CHEMICAL AND ENZYMIC ASSAYS FOR AVAILABLE LYSINE by MARILUZ HOLGUIN B . S c , U n i v e r s i d a d J a v e r i a n a , 1 9 7 ^ A T h e s i s Submitted i n P a r t i a l F u l f i l l m e n t o f the Requirements f o r the Degree of MASTER OF SCIENCE i n The F a c u l t y o f Graduate S t u d i e s (Department o f Food Science) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA FEBRUARY, 1 9 7 9 (c) M a r i l u z Holguin, 1 9 7 9 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make i t freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. M a r i l u z H o l g u i n _. . . ~ Food Science Department of The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date February 2, 1979 i i ABSTRACT L y s i n e i s o f prime n u t r i t i o n a l s i g n i f i c a n c e s i n c e i t i s the f i r s t l i m i t i n g amino a c i d i n many foods o f p l a n t o r i g i n and i s e a s i l y rendered u n a v a i l a b l e upon heat p r o c e s s i n g o r upon unfavourable storage c o n d i t i o n s . The term " a v a i l a b l e l y s i n e " r e f e r s to forms o f l y s i n e which c o n t a i n f r e e €-amino groups w i t h i n the pepti d e c h a i n . Once the <= -amino group i s blocked, l y s i n e becomes u n a v a i l a b l e s i n c e i t cannot be h y d r o l y z e d by p r o t e o l y t i c enzymes. The a v a i l a b i l i t y o f l y s i n e s i n c a s e i n , lysozyme, | 6 - l a c t o g l o b u l i n , a c i d s o l u b i l i z e d g l u t e n and whole egg was determined by the p e p s i n p a n c r e a t i n d i g e s t i o n t e s t , the d i n i t r o b e n z e n e s u l f o n i c a c i d (DNBS) and the t r i n i t r o -benzene s u l f o n i c a c i d (TNBS) methods. The r e s u l t s were compared to the f l u o r o d i n i t r o b e n z e n e (FDNB) method. Good agreement was obtained between the FDNB o f f i c i a l method and the DNBS technique, with a c o r r e l a t i o n c o e f f i c i e n t o f O . 9 8 9 . When the TNBS method was compared to the FDNB d i f f e -rence technique, a c o r r e l a t i o n c o e f f i c i e n t o f O .988 was found. The p e s i n p a n c r e a t i n d i g e s t i o n t e s t i n d i c a t e d the r e l a t i v e amount o f l y s i n e r e l e a s e d by the enzymes under the c o n d i t i o n s s p e c i f i e d by the t e s t . A c o r r e l a t i o n c o e f -f i c i e n t o f 0.995 was found between the FDNB o f f i c i a l method i i i . and the enzymatic t e s t . The s p e c i f i c i t y o f DNBS f o r the €-amino group o f l y s i n e was determined u s i n g e< - and 6-formyl-lysines» L - l y s i n e , L - l y s y l l y s i n e , L - l y s y l a l a n i n e and r i b o n u c l e a s e -S-peptide. DNBS was found to r e a c t mainly w i t h €-amino group but with a s l i g h t r e a c t i v i t y with oO-amino group. However, i n the case o f p r o t e i n s w i t h s e v e r a l €-amino groups and N-terminal l y s i n e , the c o n t r i b u t i o n o f the c(-amino group to the r e s u l t s becomes n e g l i g i b l e . The DNBS method was found to be the s i m p l e s t and most r e l i a b l e method f o r d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e , f o r the f o l l o w i n g reasons* a) i t does not r e q u i r e a c i d h y d r o l y s i s o f the p r o t e i n s ; b) a l a r g e number of samples can be analyzed s i m u l t a n e o u s l y i n a few hours, and c) i t does not r e q u i r e expensive and l e n g t h y chroma-t o g r a p h i c amino a c i d a n a l y s i s . i v . TABLE OF CONTENTS PAGE ABSTRACT i . ACKNOWLEDGEMENTS i i i . TABLE OF CONTENTS i v . LIST OF FIGURES v i . LIST OF TABLES v i i i . INTRODUCTION 1 LITERATURE SURVEY ON METHODS FOR DETERMINATION OF LYSINE- AVAILABILITY. 8 A. Bioassays 8 B. M i c r o b i o l o g i c a l Assays 12 C. Chemical Methods 16 1 . The f l u o r o d i n i t r o b e n z e n e method (FDNB) 1? 2 . The t r i n i t r o b e n z e n e s u l f o n i c a c i d method (TNBS) 28 3 . G u a n i d i n a t i o n 35 4 . A c r y l o n i t r i l e 36 5 . Methyl a c r y l a t e 36 6. E t h y l v i n y l s u l f o n e 37 7. 2 - C h l o r o - 3 , 5 - d i n i t r o p y r i d i n e 37 8. Sodium borohydride 38 9 . 1 9 F NMR 39 1 0 . The sodium d i n i t r o b e n z e n e s u l f o n a t e method (DNBS) 4 2 1 1 . Fluorescamine 4 8 1 2 . Dye-binding 4 8 1 3 . Chemical methods i n the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n m a t e r i a l s t h a t have undergone M a i l l a r d r e a c t i o n s 51 V . TABLE OF CONTENTS (Continued) PAGE LITERATURE SURVEY ON METHODS FOR DETERMINATION OF LYSINE AVAILABILITY (Continued) D. Enzymatic Methods 54 MATERIALS AND METHODS 65 A. Materials 65 B. Nitrogen Determination 66 C. Amino Acid Analysis 66 D. Lysine Determination "by the Dinitrobenzene Sulfonic Acid Method 67 E. Lysine Determination by the Trinitrobenzene Sulfonic Acid Method 74 F. Lysine Determination by the D i n i t r o f l u o r o -benzene Method 79 G. Enzymatic Digestion Test 85 RESULTS AND DISCUSSION 89 A. The Dinitrobenzene Sulfonic Acid Method 89 B. The Trinitrobenzene Sulfonic Acid Method 96 C. The Fluorodinitrobenzene Method 101 D. The Pepsin Pancreatin Digestion Test 105 GENERAL DISCUSSION 110 CONCLUSION 120 REFERENCES CITED 122 APPENDIX 146 v i . LIST OF FIGURES F i g u r e No. Page No. 1(a) S t r u c t u r e o f f r e e l y s i n e . From: B o d w e l l , 1976. 2 1(b) L y s i n e as i t would e x i s t i n a p e p t i d e c h a i n . From: B o d w e l l , 19 76. 3 2 R e a c t i o n o f FDNB w i t h an amino a c i d . From: H a l l e t a l . , 1974. 21 3 R e a c t i o n o f TNBS w i t h an amino a c i d . From: H a l l e t a l . , 1973. 29 19 4 F NMR spe c t r u m o f the r e a c t i o n p r o d u c t s o f a p r o t e i n and S - e t h y l t r i f l u o r o t h i o a c e t a t e i n d i m e t h y l s u l f o x i d e s o l u t i o n . 41 5 S t r u c t u r e o f t h e r e a c t i v e dye r e m a z o l b r i l l i a n t b l u e R. From: Ney and Wirotama, 1970. 50 6 The d i n i t r o b e n z e n e s u l f o n i c a c i d method f o r d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e . 72 7 S t a n d a r d curve f o r a v a i l a b l e l y s i n e d e t e r m i n a t i o n f o r a sample t r e a t e d w i t h d i n i t r o b e n z e n e s u l f o n i c a c i d . 73 8 The t r i n i t r o b e n z e n e s u l f o n i c a c i d method f o r the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e . 77 9 S t a n d a r d curve f o r a v a i l a b l e l y s i n e d e t e r m i n a t i o n f o r a sample t r e a t e d w i t h 2 , 4 , 6 - t r i n i t r o b e n z e n e s u l f o n i c a c i d 78 10 R e f l u x i n g system used i n t h e p r e p a r a -t i o n o f p r o t e i n h y d r o l y s a t e s 82 11 The d i n i t r o f l u o r o b e n z e n e method f o r d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e ( d i f f e r e n c e t e c h n i q u e ) . From: Blom e t a l . , 1967. 84 v i i . LIST OF FIGURES (Continued) F i g u r e No. Page No. 12 Comparison between the FDNB d i f f e r e n c e t e c h n i q u e and t h e DNBS method. The % o f l y s i n e i s d e t e r -mined by g l y s i n e / 1 0 0 g p r o t e i n . 112 13 Comparison between the FDNB d i f f e r e n c e t e c h n i q u e and t h e TNBS method. The % o f l y s i n e i s d e t e r m i n e d by g l y s i n e / 100 g p r o t e i n 113 14 Comparison between the FDNB d i f f e r e n c e method and t h e e n z y m a t i c d i g e s t i o n t e s t . The % o f l y s i n e i s d e t e r m i n e d by g l y s i n e / 1 0 0 g p r o t e i n . 114 15 Comparison between the e n z y m a t i c d i g e s t i o n t e s t and the DNBS method. The % o f l y s i n e i s d e t e r m i n e d by g l y s i n e / 1 0 0 g p r o t e i n . 115 16 Comparison between t h e e n z y m a t i c d i g e s t i o n t e s t and the TNBS method. The % of l y s i n e i s d e t e r m i n e d by g l y s i n e / 1 0 0 g p r o t e i n . 116 17 Comparison between t h e TNBS and the DNBS methods. The % o f l y s i n e / 1 0 0 g p r o t e i n . 117 v i i i . LIST OF TABLES Table No. Page No. 1 Reagents used and derivates formed i n Direct Methods. 18 2 Reagents used and derivates formed i n Indirect Methods. 19 3 Protein content of samples assayed for lysine a v a i l a b i l i t y . 90 4 Available lysine content of protein samples as determined by the d i n i t r o -benzene s u l f o n i c acid (DNBS) method. 91 5 Reaction of,amino acids and peptides with dinitrobenzene s u l f o n i c acid (DNBS). 94 6 Available lysine content of protein samples as determined by the t r i n i t r o -benzene s u l f o n i c acid (TNBS) method. 97 7 Available lysine content of protein samples as determined by the fluoro-dinitrobenzene (FDNB) method. 102 8 Amount of lysine released from protein samples subjected to pepsin-pancreatin digestion. 108 9 Lysine a v a i l a b i l i t y determined by the FDNB o f f i c i a l procedure, the DNBS and the TNBS methods, and the enzymatic t e s t . I l l 10 Standard deviation of the random error (in g lysine/100 g protein) i n the a v a i l -able lysine methods, as estimated with Deming's procedure. 119 ix. ACKNOWLEDGEMENTS I wish to express my gratitude to Dr. S. Nakai, Chairman of my committee for his supervision and encourage-ment i n the preparation of t h i s thesis. Also to the other members of my committee: Drs. Powrie, Vanderstoep and Beames my sincere thanks. To Valerie (technician) I am t r u l y g r a t e f u l for her co-operation and assistance. I should also l i k e to thank my husband for his help and encouragement i n the preparing of t h i s t h e s i s . 1 . INTRODUCTION The n u t r i t i o n a l q u a l i t y o f a food p r o t e i n i s dependent not o n l y on the amino a c i d composition and d i g e s t i -b i l i t y o f the p r o t e i n i t s e l f hut a l s o upon the p h y s i o l o g i c a l a v a i l a b i l i t y . A v a i l a b i l i t y Pan be d e f i n e d as the amount or percentage o f a g i v e n amino a c i d i n the food which i s u t i l i z e d f o r p r o t e i n s y n t h e s i s i n the organism (growth and maintenance) when the s a i d amino a c i d i s the o n l y l i m i t i n g f a c t o r o f the d i e t . Growth may t h e r e f o r e be c o n s i d e r e d to be a s u i t a b l e index o f a v a i l a b i l i t y . D i e t a r y l y s i n e i n s u f f i c i e n c y o f t e n l i m i t s growth. In many foods, l y s i n e i s l i m i t i n g not Only because r e l a t i v e l y s m a l l amounts are i n c o r p o r a t e d i n the p r o t e i n s d u r i n g b i o -s y n t h e s i s but a l s o because o f secondary chemical changes due to f a c t o r s such as l i g h t , heat, a l k a l i , and r e d u c i n g sugars, as a r e s u l t o f which l y s i n e becomes n u t r i t i o n a l l y u n a v a i l a b l e . L y s i n e i n i t s f r e e form has a f r e e eC-amino group, a f r e e €-amino group and a f r e e c a r b o x y l group. In most p r o t e i n s , 95 to 100$ o f the l y s i n e i s l i n k e d to oth e r amino a c i d s through p e p t i d e l i n k a g e s i n v o l v i n g the oC-amino and c a r b o x y l groups ( F i g u r e 1 ) . Only the €-amino group i s f r e e to r e a c t with other compounds such as sugars o r amide groups o f other amino a c i d s . 2. FIGURE 1 . (a) S t r u c t u r e o f f r e e l y s i n e . From* Bodwell, 1976 . €-amino group — • NH 2 CH 2 1 1 c CH P 1 c 1 c H~N\- C - GOOH ^ 1 t H U-amino group 3. FIGURE !•• (t>) L y s i n e as i t would e x i s t i n a p o r t i o n o f a pe p t i d e c h a i n . From* Bodwell, 1976 . NH 2 i GH 2 i GHo CH, H-C-OH i N-C-G i i I I H H 0 CH 2 i N-C-G i i I I H H 0 CH. H i N-C-C I I H H 0 S i CH 2 CH 2 i N-C-C i i II H H 0 Threonine L y s i n e G l y c i n e Methionine 4 . L y s i n e i s n u t r i t i o n a l l y a v a i l a b l e i f i t s €-amino group i s f r e e . I f the €-amino group i s bl o c k e d through a chemical bond, the segment of the p r o t e i n near the a f f e c t e d l y s i n e r e s i d u e may not be d i g e s t e d . I f the p r o t e i n i s broken down to amino a c i d s or d i p e p t i d e s , the r e a c t e d l y s i n e may not be absorbed from the g a s t r o i n t e s t i n a l t r a c t . Even i f absorbed, the l y s i n e h a ving a ' d e r i v a t i z e d * €-amino group may not be u t i l i z e d but r a t h e r e x c r e t e d i n the u r i n e . L y s i n e may a l s o be b u r i e d i n a p r o t e i n m a t r i x o f a p a r t i c u l a r sequence or conformation which i s slow to hydro-l y z e o r i s not h y d r o l y z e d a t a l l by animal p r o t e a s e s . Such l y s i n e may or may not appear as c h e m i c a l l y a v a i l a b l e by chemical methods and y e t be t o t a l l y u n a v a i l a b l e n u t r i t i o n a l l y . P r o t e o l y s i s w i t h i n the i n t e s t i n a l lumen i s l a r g e l y c a r r i e d out by the p a n c r e a t i c p r o t e o l y t i c enzymes. T r y p s i n and chymotrypsin account f o r 78% o f the t o t a l p r o t e o l y t i c a c t i v i t y . T r y p s i n a c t s on a p r o t e i n at e i t h e r an a r g i n i n e r e s i d u e or a l y s i n e r e s i d u e which has a f r e e amino group. The a c t i o n o f other p r o t e a s e s i s o n l y p a r t i a l l y i n h i b i t e d when the €-amino group o f l y s i n e i s bl o c k e d . Under severe o r prolonged h e a t i n g c o n d i t i o n s , the €-amino group o f l y s i n e can r e a c t with the )(-carboxyl group o f glutamic a c i d o r the (3-carboxyl group o f a s p a r t i c a c i d on another p r o t e i n o r w i t h i n the same p r o t e i n molecule. 5 . As a r e s u l t , a so c a l l e d i s o p e p t i d e bond i s formed, which i s r e s i s t a n t to h y d r o l y s i s by gut p r o t e a s e s . P r o t e o l y t i c enzy-mes are b e l i e v d to be s p e c i f i c f o r the <£,£-peptide l i n k a g e s . The a s p a r t y l - or g l u t a m y l - l y s i n e remains a f t e r p r o t e o l y s i s . However, Mauron (1972) and Carpenter and Booth (1973) have shown t h a t these d e r i v a t i v e s can be u t i l i z e d as sources o f l y s i n e by the r a t . The d i p e p t i d e s are p r o b a b l y absorbed as such through the i n t e s t i n a l w a l l and h y d r o l y z e d i n the k i d -neys. The presence of numerous such c r o s s - l i n k a g e s might be expected to a t l e a s t reduce the r a t e o f p r o t e i n d i g e s t i o n , p o s s i b l y by s t e r i c hindrance o f the s i t e s o f a t t a c k by d i g e s t i v e enzymes. Another r e a c t i o n o f l y s i n e i s c r o s s - l i n k a g e with dehydroalanine r e s i d u e s . Dehydroalanine i s formed by h e a t i n g s e r i n e or c y s t e i n e under a l k a l i n e c o n d i t i o n s . The dehydro-a l a n i n e thus formed r e a c t s with the €-amino group to form l y s i n o a l a n i n e (LAL). I t appears t h a t l y s i n o a l a n i n e i s not n u t r i t i o n a l l y a v a i l a b l e s i n c e 38 -65% o f the LAL i n g e s t e d by r a t s i n the form o f a l k a l i - t r e a t e d soybean c a s e i n or soybean meal was recovered im the f e c e s (deGroot and Slump, I 9 6 9 ) . A more common reason f o r l o s s e s o f a v a i l a b l e l y s i n e may be r e a c t i o n with carbohydrates. Both r e d u c i n g and non-r e d u c i n g sugars r e a c t with l y s i n e . El-Nockrashy and Frampton (1967) showed t h a t sucrose, r a f f i n o s e and t r e h a l o s e a l l r e a c t with l y s i n e to render i t u n a v a i l a b l e . M a i l l a r d 6 . r e a c t i o n i n which the €-amino group of l y s i n e r e a c t s w i t h aldehyde groups o f r e d u c i n g sugars, or wit h c a r b o n y l groups o f l i p i d s , i s v e r y w e l l known to decrease l y s i n e a v a i l a b i -l i t y . Thompson e t a l . (1976) have s t u d i e d the l o s s r a t e o f a v a i l a b l e l y s i n e d u r i n g thermal p r o c e s s i n g o f a soy model system. A v a i l a b l e l y s i n e l o s s went through three phases. The f i r s t phase was c h a r a c t e r i z e d by a r a p i d l o s s i n which 30 to 60% of the a v a i l a b l e l y s i n e was made u n a v a i l a b l e . Phase two showed a s t a t i s t i c a l l y s i g n i f i c a n t (98$ c o n f i d e n -ce) i n c r e a s e i n a v a i l a b l e l y s i n e when measured by Carpenter's f l u o r o d i n i t r o b e n z e n e procedure (FDNB). The t h i r d phase was c h a r a c t e r i z e d by a s t a b i l i z a t i o n o f FDNB a v a i l a b l e l y s i n e . The r e a c t i o n r e s u l t i n g i n the i n i t i a l r a p i d phase o c c u r r e d a c c o r d i n g to f i r s t o r d e r r e a c t i o n k i n e t i c s . Wolf and Thompson (1977) u t i l i z e d a model system c o n s i s t i n g o f p r o t e i n , glucose,and m i c r o c r y s t a l l i n e c e l l u l o s e . I t was found t h a t glucose and temperature had the dominant e f f e c t on p r e d i c t i n g the s p e c i f i c r e a c t i o n r a t e (k-j.). Water a c t i v i t y and pH a l s o i n f l u e n c e d the p r e d i c t i o n o f k^ but they acted though an i n t e r a c t i o n w i t h g l u c o s e . J o k i n e n e t a l . (1976) developed an eq u a t i o n which p r e d i c t s l y s i n e a v a i l a * b i l i t y as a f u n c t i o n o f pH, water a c t i v i t y , g l u c o s e , s t a r c h , and sucrose i n phase th r e e . Thermal l o s s o f a v a i l a b l e l y s i n e i n f o r t i f i e d r i c e meal was k i n e t i c a l l y assessed by 7. Tsao e t a l . (1978). Because o f the extreme importance o f l y s i n e i n the d i e t , and the a d d i t i o n a l c o n s i d e r a t i o n s o f p r o t e i n damage and i n t e r n a l c r o s s - l i n k a g e s f o l l o w i n g some types o f p r o -c e s s i n g , s e v e r a l methods have "been proposed f o r e s t i m a t i n g n u t r i t i o n a l l y a v a i l a b l e l y s i n e . These methods can be c a t e g o r i z e d i n f o u r groups t B i o l o g i c a l e v a l u a t i o n s t u d i e s , i n v i t r o d i g e s t i o n methods, and m i c r o b i o l o g i c a l and chemi-c a l a n a l y s e s . Much e f f o r t has been made to e s t a b l i s h r e l i a -b l e chemical methods which are qu i c k and s u i t a b l e f o r r o u -t i n e assay. The o b j e c t o f t h i s study was to determine l y s i n e a v a i l a b i l i t y w i t h two o f the most p o p u l a r chemical methods, the d i n i t r o b e n z e n e s u l f o n i c a c i d (DNBS) and the t r i n i t r o -benzene s u l f o n i c a c i d (TNBS) techniques, and to compare the r e s u l t s with the f l u o r o d i n i t r o b e n z e n e (FDNB). AOAC o f f i c i a l method. Enzymatic d i g e s t i o n assays were done i n an attempt to c o r r e l a t e chemical and b i o l o g i c a l a v a i l a b i l i t i e s , 'i For example, i t has been demonstrated t h a t , i n some cases, che-m i c a l d e t e r m i n a t i o n s do not show the extent o f p r o t e i n d i g e s -t i b i l i t y o r the presence o f t r y p s i n i n h i b i t o r s . 8. METHODS FOR DETERMINATION OF LYSINE AVAILABILITY A. BIOASSAYS The ult imate standards fo r the i n v i t r o methods of measuring amino ac id a v a i l a b i l i t y are bioassays with animals. Animal assays are based on the observat ion that the amount and q u a l i t y of a p ro te in can r e s u l t i n a gain or l o s s of body substance. Such gain or l o s s can be i d e n t i f i e d by a change i n body weight or by a change i n a body compon-ent which of ten i s n i t rogen content. The Pro te in E f f i c i e n c y Ratio (PER), which i s the o f f i c i a l AOAC procedure, and the Net Pro te in Ratio (NPR) are based on weight changes. The methods based on body n i t rogen change are the Net P ro te in U t i l i z a t i o n (NPU) where carcass n i t rogen i s measured, and the B i o l o g i c a l Value (BV) where n i t rogen balance i s measured. PER i s the slope of the l i n e r e l a t i n g weight gain of a ra t to p ro te in intake consumed under standardized ex-perimental cond i t ions . Despite i t s long h i s t o r y , wide usage, and o f f i c i a l s ta tus , PER i s not a good assay procedure (Hegsted and Chang, 1965$ Hegsted and Samonds, 1978). Of the c r i t e r i a def ined f o r a v a l i d b ioassay, i . e . , p r e c i s i o n , r e p r o d u c i b i l i t y , s t a t i s t i c a l v a l i d i t y , p r o p o r t i o n a l i t y , s i m p l i c i t y and low cost (Hegsted and Samonds, 1978) PER could be considered as meeting only the c r i t e r i o n of sim-p l i c i t y . Some improvement can be made by i n c l u s i o n of a 9 -group o f animals consuming a n o n - p r o t e i n d i e t f o r a s i m i l a r p e r i o d . When m o d i f i e d i n t h i s way the procedure i s c a l l e d Net P r o t e i n R a t i o (NPR) (Bender and D o e l l , 1 9 5 7 ) . A modi-f i c a t i o n o f NPR c a l l e d R e l a t i v e NPR (RelNPR) i s recommended by the r e c e n t N a t i o n a l Academy o f S c i e n c e s - N a t i o n a l Re-search C o u n c i l Committee on P r o t e i n E v a l u a t i o n (Young and P e l l e t t , 1978) as a u s e f u l procedure i f a m u l t i p l e - p o i n t assay cannot be performed. R e l a t i v e NPR i s performed i n an i d e n t i c a l manner as NPR, but the r e s u l t s are expressed r e l a -t i v e to the value obtained w i t h an 8fo l a c t a l b u m i n d i e t taken as 1 . 0 0 or 1 0 0 . Bioassays are c l a s s e d as e i t h e r two-point or mul-t i p l e - p o i n t assays. With two p o i n t assays, a s t r a i g h t l i -ne c o n n e c t i n g the two p o i n t s must be assumed. S t u d i e s w i t h both r a t s (Hegsted and Neff, 1 9 7 0 j Hegsted, 1971) and humans (Young e t a l . , 1977) have shown t h i s assumption not to be e n t i r e l y v a l i d , e s p e c i a l l y f o r poor q u a l i t y p r o t e i n s . M u l t i p l e - p o i n t procedures i n v o l v e measurements o f the r e s -ponse obtained (weight, body water, or body n i t r o g e n ) i n r e -l a t i o n to p r o t e i n comsumed; at s e v e r a l l e v e l s o f p r o t e i n con-sumption. These l e v e l s must be s e l e c t e d w i t h c a r e , s i n c e o n l y f o r a s m a l l range can a s t r a i g h t l i n e be assumed* at h i g h l e -v e l s more and more p r o t e i n would be deaminated and used f o r energy, while a t v e r y low l e v e l s d e v i a t i o n from l i n e a r i t y c o u l d occur because o f such phenomena as adaptive responses, w i t h 1 0 . consequently more e f f i c i e n t u t i l i z a t i o n o f amino a c i d s . T h i s i s e s s e n t i a l l y t rue when the l i m i t i n g amino a c i d i s l y s i n e . Very good c o r r e l a t i o n s are found between b i o a s -says and amino a c i d score f o r p r o t e i n s having a b i o l o g i c a l v a l u e g r e a t e r than 40 ( P e l l e t t , 1 9 7 8 ) . The r e l a t i o n s h i p va-r i e s w i t h the l i m i t i n g amino a c i d below t h i s l e v e l (Bender, I 9 6 I 5 Hegsted, 1 9 7 1 ) . P r o t e i n s completely l a c k i n g i n l y s i n e can s t i l l have a BV equal to 40, and p r o t e i n s l a c k i n g o t h e r amino a c i d can have v a l u e s s i g n i f i c a n t l y above zero. Young and Scrimshaw (1977) have shown t h a t a l l animals, i n c l u d i n g man, have the a b i l i t y ifeo r e u t i l i z e amino a c i d s f o r the syn-t h e s i s o f p r o t e i n s . F o r the human about 5 - 6 g o f p r o t e i n are s y n t h e s i z e d f o r each g o f p r o t e i n allowance. Not a l l the amino a c i d s behave i n the same way; an absence o f va-l i n e or t o t a l s u l f u r amino a c i d s g i v e s the expected zero response f o r BV, with the o t h e r e s s e n t i a l amino a c i d s beha-v i n g i n an i n t e r m e d i a t e manner. While b i o a s s a y procedures such as the R e l a t i v e P r o t e i n Value (RPV) (Young and P e l l e t t , 1978 ), can g i v e more r e a l i s t i c q u a l i t y estimates f o r poor q u a l i t y p r o t e i n s , no b i o a s s a y i s exempt from t h i s problem. An animal can conserve and r e c y c l e l y s i n e f o r a l i m i t e d pe-r i o d by slowing down l y s i n e o x i d a t i o n (Brooks e t a l . , 1 9 7 2 ) . F o r t u n a t e l y , i n p r a c t i c e v e r y few p r o t e i n s or r e a l d i e t a r i e s have these v e r y low l e v e l s o f e s s e n t i a l amino a c i d s . 1 1 . The content of a v a i l a b l e l y s i n e can he measured by comparing the performance of animals r e c e i v i n g a b a s a l d i e t supplemented w i t h the t e s t m a t e r i a l or with pure l y s i n e . The b a s a l p r o t e i n source has been maize with c y s t i n e and tryptophan ( W i l d e r and K r a y b i l l , 1 9 4 7 ) , wheat (Howard e t a l . , 1958 ; M o r r i s o n e t a l . , , 1 9 6 3 - ; Mauron and Mottu, 1 9 6 2 ), wheat g l u t e n ( P i o n and Rerat, 1962) or a mixture o f wheat and bar-l e y (Bruggemann e t a l . , 1 9 6 9 ) . I t i s e s s e n t i a l t h a t l y s i n e should be a l i m i t i n g f a c t o r i n the d i e t s o f t e s t animals, otherwise they w i l l not be s e n s i t i v e to changes i n the l e v e l o f a v a i l a b l e l y s i n e . Although a b a s a l d i e t may be s p e c i f i c a l l y d e f i c i e n t i n l y s i n e ( i n the sense t h a t t h i s i s the o n l y amino a c i d t h a t w i l l e l i c i t a growth response when added to the d i e t ) , the magnitude of the response to a t e s t supplement can a l s o be a f f e c t e d by the amounts o f o t h e r amino a c i d s t h a t i t c o n t a i n s , through changing the amino a c i d balance o f the d i e t as a whole (Muelenaere e t a l . , 1 9 6 7 ) . D i s c r e p a n c i e s have been found c o n s i s t e n t l y a c c o r d i n g to the dose response r e l a t i o n s used f o r c a l c u l a t i o n o f r e s u l t s which have beeni A. $ l y s i n e i n the d i e t : weight gain/day; B. % l y s i n e i n the d i e t : weight g a i n / g food eaten, and C. g l y s i n e eaten: weight gain/day. In g e n e r a l A has r e s u l t e d i n lower c a l c u l a t e d v a l u e s (Calhoun e t a l . , i 9 6 0 ; Carpenter et a l . , 1963? Guo e t a l . , 1 9 7 1 ) ' B and C have been p r e f e r r e d because they g i v e v a l u e s l e s s a f f e c t e d by amino a c i d balance (Netke e t a l . , 1969) and by other com-pounds i n f l u e n c i n g food consumption (Gupta e t a l . , 1958). Carpenter e t a l . (1963) and Smith and S c o t t (1965) obtained v a l u e s w i t h c h i c k s f o r the potency o f undamaged f i s h p r o t e i n t h a t were h i g h e r than the c o r r e s -ponding t o t a l l y s i n e v a l u e s obtained by chemical a n a l y s i s . With w e l l processed soya meal, Combs e t a l . ( I 9 6 8 ) found n e a r l y 100% a v a i l a b i l i t y , whereas Netke and S c o t t (1970) obtained r e s u l t s e q u i v a l e n t to o n l y 7^ to 80% of the t o -t a l v a l u e s . Thus, i t i s not p o s s i b l e to make r e l i a b l e com-p a r i s o n s between m a t e r i a l s when the p o t e n c i e s are assessed i n d i f f e r e n t l a b o r a t o r i e s and, even f o r wi thin-experiment comparisons there i s a need f o r c a u t i o n and r e p l i c a t i o n . U n f o r t u n a t e l y , growth assays remain the o n l y d i r e c t means to check the v a l i d i t y o f c l a i m s f o r the n u t r i t i o n a l r e l e -vance o f v a l u e s obtained by oth e r procedures. B. MICROBIOLOGICAL ASSAYS A g r e a t advance i n the d e t e r m i n a t i o n o f a v a i l a b l e amino a c i d s was achieved by the i n t r o d u c t i o n by Ford ( i 9 6 0 ) of m i c r o b i o l o g i c a l methods. M i c r o b i o l o g i c a l assays are r a p i d , c o m p a r a t i v e l y cheap and p r o v i d e a means o f t e s t i n g 1 3 . l a r g e number o f samples i n a s h o r t time. They can be used f o r three main purposesi 1) d e t e r m i n a t i o n of amino a c i d a v a i l a b i l i t y a f t e r enzyme h y d r o l y s i s ? 2) d e t e r m i n a t i o n o f t o t a l amino a c i d s a f t e r a c i d h y d r o l y s i s ; and 3) determina-t i o n of p r o t e i n q u a l i t y , expressed as R e l a t i v e N u t r i t i v e Value (RNV), as assessed by the growth of the t e s t organism r e l a t i v e to t h a t w i t h a standard p r o t e i n , u s u a l l y c a s e i n or whole eggs (Bender, 1969 ; Ford, 1965? Szklarska-Cyganska and Kakowska-Lipinska, 1 9 7 0 ) . RNV i s a r e l a t i v e measure o f the Tetrahymena b i o a s s a y and not meant to r e l a t e to the r a t RNV. The microorganisms are c u l t i v a t e d on a medium con-t a i n i n g a l l amino a c i d s except the one to be d e t e c t e d i n an unknown sample. I f a s t r a i n i s used f o r which t h i s amino a c i d s i s i n d i s p e n s a b l e , the c e l l s w i l l not m u l t i p l y . The growth of the c u l t u r e i s measured by the t u r b i d i t y produced by the growing microorganisms, or by d e t e r m i n a t i o n o f the l a c t i c a c i d formed. I f the extent o f growth, or the amount of l a c t i c a c i d i s p l o t t e d a g a i n s t the amount o f amino a c i d added, a standard curve i s obtained which makes i t p o s s i b l e to determine the amino a c i d content o f the unknown sample by g r a p h i c i n t e r p o l a t i o n . The t e s t microorganisms used show a p a t t e r n o f requirement f o r exogenous amino a c i d , b r o a d l y s i m i l a r to t h a t of h i g h e r animals. 14. Ford (1962) has demonstrated the u s e f u l n e s s o f S t r e p t o c o c c u s zymogenes as an assay organism f o r most o f the e s s e n t i a l amino a c i d s , s i n c e i t has c o n s i d e r a b l e pro-t e o l y t i c ^ powers and, when t e s t m a t e r i a l s are g i v e n a p r e -l i m i n a r y p a r t i a l d i g e s t i o n w i t h papain, the v a l u e s o b t a i n -ed f o r a v a i l a b l e methionine" show a g e n e r a l s i m i l a r i t y to va-l u e s from animal assays ( M i l l e r e t a l . , 1965)• Unfortuna-t e l y t h i s organism does not r e q u i r e l y s i n e . D e t ermination o f p r o t e i n q u a l i t y u s i n g the growth of Tetrahymena p y r i f o r m i s as an index was demonstrated by Rockland and Dunn ( 1 9 4 9 ) . Tetrahymena u n l i k e S. zymogenes r e q u i r e s l y s i n e but i t a l s o r e q u i r e s s e r i n e which i s not an i n d i s p e n s a b l e amino a c i d f o r h i g h e r animals. Viswana'tha and L i e n e r (1955) showed a need f o r p r e d i g e s t i o n of the p r o t e i n sample p r i o r to i t s a d d i t i o n to Tetrahymena c u l t u r e medium. They showed t h a t the p r o t e i n a s e s p r e s e n t i n T e t r a -hymena were unable to a t t a c k n a t i v e g l o b u l a r p r o t e i n s and t h a t Tetrahymena was not a f f e c t e d by t r y p s i n i n h i b i t o r or h e m a g l u t i n i n components o f raw soybean. F e r n e l l and Rosen (1956) a l s o s t u d i e d the T e t r a -hymena b i o a s s a y as a method f o r d e t e r m i n i n g p r o t e i n q u a l i -t y . Organism count and ammonia p r o d u c t i o n over a four-day i n c u b a t i o n were used as a means of o b t a i n i n g a R e l a t i v e N u t r i t i v e Value (RNV). No p r e d i g e s t i o n o f the samples was employed, but the p r o t e i n s were d e f a t t e d because of 1 5 . the p o s s i b l e growth i n h i b i t i o n from c e r t a i n f a t t y a c i d s ( R o l l e , 1 9 7 3 ) . Landers (1975) who used a 3-hr p e p s i n p r e d i g e s t i o n and Frank e t a l . (1975) who used a 24-hr t r y p s i n - b r o m e l a i n p r e d i g e s t i o n o f the food samples p r i o r to t h e i r i n c o r p o r a -t i o n i n t o the Tetrahymena growth media, r e p o r t e d h i g h c o r -r e l a t i o n between the Tetrahymena growth and the PER o f the food p r o t e i n . Tetrahymena grows p o o r l y i n media c o n t a i n i n g f r e e amino a c i d s . A s o l u t i o n o f amino a c i d s s i m u l a t i n g the com-p o s i t i o n o f egg p r o t e i n has an RNV o f 50 to 60 as a g a i n s t 100 f o r the i n t a c t p r o t e i n . The microorganism does not produce a c i d , and the response has u s u a l l y been measured by l a b o r i o u s c e l l counts. Although the p r o t o z o a are too heavy to remain i n suspension f o r an o r d i n a r y t u r b i d i t y r e a d i n g , Shorrock (1972) found t h a t with c o n t r o l l e d a u t o c l a v i n g the organisms break up i n a c h a r a c t e r i s t i c way t h a t allows t u r b i d i t y to be used as a measure o f response. Szmelcman and Guggenheim (1967) have p o i n t e d out t h a t the d i s t i n c t i o n between a v a i l a b l e and u n a v a i l a b l e amino a c i d s by m i c r o b i o l o g i c a l assay, i s a r b i t r a r y and r e l a t e s to the p a r t i c u l a r c o n d i t i o n s o f the assay. Much more r e s e a r c h c o n c e r n i n g the a p p l i c a b i l i t y of Tetrahymena b i o a s s a y to a wide range o f foods and i t s s e n s i -t i v i t y to o t h e r n o n - p r o t e i n food i n g r e d i e n t s i s needed before 16 the microorganism can be used as an e f f e c t i v e t o o l to estimate food p r o t e i n q u a l i t y . C. CHEMICAL METHODS Since the f i r s t a p p l i c a t i o n of Sanger's technique (19^5) to food by Carpenter and coworkers ( 1 9 5 5 a , 1 9 5 7 ) t a l l chemical methods f o r e s t i m a t i n g the a v a i l a b l e l y s i n e i n a p r o t e i n have been simple methods intended to estimate, e i t h e r d i r e c t l y or i n d i r e c t l y , how much o f the l y s i n e i s p r e s e n t which has a f r e e €-amino group. The g e n e r a l approach f o r c h e m i c a l l y e s t i m a t i n g n u t r i t i o n a l l y a v a i l a b l e l y s i n e can be summarized as follows« a) A chemical agent i s r e a c t e d w i t h a p r o t e a n and an a c i d s t a b l e d e r i v a t i v e i s formed between f r e e €-amino groups i n the p r o t e i n and the chemical agent. b) The ' d e r i v a t i z e d ' p r o t e i n i s h y d r o l y z e d to y i e l d d e r i v a t i z e d l y s i n e p l u s o t h e r f r e e amino a c i d s ( i n c l u d i n g n o n - d e r i v a t i z e d , u n a v a i l a b l e l y s i n e ) . c) The amount of d e r i v a t i z e d l y s i n e i s determined ( d i r e c t methods) and/or the amount o f unreacted l y s i n e i s determined ( i n d i r e c t methods). The d i r e c t methods c u r r e n t l y i n use or proposed are l i s t e d i n Table 1 , t o g e t h e r with the reagents used and the d e r i v a t i v e s formed. The i n d i r e c t methods are l i s t e d i n Table 2 . In h i g h carbohydrate foods, the d i r e c t methods 1 7 . (not c o n s i d e r i n g m e t h y l i s o u r e a , DNBS and """^ F NMR methods) f a i l to y i e l d s a t i s f a c t o r y a n a l y t i c a l r e s u l t s . Use o f the i n d i r e c t methods appear to circumvent these a n a l y t i c a l problems. However, as r e p o r t e d by Bodwell ( 1 9 7 6 ) , the r e l a t i o n s h i p o f a v a i l a b l e l y s i n e l e v e l s determined by chemical methods and the b i o a s s a y s e s t i m a t e s , i s not always s a t i s -f a c t o r y . F or example, i n wheat p r o t e i n s , 85-95% a v a i l a b i l i t y f o r l y s i n e , o b tained by u s i n g chemical methods, i s pr o b a b l y an overestimate f o r both r a t s and humans. The chemical e s t i m a t e s o f a v a i l a b l e l y s i n e may be overestimated because: a) In the d i r e c t methods, the s i d e r e a c t i o n s c o u l d i n c r e a s e the c o l o r i m e t r i c a l l y determined e s t i m a t e s o f a v a i l a b l e l y s i n e . b) In both d i r e c t and i n d i r e c t methods, some o f the n u t r i -t i o n a l l y a v a i l a b l e l y s i n e may r e a c t with the chemical agents used to form a c i d s t a b l e d e r i v a t i v e s and, i f so, esti m a t e s o f the a v a i l a b l e l y s i n e l e v e l would be exaggerated. In the f o l l o w i n g pages, the chemical methods l i s t e d i n T a b l e s 1 and 2 w i l l be d e s c r i b e d . When p o s s i b l e , advantages and disadvantages f o r each one w i l l be g i v e n . 1 . The f l u o r o d i n i t r o b e n z e n e method (FDNB). The f i r s t good chemical method f o r the e s t i m a t i o n o f n u t r i t i o n a l l y a v a i l a b l e l y s i n e was developed by Carpenter and h i s a s s o c i a t e s i n 1955 - The procedure was based on the work o f Sanger who used the reagent l - f l u o r o - 2 , TABLE 1. Reagents used and d e r i v a t i v e s formed i n d i r e c t methods Method Reagent Used D e r i v a t i v e Formed FDNB or Carpenter TNBS G u a n i d i n a t i o n 1 9 F NMR A v a i l a b l e l y s i n e A v a i l a b l e l y s i n e A v a i l a b l e l y s i n e DNBS A v a i l a b l e l y s i n e Dye-binding FDNB ( l - f l u o r o - 2 , 4 - d i n i t r o b e n z e n e ) TNBS ( <2 ,4 ,6-trinitrobenzene s u l f o -n i c a c i d ) O-Methylisourea S - E t h y l - t r i f l u o r o t h i o a c e t a t e A c r y l o n i t r i l e 2 T C h l o r o - 3 1 5 - d i n i t r o p y r i d i n e Sodium borohydride DNBS (Sodium d i n i t r o b e n z e n e s u l f o -nate) Fluorescamine ( 4-phenylspiro-[furan-2-(3H)-1'-phthalan] - 3 , 3 '-dione) Remazol b r i l l i a n t blue R DNP-lysine ( € , N - d i n i t r o p h e n y l - l y s i n e ) TNP-lysine ( € T N - t r i n i t r o p h e n y l - l y s i n e ) Homoarginine € , N - t r i f l u o r o a c e t y l - l y s i n e € , N - c y a n o e t h y l - l y s i n e 6 , N - d i n i t r o p y r i d y l - l y s i n e €-N,N-dimethyl-lysine DNP-lysine Fluorescamine complex Dyed p r o t e i n co TABLE 2. Reagents used and d e r i v a t i v e s formed i n i n d i r e c t methods Method Reagent Used D e r i v a t i v e Formed D i f f e r e n c e o r S i l c o c k T o t a l L y s i n e Minus U n a v a i l a b l e L y s i n e T o t a l L y s i n e Minus U n a v a i l a b l e L y s i n e T o t a l L y s i n e Minus Unavailab b i s e t h y l s u l f o n y l -e t h y l - l y s i n e 20. ^ - d i n i t r o b e n z e n e to determine the i d e n t i t i e s and number o f the d i f f e r e n t N-terminal amino groups i n p r o t e i n s and p e p t i d e s . Each f r e e amino group became l a b e l l e d , w i t h a d i n i t r o p h e n y l (DNP) group t h a t r e s i s t e d subsequent d i g e s t i o n with a c i d , so t h a t each N-terminal amino a c i d u n i t Ithat had o r i g i n a l l y r e a c t e d was converted to an <£-DNP-amino a c i d . These y e l l o w compounds were separated and i d e n t i f i e d by column chromatography. In a d d i t i o n N-terminal l y s i n e gave oC,€-di-DNP-lysine, and where l y s i n e was p r e s e n t i n o t h e r p o s i t i o n s Sanger obtained €-DNP-lysine ( a b b r e v i a t e d as DNP-l y s i n e ) which c o u l d a l s o be separated by chromatography. The r e a c t i o n of FDNB with an amino a c i d i s i l l u s t r a -t e d i n F i g u r e 2. In Carpenter's o r i g i n a l method the p r o t e i n i s d i n i t r o -phenylated and then h y d r o l y z e d . A p o r t i o n o f the h y d r o l y s a t e i s e x t r a c t e d with e t h e r and the e x t i n c t i o n o f the aqueous phase i s read d i r e c t l y . Another p o r t i o n i s t r e a t e d with methoxycarbonyl c h l o r i d e to c o n v e r t DNP-lysine to an e'ther-s o l u b l e d e r i v a t i v e which i s then e x t r a c t e d . The e x t i n c t i o n o f the remaining aqueous phase i s read and the d i f f e r e n c e between the d i r e c t r e a d i n g and the r e a d i n g on the t r e a t e d sample i s taken as measuring €-DNP-lysine. . A disadvantage o f the method i s t h a t i t estimates €-DNP-hydroxylysine, d C-DNP-ornithine arid X-DNP-argiriine, • as. l y s i n e . On the o t h e r hand, the method does not estimate N-terminal l y s i n e or f r e e l y s i n e . FIGURE 2 . R e a c t i o n o f l - f l u o r o - 2 , 4 - d i n i t r o b e n z e n e (FDNB) with an amino a c i d . (From H a l l e t a l . , 1 9 7 3 ) . R N H 2 - C H - C O O H Amino acid R i N H - C H - C O O H N a H C 0 3 + HCI hydro lys is l-Fluoro -2,4-dini trobenzene D in i t ropheny la ted amino acid 2 2 . C a r p e n t e r ' s method i s s u b j e c t t o i n t e r f e r e n c e by c a r b o h y d r a t e , e s p e c i a l l y i n v e g e t a b l e p r o t e i n c o n c e n t r a t e s . I n t e r f e r e n c e r e s u l t s i n l o w and v a r i a b l e r e c o v e r i e s o f € - D N P - l y s i n e . The e f f e c t i s due t o the d e s t r u c t i o n o f D N P - l y s i n e by c a r b o h y d r a t e s d u r i n g a c i d h y d r o l y s i s . The p r o c e d u r e d e s c r i b e d by C a r p e n t e r and E l l i n g e r i n 1955 was m o d i f i e d by C a r p e n t e r ( i 9 6 0 ) t o remove c e r t a i n i n t e r f e r i n g compounds when a p p l i e d t o d i f f e r e n t t y p e s o f f e e d s t u f f s . The major c r i t i c i s m o f C a r p e n t e r ' s FDNB i s t h a t a c o r r e c t i o n f a c t o r i s r e q u i r e d f o r samples t h a t c o n t a i n ap-p r e c i a b l e amount o f c a r b o h y d r a t e s , and i t becomes d i f f i c u l t t o a p p l y w i t h i n c r e a s i n g c o n c e n t r a t i o n s o f c a r b o h y d r a t e s . The c o r r e c t i o n f a c t o r has been a s s e s s e d by a d d i n g €-DNP-l y s i n e t o d u p l i c a t e samples a t the b e g g i n i n g o f the h y d r o -l y s i s s t a g e and t a k i n g i t t h r o u g h the r e s t o f the p r o c e d u -r e . W i t h a n i m a l m a t e r i a l s the r e c o v e r y was found t o be 92%. A c c o r d i n g l y , a l l v a l u e s d e t e r m i n e d s h o u l d be m u l t i p l i e d by a f a c t o r 6f 1 0 0 / 9 2 = 1 . 0 9 t o c o r r e c t f o r l o s s e s d u r i n g d i g e s t i o n . F o r v e g e t a b l e f o o d s the r e c o v e r y o f added €-DNP-l y s i n e was 60 -85%. The use o f t h e c o r r e c t i o n f a c t o r depends on the a s s u m p t i o n t h a t t h e € - D N P - l y s i n e t h a t a r i s e s from the h y d r o l y s i s o f p r o t e i n i s d e s t r o y e d t o the same e x t e n t as the added € - D N P - l y s i n e . Booth (1971) found t h a t t h i s a s s u m p t i o n i s i n v a l i d ; € - D N P - l y s i n e i n a p r o t e i n i s des-t r o y e d t o a l e s s e r e x t e n t t h a n € - D N P - l y s i n e t h a t has been 2 3 . added as a free compound. Thus, the correction factor i n the Carpenter method i s l e s s than formerly supposed. For materials that contain no carbohydrates a factor of 1 . 0 5 i s more suitable than Carpenter's o r i g i n a l 1.09, although very soluble albumins need the l a t t e r . For wheat and some other cereals the r e s u l t s need to be corrected by multiplying by 1 . 2 . Between these two groups, l i e beans, ground nut, and maize, requiring a factor of approximately 100/88 = 1.14. The presence of carbohydrates r e s u l t s i n very low recoveries of DNP-lysine, due to reduction of n i t r o groups i n the dinitrophenylated amino acid to amino groups, which give de-r i v a t i v e s without the c h a r a c t e r i s t i c s used to measure DNP-l y s i n e . Handwerck e t . a l . ( i 9 6 0 ) reported that sugars are l e s s destructive i f they have previously been i n contact with FDNB. Starch can be equally destructive and may not be inactivated by previous contact with FDNB (Erbersdobler and Zucker, 1964 ; El-Nockrashy, 1 9 6 5 ) . Destruction due to carbohydrates i s lessened when the r e f l u x i n g i s c a r r i e d out i n the presence of another aromatic n i t r o compounds such as dinitrophenol, p i c r i c acid or FDNB i t s e l f (Blom et a l . , 1 9 6 ? ; Matheson .1968; Ruderus and Kihlberg, 1970 ; Booth, 1 9 7 D . presumably by competition with the n i t r o groups from DNP-l y s i n e . This protection may be achieved by adding these compounds to the suspension before r e f l u x i n g begins or by leaving the dinitrophenol and FDNB from the f i r s t stage of 24. the r e a c t i o n i n the r e a c t i o n f l a s k ( C a rpenter and E l l i n g e r , 1 9 5 5 a ; Carpenter, i 9 6 0 ) . Matheson (1968) has shown t h a t the q u a n t i t i e s l e f t i n t h i s way are s u f f i c i e n t to g i v e the p r o t e c t i v e e f f e c t . With sugars c a r r i e d through t h i s p r o -cedure the d e s t r u c t i o n o f DNP-lysine added immediately before h y d r o l y s i s i s no more than 5 - 1 0 $ but i t can be l a r g e r w i t h s t a r c h (Matheson, 1968) or w i t h s t r u c t u r a l carbohydrates (Booth, 1 9 7 D • Because o f the t e c h n i c a l d i f f i c u l t i e s encountered i n the complete r e c o v e r y o f €-DNP-lysine, an a l t e r n a t i v e approach has been to measure a v a i l a b l e l y s i n e i n d i r e c t l y . The d i f f e r e n c e between the t o t a l l y s i n e content of the sample measured a f t e r d i r e c t a c i d h y d r o l y s i s , a!nd, t h e ; r e s i d u a l l y s i n e content measured a f t e r a c i d h y d r o l y s i s o f the sample a f t e r blockage of the f r e e €-amino groups by r e a c t i o n with DNFB, i s assumed to be theiav.aiibable l y s i n e o f the sample. The main advantages of t h i s technique, a l s o known as the D i f f e r e n c e technique or S i l c o c k method, are t h a t p a r t i a l d e s t r u c t i o n o f the d e r i v a t i v e d u r i n g a c i d h y d r o l y s i s does not cause d i f f i c u l t i e s , and t h a t l y s i n e i t s e l f i s extremely s t a b l e to d e s t r u c t i o n by a c i d . However, automatic i o n -exchange chromatography equipment i s n e c e s s a r y f o r ease i n e s t i m a t i o n o f l y s i n e c o n c e n t r a t i o n . Rao e t a l . (1963) f i r s t used the D i f f e r e n c e technique as a check on the procedure they developed f o r d e t e r m i n a t i o n 25 -of a v a i l a b l e l y s i n e i n o i l s e e d meal p r o t e i n s . Roach e t a l . (1967) were the f i r s t to use the D i f f e r e n c e procedure as a working replacement f o r the Carpenter FDNB method. They compared the methods o f Carpenter ( i 9 6 0 ) and Rao e t a l . (1963) w i t h the S i l c o c k method f o r the e s t i m a t i o n o f a v a i l a b l e l y s i n e i n f i s h m e a l and groundnut meal, and showed t h a t the S i l c o c k method i s not s u b j e c t i v t o i n t e r f e r e n c e by carbo-h y d r a t e s . Compared to Carpenter's procedure, the S i l c o c k method gave lower v a l u e s f o r a v a i l a b l e l y s i n e i n groundnut meal. S i m i l a r r e s u l t s v e r e r e p o r t e d by Ostrowski e t a l . (1970) r e l a t i n g to soybean meal. Carpenter and co-workers (1957) d i r e c t l y measured the absorbance o f the y e l l o w e t h e r - e x t r a c t e d a c i d h y d r o l i s a t e s o f d i n i t r o p h e n y l a t e d p r o t e i n s i n t h e i r e s t i m a t i o n o f a v a i l a b l e l y s i n e . In a l a t e r m o d i f i c a t i o n ( i 9 6 0 ) Carpenter reduced some of the e r r o r i n the a n a l y s i s by r e a c t i n g the e - d i n i t r o p h e n y l h y d r a z o n e - l y s i n e with methyl chloroformate to produce an e t h e r s o l u b l e l y s i n e d e r i v a t i v e . The d i f f e r e n c e i n c o l o r i n t e n s i t y of the h y d r o l y s a t e b e f o r e r e a c t i o n with methyl-chloroformate and a f t e r r e a c t i o n and e x t r a c t i o n with e t h e r was taken as a measure o f a v a i l a b l e l y s i n e . D i n i t r o p h e n o l i s the major by-product o f the d i n i t r o -p h e n y l a t i o n o f p r o t e i n s . Conkerton and Frampton ( 1 9 5 9 ) 1 hy t a k i n g advantage o f the d i f f e r e n c e i n absorbance o f d i n i t r o -phenol a t 360 nm i n a c i d and a l k a l i n e media, were able to 2 6 . c o r r e c t f o r the q u a n t i t y o f d i n i t r o p h e n o l p r e s e n t i n the p r o t e i n h y d r o l y s a t e . Other y e l l o w substances might occur i n the h y d r o l y s a t e o f some d i n i t r o p h e n y l a t e d p r o t e i n s (Handwerck e t a l . , i 9 6 0 ) and i n t r o d u c e e r r o r s i n a c o l o r i -m e t r i c e s t i m a t i o n o f a v a i l a b l e l y s i n e . In a d d i t i o n , the brown humin pigments t h a t i n v a r i a b l y occur i n a c i d hydro-l y s a t e s may a l s o be expected to c o n t r i b u t e to the e r r o r . Many o f the sources o f e r r o r found i n the e a r l i e r methods, are e l i m i n a t e d i n the procedure d e s c r i b e d by Rao e t a l (1963) where €-DNP-lysine i s separated from d i n i t r o p h e n o l and o t h e r y e l l o w d e r i v a t i v e s o f the r e a c t i o n between DNFB and the meal p r o t e i n s , as w e l l as from the brown humin products o f a c i d h y d r o l y s i s , through the use o f an ion-exchange column t h a t i s developed w i t h a mixture o f methyl e t h y l ketone and aqueous HC'l. Blom e t a l . (1967) a l s o made use of a chromatographic s e p a r a t i o n technique to p u r i f y the r e s u l t i n g €-DNP-lysine. The a c i d h y d r o l y z e d FDNB-treated sample was passed through a n y l o n powder column to separate €-DNP-lysine from a number of i n t e r f e r i n g compounds. Blom and h i s a s s o c i a t e s o u t l i n e d t hree d e t e c t i o n procedures f o r d e t e r m i n a t i o n o f DNP-lysine: a) D i r e c t photometry o f the y e l l o w c o l o u r . b) Photometry o f the r e a c t i o n product w i t h n i n h y d r i n . c) P o l a r o g r a p h i c measurement based on r e d u c i n g the n i t r o group a t the dropping mercury e l e c t r o d e . 27 . In the o r i g i n a l S i l c o c k method the s e p a r a t i o n o f o r n i t h i n e and l y s i n e was poor, thus c a u s i n g some e r r o r i n the e s t i m a t i o n o f l y s i n e . W i l l i a m s (1967) r e p o r t e d t h a t the sm a l l shoulder on the l y s i n e peak c o u l d be t o t a l l y r e s o l v e d by l e n g t h e n i n g the column, although a h i g h e r p r e s s u r e would then be necessary to m a i n t a i n a s u f f i c i e n t l y , r a p i d flow r a t e . In cases where the o r n i t h i n e peak i s s m a l l and not c l e a r l y separated from the l y s i n e peak, but i s c l e a r l y d i s t i n g u i s h -able as p a r t o f i t , i t i s p o s s i b l e to compute the t r u e a r e a due to l y s i n e . Sometimes, however, the o r n i t h i n e l e v e l i s h i g h i n comparison to the are a o f the r e s i d u a l l y s i n e peak, and so there c o u l d be a considerable- e r r o r i n the e s t i m a t i o n o f the tru e a v a i l a b l e l y s i n e o f the analyzed sample. Ostrowski e t a l . (1970) used a m o d i f i e d s h o r t column technique to improve the r e s o l u t i o n o f o r n i t h i n e and l y s i n e . By u s i n g t h e i r technique, no automatic a n a l y z e r i s r e q u i r e d to determine t o t a l and u n a v a i l a b l e l y s i n e . The DNFB D i f f e r e n c e technique p u b l i s h e d by Couch i n 1975 has been adopted as o f f i c i a l - A O A C f i r s t a c t i o n . The t e c h n i c a l advantages o f the D i f f e r e n c e technique are t h a t N-terminal l y s i n e and f r e e l y s i n e are i n c l u d e d , and t h a t there i s no problem from p a r t i a l r e d u c t i o n o f DNP-lysine d u r i n g h y d r o l y s i s . The disadvantages are t h a t l y s i n e i s more d i f f i c u l t to estimate than DNP-lysine u n l e s s one has 28. automated ion-exchange chromatography equipment, and t h a t FDNB i s not water s o l u b l e and has a v e s i c a n t e f f e c t on hu-man s k i n . 2. The t r i n i t r o b e n z e n e s u l f o n i c a c i d method (TNBS) A s i m p l e r t e s t based on the same p r i n c i p l e as t h a t o f Carpenter (i960) i n which use i s made o f the reagent 2,4,6-trinitrobenzene s u l f o n i c a c i d (TNBS), i n s t e a d o f l- f l u o r o - 2 , 4 - d i n i t r o b e n z e n e (FDNB), has been suggested by Kakade and L i e n e r (1969). The r e a c t i o n o f TNBS with an ami-no a c i d i s i l l u s t r a t e d i n F i g u r e 3. The o r i g i n a l work with t h i s compound on pure amino a c i d s and p e p t i d e s was c a r r i e d out by Okuyama and Satake (i960) and Satake e t a l . (i960). The T N P - d e r i v a t i v e s o f amino a c i d s and p e p t i d e s were c h a r a c t e r i z e d by paper chroma-tography and spectroscopy. No r e a c t i o n was observed with the s i d e chains o f h i s t i d i n e , t y r o s i n e , t hreonine and s e r i n e a f t e r treatment f o r three days a t e l e v a t e d temperatures. T h i s f a v o u r a b l e s p e c i f i c i t y o f TNBS prompted i t s use i n the m o d i f i c a t i o n o f cytochrome c (Takemori e t a l . , I962), haemoglobin (Shinoda, 1965), and xanthine oxidase (Greenlee and Handler, 1964). The SH groups of c y s t e i n e and mercapto-e t h a n o l were observed to r e a c t w i t h TNBS ( K o t a k i e t a l . , 1964). Gold'farb (I966) d e s c r i b e d the r e a c t i o n o f TNBS with human serum albumin and analyzed i t s course i n terms o f three c l a s s e s o f amino groups o f d i f f e r e n t r e a c t i v i t i e s . FIGURE 3. R e a c t i o n o f 2 , 4 , 6-trinitrobenzene s u l f o n i c a c i d (TNBS) w i t h an amino a c i d . (From H a l l e t a l . , 1973)' S0 2 O H R N H g - C H - C O O H Amino acid N H - C H - C O O H NaHC0 3 + HCL i hydrolysis , 4 , 6 - T r i n i t r o b e n z e n e sul fonic acid Tr in i t ropheny la ted amino acid 30 . The same reagent was used to e s t a b l i s h the f u n c t i o n a l r o l e o f amino groups i n some n a t u r a l t r y p s i n i n h i b i t o r s (Haynes e t a l . , 1967) with a mathematical procedure suggested by Ray and Koshland ( 1 9 6 1 ) . Freedman and Radda (1968) examined q u a n t i t a t i v e l y the r e a c t i v i t i e s o f a v a r i e t y o f amino a c i d s and p e p t i d e s towards TNBS. K i n e t i c s t u d i e s were performed by m o n i t o r i n g the e x t i n c t i o n o f the -NH-TNP group a t 3^0 nm on a r e c o r d i n g spectrophotometer. In agreement with G o l d f a r b ' s r e s u l t s they found t h a t the r e a c t i o n o f the TNBS w i t h amino a c i d s and p e p t i d e s i s a second order r e a c t i o n . The pH dependence showed t h a t o n l y the unprotonated amino group i>s the r e a c t i v e s p e c i e s . The SH group o f N - a c e t y l c y s t e i n e was found to be more r e a c t i v e to TNBS than most amino groups. However, the -S-TNP group i s u n s t a b l e a t a l k a l i n e pH and has a much lower e x t i n c t i o n c o e f f i c i e n t a t 340 nm than the -NH-TNP group. I t was a l s o found t h a t both amino groups o f l y s i n e r e a c t w i t h TNBS. However, at pH 7 . 4 and a t room temperature, the €-amino groups were 30 times more r e a c t i v e to TNBS than the cC-amino groups. By u s i n g TNBS, Habeeb (1966) was able to study the r e a c t i o n o f f r e e amino groups i n p r o t e i n w i t h sodium dodecyl s u l f a t e , potassium t h i o c y a n a t e and formaldehyde. I t was found t h a t p r o t e i n s such as bovine serum albumin, ovalbumin and human gamma-globulin have the p r o p e r t y o f b i n d i n g sodium dodecyl sulfate through the e-amino group. The amino group involved at this binding s i t e became unreactive to TNBS. P a r t i a l reaction of potassium thiocyanate with the free amino groups i n bovine serum albumin, ovalbumin, human a-globulin and lactalysate was demonstrated by reaction with TNBS. I t was also found that the reaction of bovine serum albumin with formaldehyde involves the formation of methylene cross links between the amino group on one hand and the amide, guanyl, indole, and imidazole groups on the other hand. The method developed by Habeed suffers the disadvantage that i t does not d i f f e r e n t i a t e between free e-amino and N-terminal amino groups of proteins. This could be c r i t i c a l i n the case of peptides, low molecular weight proteins such as i n s u l i n , or proteins containing several peptide chains or subunits. Kakade and Liener (1969) developed a method to deter-mine s p e c i f i c a l l y the available lysine content of protein foodstuffs. The s p e c i f i c i t y of the technique for the e-amino groups of proteins resides i n the fact that, subsequent to acid hydrolysis of the TNP-protein, the ct-TNP amino acids may be extracted with ether, whereas e-TNP-lysine remains i n the aqueous phase where i t i s determined speetrophoto-metr i c a l l y . A hydrolysis period of 1 hr at 120°C with 6 N HCI seems s u f f i c i e n t for quantitative recovery. Complete hydrolysis of the protein i s not necessary since small 32. TNP-peptides p o s s e s s e s s e n t i a l l y the same s o l u b i l i t y and s p e c t r o p h o t o m e t r i c p r o p e r t i e s as the f r e e TNP-amino a c i d s . The amount o f e - T N P - l y s i n e i s c a l c u l a t e d from a s t a n d a r d curve o b t a i n e d w i t h v a r i o u s l e v e l s o f e - T N P - l y s i n e w h i c h has been s u b j e c t e d t o t h e same p r o c e d u r e as t h e p r o t e i n s . Kakade and L i e n e r found c l o s e agreement between the a v a i l a b l e l y s i n e v a l u e s d e t e r m i n e d w i t h TNBS and the v a l u e s o b t a i n e d w i t h t h e DNFB method o f C a r p e n t e r . H o l s i n g e r e t a l . (1970) used the TNBS method o f Kakade and L i e n e r t o e v a l u a t e the a v a i l a b l e l y s i n e o f a c i d p r e c i p i t a t e d c a s e i n s . a g^-,and 3 - c a s e i n y i e l d e d a v a i l a b l e l y s i n e amounts c o n s i s t e n t w i t h t o t a l l y s i n e . However, a v a i l a b l e l y s i n e o f the K - f r a c t i o n was 15% h i g h e r than t h e t o t a l l y s i n e c o n t e n t . An e x p l a n a t i o n f o r t h e s e h i g h v a l u e s c o u l d be the presence o f D-glucosamine and D - g a l a c t o s a m i n e , and p r o b a b l y o t h e r u n c h a r a c t e r i z e d g l y c o p r o t e i n f ragments. Amino s u g a r s r e a c t w i t h TNBS t o form c o l o r e d d e r i v a t i v e s w h i c h are not removed by e t h e r e x t r a c t i o n . H o l s i n g e r e t a l . c o n c l u d e d t h a t a l t h o u g h e x a c t v a l u e s o f a v a i l a b l e l y s i n e c o u l d n o t be d e t e r m i n e d by TNBS i n foods c o n t a i n i n g l a r g e amounts o f g l y c o p r o t e i n s , the p r o c e d u r e c o u l d s t i l l f i n d a p p l i c a t i o n i n the d e t e r m i n a t i o n o f r e l a t i v e v a l u e s o f l y s i n e i n a c t i v a t i o n d u r i n g p r o c e s s i n g o f p r o d u c t s o f i d e n t i c a l c o m p o s i t i o n . Posati et a l . (1972) noticed that the presence of lactose i n cheese whey int e r f e r e d with the determination of available lysine i n whey protein when TNBS was used. Loss of e-TNP-lysine was dependent on the amount of lactose i n the test material. The sample weight used for analysis, also influenced the r e s u l t s . The larger the sample of eithe pure protein or carbohydrate containing material, the smalle the amount of available lysine found. H a l l et a l . (1973) proposed a method for the deter-mination of available lysine with TNBS i n animal p r o t e i n s T which d i f f e r s i n several aspects from that of Kakade and Liener. The necessity of accurate weighing of a very small sample, was eliminated by the use of agar suspensions of the f i n e l y ground material. They also modified the reaction conditions used by Kakade and Liener (0.1% TNBS solution for 2-hr at 60°C; 2-hr hydrolysis period with 6 N HC1 i n an autoclave at 120°C) and suggested, 0.5% TNBS solution reacting with the protein for 75 min at 40°C, followed by a 2-hr hydrolysis with 11 N HCl i n a b o i l i n g water, bath. The b o i l i n g water bath overcomes the serious corrosive action of the HCl upon the m e t a l l i c i n t e r i o r of the autoclave. Their results for available lysine i n animal protein concen-trates were in close agreement with those measured by the Carpenter procedure. H a l l et a l . (1973) i n agreement with Ousterhout and Wood (1970) proposed the use of pure lysine as a standard instead of e-TNP-lysine, since i t has been shown that a, e - d i T N P - l y s i n e i n i t i a l l y formed i s u n s t a b l e i n h o t 6N HCl and i s e a s i l y c o n v e r t e d i n t o e - T N P - l y s i n e ( K o t a k i and S a t a k e , 1 9 6 4 ) . H a l l e t a l . (1973) i n v e s t i g a t e d t h e r e a c t i o n o f TNBS w i t h h y d r o x y l y s i n e , c a d a v e r i n e and o r n i t h i n e , and found t h a t t h e s e compounds r e a c t t o g i v e TNP-products t h a t remain i n t h e aqueous phase a f t e r e t h e r e x t r a c t i o n and have absorbance v a l u e s s i m i l a r t o e - T N P - l y s i n e . TNBS i s s e r i o u s l y a f f e c t e d by the pr e s e n c e o f c a r b o -h y d r a t e , p a r t l y because l y s i n e i s r a p i d l y c o u p l e d w i t h a l d o s e g r o u p s , t h u s making t h e t e r m i n a l amino l i n k a g e u n a v a i l a b l e t o form e - T N P - l y s i n e , and p a r t l y because o f the a d s o r p t i o n o f the e - T N P - l y s i n e on t o the carbon p a r t i c l e s (from c h a r r i n g ) and t o the i n t e r f e r i n g absorbance o f the browning p r o d u c t s . I n consequence, f a l s e h i g h l e v e l s o f a v a i l a b l e l y s i n e can be found i n samples c o n t a i n i n g c a r b o h y d r a t e compounds. F u r t h e r m o r e , t h e amines agmatine, spermine, s p e r m i d i n e and t a u r i n e found i n numerous p l a n t s p e c i e s (Smith, 1972) c o u l d e x p l a i n why t h e v a l u e s f o r a v a i l a b l e l y s i n e i n c e r t a i n samples are h i g h e r than the t o t a l l y s i n e c o n t e n t ( H a l l e t a l . 1 9 7 5 ) . -H a l l e t a l . (1975) c o n c l u d e d t h a t TNBS can be used f o r d e t e r m i n i n g a v a i l a b l e l y s i n e i n c a r b o h y d r a t e - r i c h m a t e r i a l , p r o v i d e d t h a t the sample mass does n o t exceed 5 mg and t h a t the r e a c t i o n i s m a i n t a i n e d f o r o n l y 30 min a t 30°C, i n s t e a d o f 75 min a t 40°C. Under t h e s e c o n d i t i o n s the 'blank' absorbance, i . e . the value of the unreacted sample simply heated with HCI i s very high i n r e l a t i o n to the absorbance of the actual e-trinitrophenylated product. Attempts to reduce this value to an a n a l y t i c a l l y more acceptable l e v e l have had li m i t e d success. Eklund (1976) s l i g h t l y modified the method of Kakade and Liener (1969) by increasing the sample size as well as by subjecting the TNP-proteins to hydrolysis at 110°C for 90 min. Eklund determined available lysine i n casein and rapeseed with 'his procedure, that of Kakade and Liener and the method of Rao et a l . (1963). Throughout, he obtained higher values with his modified method, but the degree of v a r i a b i l i t y between repeated analyses of the same material was lower as compared to the v a r i a b i l i t y obtained with the method of Kakade and Liener. 3. Guanidination Due to the r e l a t i v e i n s t a b i l i t y of e-DNP-lysine upon acid hydrolysis (Carpenter, 1960), Mauron and Bujard (1963) suggested the use of O-methyl-isourea for determina-ti o n of available l y s i n e . The guanidation with O-methyl-isourea transforms the e-amino group of lysine into a guanidine derivative, which on hydrolysis y i e l d s homoarginine. The hydrolysate i s analyzed by column chromatography and homoarginine i s eluted with the basic amino acids, where i t appears after arginine. No homoarginine i s formed when the lysine units are combined with sugar i n a M a i l l a r d reaction (Finot and Mauron, 1972) .' Although methyl-isourea appears t o be a very s p e c i f i c reagent f o r the e-amino groups of l y s i n e , probably, the long r e a c t i o n time (3 days) needed has precluded any extensive use of the approach. 4„ A c r y l o n i t r i l e A e r y l o i i t r i l e w i l l a l s o r e a c t , though again s l o w l y , w i t h the e-amino groups of l y s i n e t o form a cyanoethylated d e r i v a t i v e t h a t i s s t a b l e under the ordinary c o n d i t i o n s f o r the a c i d h y d r o l y s i s of the p r o t e i n s (Riehm and Scheraga, 1 9 6 6 ) . When the reagent was used by Pisano et a l . (1968) and by Harding and Rogers (1971) to measure the r e a c t i v e l y s i n e u n i t s i n c r o s s - l i n k e d f i b r i n and h a i r p r o t e i n s , the measurements agreed wi t h the values f o r e-N- (X-glutairiyl) l y s i n e obtained by enzymic d i g e s t i o n i n v i t r o . 5. Methyl a e r y l a t e Methyl a c r y l a t e i s an a l t e r n a t i v e t o a c r y l o n i t r i l e (Cavins and Friedman, 1 9 6 7 ) , and i t s use f o r n u t r i t i o n a l studies has been proposed by F i n l e y and Friedman ( 1 9 7 3 ) . The methyl a c r y l a t e method i s based on condensing an a, 3-unsaturated compound wit h a v a i l a b l e amino groups. The r e a c t i o n of the a c c e s s i b l e amino groups (non-terminal) of l y s i n e i n p r o t e i n s w i t h excess methyl a c r y l a t e at pH 9.1 y i e l d s , a f t e r h y d r o l y s i s , mainly e,e,N,N ;-dicarboxyethyl-l y s i n e and a small amount of e,N-monOcarboxyethyllysine. The r e a c t i o n t ime can be c u t down t o 4 h r by u s i n g a 75% DMSO ( d i p o l a r a p r o t i c s o l v e n t ) : 25% (v/v) pH 9.1 B u f f e r . A v a i l a b l e l y s i n e i s measured by comparing l y s i n e c o n t e n t b e f o r e and a f t e r a l k y l a t i o n . F i n l e y and Friedman r e p o r t e d good agreement between the m e t h y l a e r y l a t e method and TNBS and DNFB p r o c e d u r e s on a s e r i e s o f pure p r o t e i n s . 6. E t h y l v i n y l s u l f o n e The e t h y l v i n y l s u l f o n e method (Friedman and F i n l e y , 197 5) may be used t o measure n u t r i t i o n a l l y a v a i l a b l e l y s i n e as t h e mono- and d i s u b s t i t u t e d e t h y l s u l f o n y l e t h y l d e r i v a -t i v e s o f l y s i n e and a l s o u n a v a i l a b l e l y s i n e t h a t i s l i b e r a t e d d u r i n g a c i d h y d r o l y s i s as l y s i n e r e m a i n i n g a f t e r e t h y l v i n y l s u l f o n e t r e a t m e n t . A v a i l a b l e l y s i n e i s measured as t h e d i f f e r e n c e between t h e l y s i n e c o n t e n t o f the s t a r t i n g m a t e r i a l b e f o r e and a f t e r e t h y l v i n y l s u l f o n e t r e a t m e n t . I n p r i n c i p l e , e t h y l v i n y l s u l f o n e can a l k y l a t e a l l f u n c t i o n a l groups c o n t a i n i n g a c t i v e hydrogens i n p r o t e i n s ; f o r i n s t a n c e , the e-amino group o f l y s i n e , s i d e c h a i n s and i m i d a z o l e groups o f h i s t i d i n e r e s i d u e s , by M i c h a e l - t y p e n u c l e o p h i l i c a d d i t i o n r e a c t i o n s . 7. 2 - C h l o r o - 3 , 5 - d i n i t r o p y r i d i n e S e l i m (1965) employed Sanger's r e a g e n t 1 - f l u o r o - 2 , 4 -d i n i t r o b e n z e n e (FDNB) t o e s t i m a t e the l y s i n e c o n t e n t o f p r o t e i n ' h y d r o l y z a t e s a f t e r b l o c k i n g t h e ot-amino groups o f the f r e e amino a c i d s w i t h copper. 38. A s i m i l a r p r i n c i p l e was used by T s a i e t a l . (1972) f o r t h e s c r e e n i n g o f l y s i n e c o n t e n t i n maize seeds. I n t h e i r method the d e f a t t e d p r o t e i n sample i s h y d r o l y z e d w i t h pronase o r a m i x t u r e o f a l c a l a s e and p a n c r e a t i c t r y p s i n , t o y i e l d f r e e amino a c i d s o r low m o l e c u l a r weight p e p t i d e s . The a - c a r b o x y l and a-amino groups o f t h e f r e e amino a c i d s are b l o c k e d w i t h c u p r i c i o n s (a copper phosphate s u s p e n s i o n ) , l e a v i n g the e-amino groups o f l y s i n e f r e e t o r e a c t . An e - d i n i t r o - p y r i d y l d e r i v a t i v e o f l y s i n e i s th e n formed on r e a c t i o n w i t h 2 - c h l o r o - 3 , 5 - d i n i t r o p y r i d i n e . E x t r a c t i o n o f the r e a c t i o n m i x t u r e w i t h e t h y l a c e t a t e removes the e x c e s s 2 - c h l o r o - 3 , 5 - d i n i t r o p y r i d i n e , l e a v i n g an aqueous s o l u t i o n o f e - D N P y r - l y s i n e . The absorbance o f t h i s s o l u t i o n i s then d e t e r m i n e d a t 400 nm. L y s i n e c o n t e n t as e s t i m a t e d by t h i s c o l o r i m e t r i c method i s u s a l l y h i g h e r than t h e e s t i m a t e o f l y s i n e c o n t e n t from the amino a c i d a n a l y z e r , but i t i s i n good g e n e r a l agreement. The h i g h e r l y s i n e v a l u e s found i n t h e c o l o r i m e t r i c assays may be a consequence o f the r e l a t i v e l y m i n o r c o n t r i -b u t i o n made t o absorbance by the a r g i n i n e p r e s e n t . 8. Sodium b o r o h y d r i d e Thomas (1970) used NaBH^ f o r the d e t e r m i n a t i o n o f t h e a v a i l a b l e l y s i n e c o n t e n t o f c o t t o n s e e d meal, a m a t e r i a l i n which l y s i n e u n i t s may combine w i t h t h e aldehyde groups o f 39. the g o s s y p o l pigment, u n l e s s p r o c e s s i n g i s c a r e f u l l y con-t r o l l e d . M a i l l a r d - t y p e compounds o f aldehyde and l y s i n e u n i t s b r e a k down on a c i d h y d r o l y s i s , t o g i v e a v a r i a b l e , b u t o f t e n h i g h r e c o v e r y o f l y s i n e . However, when th e y are t r e a t e d w i t h sodium b o r o h y d r i d e t h e y a re reduced t o a c i d - s t a b l e compounds. Thus, when p r o t e i n s are t r e a t e d w i t h f o r m a l d e -hyde f o l l o w e d by b o r o h y d r i d e t r e a t m e n t , e-N,N-dimethy1-l y s i n e u n i t s are formed (Means and Feeney, 1968). The ' t o t a l ' l y s i n e r e l e a s e d on a c i d h y d r o l y s i s f o l l o w i n g such t r e a t m e n t may, t h e r e f o r e , be a measure o f those l y s i n e u n i t s i n a t e s t m a t e r i a l t h a t had n o t r e a c t e d w i t h a l d e h y d e s . Thomas (1970) and Couch and Thomas (1976) r e p o r t e d c l o s e agreement between a v a i l a b l e l y s i n e d e t e r m i n e d by t h e FDNB- D i f f e r e n c e t e c h n i q u e and the sodium b o r o h y d r i d e method. The c h e m i c a l d a t a compared v e r y f a v o r a b l y w i t h t h e d a t a from c h i c k assay. The advantage o f the sodium b o r o h y d r i d e method, as compared w i t h the o f f i c i a l D N F B - D i f f e r e n c e t e c h n i q u e , i s t h a t i t e l i m i n a t e s t h e n e c e s s i t y o f making two h y d r o l y s e s and two d e t e r m i n a t i o n s on t h e amino a c i d a n a l y z e r i n o r d e r t o o b t a i n the a v a i l a b l e l y s i n e d a t a . 9. 1 9 F NMR Ramirez e t a l . (1975) have d e v e l o p e d a method t o determine the e-amino group o f l y s i n e by F NMR s p e c t r o s c o p y . F r e e e-amino groups o f l y s i n e are t r i f l u o r o a c e t y l a t e d w i t h 40. the r e a g e n t S - e t h y l t r i f l u o r o t h i o a c e t a t e i n d i m e t h y l s u l f o x i d e s o l u t i o n and t h e number o f such groups i s quan-19 t i t a t i v e l y d e t e r m i n e d u s i n g s t a n d a r d F NMR t e c h n i q u e . D i m e t h y l s u l f o x i d e i s used as t h e r e a c t i o n medium i n o r d e r t o improve t h e homogeneity o f t h e system, When the m i x t u r e becomes homogeneous, a p o r t i o n i s added d i r e c t l y t o 19 an NMR sample tube and the F NMR spectrum i s o b t a i n e d . A t y p i c a l spectrum i s shown i n F i g u r e 4. The resonance a t l o w e s t f i e l d (A) c o r r e s p o n d s t o t r i f l u o r o a c e t i c a c i d , a h y d r o l y s i s p r o d u c t o f t h e t h i o l e s t e r . The peak a t i n t e r m e d i a t e f i e l d (B) c o r r e s p o n d s t o the t r i f l u o r o a c e t y l a t e d e-amino groups o f l y s i n e , and t h e peak at h i g h e s t f i e l d ( C ) , t o the t r i f l u o r o a c e t y l group o f the t h i o l e s t e r ( u n r e a c t e d r e a g e n t ) . The r e l a t i v e i n t e g r a t e d i n t e n s i t i e s a re c a l c u l a t e d from the w e i g h t s o f t h e a p p r o p r i a t e l y c u t - o f f peaks. The m o l a r r a t i o o f l y s i n e t o t h e o r i g i n a l t h i o l e s t e r i s g i v e n by the r a t i o o f t h e w e i g h t o f the i n t e r m e d i a t e peak t o the t o t a l w e i g h t o f a l l peaks. The molar optimum r a t i o o f t h i o l r e a g e n t t o l y s i n e i s 4:1. H i g h e r c o n c e n t r a t i o n s o f t h i o l r e a g e n t l e a d t o double s u b s t i t u t i o n o f some l y s i n e s i t e s . W i t h lower con-c e n t r a t i o n s , n o t a l l the e-amino groups are a t t a c k e d . E x c e l l e n t agreement was found between th e composi-t i o n a l d a t a f o r pure m i l k p r o t e i n s and the l y s i n e c o n t e n t 19 d e t e r m i n e d w i t h F NMR. 1+1. FIGURE 4 . yF NMR spectrum o f the r e a c t i o n products o f a p r o t e i n and S - e t h y l t r i f l u o r o t h i o a c e t a t e i n dimethyl s u l f o x i d e s o l u t i o n . H 42. F NMR s p e c t r o s c o p y o f f e r s a r e a s o n a b l y a c c u r a t e , f a s t and r e l a t i v e l y s i m p l e p r o c e d u r e , w i t h o u t t h e d i f f i c u l t y o f v a r i a b i l i t y of r e s u l t s from v a r y i n g amounts o f p r o t e i n 19 p r e s e n t . I t does r e q u i r e a c c e s s t o a F NMR s p e c t r o m e t e r and f a i r l y c o n c e n t r a t e d p r o t e i n s o l u t i o n s . 10. The sodium d i n i t r o b e n z e n e s u l f o n a t e method (DNBS). The DNBS t e c h n i q u e f o r d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e , u n l i k e most o f t h e c h e m i c a l methods so f a r d e s c r i b e d 19 ( 2 - c h l o r o - 3 , 5 - d i n i t r o p y r i d i n e and F NMR a r e t h e e x c e p t i o n ) does n o t r e l y on a c i d h y d r o l y s i s o f t h e t r e a t e d p r o t e i n i n o r d e r t o dete r m i n e a v a i l a b l e l y s i n e . P r e v i o u s methods f o r l y s i n e d e t e r m i n a t i o n u s i n g u n h y d r o l y z e d p r o t e i n s i n c l u d e t h e Van S l y k e n i t r o u s a c i d method (Van S l y k e , 1911, 1912) and t h e Hofman r e a c t i o n and i o d o m e t r i c back t i t r a t i o n method (Baraud, 1957). These methods however were n ot s p e c i f i c f o r t h e e-amino group o f l y s i n e . The work o f E i s e n e t a l . ( 1 9 5 3 ) , L i (1956) , I k e n a k a (1959)/ Hosoya (1960) and Sugae (196 0) s u g g e s t e d t h a t d i n i t r o b e n z e n e s u l f o n a t e c o u l d be used as a s p e c i f i c r e a g e n t f o r d e t e r m i n i n g l y s i n e i n p r o t e i n s w i t h o u t h y d r o l y s i s . E i s e n e t a l . (1953) demonstrated t h a t DNBS r e a c t s s p e c i f i c a l w i t h o n l y amino groups. L i (1956) r e a c t e d i n s u l i n w i t h DNBS f o r 216 h r a t 3°C i n 0.1 M sodium c a r b o n a t e and found t h a t the e-amino group o f l y s i n e was t h e o n l y r e a c t i v e species; N-terminal glycine and phenylalanine, and the residue tyrosine did not react with DNBS. When DNBS was reacted with takaamylase-A at pH 10.7, 37°C, only 11 of 22 lysine residues i n the enzyme molecule were dinitrophenylated after 50 hr (Ikenaka, 1959). S i m i l a r l y , 3 out of 25 lysine residues i n b a c t e r i a l amylase reacted a f t e r 74 hr (Sugae, 1960). The calcium acetate, used to minimize denaturation of the enzyme, and the low pH used by these authors could render many of the lysine residues unreactive by s t e r i c and e l e c t r o -s t a t i c factors. Concon (1971) confirmed the v a l i d i t y of DNBS as a reagent for lysine determination i n unhydrolyzed proteins, by reacting p u r i f i e d proteins with DNBS. The number of lysine residues per mole of protein was i n f u l l agreement with the reported values. Concon attempted to spe'ed up the DNBS reaction by increasing the pH, temperature and reaction time. I t became evident that the difference i n reaction rate between the a- and e-amino groups of lysine i s such that reaction conditions could be chosen i n which only the e-amino group w i l l react. The optimum combination of factors for s i g n i f i -cant reaction of the e-amino group with DNBS, lay within the following l i m i t s : pH 9.0 - 13.0; temperature 30 - 60°C; reaction time 0.5 - 2.0 hr. The r e a c t i v i t y of the e-amino groups with DNBS, increased almost l i n e a r l y with pH at 40°C. No reaction was observed at pH 9. The maximum r e a c t i v i t y appeared t o be between pH 12 and 13. A t pH above 12, t h e r e a c t i v i t y o f the a-amino group was a p p a r e n t l y absent due t o i n s t a b i l i t y o f the a~NH2-DNP d e r i v a t i v e . e-NB^-DNP d e r i v a t i v e was s t a b l e a t pH 12 even a f t e r 3 h r a t 40°C. There was no advantage t o be g a i n e d i n terms o f s p e c i f i c i t y by i n c r e a s i n g the temperature t o 45°C and a t the same time d e c r e a s i n g t h e pH t o 11. W i t h most p r o t e i n s a w o r k a b l e c o m b i n a t i o n o f pH 12.3, 40°C and 1 h r r e a c t i o n t i m e (pH 10.5, 60°C, 1 h r f o r r i c e ) gave q u i t e s a t i s f a c t o r y r e s u l t s . These v a l u e s were n e i t h e r optimum n o r i d e a l , b ut w i t h p ure l y s i n e t h e s e c o n d i t i o n s gave absorbance r e a d i n g s w i t h no d e t e c t a b l e c o n t r i b u t i o n from t h e a-amino groups. The s p e c i f i c i t y o f the DNBS under t h e a f o r e m e n t i o n e d c o n d i t i o n s , was shown by paper chromatography o f t h e a c i d h y d r o l y z e d , DNBS-treated p r o t e i n s . Only e-N-DNP-lysine was d e t e c t e d (Concon, 1975a). E v i d e n c e o f s p e c i f i c i t y was a l s o o b t a i n e d from a comparison o f the s p e c i f i c r e a c t i o n r a t e c o n s t a n t s f o r pure l y s i n e and c e r e a l p r o t e i n s . F o r g r a i n s a n a l y z e d a t pH 12.3, 40°C, 1 h r t h e average v a l u e o f K was -3 -1 2.5 x 10 min . The same v a l u e was found f o r pure l y s i n e . F o r r i c e , a n a l y z e d a t pH 10.5, 60°C, 1 h r t h e average v a l u e -3 -1 o f K was 6.2 x 10 min , whi c h was a l s o e x a c t l y the v a l u e o f l y s i n e under t h e s e c o n d i t i o n s . Large p o s i t i v e e r r o r s (20-40%) r e s u l t when l y s i n e i n r i c e i s d e t e r m i n e d a t pH 12.3 and 40°C. I t i s b e l i e v e d t h a t t h i s i s due t o the h i g h a r g i n i n e c o n t e n t o f r i c e . Under h i g h a l k a l i n e c o n d i t i o n s and e l e v a t e d t e m p e r a t u r e , a r g i n i n e may degrade t o o r n i t h i n e . O r n i t h i n e (pK^ = 10.8) r e a c t s w i t h DNBS s i m i l a r l y as l y s i n e (pK^ = 1 0 . 5 ) . I n a d d i t i o n , a r g i n i n e w i t h a pK^ = 12.5 may r e a c t s i g n i f i c a n t l y w i t h DNBS a t pH 12.3. Lo w e r i n g the pH t o 10.5 a p p a r e n t l y m i n i -m i z e d t h e s e r e a c t i o n s , even a t 60°C. The drop i n pH n e c e s s i t a t e d a change i n s u l f h y d r y l masking agent t o m e r c u r i c c h l o r i d e (HgCl^) s i n c e p h e n y l m e r c u r i c c h l o r i d e (PMC) p r e c i p i t a t e s below pH 12. Other g r a i n s g i v e l o w e r l y s i n e v a l u e s , by as much as 30-40%, when a n a l y z e d under the same c o n d i t i o n s used f o r t h e r i c e samples. I t i s p o s s i b l e t h a t because o f the h i g h a r g i n i n e c o n t e n t , r i c e p r o t e i n s have i n t e r n a l c o n d i t i o n s a l k a l i n e enough t o p e r m i t more complete d i s s o c i a t i o n o f the e-amino groups even though the pH o f the s u r r o u n d i n g s o l u t i o n i s lo w e r t h a n t h a t p e r m i t t e d by the Henderson-Hasselbach e q u a t i o n . A t pH 12.3, 40°C, 1 h r , t h e DNBS r e a c t i o n i s i n c o m p l e t e ; o n l y about 14% o f the t o t a l l y s i n e i s r e a c t e d . However, i t i s p o s s i b l e t o dete r m i n e d i r e c t l y t he amount o f l y s i n e from the f r a c t i o n r e a c t i n g i n 1 h r . K i n e t i c s t u d i e s i n d i c a t e t h a t i n t h e pr e s e n c e o f ex c e s s DNBS, t h e r e a c t i o n f o l l o w s f i r s t o r d e r k i n e t i c s as d e s c r i b e d by e q u a t i o n 1. The f r a c t i o n o f l y s i n e r e a c t i n g a t any g i v e n t i m e i s d i r e c t l y p r o p o r t i o n a l t o the t o t a l l y s i n e o r i g i n a l l y p r e s e n t . L t = [ ( e k t - l ) / e k t ] L-0 ( E q u a t i o n 1), where = t h e f r a c t i o n o f l y s i n e r e a c t i n g a t time t ; L ? 0 = t h e t o t a l l y s i n e o r i g i n a l l y p r e s e n t ; k - the s p e c i f i c r e a c t i o n r a t e c o n s t a n t ; and e = the base o f the n a t u r a l l o g a r i t h m . L-j. i s d i r e c t l y p r o p o r t i o n a l t o L Q a t any g i v e n t i m e . T h e r e f o r e , from t h e absorbance due t o L ^ , L Q may be de t e r m i n e d d i r e c t l y . A p l o t o f t h e absorbance due t o L^-v e r s u s L C Q conforms r e m a r k a b l y t o Beer and Lambert's law. S i n c e t h e DNBS r e a c t i o n i s h i g h l y dependent on a d i r e c t p r o p o r t i o n a l i t y between t o t a l l y s i n e and t h e f r a c t i o n r e a c t i n g i n any g i v e n t i m e , e v e r y p r o t e i n - b o u n d e-amino group must be e q u a l l y a c c e s s i b l e and r e a c t i v e . These r e q u i r e m e n t s are s a t i s f i e d by c o n d u c t i n g the d i n i t r o p h e n y -l a t i o n r e a c t i o n a t h i g h pH and i n h i g h c o n c e n t r a t i o n s o f ur e a . The DNBS r e a c t i o n d e t e r m i n e s t h e e-amino group o f l y s i n e i n u n h y d r o l y z e d p r o t e i n s . On the o t h e r hand, f r e e amino a c i d s may a l s o r e a c t w i t h DNBS. Tryptophan and c y s t e i n e are among the most r e a c t i v e . C y s t e i n e i s seven t i m e s more r e a c t i v e than f r e e l y s i n e because t h e SH group a l s o r e a c t s w i t h DNBS. The DNBS d e r i v a t i v e s o f f r e e amino a c i d s , e x c e p t f o r c y s t e i n e , a r g i n i n e and h i s t i d i n e , can be removed by e t h e r e x t r a c t i o n . A major p o r t i o n o f the c y s t e i n e i n t e r f e r e n c e i s e l i m i n a t e d by e t h e r e x t r a c t i o n . However, the s u l f h y d r y l group s h o u l d be masked by m e r c u r a t i o n w i t h PMC o r H g C l 2 . The s l i g h t r e a c t i v i t i e s o f the o t h e r b a s i c amino a c i d s are reduced by m e r c u r a t i o n . Mercury forms 47. complexes w i t h b a s i c amino a c i d s i n a l k a l i n e medium ( K a i , 1967) . The r e a c t i v i t i e s o f a r g i n i n e and h i s t i d i n e are q u i t e s m a l l when compared t o l y s i n e . T h e i r i n t e r f e r e n c e can be e l i m i n a t e d t o a c e r t a i n e x t e n t w i t h m e r c u r i c c h l o r i d e (but n o t PMC) and by use o f a s m a l l e r sample s i z e . When the r a t i o o f f r e e a r g i n i n e o r h i s t i d i n e t o l y s i n e approaches 1:2, u n r e l i a b l e r e s u l t s become more e v i d e n t even w i t h t h e use o f m e r c u r i c c h l o r i d e . The N - t e r m i n a l amino groups o f p e p t i d e s are even l e s s r e a c t i v e t o DNBS than the a-amino groups o f f r e e amino a c i d s . F o r example, the r e a c t i v i t y o f t r y p t o p h a n as t r y p t o p h a n y l - t r y p t o p h a n i s reduced by as much as 9 3%. I n p r o t e i n s , a t pH 12, 40°C, 1 h r r e a c t i o n t i m e , the N - t e r m i n a l amino group i s v i r t u a l l y u n r e a c t i v e t o DNBS. Once r e a c t e d w i t h DNBS r e a g e n t , the t e s t p r o t e i n i s s u b j e c t e d t o e t h e r e x t r a c t i o n , and the o p t i c a l d e n s i t y i s measured a t 385 nm. The maximum wavelength o f e-DNP-lysine i s between 36 0 and 365 nm. U n f o r t u n a t e l y , the components of the r e a c t i o n media (PMC, DNBS, phosphates) and the v a r i o u s c e r e a l p i g m e n t s , absorb s t r o n g l y a t these w a v e l e n g t h s . The DNBS method appears t o be r a p i d and s e n s i t i v e f o r the e-amino groups o f l y s i n e , w i t h t h e advantage t h a t i t does n o t r e q u i r e a c i d h y d r o l y s i s o f t h e p r o t e i n s l i k e most o f the o t h e r c h e m i c a l methods used f o r d e t e r m i n a t i o n o f l y s i n e a v a i l a b i l i t y . 48. 11. F l u o r e s c a m i n e Puree11 e t a l . (1976) have d e v e l o p e d a r a p i d method o f the d e t e r m i n a t i o n o f f r e e amino groups i n i n t a c t pure p r o t e i n s , where p r o t e i n , h y d r o l y s i s and e x t r a c t i o n o f a l a b e l e d l y s i n e d e r i v a t i v e i s n o t n e c e s s a r y . The method r e q u i r e s o n l y two s t e p s : l a b e l i n g the p r i m a r y amino groups w i t h 4 - p h e n y l - s p i r o - [ f uran-2- (3H) ~ 1 ' - p h t h a l a n ]-3 ; 3"' - d i o n e , commonly r e f e r r e d t o as f l u o r e s c a m i n e , and measuring the l a b e l e d groups by a b s o r p t i o n s p e c t r o s c o p y i n the range 375-390 nm. F l u o r e s c a m i n e , f i r s t s y n t h e s i z e d by W e i g e l e e t a l . ( 1972), r e a c t s s p e c i f i c a l l y w i t h p r i m a r y and secondary amino groups t o y i e l d a f l u o r e s c e n t and a n o n f l u o r e s c e n t p r o d u c t r e s p e c t i v e l y . The r e s u l t o f r e a c t i n g f l u o r e s c a m i n e w i t h p r o t e i n s y i e l d s a d i r e c t e s t i m a t e of t h e u n s u b s t i t u t e d e-amino groups and hence, o f t h e a v a i l a b l e l y s i n e c o n t e n t o f p r o t e i n s . However, the a-amino groups o f t h e p r o t e i n c h a i n i s a l s o l a b e l e d , and i s a minor c o n t r i b u t i o n t o t h e r e s u l t s o b t a i n e d . 12. D y e - b i n d i n g . D y e - b i n d i n g p r o c e d u r e s are r a p i d , i n e x p e n s i v e methods whi c h have been s u c c e s s f u l l y adapted t o a u t o m a t i c and semi-a u t o m a t i c systems o f a n a l y s i s . Three c l a s s e s o f d y e s t u f f s have been used f o r p r o t e i n q u a l i t y e v a l u a t i o n : p h t h a l e i n dyes, r e a c t i v e dyes and a c i d azo dyes ( L a k i n , 1973). Ney and V7irotama (1970) have r e p o r t e d 49. the use o f t h e r e a c t i v e dye, remazol b r i l l i a n t b l u e R f o r the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n m i l k and cheese. The dye, whose s t r u c t u r e i s shown i n F i g u r e 5 , when con-v e r t e d t o the v i n y l ( a c t i v e ) form by h e a t i n g i n s t r o n g a l k a l i , w i l l form a c o v a l e n t bond w i t h the f r e e €-amino group o f the l y s i n e r e s i d u e s and w i t h t h e t h i o l group o f c y s t e i n e . No r e a c t i o n s were o b s e r v e d w i t h the h y d r o x y l groups o f s e r i n e and t y r o s i n e . The a u t h o r s c l a i m e d t h a t r e a c t i o n w i t h c y s t e i n e can be d i s r e g a r d e d i n the case o f m i l k p r o t e i n s . F o r d e t e r m i n i n g a v a i l a b l e l y s i n e t h e p r o t e i n i s r e a c t e d w i t h r e m a z o l b r i l l i a n t b l u e R, and the m i x t u r e i s p a s s e d o v e r Sephadex G-25 c o a r s e . The dyed p r o t e i n i s e l u t e d a f t e r 10 minutes and d i s c a r d e d . The unbound dye i s e l u t e d o v e r the n e x t 2 h r and i t s c o n c e n t r a t i o n i s d e t e r m i n e d s p e c t r o p h o m e t r i c a l l y . The amount o f bound dye i s c a l c u l a t e d by comparing t h e 280 nm e x t i n c t i o n o f t h e e l u a t e w i t h t h a t o f d i f f e r e n t s o l u t i o n s o f the o r i g i n a l a c t i v a t e d dye s o l u t i o n i n pH 8 b u f f e r . T h i s v a l u e was found t o d e c r e a s e w i t h t i m e when m i l k was m a i n t a i n e d a t 95°C; t h a t i s , t h e m i l k p r o t e i n s bound l e s s dye because o f t h e i r c o n t e n t o f a v a i l a b l e l y s i n e f e l l . FIGURE 5 i S t r u c t u r e o f the r e a c t i v e dye remazol b r i l l i a n t blue R. (From Ney and Wirotama, 1 9 7 0 ) . 51. Although Pruss and Ney (1972) demonstrated no i n t e r -ference from lactose and other sugars, the method suffers from the disadvantage that the reaction i s dependent on the quantity of protein present i n the sample. As the quantity of protein increases, the amount of dye bound de-creases. Most of the dye-binding r e s u l t s reported i n the l i t e r a t u r e are given i n terms of "dye-binding capacity" or "DBC". DBC i s an almost pseudo-scientific term which implies that a given amount of protein has an a f f i n i t y for a given amount of dye. This value depends upon the experimental conditions, the structure of the dye molecule, the composition' of the buffer system and the purity of the dye. The tempera-ture of the system and i t s pH are also important factors. Therefore, unless these parameters are s p e c i f i e d , a state-ment of dye-binding capacity has no r e a l meaning and may even prove to be misleading (Lakin, 1973). Although quantitative determination of available ly s i n e i s d i f f i c u l t with t h i s technique, dye-binding pro-cedures could be used to monitor losses of lysine during the processing of food proteins, as long as the protein content of the material remains constant. 13. Chemical methods i n the determination of available lysine i n materials that have undergone Mai H a r d reactions. The type of damage which some of the chemical pro-cedures f a i l to measure adequately i s that occurring i n m a t e r i a l s where l y s i n e and r e d u c i n g sugars have been i n p r o l o n g e d c o n t a c t a t r e l a t i v e l y low te m p e r a t u r e s (37°C), and i n w h i c h ' e a r l y ' M a i l l a r d compounds, o f which a - N - f o r m y l -( e - N - d e o x y f r u c t o s y 1 ) - l y s i n e (FFL) i s a model ( F i n o t and Mauron, 1972), would be e x p e c t e d . F i n o t and Mauron (1972) r e a c t e d d e o x y - k e t o s y l d e r i v a t i v e s o f l y s i n e w i t h FDNB ( C a r p e n t e r , 196 0 ) , w i t h TNBS (Kakade and L i e n e r , 1969), and w i t h O - m e t h y l - i s o u r e a (Mauron and B u j a r d , 1963). When C a r p e n t e r ' s method was a p p l i e d t o FFL i t was found t h a t 14-2 8% o f t h i s u n a v a i l a b l e form was d e t e r m i n e d as a v a i l a b l e l y s i n e . G u a n i d i n a t i o n u s i n g 0-methyl-iso.urea was the most s p e c i f i c ( 0 % ) , whereas t h e TNBS method was c o m p l e t e l y n o n - s p e c i f i c (82-89%). Presumably, TNBS r e a c t s w i t h the b a s i c s e c o n d a r y amine groups o f t h e e a r l y M a i l l a r d compound and t h e n on a c i d d i g e s t i o n t h e p r e s e n c e o f the TNP groups weakens the s u g a r l i n k a g e which s p l i t s o f f t o g i v e a h i g h y i e l d o f T N P - l y s i n e . O - m e t h y l - i s o u r e a appears t o be a h i g h l y s e n s i t i v e i n d i c a t o r o f a l l t y p e s o f l y s i n e b i n d i n g , i n c l u d i n g t h e f o r m a t i o n o f e a r l y M a i l l a r d compounds. A l t h o u g h i t cannot be recommended i n i t s p r e s e n t form as a r o u t i n e q u a l i t y -c o n t r o l measure because o f t h e t i m e t a k e n (3 days) f o r an i n d i v i d u a l d e t e r m i n a t i o n , and a l s o because d i f f e r e n t pH v a l u e s are needed f o r d i f f e r e n t m a t e r i a l s , i t i s o f s p e c i a l i n t e r e s t as a r e f e r e n c e method. When FFL was s u b j e c t e d to FDNB-difference treatment ( F i n o t and Mauron, 1972; H u r r e l l and Carpenter, 1974) , t o t a l l y s i n e minus FDNB-reactive l y s i n e was c o n s i d e r a b l y g r e a t e r than a v a i l a b l e l y s i n e . T h i s f i n d i n g showed t h a t FDNB v/ould s t i l l r e a c t with a l y s i n e u n i t i n which the e p s i l o n amino group was bound t o a sugar. The FDNB-lysine-sugar complex breaks down on a c i d h y d r o l y s i s t o y i e l d n e i t h e r l y s i n e nor DNP-lysine t o any s i g n i f i c a n t e x t e n t . I t can be concluded that Carpenter's FDNB, O-methyl-i s o u r e a and sodium borohydride methods ( H u r r e l l and Carpenter, 1974) g i v e a good estimate o f the a v a i l a b l e l y s i n e i n ' e a r l y M a i H a r d 1 damage as seen i n r o l l e r - d r i e d m i l k powders (Mottu and Mauron, 1967). With 'advanced M a i l l a r d ' and p r o t e i n - p r o t e i n damage, where there i s a decrease i n o v e r a l l p r o t e i n d i g e s t i b i l i t y , these procedures may s t i l l over-estimate a v a i l a b l e l y s i n e , but they are, of course, more s e n s i t i v e i n d i c a t o r s of damage than i s t o t a l - l y s i n e d e t e r m i n a t i o n . F i n o t (1973) suggested a method f o r the e v a l u a t i o n o f a v a i l a b l e l y s i n e i n heat-damaged milk powders based on the d e t e r m i n a t i o n o f t o t a l l y s i n e and f u r o s i n e content measured a f t e r a c i d h y d r o l y s i s of the p r o t e i n . When pure e-N-deoxy-k e t o s y l - l y s i n e d e r i v a t i v e s are h y d r o l y z e d , three main compounds are o b t a i n e d : l y s i n e , f u r o s i n e and p y r i d o s i n e . These compounds are always present i n the same proportions, the r e s u l t being dependent only on the concentration of the acid used for hydrolysis (Finot and Mauron, 1972). The quantity of lysine blocked i n the deoxy-ketosyl form, that i s , unavailable l y s i n e , can be calculated d i r e c t l y from an acid hydrolysate of the protein. H u r r e l l and Carpenter (1974) reported that autoclaving protein with sucrose for 2 hr resulted i n less furosine production than did 1 hr. Presumably t h i s i s because the more complex polymers formed i n the advanced stages of the M a i l l a r d reaction do not break down to furosine on acid hydrolysis. Sulser (1973) has reported s i m i l a r r e s u l t s . While the presence of furosine i n the acid-hydrolysate of a test material indicates that some of i t s lysine has been involved i n M a i l l a r d reactions, i t cannot be used as a quantitative i n d i c a t o r i n a l l instances of protein-sugar damage. D. ENZYMATIC METHODS Even though the amino acid p r o f i l e i s important i n evaluating the n u t r i t i v e q u a l i t y of a protein, the d i g e s t i -b i l i t y of that protein i s the primary determinant of the a v a i l a b i l i t y of i t s amino acids. The d i g e s t i b i l i t y of a food protein may be obtained by using a rat bioassay but t h i s i s an expensive and time comsuming procedure. Several in vitro-enzymic digestion methods for the measurement of protein a v a i l a b i l i t y have been developed. One of the e a r l i e s t procedures was that of Melnick et a l . (1946) . I n h i s p r o c e d u r e food p r o t e i n s were d i g e s t e d w i t h p a n c r e a t i n . At i n t e r v a l s , a l i q u o t s o f t h e i n c u b a t i o n m i x t u r e were withdrawn and t h e degree o f h y d r o l y s i s was measured by f o r m o l t i t r a t i o n . I t was found t h a t t h o s e f a c t o r s known t o i n c r e a s e t h e n u t r i t i v e v a l u e o f soy p r o t e i n a l s o i n c r e a s e d the s u s c e p t i b i l i t y o f t h e p r o t e i n t o enzyma-t i c d i g e s t i o n . I t was a l s o found t h a t m e t h i o n i n e i s r e l e a s e d ' e a r l i e r from heat p r o c e s s e d soy meal than from raw soy meal. M e l n i c k and co-workers (1946), and R i e s e n e t a l . (1947) p r o p o s e d t h a t i n a d d i t i o n t o the t o t a l amino a c i d c o m p o s i t i o n , the r a t e o f r e l e a s e o f amino a c i d s from p r o t e i n by p a n c r e a t i c d i g e s t i o n was an i m p o r t a n t f a c t o r i n t h e n u t r i t i o n a l q u a l i t y o f a p r o t e i n . T h i s c oncept was u t i l i z e d by Horn e t a l . (195 3) t o e v a l u a t e t h e n u t r i t i o n a l q u a l i t y o f food p r o t e i n s by m e a s u r i n g m i c r o b i o l o g i c a l l y t h e i n d i v i d u a l amino a c i d s made a v a i l a b l e by p e p s i n , t r y p s i n , and hog mucosa. T h i s method gave good c o r r e l a t i o n w i t h the b i o l o g i c a l v a l u e o f c o t t o n s e e d meal w h i c h had been s u b j e c t e d t o v a r i o u s degrees o f p r o c e s s i n g ; however, t h e r e was no i n d i c a t i o n t h a t i t c o u l d be used t o compare p r o t e i n s from d i f f e r e n t s o u r c e s . Evans and B u t t s (1948) found t h a t enzymic h y d r o l y s i s o f soybean p r o t e i n b r o u g h t about some l o s s o f a l l e s s e n t i a l amino a c i d s , i n the sense t h a t they had been r e n d e r e d u n a v a i l a b l e f o r l i b e r a t i o n by d i g e s t i v e enzymes, though t h e y were e v i d e n t l y r e g e n e r a t e d by a c i d h y d r o l y s i s . When h e a t i n g i n t h e p r e s e n c e o f s u c r o s e , l a r g e amounts o f the b a s i c and s u l f u r amino a c i d s had becQme u n a v a i l a b l e and the l o s s e s were much g r e a t e r than i n t h e absence o f s u c r o s e . S h e f f n e r e t a l . (1956) by c o m b ining the p a t t e r n o f e s s e n t i a l amino a c i d s r e l e a s e d by i n v i t r o p e p s i n d i g e s t i o n w i t h the amino a c i d p a t t e r n o f the remainder o f t h e p r o t e i n , d e s c r i b e d an i n t e g r a t e d i n d e x , t h e P e p s i n - D i g e s t - R e s i d u e (PDR) amino a c i d i n d e x . D i v i s i o n o f t h e PDR i n d e x by the d i g e s t i b i l i t y c o e f f i c i e n t o f the r e s p e c t i v e p r o t e i n s , y i e l d e d v a l u e s w h i c h a c c u r a t e l y p r e d i c t e d the b i o l o g i c a l v a l u e o f the p r o t e i n s s t u d i e d . S i n c e e n z y m a t i c h y d r o l y s i s may be i n h i b i t e d by the h y d r o l y s i s p r o d u c t s w h i c h i n v i v o are r a p i d l y a b s o r b e d , d i a l y s i s (Mauron e t a l . , 1955) and g e l f i l t r a t i o n (Ford and S a l t e r , 1966) have been used t o remove the amino a c i d s as they are r e l e a s e d . Mauron e t a l . (1955) employed an i n -v i t r o d i g e s t i o n p r o c e d u r e i n w h i c h the t e s t p r o t e i n was s i m u l t a n e o u s l y d i g e s t e d and d i a l y z e d , f i r s t w i t h p e p s i n and then w i t h p a n c r e a t i n . A l t h o u g h the method has been employed o c c a s i o n a l l y f o r o t h e r f o o d p r o t e i n s , i t has been used e x t e n s i v e l y i n the q u a l i t y c o n t r o l o f h e a t p r o c e s s e d m i l k . I n m i l k , the l o s s o f l y s i n e a v a i l a b i l i t y i s due t o a M a i l l a r d type r e a c t i o n o f t h e l y s i n e s i d e c h a i n w i t h l a c t o s e . T h i s l i n k a g e a t the e-amino group i s r e s i s t a n t t o the a c t i o n o f the d i g e s t i v e enzymes. A comparison o f the v a l u e s f o r a v a i l a b l e l y s i n e o b t a i n e d by t h i s e n z y m a t i c p r o c e d u r e w i t h those a c h i e v e d w i t h C a r p e n t e r ' s c h e m i c a l method (1960) and those from b i o l o g i c a l evaluation based on growth, showed good conformity between the three methods, on a series of milk samples (Bujard et a l . , 1 9 6 7 ; Mottu and Mauron, I 9 6 7 ) . Ford and Salter (1966) attempted the continuous removal of reaction products from the i n v i t r o digestion system, by causing the enzyme-substrate mixture to pass through a calibrated column of Sephadex gel G-25. Each digest was thus resolved into four f r a c t i o n s : the residue and three soluble f r a c t i o n s , 'soluble protein', 'peptide', and 'free amino acids'. Freeze-dried cod f i l l e t s subjected to d i f f e r e n t heat treatments were used as t e s t proteins. Microbiological assay of a l l the fractions and the o r i g i n a l test protein after prolonged digestion with pepsin, pan-creatin and erepsin, gave broadly s i m i l a r r e s u l t s . With increasing temperature, the 'free amino aci d 1 component i n the digests became increasingly d e f i c i e n t i n several amino acids r e l a t i v e to t h e i r content i n the o r i g i n a l unheated meal notably i n lysine and the sulphur-containing amino acids. Mauron (197 0) calculated the i n - v i t r o amino acid a v a i l a b i l i t y from the data of Ford and Salter, by d i v i d i n g the value in the 'free amino acid' f r a c t i o n of the heated samples by the corresponding value i n the unheated sample. He found good agreement between his i n - v i t r o digestion pro-cedure aft e r d i a l y s i s and the results of Ford and Salter. 58. A n other way t o s e p a r a t e t h e u n d i g e s t e d r e s i d u e from the low m o l e c u l a r w e i g h t s o l u b l e f r a c t i o n s was e x p e r i m e n t e d by P r a h l and T a u f e l (1966). These a u t h o r s r e p l a c e d d i a l y s i s , by f i l t r a t i o n t h r o u g h a membrane under p r e s s u r e . Amino a c i d d a t a are however n o t y e t a v a i l a b l e w i t h t h i s method, s i n c e o n l y n i t r o g e n was measured. Akeson and Stahmann (1964) used p e p s i n f o l l o w e d by p a n c r e a t i n d i g e s t i o n t o e s t i m a t e t h e d i g e s t i b i l i t y and p r o t e i n q u a l i t y o f p r o c e s s e d f o o d s . Upon d i g e s t i o n o f the p r o t e i n , the u n d i g e s t e d p r o t e i n and p e p t i d e s were p r e c i p i t a -t e d w i t h p i c r i c a c i d and the amino a c i d s were d e t e r m i n e d by a u t o m a t i c amino a c i d a n a l y s i s . U s i n g whole egg as a s t a n d a r d they found e x c e l l e n t c o r r e l a t i o n between t h e p e p s i n -p a n c r e a t i n i n d e x v a l u e s f o r 12 p r o t e i n s and the b i o l o g i c a l v a l u e s r e p o r t e d i n the l i t e r a t u r e , from f e e d i n g t r i a l s . I n 1975, Stahmann and W o l d e g i o r g i s s l i g h t l y m o d i f i e d the p r o c e d u r e o f Akeson and Stahmann by i n t r o d u c i n g s u l f o -s a l i c y l i c a c i d , i n s t e a d o f p i c r i c a c i d , as a p r e c i p i t a n t o f the u n d i g e s t e d p r o t e i n and p e p t i d e s . S u l f o s a l i c y l i c a c i d i s n i n h y d r i n n e g a t i v e ( P e r r y and Hansen, 1969) and can be d i r e c t l y a p p l i e d t o the columns f o r amino a c i d a n a l y s i s . Menden and Cremer (19 66) r e p o r t e d t h a t h y d r o l y s i s by p a n c r e a t i n a l o n e o r i n c o m b i n a t i o n w i t h a c i d h y d r o l y s i s g i v e s a b e t t e r i n d i c a t i o n o f p r o t e i n q u a l i t y o f p r o c e s s e d c a s e i n and meat p r o d u c t s than a c i d h y d r o l y s i s a l o n e . They s u b j e c t e d the p r o t e i n t o a s h o r t d i g e s t i o n t i m e w i t h a l a r g e amount of pancreatin. The authors argue that the i n i t i a l steps i n digestion are of importance and that i t i s pre-ferable to digest with a high concentration of enzyme for a shorter period, so as to avoid auto-hydrolysis of the enzymes used. Buchanan (1969) and Buchanan and Byers (1969) des-cribed an i n v i t r o system for measuring protein d i g e s t i b i l i t y on a v~ 1.70 0.17 0.13 0 .15 1. 55 1.26? 1.54, 1.67 C a s e i n 7. 42 7. 83 7.59 7. 68 7.63 6.12:? 8.3l£ 8.7 0.22 0.25 0.22 0.23 7. 35 5 . 1 0 " 7.5 X £ 8.17 8 Lysozyme 5.28 5. 36 5.35 5.33 5.7 ^ 5.75 0.19 0.17 0.18 5.15 5.4 1 2 8 5.60 8 3 - l a c t o g . 13.60 12. 29 13.10 14. 41 13. 35 5 11.4 6 2.20 1.93 2.11 2.08 11.27 12 10.5 Egg 6. 92 6. 83 7.15 6. 46 6. 84 6.2^ 6.4 ; 0.25 0. 30 0.32 0.29 6.55 -The v a l u e s are g i v e n i n g l y s / 1 0 0 g p r o t e i n . 103. 1. Chromatographic procedure (Spackman e t a l . , 195 8) taken from F i n l e y and Friedman, 19 73. 2. T o t a l and u n a v a i l a b l e l y s i n e determined by the FDNB D i f f e r e n c e procedure, from Booth, 1971. 3. Chromatographic procedure (Spackman e t a l . , 195 8) , from H o l s i n g e r and P o s a t i , 1975. 4. T o t a l l y s i n e as determined by a c i d h y d r o l y s i s , from Stahmann and W o l d e g i o r g i s , 1975. 5. T o t a l l y s i n e by composition, from T r i s t r a m , 1953. 6. T o t a l l y s i n e from c o m p o s i t i o n a l data, from Jenness and Pat t o n , 1959. 7. T o t a l l y s i n e from c o m p o s i t i o n a l data, from O r r and Watt, 1957. 8. A v a i l a b l e l y s i n e determined by Carpenter's method, from Carpenter and Bjarnason, 1969 . 9. A v a i l a b l e l y s i n e determined by Carpenter's method, from Boctor and Harper, 196 8. 10. A v a i l a b l e l y s i n e determined by Carpenter's method, from Hussain, 1974. 11. A v a i l a b l e l y s i n e measured by the m o d i f i e d Carpenter method (Booth, 1971), from Stahmann and W o l d e g i o r g i s , 1975. 12. A v a i l a b l e l y s i n e c a l c u l a t e d from known amino a c i d sequence, from P u r c e l l e t a l . , 1976. 104. known amino a c i d sequence. P o r t e r (1948) have r e p o r t e d t h a t some p r o t e i n s such as 3 - l a c t o g l o b u l i n and serum g l o b u l i n s , i n c l u d e l y s i n e groups t h a t r e a c t w i t h FDNB o n l y a f t e r de-n a t u r a t i o n , w h i c h may be e f f e c t e d w i t h e t h a n o l , g u a n i d i n e o r m i l d a c i d . I t might be a d v i s a b l e t o t e s t t h e e f f e c t o f p r i o r d e n a t u r a t i o n on 3 - l a c t o g l o b u l i n , t o see whether a h i g h e r FDNB-r e a c t i v e l y s i n e r e s u l t i s o b t a i n e d . The o r i g i n a l FDNB p r o c e d u r e ( C a r p e n t e r , 1960) i s known t o y i e l d poor r e c o v e r i e s o f e-DNP-lysine and v a r i a b l e r e s u l t s , e s p e c i a l l y when a p p l i e d t o c e r e a l s and o i l s e e d meals. The poor performance o f the method i s a s s o c i a t e d w i t h t h e d e s t r u c t i o n o f e-DNP-lysine by c a r b o h y d r a t e s d u r i n g h y d r o l y s i s , and the f o r m a t i o n o f o t h e r y e l l o w p r o d u c t s w h i c h a re n o t e a s i l y s e p a r a t e d from e-DNP-lysine ( C a r p e n t e r e t a l . , 1957; Rao e t a l . , 1963). P a r t i a l d e s t r u c t i o n o f e-DNP-lysine does not cause d i f f i c u l t i e s when a v a i l a b l e l y s i n e i s d e t e r m i n e d by the FDNB d i f f e r e n c e p r o c e d u r e , s i n c e t h i s d e r i v a t i v e i s n o t measured w i t h t h i s t e c h n i q u e ; e-DNP-lysine i s mathema-t i c a l l y c a l c u l a t e d by d i f f e r e n c e . The d i f f e r e n c e t e c h n i q u e s u f f e r s from a major d i s a d v a n t a g e , t h a t i t i s e x t r e m e l y time consuming; 18 h r ( u n a v a i l a b l e l y s i n e ) and 24 h r ( t o t a l ) o f a c i d h y d r o l y s i s are r e q u i r e d f o r each d e t e r m i n a t i o n o f l y s i n e a v a i l a b i l i t y . Sub-sequent removal o f HCl from the sample and r e d u c t i o n o f t h e 105. sample to dryness on a rotary evaporator, i s , however, the most time consuming step. Hubbard and Finney (1976) have described a technique involving an Evapo-Mix evaporator, which greatly reduces the time and attention otherwise required. With t h i s system, 10 samples of 5.5 ml of solution were reduced to dryness i n about 35 minutes. Although time consuming, the FDNB difference technique i s the most accurate means presently available for the chemical determination of available l y s i n e . The values obtained w i l l include fr e e - l y s i n e and N-terminal l y s i n e . D. Pepsin-pancreatin digestion test . Although i n the f i n a l analysis, the n u t r i t i o n a l q u a l i t y of a protein must be assessed by feeding t r i a l s , the enzymatic methods for protein q u a l i t y evaluation are very useful for preliminary q u a l i t y evaluation. In v i t r o enzymatic digestion methods attempt to imitate the action of the mammalian digestive system. Compared to animal assays, the enzymatic methods have several advantages. They are less expensive and require less time than bioassays; they show less v a r i a t i o n than protein e f f i c i e n c y r a t i o assays with rats; a single assay can indicate the r e l a t i v e amounts of ess e n t i a l amino acids contained i n and released by the enzyme from the protein under assay. The enzymic methods have been used to monitor the adverse e f f e c t s of processing operations on proteins, that 106. may decrease the d i g e s t i b i l i t y of the p r o t e i n , reduce the a v a i l a b i l i t y o f l y s i n e or o x i d i s e s u l f u r amino a c i d s . Stahmann (1977) found t h a t peroxidase o r p o l yphenoloxidase i n the presence o f c h l o r o g e n i c a c i d and p r o t e i n , upon a c i d h y d r o l y s i s , r e v e a l e d no d e s t r u c t i o n w i t h i n c r e a s i n g concen-t r a t i o n s o f c h l o r o g e n i c a c i d and oxidase enzymes, but enzymatic h y d r o l y s i s r e v e a l e d a complete d e s t r u c t i o n of methionine. Even though the enzymic i n v i t r o d i g e s t i o n i s not complete, so t h a t the values o b t a i n e d are o n l y r e l a t i v e , the amount of the l i m i t i n g amino a c i d r e l e a s e d by enzymic h y d r o l y s i s i s a good i n d i c a t o r o f amino a c i d a v a i l a b i l i t y . L y s i n e t h a t has i t s e-amino group b l o c k e d has no n u t r i t i v e value s i n c e those groups are not s u s c e p t i b l e to enzymatic h y d r o l y s i s and the l y s i n e c o u l d not be f r e e d . The o r i g i n a l method of Akeson and Stahmann ( 1 9 4 6 ) used p i c r i c a c i d as a p r e c i p i t a n t of undigested p r o t e i n . However, t h i s procedure was found to be very i n c o n v e n i e n t s i n c e i t was necessary t o pass the t r e a t e d sample through a column i n o r d e r t o e l i m i n a t e the p i c r i c a c i d . In 1975, the author suggested the use of s u l f o s a l i c y l i c a c i d to p r e c i p i t a t e the u n d i g e s t e d p r o t e i n . T h i s i s an advantageous m o d i f i c a t i o n s i n c e t h i s reagent i s c o l o r l e s s , n i n h y d r i n n e g a t i v e and can be d i r e c t l y a p p l i e d to the columns f o r amino a c i d a n a l y s i s 107. (Hamilton, 1962). Menden and Gremer (1966) claimed that i t i s pre-ferable to digest the protein with a high concentration of enzyme for a short period, so that autohydrolysis of enzymes becomes n e g l i g i b l e . The pepsin-pancreatin digestion test of Stahmann and Woldegiorgis (1975) uses a digestion time of 27 hours, and an enzyme blank must be run along with each experiment. This blank value ranged between 0.5 85 and 1.42 6 yg of lysine per ml that was substracted from the sample value. Table 8 summarizes the results for available lysine as determined by the pepsin-pancreatin digestion t e s t . The resu l t s indicate the r e l a t i v e amount of lysine released by the enzymes under the conditions s p e c i f i e d for the test. A co r r e l a t i o n c o e f f i c i e n t of 0.995 was obtained between the enzymatic test and the available lysine determined by the FDNB o f f i c i a l method. This res u l t i s i n close agree-ment with the finding of Stahmann and Woldegiorgis (1975) who reported a co r r e l a t i o n c o e f f i c i e n t of 0.99 74 between the available lysine determined by the modified Carpenter method (Booth, 1971) and the lysine released by the digestive enzymes. Bujard et a l . (I967) also reported a high c o r r e l a t i o n f o r the available lysine as determined by the pepsin-pancreatin method of Mauron et a l . ( 1 9 5 5 ) . "by i n vivo feeding and by the 108. TABLE 8. Amount o f l y s i n e r e l e a s e d from p r o t e i n samples s u b j e c t e d t o p e p s i n - p a n c r e a t i n d i g e s t i o n . S amp l e E x p e r i m e n t No. 1 2 3 Ave v a l u e s C a s e i n 3. 463 4. 181 3. 994 3. 879 3. 8 1 B - l a c t o g l o b u l i n 5. 374 5. 690 6. 0111 5.692 1.5 N HCl G l u t e n 0. 542 0. 589 0. 559 0.563 Lysozyme 2. 200 2. 357 2. 365 2.313 Egg 2. 703 2. 762 2. 831 2. 765 2.74+0.13 1 2 . r The r e s u l t s are g i v e n i n g o f l y s i n e p e r 100 g p r o t e i n . 1. L y s i n e r e l e a s e d by the p e p s i n p a n c r e a t i n d i g e s t i o n t e s t . From: Stahmann and W o l d e g i o r g i s , 1975. 2. L y s i n e r e l e a s e d by t h e p e p s i n p a n c r e a t i n d i g e s t d y a l i s a t e method. From: Mauron, 1970. 109. Carpenter method, for a series of heat treated milk samples. Stahmann and Woldegiorgis (19 75) demonstrated that only the enzymatic method was able to show an increase i n available lysine following steaming of soybean meal. I t i s well known that raw soybeans contain a trypsin i n h i b i t o r , and the increase i n the l i b e r a t i o n of methionine, l y s i n e , arginine and h i s t i d i n e confirms that steaming destroys the i n h i b i t o r . I t i s apparent that the chemical methods for protein q u a l i t y may not reveal the a v a i l a b i l i t y of lysine when the proteins tested contain an i n h i b i t o r of one of the p r o t e o l y t i c enzymes that act during digestion. Sometimes, i t might be d i f f i c u l t to correlate chemical and b i o l o g i c a l a v a i l a b i l i t y since the l a t t e r could also involve protein d i g e s t i b i l i t y which may not be related to the r e a c t i v i t y of the e-amino group of ly s i n e . 110. GENERAL DISCUSSION A summary o f t h e r e s u l t s f o r a v a i l a b l e l y s i n e as de t e r m i n e d by the FDNB d i f f e r e n c e p r o c e d u r e , the DNBS and TNBS methods, and t h e p e p s i n p a n c r e a t i n d i g e s t i o n t e s t i s shown i n Ta b l e 9. F o r comparison o f the methods, the r e g r e s s i o n l i n e s and the c o r r e l a t i o n c o e f f i c i e n t s were e s t i m a t e d a c c o r d i n g t o the p r o c e d u r e d e s c r i b e d by Deming (Wakkers e t a l . , 1975). The " c l a s s i c a l p r o c e d u r e " t o e s t i m a t e the r e g r e s s i o n l i n e , assumes t h a t one o f the methods, used as the r e f e r e n c e , i s n o t s u b j e c t t o e r r o r . However, t h i s i s n o t always t r u e . Deming"s p r o c e d u r e has t h e advantage t h a t e s t i m a t e s are o b t a i n e d f o r the random e r r o s o f b o t h methods. Good agreement was o b t a i n e d between the FDNB o f f i c i a l method and t h e DNBS t e c h n i q u e , w i t h a c o r r e l a t i o n c o e f f i c i e n t o f 0.989 ( F i g u r e 12). When the TNBS method was compared t o the FDNB d i f f e r e n c e t e c h n i q u e , a c o r r e l a t i o n c o e f f i c i e n t o f 0.988 was found ( F i g u r e 13). The p e p s i n p a n c r e a t i n t e s t i n d i c a t e d the r e l a t i v e amount o f l y s i n e r e l e a s e d by the enzymes under the c o n d i t i o n s s p e c i f i e d f o r the t e s t . A c o r r e l a t i o n c o e f f i c i e n t o f 0.995 was found between the FDNB method and the enzymic t e s t ( F i g u r e 14). F i g u r e s 15, 16 and 17 show the r e g r e s s i o n l i n e s f o r comparison between the e n z y m a t i c t e s t and the DNBS method ( r = 0.998), the e n z y m a t i c t e s t and the TNBS method ( r = 0.987) 111. TABLE 9. L y s i n e a v a i l a b i l i t y d e t e r m i n e d by the FDNB o f f i c i a l p r o c e d u r e , the DNBS and t h e TNBS methods, and t h e e n z y m a t i c t e s t . S ample FDNB DNBS TNBS E n z y m a t i c T e s t G l u t e n 1.55 1. 75 1. 46 0.56 C a s e i n 7. 35 7. 52 7. 14 3.8 Lysozyme 5.15 5.43 5.73 2.31 ( 3 - l a c t o g l o b u l i n 11. 27 12. 26 13.93 5. 69 Whole egg 6.55 5.48 6. 71 2.77 The v a l u e s are g i v e n i n g p e r 100 g o f p r o t e i n . 112. 12. Comparison between the FDNB d i f f e r e n c e t e c h n i q u e and the DNBS method. The $ o f l y s i n e i s d e t e r -mined by g l y s i n e / 1 0 0 g p r o t e i n . FDNB (% lys ine) 113. URE 1 3 . Comparison between the FDNB d i f f e r e n c e technique and the TNBS method. The % of l y s i n e i s d e t e r -mined by g l y s i n e / 1 0 0 g p r o t e i n . FDNB (% l/sine ) 114. FIGURE 14. Comparison between the FDNB d i f f e r e n c e method and the enzymatic d i g e s t i o n t e s t . The % of l y s i n e i s determined by g l y s i n e / 1 0 0 g p r o t e i n . FDNB (% l y s i n e ) 115. FIGURE 1 5 . Comparison between the enzymatic d i g e s t i o n t e s t and the DNBS method. The % o f l y s i n e i s d e t e r -mined by g l y s i n e / 1 0 0 g p r o t e i n . E N Z . T E S T (% lysine) 116. FIGURE 1 6 . Comparison "between the enzymatic d i g e s t i o n t e s t and the TNBS method. The % o f l y s i n e i s d e t e r -mined by g l y s i n e / 1 0 0 g p r o t e i n . E N Z . T E S T ( % l y s i n e ) 117. FIGURE 17. Comparison between the TNBS and the DNBS methods. The % of l y s i n e i s determined by g l y s i n e / 1 0 0 g p r o t e i n . 15 10-c v> cn m z o r = 0 995 o A • • gluten lysozyme egg case in 0 - l ac tog lobul in 10 15 T N B S (%lys ine) 118. and the TNBS and DNBS method (r = 0.995), r e s p e c t i v e l y . The standard d e v i a t i o n o f the random e r r o r f o r each method i s shown i n Table 10. A m u l t i p l e range t e s t (Duncan's t e s t ) showed t h a t the TNBS method produced s i g n i f i c a n t l y lower r e p e a t a b i l i t y as compared to the o t h e r t h r e e methods. No s i g n i f i c a n t d i f f e r e n c e i n p r e c i s i o n was found among the FDNB o f f i c i a l technique, the DNBS method and the enzymatic t e s t . 119. TABLE 10. S t a n d a r d d e v i a t i o n o f the random e r r o r ( i n g l y s i n e / 100 g p r o t e i n ) i n the a v a i l a b l e l y s i n e methods, as e s t i m a t e d by Deming's p r o c e d u r e . .^ , Random e r r o r e s t i m a t e s i n method Methods compared FDNB DNBS TNBS E n z y m a t i c FDNB and DNBS 0.57 7 FDNB and TNBS 0.366 FDNB and Enz. 0.419 TNBS and DNBS Enz. and DNBS Enz. and TNBS 0.546 0.663 0.187 0.363 0.672 0.256 0.308 0.683 0.399 120. CONCLUSION From the r e s u l t s presented i n t h i s t h e s i s i t can be seen t h a t l y s i n e a v a i l a b i l i t y i n c a s e i n , a c i d s o l u b i l i z e d g l u t e n , egg, ( 3 - l a c t o g l o b u l i n and lysozyme, as determined by the o f f i c i a l FDNB d i f f e r e n c e technique gave r e s u l t s i n c l o s e agreement with the r e p o r t e d v a l u e s . Although the d i f f e r e n c e technique i s extremely time consuming, i t i s pr o b a b l y the most accurate means p r e s e n t l y a v a i l a b l e f o r d e t e r m i n a t i o n o f l y s i n e a v a i l a b i l i t y , I t i s not a f f e c t e d by the d e s t r u c t i o n o f €-DNP-lysine d u r i n g a c i d h y d r o l y s i s . The l y s i n e r e l e a s e d by the p e p s i n - p a n c r e a t i n d i g e s t i o n c o r r e l a t e d w e l l with the a v a i l a b l e l y s i n e as d e t e r -mined wi t h the FDNB chemical method. The DNBS and TNBS methods gave r e s u l t s i n c l o s e agreement with the r e s u l t s o b tained w i t h the FDNB o f f i c i a l t echnique. However, the data from the TNBS method showed a wide range of v a r i a b i l i t y and s i g n i f i c a n t l y lower r e p e a t i b i -l i t y . The use o f l y s i n e d e r i v a t i v e s to study the s p e c i -f i c i t y o f DNBS f o r the €-amino group of l y s i n e , showed t h a t DNBS r e a c t s with the -X-amino group o f l y s i n e , to a c e r t a i n e xtent. However, f o r p r o t e i n s and h i g h e r p o l y p e p t i d e s the c o n t r i b u t i o n o f the cK-amino group to the r e s u l t s becomes n e g l i g i b l e . 121. Only f o r s m a l l p e p t i d e s h a v i n g N - t e r m i n a l l y s i n e w i l l t he r e s u l t be s l i g h t l y h i g h e r t h a n t h e t r u e c o n t e n t o f a v a i l a b l e l y s i n e . The DNBS method was found t o be the s i m p l e s t and most r e l i a b l e method f o r d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e , f o r the f o l l o w i n g r e a s o n s : 1) I t does n o t r e q u i r e a c i d h y d r o l y s i s o f the p r o t e i n . 2) I t i s s p e c i f i c f o r the e-amino group o f l y s i n e and p r a c t i c a l l y f r e e from i n t e r f e r e n c e s . 3) A l a r g e number o f samples can be a n a l y z e d s i m u l t a n e o u s l y i n a few h o u r s . 4) I t does not r e q u i r e e x p e n s i v e and l e n g t h y c h r o m a t o g r a p h i c amino a c i d a n a l y s i s . REFERENCES CITED AKESON, W.R. and M.A. Stahmann. 1964. A p e p s i n p a n c r e a t i n d i g e s t index o f p r o t e i n q u a l i t y e v a l u a t i o n . J . Nutr. 83» 257. BARAUD, J . 1957-Iodometric a n a l y s i s o f f r e e amino n i t r o g e n i n p r o t e i n by means o f t h e i r dithiocarbamate d e r i v a t i v e s . B u l l . Soc. Chim. F r . 948. BENDER, A.E. I96I. Determination o f the n u t r i t i v e value o f p r o -t e i n s by chemical a n a l y s i s . IN: Progress i n Meeting P r o t e i n Needs i n I n f a n t s and P r e s c h o o l C h i l d r e n , p. 407, P u b l . 843, N a t l . Acad. S c i . , N a t l . Res. C o u n c i l , Washington, D.C. BENDER, A.E. I969. New methods o f a s s e s s i n g p r o t e i n q u a l i t y . Chem. Ind. (London) 27* 904. BENDER, A.E. and B.H. D o e l l . 1957. B i o l o g i c a l e v a l u a t i o n o f proteins» A new aspect. B r i t . J . Nutr. l i s 140. BLOM, L., P. Hendricks and J . C a r i s . 1967. Determination o f the a v a i l a b l e l y s i n e i n foods. Anal. Biochem. 211 382. BOCTOR, A.M. and A.E. Harper. I 9 6 8 . Measurement o f a v a i l a b l e l y s i n e i n heated and unheated food s t u f f s by chemical and b i o l o g i c a l methods. J. Nutr. 94: 289. 123. BODWELL, C.E. 1976. St a t u s o f chemical methods to determine b i o l o -g i c a l l y a v a i l a b l e l y s i n e i n wheat products. Proc. IX N a t l . Conf. on Wheat U t i l i z a t i o n Research Oct. 8-10, 1975. S e a t t l e , Washington, ARS-NC-40, p. 181. ISDA, Washington, D.C. BOOTH, V.H. 1971-Problems i n the d e t e r m i n a t i o n o f FDNB a v a i l a b l e l y s i n e . J . S c i . Food A g r i c . 22: 658. BROOKS, I.M., F.N. Owens and V.S. G a r r i g u s . 1972. I n f l u e n c e o f amino a c i d l e v e l i n the d i e t upon amino a c i d o x i d a t i o n by t h e / E a t . J. Nutr. 102:27-BRUGGEMANN, J . , H. E r b e r s d o b l e r and H. Zucker. 1969. P r o t e i n q u a l i t y o f f i s h m e a l s and c a r c a s s meals. Z. T i e r p h y s i o l . T i e r e n a h r . F u t t e r m i t t . 25: 128. BUCAHANAN, R.A. I969. In v i v o and i n v i t r o methods o f measuring n u t r i t i v e value o f l e a f p r o t e i n c o n c e n t r a t e s . B r i t . J . Nutr. 23» 533. BUCAHANAN, R.A. and M. Byers. I969. Interfereneebby cyanide w i t h the measurement o f papain h y d r o l y s i s . J . S c i . Food A g r i c . 20:364. BUJARD, E., V. Handwerck and J . Mauron. I 9 6 7 . The d i f f e r e n t i a l d e t e r m i n a t i o n o f l y s i n e i n heated m i l k . I. In v i t r o methods. J . S c i . Food A g r i c . 18: 52. 124. CALHOUN, W.K., F.N. Hepburn and W.B. Bradley, i960. The a v a i l a b i l i t y o f l y s i n e i n wheat, f l o u r , bread and g l u t e n . J . Nutr. 70: 337. CARPENTER, K.J. i960. The e s t i m a t i o n o f the a v a i l a b i l i t y o f l y s i n e i n animal p r o t e i n fooods. Biochem. J . 77'604. CARPENTER, K.J. and A.M. E l l i n g e r . 1955a. The e s t i m a t i o n o f a v a i l b l e l y s i n e i n p r o t e i n con-c e n t r a t e s . Biochem. J . 6 l : x i . CARPENTER, K.J. and A.M. E l l i n g e r . 1955b. P r o t e i n q u a l i t y and a v a i l a b l e l y s i n e i n animal products. P o u l t r y S c i . 34: 1451. CARPENTER, K.J., A.M. E l l i r i g g r , M.I. Munn and E . J . R o l f e . 1957. F i s h products as p r o t e i n supplements to c e r e a l s . B r i t ) J . Nutr. 11: 162. CARPENTER, K.J., B.E. March, C.K. M i l n e r and R.C. Campbell. 1963. Growth assay w i t h c h i c k s f o r the l y s i n e content of p r o t e i n c o n c e n t r a t e s . B r i t . J . Nutr. 17* 309. CARPENTER, K.J. and D.S. M i l l e r . I963. IN: E v a l u a t i o n o f P r o t e i n Q u a l i t y , Report o f an I n t e r n a t i o n a l Committee on P r o t e i n M a l n u t r i t i o n , Food and N u t r i t i o n Board, N a t i o n a l Academy o f Sci e n c e s - N a t i o n a l Research C o u n c i l , P u b l i c a t i o n 1100, p.7. N a t i o n a l Academy- o f S c i e n c e s , Washington, D.C. 125. CARPENTER, K.J. and J . Bjarnason. I969. N u t r i t i o n a l e f f e c t s o f € - N - a c y l a t i o n on f r e e and p e p t i d e - l i n k e d l y s i n e . Proc. Nutr. Soc. 28J 2A. CARPENTER, K.J. and V.H. Booth. 1973. Damage to l y s i n e i n food p r o c e s s i n g * i t s measure-ment and i t s s i g n i f i c a n c e . Nutr. A b s t r . Rev. 43» 424. CAVINS, J.F. and M. Friedman. 1967. New amino a c i d s d e r i v e d from r e a c t i o n s o f €-amino groups i n p r o t e i n s with cC , (9-unsaturated compounds. Biochem. 6: 3766. CONCON, J.M. 1971. Determination o f l y s i n e i n c e r e a l p r o t e i n s . IN: Symposium: Seed P r o t e i n s (Ed. by I.E. I n g l e t t ) , p. 292. AVI P u b l i s h i n g Co., Westport, CT. CONCON, J.M. 1975a. Rapid method f o r the d e t e r m i n a t i o n o f l y s i n e i n c e r e a l g r a i n s without h y d r o l y s i s . A n a l . Biochem. 66: 460. CONCON, J.M. 1975b. Chemical d e t e r m i n a t i o n o f c r i t i c a l amino a c i d s i n c e r e a l g r a i n s and oth e r f o o d s t u f f s . IN: P r o t e i n N u t r i t i o n a l Q u a l i t y o f Foods and Feeds. P a r t 1, Assay Methods - B i o l o g i c a l , B i o c h e m i c a l and Chemical (Ed. by M. Friedman), p. 311. Marcel Dekker, Inc., New York. 126. CONCON, J.M. and D. S o l t e s s . 1973-Rapid micro K j e l d a h l d i g e s t i o n of c e r e a l g r a i n s and other b i o l o g i c a l m a t e r i a l s . Anal. Biochem. 53» 35-CONKERTON, E . J . and V.L. Frampton. 1959-R e a c t i o n of gossypol with f r e e €-amino groups of l y s i n e i n p r o t e i n s . Arch. Biochem. Biophys. 81« 130,.' COUCH, J.R. 1975. C o l l a b o r a t i v e study on the d e t e r m i n a t i o n of a v a i l a b l e l y s i n e i n p r o t e i n s and feeds. J . AOAC. 5 8 : 5 9 9 . COUCH, J.R. and M.C. Thomas. 1976. A comparison o f chemical methods f o r the d e t e r -m i n a t i o n of a v a i l a b l e l y s i n e i n v a r i o u s p r o t e i n s . J . A g r i c . Food Chem. 24: 9 4 3 . deGROOT, A.P. and P. Slump. 1969. E f f e c t s of severe a l k a l i treatment of p r o t e i n s i n amino a c i d composition and n u t r i t i v e v a l u e . J . Nutr. 9 8 : 4 5 . DVORAK, D. 1968. A v a i l a b i l i t y of e s s e n t i a l amino a c i d s from p r o t e i n s . I. Beef albumin. J . S c i . Food A g r i c . 19J 71. EISEN, H., S. Belman and M.E. C a r s t e n . 1953. The r e a c t i o n of 2, 4-dinitrobenzene s u l f o n i c a c i d with f r e e amino groups of p r o t e i n s . J . Amer. Chem. Soc. 75» 4 5 8 3 . 127. EKLUND, A. 1976. On the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n c a s e i n and rapeseed p r o t e i n c o n c e n t r a t e s u s i n g 2 , 4 , 6 - t r i -nitrobenzene s u l f o n i c a c i d as a reagent f o r f r e e e p s i l o n amino groups o f l y s i n e . A n a l . Biochem. 70: 434. EL-NOCKRASHY, A.S 1965-Determination o f a v a i l a b l e l y s i n e i n cottonseed meal. Starke 17* 8 9 . EL-NOCKRASHY, A.S. and V.L. Frampton. 196?. D e s t r u c t i o n o f l y s i n e by non-reducing sugars. Biochem. Biophys. Res. Commun. 28: 675-ERBERSDOBLER, H. and H. Zucker. 1964. E s t i m a t i o n o f a v a i l a b l e l y s i n e i n f e e d i n g s t u f f s w i t h d i n i t r o f l u o r o b e n z e n e . Z. T i e r p h y s i o l . T i e r e r n a h r . F u t t e r m i t t . 19: 244. EVANS, R.J. and H.A. B u t t s . 19^8. S t u d i e s on the heat i n a c t i v a t i o n o f l y s i n e i n soybean o i l meal. J . B i o l . Chem. 175* 15• FERNELL, W.R. and G.S. Rosen. 1956. M i c r o b i o l o g i c a l e v a l u a t i o n o f p r o t e i n q u a l i t y with Tetrahymena p y r i f o r m i s W. B r i t . J . Nutr. 10: 143. FINLEY, J.W. and M. Friedman. 1973. Chemical methods f o r a v a i l a b l e l y s i n e . C e r e a l Chem. 5 0 : 101. FINOT, P.-A.. . 1973. Non enzymic browning. IN: P r o t e i n s i n Human Nu-t r i t i o n . (Ed. by J.W.G. P o r t e r and B.A. R o l l s ) , p. 5 0 1 . Academic P r e s s , London. 128. FINOT, P.A. and J . Mauron. 1972. L a blocage de l a l y s i n e par l a r e a c t i o n de M a i l l a r d . I I . P r o p i e t e s chimiques des d e r i v e s N - ( d e s o x y - l - D - f r u c t o s y l - 1 ) et N-(desoxy-l-D-l a c t u l o s y l - 1 ) de l a l y s i n e . Helv. Chim. Ac t a 55* 1153-FORD, J.E. I960. A m i c r o b i o l o g i c a l method f o r a s s e s s i n g the nu-t r i t i o n a l value o f p r o t e i n s . B r i t . J . Nutr. 14: 485. FORD, J.E. 1962. A m i c r o b i o l o g i c a l method f o r a s s e s s i n g the nu-t r i t i o n a l value o f p r o t e i n s . B r i t . J . Nutr. 16: 409. FORD, J.E. 1965. A m i c r o b i o l o g i c a l method f o r a s s e s s i n g the nu-t r i t i o n a l v a lue o f p r o t e i n s . B r i t . J . Nutr. 19s 277-FORD, J.E. and D.N. S a l t e r . 1966. A n a l y s i s o f e n z y m i c a l l y d i g e s t e d food p r o t e i n by Sephadex-gel f i l t r a t i o n . B r i t . J . Nutr. FRANK, 0 . , H. Baker, S.H. Hunter, I . I . Rusoff and R.A. Morck. 1975. E v a l u a t i o n o f p r o t e i n q u a l i t y w i t h the phagotro-p h i c protozoan Tetrahymena. IN: P r o t e i n N u t r i -t i o n a l Q u a l i t y o f Foods and Feeds, P a r t 1, Assay Methods - B i o l o g i c a l , B i o c h e m i c a l and Chemical. (Ed. by M. Friedman), p. 203. Marcel Dekker, Inc., New York. 129. FREEDMAN, R.B. and G.K. Radda. I968. The r e a c t i o n o f 2 , 4 , 6 - t r i n i t r o b e n z e n e s u l f o n i c a c i d with amino a c i d s , p e p t i d e s and p r o t e i n s . Biochem. J. 108* 3 8 3 . FRIEDMAN, M. and J.W. F i n l e y . 1975-V i n y l compounds as reagents f o r a v a i l a b l e l y s i n e i n p r o t e i n s . INi P r o t e i n N u t r i t i o n a l Q u a l i t y o f Foods and Feeds, P a r t 1 , Assay Methods - B i o l o -g i c a l , B i ochemical and Chemical. (Ed. by M. Friedman), p. 503- Marcel Dekker, Inc., New York. GOLDFARB, A. 1966. A k i n e t i c study o f the r e a c t i o n o f amino a c i d s and p e p t i d e s with t r i n i t r o b e n z e n e s u l f o n i c a c i d . Biochem. 5 * 2470. GREENLEE, L. and P. Handler. 1964. Xantine oxidase. VI. I n f l u e n c e o f pH on s u b s t r a t e s p e c i f i c i t y , V I I . I n h i b i t i o n by amino group r e a -gents. J . B i o l . Chem. 239* IO96. GUPTA, J.D., A.M. Dakroury, A.E. Harper and C A . Elvehjem. 1958. B i o l o g i c a l a v a i l a b i l i t y o f l y s i n e . J . Nutr. 6 4 * 259. GUO, L.S.S., J.D. Summers andE.T. Moran. 1971-A s s a y i n g feeds f o r a v a i l a b l e l y s i n e content u s i n g f e a t h e r meal b a s a l d i e t . Can. J . Anim. S c i . 5 1 * 1 6 1 . 1 3 0 . HABEEB, A.F.S.A. I 9 6 6 . Determination of f r e e amino groups i n p r o t e i n s by t r i n i t r o b e n z e n e s u l f o n i c a c i d . A n a l . Biochem. 27s 273. HALL, R.J., N. T r i n d e r and D.I. Givens. 1973* O b s e r v a t i o n on the use o f 2 , 4 , 6 - t r i n i t r o b e n z e n e s u l f o n i c a c i d f o r the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n animal p r o t e i n c o n c e n t r a t e s . A n a l y s t 9 8 i 6 7 3 . HALL, RvJ., N. T r i n d e r and M.R. Wood. 1975-The d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n carbo-hydrate r i c h m a t e r i a l s . A n a l y s t 100: 68. HAMILTON;; PPBL 1962. Ion exchange chromatography o f amino a c i d s -micro d e t e r m i n a t i o n of f r e e amino a c i d s i n serum. Ann. N.Y. Acad. S c i . 102: 55. HANDWERCK, V., E. Bujard and J , Mauron. i 9 6 0 . The r e d u c t i o n of aromatic n i t r o groups d u r i n g a c i d h y d r o l y s i s i n the presence o f carbohydrates, and i t s b e a r i n g on the c o l o r i m e t r i c d e t e r m i n a t i o n of € - d i n i t r o p h e n y l - l y s i n e . Biochem. J . 76: 54 P. HARDING, H.W. and G.E. Rogers. 1 9 7 1 . €-(if-glutamyl) l y s i n e c r o s s l i n k a g e i n c i t r u l l i n e c o n t a i n i n g p r o t e i n f r a c t i o n s from h a i r . Biochem. 1 0 i 624. HAYNES, R. D.T. Osuga and R.E. Feeney. I967 . M o d i f i c a t i o n o f amino groups i n i n h i b i t o r s of p r o t e o l y t i c enzymes.- Biochem. 61 5 4 1 . HEGSTED, D.M. and Y . 0 . Chang. I 9 6 5 . P r o t e i n u t i l i z a t i o n i n growing r a t s . I. R e l a t i v e growth index as a b i o a s s a y procedure. J. Nutr. 85« 159. 131. HEGSTED, D.M. arid R. Neff. 1970. E f f i c i e n c y o f p r o t e i n u t i l i z a t i o n i n young r a t s at v a r i o u s l e v e l s o f i n t a k e . J . Nutr. 100s 1173-HEGSTED, D.M. and K.W. Samonds. 1978. A c o l l a b o r a t i v e study to ev a l u a t e f o u r methods of e s t i m a t i n g p r o t e i n q u a l i t y . IN» N u t r i t i o n a l E v a l u a t i o n o f P r o t e i n Foods. (V.R. Young and P.L. P e l l e t t ) . N a t l . Acad, of Sc i e n c e s - N a t l . Res. C o u n c i l , Washington, D.C. ( I n p r e s s ) . HILL, R.L. and W.R. Schmidt. 1962. The complete enzymic h y d r o l y s i s o f p r o t e i n s . J . B i o l . Chem. 237» 389. HOFMANN, K., E. S t u t z , G. Spuhler, H. Yakima and E.T. Schwartz, i 9 6 0 . S t u d i e s on p o l y p e p t i d e s . XVI. The p r e p a r a t i o n o f N ^ - f o r m y l - L - l y s i n e and i t s a p p l i c a t i o n to the s y n t h e s i s o f p e p t i d e s . J . Amer. Chem. Soc. 82« 3727. HOLSINGER, V.H., L.P. P o s a t i and M.J. P a l l a s c h . 1970. Anomalous r e s u l t s obtained i n the d e t e r m i n a t i o n of a v a i l a b l e l y s i n e i n c a s e i n u s i n g 2 , 4 , 6 - t r i -nitrobenzene s u l f o n i c a c i d . J . D a i r y S c i . 53» I 6 3 8 . HOLSINGER, V.H. and L.P. P o s a t i . 1975-Chemical e s t i m a t i o n o f a v a i l a b l e l y s i n e i n dehydrated d a i r y p r o d u c t s . IN: P r o t e i n N u t r i t i o -n a l Q u a l i t y o f Foods and Feeds. P a r t 1, Assay Methods - B i o l o g i c a l , B i o c h e m i c a l and Chemical. (Ed. by M. Friedman), p. 479. Marcel Dekker, Inc., New York. 132. HORN, M.J., D.B. Jones and A.E. Blum. 1953-Sources of e r r o r i n m i c r o b i o l o g i c a l d e t e r m i n a t i o n s of amino a c i d s on a c i d h y d r o l i s a t e s . I. E f f e c t o f humin on amino a c i d v a l u e s . J . B i o l . Chem. 203: 907. H0S0YA, T. I960. T u r n i p peroxidase. V. The e f f e c t s of s e v e r a l chemical reagents upon the r e a c t i v i t y o f t u r n i p p e r o x i d a s e . J . Biochem. 48: 375' HOWARD, H.W. , W.J. Monson, C D . Bauer and R.J. Block. 1958. The n u t r i t i v e value o f bread f l o u r proteins as a f f e c t e d by p r a c t i c a l supplementation w i t h l a c t -albumin, non f a t m i l k s o l i d s , soybean p r o t e i n s , wheat g l u t e n and l y s i n e . J . Nutr. 64: 151. HSU, H.W., D.L. Vavak, L.D. S a t t e r l e e and G.A. M i l l e r . 1977-A multienzyme technique f o r e s t i m a t i n g p r o t e i n d i g e s t i b i l i t y . J . Food S c i . 42 ( 5 ) ' I 2 6 9 . HUBBARD, J.D..and K.F. Finney. 1976. Quick e v a p o r a t i o n o f p r o t e i n h y d r o l y s a t e s f o r amino a c i d assay. J . Food S c i . 4 l ( 5 )» 1229. HURRELL, R.F. and K.J. Carpenter. 1974. Mechanisms o f heat damage i n p r o t e i n s . 4 . The r e a c t i v e l y s i n e content of heat damaged m a t e r i a l as measured i n d i f f e r e n t ways. B r i t . J . Nutr. 32: 589-HUSSAIN, L.'.A. 1974. Comparison of methods f o r the d e t e r m i n a t i o n of a v a i l a b l e l y s i n e v a l u e s i n animal p r o t e i n con-c e n t r a t e s . J. S c i . Food A g r i c . 2 5 : 117-133. IKENAKA, T. 1959-Chemical m o d i f i c a t i o n o f Taka-amylase A. I. D i n i t r o p h e n y l a t i o n o f Taka-amylase A. J. Biochem. 46» 177. JENNESS, R. and S. P a t t o n . 1959-P r i n c i p l e s o f D a i r y Chemistry. Sons, New York. John Wiley and JOKINEN, J.E., G.A. R e i n e c c i u s and D.R. Thompson. 1976. Losses i n a v a i l a b l e l y s i n e d u r i n g thermal p r o -c e s s i n g o f soy p r o t e i n model systems. J . Food S c i . 41: 816. KAKADE, M.L. and I.E. L i e n e r . 1969. D e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n p r o t e i n s . A n a l . Biochem. 27* 273. KAI, F. 1967. R e a c t i o n between mercury ( I I ) and org a n i c com-pounds. I I I . S e p a r a t i o n and q u a n t i t a t i v e deter-m i n a t i o n o f b a s i c amino a c i d s w i t h mercury ( I I ) s a l t p r e c i p i t a n t s . B u l l . Chem. Soc. Japan 40t 2297. KOTAKI, A., M. Harada and K. Y a g i . 1964. R e a c t i o n between s u l f h y d r y l compounds and 2 , 4 , 6 - t r i n i t r o b e n z e n e - l - s u l f o n i c a c i d . J. Biochem. 55* 553-KOTAKI, A. and K. Satake. 1964. A c i d and a l k a l i n e d e g r a d a t i o n o f the TNP-amino a c i d s and p e p t i d e s . J . Biochem. 56s 229. 134. LAKIN, A.L. 1973-E v a l u a t i o n o f p r o t e i n q u a l i t y by d y e - b i n d i n g p r o c e d u r e s . IN: P r o t e i n s i n Human N u t r i t i o n (Ed. by J.W.G. P o r t e r and B.A. R o l l s ) , p. 179. Academic P r e s s , London. LANDERS, R.E 1975. R e l a t i o n s h i p between p r o t e i n e f f i c i e n c y r a t i o o f f o ods and r e l a t i v e n u t r i t i v e v a l u e measured by Tetrahymena p y r i f o r m i s W b i o a s s a y t e c h n i q u e s . IN: P r o t e i n N u t r i t i o n a l Q u a l i t y o f Foods and Feeds. P a r t 1 . Assay Methods '•- B i o l o g i c a l , B i o -c h e m i c a l and C h e m i c a l . (Ed. by M. F r i e d m a n ) , p. I85. M a r c e l Dekker I n c . , New York. L I , C.H. 1956. P r e p a r a t i o n and p r o p e r t i e s o f d i n i t r o p h e n y l -N H ( € ) - i n s u l i n . N a ture 1781 1402. MAGA, J.A., K. L o r e n z and 0 . Onayemi. 1973-D i g e s t i v e a c c p e t a b i l i t y o f p r o t e i n s as measured by the i n i t i a l r a t e o f i n v i t r o p r o t e o l y s i s . J . Food S c i . 38: 173-MATHESON, N.A. 1968. A v a i l a b l e l y s i n e . I I . D e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n f e e d i n g s t u f f s by d i n i t r o p h e n y l a t i o n . J . S c i . Food A g r i c . 19: 4 9 6 . MAURON, J . 1970. N u t r i t i o n a l e v a l u a t i o n o f p r o t e i n s by en z y m a t i c methods. IN: Im p r o v i n g P l a n t P r o t e i n s by N u c l e a r T e c h n i q u e s , p. 303. I n t l . Atomic Energy Agency, V i e n n a , A u s t r i a . 1 3 5 . MAURON, J . 1 9 7 2 . I n f l u e n c e o f i n d u s t r i a l and household h a n d l i n g on food p r o t e i n q u a l i t y . IN» P r o t e i n and Amino A c i d F u n c t i o n s (Ed. by E . J . Bigwood), p. 4 1 7 , Pergamon Pr e s s , New York. MAURON, J . , F. Mottu, E. Bujard and R.H. E g l i . 1 9 5 5 -The a v a i l a b i l i t y o f l y s i n e , methionine and tryptophan i n condensed m i l k and m i l k powder. In v i t r o d i g e s t i o n s t u d i e s . Arch. Biochem. Biophys. 59« 4 3 3 . MAURON, J. and F. Mottu. I 9 6 2 . Sweetened condensed v e r s u s evaporated m i l k i n improving the p r o t e i n e f f i c i e n c y o f wheat f l o u r . J . A g r i c . Food Chem. 1 0 J 5 1 2 . MAURON, J . and E. Bujard. I 9 6 3 . G u a n i d i n a t i o n , an a l t e r n a t i v e approach t o the de t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n foods. I n t l . Congr. Nutr. 6 . Edinburgh, p. 4 8 9 . MEANS, G.E. and R.E. Feeney. 1968. Reductive a l k y l a t i o n o f amino groups i n pro-t e i n s . Biochem. 7* 2 1 9 2 . MELNICK, D., B.L. Oser and S. Weiss. 1 9 4 6 . Rate o f enzymic d i g e s t i o n o f p r o t e i n s as a f a c -t o r i n n u t r i t i o n . S c i ence 1 0 3 * 3 2 6 . fMENDEN, E. and H.D. Cremer. 1966. A l a b o r a t o r y method f o r the e v a l u a t i o n o f chan-ges i n p r o t e i n q u a l i t y . Nutr. D i e t a 8* 1 8 8 . 136. MILLER, E.L. , K.J. Carpenter, C B . Morgan and A.W. Boyne. 1965. A v a i l a b i l i t y o f s u l f u r amino a c i d s i n p r o t e i n foods. 2 . Assessment of a v a i l a b l e methionine by c h i c k and m i c r o b i o l o g i c a l assays. B r i t . J . Nutr. 19: 2^9-MOORE, S., D.H. Spackman and W.H. S t e i n . 1959-Chromatography of amino a c i d s on s u l f o n a t e d p o l y s t y r e n e r e s i n . An improved system. Ana l . Chem.30: 1185-MORRISON, A.B., Z.I. Sabry, N.T. Gridgeman and J.A. Camp-b e l l . 1963. E v a l u a t i o n o f p r o t e i n i n foods. 8 . I n f l u e n c e of q u a l i t y and q u a n t i t y o f d i e t a r y p r o t e i n on net p r o t e i n u t i l i z a t i o n . Can. J. Biochem. P h y s i o l , k i t 275-MOTTU, F. and J . Mauron. 1967. The d i f f e r e n t i a l d e t e r m i n a t i o n o f l y s i n e i n heated m i l k . I I . Comparison of the i n v i t r o methods wi t h the b i o l o g i c a l e v a l u a t i o n . J . S c i . Food A g r i c . 18: 57 . MUELENAERE, H.J.H.De, M.L. Chen and A.E. Harper. I967. Assessment o f factors i n f l u e n c i n g e s t i m a t i o n o f a v a i l a b i l i t y o f t h r e o n i n e , i s o l e u c i n e and v a l i n e i n c e r e a l p r o d u c t s . J . A g r i c . Food Chem. 1 5 : 310. NETKE, S.P., H.M. S c o t t and G.L. A l l e e . 1969. E f f e c t o f excess amino a c i d s on the u t i l i z a t i o n o f f i r s t l i m i t i n g amino a c i d on c h i c k d i e t s . J . Nutr. 9 9 : 75-137. NETKE, S.P. and H.M. S c o t t . 1970. Es t i m a t e s on the a v a i l a b i l i t y o f amino a c i d s i n soybean o i l meal as determined by c h i c k growth assay. Methodology as a p p l i e d to l y s i n e . J . Nutr. 100: 281. NEY, K.H. and I.P.G. Wirotama. 1970. D e t e r m i n a t i o n o f the a v a i l a b l e l y s i n e i n m i l k and processed cheese by the r e a c t i v e dye Rema-z o l B r i l l a n t Blue R. Z. Lebensm. -Unters. Forsch. 144: 9 2 . -OKUYAMA, T. and K. Satake. i 9 6 0 . On the prep e r a t i o n ^ a n d p r o p e r t i e s o f 2 , 4 , 6 -t r i n i t r o p h e n y l - a m i n o a c i d s and p e p t i d e s . J . Biochem. (Tokyo) 47: 454. ORR, M.L. and B.K. Watt. 1957-Amino a c i d content o f foods. USDA Home Economics Research Report No. 4 , December, p. 14. 0STR0WSKI, H., A.S. Jones and A. Cadenhead. 1970. A v a i l a b i l i t y o f l y s i n e i n p r o t e i n c o n c e n t r a t e s u s i n g Carpenter's method and a m o d i f i e d S i l c o c k method. J. S c i . Food A g r i c . 21: 103. 0USTERH0UT, L.E. and E.M. Wood. 1970. A v a i l a b l e l y s i n e i n f i s h meal: Chemical (TNBS) method compared with a c h i c k assay. P o u l t r y S c i . 4 9 : 1423 ( A b s t r a ) . PELLETT, P.L. 1978. P r o t e i n q u a l i t y e v a l u a t i o n r e v i s i t e d . Food Tech. 32 ( 5 ) : 6 0 . 1 3 8 . PERRY, T.L. and S. Hansen. 1969. T e c h n i c a l p i t f a l l s l e a d i n g to e r r o r s i n the q u a n t i t a t i o n n o f plasma amino a c i d s . C l i n . Chim. Ac t a 25J 5 3 . PION, R. and A. Re'rat. 1962. I n f l u e n c e o f method of p r o c e s s i n g on n u t r i t i v e v a lue o f d r i e d m i l k . Proceedings, 1 6 t h I n t e r -n a t i o n a l D a i r y Congress, Copenhagen, p. 993-PISANO, J . J . , J.S. F i n l a y s o n and M.P. Peyton. 1968. C r o s s - l i n k i n f i b r i n polymerized by f a c t o r XIII5 €-(V-glutamyl) l y s i n e . S c i ence 160: 892. PORTER, R.R. 1948. The u n r e a c t i v e amino groups of p r o t e i n s . Biochem. Biophys. A c t a 2 : 105-POSATI, L.P., V.H. H o l s i n g e r , E.D. D e V i l b i s s and M.J. P a l l a n s c h . 1972. F a c t o r s a f f e c t i n g the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e i n whey with 2 , 4 , 6 - t r i n i t r o b e n z e n e s u l f o -n i c a c i d . J . D a i r y S c i . 55'- 1660. POSATI, L.P., V.H. H o l s i n g e r , E.D. D e V i l b i s s , F.E. McDonough, H.E. V e t t e l , D.E. Becker, V.S. Turkot and M.J. P a l l a n s c h . 1975-P r o d u c t i o n and u t i l i z a t i o n o f h i g h p r o t e i n con-c e n t r a t e s from a c i d cheese whey. A b s t r a c t s o f Papers, Am. Chem. S o c , AGFD 4 l . PRAHL, L. and K. T a u f e l . 1966. P r o t e i n d i g e s t i o n with simultaneous d i a l y s i s . Z. Lebensm. -Unters. Forsch. 1 3 3 : 73. 139. PRUSS, H.D. and K.H. Ney. 1972. Bestimmung des "verfugbaren" L y s i n s i n Molken-p u l v e r , Molkeneiweiss und l a b g e f a l l t e m C a s e i n mit dem R e a k t i v f a r b s t o f f R e m a z o l b r i l l i a n t b l a u R. Z. Lebensm. -Unters. Fosch. 148 V 3^7. PURCELL, J.M. , D.J. Quimby and J.R. Cavanaugh. 1976. New method f o r the d e t e r m i n a t i o n of f r e e amino groups i n i n t a c t pure p r o t e i n s i R e l a t i o n s h i p to a v a i l a b l e l y s i n e . J. AOAC. 591 1251-RAMIREZ, J.E., J.R. Cavanaugh, K.S. Schwerzer and P.D. Hoagland. 1975-The d e t e r m i n a t i o n of f r e e €-amino group o f l y s i n e i n p r o t e i n s u s i n g 1 9 F NMR spectroscopy. A n a l . Biochem. 631 130. RAO, S.R., F.L. C a r t e r and V.L. Frampton. I 9 6 3 . D e t e r m i n a t i o n o f a v a i l b l e l y s i n e i n o i l s e e d meal p r o t e i n s . A n a l . Chem. 35* 1927. RAY, W.J. and D.E. Koshland. I 9 6 I . A method f o r c h a r a c t e r i z i n g the type and number of groups i n v o l v e d i n enzyme a c t i o n . J . B i o l . Chem. 236: 1973. RAYNER, J. and M. Fox. 1976. Amino a c i d d i g e s t i b i l i t y s t u d i e s o f a u t o c l a v e d rapeseed meals u s i n g an i n v i t r o enzymatic procedure. J. S c i . Food A g r i c . 27* 643. RIEHM, J.P. and H.A. Scheraga. I 9 6 6 . S t r u c t u r a l s t u d i e s of r i b o n u c l e a s e . XXI. The r e a c t i o n between r i b o n u c l e a s e . arid a w a t e r - s o l u b l e c a r b o d i i m i d e . Biochem. 5* 99• 140. RICHARDS, M. and J . V i t h a y a t h i l . 1959-The p r e p a r a t i o n o f s u b t i l i s i n - m o d i f i e d r i b o -n uclease and the s e p a r a t i o n o f the pe p t i d e and p r o t e i n components. J . B i o l . Chem. 234t 1459. RIESEN, W.H., D.R. C l a n d i n i n , C.A. Elvehjem and W.W. Cravens. 1947. L i b e r a t i o n o f e s s e n t i a l amino a c i d s from raw, p r o p e r l y heated, and overheated soybean o i l meal. J . B i o l . Chem. 167» 143-RHINEHART, D. 1975. A n u t r i t i o n a l c h a r a c t e r i z a t i o n o f the d i s t i l l e r ' s g r a i n p r o t e i n c o n c e n t r a t e s . M.S. t h e s i s , Univ. of Nebraska, L i n c o l n , NE. ROACH, A.G., P. Sanderson-andD.R."Williams. I967. Comparison o f methods f o r the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e v alue i n animal and vegeta b l e p r o t e i n sources. J . S c i . Food A g r i c . 18: 274. ROCKLAND, L.B. and M.S. Dunn. 1949-Determination o f the b i o l o g i c a l value o f p r o t e i n s with Tetrahymena g e l e i i . J . Food Tech. 3» 289. ROLLE, G. 1973. Tetrahymena p y r i f o r m i s as a t e s t organism f o r the e v a l u a t i o n o f p r o t e i n q u a l i t y . N a r i n g s f o r s . 17: 118. RUDERUS, H. and R. K i h l b e r g . 1970. Determination o f a v a i l a b l e l y s i n e by column chro-matography. IN: E v a l u a t i o n o f Novel P r o t e i n Pro-ducts. (Ed. by A.E. Bender, R. K i h l b e r g , B. L o f g v i t and L. Munck), p. 195. Pergamon Pr e s s , Oxford. 141. SANGER, F. 1945. The f r e e amino groups o f i n s u l i n . Biochem. J . 391 507. SATAKE, K., T. Okuyama, M. Ohashi and T. Shinoda. i 9 6 0 . The spectrophotometric d e t e r m i n a t i o n o f amines, amino a c i d s and p e p t i d e s with 2 , 4 , 6 - t r i n i t r o -b e n z e n e - l - s u l f o n i c a c i d . J . Biochem. 47: 654. SATTERLEE, L.D., J.G. Kendrick and G.A. M i l l e r . 1977-Rapid i n v i t r o assays f o r e s t i m a t i n g p r o t e i n q u a l i t y . Food Tech. 31 ( 6 ) : 78. SAUNDERS, R.M., M.A. Connor, A.N. Booth, E.M. B i c k o f f and G.O. Kohler. 1973-Measurement o f d i g e s t i b i l i t y o f a l f a l f a p r o t e i n c o n c e n t r a t e s by i n v i v o and i n v i t r o methods. J . Nutr. 103«530. SELIM, A.S.M. 1965. M i c r o d e t e r m i n a t i o n o f l y s i n e i n p r o t e i n hydro-l y z a t e s . J . A g r i c . Food Chem. 13: 435. SHEFFNER, A.L., G.A. E c k f e l d t and H. Spector. 1956. The p e p s i n - d i g e s t r e s i d u e (PDR) amino a c i d index o f NPU. J . Nutr. 6 0 : 105-SHINODA, T. I 9 6 5 . Apparent h i g h r e a c t i v i t y of some amino groups o f n a t i v e hemoglobin. Biochim. Biophys. A c t a 97« 382. SH0RR0CK, C. 1972. Ph.D. t h e s i s , Univ. o f Reading, England. ( C i t e d by Shorrock and Ford, 1973). 142. SHORROCK, C. and J.E. Ford. 1973-An improved procedure f o r the d e t e r m i n a t i o n o f a v a i l a b l e l y s i n e and methionine w i t h Tetrahymena. B r i t . J . Nutr. 35* 333-SMITH, R.E. and H.M. S c o t t . I965. Measurement o f the amino a c i d content o f f i s h meal p r o t e i n s by c h i c k growth assay. 2. The e f f e c t s o f amino a c i d imbalances upon e s t i m a t i o n s of amino a c i d a v a i l a b l i t y by c h i c k growth assay. P o u l t r y S c i . 44: 408. SMITH, T.A. 1972. The p h y s i o l o g y o f the polyamides and r e l a t e d compounds. Endeavour 31* 22. SPACKAMN, D.H., W.H. S t e i n and S. Moore. 1958. Automatic r e c o r d i n g apparatus f o r use i n the chromatography o f amino a c i d s . Anal. Chem. 30:1190. STAHMANN, M.A. 1977. D i s c u s s i o n s e c t i o n o f "The Midlands Conference: New Concepts f o r the Rapid D e t e r m i n a t i o n o f P r o t e i n Q u a l i t y " . Food Tech. 31(6)1 93-STAHMANN, M.A. and G. Wol d e g i o r g i s . 1975. Enzymatic methods f o r p r o t e i n q u a l i t y d etermi-n a t i o n . IN: P r o t e i n N u t r i t i o n a l Q u a l i t y o f Foods and Feeds. P a r t 1, Assay Methods - B i o l o g i c a l , B i o c h e m i c a l and Chemical. (Ed. by M. Friedman), p. 211. Marcel Dekker, Inc., New York. SUGAE, K. i960. S t u d i e s on b a c t e r i a l amylase. V. Chemical m o d i f i c a t i o n o f b a c t e r i a l amylase and c o u p l i n g on taka-amylase A with p-sulfo-benzene-diazonium c h l o r i d e . J . Biochem. 48: 790. 143. SULSER, H. 1973-Importance o f f r u c t o s e l y s i n s and t h e i r decom-p o s i t i o n products f u r o s i n e and p y r i d o s i n e f o r the q u a l i t y c o n t r o l o f foods. Lebensm. Technol. 61 66. SZKLARSKA-CYGANSKA, R. and I. Kakowska-Lipinska. 1970. Determination o f a v a i l a b l e l y s i n e i n some food products by a chemical method and by a micro-b i o l o g i c a l method with Tetrahymena p i r i f o r m i s . Rocs. Panstw. Z a k l . H i g . 21(4) s 379-SZMELCMAN, S. and K. Guggenheim. I 9 6 7 . A v a i l a b i l i t y o f amino a c i d s i n processed p l a n t p r o t e i n f o o d s t u f f s . J . S c i . Food A g r i c . 18» 347. TAKEMORI, S., K. Wada, K. Ando, M. Hosokawa, I. Sekuzu and K. Okunuki. I962. Cytochrome a. V I I I . R e a c t i o n o f cytochrome a wi t h c h e m i c a l l y m o d i f i e d cytochrome c and b a s i c p r o t e i n s . J . Biochem. 52: 28. THOMAS, M. 1970. A chemical method f o r the d e t e r m i n a t i o n o f a v a i -l a b l e l y s i n e . Ph.D. T h e s i s , Texas A.& M U n i v e r s i t y . THOMPSON, D.R., J.C. Wolf and G.A. R e i n e c c i u s . 1976. L y s i n e r e t e n t i o n i n food d u r i n g e x t r u s i o n - l i k e p r o c e s s i n g . Trans. ASAE. ( I n p r e s s ) . ( C i t e d by Wolf and Thompson, 1977). TRISTRAM, G.R. 1953« INV The P r o t e i n s . (Ed. by H. Neurath and K. B a i l e y ) . V o l . 1, P a r t A, p. 181. Academic Press, New York. 144. TROP, M. and Y. B i r k . 1970. S p e c i f i c i t y o f p r o t e i n a s e s from Streptomyces g r i s e u s (Pronase). Biochem. J . 1 1 6 : 1 9 . TSAI, C.Y., L.W. Hansel and O.E. Nelson. 1972. A c o l o r i m e t r i c method o f s c r e e n i n g maize seeds f o r l y s i n e content. C e r e a l Chem. 49: 572. TSAO, T-F., A.L. Fr e y and M.H. Judson. 1978. A v a i l a b l e l y s i n e i n heated f o r t i f i e d r i c e meal. J . Food S c i . 43 ( 4 ) : 1106. VAN SLYKE, D.D. 1911. A method f o r the q u a n t i t a t i v e d e t e r m i n a t i o n o f a l i p h a t i c amino groups. J . B i o l . Chem. 9 ' I85. VAN SLYKE, D.D. 1912. Q u a n t i t a t i v e d e t e r m i n a t i o n o f a l i p h a t i c amino groups. J . B i o l . Chem. 12: 275-VISWANATHA, T. and I.E. L i e n e r . 1955-U t i l i z a t i o n o f n a t i v e and denatured p r o t e i n s by Tetrahymena p i r i f o r m i s W. Arch. Biochem. Biophys. 56:' 222. WAKKERS, P.J.M., H.B.A. Hellendoorn, G.J. Op de Weegh and W. Heerspink. 1975. A p p l i c a t i o n s o f s t a t i s t i c s i n c l i n i c a l chemistry. A c r i t i c a l e v a l u a t i o n o f r e g r e s s i o n l i n e s . C l i n . Chim. A c t a 64: 173. WEIGELE, M., S.L. De Bernardo, J.P. Tengi and W. Leimgru-ber. 1972. Novel reagent f o r the f l u o r o m e t r i c assay o f primary amines. J . Amer. Chem. Soc. 94s 5927. 145. WILDER, O.H.M. and H.R. K r a y b i l l . 1947 . E f f e c t o f cooking and c u r i n g on l y s i n e content o f pork luncheon meat. J . Nutr. 33* 235• WILLIAMS, D.R. I967. The determinaUon o f a v a i l a b l e l y s i n e . 5 ^ Colloquium on amino a c i d analyses, Dumont, France. Technicon I n t e r n a t i o n a l D i v i s i o n , Monograph 2, p. 42. WOLF, J.C. and D.R. Thompson. 1977 . I n i t i a l l o s s e s o f a v a i l a b l e l y s i n e i n model systems. J . Food S c i . 42 ( 6 ) : 1540 . WU, C-H., S. Nakai and W.D. Powrie. 1976 . P r e p a r a t i o n o f a c i d s o l u b i l i z e d g l u t e n . A g r i c . Food Chem. 241 504 . YOUNG, V.R. and N.S. Scrimshaw. 1977 . Human p r o t e i n and amino a c i d metabolism and requirements i n r e l a t i o n to p r o t e i n q u a l i t y . INt E v a l u a t i o n o f P r o t e i n f o r Humans. (Ed. by C E . Bodwell). AVI P u b l i s h i n g Co., Westport, CT. YOUNG, V.R., W.M. Rand and N.S. Scrimshaw. 1977 -Measuring p r o t e i n q u a l i t y i n humans. A review and proposed method. C e r e a l Chem. 5 ^ ' 9 2 9 . YOUNG, V.R. and P.L. P e l l e t t . 1978 . N u t r i t i o n a l e v a l u a t i o n o f p r o t e i n foods. N a t l . Acad. S c i e n c e s - N a t l . Res. C o u n c i l , Washington, D.C. ( I n P r e s s ) . 146. APPENDIX 3% DNBS REAGENT D i s s o l v e 6 g DNBS and 6 g a c t i v a t e d c h a r c o a l i n d i s t i l l e d water and make the volume up to 100 ml. S t i r f o r 10 min and f i l t e r through Whatman # 1 . Measure the r e f r a c t i v e index o f the y e l l o w s o l u t i o n and d i l u t e i t to o b t a i n a 3% DNBS s o l u t i o n . R e f r a c t i v e index o f DNBS = 1 .3406 R e f r a c t i v e index o f d i s t i l l e d water = 1 .3340 D i f f e r e n c e = 0 . 0066 A d i f f e r e n c e o f 0.0046 corresponds to a 3% DNBS (RI = 1 .3386) s o l u t i o n , thus* 0 .0046 3% 0 .0066 x x = 4 . 3 % DNBS I f 4 .3% DNBS . 9 1 . 5 ml ( v o l . a f t e r f i l t e r e d ) 3.0% DNBS „ x x = 1 3 1 . 1 5 ml. T h e r e f o r e , d i l u t e the 4 .3% DNBS s o l u t i o n up to 1 3 1 . 1 5 ml by adding 3 9 - 6 5 ml d i s t i l l e d water.