Coarse Fragments C. N. K SITES Low High Coarse Fragments Coarse Fragments C, N, K Hod ///////////// N, K 88 5.0 RELATIONSHIPS BETWEEN SITE CONDITIONS AND REVEGETATION SUCCESS The i n v e s t i g a t i o n discussed i n the previous s e c t i o n i d e n t i f i e d d i f f e r e n c e s i n p h y s i c a l and chemical p r o p e r t i e s of the waste dump s p o i l between v e g e t a t i o n types. The purpose of t h i s p o r t i o n of the t e s t case study was t o determine i f s i g n i f i c a n t r e l a t i o n s h i p s e x i s t e d between these s p o i l p r o p e r t i e s and re v e g e t a t i o n success and, i f so, develop equations from which v e g e t a t i o n production could be p r e d i c t e d . 5.1 UNIVARIATE RELATIONSHIPS Spearmans c o r r e l a t i o n s were used t o determine r e l a t i o n s h i p s between Jcey v a r i a b l e s i d e n t i f i e d through s i g n i f i c a n c e t e s t s . Figure 5.1 i l l u s t r a t e s the most s i g n i f i c a n t r e l a t i o n s h i p s found between s p o i l , f o l i a g e , and production v a r i a b l e s using the t o t a l data s e t . The t o t a l data s e t was separated and r e l a t i o n s h i p s determined s e p a r a t e l y f o r f l a t and s l o p i n g s i t e s (Figure 5.2 and 5.3). There were few s i g n i f i c a n t r e l a t i o n s h i p s found w i t h i n the s l o p i n g s i t e s . Lack of c o r r e l a t i o n r e s u l t s f o r t h i s s i t e type may i n d i c a t e t h a t key i n f l u e n c i n g v a r i a b l e s are unaccounted f o r , such as, overburden depth or topographic and m i c r o c l i m a t i c v a r i a b l e s . R e l a t i o n s h i p s on the f l a t s i t e s were stronger than those f o r the t o t a l data s e t . Figure 5.1 Total Data Set Correlations Between Spoil and Vegetation CF - coarse fragment content pH - pH(CaC12) Legumes and Grasses = % cover Legumes Biomass = total plot dry weight Foliage elements: c = crested wheatgrass f = red fescue a = al fal fa Figure 5.2 Spoil and Vegetation Correlations on Flat Sites .50 •39 •.40 BIOMASS >.5I V K fN •.50 .43- fMg "•.44 /.63 •.39 • 7 5 I Vse .•.66 1, Mg •40 fX .-.49 fTig •42. LEGUMES ».63 aMg •39" Mg •.39 .•.40 Ca •.50 \ ' *.66 A. .•.50 "-.37 PH •63 •.65 Na K — .•50_ fK CF - coarse fragment content pH - pH(CaC12) Legumes and Grasses = % cover Legumes Biomass = total plot dry weight Foliage elements: c = crested wheatgrass f = red fescue a = al fal fa .50 91 Figure 5.3 Spoil and Vegetation Correlations on Sloping Sites BIOMASS R e s u l t s from Chapter 4 suggested inherent s p o i l parameters, i n c l u d i n g pH, coarse fragment content, magnesium and Na, may be key f a c t o r s c o n t r i b u t i n g t o r e v e g e t a t i o n success. A l k a l i n i t y , which d i f f e r e d between s i t e s , was suggested t o be a f a c t o r c o n t r i b u t i n g t o d i f f e r e n c e s i n species composition between s i t e s . F i gure 5.1 i l l u s t r a t e s the p o s i t i v e r e l a t i o n s h i p observed between both legume cover and both calcium and pH. Although pH has no o v e r a l l r e l a t i o n s h i p t o biomass y i e l d , some i n f l u e n c e on m i c r o n u t r i e n t a v a i l a b i l i t y may be i n d i c a t e d by M^ . s a t i v a and F. rubra manganese, i r o n , and z i n c l e v e l s r e l a t i o n s h i p t o pH (Figure 5.4) . 92 The significance tests in Chapter 4 indicated that coarse fragment content was another spoil variable contributing to differences in botanical composition between f la t s i tes , and within vegetation types on sloping s i tes . Correlations confirmed that coarse fragment content was posit ively related to grass cover and negatively related to legume growth (Figure 5.1 and 5.2). A signif icant correlation between coarse fragment content and biomass production was specif ic to the sloping s ite types only (Figure 5.3) . Spoil magnesium was posit ively correlated with y ie ld and legume cover (Figure 5.1 and 5.2). Chapter 4 results suggested that M. sativa magnesium levels were low for maximum plant y ie ld; therefore, higher inherent magnesium levels found in some spoil materials, such as those found on WD3B, may be contributing to g r e a t e r production of legume cover. Sodium l e v e l s a l s o i n d i c a t e a p o s s i b l e c o n t r i b u t i o n t o legume:grass r a t i o s ; however, only on the f l a t s i t e s (Figure 5.2). The key v a r i a b l e s c o n t r i b u t i n g t o r e v e g e t a t i o n success as a r e s u l t of f e r t i l i z a t i o n were confirmed through the c o r r e l a t i o n a n a l y s i s : n i t r o g e n and potassium were s p o i l v a r i a b l e s p o s i t i v e l y c o r r e l a t e d w i t h y i e l d (Figure 5.1, 5.2, and 5.3). Although potassium appeared t o have a p o s i t i v e r e l a t i o n s h i p t o both legume and grass cover, n i t r o g e n r e l a t i o n s h i p s w i t h v e g e t a t i o n were s p e c i f i c t o grasses (Figure 5.1 and 5.2). S i t e s such as 3150, WD2, and WD3, which were h e a v i l y f e r t i l i z e d w i t h n i t r o g e n , were i d e n t i f i e d as having a higher cover of grasses i n Chapter 4. S p o i l phosphorus l e v e l s were n e g a t i v e l y c o r r e l a t e d w i t h legume growth (Figures 1.2 and 1.3). Although legumes could be c o n t r i b u t i n g t o higher surface s p o i l l e v e l s of n i t r o g e n and potassium, as discussed i n Chapter 4, the source of phosphorus may be more l i m i t e d . The u n f e r t i l i z e d s p o i l on the WD3B s i t e had l e s s than 1 kg/ha a v a i l a b l e phosphorus; however, annual uptake f o r the legume/grass stand on t h i s s i t e , c a l c u l a t e d from biomass y i e l d and f o l i a g e phosphorus content, could be near 10 kg/ha. With a l i m i t e d supply of a v a i l a b l e P, observed d e p l e t i o n of phosphorus l e v e l s on f e r t i l i z e d s i t e s could be a r e s u l t of phosphorus uptake by legumes and i m m o b i l i z a t i o n i n organic matter. Correlations i d e n t i f i e d plant associations (Figure 5.5) and corresponding s o i l variables related to t h e i r establishment (Table 5.1). There were few grass species s i g n i f i c a n t l y correlated to s p o i l v ariables, perhaps due to the l i m i t e d data set f o r some species. The re l a t i o n s h i p between the grass species with higher nutrient and moisture requirements, Poa. Bromus and Festuca was evident. This may support the observation of higher production of these three species on the more recently f e r t i l i z e d s i t e s , WD1 and 3450 (Table 4.1, page 56). Foliage N, P and K l e v e l s appeared i n t e r r e l a t e d for a l l three species sampled (Figure 5.5). Figure 5.5 Correlations Between Species A_. cristatum —-.62-\ , 7 trichophorum _ _ P. compressa —*47— F3, inermis •40 -.39 f • rubra Table 5.1 Species Cover Correlations with Spoil Variables SPECIES VARIABLES R M. sativa N +0.31 K +0.36 A. cicer Mg +0.75 pH (CaCl2) +0.31 Ca +0.31 CF -0.31 P -0.30 A. cristatum N +0.40 P +0.38 K +0.38 CF +0.30 A. trichophorum N +0.39 P +0.30 K +0.38 Na +0.40 CF +0.34 pH (CaCl2) -0.32 ure 5.6 Correlations Between Folioge N, P, and K Levels aN • 38 aK fN • 63 • 45 fP fK + .51 Biomass Biomass = total plot dry weight Foliage elements: c = crested wheatgrass f = red fescue a = al fal fa Both inherent s p o i l c h a r a c t e r i s t i c s including pH, cations, and coarse fragment content, and f e r t i l i z e r management factors such as nitrogen and potassium l e v e l s , appear to be contributing to revegetation success. Figure 5.7 summarizes these s p o i l variables r e l a t i o n s h i p s to legume:grass r a t i o s . I t was apparent that no si n g l e factor provided a good c o r r e l a t i o n with revegetation success; there were few relationships with r values greater than 0.50. C l a r i f i c a t i o n of relationships and development of p r e d i c t i v e equations was attempted through multiple regression analysis. Figure 5.7 Summarization of Relationships Between Spoil Properties and Vegetation 97 5.2 MULTIVARIATE RELATIONSHIPS Results from the significant tests in Chapter 4 and correlations were used to determine the best coefficients for stepwise multiple regression procedures. As with the correlations, multiple regression relationships were obtained for the tota l data set and separately for f la t and sloping sites (Tables 5.2) . Strongest relationships were obtained for f la t sites alone. Potassium appeared to be a spoi l variable posit ively related to both grass and legume cover on both s i te types (Table 5.2). Other key parameters include: magnesium, coarse fragment content, phosphorus, and sodium. Nitrogen was excluded from the analysis due to i t s strong correlation with K. Relationships with vegetation variables were also obtained for individual f la t sites (Table 5.3). U t i l i z i n g WD3 data as an example of a re lat ive ly intensively managed site ( f e r t i l i z e r and overburden applied), legume cover can reasonably be predicted from potassium and coarse fragment data (Figure 5.8 and Table 5.3). This i l lus trates that placement of overburden and f e r t i l i z e r are key management factors influencing vegetation v a r i a b i l i t y on such a s i te . U t i l i z i n g WD2 and WD3B data, legume composition was estimated from pH, magnesium, and phosphorus (Table 5.3). This Table 5.2 Significant (p<0.05) multiple regression models for predicting biomass yi e l d and percent legume or grass cover from total data set. EQUATION r2 s.e. prediction ALL SITES Biomass = 1.36 + 7.20O - 0.016CP) - 0.026 + 17.87(N) 0.49 1.47 Legumes = 28.37 + 1.95(Mg) + 66.40C) - 0.168(P) - 0.45CCF) 0.41 18.63 FLAT SITES Biomass = -1.23 + 10.4(K) - 7.3x10-3(P) -3.08(Na) 0.64 1.22 Legumes = 13.17 + 108(10 - 0.12(P) - 0.40(CF) 0.52 16.65 Grasses = -30.79 + 0.44(CF) + 360O + 28.6(Na) 0.40 11.00 SLOPING SITES Biomass = 2.8 - 0.037(CF) + 7.60O - 0.020(P) 0.46 1.59 Legumes = 0.059 - 0.252CP) + 68.40O 0.35 19.42 Table 5.3 Significant (p<0.05) multiple regression models for predicting legume cover or composition for individual f l a t s i t e s . EQUATION r2 s.e. prediction WD3 X Legume Cover = -41 + 96(K) + 0.42CCF) 0.71 10.3 WD1 % Legume Cover = 17.0 + 18.3(Mg) + 80(10 - 0.4(CF) 0.74 12.5 WD2 and WD3B % Legume Composition = -156.4 + 22.8(pH) - 0.23(P) 0.84 4.6 + 7.3(Hg) 99 analysis exemplifies the option of f e r t i l i z a t i o n (N and P) as opposed to overburden application (pH and Mg influence) two es t a b l i s h a l t e r n a t i e vegetation types: a grass dominated s i t e (WD2) as opposed to a legume dominated s i t e (WD3B). 80 60 40 20 Figure 5.8 Scatterplot of K versus Legume Cover on WD3 % LEGUME COVER • LOW C O V E R PLOTS 0 HIGH COVER PLOTS 0 0 0 0 0 0 • • • • 1 •_ 50 100 150 200 SPOIL P O T A S S I U M ppm 250 300 100 5.3 SPATIAL RELATIONSHIPS - CLUSTER ANALYSIS 5.3.1 VEGETATION CATEGORIZATION Test case areas i n t h i s study were selected based on a subjective o b j e c t i v e l y categorize revegetation success and i d e n t i f y variables s i g n i f i c a n t l y d i f f e r e n t between the categories, a l l p l o t s from the t o t a l data set were clustered, using the two vegetative c h a r a c t e r i s t i c s : percent f o l i a r cover and percent legume composition. Cluster analysis by average distance method (Ward 1963), a technique for measuring the degree of s i m i l a r i t y among variables using a multivariable data base, was used to group the data into four vegetation categories. Table 5.4 summarizes the categorization of the t e s t case s i t e s and vegetation types into the four vegetation groups. assessment of t h e i r productivity. In an attempt to more Table 5.4 Site Allocation to Cluster Groups Group 1 Group 2 Group 3 Group 4 Mean vegetation cover 10% Mean legume cover 3% WD1 - L WD3B - L WD3 - L 3450 - L 3150 - L Mean vegetation cover 53% Mean legume cover 2% WD 2 - M 3450 - M 3150 - M mi seeIlaneous Mean vegetation cover 65% Mean legume cover 41% WD1 - H WD3 - H WD3B - H 3450 - H,M 3450 - H,M mi seeIlaneous Mean vegetation cover 84% Mean legume cover 65% WD3B miscellaneous 12 12 12 12 12 n=29 10 8 6 5 n=45 11 10 5 8 9 3 n=17 10 7 101 F i g u r e 5.9 i l l u s t r a t e s t h e v e g e t a t i v e c h a r a c t e r i s t i c s o f t h e f o u r g r o u p s . Mann-Whitney U t e s t s o f s i g n f i c a n c e were used t o c o n f i r m d i f f e r e n c e s between groups. Key v a r i a b l e s were i d e n t i f i e d by d e t e r m i n i n g d i f f e r e n c e s between each group. 102 5.3.2 DIFFERENCES BETWEEN CLUSTER GROUPS Mann-Whitney U s i g n i f i c a n c e t e s t s were conducted t o determine i f groups were s i g n i f i c a n t l y d i f f e r e n t i n terms of s p o i l and f o l i a g e v a r i a b l e s . Tables 5.5, 5.6 and 5.6b summarize those v a r i a b l e s s i g n i f i c a n t l y d i f f e r e n t between v e g e t a t i o n groups. The h i g h e s t y i e l d i n g v e g e t a t i o n group (Group 4) has the highest s p o i l and M_j_ s a t i v a magnesium l e v e l s and lowest s p o i l and F_j_ rubra phosphorus l e v e l s compared t o other c l a s s e s (Tables 5.6a and 5.6b). Legume cover decreases from Group 4 t o 2 and, correspondingly, s p o i l magnesium and potassium l e v e l s decrease and phosphorus l e v e l s i n c rease (Tables 5.6a and 5.6b). Table 5.5 Mann-Whitney U Test: S i g n i f i c a n t D i f f e r e n c e s between Vegetation Groups GROUP 2 3 4 1 N,K,P,pH,CF,Na AFe,FK N,K,Mg AZn,FN,FFe N,K,P,Mg,BD AZn,AMg,FP 2 P,Mg,Na,pH,CF AFe,AZn,FK CF,pH,N,K,P,Mg Na, BD AFe,AZn,FP 3 P,Mg,BD FP F o l i a g e elements: A - a l f a l f a , F - fescue Table 5.6a Spoil Characteristics of Cluster Groups VEGETATION pH N P IC Mg Na CF BD GROUP (CaCl2) X ppm meq/100g meq/100g meq/100g % g/cm3 GROUP 1 X 7.6 0.018 68 0.36 1.77 0.08 70 1.81 std 0.2 0.011 68 0.12 1.07 0.07 13 0.12 GROUP 2 ~K 7.3 0.040 93 0.51 1.41 0.13 79 1.83 std 0.2 0.023 62 0.22 0.52 0.11 10 0.08 GROUP 3 X 7.5 0.035 45 0.51 2.07 0.06 68 1.83 std 0.4 0.014 31 0.16 1.23 0.05 10 0.10 GROUP 4 X 7.6 0.032 21 0.58 3.55 0.06 65 1.77 std 0.2 0.027 19 0.15 2.10 0.01 8 0.12 Table 5.6b Foliage Characteristics of Cluster Groups M. sativa F. rubra VEGETATION Mg Fe Zn N P K Fe GROUP ppm ppm ppm % X X ppm GROUP 1 X 0.245 71 26 0, .957 0.124 1.161 57 std 0.057 52 9 0, .266 0.034 0.316 27 GROUP 2 X 0.267 81 31 1. .015 0.124 1.406 62 std 0.067 28 12 0. .185 0.018 0.272 23 GROUP 3 x~ 0.269 67 20 1. .118 0.124 1.160 48 std 0.060 40 6 0. .263 0.044 0.187 23 GROUP 4 x 0.306 58 19 1.047 0.103 1.203 46 std 0.104 21 4 0.376 0.045 0.254 28 104 S i g n i f i c a n t d i f f e r e n c e s between the two moderate cover vegetation groups, one dominated by legumes (Group 3) and the other by grasses (Group 2 ) , i n c l u d e s : lower s p o i l pH, higher coarse fragments, and higher f o l i a g e potassium, i r o n and z i n c . C h a r a c t e r i s t i c s of the low cover s i t e s (Group 1) i n c l u d e : low s p o i l n i t r o g e n , potassium, and magnesium l e v e l s . 5.3.3 DISCRIMINANT ANALYSIS Di s c r i m i n a n t a n a l y s i s was used t o confirm which s p o i l p r o p e r t i e s accounted f o r the most v a r i a b i l i t y w i t h i n groups and t o determine the p r e d i c t i v e a b i l i t y from these v a r i a b l e s t o c l a s s i f y the group. F o l i a r elements were not u t i l i z e d as species sampled were not c o n s i s t e n t over a l l groups. From a l l the s p o i l v a r i a b l e s included i n the d i s c r i m i n a n t a n a l y s i s , the 7 key s p o i l v a r i a b l e s i d e n t i f i e d i n the Mann-Whitney t e s t s (Table 5.6) were i d e n t i f i e d as having the g r e a t e s t v a r i a b i l i t y and u t i l i z e d f o r se p a r a t i n g groups (bulk d e n s i t y was excluded as values not a v a i l a b l e f o r a l l cases). The r e s u l t s from the d i s c r i m i n a n t a n a l y s i s are provided i n Table 5.7. Using the 7 s p o i l v a r i a b l e s , o v e r a l l p r e d i c t i v e a b i l i t y was 71 percent f o r c l a s s i f i c a t i o n of the e n t i r e data s e t . This estimate was improved t o 75 percent when conducted on the f l a t s i t e s only. For those s i t e s , only 6 v a r i a b l e s were u t i l i z e d as N was h i g h l y c o r r e l a t e d w i t h K. P r e d i c t i o n of slope 105 Table 5.7 Discriminant Analysis: Predicted Group Membership Percent of Cases Correctly Classified 1 2 GROUP 3 4 OVERALL COMPLETE DATA SET N.P.K.Na.Mg.pH.CF 83.1 58.6 62.2 64.7 70.5 SLOPING SITES NfP,K,CF,pH 71.4 47.4 61.1 71.4 62.5 FLAT SITES P.K.Na.Mg.pH.CF 86.5 90.0 55.6 70.0 75.0 v e g e t a t i o n c l a s s e s was l e s s accurate perhaps as a r e s u l t of an important m i s s i n g v a r i a b l e c o n t r i b u t i n g t o moisture d e f i c i e n c i e s , such as overburden depth which i s a f u n c t i o n of slope length. S p o i l Na and magnesium were not i d e n t i f i e d as key v a r i a b l e s i n c l a s s i f y i n g slope v e g e t a t i o n . To support the d i s c r i m i n a n t a n a l y s i s r e s u l t s , r e c l u s t e r i n g of the data s e t was attempted using the key s p o i l v a r i a b l e s . R e c l u s t e r i n g the e n t i r e data s e t d i d not r e s u l t i n producing v e g e t a t i o n groups due t o d i f f e r e n c e s between slope and f l a t c h a r a c t e r i s t i c s . C l u s t e r i n g on separated data s e t s supported the r e s u l t s of the d i s c r i m i n a n t a n a l y s i s where poor grouping was achieved on the s l o p i n g s i t e s , but grouping on the f l a t s i t e s ranged from 58 % accuracy f o r Group 4 (the high producing group) t o 83 % accuracy f o r Group 2 (the moderate producing grass t y p e ) . 106 5 . 3 . 4 . MULTIPLE REGRESSION ANALYSIS To i d e n t i f y t h e p r o d u c t i o n l i m i t i n g v a r i a b l e s f o r each v e g e t a t i o n t y p e , a m u l t i p l e s t e p w i s e r e g r e s s i o n was r u n f o r each c l u s t e r group. The a n a l y s i s was r u n w i t h o u t f o l i a g e element d a t a i n an at t e m p t t o g e n e r a t e p r e d i c t i v e e q u a t i o n s such t h a t v e g e t a t i o n p r o d u c t i o n c o u l d be a n t i c i p a t e d based on measurable s p o i l c h a r a c t e r i s t i c s . T a b l e 5.8 summarizes t h e r e l a t i o n s h i p s r e s u l t i n g from t h e a n a l y s i s . Table 5.8 S i g n f i c a n t (p<0.05) m u l t i p l e r e g r e s s i o n models f o r p r e d i c t i n g biomass y i e l d and percent legume or grass cover w i t h i n v e g e t a t i o n groups EQUATION s.e. p r e d i c t i o n GROUP 1 - low v e g e t a t i o n p r o d u c t i o n % Grass Cover = 79.50 + 493.6 0.035 % > 0.45 < 1.85 > 0.025 X > 0.45 > 1.85 > 0.025 % > 0.55 > 2.45 COARSE FRAGMENTS % BULK DENSITY g/cm3 > 65 % >1.80 > 75% >1.80 < 75% >1.80 < 75% <1.80 POSSIBLE MANAGEMENT INPUT REQUIRED TO ACHIEVE ABOVE RATING LOW MODERATE MODERATE HIGH ACTIVITIES OVERBURDEN SCARIFICATION FERTILIZATION MINIMAL N-K HIGH N MODERATE K OVERBURDEN MODERATE N-K P-Mg OVERBURDEN SCARIFICATION MODERATE N HIGH P-K-Mg 109 For example, the s p o i l N, K, and Mg l e v e l s d i f f e r between the classes and, hence, have f e r t i l i z e r management implications. K and Mg, however, can also be inherently high i n s p o i l materials. P did not show up as a key variable d i f f e r i n g between classes; however, long-term s u s t a i n a b i l i t y of high legume production with a limited supply of P i s un l i k e l y . A high coarse fragment content r e f l e c t s an exposed waste rock surface, common on the lower portions of sloping s i t e s . Bulk density, a key variable for only one clas s , i s interpreted to r e f l e c t degree of compaction. Management options to ameliorate these physical s p o i l factors could include overburden capping and s c a r i f i c a t i o n . The s p o i l pH, which was variable i n both waste rock and overburden materials, had a p o s i t i v e c o r r e l a t i o n with cation l e v e l s , and therefore appears to contribute to high legume production; however, managing fo r higher s p o i l pH may r e s u l t i n l i m i t e d productivity due to decreased micronutrient a v a i l a b i l i t y , and, contribute to undesirable high Cu:Mo r a t i o s i n f o l i a g e . Therefore, a l k a l i n i t y i s not included at t h i s time as a management consideration. S p o i l c h a r a c t e r i s t i c s of the high production/high legume cover type (class 4) r e f l e c t a surface r e l a t i v e l y high i n exchangeable Mg and K, low i n coarse fragment content, and having low to moderate l e v e l s of nitrogen. Compaction was i d e n t i f i e d as a key variable 110 for t h i s category only . Depending on inherent c h a r a c t e r i s t i c s of the s p o i l , management options for achieving t h i s vegetat ion type may inc lude: intens ive f e r t i l i z a t i o n with P, K, and Mg; overburden capping; and, s c a r i f i c a t i o n . S i m i l a r treatment but lower Mg and K input and/or a compacted surface , could give r i s e to a moderate production s i t e (class 3) . Increasing the l e v e l of nitrogen f e r t i l i z a t i o n and e l iminat ing overburden capping ( increas ing coarse fragment content) , could r e s u l t i n a vegetat ion cover dominated by grasses (c lass 2) . Results of the study indicated that moisture a v a i l a b i l i t y , as inf luenced by coarse fragment content, are more i n f l u e n t i a l than s o i l nutr i en t status i n slope revegetat ion. A uniform cover of overburden on the slopes appears necessary for a dominant cover of legumes and maximum biomass product ion. Although N f e r t i l i z a t i o n appears to enhance grass growth on the f l a t s i t e s , intense N app l i ca t ions to a coarse slope surface with moisture l i m i t a t i o n s would l i k e l y y i e l d i n s i g n i f i c a n t r e s u l t s . Low revegetat ion success appears to a r i s e on e i t h e r an overburden or waste rock surface which has low l eve l s of n i trogen , potassium, and magnesium. Uneven placement of f e r t i l i z e r could be c o n t r i b u t i n g to the development of these low production areas as d i f ferences i n f e r t i l i t y l eve l s were found between high and low p r o d u c t i v i t y areas wi th in each s i t e . Management options to be inves t igated for overcoming t h i s problem may include u t i l i z i n g I l l a l t e r n a t e s e e d i n g / f e r t i l i z i n g equipment such as hydroseeding on s l o p i n g s i t e s and u t i l i z i n g p u l l - t y p e spreaders on a c c e s s i b l e f l a t s i t e s . The i d e n t i f i c a t i o n of the b a s e l i n e c h a r a c t e r i s t i c s and c l a s s i f i c a t i o n of the mine s p o i l p r i o r t o r e v e g e t a t i o n treatment could a l l o w the fo r m u l a t i o n of v a r i o u s management options t o apply i n an attempt t o achieve d e s i r e d r e v e g e t a t i o n r e s u l t s . The model could be taken one step f u r t h e r by a p p l y i n g c o s t s t o each reclamation a c t i v i t y such t h a t the p r i c e of each v e g e t a t i o n type could be determined. 6.2 RECLAMATION COSTS AND PRODUCTION A p p l i c a t i o n of costs t o the management options i s l i m i t e d mainly by the a v a i l a b i l i t y of appropriate data on reclamation c o s t s . Documentation of re v e g e t a t i o n c o s t s by Newmont Mines L t d . p r e v i o u s l y c o n s i s t e d only of c o n t r a c t c o s t s f o r seed and f e r t i l i z e r a p p l i c a t i o n s ; o p e r a t i o n a l c o s t s of overburden a p p l i c a t i o n have not been estimated. The 1989 c o s t s f o r a e r i a l seed and f e r t i l i z e r a p p l i c a t i o n s are r e l a t i v e l y easy t o i d e n t i f y from personal communications w i t h s u p p l i e r s and c o n t r a c t o r s (Table 6.2). Determining overburden and s c a r i f i c a t i o n c o s t s are more d i f f i c u l t . Separating the o p e r a t i o n a l c o s t s f o r reclamation from mining can be d i f f i c u l t because of the 112 great overlap of many of the a c t i v i t i e s and use of equipment (Michaud 1981). Various sources estimate topdressing costs to Table 6.2 Estimated Costs of A e r i a l Broadcast Applied Seed and F e r t i l i z e r VARIABLE COSTS: SEED Materials and Delivery 80 kg/ha * $10/kg wheatgrass-legume mix $800/ha Application $.30/kg $25/ha FERTILIZER Materials and Delivery 400 kg/ha $500/tonne $200/ha Application $250/tonne $100/ha $1125/ha FIXED COSTS: MOBILIZATION AND LABOUR $350/contract $350/contract * Rates consistent with previous practice 113 range from $1500 to $5000/ha (Crofts et a l . 1987, Michaud 1981, Sims et a l . 1984) , but vary depending on s i t e conditions, equipment used, amount of material applied, and whether or not manpower and equipment time are included as operational costs. Topdressing costs can be s u b s t a n t i a l l y higher i f s e l e c t i v e handling and s t o c k p i l i n g of material i s incorporated. S c a r i f i c a t i o n costs have been noted to be i n a s i m i l a r p r i c e range (Sims et a l . 1984) but also vary with s i t e conditions and equipment used. The i n d i v i d u a l i t y of each mine's reclamation program and s i t e conditions make i t d i f f i c u l t to apply u n i t costs for these a c t i v i t i e s from references. Once reclamation costs are i d e n t i f i e d , determining project costs as they r e l a t e to revegetation success could be attempted and effectiveness of management options evaluated. Figure 6.1 i l l u s t r a t e s the r e l a t i o n s h i p of assumed costs to vegetation biomass of the classes and management options i d e n t i f i e d i n Table 6.2. For t h i s example, a r b i t r a r y figures of $2500/ha were used for both overburden a p p l i c a t i o n and s c a r i f i c a t i o n costs 1. Although t o t a l project costs per hectare for c l a s s 4 vegetation cover i s highest, Figure 6.1 i l l u s t r a t e s that the reclamation Costs shown for these a c t i v i t i e s are rough approximations based on an average of costs c i t e d i n the above mentioned reports. 114 Figure 6.1 Revegetation C o s t s and Biomass Product ion DRY MATTER T O N N E / H A CLASS 1 2 3 4 MANAGEMENT INPUT AND COSTS: (ASSUMING 10 HA/SITES) INITIAL SEEDING AND $11,600 $11,600 $11,600 $11,600 FERTILIZATION MAINTENANCE FERTILIZATION X2 $6,700 X4 $13,400 $13,400 OVERBURDEN APPLICATION $25,000 $25,000 SCARIFICATION $25,000 $ INPUT/HA $1,160 $2,500 $4,330 $7,500 BIOMASS T/HA 0.37 2.03 3.92 5.59 $INPUT/TONNE $3,135 $1,232 $1,105 $1,342 115 d o l l a r s input per tonne forage produced i s r e l a t i v e l y s i m i l a r between the c l a s s e s 2, 3 and 4. Costs of a c h i e v i n g each c l a s s are exaggerated i n t h i s example; e v a l u a t i o n of s i t e s p r i o r t o r e v e g e t a t i o n would a l l o w the i d e n t i f i c a t i o n of t h e i r inherent production c a p a b i l i t y . For example, WD3B from the t e s t case study had been capped w i t h overburden i n h e r e n t l y high i n Mg and K, had not been compacted ( l i m i t e d equipment t r a f f i c due t o s i t e l o c a t i o n ) , and had been seeded but not f e r t i l i z e d . Revegetation c o s t s of t h i s s i t e equals only $3370/ha, or, r e l a t i v e t o the s i t e h i g h producing areas at 5.1 t/ha (low producing areas assumed t o have not been seeded), $660/t forage produced. Table 6.3 i t e m i z e s the estimated 1989 c o s t s of past r e v e g e t a t i o n treatments f o r the remaining t e s t case study s i t e s . Combined average production f o r the s i t e s i s e q u i v a l e n t t o a c l a s s 2 v e g e t a t i o n type (Figure 6.1) but t o t a l c o s t s and costs/tonne forage produced i s approximately 80% g r e a t e r than t h a t estimated f o r c l a s s 2. T h is g r e a t e r c o s t i s a t t r i b u t e d t o the v a r i a b i l i t y i n production on each s i t e . The c h a r a c t e r i z a t i o n of the s p o i l p r i o r t o s i t e treatment and improved placement of overburden and f e r t i l i z e r w i l l improve the e f f i c i e n c y of f u t u r e reclamation programs. 116 Table 6.3 Estimated 1989 Costs of Revegetation Methods Employed For Test Case Sites OVERBURDEN APPLICATION SEEDING FERTILIZING TOTAL COSTS AVERAGE SITE PRODUCTION COSTS/TONNE SLOPING SITES 3450 2500 870 1120 4490 2.27 1978 3150 2500 1740* 1900 6140 2.47 2586 FLAT SITES UD1 2500 1740 1120 5360 1.74 3080 WD 2 870 1900 2770 1.56 1776 WD3 2500 1740 1900 6140 2.58 2380 WD3B 2500 870 0 3370 2.57 1311 AVERAGE ALL SITES $4,712/ha 2.20 tonnes/ha $2,185/tonne 6.3 RECLAMATION STRATEGIES AND END LAND USE Although some of the key s p o i l variables r e s t r i c t i n g growth on the waste dumps have been i d e n t i f i e d , amending them on every s i t e may not be economically f e a s i b l e . A s p o i l c l a s s i f i c a t i o n system would allow the development of a f l e x i b l e reclamation plan from which vegetation productivity and reclamation costs could be predicted from various reclamation a l t e r n a t i v e s . The degree of reclamation that i s required and the costs depend on the s i t e conditions and on the l e g i s l a t i v e requirements i n the area. The primary end land use goals of reclamation at Similco i s w i l d l i f e use and c a t t l e grazing. Because of t h e i r nitrogen f i x i n g a b i l i t y , legumes may be desirable components for ensuring long-term stand s u s t a i n a b i l i t y . However, the Cu:Mo r a t i o s i n a l l legume 117 species sampled were un d e s i r a b l y low ( l e s s than 4:1). This may not be a c r i t i c a l c o n s i d e r a t i o n f o r w i l d l i f e , as continuous g r a z i n g on the area i s u n l i k e l y . However, i t may be necessary t o promote grass growth, such as wheatgrasses, i n areas where heavy c a t t l e use i s expected. An a d d i t i o n a l land use c o n s i d e r a t i o n , i s a e s t h e t i c s . Due t o the c l o s e p r o x i m i t y of some waste rock dumps t o a major highway, dense v e g e t a t i o n cover f o r e r o s i o n c o n t r o l and a e s t h e t i c s i s a primary reclamation o b j e c t i v e . A p p l i c a t i o n of c o s t s t o these reclamation o b j e c t i v e s i s i l l u s t r a t e d i n Table 6.4. In t h i s example four s i t e s are considered f o r r e c l a m a t i o n . Three management scenarios have been developed. A l t e r n a t i v e 1 i l l u s t r a t e s an attempt t o achieve maximum forage production on a l l s i t e s . Revegetation c o s t s would t o t a l more than $380,000 f o r the 60 ha (averaging $6,400/ha). S i t e D i s the most d i f f i c u l t t o r e c l a i m and the most c o s t l y due t o the long slope r e q u i r i n g overburden capping 2. 2 Assumed overburden cos t s are m u l t i p l e s of $2500 dependent on r e l a t i v e amount of m a t e r i a l r e q u i r e d t o cover a s i t e . Table 6.4 Example Matrix Illustrating Management or Revegetation Options for Four Sites REVEGETATION GOAL LOW FORAGE PROOUCTION< >HIGH FORAGE PRODUCTION SITE DESCRIPTION SIZE SITE CHARACTERISTICS (ha) CLASS 1 FESCUE/BLUEGRASS CLASS 2 WHEATGRASSES CLASS 3 M. LEGUMES/GRASSES CLASS 4 H. LEGUMES/GRASSES A. Flat - overburden applied 10 low levels of N and P compacted moderate cation levels adjacent to forest compacted 2* seeding N,K fert. 1x 1;3* sca r i f i c a t i o n seeding P.K.Mg fer t . 3x B. Flat - waste rock surface 20 low N and P open terrain, low cation levels coarse surface 2 seeding N,K fe r t . 1x 3 seeding N,K f e r t . 5x 1 capping 1x seeding P,K,Mg fer t . 3x C. Slope - 40 m slope face 20 low N and P visibl e from highway low cation levels coarse throughout length 2 capping 1x seeding N,K fe r t . 1x 3 capping 2x seeding N,P,K,Mg fe r t . 3x 1 capping 2x seeding P.K.Mg f e r t . 3x D. SLope - 80 m slope face 10 low N and P steep terrain low cation levels surrounding, facing coarse throughout length river 2 capping Ix seeding N,K fert. 1x 3 no treatment 1 capping 4x seeding P.K.Mg f e r t . 3x * 1,2 and 3 refer to reclamation alternatives identified in Table 6.4 cont'd. H H 00 Table 6.4 cont'd. ALTERNATIVE 1 - OPTIONS BASED ON HIGHEST BIOMASS PRODUCTION SITE SIZE APPROX. REVEGETATION COSTS CAPPING* SCARIFYING+ SEEDING* ($/HA) FERTILIZING = TOTAL ($/HA) DOLLARS /SITE YIELD (T/HA) SITE YIELD PRICE FORAGE OF ($/T) A 10 2500 870 340 3710 37100 5.6 56 663 B 20 2500 870 1120 4490 89800 5.6 112 802 C 20 5000 870 1120 6990 139800 5.6 112 1248 D 10 10000 870 1120 11990 119900 5.6 56 2141 PROJECT COST= $386600 YIELD=336 T ALTERNATIVE 2 - OPTIONS BASED ON LOWEST PROJECT COST SITE SIZE APPROX. REVEGETATION COSTS CAPPING* SCARIFYING* SEEDING* ($/HA) FERTILIZING = TOTAL DOLLARS ($/HA) /SITE YIELD (T/HA) SITE YIELD PRICE OF FORAGE ($/T) A 10 870 340 1210 12100 0.37 3.7 3270 B 20 870 340 1210 24200 0.37 7.4 3270 C 20 2500 870 340 3710 74200 0.37 7.4 10027 D 10 2500 870 340 3710 37100 0.19 1.9 19526 PROJECT COST= $147600 YIELD=20 T ALTERNATIVE 3 - OPTIONS BASED ON END LAND USE SITE SIZE APPROX. REVEGETATION COSTS CAPPING* SCARIFYING* SEEDING* ($/HA) FERTILIZING = TOTAL ($/HA) DOLLARS /SITE YIELD (T/HA) SITE YIELD PRICE FORAGE OF ($/T) END LAND USE A 10 2500 870 340 3710 37100 5.6 56 663 [WILDLIFE B 20 870 1900 2770 55400 2.0 40 1385 GRAZING C 20 5000 870 1120 6990 139800 3.9 78 1792 EROSION CONTROL/ AESTHETICS D 10 0 0 0 0 0 [WILDLIFE ESCAPE TERRAIN PROJECT COST= $232300 YIELD=174 T 120 A l t e r n a t i v e 2 i s an e f f o r t t o e s t a b l i s h some l e v e l of forage cover on a l l s i t e s f o r the minimum reclamation d o l l a r s p o s s i b l e . This o p t i o n i l l u s t r a t e s a 60% r e d u c t i o n i n p r o j e c t c o s t s ; however, t o t a l forage y i e l d s are a l s o l i k e l y t o be low and p r i c e of forage p r o d u c t i o n has increased. Although r e v e g e t a t i o n c o s t s now average l e s s than $2460/ha, retreatment of these s i t e s at a l a t e r date may be r e q u i r e d i f v e g e t a t i o n cover i s considered u n s a t i s f a c t o r y . A l t e r n a t i v e 3 i s a compromise p l a n which attempts t o s u i t both the mine's reclamation budget and the land use goals. S i t e D, an area t h a t w i l l not be grazed and where the surrounding topography i s comparable t o the s i t e , would be d i f f i c u l t or c o s t l y t o revegetate and t h e r e f o r e i s not t r e a t e d . Instead, s i t e s which are best s u i t e d t o c a t t l e g r a z i n g ( s i t e B) , w i l d l i f e use ( s i t e A) , or are h i g h l y v i s i b l e ( s i t e C), are s e l e c t e d as p r i o r i t i e s f o r management input. Forage production i s maximized f o r reclamation d o l l a r i n v e sted. Revegetation c o s t s i n t h i s example are $3900/ha. An a d d i t i o n a l item which should be addressed i n a c o s t a n a l y s i s i s the end land use value of the land r e l a t i v e t o the pre-mining land use value and reclamation c o s t s ; however, one would have t o assume t h a t the reclamation techniques employed are adequate t o s u s t a i n long-term r e v e g e t a t i o n success and land c a p a b i l i t y . The e v a l u a t i o n of long-term s u s t a i n a b i l i t y of v e g e t a t i o n a f t e r maintenance f e r t i l i z a t i o n i s d i s c o n t i n u e d was beyond the scope of t h i s study. 1 2 1 Although these scenarios i l l u s t r a t e the usefulness of a s p o i l c l a s s i f i c a t i o n system, additional research to r e f i n e cost estimates and add more spoil/vegetation information to t h i s reclamation model i s s t i l l required. However, u t i l i z i n g revegetation research information i n t h i s format w i l l be useful i n future revegetation projects and r e s u l t i n the best use of reclamation d o l l a r s . Scenarios developed from basic s p o i l analysis w i l l a i d i n the development of a f l e x i b l e and cost e f f e c t i v e reclamation plan. This approach, however, would benefit from add i t i o n a l studies conducted to address the following: 1 ) i d e n t i f i c a t i o n of operational costs (manpower and equipment) of overburden handling including capping, s c a r i f i c a t i o n , and/or other methods of application which more evenly d i s t r i b u t e s material throughout a s i t e and a l l e v i a t e s compaction problem; 2 ) i d e n t i f i c a t i o n of the e f f e c t s of other vegetation management options on revegetation success, such as: season of seed and f e r t i l i z e r application, application techniques, types of f e r t i l i z e r , and overburden depth; and, 3) incorporate r e s u l t s from future revegetation attempts to refine the s p o i l c l a s s i f i c a t i o n system, such as: c l a r i f y i n g the pH, Na, and CF influence on grass/legume composition; determining P requirement for long term s u s t a i n a b i l i t y of legumes; and, 122 i d e n t i f y i n g the influence of pH and micronutrient a v a i l a b i l i t y on legume production. 123 7.0 SUMMARY AND CONCLUSIONS With respect t o the o r i g i n a l o b j e c t i v e s of t h i s study, the f o l l o w i n g c o n c l u s i o n s were made: 1. Assessment o f Vegetation Production and Q u a l i t y - A l i m i t e d number of drought t o l e r a n t species were e s t a b l i s h e d on the reclaimed s i t e s s i m i l a r t o r e s u l t s from mine s p o i l r e v e g e t a t i o n t r i a l s i n other a r i d areas of B.C.'s i n t e r i o r . - Two grass a s s o c i a t i o n s were i d e n t i f i e d which r e f l e c t a v a r i a t i o n i n s i t e moisture and n u t r i e n t a v a i l a b i l i t y : 1) drought t o l e r a n t Aoropyron s p e c i e s , and 2) higher n u t r i e n t and moisture demanding Poa. Bromus, and Festuca s p e c i e s . - T o t a l p l a n t cover on the waste rock dumps ranged from l e s s than 5 t o g r e a t e r than 80%. Vegetation types d i f f e r i n g i n biomass production and legume composition were i d e n t i f i e d on each reclaimed s i t e . - The e f f e c t of legume composition on ruminant n u t r i t i o n should be considered i n re v e g e t a t i o n planning due t o t h e i r higher Ca:P r a t i o s and low Cu:Mo r a t i o s . 124 2. P o s s i b l e P h y s i c a l and Chemical S p o i l C h a r a c t e r i s t i c s L i m i t i n g Growth - Waste rock and overburden g l a c i a l t i l l m a t e r i a l s are g e n e r a l l y low i n n i t r o g e n , phosphorus, and magnesium. Low l e v e l s of these n u t r i e n t s i n legume and grass f o l i a g e were a l s o i d e n t i f i e d . - Higher l e v e l s of a l k a l i n i t y i n some s p o i l m a t e r i a l s may l i m i t m i c r o n u t r i e n t a v a i l a b i l i t y as i n d i c a t e d by low elemental l e v e l s i n f o l i a g e . There was a wide range i n a l k a l i n i t y i n both s p o i l types. - High coarse fragment content, p a r t i c u l a r l y on the s l o p i n g s i t e s , accompanied w i t h low water h o l d i n g c a p a c i t y and dry c l i m a t i c c o n d i t i o n s , suggest t h a t moisture d e f i c i e n c i e s are l i k e l y a c r i t i c a l problem f o r r e v e g e t a t i o n success. G e n e r a l l y , waste rock m a t e r i a l had a higher coarse fragment content than overburden. - High bulk d e n s i t y values on the f l a t s i t e s i n d i c a t e d t h a t compaction could be impeding root growth. 3. R e l a t i o n s h i p s Between S p o i l P r o p e r t i e s and Revegetation Success - A negative r e l a t i o n s h i p between coarse fragment content and legume cover was observed. On the f l a t s i t e s , grass cover was h i g h e s t on the s i t e w i t h a coarse waste rock s u r f a c e . On s l o p i n g 1 2 5 s i t e s coarse fragment content increased and legume production decreased w i t h slope l e n g t h . - F o l i a g e m i c r o n u t r i e n t s , i n c l u d i n g Zn, Fe, and Mn, were found t o be n e g a t i v e l y c o r r e l a t e d w i t h s p o i l pH and Ca l e v e l s . - A negative r e l a t i o n s h i p was found between grass cover and s p o i l pH and Ca l e v e l s . - Highest producing areas on the f l a t s i t e s occurred on areas w i t h lowest s p o i l bulk d e n s i t y v a l u e s . - Low con c e n t r a t i o n s of Mg were found i n legume f o l i a g e . A p o s i t i v e r e l a t i o n s h i p between legume cover and s p o i l Mg l e v e l s was observed. - S p o i l N and K l e v e l s v a r i e d throughout each reclaimed s i t e , e i t h e r as a r e s u l t of f e r t i l i z e r placement or, as a r e s u l t of v e g e t a t i o n input or i n f l u e n c e on reducing l o s s e s . S p o i l N was found t o be p o s i t i v e l y c o r r e l a t e d w i t h grass cover. K was found t o be p o s i t i v e l y r e l a t e d t o both grass and legume cover. - S p o i l P was lower on high producing areas p o s s i b l y due t o greater p l a n t uptake and i m m o b i l i z a t i o n i n l i t t e r . P l e v e l s i n legumes from most f e r t i l i z e d s i t e s were s t i l l i n a d e f i c i e n c y range. Highest legume growth was observed on the s i t e w i t h no P 126 f e r t i l i z e r and low s p o i l P l e v e l s i n d i c a t i n g a p o s s i b l e mycorrhyzal a s s o c i a t i o n . M u l t i p l e r e g r e s s i o n a n a l y s i s i n d i c a t e d t h a t N, P, K and coarse fragments were the key v a r i a b l e s r e l a t e d t o biomass production. In terms of legume or grass composition, Mg and pH were a d d i t i o n a l key f a c t o r s . C l u s t e r i n g of data based on veg e t a t i v e c h a r a c t e r i s t i c s produced four production c a t e g o r i e s s i g n i f i c a n t l y d i f f e r e n t i n these s p o i l p r o p e r t i e s . O v e r a l l p r e d i c t a b i l i t y of re v e g e t a t i o n success i s u s u a l l y not b e t t e r than 50%. R e l a t i o n s h i p s between s p o i l and v e g e t a t i o n v a r i a b l e s were poor f o r s l o p i n g s i t e s i n d i c a t i n g a key v a r i a b l e was m i s s i n g from the a n a l y s i s ; overburden depth or a to p o g r a p h i c a l f a c t o r may be a d d i t o n a l f a c t o r s c o n t r i b u t i n g t o moisture s t r e s s on these s i t e s . . S p o i l Management and Reclamation Options Past reclamation options f o r s p o i l treatment have included f e r t i l i z a t i o n and overburden capping. Even d i s t r i b u t i o n of these amendments are the key management f a c t o r s f o r reducing v a r i a b i l i t y i n v e g e t a t i o n cover on a s i t e . Inherent v a r i a b i l i t y of f a c t o r s such as pH and coarse fragments may be b e n e f i c i a l i n producing mixed legume/grass stands more d e s i r a b l e f o r c a t t l e g r a z i n g . 127 - A s p o i l c l a s s i f i c a t i o n system was o u t l i n e d from which reclamation options ( i n c l u d i n g f e r t i l i z a t i o n , overburden capping, and s c a r i f i c a t i o n ) and c o s t s could be i d e n t i f i e d from b a s e l i n e s p o i l i n f o r m a t i o n . - For the four s p o i l c l a s s e s i d e n t i f i e d , r eclamation c o s t s were estimated t o range from $1,160 t o $7,500/ha w i t h r e s p e c t i v e biomass production ranging from 0.40 t o 5.60 t/ha. Reclamation c o s t s f o r the t e s t case s i t e s were estimated t o be 80% gre a t e r than necessary f o r the cu r r e n t l e v e l of biomass production. E f f i c i e n c y of reclamation d o l l a r s can be improved through the e v a l u a t i o n of s p o i l c a p a b i l i t y and l i m i t a t i o n s p r i o r t o r e v e g e t a t i o n . - Management scenarios developed i l l u s t r a t e d the extreme c o s t of r e c l a i m i n g a l l s i t e s t o a high l e v e l of biomass p r o d u c t i v i t y . V arying management i n t e n s i t y between s i t e s , based on t h e i r inherent c a p a b i l i t i e s and the proposed end land use, i s recommended t o increase the e f f i c i e n c y of reclamation e f f o r t s . - This study has i d e n t i f i e d the management input r e q u i r e d t o e s t a b l i s h v a r i o u s v e g e t a t i o n types; however, f u r t h e r research and monitoring should be conducted t o determine the management r e q u i r e d t o maintain long term p r o d u c t i v i t y . 128 LITERATURE CITED A g r i c u l t u r e Canada, 1976. Glossary of Terms i n S o i l Science. A g r i c u l t u r e Canada P u b l i c a t i o n 1459. 441pp. A g r i c u l t u r e Canada and Province of B r i t i s h Columbia, M i n i s t r y of A g r i c u l t u r e . 1981. V e t e r i n a r y t r a c e mineral d e f i c i e n c y and t o x i c i t y i n f o r m a t i o n . Pub. 5139. Alaska R u r a l Development C o u n c i l . 1977. A r e v e g e t a t i v e guide f o r Alask a . R u r a l Development Co u n c i l P u b l i c a t i o n No. 2, P-238. Cooperative Extension S e r v i c e , U n i v e r s i t y of Al a s k a . Fairbanks, A l . Allaway, W.H. 1977. Per s p e c t i v e s on molybdenum i n s o i l s and p l a n t s . In: Molybdenum i n the Environment. W.R. Chappell and K.K. Peterson (ed.) Marcel-Dekker, N.Y. V o l . 2. Anderson A.J. and D. Spencer. 1950. Molybdenum i n n i t r o g e n metabolism of legumes and non-legumes. Aust. J . S c i . Res. 3:414-430. Ashby, W.C, W.G. Vogel, C A . K o l a r , and G.R. P h i l o . 1982. P r o d u c t i v i t y of Stoney S o i l s on S t r i p Mines, p.31-44 IN: J.D. N i c h o l s , D.L. Brown, and W.J. Grand (eds.) E r o s i o n and P r o d u c t i v i t y of S o i l s Containing Rock Fragments. SSSA S p e c i a l P u b l i c a t i o n , No. 13. Madison, Wisconsin. 103pp. Asher, L . J . , and J.F. Loneragan. 1967. Response of p l a n t s t o phosphate c o n c e n t r a t i o n i n s o l u t i o n c u l t u r e , I . Growth and phosphorus content. S o i l S c i . 103:225-233. Barak P. and Y. Chem. 1984. The e f f e c t of potassium on i r o n c h l o r o s i s i n calcareous s o i l s . J . P i n t . Nut. 7:123-133. Bardshad I . 1951. Factors a f f e c t i n g the molybdenum content of pasture p l a n t s . I I . E f f e c t of s o l u b l e phosphates, a v a i l a b l e n i t r o g e n and s o l u b l e sulphates. S o i l S c i . 71:387-398. Barth R.C 1984. S o i l depth requirements t o r e e s t a b l i s h p e r e n n i a l grasses on surface mined areas i n the Northern Great P l a i n s . Colorado School of Mines, M i n e r a l and Energy Res. V o l 27(1)1-20. Bauer, A., W.A. Berg and W.L. Gould. 1978. C o r r e c t i o n of n u t r i e n t d e f i c i e n c i e s and t o x i c i t i e s i n s t r i p - m i n e d lands i n s e m i - a r i d and a r i d r e g i o n s . I n: Reclamation of D r a s t i c a l l y Disturbed Lands. F.W. S c h a l l e r and P. Sutton (eds.) Proc. of a Symp. he l d at Wooster, Ohio. Am. Soc. of Agron, Crop S c i . Soc. of Am., and S o i l S c i . Soc. of Am., Madison, Wise. pp. 653-664. 129 Berg, W.A. 1978. Limitations i n the use of s o i l t e sts on d r a s t i c a l l y disturbed lands, p.653-661. IN: F.W. Schaller and P. Sutton (eds.) Reclamation of D r a s t i c a l l y Disturbed Land. Am. Soc. of Agron., Madison, Wisconsin. Berg, W.A. and E.M. Barrau. 1978. Management approaches to nitrogen deficiency i n revegetation of subalpine disturbances. IN: Proceedings: High-altitude disturbed lands. Colorado State Univ. Inform. Series No. 10. pp. 174-181. Berg, W.A., and W.G. Vogel. 1968. Manganese t o x i c i t y of legumes seeded i n Kentucky strip-mine s p o i l s . U.S. Forest Service, Res. Paper NE-119. Bennet, O.L., E.L. Mathias, W.H. Armiger, and J.N. Jones. 1978. Plant materials and t h e i r requirements f o r growth i n humid regions. In: Reclamation of d r a s t i c a l l y disturbed lands. F.W. Schaller and P. Sutton (eds.) Am. Soc. of Agron., Crop S c i . Soc. of Am., S o i l S c i . Soc. of Am., Madison Wise. pp. 285-305. Bickoff, E.M., G.O. Kohler, and D. Smith. 1972. Chemical composition of herbage. IN: A l f a l f a Science and Technology. C.H. Hanson (ed.). Agronomy Series No. 15. Amer. Soc. of Agron. Madison, Wisconsin, pp. 247-282 Bingham, F.T. 1966. Phosphorus. In: Diagnostic C r i t e r i a for Plants and S o i l s . H.D. Chapman (ed.) Univ. of C a l i f o r n i a , Div. of Ag. S c i . Black, CA. 1957. S o i l - P l a n t Relationships. New York. Black, CA. , D.D. Evans, J.L. WHite, L.E. Ensminger, and F.E. Clark. 1965. Methods of S o i l Analysis, Part 2: Chemical and Mic r o b i o l o g i c a l Properties. Am. Soc. of Agron., Madison, Wisconsin. Blincoe C. and T.L. Lambert. 1972. Micronutrient trace element composition of crested wheatgrass. J . Range Management 25:128-130. Bomke A.A. and L.E. Lowe. 1983. Forage response to copper f e r t i l i z a t i o n on two B r i t i s h Columbia Central I n t e r i o r s o i l s . Can. J . S o i l S c i . 65:457-465. Bradshaw, A.D., M.J. Chadwick, D. Jowett, and R.W. Snaydon. 1964. Experimental investigations into the mineral n u t r i t i o n of several grass species, IV. Nitrogen l e v e l . J . Ecology, 52:665-676. Brady, N.C 1974. The Nature and Properties of S o i l s . 8th ed. MacMillan Pub. Co., N.Y. 130 Bray, R.H. and L.T. Kurtz. 1945. Determination of t o t a l , organic and a v a i l a b l e forms of phosphorus i n s o i l s . S o i l S c i . 59:39-45. Bremner, J.M. and M.A. Tabatabai. 1971. Use of automated combustion techniques for t o t a l carbon, t o t a l nitrogen and t o t a l s u l f u r analysis of s o i l s . IN: Instrumental methods for analysis of s o i l s and plant t i s s u e , p.1-16. L.M. Walsh (ed.) S o i l S c i . Soc. Am. Proc. Madison, Wisconsin. Brown J.C. and V.D. J o l l e y . 1986. An evaluation of concepts related to Fe-deficiency c h l o r o s i s . J . Pint. Nut. 9:175-186. Buckerfields Ltd., 1980. Seeds for revegetating disturbed land: d e s c r i p t i v e manual. Buckerfield's Seed D i v i s i o n . Vancouver, B.C. Butcher, J.E., J.W. C a l l , J.T. Blake, and J.L.Shupe. 1979. Dietary phosphorus can cause problems i n beef cows. Proc. West. Sect., Amer. Soc. Anim. S c i . 30:312-314. C a l l , J.W., J.E. Butcher, J.T. Blake, R.A. Smart, and J.L. Shupe. 1978. Phosphorus influence on growth and reproduction of beef c a t t l e . J . Anim. S c i . 47:216-225. Chapman, H.D. 1966. Diagnostic C r i t e r i a f o r Plants and S o i l s . U niversity of C a l i f o r n i a , Div. of Ag. S c i . Chapman, H.P. 1965. Cation exchange capacity and t o t a l exchangeable bases, pp 891-904 IN: CA. Black et. a l . Methods of S o i l Analysis, Part 2: Chemical and Microbiological Properties. Am. Soc. of Agron., Madison, Wisconsin. Church, D.C, G.E Smith, J.P. Fontenot, and A.T. Rallston. 1971. Digestive physiology and n u t r i t i o n of ruminants. Vol. 2 Nu t r i t i o n . Oregon State Univ. Clark, M.B. 1969. Direct seeding experiments i n Southern I n t e r i o r Regions of B.C. B r i t i s h Columbia Forest Service Res. Notes 49p. Como, B.A. , L.M. Lavkulich, A.A. Bomke, J.M. Robbins. 1978. Reclamation of Abandoned Mine Spoils i n B r i t i s h Columbia. Evaluation of abondoned mine s p o i l s i n B r i t i s h Columbia, 1977-1978. Dept. S o i l S c i . , University of B.C. and Ministry of Mines and Petroleum Resources, V i c t o r i a , B.C. Crofts K.A., C.E. Sommer, C.R. Parkin. 1987. Plant successional responses to t o p s o i l thickness and s o i l horizons. American Society Mine Reclamation. Curran, M.P. 1984. S o i l Testing for Phosphorus A v a i l a b i l i t y to Some Conifers i n B.C. Univ. of B.C. M.Sc. Thesis. Department of S o i l Science. 131 Currier, W.F. 1975. Basic p r i n c i p l e s of seed planting. In: Proc. 1st Research and Applied Technology Symp. on Mined-land Reclamation, NCA/BCSR Coal Conf., Pittsburgh, Pa., Bituminous Coal Res. Inc., Monroeville, Pa. pp. 225-232. Daubenmire R.F. 1959. A canopy-coverage method of vegetational analysis. Northwest S c i . 33:43-64. Depuit E.J. and J.G. Coenenberg. 1980. Plant Response and Forage Quality f o r Controlled Grazing on Coal Mine S o i l Pastures. Project F i n a l Rpt. Submitted by Montana State Univ. Reel. Res. 95p. Dijkshoorn, W. and A.L. VanWijk. 1967. The s u l f u r requirements of plants as evidences by the sulfur-nitrogen r a t i o s i n the organic matter: a review of published data. PI. S o i l 26:129-157. Dolar S.G. and D.R. Keenly. 1971. A v a i l a b i l i t y of Cu, Zn, and Mn i n s o i l s . I - Influence of s o i l pH, organic matter, and extractable phosphorus. J . S c i . Fd. Agric. 22:273-278. Doll E.C, S.D. M e r r i l l , and G.A. Halvorson. 1984. S o i l Replacement for Reclamation of S t r i p Mined Lands i n North Dakota. North Dakota Agric. Exp. Stn. B u l l 514. 24p. D o l l , E.C, and R.E. Lucas. 1973. Testing s o i l s for K, Ca, and Mg. In: S o i l t e s t i n g and plant analysis. L.M. Walsh and J.D. Beaton (eds.) S o i l S c i . Soc. Amer., Madison, Wise. pp. 133-151. Dumanski, J . , T.M. Macyk, C F . Veauvy, and J.D. Lindsay. 1972. S o i l survey and land evaluation of the Hinton-Edson area, Alberta. A l t a . Inst, of Pedology. Report No. S-72-31. Embleton, T.W. 1966. Magnesium. In: Diagnostic C r i t e r i a f o r Plants and S o i l s . H.D. Chapman (ed.) Univ. of C a l i f o r n i a , Div. of Ag. S c i . Ensminger, M.E. 1955. Animal Science. 3rd Ed. Interstate Printers and Publishers. Denville, I l l i n o i s , pp 1152. Erdman J.A. and R.J Ebens. 1979. Element content of crested wheatgrass grown on reclaimed coal s p o i l s and on s o i l s nearby. J . Range Management. 32(2)159-161. Fleming, G.A. 1973. Mineral composition of herbage. In: Chemistry and Biochemistry of Herbage. Vol I. G.W. Butler and R.W. Bailey (eds.) Academic Press, N.Y. pp. 529-566. Fleming, G.A., and W.E. Murphy. 1968. The uptake of some major and trace elements by grassses as affected by season and stage of maturity. J . B r i t . Grassland Soc. 23:174-185. 132 Fyles, J.W. 1979. Maintenance f e r t i l i z e r research at Kaiser Resources Ltd. IN: Reclamation of Lands Disturbed by Mining. Proc. 3rd Ann. B.C. Mine Reel. Symp. pp 325-334 Gardiner, R . T . and J.E. Stathers. 1979. Phosphorus r e q u i s i t e for legume-dominated vegetation on mine wastes, p.221-239 IN: Reclamation of Lands Disturbed by Mining. Proc. 3rd Ann. B.C. Mine Reel. Symp. Gavelin L. 1979. Current Revegetation Techniques at Craigmont Mine. In: Reclamation of Lands Disturbed by Mining, Proc. 3rd. Ann. B.C. Mine Reel. Symp., pp. 179 - 195 Gee, G.W., A. Bauer, and R.S. Decker. 1978. Physical analyses of overburden materials and mine land s o i l s , p.665-686. IN: F.W. Schaller and P. Sutton (eds.) Reclamation of D r a s t i c a l l y Disturbed Land. Am. Soc. of Agron., Madison, Wisconsin. Geiger, R. 1965. The climate near the ground. Harvard University Press, Cambridge, Massachusetts. 611 pp. Gough L.P. and R.C. Severson. 1981 Biogeochemical v a r i a b i l i t y of native and altered s i t e s , San Juean Basin, New Mexico. Gould, K. 1986. P e l l e t group study on waste rock dumps at Newmont Mines Ltd. (unpubl.), Princeton, B.C. Grunes, D.L., P.R. Stout, and J.R. Brownell. 1970. Grass tetany of ruminants. Advances i n Agronomy 34:73-115. Gupta, U.C. 1979. Boron n u t r i t i o n of crops. Adv. Agronomy 31:273-307. Hackinen, C. 1986. Heavy Metal Levels i n Grasses and Legumes Grown on Highland Valley Copper Mine T a i l i n g s and the E f f e c t of A r t i f i c i a l Weathering on T a i l i n g s Growth Production Capability. M.Sc. Thesis U.B.C. Hafenrichter, A.L., J.L. Schwnediman, H.L. Harris, R.S. MacLauchlan, and H.W. M i l l e r . 1968. Grasses and legumes for s o i l conservation i n the P a c i f i c northwest and great basin states. U.S.D.A. S o i l Conservation Service, Agriculture Handbook No. 339. Halvorson G.A., A. Bauer, S.A. Schroeder, and S.W. Melsted. 1987. Corn and wheat response to t o p s o i l thickness and phosphorus on reclaimed land. J . Env. Quality. Vol. 16(1)73-76. Hanson, A.A. 1972. Grass v a r i e t i e s i n the United States. U.S.D.A. Agriculture Handbook No. 170. Harapiak, J.T. and N.A. Flore. 1984. Behaviour of f e r t i l i z e d mixed forage stands. IN: Proceedings of the 21st Annual Alberta S o i l Science Workshop. Edmonton, Alberta, pp.256-263. 133 Hargis N.E. and E.F. Redente. 1984. S o i l handling f o r surface mine reclamation. J . S o i l and Water Conservation. Vol 39(5):300-305. Harrison, A.E. 1977. Phosphorus cycles of forest and upland grassland ecosystems and some e f f e c t s of land management practices, pp. 175-193 IN: Phosphorus Cycles of Ecosystems. Proc. of Symp. on Phosphorus i n the Environment - I t ' s Chemistry and Biochemistry. I n s t i t u t e of T e r r e s t r i a l Ecology. Harrison, J.E. 1974. Some basic data with respect to coal mine waste reclamation. IN: Proc. of Workshop on Reclamation of Disturbed Lands i n Alberta. D. Hocking, W.R. MacDonald (eds.). Dept. of Environment, pp. 30-36 Hathorn, F.G., R.L. Docksteader and D.K. McQueen. 1979. Hat Creek reclamation studies: r e s u l t s of the f i r s t year program. In: Reclamation of Lands Disturbed by Mining. Proc. of the 3rd Ann. B r i t i s h Columbia Mine Reel. Symp. B.C. Ministry of Energy, Mines and Petroleum Resources, Inspection and Engineering Division, V i c t o r i a , B.C. pp. 239-271. Hayman, D. 1986. Mycorrhizae of nitrogen-fixing legumes. MIRCEN Journal 2, 121-145. Heinrichs, D.H. and R.B.Carson. 1956. Chemical composition of nine grasses at s i x stages of development. Can. J . Agr. S c i . 36:95-106. Hewitt, E.J. 1953. Metal i n t e r r e l a t i o n s h i p s i n plant n u t r i t i o n . I. E f f e c t s of some metal t o x i c i t i e s on sugar beet, tomato, oat, potato and marrowstem kale grown i n sand culture. J . Exp. Bot. 4:59-64. H i l l e r , D. 1980. S o i l water content and p o t e n t i a l , p.145-162 IN: Fundamentals of S o i l Physics. Academic Press, New York. Jackson, M.L. 1958. S o i l Chemical Analysis. Chapter 8, pp 183-204. Johnson, E.A. 1980. Trees for tomorrow. IN: Trees f o r Reclamation. USDA Forest Service. Lexington, Kentucky. Gen. Tech. Rep. NE-61. pp. 1-6. Johnson, M.S., T. McNeilly and P.D. Putwain. 1977. Revegetation of metalliferous mine s p o i l contaminated by lead and zinc. Environmental P o l l u t i o n 12(4):261-277. Jones, J.B. 1972. Plant tiss u e analysis for micronutrients. p. 319-346. IN: J . J . Mortvedt et a l . (ed.) Micronutrients i n Agriculture. S o i l S c i . Soc. Amer., Madison., WI. 134 Jones, W.W. 1966. Nitrogen. In: Diagnostic C r i t e r i a f o r Plants and S o i l s . H.D. Chapman (ed.) Univ. of C a l i f o r n i a , Div. of Ag. S c i . Jones, C. E. 1985 Reclamation Research at Lornex Mining Corp. Ltd. - Greenhouse and F i e l d Scale T r i a l s . In: Restoring the Land, Proc. 9th Ann. B.C. Mine Reel. Symp., pp. 95 - 103 Jones, D. and R.J. Walters. 1969. V a r i e t a l v a r i a t i o n i n n u t r i t i v e c h a r a c t e r i s t i c s , p.37-43. IN: L. P h i l l i p s and R. Hughes (eds.) Grass and Forage Breeding. Occas. Sym;p. No. 5 Br. Grassl. Soc. Klinka, K. , R.N. Green, R.L Trowbridge, and L.E. Lowe. 1981. Taxonomic C l a s s i f i c a t i o n of Humus Forms i n Ecosystems of B r i t i s h Columbia. 1st Approx. B.C. Min. of Forests, pp.49-51. Knight, H. 1967. Some l i m i t i n g factors of tree growth i n Alberta -a review. Internal Rpt. A-8, Can. Dept. of Forestry and Rural Dev., Calgary, A l t a . 20 pp. Unpubl. rpt. Knox, J.H. and W.E. Watkins. 1958. Supplements f o r range cows. New Mexico Agr. Exp. Sta. B u l l . 425 pp. Krajina, V.J. 1965. Ecology of Western North America. Vol. I. Dept. Bot. Univ. of B.C., Vancouver, B.C. 112p Kretschmer, A.E. and R.J. A l l e n . 1956. Molybdenum i n Everglades s o i l and plants. Proc. S o i l S c i . Soc. Amer. 20:253-257. Kubota, J . 1983. Copper status of United States s o i l s and forage plants. Agron. J . 75(6):913-918. Kubota, J . 1975. Areas of molybdenum t o x i c i t y to grazing animals i n the western United States. J . Range Mgmt. 28(4):252-256. Kubota J . 1981. Crops and S o i l s Mg. J . Pint. Nut. 33(8):15 Lavkulich, L.M. 1981. Methods Manual; Pedology Laboratory. 3rd P r i n t i n g . Department of S o i l Science, Univ. of B.C., Vancouver. 211p. Lavkulich, L.M., A. Bomke, J.W. Morton, P.A. Dairon, R.E. Hardy, M.E. Walmsley, CA. Rowles. 1975. Pedological Inventory of Three S u l f i d e Mine Areas i n S.W. B r i t i s h Columbia. Dept. of S o i l Sc. U.B.C Vancouver B.C. LeRoy, J . , and H. K e l l e r . 1972. How to reclaim mined areas, t a i l i n g s ponds, and dumps into valuable land. World Mining, January 1972:34-41. LLoyd, C. 1985. Reclamation i n the Highland Valley: the c l a s s i f i c a t i o n of disturbed areas for evaluation and planning. 135 Lopez-Jurado G. and D.B. Hannaway. 1985. Sulfur n u t r i t i o n e f f e c ts on dinitrogen f i x a t i o n of seedling a l f a l f a . J . Pint Nut. 8:1103-1121. Lucas, R.E. and B.D. Knezek. 1972. Climatic and s o i l conditions promoting micronutrient d e f i c i e n c i e s i n plants. In: Micronutrients i n Agriculture. J . J . Mortvedt (ed.) S o i l Sc. Soc. Am., Madison, Wisc.pp 265-288. McGinnies W.J. and K.A. Crofts. 1986. E f f e c t s of N and P f e r t i l i z e r placement on establishment of seeded species on r e d i s t s r i b u t e d mine t o p s o i l . J . Range Mgmt. 39(2)118-121. Macauly, T.N. 1970. Geolopgy of the Ingerbelle-Similkameen Deposits at Copper Mountain, B.C.. Produced f o r the Similkameen Mining Company Limited: Private Report. Macyk, T.M. 1974. Progress report: s t r i p mine reclamation project, No. 8 mine, Grande Cache, Alberta. Alberta Insitute of Pedology, Report M-74-16. Magier, J . and I. Ravina. 1982. Rock fragments and s o i l depth as factors i n land evaluation of Terra Rossa. p.13-30 IN: J.D. Nichols, D.L. Brown, and W.J. Grand (eds.) Erosion and Productivity of S o i l s Containing Rock Fragments. SSSA Special Publication, No. 13. Madison, Wisconsin. 103pp. Manitoba P r o v i n c i a l S o i l s Testing Lab. 1982. Interpretive Guidelines f o r Plant Tissue Analysis. Meidinger, D.V. 1979. Natural revegetation of disturbances i n the Peace River C o a l f i e l d , p.273-309 IN: Reclamation of Lands Disturbed by Mining. Proc. 3rd Ann. B.C. Mine Reel. Symp. Mengel K. and G. Geurtzen. 1986. Iron c h l o r o s i s on calcareous s o i l s , a l k a l i n e n u t r i t i o n a l condition as the cause for the c h l o r o s i s . J . Pint. Nut. 9:161-178. Michaud, L.H. 1981. A Manual of Reclamation Practice. Interna-t i o n a l Academic Services Ltd., Kingston, Ontario. 345 pp. M i l l e r , M.H. 1983. S o i l l i m i t a t i o n s to crop p r o d u c t i v i t y i n Canada. Can. J . Plant S c i . 63:23-32. M i l l e r , F.T., and R.L. Guthrie. 1982. C l a s s i f i c a t i o n and d i s t r i b u t i o n of s o i l s containing rock fragments i n the U.S. p . l -12 IN: J.D. Nichols, D.L. Brown, and W.J. Grand (eds.) Erosion and Productivity of S o i l s Containing Rock Fragments. SSSA Special Publication, No. 13. Madison, Wisconsin. 103pp. 136 M i l l i k a n , C.R. 1963. Relative e f f e c t s of zinc and copper d e f i c i e n c i e s on lucerne and subterranean clover. Aust. J . B i o l . S c i . 6:164-177. Miltimore J.E. and J.L. Mason. 1971. Copper to molybdenum r a t i o and molybdenum and copper concentrations i n ruminant feeds. Can. J . Anim. S c i . 51:193-200. Ministry of Energy, Mines and Petroleum Resources. 1978. Ministry of Energy, Mines and Petroleum Resources. 1980. Reclamation S i t e Inventory Handbook. Reclamation Section, Inspection and Engineering Division, Province of B.C. Ministry of Energy, Mines and Petroleum Resources. 1983. Monenco Consultants Ltd. 1983. S o i l Reconstruction Design for the Reclamation of Oilsand T a i l i n g s Report. SESG-RRTAC #83-1. 196pp. Morton, J.W. 1976. They Physical Limitations to Vegetation Establishment of Some Southern B.C. Mine Waste Materials. M.Sc. Diss. Univ. B.C., Vancouver B.C. Mortvedt, J . J . , P.M. Giordano, and W.L. Lindsay. 1972. Micronutr-ients i n Agriculture. S o i l S c i . Soc. Am., Madison Wise. Motorina, L.V, N. Checklina, T.I. Izhevskaya. 1971. Some ecol o g i c a l aspects of the growth of plants on i n d u s t r i a l dumps i n Moscow brown-coal basin. Soviet. J . Ecology (Ekolgija)5:20-29. Mulder E.G. 1954. Molybdenum i n r e l a t i o n to growth of higher plants and micro-organisms. Plant and S o i l 5:368-415. Munshower, F.F. 1982. Problems i n reclamation planning and design. IN: Proceedings, Mining and Reclamation of Coal Mined Lands on the Northern Great Plains. B i l l i n g s MT. Montana Agric. Expt. Sta. Res. Report No. 194. Munshower, F.F. and S.E. Fisher. 1984. The future of reclamation planning on the Northern Great Plains. IN: Proceedings, Third Biennial Sympsoium on Surface Coal Mine Reclamation on the Great Plain s . B i l l i n g s , MT. Munshower F.F. and D.R. Newman. 1978. Elemental concentrations i n native range grasses from the northern great p l a i n s of Montana. J . Range Mgmt. 31(2) 145-148. Murray, D.R. 1977. P i t Slope Manual, Supplement 10-1 Reclamation by Vegetation: Vol. 1 - Mine Waste Description and Case H i s t o r i e s ; Energy, Mines, and Resources Canada CANMET Report 77-31; 120p. 137 National Research Council. 1984. Nutrient requirements of beef c a t t l e . 6th ed. National Academy Press. Washington, D.C. Nelson, W.L. and S.A. Barber. 1964. p. 143-179 IN: H.B. Sprague (ed.) Hunger Signs i n Crops. David McKay Company, New York. Olsen S.R. 1972. Micronutrient interactions. In: Micronutrients i n Agriculture. J . J . Mortvedt (ed.) S o i l Sc. Soc. Am., Madison, Wise. pp. 243-264. Olsen, S.R. and L.E. Sommers. 1982. Phosphorus, p.416 IN: A.L. Page (ed.) Methods of S o i l Analysis. Part 2. 2nd ed. Agronomy No. 9. Am. Soc. Agron. Madison, Wisconsin*. Olsen, S.R., CV. Cole, and L.A. Dean. 1954. Estimation of ava i l a b l e phosphrous i n s o i l s by extraction with sodium bicarbonate. U.S.D.A. C i r c u l a r 939. Omodt, H.W., F.W. Schroer, and D.B. Patterson. 1975. The properties of important a g r i c u l t u r a l s o i l s as c r i t e r i a f o r mined land reclamation. B u l l e t i n No. 492. North Dakota State University, Agric. Exp. Sta., Fargo, North Dakota. 52 pp. Packer, P.E. and E.F. Aldon. 1978. Revegetation Techniques for Dry Regions, p.425-450 IN: F.W. Schaller and P. Sutton (eds.) Reclamation of D r a s t i c a l l y Disturbed Land. Am. Soc. of Agron., Madison, Wisconsin. Pal, U.R., D.R. Gossett, J.L. Sims, and J.E. Legett. 1976. Molybdenum and s u l f u r n u t r i t i o n e f f e c t s on n i t r a t e reduction i n burley tobacco. Can. J . Bot. 54:2014-2022. Palmer, J.P, P.J. Williams, M.J.Chadwich, A.L. Morgan, and CO. E l i a s . 1986. Investigations into nitrogen sources and supply i n reclaimed c o l l i e r y s p o i l . Plant and S o i l 91:181-194. Parkinson, J.A. and S.E. A l l e n . 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients i n b i o l o g i c a l material. Comm. S o i l S c i . Plant Anal. 6(1):1-11. Piper, C S . and R.S.Beckwich. 1949. The Uptake of Copper and Molybdenum by Plants. Proc. Spec. Conf. Agric. Melbourne, Sess. B. p.13 Platou J.S. and R. I r i s h . 1982. The fourth major nutrient. The Sulphur Inst. Wash. D.C. 32p. Phol, R.W. 1968. How to know the grasses. Revised E d i t i o n . W.C. Brown Company Publishers. Dubuque, Iowa. 138 Pope, A.L. 1971. A review of recent mineral research with sheep. J . An. Sc. Vol. 33. 1334 pp. Power, J.F., F.M. Sandoval, R.E. Ries, S.D. M e r r i l l . 1981. E f f e c t s of t o p s o i l and subsoil thickness on water content and crop production on a disturbed s o i l . S o i l S c i . Soc. Am. J . 45:124-129. Probert M.E. and R.K. Jones. 1977. The use of s o i l analysis for pr e d i c t i n g the response to s u l f u r of pasture legumes i n the Aust r a l i a n t r o p i c s . Aust. J . S o i l Res. 15:137-146. Radet E. 1966. Sulphur requirements of various crops. The sulphur Ins. 2:11-15. Rammah A.M., M.S. Kedr, M. Th-Hassen and M. Nasr. 1984. Response of a l f a l f a to iron and boron i n some Egyptian s o i l s . J . Pint Nut. 7:235-242. Redent, E.F. and Hargis, N.E. 1985. An evaluation of s o i l thickness and manipulation of s o i l and s p o i l for reclaiming mined land i n Northwest Colorado. Reel, and Reveg. Res. Vol. 4:17-29. Rhykert C.L. and C.J. Overdahl. 1972. N u t r i t i o n and f e r t i l i z e r use. In: A l f a l f a Science and Technology, CH. Hanson (ed.) Amer. Soc. Agron., Madison, Wise. pp. 437-468. Richards, L.A. 1965. Physical condition of water i n s o i l . p.1445-162 IN: CA. Black et. a l . (eds) . Methods of S o i l Analysis, Part 2: Chemical and Microbiological Properties. Am. Soc. of Agron., Madison, Wisconsin. Richardson, B.Z. 1987. Reclamation i n the Intermountain Rocky Mountain Region. Logan, Utah. USDA Forest Service 17:177-192. Ri g h e t t i , T.L. 1982. Importance of s o i l nitrogen and phosphorus i n semiarid reclamation. IN: Reclamation of Mined Lands i n the Southwest. F. Aldon and W. Oaks (eds.) Albuquerque, New Mexico, pp. 80-86 Rowell, M.J. 1978. Revegetation and management of t a i l i n g s sand slopes: 1977 r e s u l t s . Environmental Research Monograph 1978-5. Prepared for Syncrude Canada Ltd. by Norwest S o i l Research Ltd., Edmonton, ALberta. 126 pp. Russell, E.W. 1973. S o i l Conditions and Plant Growth. William Clowes and Sons, London. 849p. Sandoval, F.M. and W.L. Gould. 1978. Improvement of s a l i n e - and sodium- affected disturbed lands, p.485-502 IN: F.W. Schaller and P. Sutton (eds.) Reclamation of D r a s t i c a l l y Disturbed Land. Am. Soc. of Agron., Madison, Wisconsin. 139 Schramn, H.R. 1966. Plant colonization studies on black wastes from anthracite mining i n Pennsylvania. Transactions of the American Philosophical Society 56(1):1-194. Schuman G.E., E.M. Taylor J r . , F. Rauzi, and B.A. Pinchak. 1985. Revegetation of mined lands influenced by t o p s o i l depth and mulching method. J . S o i l and Water Consv. Vol 40(2)249-252. Scott, M.L. 1972. Trace elements i n animal n u t r i t i o n , pp 555-591 IN: J . J . Mortvedt et a l . (ed.) Micronutrients i n Agriculture. S o i l S c i . Soc. Amer. Madison. WI. Shetron S.G. 1983. A l f a l f a , Medicago sativa L., establishment i n mine m i l l t a i l i n g s , I. Plant analysis of a l f a l f a grown on iron and copper t a i l i n g s . Plant and S o i l 73:227-237. Sieg e l , S. 1956. Non-parametric s t a t i s t i c s f o r the behavioral sciences. McGraw-Hill Book Co., New York. 312pp. Sims, H.P., Powter, C.B., and Campbell, J.A. 1984. Land Surface Reclamation: A review of the International L i t e r a t u r e . Alberta Land Conservation and Reclamation Council Report #RRTAC 84-1. 2 Vols. 1549 pp. S m i l l i e , G.W. and J.K. Syers. 1972. Calcium f l u o r i d e formation during extraction of calcareous s o i l s with f l u o r i d e . S O i l . S c i . Soc. Am. PRoc. 36:25-30. Smith D. and A.K. Dobronz. 1982. Response of a l f a l f a to f e r t i l i z a t i o n with phosphorus and magnesium i n the greenhouse. J . Pint. Nut. 5:1-13. Smith, R.M., A.A. Sobek, T. Arkle, J r . , J.C. Sencidiver and J.R. Freeman. 1976. Extensive overburden potentials for s o i l and water qu a l i t y . EPAA-600/2-76-184. U.S. Env. Protection Agency, Cin c i n n a t i , Ohio. Smoliak, S., CR. E l l i o t t , and J . Willman. 1975. Hay and pasture crops for Alberta. Alberta Agriculture, Agdex 120/20-1. Sotola, J . 1940. The chemical composition and apparent d i g e s t a b i l i t y of nutrients i n crested wheatgrass harvested at three stages of maturity. J . Agric. Res. 61:303-311. Stout, P.R., Meagher, W.R., Pearson, G.A. and CM. Johnson. 1951. Molybdenum n u t r i t i o n of crop plants: I. The influence of phosphate and s u l f a t e on the adsorption of molybdenum from s o i l s and s o l u t i o n cultures. Plant and S o i l 3:51-87. 140 Su t t l e N.F. and M. McLauglan. 1976. Predicting the e f f e c t s of dietary molybdenum and sulphur on the a v a i l a b l i t y of copper to ruminants. Proc. Nut. Soc. 35:22A-23A. Tayki, S.K., M.H. Rowell, W.B. McGill, and M. Nyborg. 1977. Reclamation and vegetation of surface mined areas i n the Athabasca t a r sands. Syncrude Canada Ltd., Environ. Res. Mono. 1977-1. Thomas, G.W. and D.E. Peaslee. 1973. Testing s o i l s f o r phosphorus. IN: L.M. Walsh and J.D. Beaton (eds.) S o i l Testing and Plant Analysis. Revised Ed. S o i l S c i . Soc. Am., Madison, Wisconsin. Tiessen, H., T.L. Roberts, and S.E. A l l e n . 1983. Carbonate analysis i n s o i l s and minerals by acid digestion and two-endpoint t i t r a t i o n . Commun. i n S o i l S c i . Plant Anal. 14(2)161-166 Tingle, J.N. and C.R. E l l i o t . 1975. Forage y i e l d s and q u a l i t y of c u l t i v a t e d perennial grasses harvested at the early heading stage. Can. J . Plant S c i . 55:271-278. Tisdale S.L. and W.L. Nelson. 1975. S o i l F e r t i l i t y and F e r t i l i z e r s , Macmillan Publ. Co. Inc., N.Y. 693 p. Touchton J.T., J.W. Johnson, and B.M. Cunfer. 1980. The r e l a t i o n s h i p between phosphorus and copper concentrations i n wheat. Commun. S o i l S c i . Plant Anal. 11:1051-1066. U l r i c h , A. and K. Ohki. 1966. Potassium, p. 362-393. IN: H.D. Chapman (ed.) Diagnostic c r i t e r i a for plants and s o i l s . Univ. of C a l i f o r n i a , Div. of A g r i c u l t u r a l Sciences. Underwood, E.J. 1977. Trace Elements i n Human and Animal N u t r i t i o n . 4th ed. Academic Press. N.Y. USDA, S o i l Survey S t a f f . 1951. S o i l Survey Manual. USDA Dept. of Agriculture Handbook No. 18. 503pp. VanLierop, W. 1985. Comparison of laboratory methods for evaluation of plant available s o i l phosphorus. Vories, K.C, and P.L. Sims. 1977. The plant information network, Vol. I I : Reclamation and PIN i n northwestern Colorado. U.S. Dept. of the I n t e r i o r , Fish and W i l d l i f e Service, O f f i c e of B i o l . Serv., Rpt. No. FWS/OBS-77-39. Vogel, W.G. and W.A. Berg. 1973. Grasses and legumes f o r cover on acid strip-mine s p o i l s . J . S o i l and Water Consv. 23(3):89-91. 141 Wallace A. 1986. E f f e c t of K or K/Ca on soluble i r o n expressed from a l f a l f a shoots. J . Pint Nut. 9:935-937. Watanable, F.E. and S.R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus i n water and NaHC03 extracts from s o i l . SSSAP Vol. 29. pp.677-678. Watson, L.E., R.W. Parker, D.F. Polster. 1980. Manual of Plant Species S u i t a b i l i t y for Reclamation i n Alberta. Techman Ltd. Vol.1 and I I . Land Conseration and Reclamation Council, Govt of Alberta, RRTAC 80-5. Walmsley J . R. 1977 Reclamation i n the I n t e r i o r Dry Belt. In: Reclamation of Lands Disturbed by Mining, Proc. B.C. Mine Reel. Symp. 1977, pp. 27-33. Whitehead, D.C. 1970. The r o l e of nitrogen i n grassland productivity. B u l l . No. 48. Common W. Bur. Post. F i d . Crops, Hurley, Berkshire, England. 202 pp. Williams, C. and I. Thornton. 1972. The e f f e c t of s o i l additives on the uptake of molybdenum and selenium from s o i l s from d i f f e r e n t environments. Plant S o i l 36:395-406. WoodMansee R.G., J.D. Reeder, and W.A. Berg. 1979. Nitrogen i n d r a s t i c a l l y disturbed lands. In: Forest S o i l s and Land Use. C T . Youngberg (ed.) Proc. 5th North American Forest S o i l s Conf., Fort C o l l i n s , Colorado, pp. 376-392. Yee, A.R. 1979. An evaluation of the Bray P - l , Olsen, and anion exchange paper s o i l phosphorus tests on some calcareous and non-calcareous s o i l s . B.Sc. Thesis. U.B.C. Vancouver. Yee, A.R. and K. Broersma. 1987. The Bray, Mehlich and Kelowna s o i l P t e s t s as affected by s o i l carbonates. Can. J . S o i l . S c i . 67:399-404. Ziemkiewicz, P.F. 1979. The capacity of reclamation plant communities to supply t h e i r own nutrients: when does maintenance f e r t i l i z a t i o n become unnecessary? p. 195-206 IN: Proceedings: Can. Land Reclamation Assoc. 4th Ann. Meet. Regina APPENDICES 142 A. 1985 F o l i a g e Data B. P i c t u r e s of S i t e s S e l e c t e d For Test Case Study C. Summarized Data f o r Test Case S i t e s C l Means and Ranges f o r S p o i l , Vegetation, and F o l i a g e C. 2 Percent C o e f f i c i e n t s of V a r i a t i o n D. Miscellaneous Data Sets D. l A v a i l a b l e Phosphorus D.2 Water Retention Data D.3 S o i l Carbon 143 V P H D I I A. KLEHEVTAL LEVELS OF FOLIAGE ROM RECLAMED SITES MD WDISTUBBED (COfTROL) SITBS - 1985 1 __,.„. 1 j W te U X Ca * Mg Pe ppa Cu ppa Mn ppa In ppa Al 'ppa Ho ppa Cu:Ho B*ppa IN. 8ATIVA Hin 1 2.57 0.14 1 .09 1.24 0.16 35 10 12 10 10 4 0.38 10 1 1 Max 1 4.02 0.31 2 19 3.01 0.50 215 (2 40 34 210 36 6.62 110 I IBeclalMtxl (SO) i Mean 1 3.17 0.19 1 70 2.25 0.27 68 18 25 19 38 13 1.81 14 1 i IContiols (4) Mean 1 4.03 0.30 2 .12 2.29 0.26 66 20 26 22 19 2 10.60 7 I 10. VICIAEFOLIA Min I 1.41 0.14 0 .99 0.93 0.04 45 7 26 . . . . . . 10 28 0.05 10 1 1 Max I 3.90 0.33 2 70 2.14 0.56 131 14 143 23 155 138 1.57 15 1 I R e c l a l K d (11) i Mean 1 2.99 0.25 1 .55 1.45 0.32 69 10 67 16 49 67 0.19 11 1 i IControls (3) Mean 1 3.12 0.31 1 .90 1.37 0.24 48 7 39 21 <10 5 1.60 8 1 |A. CICER Min I 2.78 0.20 2 16 1.04 0.33 45 7 44 7 40 ( 0.18 10 1 1 Max | 3.43 0.24 3 37 1.85 0.56 130 21 56 35 100 109 0.88 11 1 I R e c l a l K d (6) Mean 1 3.17 0.22 2 .74 1.27 0.44 70 12 52 1 5 57 45 0.41 10 1 IL. CORNICULATUS Min I 2.24 0.20 0 53 0.40 0.09 37 9 22 15 40 14 0.33 10 1 1 Max I 3.13 0.23 1 74 1.46 0.32 95 11 49 33 50 34 0.67 10 1 I R e c l a i w d (4) Mean 1 2.65 0.21 1 38 0.99 0.26 58 10 39 24 48 22 0.51 10 1 IP. COMPRESSA Min I 0.89 0.14 1 .20 0.21 0.08 15 5 10 5 10 i 2.00 10 1 1 Max | 1.49 0.24 1 55 0.29 0.11 30 9 40 19 10 3 3.57 10 1 I R e c l a l K d (6) i Mean 1 1.15 0.18 1 36 0.25 0.10 22 7 26 1 4 10 2 2.79 10 1 1 IControls (1) Mean 1 1.69 0.25 1 73 0.27 0.12 70 10 50 25 55 4 2.50 <10 I IP. PRATBHSIS Min I 1.09 0.17 1 09 0.15 0.08 20 4 30 s 10 5 0.82 10 1 1 Max | 1.29 0.26 1 44 0.28 0.10 75 18 35 23 40 5 0.82 10 1 I R e c l a l K d (4) Mean 1 1.18 0.22 1 29 0.21 0.09 41 9 32 20 0.82 10 1 IB. IHERMIS Min 1 1.20 0.16 1 .45 0.20 0.05 20 6 25 1 10 1.11 12 1 1 Max I 1.75 0.32 2 19 0.23 0.10 35 11 33 16 30 5 3.04 17 1 I R e c l a l K d (5) Mean 1 1.51 0.24 1 85 0.22 0.08 25 8 28 10 14 4 2.08 15 1 1 IControls (3) Mean 1 1.71 0.28 2 19 0.28 0.11 30 8 38 19 23 5 1.59 11 1 IP. RUBRA Min I 0.76 0.10 0 94 0.15 0.05 20 5 11 3 10 3 1.76 11 1 1 Max I 1.60 0.24 1 40 0.33 0.55 50 13 33 12 30 5 1.89 12 1 I R e c l a l K d (6) • Mean 1 1.10 0.16 1 10 0.21 0.16 33 9 26 7 17 * 1.83 12 I i IControls (3) Mean 1 1.10 0.22 1 47 0.30 0.11 30 5 70 15 20 7 0.80 18 1 |A. CRISTATUM Hin I 0.56 0.07 0 64 0.16 0.04 14 3 12 3 10 ! 2.00 10 1 1 Max I 1.77 0.25 1 90 0.35 0.08 120 29 48 21 90 8 8.33 15 1 I R e c l a l K d (13) • Mean 1 1.30 0.17 1 26 0.24 0.06 45 8 20 25 2 4.30 10 1 i IControls (2) Mean 1 1.80 0.25 1 59 0.31 0.08 60 19 31 34 20 <1 >20 <10 | |A. TRICHOPHOEUM Min I 0.96 0.11 1 35 0.19 0.06 35 5 24 4 10 1 1.63 14 1 1 Max I 1.65 0.28 1 86 0.36 0.08 70 17 39 15 40 6 5.83 20 I I R e c l a l K d (6) Mean 1 1.35 0.19 1 60 0.26 0.08 50 9 31 11 30 4 2.78 16 1 ( c o n t r o l s (2) Mean 1 1.49 0.27 1 88 0.27 0.08 78 19 30 15 45 2 11.17 111 APPENDIX B. PHOTOGRAPHS OF TEST CASE SITES Waste Dump 3B Slope Face 3150 APPENDIX C . SUMMARIZED DATA FOR TEST CASE SITES SITE PRODUCT ION/VEGETATION TYPE UD1 High Low Mean Range Mean Range SOILS: pH H20 8.0 (5.6-8.9) 8.1 (7.6-8.6) pH CaCl2 7.1 (5.4-7.8) 7.3 (7.0-7.6) Total C % 0.990 (.65-1.28) 0.800 (.45-1.34) N X 0.033 (.017-.059) 0.018 (.008-.041) Avail P ppm 54 (19-156) 89 (33-392) Exch Cations 202 (132-254) 191 (147-223) K ppm 170 (105-259) 119 (60-203) Ca 3661 (2356-4719) 3565 (2744-4200) Mg 181 (94-344) 114 (56-245) Na 12 (4.J-23.0) 12 (5.8-28.3) CF % 63 (50-80) 66 (54-84) BD g/cm3 1.85 (1.70-1.97) 1.83 (1.63-1.95) N/m3 225 (99- 413) 114 (45-345) P/m3 38 (11- 102) 59 (13-329) K/m3 119 (36- 181) 72 - (40-170) Ca/m3 2614 (801-3825) 2221 (1009-3717) Mg/m3 124 (49- 206) 76 (22-205) Na/m3 9 (1 -18) 6 (4-9) Cat/m3 144 (45- 207) 119 (55-205) FOLIAGE: AN 3.69 (3.063-4.065) 3.34 (2.877-3.663) AP 0.24 (.165-.293) 0.21 (0.142-2.66) AK 1.59 (1.331-2.099) 1.52 (1. .208-1.89) ACa 2.21 (1.649-2.821) 2.68 (1.404-4.962) AMg 0.24 (.186-.469) 0.23 (0. 141-0.326) AFe 77 (41-204) 106 (29-319) AMn 41 (19-61) 48 (28-88) AZn 23 (17-28) 29 (20-60) ACu 9 (8-12) 9 (8-11) AAl 39 (20-60) 44 (40-60) AMo 6 (3-13) 8 (3-14) FN 1.28 (.998-1.936) 1.08 (0.775-1.502) FP 0.17 (.090-.269) 0.14 (0.102-0.193) FK 1.24 (.945-1.702) 1.08 (0.758-1.408) FCa 0.34 (.264-.429) 0.38 (0.264-0.494) FMg 0.09 (.063-.131) 0.09 (0.069-0.115) FFE 40 (19-67) 47 (14-83) FMn 51 (34-71) 68 (44-101) FZn 16 (12-23) 15 (8-29) FCu 9 (7-12) 7 (6-9) FA I 47 (40-70) 48 (40-60) FMo 3 (2-5) 11 (2-62) SURVEY SUMMARY: Biomass 2.78 (2.08-4.02) 0.69 (0.1-1.22) Legume Cover 45 (25-75) 7 (1-18) Composition Leg 79 (50-95) 42 (6-85) Grass Cover 11 (3-25) 9 (2-20) Composition Gra 21 (5-50) 55 (15-94) Foliar Cover 57 (45-85) 17 (3-30) Moss 7 (5-10) 1 (0-1) Detritus 2 (0-20) 0 (0-0) Total Cover 65 (50-95) 17 (3-31) SITE PRODUCTION/VEGETATION TYPE UD2 Mean Mod Range SOILS: pH H20 7.8 (7.5-8.6) pH CaCl2 7.1 (6.7-7.5) Total C 1.360 (.79-2.50) N 0.043 (.015-.127) AvaiI P ppm 85 (60-129) Exch Cations 205 (129-283) K ppm 165 (105-233) Ca 3730 (2344-4844) Mg 149 (75-388) Na 65 (34.8-93.5) CF X 84 (65-97) BD g/cm3 1.82 (1.68-1.98) N/m3 102 (8-181) P/m3 28 (3-62) K/m3 50 (7-114) Ca/m3 1140 (179-2706) Mg/m3 42 (4-127) Na/m3 62 (10-144) Cat/m3 84 (65-97) FOLIAGE: AN 3.71 (2.448-4.95) AP 0.27 (0.225-0.38) AK 1.98 (1.611-2.53) ACa 2.18 (1.522-2.769) AMg 0.3 (0.22-0.388) AFe 67 (38-113) AMn 44 (29-54) AZn 39 (22-57) ACu 10 (8-12) AAl 40 (30-50) AMo 15 (7-28) CN 0.826 (0.592-1.069) CP 0.119 (0.053-0.155) CK 0.797 (0.403-0.956) CCa 0.335 (0.335-0.491) CMg 0.067 (0.035-0.107) CFe 34 (5-45) CMn 23 (14-34) CZn 13 (1-21) CCu 3 (2-4) CAt 42 (40-50) CMo 1 (1-3) SURVEY SUMMARY: Biomass 1.56 (0.52-2.66) Legume Cover 6 (0-30) Composition Leg 14 (0-67) Grass Cover 38 (15-50) Composition Gra 86 (33-100) Fol i a r Cover 43 (30-50) Moss 26 (20-35) Detritus 0 (0-0) Total Cover 70 (50-80) SITE PRODUCT ION/VEGETATION TYPE WD3 High Low Mean Range Mean Range SOILS: pH H20 8.7 (8.3-9.0) 8.8 (8.6-9.1) pH CaCl2 7.6 (7.3-7.8) 7.7 (7.6-7.8) Total C 1.630 (.70-2.37) 1.260 (.86-1.91) N 0.045 (.018-.131) 0.014 (.008-.020) Avail P ppm 49 (22-83) 58 (17-152) Exch Cations 227 (162-267) 252 (207-278) K ppm 200 (143-293) 122 (90-150) Ca 4130 (2913-4819) 4582 (3725-5250) ng 182 (125-338) 232 (113-569) Na 12 (6.3-30.8) 29 (10.0-101.5) CF % 67 (55-79) 58 (52-74) BO g/cm3 1.86 (1.7-1.97) 1.84 (1.71-2.05) N/m3 244 (144-487) 114 (53-148) P/m3 31 (10-63) 45 (12-125) K/m3 119 (78-153) 94 (58-123) Ca/m3 2527 (1570-3723) 3507 (1982-4522) Mg/m3 118 (57-275) 171 (79-313) Na/m3 7 (4-19) 22 (7-83) Cat/m3 139 (86-208) 192 (126-245) FOLIAGE: AN 3.43 (2.949-3.923) 3.56 (2.988-4.22) AP 0.22 (0.153-0.279) 0.23 (0.178-0.306) AK 1.81 (1.532-2.129) 1.79 (1.596-2.083) ACa 1.8 (1.162-2.677) 1.89 (1.351-2.731) AMg 0.27 (0.217-0.366) 0.27 (0.187-0.37) AFe 48 (32-79) 52 (37-87) AMn 26 (17-43) 30 (22-45) AZn 22 (16-26) 25 (17-37) ACu 6 (5-9) 8 (5-11) AAl 35 (20-40) 34 (20-70) AMo 12 (6-17) 12 (7-37) FN 1.3 (0.864-1.738) 0.810 (0.701-1.167) FP 0.110 (0.086-0.145) 0.090 (0.073-0.112) FK 1.180 (0.903-1.437) 0.960 (0.877-1.109) FCa 0.35 (0.274-0.438) 0.35 (0.276-0.442) FHg 0.09 (0.062-0.109) 0.1 (0.083-0.124) FFE 40 (27-65) 64 (39-118) FMn 37 (25-48) 40 (25-68) FZn 11 (6-17) 14 (10-23) FCu 8 (5-14) 7 (4-10) FA I 52 (40-70) 72 (50-110) FMo 3 (1-6) 2 (1-3) 151 SITE PRODUCT ION/VEGETATION TYPE WD3 cont'd High Low Mean Range Mean Range CN 1.072 (0.677-1.532) 0.926 (0.592-1.119) CP 0.099 (0.070-0.141) 0.09 (0.053-0.137) CK 0.907 (0.707-1.265) 0.742 (0.403-0.955) CCa 0.278 (0.195-0.413) 0.272 (0.171-0.438) CMg 0.065 (0.052-0.093) 0.063 (0.036-0.093) CFe 18 (9-28) 64 (9-49) CMn 22 (14-31) 40 (14-42) CZn 5 (3-10) 14 (1-12) CCu 5 (4-8) 7 (4-7) CAl 40 (40-40) 72 (40-50) CMo 3 (1-12) 2 (1-4) SURVEY SUMMARY: Biomass 4.49 (2.7-7.2) 0.67 (0.13-1.3) Legume Cover 42 (25-65) 9 (3-14) Composition Leg 63 (50-80) 61 (17-87) Grass Cover 24 (10-40) 7 (2-25) Composition Gra 37 (20-50) 39 (13-83) Foliar Cover 65 (50-95) 16 (9-30) Moss 14 (5-30) 3 (0-5) Detritus 0 (0-0) 0 (0-0) Total Cover 80 (5-100) 19 (10-35) 152 SITE PRODUCTION/VEGETATION TYPE WD3B High Low Mean Range Mean Range SOILS: pH H20 8.9 (8.7-9.1) 8.8 (8.6-9.1) pH CaCl2 7.8 (7.7-7.9) 7.8 (7.7-7.9) Total C 1.370 (1.21-1.56) 1.110 (.79-1.58) N 0.022 (.009-.032) 0.008 (.005-.013) Avail P ppm 4 (0-7) 5 (0-8) Exch Cations 322 (307-353) 284 (227-329) K ppm 228 (154-368) 112 (90-154) Ca 5194 (4775-6000) 5094 (4063-6188) Mg 683 (506-856) 317 (125-863) Na 13 (9.8-19.3) 22 (12.8-53.0) CF % 57.83 (50-65) 60 (47-74) BD g/cm3 1.74 (1.56-2) 1.76 (1.57-2.03) N/m3 161 (56-240) 60 (23-112) P/m3 3 (0-5) 4 (0-6) K/m3 168 (95-276) 79 (43-125) Ca/m3 379 (3139-4290) 3583 (2335-5295) Mg/m3 500 (333-663) 240 (59-700) Na/m3 10 (6-15) 15 (7-24) Cat/m3 235 (198-258) 201 (124-281) FOLIAGE: AN 3.5 (3.119-3.946) AP 0.2 (0.163-0.279) AK 1.68 (1.366-1.88) ACa 2.17 (1.589-3.136) AMg 0.32 (0.2-0.573) AFe 53 (32-103) AMn 36 (27-56) AZn 17 (14-21) ACu 10 (7-14) AAl 19 (10-20) AMo 11 (7-16) FN 1.020 (0.722-1.34) FP 0.080 (0.064-0.099) FK 1.290 (0.979-1.468) FCa 0.33 (185-0.403) FMg 0.13 (0.082-0.184) FFE 39 (10-75) FMn 39 (30-47) FZn 6 (2-9) FCu 5 (3-6) FA I FMo 5 (3-7) SURVEY SUMMARY: Biomass 5.11 (3.46-6.48) 0.02 (0-0.1) Legume Cover 59 (45-80) 2 (0-5) Composition Le 77 (60-100) 100 (100-100) Grass Cover 18 (0-30) 0 (0-0) Composition Gr 23 (0-40) 0 (0-0) Foliar Cover 77 (70-85) 2 (0-5) Moss 8 (0-17) 0 (0-0) Detritus 0 (0-0) 0 (0-0) Total Cover 85 (75-97) 2 (0-5) SITE 3150 PRODUCT ION/VEGETATION TYPE High Mod Low Mean Range Mean Range Mean Range SOILS: pH H20 8.4 (7.8-8.8) 8.3 (8.1-8.7) 8.5 (8.3-8.8) pH CaCl2 7.4 (7.1-7.6) 7.4 (7.2-7.6) 7.5 (7.4-7.7) Total C 1.070 (.70-1.69) 1.220 (.98-1.55), 1.020 (.76-1.75) H 0.030 (.017-.071) 0.043 (.016-.086) 0.019 (.013-.032) Avail P ppm 37 (8-78) 127 (23-265) 94 (10-216) Exch Cation 237 (180-280) 231 (203-264) 245 (209-273) K ppm 231 (150-379) 262 (128-450) 165 (113-229) Ca 4218 (3188-5125) 4164 (3550-4781) 4450 (3838-4950) «9 246 (163-375) 195 (113-275) 222 (150-438) Na 15 (10.5-19.8) 13 (5.8-22) 16 (9.3-23.5) CF % 75 (63-85) 80 (69-94) 89 (80-99) BD g/cm3 N/m3 129 (66-261) 157 (41-366) 33 (4-81) P/m3 16 (4-34) 44 (12-136) 15 (2-57) K/m3 101 (42-157) 92 (30-215) 31 (3-68) Ca/m3 1843 (1145-2849) 1436 (397-2310) 877 (78-1653) Mg/m3 108 (60-219) 69 (19-144) 46 (3-155) Na/m3 7 (4-11) 5 (1-11) 3 (0-8) Cat/m3 104 (65-155) 80 (22-128) 48 (4-96) FOLIAGE: AN 2.97 (2.65-3.436) AP 0.18 (0.14-0.23) AtC 1.44 (1.09-1.657) ACa 2.45 (1.73-2.96) AMg 0.22 (0.154-0.36) AFe 103 (60-215) AMn 34 (21-62) AZn 21 (10-32) ACu 18 (12-28) AAl 93 (50-210) AMo 12 (7-20) FN 1.020 (0.665-1.775) FP 0.130 (0.094-0.163) FK • 1.400 (0.995-1.983) FCa 0.58 (0.409-0.838) FMg 0.17 (0.106-0.23) FFE 60 (34-114) FMn 59 (36-100) FZn 9 (7-11) FCu 17 (12-33) FA I FMo 14 (6-31) SITE PRODUCTION/VEGETATION TYPE 3150 cont'd High Mod Low Mean Range Mean Range Mean Range CN 0.749 (0.347-1.320) 0.609 (0.347-0.871) 0.666 (0.347-0.992 CP 0.080 (0.059-0.124) 0.119 (0.059-0.203) 0.114 (0.059-0.181 CK 0.717 (0.517-1.043) 0.600 (0.462-0.705) 0.621 (0.459-0.766 CCa 0.316 (0.200-0.418) 0.356 (0.200-0.598) 0.373 (0.200-0.488 CHg 0.066 (0.039-0.096) 0.076 (0.039-0.097) 0.075 (0.039-0.094 CFe 47 (13-88) 117 (13-268) 169 (13-346) CHn 23 (16-34) 22 (16-31) 30 (16-46) CZn 2 (0-12) 6 (0-13) 6 (0-17) CCu 11 (6-24) 19 (6-46) 25 (6-49) CAl 65 (40-100) 150 (150-150) 120 (120-120) CMo 6 (2-15) 6 (2-13) 4 (1-11) SURVEY SUMMARY: Biomass 5.13 (2.08-7.67) 2.26 (0.96-3.06) 0 (0-0) Legume Cove 44 (20-60) 0.33 (0-2) 0 (0-0) Composition 57 (33-71) 0.50 (0-3) 0 (0-0) Grass Cover 32 (25-45) 61 (25-78) 0.58 (0-3) Composition 43 (29-67) 100 (98-100) 33.33 (0-100) Foliar Cove 76 (60-90) 62 (25-80) 0.58 (0-3) Moss 19 (10-35) 29 (10-40) 0 (0-0) Detritus 0 (0-0) 3 (0-10) 0 (0-0) Total Cover 95 (85-100) 94 (50-100) 0.58 (0-3) 155 SITE 3450 PRODUCTION/VEGETATION High Mod Mean Range Mean Range TYPE Low Mean Range 156 SOILS: pH H20 8.4 (8.1-8.7) 8.4 (8.1-8.7) 8.5 (8.3-8.7) pH CaCl2 7.5 (7.4-7.6) 7.5 (7.3-7.6) 7.5 (7.4-7.7) Total C 1.240 (.90-1.58) 1.180 (.92-1.37) 1.060 (.85-1.29) N 0.036 (.016-.063) 0.036 (.021-.046) 0.025 (.017-.037) AvaiI P ppm 46 (17-104) 72 (20-184) 70 (13-136) Exch Cation 256 (208-324) 237 (148-284) 238 (159-288) K ppm 219 (113-354) 205 (150-178) 167 (120-221) Ca 4660 (3744-5875) 4332 (2756-5175) 4373 (2881-5325) Mg 217 (144-306) 186 (63-263) 181 (131-219) Na 12 (8.8-16.3) 11 (6.5-14.0) 12 (9.5-14.2) CF X 69 (60-79) 73 (61-88) 74 (65-95) BD g/coi3 N/m3 196 (85-374) 168 (98-290) 114 (15-223) P/m3 25 (11-74) 34 (7-88) 32 (6-79) K/m3 118 (60-196) 97 (47-142) 79 (11-137) Ca/m3 2518 (1845-3080) 2099 (873-3093) 1959 (361-3001) Mg/m3 120 (53-176) 88 (30-138) 82 (14-128) Na/m3 6.5 (4-10) 5.4 (3-8) 6 (1-9) Cat/m3 139 (98-170) 115 (54-169) 107 (19-162) FOLIAGE: AN 3.35 (2.98-3.82) 2.96 (2.371-4.35) AP 0.22 (0.15-0.29) 0.2 (0.158-0.332) AK 1.91 (1.63-2.19) 1.8 (1.316-2.155) ACa 2.38 (1.76-2.85) 2.84 (2.144-3.469) AMg 0.28 (0.225-0.36) AFe 51 (35-65) 71 (50-100) AMn 15 (10-27) 29 (13-46) AZn 24 (13-34) 15 (9-30) ACu 17 (13-25) 17 (11-22) AAl 28 (20-50) 43 (30-70) AMo 14 (7-36) 17 (8-37) FN 1.0 (0.648-1.417) 0.81 (0.57-1.181) FP 0.130 (0.084-0.213) 0.120 (0.058-0.176) FK 1.380 (0.914-2.19) 0.970 (0.684-1.338) FCa 0.64 (0.506-0.864) 0.67 (0.467-0.868) FMg 0.16 (0.127-0.211) 0.17 (0.109-0.203) FFE 60 (24-156) 69 (25-116) FMn 47 (35-57) 57 (47-86) FZn 5 (1-10) 5 (2-9) FCu 12 (8-18) 14 (9-18) FA I FMo 9 (4-21) 6 (3-9) SITE PRODUCTION/VEGETATION TYPE 3450 cont'd High Mod Low Mean Range Mean Range Mean Range 157 CN 0.561 (0.391-0.754) CP 0.098 (0.045-0.216) CK 0.590 (0.446-0.849) CCa 0.356 (0.219-0.446) CMg 0.047 (0.031-0.069) CFe 40 (10-70) CMn 28 (16-52) CZn 3 (0-9) CCu 7 (4-11) CAl CMo 4 (1-10) SURVEY SUMMARY -Biomass 4.61 (3.45-5.5) 1.98 (0.75-3.27) 0.22 (0-0.56) Legume Cove 52 (40-73) 5 (0-25) 0 (0-0) Composition 64 (51-79) 9 (0-42) 0 (0-0) Grass Cover 29 (15-40) 42 (25-65) 10.17 (0-20) Compos i t i on 36 (21-49) 93 (58-109) 75 (0-100) Fol i a r Cove 81 (60-95) 45 (25-65) 10 (0-20) Moss 14 (3-25) 0 (0-0) 0 (0-0) Detritus 0 (0-0) 25 (5-45) 1.67 (0-5) Total Cover 94 (75-100) 70 (30-100) 12 (0-25) UNRECLAIMED Controls Waste Mean i Rock Range Overburden Mean Range SOILS: pH H20 8.7 (8.4-9.0) 8.0 (7.4-8.8) pH CaCl2 7.7 (7.4-7.9) 7.4 (7.2-7.7) Total C 1.430 (.79-2.55) 0.770 (.37-1.17) N 0.005 (.001-.011) 0.013 (.007-.018) AvaiI P ppm 2 (0-8) 9 (5-14) Exch Cations 310 (239-425) 236 (169-290) K ppm 168 (38-229) 89 (30-135) Ca 4728 (3319-6313) 4331 (3119-5313) Mg 820 (169-1694) 202 (125-400) Na 46 (12-80) 23 (9.5-35.8) CF % 83 (62-96) 79 (61-94) BD g/cm3 N/m3 14 (2-55) 50 (10-121) P/m3 1 (0-4) 4 (1-9) K/m3 54 (11-154) 35 (6-91) Ca/m3 1464 (312-3821) 1655 (331-3241) Mg/m3 284 (15-1085) 80 (15-198) Na/m3 15 (3-54) 9 (1-20) Cat/m3 98 (21-286) 90 (18-172) 159 APPENDIX C.2 COEFFICIENTS OF VARIATION (CVt) FOR SPOIL VARIABLES AND VARIOUS POOLED DATA SETS 1 Soil | 1 Properties 1 Al l Data 1 Dense 1 Cover ! Light 1 Cover 1Untreated 1Waste Rock Untreated Overburden Flat I Sites 1 Sloping I Sites I 1 pH (H20) I 8.2 1 6.7 1 11.3 1 2.3 4.9 1 11.5 I 2.4 | 1 pH (CaC12) 1 4.1 1 5.1 1 2.8 1 2.0 2.2 i 5.5 I 1.5 I 1 Tot N 1 73.6 1 55.8 1 47.7 1 60.1 32.2 1 83.5 1 46.5 I 1 Ava P I 107.4 1 78.9 1 106.5 1 108.4 31.6 1 107.5 I 82.3 I 1 Exc K I 40.3 1 30.1 1 27.8 1 29.2 34.6 I 36.2 1 35.2 I 1 Exc Ca j 17.0 1 17.5 1 15.8 1 18.0 15.2 1 19.8 I 12.7 | 1 Exc Hg 1 92.9 1 68.1 1 62.6 1 67.3 35.6 1 80.0 1 30.8 I 1 Exc Na I 88.2 I 36.7 1 75.1 1 43.2 33.8 1 94.9 I 27.1 | 1 Tot Cat I 19.5 1 20.2 1 15.9 1 18.4 14.0 1 22.2 1 12.4 I I Tot C 1 30.6 1 28.3 1 26.8 1 32.1 25.5 1 33.3 I 18.8 | [ Coarse Fraction 1 17.5 1 13.3 1 19.9 1 12.3 12.8 1 18.1 1 12.7 | I Bulk Density 1 4.5 1 4.9 1 5.5 • - 1 6.2 I 0.0 I COEFFICIENTS OF VARIATION (CV%) FOR VEGETATION TYPES AND SITES TYPES (24 samples per vegetation type) Soil | Flats Properties I Dense Cover Flats Light Cover 1 Slopes 1 Dense Cover Slopes Hod cover Slopes Light Cover pH (H20) 1 9.5 5.1 1 2.6 5.9 1.6 pH (CaCl2) I 7.3 3.5 1 1.5 2.0 1.0 Tot N 1 60.6 44.1 1 39.8 39.4 31.5 Ava P I 53.1 101.2 1 64.9 70.4 73.5 Exc K I 27.1 26.2 1 31.1 1 37.8 19.6 Exc Ca I 18.6 17.0 1 12.9 13.7 11.2 Exc Hg 1 33.7 66.9 1 25.6 1 29.4 34.5 Exc Na 1 52.6 93.1 1 24.5 1 118.8 25.1 Tot Cat 1 18.1 17.0 1 12.0 13.6 11.1 Tot C I 37.2 35.1 1 20.3 1 13.7 19.2 Coarse Fractionl 12.6 15.0 1 9.5 1 11.9 13.0 Bulk Density 1 4.4 6.1 | 2.0 -160 APPENDIX D. MISCELLANEOUS DATA SET 161 APPENDIX D . l BRAY AND OLSEN'S AVAILABLE PHOSPHORUS DATA Bray Extracted Olsen Extracted Sample P P Waste Dump 3 1 56 14 High Cover 2 27 17 3 49 10 4 22 4 5 32 12 6 83 17 7 71 8 8 48 21 9 38 7 10 58 14 11 55 9 12 46 10 Mean 49 12 Low Cover 1 21 8 2 30 6 3 36 9 4 152 18 5 28 6 6 94 12 7 17 5 8 84 10 9 99 10 10 43 14 11 19 5 12 77 10 Mean 58 9 Waste Rock 1 0.5 0 3 2.5 1 4 1.5 0 Mean 1.5 0.3 Overburden 1 13 5 2 6.5 6 3 13 3 Mean 10.8 4.7 163 APPENDIX 3.2 SUMMARY OF WATER RETENTION DATA FROM SELECTED SITES SITE n 1/3 Bar cm3/cm3 Mean Std 15 Bar cm3/cm3 Mean Std Waste Rock 12 0.13 0.015 0.062 0.012 Overburden 12 0.15 0.014 0.087 0.017 3150 Slope 12 0.16 0.017 0.093 0.009 WD1 12 0.14 0.017 0.082 0.015 WD2 12 0.13 0.013 0. 061 0.009 WD3 F l a t High Cover 12 0.13 0.014 0.091 0.014 Low Cover 12 0.11 0.021 0.082 0.021 164 APPENDIX D.3 TOTAL AND INORGANIC CARBON LEVELS IN WASTE ROCK AND OVERBURDEN SAMPLES Total Carbon C03-C TC-InorC Waste Rock 1 1.63 2.34 -0.71 2 2.55 2.11 0.44 3 1.54 1.54 0.00 4 1.03 0.84 0.19 5 1.18 0.71 0.47 6 1.27 1.47 -0.20 7 1.24 1.48 -0.24 8 0.79 2.66 -1.87 9 1.22 1.72 -0.50 10 1.28 1.63 -0.35 11 2.09 1.41 0.68 12 1.30 3.19 -1.89 Mean 1.43 1.76 -0.33 Std 0.46 0.68 0.80 Overburden 1 0.66 0.34 0.32 2 0.56 0.45 0.11 3 0.82 0.73 0.09 4 0.90 0.80 0.10 5 0.91 0.60 0.31 6 0.37 0.10 0.27 7 1.17 0.84 0.33 8 0.62 0.47 0.15 9 0.83 0.57 0.26 10 0.90 0.53 0.37 11 0.71 0.43 0.28 12 0.84 0.69 0.15 Mean 0.77 0.55 0.23 Std 0.20 0.20 0.10