AOLP : AN AUTOMATIC OBJECT LOCATION PROGRAM by ROBERT GLENN SCHAREIN B.Sc. (Hon), U n i v e r s i t y of Manitoba, 1981 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Geophysics and Astronomy) We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1984 © Robert Glenn S c h a r e i n , 1984 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department ,of (j^op hyji (.5 CL^<4 ^SWO^OW.^ The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date DE-6 (.3/81) Abstract T h i s t h e s i s d e s c r i b e s the f i r s t i n c a r n a t i o n of an automated photometry program AOLP, acronym f o r Automatic Object L o c a t i o n Program. T h i s program i s designed to search through an image and to f i n d , c atalogue, and ( e v e n t u a l l y ) c l a s s i f y a l l o b j e c t s found. The primary aim i s f o r use i n a f a i n t galaxy survey. The program has a l s o proven u s e f u l i n other areas, such as photometry of g l o b u l a r c l u s t e r s and r e l a t i v e l y nearby, b r i g h t g a l a x i e s . i i Table of Contents Chapter Page A b s t r a c t i i L i s t of Tables i v L i s t of F i g u r e s v Acknowledgements v i i I. I n t r o d u c t i o n 1 A. F a i n t Galaxy Counting 1 B. Moment I n v a r i a n t s i n Astronomy 8 I I . Hardware and Software D e s c p r i p t i o n 13 A. The I 2 S Image Processor 13 B. The Automatic Object L o c a t i o n Program 17 I I I . A p p l i c a t i o n to A r t i f i c i a l F i e l d s 20 A. E f f e c t of Shape 21 IV. Mixed Star and Galaxy F i e l d s 25 V. Photometric A p p l i c a t i o n s 29 A. G l o b u l a r C l u s t e r s 32 M92 32 M13 36 B. G a l a x i e s 39 Colours and Magnitudes of Compact Group g a l a x i e s 39 Luminosity P r o f i l e s of Compact Group G a l a x i e s 41 VI. C o n c l u s i o n 67 B i b l i o g r a p h y 68 i i i L i s t of Tables I A n a l y t i c a l Values f o r Moment I n v a r i e n t s 22 II C a l i b r a t i o n S t a r s i n M92 31 III Colours and Magnitudes of Compact Group G a l a x i e s 40 i v L i s t of Figures 1 F a i n t galaxy counts 4 2 Data path i n 1 2S 14 3 R v i . C 2 f o r gaussians 23 4 C„ v s . C 2 f o r gaussians 23 5 C 2 vs. magnitude f o r E9 f i e l d • 26 6 R vs. C 2 f o r E9 f i e l d 27 7 R v s . C 2 f o r E9 f i e l d 27 8 C„ vs. C 2 f o r E9 f i e l d 28 9 C 2 vs. magnitude f o r M92 34 10 R v s . C 2 f o r M92 35 11 C„ v s . C 2 f o r M92 35 12 B v s . B-R CM diagram f o r M92 37 13 V vs. B-V CM diagram f o r M92 37 14 B vs. B-R CM diagram for M13 38 15 V v s . B-V CM diagram f o r M1 3 38 16 Luminosity p r o f i l e s f o r galaxy HCG73a 43 17 Luminosity p r o f i l e s f o r galaxy HCG73b 44 18 Luminosity p r o f i l e s f o r galaxy HCG73c 45 19 Luminosity p r o f i l e s f o r galaxy HCG73d.. 46 20 Luminosity p r o f i l e s f o r galaxy HCG76a 47 21 Luminosity p r o f i l e s f o r galaxy HCG76b 48 22 Luminosity p r o f i l e s f o r galaxy HCG76b... 49 23 Luminosity p r o f i l e s f o r galaxy HCG76c 50 24 Luminosity p r o f i l e s f o r galaxy HCG76c 51 25 Luminosity p r o f i l e s f o r galaxy HCG76d 52 v 26 ' Luminosity p r o f i l e s f o r galaxy HCG76e 53 27 Luminosity p r o f i l e s f o r galaxy HCG76f 54 28 Luminosity p r o f i l e s for galaxy HCG88a 55 29 Luminosity p r o f i l e s for galaxy HCG88b 56 30 Luminosity p r o f i l e s f o r galaxy HCG88c 57 31 Luminosity p r o f i l e s f o r galaxy HCG88d 58 32 Luminosity p r o f i l e s f o r galaxy HCG92a 59 33 Luminosity p r o f i l e s f o r galaxy HCG92bd 60 34 Luminosity p r o f i l e s f o r galaxy HCG92c 61 35 Luminosity p r o f i l e s for galaxy HCG92e 62 36 Luminosity p r o f i l e s f o r galaxy HCG97a 63 37 Luminosity p r o f i l e s f o r galaxy HCG97a 64 38 Luminosity p r o f i l e s f o r galaxy HCG97b 65 39 Luminosity p r o f i l e s f o r galaxy HCG97c 66 v i Acknowledgements I would l i k e to thank my a d v i s o r , Dr. Greg Fahlman f o r suggesting t h i s p r o j e c t and p r o v i d i n g help when needed. His p a t i e n c e and encouragement were most welcome. I would a l s o l i k e to thank Dr. Paul Hickson f o r access to h i s CCD images of compact groups and g l o b u l a r c l u s t e r s . To my f r i e n d s and c o l l e g u e s i n the Astronomy Dept, I o f f e r my g r a t i t u d e . I'd e s p e c i a l l y l i k e to thank John N i c o l , f o r always p r o v i d i n g c h e e r f u l a s s i s t a n c e with a myriad of computer problems. For a l l my dear f r i e n d s in Winnipeg and Calgary, thanks f o r standing behind me when the going got rough. To my very c l o s e f r i e n d s i n Vancouver (and those who have l e f t ) , I owe a great d e a l . Thank-you for a l l that you have shown me over the past three y e a r s . To my brother Don, h i s wife Debbie and t h e i r daughter who was born as t h i s t h e s i s was being completed I extend my love. And most of a l l I would l i k e to thank my parents, my mother with her joyous, wonderful f r e e - f l o w i n g s p i r i t , who has been a r e a l gem a l l these years; and my f a t h e r , that most b r i l l i a n t man who taught me the love of nature, wherever he may be. v i i I. Introduction A. Faint Galaxy Counting Two important and as of yet, unanswered q u e s t i o n s i n cosmology are: 1) Is the u n i v e r s e r e a l l y homogeneous? and 2) E x a c t l y how do g a l a x i e s evolve? To answer these q u e s t i o n s r e q u i r e s that we look f a r enough out i n the u n i v e r s e so that we are w e l l w i t h i n the uniform Hubble flow, and f a r enough back in time so that we can see g a l a x i e s over a s i g n i f i c a n t f r a c t i o n of t h e i r l i f e t i m e s . Thus we are i n the realm of the very f a i n t g a l a x i e s (B > 22) where, due to the l a r g e numbers i t may become necessary to have an automated means of c o u n t i n g and measuring the g a l a c t i c images. I t i s f o r t h i s purpose that the program AOLP (Automatic Object L o c a t i o n Program) has been developed. I t w i l l become p o s s i b l e with equipment p r e s e n t l y being b u i l t at the U n i v e r s i t y of B r i t i s h Columbia to o b t a i n a complete sample of f a i n t g a l a x i e s down to magnitude 25 together with r e d s h i f t i n f o r m a t i o n f o r s e v e r a l r e g i o n s of the sky. Such a sample w i l l g r e a t l y enhance our c u r r e n t understanding of these q u e s t i o n s . I t i s u s e f u l then to examine what i n f o r m a t i o n we c o u l d expect to f i n d from f a i n t galaxy counts and a l s o to see what o t h e r s have done in t h i s a r ea. F a i n t galaxy counts appear to be r e l a t i v e l y i n s e n s i t i v e to d i f f e r e n t values of the Hubble constant H0 and the d e c e l e r a t i o n parameter q0 for a s p e c i f i c c o s m o l o g i c a l model. The reason f o r t h i s i s , as shown by T i n s l e y (1977,1980), 1 2 that number-magnitude r e l a t i o n s f o r d i f f e r e n t models are im p e r c e p t i b l y d i f f e r e n t ( i g n o r i n g e v o l u t i o n ) at c o n c e i v a b l y a t t a i n a b l e magnitudes. Once we i n c l u d e g a l a c t i c e v o l u t i o n , the i n t e r p r e t a t i o n of galaxy counts i s com p l i c a t e d by many unknown parameters. A l s o , the d i s t i n c t i o n between d i f f e r e n t types of g a l a x i e s i s g e n e r a l l y not a v a i l a b l e at f a i n t magnitudes. The observed d i f f e r e n t i a l count i s t h e r e f o r e a sum over the expected number N (m) f o r each c l a s s of galaxy. The number of g a l a x i e s of a given type i n an i n t e r v a l Am of apparent magnitude i s given by, N (m) Am = J N (m, z) dl ogz Am where Zy = "formation" r e d s h i f t (when s t a r formation s t a r t e d ) N = (number of ga l a x i e s ) / m a g n i t u d e / u n i t logz = W(z) n0 *(M0) here W(z) =-4-nRlr 2 r7 \/(l-kr2) dr d I ogz i s the comoving volume/unit logz i n a Robertson-Walker cosmology with the standard metric ds2 = c 2 d t 2 - R2(t)[dr2/(1-kr2) + r2dd2 + r2si n28d*-*• a Figure 10: Scatter p l o t of R vs. C 2 for objects in M92. 50000 r 20000 -10000 -5000 L 1000 -500 L 0.5 2 5 10 20 50 100 Figure 11: Scatter p l o t of C« vs. C 2 for objects in M92. 36 The p l o t of C 4 vs. C 2 shown i n f i g u r e 11 proves to more i n t e r e s t i n g than i t was e a r l i e r . S t a r s l i e on an extremely narrow l i n e , and there i s a l s o c o n s i d e r a b l e d e v i a t i o n from t h i s l i n e f o r n o n - s t e l l a r o b j e c t s . Two colour-magnitude diagrams are show here. F i g u r e 12 shows a J? vs. B-R diagram obtained with data from the f i r s t o bserving s e s s i o n . A V vs. B-V diagram i s shown i n f i g u r e 13 with data from the second s e s s i o n . M13 Exposures of M13 were taken only on the second observing s e s s i o n . The f i e l d surveyed i s l o c a t e d f i v e arc-minutes d i r e c t l y north of the c e n t e r . Shown i n f i g u r e s 14 and 15 are B vs. B-R and V vs. B-V diagrams. T h i s approach i n determining colour-magnitude diagrams i s probably not the best one a v a i l a b l e , although i t does y i e l d i n t e r e s t i n g r e s u l t s . A b e t t e r technique i s to f i t s t e l l a r p r o f i l e s to the o b j e c t s i n the f i e l d . T h i s a l l o w s merged o b j e c t s to be i n c l u d e d i n the survey. In the approach taken here, merged o b j e c t s are d e l i b e r a t e l y avoided. 37 16 17 18 19 m 20 21 22 h 23 • * \ ^ + •H- + , + + 4+ + + • • 24 0.5 16 h 17 r 18 h 1.0 1.5 2.0 B - R : M92 Figure 12: C o l o u r magnitude d i a g r a m of M92 from f i r s t o b s e r v i n g s e s s i o n . i "i 1 — i I I T I I I 2.5 19 20 21 22 23 -0.4 0.0 + + + 4-. +"7+ + •V* 4* 0.4 1.6 0.8 1.2 B - V : M92 Figure 13: C o l o u r magnitude d i a g r a m of M92 from second o b s e r v i n g s e s s i o n . 2.0 19 r 20 r 21 r 22 23 1.2 1.6 B - R : M13 2.0 2.4 Figure Ml 3. 14: Colour magnitude diagram of i _ + i i i i i i - + *• - + + + A + -4-4- 4. 4. * + -ft* • • + + ** f 4- * * ** + i 4. • *-\ j. \* * 1 * * 4+ 4* + *+ * + + + 4 -1 1 1 1 1 1 18 19 20 21 22 0.4 0.8 1.6 1.2 B - V : M13 Figure 15: Colour magnitude diagram of Ml 3. 39 B. Galaxies AOLP was a l s o used determine the magnitudes and c o l o u r s of g a l a x i e s i n Hickson's compact group c a t a l o g u e . The data was obtained during the summer of 1983 o b s e r v i n g s e s s i o n . Exposures were made in red and blue l i g h t f o r each f i e l d . The photometry was done using the ISOPHOT command in AOLP. The i s o p h o t a l i n t e n s i t y was measured at each isophote from 255 ( i n ADC u n i t s ) down to j u s t above the sky. T h i s allowed the i n t e n s i t y p r o f i l e s to be determined i n a d d i t i o n to c o l o u r s and magnitudes for each galaxy. Colours and Magnitudes of Compact Group galaxies The c o l o u r s and magnitudes for the s e l e c t e d g a l a x i e s are shown in Table I I I . In order to determine the c o l o u r s , the two images taken through the R and B f i l t e r s had to be matched up. A number of a l t e r n a t i v e s were c o n s i d e r e d . One p o s s i b i l i t y was to d e f i n e an area by a given isophote on one image, a l i g n the images c a r e f u l l y and measure the i n t e n s i t y w i t h i n the corresponding region on the other image (note i t i s not n e c e s s a r i l y an i s o p h o t e ) . T h i s method does not f i t n a t u r a l l y i n t o the type of output generated by AOLP. The ISOPHOT command g i v e s the i n t e n s i t y w i t h i n the isophote and the area of the isophote ( i n p i x e l s ) . The technique used was to match up each measurement in one c o l o u r ( i n t h i s case blue, but the choice i s a r b i t r a r y ) with the measurement i n the other c o l o u r that c o n t a i n e d the same number of p i x e l s ( i n t e r p o l a t i n g i f n e c e s s a r y ) . A p o t e n t i a l disadvantage of 40 Table I II; Colours and Magnitudes of Compact Group Galaxies Galaxy -•23.5 (B-R) 2 3 5 &2«.0 (B-R) 2 a o Comments 73a 14.74 1.17 14.43 1.14 s p i r a l 73b 17.76 2.30 17.47 2.26 s p i r a l f 73c 17.22 1 .69 17.14 1 .69 le n t i c 73d 19.11 2.44 18.94 2.43 s p i r a l f 76a 16.11 1 .79 16.05 1 .78 spi r a l 76b 15.47 1 .58 15.33 1 .57 e l l i p 76c 1 5.70 1 .66 15.53 1 .65 e l l i p 76d 16.16 1 .60 15.97 1 .56 e l l i p 76e 17.73 1 .54 17.55 1 .54 s p i r a l 88a 14.38 1 .53 1 4.29 1 .53 s p i r a l 88b 14.51 1 .53 1 4.39 1 .52 spi r a l 88c 1 5.56 1.11 15.37 1.11 spi r a l 88d 15.87 0.78 ***** **** spi r a l 92a 13.53 1 .08 ***** **** spi r a l 92bd 14.08 1 .65 13.96 1 .65 spi r a l 92c 15.44 1 .82 14.74 1 .62 s p i r a l 92e 15.46 * * * * ***** **** ellip t -97a 14.74 1 .65 14.59 1 .65 e l l i p 97b 16.12 1 .57 16.01 1 .58 spi r a l 97c 15.26 1 .45 15.17 1 .45 lent ic t Blue photometry probably in error $ Bright star subtracted this method i s that the same region might not be measured on each image, eventhough they are of the same size area. This effect would generally be s i g n i f i c a n t only in the inner region of a galaxy where the colour along a given isophote 41 might not be constant. For measurements i n the outer regions of a galaxy, where the co l o u r i s f a i r l y uniform around an isophote, t h i s technique i s r e l i a b l e . The r e s u l t s quoted i n the t a b l e are f o r t h i s case. Luminosity P r o f i l e s of Compact Group Galaxies The ISOPHOT command i s very u s e f u l f o r determining l u m i n o s i t y p r o f i l e s of g a l a x i e s . The method used here i s somewhat d i f f e r e n t from usual techniques of a r r i v i n g at lu m i n o s i t y p r o f i l e s , but i s p o t e n t i a l l y as u s e f u l . Luminosity p r o f i l e s are u s u a l l y determined from r a d i a l c u t s , e i t h e r along the minor or major a x i s or at some angle to i t . Aperture photometry i s a l s o used with c i r c u l a r a p e r t u r e s or e l l i p t i c a l a p e r t u r e s t a i l o r e d to f i t a given g a l a x y . A l l of these methods s u f f e r from the problem that they are not g e n e r a l . R a d i a l cuts c o n t a i n i n f o r m a t i o n only from one par t of the galaxy. With aperture photometry i t i s d i f f i c u l t to accommodate p e c u l i a r i t i e s i n i n d i v i d u a l galaxy shapes. I t i s worthwhile to develop an approach that i s holistic i n the sense that i t d e s c r i b e s the e n t i r e galaxy, and general i n that i t can be a p p l i e d to a l l g a l a x i e s i n a c o n s i s t e n t manner. We d e f i n e here the effective radius of an isophote to be re=\/(A/n) where A i s the area w i t h i n the i s o p h o t e . For an e l l i p s e of e l l i p t i c i t y e t h i s corresponds to a r a d i a l cut at an angle 4>=arccos {(1 - e)'05} to the major a x i s . For d i s r u p t e d g a l a x i e s there i s no such correspondence between the e f f e c t i v e radius and a r a d i a l c u t . These g a l a x i e s o f t e n 42 have no c l e a r l y d e f i n e d major a x i s and the e f f e c t i v e r a d i u s seems to be the most meaningful r a d i a l parameter. Many of the g a l a x i e s s t u d i e d here are of t h i s type. F o l l o w i n g are the d i f f e r e n t i a l and i n t e g r a t e d l u m i n o s i t y p r o f i l e s for 2. of the compact group g a l a x i e s . Magnitude i s p l o t t e d as a f u n c t i o n of r f o r each galaxy, and a l s o as a f u n c t i o n of r e ° ' 2 S f o r e l l i p t i c a l g a l a x i e s . The magnitudes shown are instrumental blue magnitudes. 43 2 0 I 1 1 1 1 1 1 1 -2 5 i i i i i i i I 0.0 5 10 15 2 0 2 5 3 0 3 5 Eff. Radius (arc-sec) : HCG73a 14- I 1 1 1 1 1 r 0.0 5 10 15 2 0 2 5 3 0 3 5 Eff. Radius (arc-sec) : HCG73a Figure 16: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG73a. Open faced Sc s p i r a l . 44 21 0.0 5 10 15 Eff. Radius (arc-sec) : HCG73b 0.0 5 10 15 Eff. Radius (arc-sec) : HCG73b Figure 17: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG73b. S p i r a l galaxy. The blue photometry i s probably in e r r o r . Figure 18: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG73c. Lenticular galaxy. 46 T 1 1 1 1 1 1 1 1 1 0.0 2 4 6 8 10 Eff. Radius (arc-sec) : HCG73d i 1 1 i i i i i i i I 0.0 2 4 6 8 10 Eff. Radius (arc-sec) : HCG73d Figure 19: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG73d. S p i r a l galaxy. Photometry probably in error. 47 0.0 18 r 0.0 5 10 15 Eff. Radius (arc-sec) : HCG76a 5 10 15 Eff. Radius (arc-sec) : HCG76a Figure 20: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76a. S p i r a l galaxy. J I L 0.0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG76b i 1 1 1 1 1 1 0.0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG76b Figure 21: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76b. E l l i p t i c a l galaxy. cd S 15 16 17 1.0 1.5 2.0 2.5 (Eff. Rad.)* 5 (arc-sec)" 2 5 : HCG76b Figure 22: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76b. E l l i p t i c a l galaxy. •4-3 d CO S OJ 16 17 0.0 Eff. 5 10 15 Radius (arc-sec) : HCG76c Figure 23: magnitude E l l i p t i c a l 20 D i f f e r e n t i a l p r o f i l e s f o r galaxy. and i n t e g r a t e d galaxy HCG76c. 1 1.5 2 2.5 (Eff. Rad)"86 (arc-sec)"* : HCG76c i - 1 1 1 • — i i I I i i i i 1 1 1 1.5 2 2.5 (Eff. Rad)* 8 (arc-sec)"* : HCG76c Figure 24: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76c. E l l i p t i c a l galaxy. 20 Eff. Radius (arc-sec) : HCG76d Figure 25: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76d. E l l i p t i c a l galaxy. Sharp jump in p r o f i l e due to presence of bright st a r . 5 3 l i I I I I I i i I I 0.0 2 4 6 8 10 Eff. Radius (arc-sec) : HCG76e Figure 26: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG76e. S p i r a l galaxy. CD -*-> ti S 18 19 20 0.0 2 4 6 8 10 Eff. Radius (arc-sec) : HCG76f 12 Figure 27: D i f f e r e n t i a l magnitude p r o f i l e s for Lenticular galaxy. and integrated galaxy HCG76f. 55 I i i i i 1 1 1 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG88a Figure 28: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG88a. S p i r a l galaxy. 56 . I 1 1 i i i i I 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG88b 14 I 1 1 1 1 1 1 . 1 15 -i-j fl ca «! 16 fl 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG88b Figure 29: D i f f e r e n t i a l and in t e g r a t e d magnitude p r o f i l e s f or galaxy HCG88b. S p i r a l galaxy. 57 0.0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG88c T 1 1 1 r j i i i L ° 0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG88c Figure 30: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG88c. S p i r a l galaxy. 58 Figure 31: D i f f e r e n t i a l and integrated^ magnitude p r o f i l e s for galaxy HCG88d. S p i r a l galaxy. 59 20 I 1 1 1 1 1 1 1 24 I 1 1 1 1 1 1 1 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG92a 13 I i 1 1 1 1 r 22 1 1 i i i i i I 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG92a Figure 32: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG92a. S p i r a l galaxy. B r i g h t e s t . member in Stephen's Q u i n t e t . Galaxy with d i s c r e p e n t r e d s h i f t . Sharp jump i n p r o f i l e due to presence of b r i g h t s t a r . 20 | 1 1 1 1 1 r 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG92bd I r 1 1 1 1 i I -•-< a aj SS si C ~ 15 I i I i i i i l 0.0 5 10 15 20 25 30 35 Eff. Radius (arc-sec) : HCG92bd Figure 33: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG92bd. P a i r of i n t e r a c t i n g s p i r a l g a l a x i e s i n Stephen's Q u i n t e t . 61 20 0.0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG92c J L 0.0 5 10 15 20 25 30 Eff. Radius (arc-sec) : HCG92c Figure 34: D i f f e r e n t i a l and integrated magnitude p r o f i l e s for galaxy HCG92c. S p i r a l galaxy in Stephen's Quintet. Eff. Radius (arc-sec) : HCG92e CD c cd 3 S CD 14 15 16 0.0 5 10 15 20 Eff. Radius (arc-sec) : HCG92e 25 Figure 35: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG92e. E l l i p t i c a l galaxy i n Stephen's Q u i n t e t . The sharp jump in the p r o f i l e i s due the presence of a b r i g h t s t a r . 63 I 1 1 I I i i I 0.0 5 10 15 20 25 30 35 Eff. R a d i u s ( a r c - s e c ) : HCG97a 0.0 5 10 15 20 25 30 35 Eff. R a d i u s ( a r c - s e c ) : HCG97a Figure 36: D i f f e r e n t i a l and in t e g r a t e d magnitude p r o f i l e s for galaxy HCG97a. E l l i p t i c a l galaxy. I I I I I I I 1.0 1.5 2.0 2.5 ( E f f . R a d . ) * 6 ( a r c - s e c ) * * : HCG97a Figure 37: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG97a. E l l i p t i c a l galaxy. 0.0 5 10 15 Eff. Radius (arc-sec) : HCG97b 20 Figure 38 magnitude galaxy. D i f f e r e n t i a l and p r o f i l e s f o r galaxy i n t e g r a t e d HCG97b. S p i r a l 15 cd s OJ 16 0.0 5 10 15 20 Eff. Radius (arc-sec) : HCG97c Figure 39: D i f f e r e n t i a l and i n t e g r a t e d magnitude p r o f i l e s f o r galaxy HCG97c. L e n t i c u l a r galaxy. VI. Conclusion The f i r s t stages of AOLP have shown i t to be useful in a number of d i f f e r e n t applications. It is a r e l i a b l e method of obtaining colour-magnitude diagrams for globular clusters although i t is probably not the best approach. Luminosity p r o f i l e s of galaxies are quickly and e f f i c i e n t l y determined with the program. More research s t i l l needs to be done in the application to mixed star and galaxy f i e l d s . This w i l l have to wait u n t i l the proper data base can be assembled. The i n i t i a l work with moment invarients looks promising, the technique proved helpful in discriminating stars from other objects when applied to the globular cluster f i e l d s . 67