TEMPERATURE AND DISLOCATION STRESS FIELD MODELS OF THE LEC GROWTH OF GALLIUM ARSENIDE by CARLOS ENRIQUE SCHVEZOV L i e . en F i s i c a , U n i v e r s i d a d N a c i o n a l de R o s a r i o , A r g e n t i n a , 1975 M.A.Sc. i n M e t a l l u r g y , U n i v e r s i t y of B r i t i s h C o l u m b i a , Canada, 1983 A THESIS SUBMITTED IN THE REQUIREMENTS DOCTOR OF PARTIAL FULFILLMENT OF FOR THE DEGREE OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES (De p a r t m e n t of M e t a l l u r g i c a l E n g i n e e r i n g ) We a c c e p t t h i s t h e s i s as c o n f o r m i n g to t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA O c t o b e r 1986 © C a r l o s E n r i q u e S c h v e z o v , 1986 S In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 DE-6(3/81) 11 ABSTRACT The t e m p e r a t u r e f i e l d s and r e s u l t i n g s t r e s s f i e l d s have been c a l c u l a t e d f o r a g r o w i n g GaAs c r y s t a l p r o d u c e d by t h e LEC p r o c e s s . The c a l c u l a t i o n s a r e b a s e d i n a f i n i t e e l e m e n t n u m e r i c a l t h e r m o e l a s t i c s t r e s s a n a l y s i s . The c a l c u l a t e d t e m p e r a t u r e f i e l d s have been compared t o r e p o r t e d e x p e r i m e n t a l measurements w i t h good a g r e e m e n t . The s t r e s s f i e l d s have been used t o c a l c u l a t e t h e r e s o l v e d s h e a r s t r e s s e s , i n t h e g r o w i n g c r y s t a l , from w h i c h t h e d i s l o c a t i o n d e n s i t y and d i s t r i b u t i o n were d e t e r m i n e d . U s i n g t h e model t h e e f f e c t s of a range of growth and e n v i r o n m e n t a l p a r a m e t e r s on the d i s l o c a t i o n d e n s i t y and d i s t r i b u t i o n were d e t e r m i n e d . T h e s e s p a r a m e t e r s i n c l u d e c r y s t a l l e n g t h , c r y s t a l d i a m e t e r , cone t a p e r , b o r o n o x i d e t h i c k n e s s , gas p r e s s u r e , s o l i d / l i q u i d i n t e r f a c e shape, v e r t i c a l t e m p e r a t u r e g r a d i e n t s and o t h e r s . The r e s u l t s show t h a t the t e m p e r a t u r e d i s t r i b u t i o n i n t h e gas s u r r o u n d i n g t h e c r y s t a l , and t h e b o r o n o x i d e t h i c k n e s s , were c r i t i c a l f a c t o r s i n d e t e r m i n i n g the d i s l o c a t i o n d e n s i t y and d i s t r i b u t i o n i n the c r y s t a l . The c r y s t a l r a d i u s , c r y s t a l l e n g t h and i n t e r f a c e c u r v a t u r e a l s o s t r o n g l y i n f l u e n c e d t h e d i s l o c a t i o n c o n f i g u r a t i o n . A f t e r c r y s t a l g rowth, t h e d i s l o c a t i o n d e n s i t y a t t h e end of the c r y s t a l was s t r o n g l y i n f l u e n c e d by t h e c o o l i n g p r o c e d u r e a d o p t e d . The d i s l o c a t i o n d i s t r i b u t i o n on c r o s s - s e c t i o n s o f t h e c r y s t a l e x h i b i t e d t w o - f o l d , f o u r - f o l d and e i g h t - f o l d symmetry d e p e n d i n g on growth and c o o l i n g c o n d i t i o n s and p o s i t i o n i n t h e c r y s t a l . I l l TABLE OF CONTENTS Page ABSTRACT II TABLE OF CONTENTS I l l LIST OF FIGURES XI LIST OF TABLES XXV LIST OF SYMBOLS XXVI ACKNOWLEDGEMENTS XXX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THE GROWTH OF BULK GaAs CRYSTALS 4 2.1 The L i q u i d E n c a p s u l a t e d C z o c h r a l s k i Technque ( LEC ) 4 2.2 C l a s s i f i c a t i o n of D e f e c t s i n LEC grown GaAs c r y s t a l 7 2.3 D i s l o c a t i o n s i n LEC-GaAs 8 2.4 E f f e c t o f D i s l o c a t i o n s on P r o p e r t i e s of GaAs D e v i c e s 11 CHAPTER 3 THE ORIGIN OF DISLOCATIONS IN LEC GaAs CRYSTALS 12 CHAPTER 4 DISLOCATION DENSITY AND CRYSTAL GROWTH 17 IV 4.1 S t r e s s e s i n t h e C r y s t a l Due to Thermal G r a d i e n t s u 17 4.1.1 C r y s t a l D i m e n s i o n s . 18 4.1.2 T h e r m a l C o n d i t i o n s D u r i n g C r y s t a l Growth 20 4.2 A l l o y A d d i t i o n to the GaAs 22 CHAPTER 5 MODELS OF DISLOCATION GENERATION IN GaAs 29 5 . 1 S t r e s s F i e l d s . 29 5.2 C a l c u l a t i o n of D i s l o c a t i o n D e n s i t i e s 36 CHAPTER 6 OBJECTIVES 40 CHAPTER 7 FORMULATION OF THE MODELS 43 7.1 Model of c r y s t a l growth 45 7.1.1 T e m p e r a t u r e F i e l d 45 7.1.1.1 G o v e r n i n g E q u a t i o n s 45 7.1.1.2 F i n i t e E l e m e n t E q u a t i o n s 48 7.1.2 S t r e s s F i e l d Model 53 7.1.2.1 G o v e r n i n g and Ele m e n t E q u a t i o n s 53 7.1.2.2 R e q u i r e m e n t s f o r t h e i n t e r p o l a t i o n f u n c t i o n s . . . . 57 7.1.2.3 F o r m u l a s f o r S t r e s s C a l c u l a t i o n s 59 7.1.2.4 L i n e a r E l e m e n t s 60 7.1.2.5 Q u a d r a t i c E l e m e n t 61 7.1.3 Von M i s e s and R e s o l v e d Shear S t r e s s e s 63 7.2 M o d e l l i n g f o r C o o l i n g A f t e r growth 67 V 7.3 A n a l y t i c a l S o l u t i o n s 71 7.3.1 A n a l y t i c a l QSS T e m p e r a t u r e F i e l d 71 7.3.2 A n a l y t i c a l s o l u t i o n s f o r the S t r e s s F i e l d 73 7.3.2.1 P l a n e S t r a i n A p p r o x i m a t i o n 73 7.3.2.2 A x i s y m m e t r i c S o l u t i o n s 74 CHAPTER 8 EVALUATION OF THE MODELS ' 76 8.1 Programming and I n p u t P a r a m e t e r s 76 8.1.1 I n p u t P a r a m e t e r s 86 8.1.2 N u m e r i c a l E v a l u a t i o n o f the A n a l y t i c a l S o l u t i o n s 93 8.2 C o m p a r i s o n o f Model P r e d i c t i o n s w i t h A n a l y t i c a l S o l u t i o n s 93 8.2.1 T e m p e r a t u r e F i e l d 93 8.2.2 S t r e s s F i e l d s 97 8.3 C o m p a r i s o n of Model P r e d i c t i o n s w i t h T e m p e r a t u r e Measurements 107 8.4 The T e m p e r a t u r e Model f o r C o o l i n g - Programming and C o n v e r g e n c y 115 CHAPTER 9 RESULTS AND ANALYSIS 120 9.1 Cone A n g l e 121 9.1.1 E f f e c t o f Cone A n g l e on S t r e s s Symmetry 133 9.1.2 E f f e c t of T h e r m a l C o n d i t i o n s 146 9.1.3 E f f e c t of t h e Heat T r a n s f e r C o e f f i c i e n t 155 9.1.4 E f f e c t o f N o n - l i n e a r i t y i n the T e m p e r a t u r e P r o f i l e 161 9.2 C r y s t a l L e n g t h 170 VI 9.2.1 E f f e c t o f c r y s t a l L e n g t h on S t r e s s Symmetry 175 9.3 C r y s t a l R a d i u s 190 9.3.1 E f f e c t o f R a d i u s on S t r e s s Symmetry 197 9.4 Growth V e l o c i t y 199 9.5 T h e r m a l C o n d i t i o n s 202 9.5.1 R a d i u s 27.5 mm 205 9.5.1.1 Boron o x i d e t h i c k n e s s 21.0 mm 205 9.5.1.2 B o r o n o x i d e t h i c k n e s s 40.0 mm 207 9.5.2 R a d i u s 40.0 mm 217 9.5.2.1 B o r o n o x i d e t h i c k n e s s 21 mm 217 9.5.2.2 Boron o x i d e t h i c k n e s s 40 mm 217 9.5.2.3 Boron O x i d e t h i c k n e s s 50 mm 221 9.6 Gas P r e s s u r e and C o m p o s i t i o n 227 9.7 C u r v a t u r e of the S o l i d - L i q u i d I n t e r f a c e 235 9.7.1 Convex i n t e r f a c e 236 9.7.1.1 C r y s t a l L e n g t h 236 9.7.1.2 E f f e c t of E n c a p s u l a n t T h i c k n e s s and G r a d i e n t 245 9.7.1.3 E f f e c t of c r y s t a l R a d i u s 251 9.7.2 Concave I n t e r f a c e 253 CHAPTER 10 RESULTS FOR COOLING AFTER GROWTH 257 10.1 Ambient T e m p e r a t u r e 1000°C 258 10.1.1. A r g o n 258 10.1.1.1 I n i t i a l G r a d i e n t GC = 70°C/cm 258 10.1.1.2 I n i t i a l G r a d i e n t GC/2 = 35°C/cm 269 10.1.1.3 I n i t i a l G r a d i e n t GC/4 = 17.5°C/cm 276 VII 10.1.2. Boron O x i d e 278 10.2 Ambient T e m p e r a t u r e 800°C/cm 283 10.3 A n a l y s i s o f t h e R e s u l t s f o r C o o l i n g 283 CHAPTER 11 SUMMARY AND CONCLUSIONS 290 REFERENCES 306 APPENDIX I EFFECT OF DISLOCATIONS ON GaAs AND DEVICES 320 1.1 E f f e c t o f D i s l o c a t i o n on P r o p e r t i e s 320 1.2 D i s l o c a t i o n s and F e r m i L e v e l 327 APPENDIX II I n t e g r a t i o n by P a r t s o f t h e Element E q u a t i o n f o r t h e T e m p e r a t u r e F i e l d 330 APPENDIX I I I E v a l u a t i o n o f t h e M a t r i x E l e m e n t s f o r t h e T e m p e r a t u r e F i e l d 332 APPENDIX IV E v a l u a t i o n o f S t i f f n e s s M a t r i x E l e m e n t s f o r L i n e a r E l e m e n t s " 338 APPENDIX V Q u a d r a t i c E l e m e n t C a l c u l a t i o n s 340 V I I I APPENDIX VI C a l c u l a t i o n o f R e s o l v e d S h e a r S t r e s s e s 353 APPENDIX VII T e m p e r a t u r e F i e l d D u r i n g C o o l i n g 362 APPENDIX V I I I A n a l y t i c a l S o l u t i o n o f t h e T e m p e r a t u r e F i e l d 367 APPENDIX IX P l a n e S t r a i n A n a l y t i c a l S t r e s s e s 372 APPENDIX X ANALYTICAL AS ISYMMETRIC SOLUTIONS FOR STRESSES 375 X . l A x i s y m m e t r i c T e m p e r a t u r e F i e l d 375 2 X. 2 A n a l y t i c a l A x i s y m m e t r i c S o l u t i o n f o r 6 = - p ... 385 APPENDIX XI COMPUTER PROGRAMS 390 XI . 1 Mesh G e n e r a t o r 390 XI.2 F i n i t e L i n e a r E l e m e n t Program f o r t h e T e m p e r a t u r e C a l c u l a t i o n s d u r i n g Growth 394 XI.3 F i n i t e L i n e a r E l e m e n t Program f o r the S t r e s s C a l c u l a t i o n s 402 XI.4 F i n i t e Q u a d r a t i c E l e m e n t Program f o r t h e S t r e s s C a l c u l a t i o n s 412 XI.5 Program f o r t h e C a l c u l a t i o n s of t h e MRSS-CRSS i n (010) S e c t i o n s 425 XI.6 Program f o r the C a l c u l a t i o n s o f MRSS-CRSS i n (001) S e c t i o n s 428 IX XI. 7 Program f o r the N u m e r i c a l E v a l u a t i o n of T e m p e r a t u r e s D u r i n g C o o l i n g 432 APPENDIX X I I I X I I . 1 Program f o r t h e N u m e r i c a l E v a l u a t i o n o f A n a l y t i c a l A x i s y m m e t r i c T e m p e r a t u r e F i e l d s 437 X I I . 2 Program f o r t h e N u m e r i c a l E v a l u a t i o n o f A n a l y t i c a l A n a l y t i c a l A x i s y m m e t r i c S t r e s s e s f o r R a d i a l T e m p e r a t u r e F i e l d s 439 X I I . 3 Program f o r t h e N u m e r i c a l E v a l u a t i o n o f A n a l y t i c a l A x i s y m m e t r i c S t r e s s e s f o r A x i s y m m e t r i c T e m p e r a t u r e F i e l d s 441 APPENDIX X I I I TEMPERATURE AND STRESS PLOTS FROM THE COMPUTER PROGRAMS OUTPUT (GROWTH) 444 XI11 . 1 Cone A n g l e CL, 10 mm ; R, 20 mm : B, 10 mm ; AP, 30 atm. ; BG, 100 C/cm ; AG, 50 C/cm 444 X I I I . 2 C r y s t a l L e n g t h R, 27.5 mm ; B.21 mm ; AP, 30 atm. ; CA, 30° ... 521 X I I I . 3 C r y s t a l R a d i u s R, 40 mm ; B, 21 mm ; CA, 30° ; AP, 30 atm 575 X I I I . 4 Growth V e l o c i t y R 27.5 mm ; CL , 55 mm ; CA, 30° ; B, 21 mm 617 X I I I . 5 T h e r m a l C o n d i t i o n R, 27.5 mm CL, 55 mm ; CA, 30 ; AP, 30 atm 624 X I I I . 6 T h e r m a l C o n d i t i o n s R, 40 mm CL, 80 mm ; CA, 30° ; AP , 30 atm 655 X I I I . 7 A r g o n P r e s s u r e , 2 a t m o s p h e r e s . R, 27.5 mm ; CL, 55 mm ; CA, 30° ; B, 21 mm .... 690 X I I I . 8 C u r v a t u r e o f the S o l i d / L i q u i d I n t e r f a c e CA. 30° ; AP, 30 atm 703 X APPENDIX XIV TEMPERATURE AND STRESS PLOTS FROM THE COMPUTER PROGRAMS OUTPUT (COOLING) 761 XIV.1 Ambient T e m p e r a t u r e 800°C, A r g o n 761 XIV.2 Ambient T e m p e r a t u r e 1000°C 799 XI L I S T OF FIGURES F i g . 2.1 S c h e m a t i c o f a LEC p u l l i n g chamber 5 F i g . 3.1 T r a n s m i s s i o n X - r a y t o p o g r a p h y i n GaAs - ( a ) and (b) undopgd ; ( c ) T e - d o p e d , ( 1 1 0 ) a x i a l s e c t i o n 13 F i g . 4.1 R a d i a l d i s l o c a t i o n d e n s i t y p r o f i l e s a c r o s s w a f e r s o b t a i n e d f r o m t h e f r o n t , m i d d l e , and t a i l of a c r y s t a l . The r a d i a l p r o f i l e s a r e "W" s h a p e d , and t h e a v e r a g e EPD i n c r e a s e s f r o m t h e f r o n t t o t h e t a i l 19 F i g . 4.2 Mean d e n s i t y o f " g r o w n - i n " d i s l o c a t i o n s i n GaAs s i n g l e c r y s t a l s (20-25 mm i n d i a m e t e r ) grown by t h e C z o c h r a l s k i LEC T e c h n i q u e , as a f u n c t i o n o f d o p a n t c o n c e n t r a t i o n : (1) Te, (2) Sn, (3) I n , (4) Zn 23 F i g . 4.3 H y p o t h e t i c a l d i s t r i b u t i o n o f t h e d o p a n t ( I n ) a l o n g t h e p u l l i n g a x i s o f t h e i n g o t . The i n d i u m c o n c e n t r a t i o n o s c i l l a t e s a r o u n d a mean v a l u e w h i c h i s p r o p o r t i o n a l t o t h e d i s t a n c e f r o m t h e t o p o f t h e i n g o t 26 F i g . 5.1 (a) and (b) - I s o t h e r m s and s h e a r s t r e s s t o p o g r a p h y i n two g a l l i u m a r s e n i d e s i n g l e c r y s t a l grown u n d e r d i f f e r e n t c o n d i t i o n s ( c ) - D i s t r i b u t i o n o f S h e a r S t r e s s e s T ^ T , and (d) - d i s l o c a t i o n s d e n s i t y o v e r t h e c r o s s -s e c t i o n s o v e r g a l i u m a r s e n i d e s i n g l e c r y s t a l s . . . 30 F i g . 5.2 T R S S c o n t o u r s f o r t h e t o p w a f e r o f a <001> GaAs b o u l e 33 F i g . 5.3 D i s t r i b u t i o n o f t h e c a l c u l a t e d d i s l o c a t i o n d e n s i t y i n a g a l l i u m a r s e n i d e s i n g l e c r y s t a l b e i n g grown i n t h e < 111 > d i r e c t i o n f o r s l i p s y s t e m s w i t h B u r g e r s d i s l o c a t i o n v e c t o r s p e r p e n d i c u l a r 34 X I I F i g . 7.1 F l o w c h a r t o f t h e model u s e d t o d e r i v e t h e s t r e s s f i e l d s 44 F i g . 7.2 C r y s t a l c o n f i g u r a t i o n and c o o r d i n a t e s y s t e m u s e d i n t h e m a t h e m a t i c a l model 47 F i g . 8.1 F l o w c h a r t o f t h e c o m p u t e r p r o g r a m t o c a l c u l a t e t h e t e m p e r a t u r e f i e l d i n t h e c r y s t a l u s i n g a f i n i t e e l e m e n t method 78 F i g . 8.2 F l o w c h a r t o f t h e c o m p u t e r p r o g r a m f o r t h e s t r e s s c a l c u l a t i o n s u s i n g f i n i t e l i n e a r and q u a d r a t i c e l e m e n t s 81 F i g . 8.3 F l o w c h a r t o f t h e mesh g e n e r a t o r c o m p u t e r p r o g r a m 84 F i g . 8.4 F l o w c h a r t o f t h e c o m p u t e r p r o g r a m t o c a l c u l a t e and p l o t RSS i n a v e r t i c a l (010) p l a n e 87 F i g . 8.5 F l o w c h a r t o f t h e c o m p u t e r p r o g r a m t o c a l c u l a t e and p l o t RSS i n a (001) p l a n e 88 F i g . 8.6 E s t i m a t e d r a d i a t i v e and c o n v e c t i o n h e a t t r a n s f e r c o e f f i c i e n t s f o r G a A s / B 2 0 ( 1 ) , He ( g ) , N 2 (g) and A (g) as a f u n c t i o n o f a m b i e n t t e m p e r a t u r e . The n u m e r i c a l l a b e l s a r e t h e p r o d u c t o f t h e c a r r i e r c o n c e n t r a t i o n X c r y s t a l d i a m e t e r i n u n i t s o f cm 90 F i g . 8.7 T o t a l h e a t t r a n s f e r c o e f f i c i e n t h, i n B2®3 an(* a r g o n as a f u n c t i o n o f t h e a m b i e n t t e m p e r a t u r e T (1) T o t a l h e a t t r a n s f e r c o e f f i c i e n t i n ^2°3' ( § ) T o t a l h e a t t r a n s f e r c o e f f i c i e n t i n a r g o n p r e s s u r i z e d a t 30 atm 90 F i g . 8.8 T e m p e r a t u r e d e p e n d e n c e o f t h e c r i t i c a l s t r e s s f o r d i s l o c a t i o n g e n e r a t i o n i n GaAs : (1) Te-doped m a t e r i a l , n = 2 X 10*® cm (2) Te-doped m a t e r i a l , n = 7 X 10 cm X I I I (3) Zn-doped m a t e r i a l , (4) undoped m a t e r i a l . . 9 X 1 0 1 8 cm 3 92 F i g . 8.9 A c o m p a r i s o n of f i n i t e e l e m e n t and a n a l y t i c a l c a l c u l a t e d t e m p e r a t u r e c u r v e s f o r h 0.3 cm 94 F i g . 8.10 A c o m p a r i s o n o f f i n i t e e l e m e n t and a n a l y t i c a l c a l c u l a t e d t e m p e r a t u r e c u r v e s f o r h 0.6 cm" 95 F i g . 8.11 Mesh e m p l o y e d i n t h e c a l c u l a t i o n s o f t h e t e m p e r a t u r e f i e l d s shown i n F i g . 8.9 and 8.10 Number of nodes = 45. Number o f e l e m e n t s = 64 96 F i g . 8.12 C a l c u l a t e d r a d i a l s t r e s s e s as a f u n c t i o n o f r / r f o r r a d i a l t e m p e r a t u r e f i e l d s (1) F i n i t e e l e m e n t w i t h a v e r a g e d e l e m e n t (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) A n a l y t i c a l p l a n e s t r a i n (4) Ana 1 y t i c a 1 - a x i s y m m e t r i c 98 F i g . 8.13 C a l c u l a t e d a z i m u t h a l s t r e s s e s as a f u n c t i o n o f r / r f o r r a d i a l t e m p e r a t u r e f i e l d s (1) F i n i t e e l e m e n t w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) Ana 1 y t i c a 1 - p 1 a n e s t r a i n (4) A n a l y t i c a l -a x i s y m m e t r i c 99 F i g . 8.14 C a l c u l a t e d a x i a l s t r e s s e s as a f u n c t i o n o f r / r f o r r a d i a l t e m p e r a t u r e f i e l d s (1) F i n i t e e l e m e n t w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) Ana 1 y t i c a l - p i a n e s t r a i n (4) A n a l y t i c a l -a x i s y m m e t r i c 100 F i g . 8.15 F o u r s t e p s i n t h e mesh r e f i n e m e n t u s e d t o a n a l y s e t h e c o n v e r g e n c y o f t h e f i n i t e e l e m e n t s t r e s s c a l c u l a t i o n s . (a) NN = 15, NE = 16 (b) NN = 45, NE = 16 ( c ) NN = 45, NE = 64. (d) NN = 153, NE = 256 (b) Q u a d r a t i c e l e m e n t s ( a ) , ( c ) and (d) l i n e a r e l e m e n t s 102 F i g . 8.16 C a l c u l a t e d r a d i a l s t r e s s e s as a f u n c t i o n o f r / r f o r d i f f e r e n t numbers of nodes and s i z e s o f e l e m e n t (1) F i n i t e e l e m e n t w i t h a v e r a g e d XIV e l e m e n t t e m p e r a t u r e (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s . L = L i n e a r e l e m e n t , Q = Q u a d r a t i c e l e m e n t 103 F i g . 8.17 C a l c u l a t e d r a d i a l s t r e s s e s as a f u n c t i o n o f r / r f o r a x i s y m m e t r i c t h e r m a l f i e l d s (l)°Finite e l e m e n t w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) Ana 1 y t i c a 1 - p 1 a n e s t r a i n (4) A n a l y t i c a l - a x i s y m m e t r i c 105 F i g . 8.18 P o s i t i o n o f t h e r m o c o u p l e s i n GaAs c r y s t a l . B = B o r i c o x i d e l a y e r , a r g o n p r e s s u r e 3.04 MPa. R e f e r e n c e 218 108 F i g . 8.19 T e m p e r a t u r e s measured w i t h t h e r m o c o u p l e s 2, 3 and 4 i n F i g u r e 8.18 as a f u n c t i o n o f the r e l a t i v e p o s i t i o n of the t h e r m o c o u p l e s w i t h t h e i n t e r f a c e . R e f e r e n c e 218 110 F i g . 8.20 M e a s u r e d and c a l c u l a t e d t e m p e r a t u r e s a l o n g t h e c r y s t a l a x i s a t f o u r c r y s t a l l e n g t h s I l l F i g . 8.21 M e a s u r e d and c a l c u l a t e d t e m p e r a t u r e s a d j a c e n t to th e o u t s i d e s u r f a c e o f t h e c r y s t a l a t f o u r c r y s t a l l e n g t h s . The measured ambient t e m p e r a t u r e i s a l s o shown 112 F i g . 8.22 M e a s u r e d and c a l c u l a t e d a x i a l t e m p e r a t u r e g r a d i e n t s a l o n g the c r y s t a l a x i s a t f o u r c r y s t a l 1 e n g t h s 113 F i g . 8.23 Flow c h a r t of t h e computer program f o r the n u m e r i c a l e v a l u a t i o n o f the a n a l y t i c a l t e m p e r a t u r e f i e l d s d u r i n g c o o l i n g o f the c r y s t a l 117 F i g . 8.24 (a) T y p i c a l t e m p e r a t u g e Q f i e 1 d o b t a i n e d d u r i n g c o o l i n g u n i t s a r e 10 C. (b) and ( c ) Von M i s e s s t r e s s c o n t o u r s (MPa) f o r the t e m p e r a t u r e f i e l d g i v e n i n ( a ) . (b) NN = 451, NE = 800. (c ) NN = 1105, NE = 2048 118 Von M i s e s S t r e s s c o n t o u r s (MPa) i n v e r t i c a l p l a n e s f o r f i v e cone a n g l e s , (a) 7 . 1 ° , (b) 3 0 ° , ( c ) 4 5 ° , (d) 54. 7 ° , (e) 6 5 ° . Cone s u r f a c e i n (d) c o i n c i d e s w i t h a (111) p l a n e . C r y s t a l r a d i u s , 20 mm ; c r y s t a l l e n g t h , 10 mm ; B 2 ^ 3 t h i c k n e s s , 10 ram ; B 0^ g r a d i e n t , 100 C/cm ; a r g o n p r e s s u r e , 30 atm. ; a r g o n g r a d i e n t , 50°C/cm Maximum r e s o l v e d s h e a r s t r e s s (MRSS) c o n t o u r s i n MPa, i n v e r t i c a l (010) p l a n e s f o r f i v e cone a n g l e s . (a) 7.1°, (b) 3 0 ° , ( c ) 4 5 ° , (d) 5 4 . 7 ° , (e) 65 . Cone s u r f a c e i n (d) c o i n c i d e s w i t h a (111) p l a n e . C o n d i t i o n s a r e the same as i n F i g u r e 9.1 T o t a l r e s o l v e d s h e a r s t r e s s (TRSS) c o n t o u r s i n MPa f o r t h e 45 cone a n g l e c r y s t a l . Compare t h e l a r g e s t r e s s l e v e l s of the TRSS w i t h the s t r e s s l e v e l s f o r same c r y s t a l shown i n F i g u r e 9 . 1 ( c ) f o r the VMS and F i g u r e 9.2(c) f o r t h e MRSS C o n t o u r s o f t h e MRSS (MPa) i n e x c e s s of (a) CRSS ( y i e l d ) ; (b) CRSS (MB) ; ( c ) CRSS (MBTe). Shaded r e g i o n s i n d i c a t e a r e a s i n w h i c h t h e MRSS i s l e s s t h a n t h e CRSS S l i p mode d i s t r i b u t i o n i n the (010) p l a n e f o r the 45 cone a n g l e c r y s t a l c o r r e s p o n d i n g t o t h e MRSS d i s t r i b u t i o n shown i n F i g u r e 9 . 2 ( c ) C o n t o u r s i n MPa o f the MRSS i n e x c e s s of (a) CRSS ( Y i e l d ) ; (b) CRSS (MB) and ( c ) CRSS (MBTe). In most of t h e c r y s t a l the MRSS i s l a r g e r t h a n t h e c r i t i c a l v a l u e s . The bump shaped c o n t o u r s (A) g i v e complex s t r e s s d i s t r i b u t i o n s i n p e r p e n d i c u l a r c r o s s - s e c t i o n s MRSS c o n t o u r s (MPa) i n c r o s s - s e c t i o n s p e r p e n -d i c u l a r t o t h e c r y s t a l a x i s f o r f i v e cone a n g l e s , (a) 7 . 1 ° , (b) 3 0 ° , ( c ) 4 5 ° , (d) 5 4 . 7 ° , (e) 6 5 ° . S e c t i o n (a-d) a r e 7.5 mm from the i n t e r f a c e and s e c t i o n (e) i s 8.0 mm from the i n t e r f a c e . The h o r i z o n t a l d i r e c t i o n c o r r e s p o n d s to the [100] d i r e c t i o n and t h e v e r t i c a l d i r e c t i o n c o r r e s -ponds to t h e [010] d i r e c t i o n XVI F i g . 9.8 C o n t o u r s of the MRSS-CRSS ( Y i e l d ) (MPa) f o r th e 65 cone a n g l e c r y s t a l . MRSS c o n t o u r s a r e shown i n F i g u r e 9 . 7 ( e ) . At h i g h cone a n g l e s MRSS l e v e l s a r e l a r g e r t h a n CRSS a t the c e n t r e and o u t s i d e p a r t o f t h e wafer 142 F i g . 9.9 S t r e s s c o n t o u r s (MPa) i n c r o s s - s e c t i o n 2.5 mm from the i n t e r f a c e , (a) and (b) i n a 7.1° cone a n g l e c r y s t a l , (c) i n a 45° cone a n g l e c r y s t a l , (a) MRSS c o n t o u r s , (b) and ( c ) MRSS-CRSS ( Y i e l d ) . F o r t h e 7.1 cone a n g l e t h e r e i s e i g h t - f o l d symmetry at the c e n t r e i n (a) which i s not seen i n (b) b e c a u s e s t r e s s l e v e l s a r e l e s s t h a n CRSS. F o r the 45 cone a n g l e t h e r e i s f o u r - f o l d symmetry 145 F i g . 9.10 S l i p mode d i s t r i b u t i o n i n a (001) p l a n e c o r r e s -p o n d i n g to the MRSS d i s t r i b u t i o n shown i n F i g u r e 9 . 7 ( c ) f o r t h e 45 cone a n g l e c r y s t a l a t 7.5 mm from t h e i n t e r f a c e . The e i g h t - f o l d d i s t r i b u t i o n o f t h e mode a t t h e edge of t h e s e c t i o n i s a s s o c i a t e d w i t h the e i g h t - f o l d symmetry o f t h e MRSS 147 F i g . 9.11 T e m p e r a t u r e d i s t r i b u t i o n as a f u n c t i o n of e x t e r n a l t e m p e r a t u r e g r a d i e n t f o r a 45° cone a n g l e c r y s t a l . T h e r m al g r a d i e n t s i n the b o r o n o x i d e a r e : (a) 50 C/cm, (b) 100 C/cm, ( c ) 200 C/cm a n g Q ( d ) 400 C/cm. T e m p e r a t u r e s a r e g i v e n i n 10 C. F o r low g r a d i e n t s i s o t h e r m s a r e n e a r l y f l a t and s l i g h t l y c o nvex. F o r l a r g e r g r a d i e n t s i s o t h e r m s a r e c u r v e d and c o n c a v e 149 F i g . 9.12 S t r e s s c o n t o u r s (MPa) i n a (010) p l a n e f o r a 45° cone a n g l e c r y s t a l grown w i t h a 50°C/cm g r a d i e n t i n the b o r o n o x i d e , (a) MRSS c o n t o u r s does not show t h e bump shaped s t r e s s d i s t r i b u t i o n below the s h o u l d e r i n ( a ) . The MRSS-CRSS ( Y i e l d ) i s p o s i t i v e o n l y i n a few r e g i o n s i n (b) 151 F i g . 9.13 (a) MRSS c o n t o u r s and (b) MRSS-CRSS ( Y i e l d ) c o n t o u r s f o r a 200 C/cm g r a d i e n t i n the b o r o n o x i d e . U n i t s a r e i n MPa. MRSS s t r e s s a r e l a r g e below t h e s h o u l d e r i n ( a ) . The MRSS-CRSS i s g r e a t e r t h a n z e r o i n most of the c r y s t a l i n ( b ) . 152 F i g . 9.14 (a) MRSS c o n t o u r s , (b) MRSS-CRSS ( Y i e l d ) c o n t o u r s , ( c ) S l i p mode d i s t r i b u t i o n . G r a d i e n t XVII i n the b o r o n o x i d e i s 400°C/cm. In (a) c o n t o u r s a r e s i m i l a r to t h o s e o b t a i n e d f o r a 200°C/cm g r a d i e n t . S t r e s s l e v e l s have d o u b l e d . In (b) o n l y a s m a l l a r e a i n the seed d e v e l o p e d s t r e s s e s l e s s t h a n the CRSS. In ( c ) the mode d i s t r i b u t i o n i s s i m i l a r t o t h a t shown i n F i g u r e 9.5 f o r a 100°C/cm g r a d i e n t 154 F i g . 9.15 MRSS c o n t o u r s i n MPa i n a c r o s s - s e c t i o n a t 7.5 mm from t h e i n t e r f a c e f o r t h e c r y s t a l shown i n F i g u r e 9 . 1 4 ( a ) . The symmetry i s s i m i l a r to t h a t shown i n F i g u r e 9.7(c) f o r a 100°C/cm g r a d i e n t 156 F i g . 9.16 T e m p e r a t u r e p r o f i l e s at the s u r f a c e o f 45° cone a n g l e c r y s t a l s f o r t h r e e d i f e r e n t c o n d i t i o n s . C urve H c o r r e s p o n d s to t h e t e m p e r a t u r e s c a l c u -l a t e d u s i n g t h e o r i g i n a l h e a t t r a n s f e r c o e f -f i c i e n t v a l u e s . In c u r v e s H / 1.3 and H x 1.3 the o r i g i n a l h e a t t r a n s f e r c o e f f i c i e n t v a l u e s were d i v i d e d and m u l t i p l i e d by 1.3 r e s p e c t i v e l y 158 F i g . 9.17 S t r e s s c o n t o u r s i n MPa d e r i v e d from t h e t e m p e r a t u r e f i e l d o b t a i n e d u s i n g h e a t t r a n s f e r c o e f f i c i e n t v a l u e s 1.3 l a r g e r t h a n o r i g i n a l v a l u e s . (a) MRSS c o n t o u r s . (b) MRSS-CRSS ( Y i e l d ) 159 F i g . 9.18 S t r e s s c o n t o u r s i n MPa d e r i v e d from, the t e m p e r a t u r e f i e l d o b t a i n e d u s i n g h e a t t r a n s f e r c o e f f i c i e n t v a l u e s 1.3 t i m e s s m a l l e r t h a n o r i g i n a l v a l u e s . (a) MRSS c o n t o u r s . (b) MRSS-CRSS ( Y i e l d ) . V a r i a t i o n s of o n l y 20 * a r e o b s e r v e d i n t h e maximum MRSS v a l u e s between (a) and F i g u r e 9.17(a) 160 F i g . 9.19 MRSS (MPa) c o n t o u r s f o r a c r y s t a l g r o w i n g under f o u r d i f f e r e n t c o n d i t i o n s g i v e n i n T a b l e 9.3. (a) Run #1 ; (b) Run #2 ; ( c ) Run #3 ; (d) Run #4. From (a) t o (b) the AMRSS d o u b l e s . In (d) th e bump shape below the s h o u l d e r does not app e a r 165 F i g . 9.20 MRSS (MPa) c o n t o u r s i n a (001) p l a n e at a d i s t a n c e o f 5.0 mm from the i n t e r f a c e i n th e c r y s t a l shown i n F i g u r e 9.19(d) ( r u n #4) XVI I I The f o u r - f o l d symmetry w i t h a s l i g h t t w o - f o l d symmetry i s o b s e r v e d 167 F i g . 9.21 MRSS-CRSS ( Y i e l d ) c o n t o u r s (MPa) f o r t h e f o u r g r o w t h c o n d i t i o n s shown i n T a b l e 9.3 and MRSS c o n t o u r s shown i n F i g u r e 9.19 (a) Run #1 ; (b) Run #2 ; ( c ) Run #3 ; (d) Run #4 169 F i g . 9.22 MRSS (MPa) c o n t o u r s f o r f i v e c r y s t a l l e n g t h s . (a) 13.75 mm ; (b) 27.5 mm ; (c) 55.0 mm ; (d) 82.5 mm ; (e) 110.0 mm . C r y s t a l r a d i u s i s 27.5 mm 172 F i g . 9.23 MRSS-CRSS ( y i e l d ) (MPa) f o r f i v e c r y s t a l l e n g t h s . (a) 13.75 mm ; (b) 27.5 mm ; ( c ) 55.0 mm ; (d) 82.5 mm ; (e) 110.0 mm . C r y s t a l r a d i u s i s 27.5 mm 174 F i g . 9.24 S l i p mode of the MRSS f o r the f i v e c r y s t a l l e n g t h s shown i n F i g u r e 9.22 (a) 13.75 mm ; (b) 27.5 mm ; ( c ) 55.0 mm ; (d) 82.5 mm ; (e) 110.0 mm . C r y s t a l r a d i u s i s 27.5 mm 176 F i g . 9.25 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e a t a d i s t a n c e of 8.25 mm from t h e cone a t f o u r c r y s t a l l e n g t h s , (a) 13.75 mm ; (b) 27.5 mm ; ( c ) 55.0 mm ; (d) 82.5 mm. C r y s t a l r a d i u s 27.5 mm 182 F i g . 9.26 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e a t a d i s t a n c e o f 49.5 mm from the cone at two c r y s t a l l e n g t h s , (a) 55.0 mm ; (b) 82.5 mm. C r y s t a l r a d i u s 27.5 mm 185 F i g . 9.27 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e a t a d i s t a n c e o f 77.0 mm from the cone a t two c r y s t a l l e n g t h s , (a) 82.5 mm ; (b) 110.0 mm. C r y s t a l r a d i u s 27.5 mm 188 F i g . 9.28 MRSS (MPa) c o n t o u r s f o r f o u r c r y s t a l l e n g t h s . (a) 20.0 mm ; (b) 40.0 mm ; ( c ) 80.0 mm ; (d) 100.00 mm. C r y s t a l R a d i u s 40.0 mm 193 F i g . 9.29 (a) A x i a l a l o n g the c r y s t a l a x i s and (b) r a d i a l t h e r m a l g r a d i e n t s as a f u n c t i o n o f d i s t a n c e XIX from the i n t e r f a c e f o r (1) f o r a r a d i u s of 27 (3) f o r a r a d i u s of 40 (1) 55.0 mm ; (2 ) 40.0 two c r y s t a l r a d i u s . Curve 5 mm ; and c u r v e s (2) and 0 mm. C r y s t a l l e n g t h s a r e mm and (3) 80.0 mm 194 F i g . 9.30 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r c r y s t a l l e n g t h s . (a) 20.0 mm ; (b) 40.0 mm ; ( c ) 80.0 mm ; (d) 100.00 mm. C r y s t a l R a d i u s 40.0 mm 196 F i g . 9.31 T e m p e r a t u r e f i e l d s f o r t h r e e growth v e l o c i t i e s (a) 0.0001 cm/s, (b) 0.001 cm/s and ( c ) 0.01 cm/s. T e m p e r a t u r e g i v e n i n 10 °C. L i t t l e change i s o b s e r v e d from (a) to ( b ) . From (b) to ( c ) g r a d i e n t s have i n c r e a s e d . R a d i u s 27.5 mm, l e n g t h 55 mm, e n c a p s u l a n t t h i c k n e s s 21 mm 201 F i g . 9.32 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h e t h r e e t e m p e r a -t u r e f i e l d s shown i n F i g u r e 9 . 3 1 ( a - c ) c o r r e s -p o n d i n g t o t h r e e growth v e l o c i t i e s , (a) 0.0001 cm/s, (b) 0.001 cm/s and ( c ) 0.01 cm/s. In (a) and (b) t h e s t r e s s f i e l d s a r e s i m i l a r . In ( c ) the s t r e s s d i s t r i b u t i o n and s t r e s s v a l u e s change 204 F i g . 9.33 T e m p e r a t u r e p r o f i l e s a l o n g the c r y s t a l s u r f a c e i n t h e e n v i r o n m e n t s u r r o u n d i n g t h e c r y s t a l employed i n the c a l c u l a t i o n s . The p r o f i l e s a r e d e r i v e d from F i g u r e 8.19, c u r v e 4, r e p r o d u c e d as c u r v e G. The v a l u e s of g r a d i e n t a r e a v e r a g e d i n t h e c r y s t a l l e n g t h c o n s i d e r e d . E n c a p s u l a n t t h i c k n e s s 21 mm 206 F i g . 9.34 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r t e m p e r a t u r e p r o f i l e s w i t h a v e r a g e g r a d i e n t s (a) 33°c/cm, (b) 17°C/cm, ( c ) ll°C/cm and (d) 8°C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm. E n c a p s u l a n t t h i c k n e s s 21 mm 209 F i g . 9.35 T e m p e r a t u r e p r o f i l e s used i n the c a l c u l a t i o n s f o r two b o r o n o x i d e t h i c k n e s s e s . (a) 40 mm, (b) 50 mm. The p r o f i l e s a r e d e r i v e d from c u r v e G. The v a l u e s of g r a d i e n t s g i v e n a r e a v e r a g e d a l o n g t h e c r y s t a l l e n g t h 211 F i g . 9.36 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s . (a) 58 C/cm, (b) 29°C/cm, ( c ) XX 19 C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm, b o r o n o x i d e t h i c k n e s s 40 mm 213 F i g . 9.37 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s , (a) 50°c/cm, (b) 25°C/cm, ( c ) 17"C/ cm. R a d i u s 27.5 mm, l e n g t h 55 mm, b o r o n o x i d e t h i c k n e s s 50 mm 215 F i g . 9.38 MRSS-CRSS ( Y i e l d ) (MPa) f o r two a v e r a g e g r a d i -e n t s , (a) 14°C/cm, (b) 7 C/cm. R a d i u s 40 mm, l e n g t h 80 mm, b o r o n o x i d e t h i c k n e s s 21 mm 218 F i g . 9.39 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r a v e r a g e g r a d i e n t s , (a) 46 C/cm, (b) 26°C/cm, ( c ) 15°C/cm, (d) 9°C/cm. R a d i u s 40 mm, l e n g t h 80 mm, boro n o x i d e t h i c k n e s s 40 mm 220 F i g . 9.40 MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l l e n g t h o f 52 mm c o m p a r a b l e t o t h e b o r o n o x i d e t h i c k n e s s o f 50 mm. R a d i u s 40 mm. A v e r a g e g r a d i e n t 50 C/cm... 222 F i g . 9.41 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s , (a) 43°C/cm, (b) 14°C/cm, ( c ) 7°C/cm. R a d i u s 40 mm, l e n g t h 80 mm, bor o n o x i d e t h i c k n e s s 50 mm 224 F i g . 9.42 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r t e m p e r a t u r e p r o f i l e s w i t h a v e r a g e g r a d i e n t s , (a) 33 C/cm, (b) 17°C/cm, (c) 11 C/cm and (d) 8°C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm. E n c a p s u l a n t t h i c k n e s s 21 mm. A r g o n p r e s s u r e 2 atm 229 F i g . 9.43 C o r r e l a t i o n between t h e measured t e m p e r a t u r e g r a d i e n t s a c r o s s t h e e n c a p s u l a n t and t h e h e a t t r a n s f e r c o e f f i c i e n t v a l u e s as a f u n c t i o n o f gas p r e s s u r e and gas n a t u r e . Curve A from R e f s . 143-144 u s i n g c o n v e c t i o n from a v e r t i c a l w a l l ; and c u r v e B u s i n g c o n v e c t i o n from an h o r i z o n t a l s u r f a c e 234 F i g . 9.44 Element and n o d a l c o n f i g u r a t i o n a t t h e i n t e r f a c e f o r c r y s t a l s w i t h c u r v e d i n t e r f a c e , (a) Convex i n t e r f a c e , (b) Concave i n t e r f a c e 237 F i g . 9.45 F i g . 9.46 F i g . 9.47 F i g . 9.48 F i g . 9.49 F i g . 9.50 F i g . 9.51 F i g . 9.52 F i g . 9.53 XXI T e m p e r a t u r e (10 C) and Von N i s e s s t r e s s (MPa) f i e l d s f o r a c r y s t a l w i t h a convex i n t e r f a c e shape. R a d i u s 27.5 mm. L e n g t h 27.5 mm. E n c a p s u l a n t t h i c k n e s s 21 mm. T e m p e r a t u r e p r o f i l e as shown i n F i g u r e 8.19, c u r v e 4 239 MRSS (MPa) c o n t o u r s f o r a c r y s t a l w i t h convex i n t e r f a c e a t t h r e e l e n g t h s , (a) 27.5 mm, (b) 55 mm, ( c ) 82.5 mm. The l a r g e s t s t r e s s e s a t the i n t e r f a c e edge a r e (a) 7.22 MPa, (b) 9.19 MPa, ( c ) 9.66 MPa. R a d i u s 27.5 mm, Boron o x i d e t h i c k n e s s 21mm. P r o f i l e as in. F i g u r e 8.19, c u r v e 4 240 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s f o r a c r y s t a l w i t h convex i n t e r f a c e a t t h r e e l e n g t h s (a) 27.5 mm, (b) 55 mm, ( c ) 82.5 mm. R a d i u s 27.5 mm, bo r o n o x i d e t h i c k n e s s 21 mm. P r o f i l e as i n F i g u r e 8.19, c u r v e 4 242 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s i n a (001) p l a n e at a d i s t a n c e of 11 mm from t h e cone i n the c r y s t a l shown i n F i g u r e 9.47(a) 244 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s i n (001) p l a n e s at t h r e e d i s t a n c e s form the cone. (a) 79.75 mm, (b) 66.0 mm, (c) 52.25 mm. S e c t i o n c o r r e s p o n d s to the c r y s t a l shown i n F i g u r e 9.47(c) 248 (a) MRSS (MP) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l w i t h convex i n t e r f a c e . B o ron o x i d e t h i c k n e s s 50 mm. R a d i u s 27.5 mm. L e n g t h 55 mm. Av e r a g e g r a d i e n t 50°c/cm 249 (a) MRSS (MP) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l w i t h convex i n t e r f a c e . B o r o n o x i d e t h i c k n e s s 50 mm. R a d i u s 27.5 mm. L e n g t h 55 mm. Av e r a g e g r a d i e n t 17°C/cm 250 (a) MRSS (MP) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l w i t h convex i n t e r f a c e . Boron o x i d e t h i c k n e s s 21 mm. R a d i u s 40 mm. L e n g t h 80 mm. Av e r a g e g r a d i e n t 55°C/cm 252 (a) MRSS (MP) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l w i t h convex i n t e r f a c e . (a) R a d i u s XXI I 27.5 mm, (b) 40 mm. Boron o x i d e t h i c k n e s s 21 mm 254 F i g . 9.54 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s i n a (001) p l a n e a t a d i s t a n c e of 2.75 mm from t h e i n t e r f a c e i n the c r y s t a l shown i n F i g u r e 9.53(a) 256 F i g . 10.1 T e m p e r a t u r e ( 1 0 3 ° C ) f i e l d d u r i n g c o o l i n g a t f o u r t i m e s . (a) 5 s, (b) 10 s, ( c ) 20 s, (d) 60 s, I n i t i a l g r a d i e n t c l o s e t o i n t e r f a c e 70 C/cm. Argo n t e m p e r a t u r e 1000°C 260 F i g . 10.2 MRSS-CRSS ( Y i e l d ) (MPa) d u r i n g c o o l i n g f o r the f o u r t e m p e r a t u r e f i e l d s shown i n F i g u r e 1 0 . 1 ( a - d ) . (a) 5 s, (b£ 10 s, ( c ) 20 s, (d) 60 s. I n i t i a l g r a d i e n t 70 C/cm. Arg o n t e m p e r a t u r e 1000 C 263 F i g . 10.3 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s i n (001) p l a n e s at f o u r d i s t a n c e s from t h e bottom ( i n t e r f a c e ) i n the c r y s t a l shown i n F i g u r e 10.2(b) 10 s, (a) 2.75 mm, (b) 8.25 mm, ( c ) 16.5 mm, (d) 27.5 mm 268 F i g . 10.4 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s a t two d i s t a n c e s from the bottom i n t h e c r y s t a l shown i n F i g u r e 10.2 (d) 60 s, (a) 2.75 mm ( b) 8.25 mm 271 F i g . 10.5 (a) T e m p e r a t u r e f i e l d ( 1 0 3 ° c ) and (b) MRSS-CRSS ( Y i e l d ) (MPa^ f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 1000 C a f t e r 10 s. I n i t i a l g r a d i e n t 35 C/cm 272 F i g . 10.6 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa^ f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n a t 1000 C a f t e r 60 s. I n i t i a l g r a d i e n t 35 C/cm 273 F i g . 10.7 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s a t two d i s t a n c e s from t h e bottom i n t h e c r y s t a l shown i n F i g u r e 10.5 (b) 10 s. (a) 8.25 mm (b) 27.5 mm 275 F i g . 10.8 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS XXI11 ( Y i e l d ) (MPa^ f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 1000 C a f t e r 10 s. I n i t i a l g r a d i e n t 17.5°C/cm 277 F i g . 10.9 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s a d i s t a n c e of 27.5 mm from t h e bottom i n t h e c r y s t a l shown i n F i g u r e 10.8 (d) 10 s 279 F i g . 10.10 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i d e at 1000 C a f t e r 10 s. I n i t i a l g r a d i e n t OoC/cm 280 F i g . 10.11 (a) T e m p e r a t u r e f i e l d ( 1 0 3 ° C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i g e at 1000°C a f t e r 10 s. I n i t i a l g r a d i e n t 5oC/cm 281 F i g . 10.12 (a) T e m p e r a t u r e f i e l d (10 C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i d e a t 1000°C a f t e r 10 s. I n i t i a l g r a d i e n t 17.5°C/cm 282 F i g . 10.13 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n a t 800 C a f t e r 10 s. I n i t i a l g r a d i e n t 70 C/cm 284 F i g . 10.14 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n a t 800 C a f t e r 10 s. I n i t i a l g r a d i e n t 35 C/cm . . 285 F i g . 10.15 (a) T e m p e r a t u r e f i e l d ( 1 0 3 o C ) and (b) MRSS-CRSS ( Y i e l d ) (^Pa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 8 OoC a f t e r 10 s. I n i t i a l g r a d i e n t 17.5°C/cm 286 F i g . 10.16 T e m p e r a t u r e g r o f i l e s i n the c r y s t a l c o o l i n g i n a r g o n a t 800 C f o r two i n i t i a l g r a d i e n t s i n t h e c r y s t a l . (a) 70°C/cm (b) 35°C/cm. The r i g h t p a r t c o r r e s p o n d s to t h e r a d i a l p r o f i l e s and the l e f t p a r t t o the a x i a l p r o f i l e . F u l l and b r o k e n l i n e s c o r r e s p o n d t o t h e a x i s and s u r f a c e t e m p e r a t u r e s r e s p e c t i v e l y 288 XXIV F i g . 10.17 T e m p e r a t u r e p r o f i l e s i n t h e c r y s t a l c o o l i n g i n b o r o n o x i d e a t 1000 C f o r two i n i t i a l g r a d i e n t s i n t h e c r y s t a l . (a) 70°C/cm (b) 35°C/cm. The r i g h t p a r t c o r r e s p o n d s to t h e r a d i a l p r o f i l e s and t h e l e f t p a r t t o t h e a x i a l p r o f i l e . F u l l and b r o k e n l i n e s c o r r e s p o n d t o t h e a x i s and s u r f a c e t e m p e r a t u r e s r e s p e c t i v e l y 289 XXV LIST OF TABLES T a b l e 5.1 O b s e r v e d ( N g ) and C a l c u l a t e d (N and N ) D i s l o c a t i o n n s i t i e s f o r G a l l i u m A r s e n i a e S i n g l e C r y s t a l s 39 T a b l e 7.1 R e s o l v e d Shear S t r e s s Components i n (001) C r y s t a l s 65 T a b l e 7.2 R e s o l v e d Shear S t r e s s Components i n a (010) P l a n e f o r a [001] C r y s t a l 67 T a b l e 8.1 V a l u e s o f p h y s i c a l p a r a m e t e r s u s e d i n t h e c a l c u l a t i o n s 92 T a b l e 9.1 E f f e c t o f Cone A n g l e on T h e r m a l and S t r e s s F i e l d s 124 T a b l e 9.2 E f f e c t o f Ambient T e m p e r a t u r e on A x i a l T e m p e r a t u r e G r a d i e n t and S t r e s s 150 T a b l e 9.3 E f f e c t o f N o n - l i n e a r i t y o f t h e Ambient T e m p e r a t u r e P r o f i l e on S t r e s s 162 T a b l e 9.4 T a b l e o f Symmetry C o r r e l a t i o n s 198 T a b l e 9.5 E f f e c t o f Thermal C o n d i t i o n s on S t r e s s e s 226 T a b l e VI.1 R o t a t i o n p e r f o r m e d f o r t h e c a l c u l a t i o n o f the RSS 357 T a b l e VI.2 R e s o l v e d Shear S t r e s s component i n t h e <110> {111} s l i p 358 T a b l e VI.3 Compact form of the RSS from T a b l e VI.2 360 XXVI LI S T OF SYMBOLS ( e ) [ B ] * ' M a t r i x o f d e r i v a t i v e s of t h e i n t e r p o l a t i o n f u n c t i o n s i 1 (e ) {F }. I n i t i a l f o r c e v e c t o r at node i i n e l e m e n t e, 2 x 1 . o i 4 x 2 [ B ' ] | e ) N o n - d i m e n s i o n a l [ B ] j e ) m a t r i x , 4 x 2 . [C] C o m p l i a n c e m a t r i x , 4 x 4 . [ C 1 ] N o n - d i m e n s i o n a l [C] m a t r i x , 4 x 4 . ~ ( e ) {d} D i s p l a c e m e n t v e c t o r i n e l e m e n t e, 2 x 1. (e) {d} Nod a l d i s p l a c e m e n t v e c t o r i n element e, 2n x 1. (e ) {d}* N o d a l d i s p l a c e m e n t v e c t o r a t node i e l e m e n t e, 2 x 1 * d * r e d Reduced { d } * e ) v e c t o r , 2 x 1 . {d 1} G l o b a l d i s p l a c e m e n t v e c t o r i n r e d u c e d form, 2n x 1. dV E l e m e n t a l volume. E Young's Modulus, MPa. (e) { F } v F o r c e v e c t o r f o r e l e m e n t e, 2n x 1 . ( e ) {F}. F o r c e v e c t o r at node i i n el e m e n t e, 2 x 1. ( e ) ( e ) {F '} v ; N o n - d i m e n s i o n a l {F }. v e c t o r , 2 x 1 . o o 1 i (e) F 1 E l e m e n t o f {F '} ' v e c t o r , o . o l {F '} N o n - d i m e n s i o n a l g l o b a l f o r c e v e c t o r , 2n x 1. o g Number o f nodes i n e l e m e n t h Heat t r a n s f e r c o e f f i c i e n t ( h . t . c . ) h C o n v e c t i v e h . t . c . c h R a d i a t i v e h . t . c . r (e ) [k] S t i f f n e s s m a t r i x f o r e l e m e n t e, 2n x 2n. (e) [ k ] . . S t i f f n e s s s u b m a t r i x f o r nodes i and j i n e l e m e n t e, i J 2 x 2 . XXV11 [ k ' ] * j * N o n - d i m e n s i o n a l ( k } ! ^ m a t r i x , 2 x 2 . k ^ j E l e m e n t of { M ^ * m a t r i x . [ K 1 ] N o n - d i m e n s i o n a l g l o b a l s t i f f n e s s m a t r i x . (K } F o r c e v e c t o r f o r t e m p e r a t u r e f i e l d c a l c u l a t i o n s . [ K H ] S t i f f n e s s m a t r i x from b o u n d a r y c o n d i t i o n s i n temper-a t u r e f i e l d c a 1 c u a 1 t i o n s . [K^] S t i f f n e s s m a t r i x f o r t e m p e r a t u r e f i e l d c a l c u l a t i o n s L D i f f e r e n t i a l o p e r a t o r . N a t u r a l c o - o r d i n a t e . l j j L e n g t h of e l e m e n t at thne b o u n d a r y . m Degree o f freedom i n e l e m e n t . ->-n U n i t normal v e c t o r t o a s u r f a c e . N T o t a l number of nodes i n the c r y s t a l . [N] I n t e r p o l a t i o n f u n c t i o n s v e c t o r . r R a d i a l c o - o r d i n a t e . r C r i s t a l r a d i u s . o t Time. * t n o n - d i m e n s i o n a l t i m e . T T e m p e r a t u r e , °C. T Q R e f e r e n c e t e m p e r a t u r e . T„_ T e m p e r a t u r e a t m e l t i n g p o i n t . MP Uj R a d i a l d i s p l a c e m e n t of node i . u ( r , z ) R a d i a l d i s p l a c e m e n t a t p o i n t r , z. v Growth v e l o c i t y . Volume o f e l e m e n t e. -(e) Wj A x i a l d i s p l a c e m e n t of node i . w. ( r , z ) A x i a l d i s p l a c e m e n t at p o i n t of r , z. W e i g h t i n g f u n c t i o n . A x i a l c o - o r d i n a t e . C o e f f i c i e n t of t h e r m a l e x p a n s i o n , °C 1 . N o n - d i m e n s i o n a l t e m p e r a t u r e . Ambient n o n - d i m e n s i o n a l t e m p e r a t u r e . S u r f a c e n o n - d i m e n s i o n a l t e m p e r a t u r e . E i g e n v a l u e s of F o u r i e r t y p e a l g e b r a i c e q u a t i o n Shear s t r a i n component i n {£} t e n s o r . A r e a o f element ( c r o s s - s e c t i o n ) . S t r a i n t e n s o r . I n i t i a l s t r a i n t e n s o r . R a d i a l s t r a i n component. A z i m u t h a l s t r a i n component. A x i a l s t r a i n component. N o n - d i m e n s i o n a l a x i a l d i s p l a c e m e n t . E i n g e n v a l u e s of B e s s e l t y p e a l g e b r a i c e q u a t i o n T h e r m a l d i f f u s i v i t y . P o i s s o n ' s r a t i o . N o n - d i m e n s i o n a l r a d i a l d i s p l a c e m e n t . S t r e s s t e n s o r . R a d i a l s t r e s s component. A z i m u t h a l s t r e s s component. A x i a l s t r e s s component. Von M i s e s s t r e s s , MPa. P r i n c i p a l s t r e s s e s . N o n - d i m e n t i o n a l r a d i a l s t r e s s component. N o n - d i m e n t i o n a l a z i m u t h a l s t r e s s component. N o n - d i m e n t i o n a l a x i a l s t r e s s component. S t r e s s tensor at node i , element e. Shear s t r e s s component. Non-dlmentional shear s t r e s s component. XXX ACKNOWLEDGEMENTS I would l i k e t o thank Dr. F r e d W e i n b e r g and I n d i r a V. S a m a r a s e k e r a f o r t h e i r a s s i s t a n c e and v a l u a b l e d i s c u s s i o n s d u r i n g t h e c o u r s e of t h i s work. S u p p o r t form t h e NSERC ( C a n a d a ) , Cominco L t d . , (Canada) and U n i v e r s i d a d N a c i o n a l de M i s i o n e s , ( A r g e n t i n a ) i s g r a t e f u l l y a c k n o w l e d g e d . 1 CHAPTER 1 INTRODUCTION G a l l i u m A r s e n i d e (GaAs) i s a c r y s t a l s e m i c o n d u c t o r compound t h a t i s i n c r e a s i n g l y b e i n g u s e d i n t h e p r o d u c t i o n of s e m i c o n d u c t o r d e v i c e s p a r t i c u l a r l y microwave and m i c r o e l e c t r o n i c . . 1-3 d e v i c e s The a d v a n t a g e s of GaAs o v e r s i l i c o n ( S i ) a r e due t o t h e d i f f e r e n c e s i n p h y s i c a l p r o p e r t i e s between b o t h m a t e r i a l s . E l e c t r o n m o b i l i t i e s i n GaAs a r e about f o u r t i m e s h i g h e r t h a n i n S i w i t h a power c o n s u m p t i o n w h i c h i s a t e n t h o f t h a t i n s i l i c o n . T h ese become p a r t i c u l a r l y s i g n i f i c a n t as t h e VLSI c i r c u i t s become more complex and the o p e r a t i n g s p e e d i n c r e a s e s . In 1974 t h e f i r s t o p e r a t i n g GaAs g a t e was p r o d u c e d . Ten y e a r s l a t e r GaAs IC's have 3 been p r o d u c e d w i t h 10,000 g a t e s or 4 SKRAM . In a d d i t i o n IC's a r e beco m i n g s m a l l e r . A 1.1 by 1.6 mm c h i p may c o n t a i n more t h a n 600 a c t i v e components p l u s c o n t a c t pads, and work a t about 10 4 G b i t / s e c . These f a c t s i n d i c a t e t h a t GaAs i s t h e most p r o m i s i n g 5 m a t e r i a l f o r t h e nex t g e n e r a t i o n o f s u p e r c o m p u t e r s In o p t o e l e c t r o n i c d e v i c e s S i has fewer a p p l i c a t i o n s t h a n GaAs. S i does not glow b r i g h t l y enough and does not l a s e b e c a u s e of t h e band gap s t r u c t u r e On t h e o t h e r hand GaAs LED 1 s a r e b r i g h t , can be made o f d i f f e r e n t c o l o u r s by i m p u r i t y a d d i t i o n s , and GaAs l a s e s w e l l b e c a u s e o f i t s d i r e c t band gap s t r u c t u r e 1 . At p r e s e n t o n l y about 11 * o f the GaAs c h i p s have o p t o e l e c t r o n i c a p p l i c a t i o n s . By 1992 t h e p e r c e n t a g e Is e x p e c t e d t o I n c r e a s e t o 7 25 % . The c o m b i n a t i o n of m i c r o and o p t o e l e c t r o n i c p r o p e r t i e s o f GaAs has l e d to the d e v e l o p m e n t of m o n o l i t h i c o p t o e l e c t r o n i c 8 -10 i n t e g r a t i o n o f s i m p l e c i r c u i t s . S p e c i a l emphasis has been p l a c e d on the d e v e l o p m e n t of the m u l t i q u a n t u m w e l l l a s e r . In t h e a r e a o f s o l a r c e l l s GaAs i s an e x c e l l e n t p h o t o c o n v e r t e r w i t h an e f f i c i e n c y o f 20-24 %, as compared t o S i at 15-18 % . GaAs s o l a r c e l l s a r e e x p e c t e d t o r e a c h e f f i c i e n c i e s o f 30 % w i t h m o n o l i t h i c or h y b r i d tandem c e l l s w h i c h a r e p r e s e n t l y f a b r i c a t e d * * . GaAs d e v i c e s have a d v a n t a g e s i n r a d i a t i o n f i e l d s and a t 4 h i g h e r t e m p e r a t u r e s . They can o p e r a t e i n r a d i a t i o n f i e l d s 10 t i m e s l a r g e r t h a t S i d e v i c e s w i t h o u t d e t e r i o r a t i o n , and a t h i g h e r t e m p e r a t u r e s t h a n s i l i c o n . One o f t h e d i s a d v a n t a g e s of GaAs a t p r e s e n t i s i t s h i g h c o s t 2 2 compared to S i (5.6 cents/mm f o r GaAs compared t o 0.16 cents/mm 1 2 f o r S i ). However a f t e r a l l f a b r i c a t i n g c o s t s a r e c o n s i d e r e d f o r d e v i c e s , the d i f f e r e n c e i n w a f e r c o s t r e p r e s e n t s o n l y a s m a l l f r a c t i o n of t h e t o t a l and i s t h e r e f o r e p r o p o r t i o n a t e l y l e s s 7 s i g n i f i c a n t . One d i s a d v a n t a g e of GaAs, a t p r e s e n t i s i t s h i g h d i s l o c a t i o n d e n s i t y , as compared to s i l i c o n w h ich i s d i s l o c a t i o n f r e e . D i s l o c a t i o n i n many c a s e s may a f f e c t b o t h t h e y i e l d o f d e v i c e s d u r i n g f a b r i c a t i o n and t h e p e r f o r m a n c e o f t h e d e v i c e s . 3 T h i s i n v e s t i g a t i o n f o c u s e s on t h e d i s l o c a t i o n s p r e s e n t i n m e l t grown GaAs. The d i s l o c a t i o n s a r e b e l i e v e d t o be g e n e r a t e d d u r i n g l i q u i d e n c a p s u l a t e d C z o c h r a l s k i growth (LEC) by t h e r m a l s t r e s s e s i n t h e c r y s t a l . A m a t h e m a t i c a l model w i l l be d e v e l o p e d to d e t e r m i n e the t h e r m a l and s t r e s s f i e l d s i n the g r o w i n g c r y s t a l as a f u n c t i o n of t h e many growth v a r i a b l e s . The o b j e c t i v e i s t h e n t o use t h i s model to c o n t r o l and m o d i f y the g r o w th c o n d i t i o n s and t h u s r e d u c e t h e d i s l o c a t i o n d e n s i t y i n a c o n t r o l l e d way. 4 CHAPTER 2 THE GROWTH OF BULK GaAs CRYSTALS 2 . 1 The L i q u i d E n c a p s u l a t e d C z o c h r a l s k i T e c h n q u e (LEC) 13-15 I n t h e LEC t e c h n i q u e , shown s c h e m a t i c a l l y i n F i g u r e 2.1, a s i n g l e c r y s t a l o f c o n t r o l l e d o r i e n t a t i o n i s p u l l e d f r o m t h e m e l t , v e r t i c a l l y u p w a r d s , s t a r t i n g f r o m a s e e d c r y s t a l . B o t h t h e s e e d and t h e m e l t a r e r o t a t e d a t d i f f e r e n t v e l o c i t i e s and i n d i r e c t i o n s c o u n t e r t o e a c h o t h e r . I n g e n e r a l h i g h p u r i t y Ga and As a r e p l a c e d i n t h e m e l t c r u c i b l e and t h e i n t e r m e t a l 1 i c GaAs s y n t h e s i z e d i n t h e h i g h p r e s s u r e c r y s t a l p u l l e r . Ga m e l t s a t 20.8°C. As m e l t s a t 817°C a t 28 a t m o s p h e r e s . The m e l t i n g t e m p e r a t u r e o f GaAs i s 1238°C. A t t h i s t e m p e r a t u r e t h e a r s e n i c p a r t i a l p r e s s u r e i s 0.98 atm. P r e s s u r e s o f 50 atm. a r e t h e r e f o r e r e q u i r e d t o s y n t h e s i z e GaAs. Once t h e GaAs has f o r m e d , a much l o w e r p r e s s u r e o f s e v e r a l a t m o s p h e r e s may be u s e d t o k e e p t h e GaAs f r o m d e c o m p o s i n g . C o m m e r c i a l c r y s t a l g r o w e r s , i n p a r t i c u l a r t h e " M e l b o u r n " g r o w e r f r o m C a m b r i d g e I n s t r u m e n t s L t d . i s u s e d e x t e n s i v e l y t o grow GaAs c r y s t a l s . P r e s s u r e s i n s i d e t h e chamber can be r a i s e d t o 50-70 atm. as r e q u i r e d . I n a d d i t i o n t o t h e p r e s s u r e i n s i d e t h e g r o w i n g chamber, i t was f o u n d t h a t l i q u i d e n c a p s u l a t i o n o f t h e m e l t and t h e s o l i d a t t h e h i g h e s t t e m p e r a t u r e was n e c e s s a r y t o m a i n t a i n s t o i c h i o m e t r y . T h i s i s done by e n c a p s u l a t i n g t h e l i q u i d w i t h B 0_ w h i c h a l s o c o v e r s t h e l o w e r 2 o end o f t h e g r o w i n g c r y s t a l . The m e l t and e n c a p s u l a n t a r e le F i g u r e 2.1 Schemat i c o f a LEC p u l l i n g chamber 1 fi c o n t a i n e d i n a q u a r t z or a p y r o l i t i c b o r o n n i t r i d e c r u c i b l e . U s i n g t h e h i g h p r e s s u r e (HP) LEC p r o c e s s i n t h e M e l b o u r n p u l l e r , c o n t r o l l e d o r i e n t a t i o n <100> c r y s t a l s up t o 75 mm i n d i a m e t e r and 8 kgm i n w e i g h t can be grown w i t h d i s l o c a t i o n d e n s i t i e s i n the o r d e r o f 1 0 4 / cm 2 As an a l t e r n a t i v e t o t h e h i g h p r e s s u r e c r y s t a l g r o w e r s , s i n g l e c r y s t a l s a r e b e i n g s u c c e s s f u l l y grown a t 1-2 a t m o s p h e r e s p r e s s u r e u s i n g t h e LEC t e c h n i q u e ( L P L E C ) . In t h i s c a s e t h e s t a r t i n g m a t e r i a l i s p o l y c r y s t a l 1 i n e GaAs w h i c h has been s y n t h e s i z e d s e p a r a t e l y i n a p r e s s u r e v e s s e l . A n o v e l 4 17 t e c h n i q u e ' p e r m i t s i n - s i t u s y n t h e s i s i n t h e LP gro w e r s by i n j e c t i o n o f As t h r o u g h t h e B O l a y e r i n t o a Ga m e l t c o n t a i n e d i n the c r u c i b l e . With the LPLEC g r o w e r s , c r y s t a l s of 100 mm 18 — 20 d i a m e t e r and 14 kgm w e i g h t have been p r o d u c e d The c r y s t a l growth p r o c e s s s t a r t s w i t h a s e e d c r y s t a l , u s u a l l y o r i e n t e d f o r <100> or <111> grow t h , w h i c h i s d i p p e d i n t o t h e m e l t . The c r y s t a l i s t h e n n e c k e d t o r e d u c e t h e p r o p a g a t i o n o f 2 1 d i s l o c a t i o n s from t h e seed t o t h e c r y s t a l and t h e d i a m e t e r t h e n s l o w l y i n c r e a s e d t o t h e f u l l d i a m e t e r o f t h e c r y s t a l . The growth i s m o n i t o r e d v i s u a l l y and w i t h a TV camera. Once the d i a m e t e r of the c r y s t a l i s e s t a b l i s h e d by manual c o n t r o l o f the power i n p u t , f u r t h e r c o n t r o l i s done w i t h an a u t o m a t i c w e i g h i n g s y s t e m w h i c h a d j u s t s t h e power i n p u t w i t h computer 2 2-24 c o n t r o l Human e r r o r s , i n a b i l i t i e s t o see c l e a r l y t h r o u g h the e n c a p s u l a n t , and s y s t e m a t i c e r r o r s i n the w e i g h i n g p r o c e d u r e 2 5 due t o c a p i l l a r y f o r c e s , r e s u l t i n v a r i a t i o n s i n t h e c r y s t a l 7 d i a m e t e r o f t h e o r d e r o f 5 mm. A t t e m p t s a r e b e i n g made t o r e d u c e t h e s e p r o b l e m s 6 ' 1 9 ' 2 6 . When c r y s t a l g r o w t h - i s c o m p l e t e d , the c r y s t a l i s removed from t h e ^z°3 a n d s l o w l y c o o l e d i n the chamber t o m i n i m i z e t h e r m a l s t r e s s e s . GaAs i s n o r m a l l y s e m i - i n s u l a t i n g . In some c a s e s i soe 1 ec t r on i c a d d i t i o n s , s u c h as In, a r e added t o the m e l t t o improve p r o p e r t i e s . O t h e r s o l u t e a d d i t i o n s a r e made t o t h e m e l t t o make t h e m a t e r i a l n- or p - t y p e s e m i c o n d u c t o r s . F o r n - t y p e m a t e r i a l d o p a n t s s u c h as S, Se, Te, Sn, S i and Ge 2 7 a r e added. F o r p - t y p e m a t e r i a l Zn and Mg a r e added. The e f f e c t o f s o l u t e a d d i t i o n s and i m p u r i t i e s on t h e e l e c t r i c a l and m e c h a n i c a l p r o p e r t i e s of LEC-grown GaAs c r y s t a l s and d e v i c e s a r e d i s c u s s e d below. 2.2 C l a s s i f i c a t i o n of D e f e c t s i n LEC grown GaAs c r y s t a l A d e f e c t i s d e f i n e d as any d e v i a t i o n from t h e c r y s t a l s t r u c t u r e . D e f e c t s c o n s i s t of : i . D i s l o c a t i o n s i i . C h e m i c a l i m p u r i t i e s i i i . D e v i a t i o n from s t o i c h i o m e t r y i v . L a t t i c e d e f e c t s , 1. v a c a n c i e s and i n t e r s t i t i a l s ; 2. s u b g r a i n s , g r a i n b o u n d a r i e s , s t a c k i n g f a u l t s , s t r i a t i o n s and o t h e r s ; 8 3. i n c l u s i o n s and p r e c i p i t a t e s ; 4. m i c r o d e f e c t s , c o n s i s t i n g of s m a l l d i s l o c a t i o n l o o p s , p r e c i p i t a t e s , h e l i c o i d a l d i s l o c a t i o n s and o t h e r s . These d e f e c t s have c h a r a c t e r i s t i c l e n g t h s o f 100 t o 1 n m 2 8 " 3 0 . The o r i g i n and n a t u r e o f many o f t h e s e d e f e c t s i s not 30 31 c l e a r l y u n d e r s t o o d ' . G e n e r a l l y a number of d e f e c t s a r e p r e s e n t e d i n t h e c r y s t a l , w h i c h i n t e r a c t w i t h e a c h o t h e r and m u l t i p l y . An example i s t h e p r e s e n c e of s m a l l p r e c i p i t a t e s on 3 2 d i s l o c a t i o n l i n e s . The p r e c i p i t a t e s a r e b e l i e v e d t o be c r y s t a l l i t e s o f As embedded i n Ga m a t r i c e s r e s u l t i n g from 1) d i r e c t c o n d e n s a t i o n of As p o i n t d e f e c t s or 2) s w e e p i n g up o f e x i s t i n g p r e c i p i t a t e s by moving d i s l o c a t i o n s . 2 . 3 D i s l o c a t i o n s i n LEC-GaAs L a r g e d i a m e t e r GaAs <100> s i n g l e c r y s t a l s p r o d u c e d by a 4 M e l b o u r n p u l l e r have a d i s l o c a t i o n d e n s i t y of a p p r o x i m a t e l y 5x10 2 3 3 /cm . C o n s i d e r a b l e e f f o r t i s b e i n g d i r e c t e d t o w a r d p r o d u c i n g low o r z e r o d e n s i t y l a r g e d i a m e t e r GaAs c r y s t a l s . In 1982 t h e l a r g e s t undoped GaAs c r y s t a l grown f r e e o f d i s l o c a t i o n was 15 mm34, i n 1985 a c r y s t a l 50mm i n d i a m e t e r was r e p o r t e d t o have been grown d i s l o c a t i o n and s t r i a t i o n f r e e ' . In t h e l a t t e r c a s e t h e c r y s t a l was grown u s i n g a m o d i f i e d LEC t e c h n i q u e c a l l e d VMFEC wh i c h i n c l u d e s a v e r t i c a l m a g n e t i c f i e l d . The c r y s t a l i n t h i s c a s e i s f u l l y e n c a p s u l a t e d and the m e l t i s doped. The d i s l o c a t i o n d e n s i t y can be r e d u c e d t o 10° /cm by d o p i n g t h e m e l t w i t h n, p or i s o e 1 e c t r o n i c I m p u r i t i e s . R e c e n t improvements o f the t h e r m a l c o n d i t i o n s d u r i n g growth have r e s u l t e d i n undoped 3 2 c r y s t a l s w i t h e t c h p i t d e n s i t i e s (EPD) of 5x10 /cm f o r 5 cm 3 7-39 d i a m e t e r c r y s t a l . In one c a s e 70 mm <100> undoped c r y s t a l s were grown i n low v e r t i c a l t e m p e r a t u r e g r a d i e n t s h a v i n g EPD of 3 2 5x10 /cm o v e r 70 % of t h e w a f e r a r e a and t h r o u g h o u t 75 % o f t h e 4 0 i n g o t l e n g t h T y p i c a l d i s l o c a t i o n d i s t r i b u t i o n s on t r a n s v e r s e s e c t i o n s of GaAs c r y s t a l a r e shown i n F i g u r e 2.2. In F i g u r e 2 . 2 a 4 1 the d i s l o c a t i o n d e n s i t y (EDP) i s shown a l o n g <100> and <110> d i r e c t i o n s on a (100) GaAs w a f e r s u r f a c e s h o w i n g maximum d i s l o c a t i o n s a t the o u t s i d e and minimum midway between the o u t s i d e and t h e c e n t e r , g i v i n g a W shape d i s t r i b u t i o n a c r o s s t h e e n t i r e w a f e r . F i g u r e 2.2b shows EPD d i s t r i b u t i o n i n a (100) w a f e r s u r f a c e t a k e n n e a r th e t a i l end of a 5 cm d i a m e t e r c r y s t a l . The e t c h p i t d i s t r i b u t i o n has the f o u r - f o l d symmetry n o r m a l l y o b s e r v e d , w i t h h i g h e r d e n s i t i e s at t h e o u t s i d e and c e n t r e o f t h e w a f e r . C l o s e t o the end o f the c r y s t a l , EPD maps on 5.0 cm d i a m e t e r c r y s t a l show the f o u r - f o l d symmetry d e g e n e r a t e s t o two-f o l d symmetry. T h i s d i s t o r t i o n i s c a u s e d by the s h i f t o f t h e two minima i n the [110] and [110] d i r e c t i o n s to p o s i t i o n s c l o s e r t o 3 3 t h e edge o f t h e w a f e r 10 C I 1 0 ] C 1003 b 2.2 a) E x p e r i m e n t a l l y d e t e r m i n e d 4 1 d i s l o c a t i o n d e n s i t y a l o n g [ 1 1 0 ] and [ 0 1 0 ] . b) EPD m a p 3 3 on a 5cm d i a . w a f e r f r o m t h e t a i l end . 1 0 4 E t c h P i t s / c m . 1 < y e l l o w < 12 < g r e e n < 15 < b l u e < 20 < b l a c k < 30 . 11 2. 4 E f f e c t o f D i s l o c a t i o n s on P r o p e r t i e s o f GaAs D e v i c e s D i s l o c a t i o n s a r e known t o a f f e c t t h e e l e c t r o n i c p r o p e r t i e s o f GaAs i n t h e f o l l o w i n g ways 1) They a r e c o n s i d e r e d t o be 4 2 n o n - r a d i a t i v e r e c o m b i n a t i o n c e n t e r s ; 2) They a b s o r b non A Q r a d i a t i v e i m p u r i t y atoms or p o i n t d e f e c t s ; 3) When d i s l o c a t i o n s a r e a r r a y e d i n c e l l u l a r s t r u c t u r e s , c a r r i e r s a r e not 4 3 a c t i v e at t h e c e l l w a l l s The e f f e c t of d i s l o c a t i o n s on t h e p r o p e r t i e s o f m i c r o e l e c t r o n i c and o p t o e l e c t r o n i c d e v i c e s depends on t h e n a t u r e o f t h e d e v i c e and how i t i s f a b r i c a t e d . In o p t o e l e c t r o n i c d e v i c e s , i t has been r e p o r t e d t h a t d i s l o c a t i o n s s e r i o u s l y r e d u c e 4 4 4 2 t h e l i f e t i m e o f l a s e r s , r e d u c e the e f f i c i e n c y o f L E D 1 s , and under an a p p l i e d s t r e s s , i n c r e a s e t h e d e g r a d a t i o n o f d i o d e s by one o r d e r of m a g n i t u d e 4 5 , 4 6 . The mechanism f o r t h e s e e f f e c t s i s 47 u n c l e a r W i t h m i c r o e l e c t r o n i c d e v i c e s i t was c o n s i d e r e d t h a t A Q d i s l o c a t i o n s d i d not s i g n i f i c a n t l y a f f e c t t h e i r p r o p e r t i e s However a t the p r e s e n t time t h i s has changed and d i s l o c a t i o n s a r e b e l i e v e d t o a f f e c t t h e e l e c t r i c a l p r o p e r t i e s o f IC's o f GaAs. These r e s u l t s a r e p r e s e n t e d and d i s c u s s e d i n A p p e n d i x I. 12 CHAPTER 3 THE ORIGIN OF DISLOCATIONS IN LEC GaAs CRYSTALS D i s l o c a t i o n s i n GaAs a r e e i t h e r s e e d r e l a t e d or growth r e l a t e d . The s e e d r e l a t e d d i s l o c a t i o n s r e s u l t from t h e p r o p a g a t i o n and m u l t i p l i c a t i o n o f d i s l o c a t i o n s from t h e s e e d i n t o t h e main c r y s t a l . These d i s l o c a t i o n s can be r e d u c e d or e l i m i n a t e d by n e c k i n g the s e e d c r y s t a l , as i s commonly done, or by s t a r t i n g 3 5 w i t h a d i s l o c a t i o n f r e e s e e d c r y s t a l The growth r e l a t e d d i s l o c a t i o n s i n t h e c r y s t a l a r e g e n e r a l l y a t t r i b u t e d t o t h e t h e r m a l s t r e s s e s g e n e r a t e d i n t h e c r y s t a l d u r i n g g rowth. The d i s l o c a t i o n s n u c l e a t e i n r e g i o n s of maximum s t r e s s n e a r t h e c r y s t a l s u r f a c e , t h e n p r o p a g a t e a l o n g s l i p p l a n e s and m u l t i p l y . The d i s l o c a t i o n s can a l s o be g e n e r a t e d by t h e r m a l s t r e s s e s a t p r e c i p i t a t e s or f o r e i g n p a r t i c l e s , and by t h e c o n d e n s a t i o n o f v a c a n c i e s i n t o d i s l o c a t i o n l o o p s w h i c h g l i d e . E x a m i n a t i o n of a <100> me l t grown GaAs° c r y s t a l w a f e r by t r a n s m i s s i o n X - r a y t o p o g r a p h y o f e t c h p i t s (EPD) shows t h a t t h e d i s l o c a t i o n s a r e not u n i f o r m l y d i s t r i b u t e d t h r o u g h o u t t h e w a f e r as shown i n F i g u r e s 3.1 a a t C . As d e s c r i b e d p r e v i o u s l y the d i s l o c a t i o n d e n s i t y a l o n g a c r y s t a l d i a m e t e r f o l l o w s a W p a t t e r n w i t h h i g h e r c o n c e n t r a t i o n s a t the o u t s i d e and c e n t e r . In a d d i t i o n t h e d i s l o c a t i o n s form c e l l s by c o n c e n t r a t i n g a l o n g c e l l w a l l s . C e l l d i a m e t e r s have been o b s e r v e d o f 0.1 mm i n a r e a s of 13 F i g u r e 3.1 T r a n s m i s s i o n X - r a y t o p o g r a p h y i n GaAs - ( a ^ ^ a n d (b) undoped ; (c) Te-doped, (110) a x i a l s e c t i o n 14 5 2 d i s l o c a t i o n d e n s i t i e s o f 10 /cm ( b a s e d on EPD). At l o w e r d e n s i t i e s t h e c e l l s can i n c r e a s e i n s i z e up t o 3 m m 3 0 , 1 1 0. The c e l l w a l l d i r e c t i o n s on a (100) c r y s t a l f a c e a r e r a n d o m l y o r i e n t e d . The f o r m a t i o n of c e l l s i n t h e GaAs w a f e r s i s not c l e a r l y u n d e r s t o o d . The most f a v o u r e d mechanism i s t h a t d i s l o c a t i o n s g e n e r a t e d n e a r t h e c r y s t a l w a l l s and i n t h e c e n t r e g l i d e and c l i m b a f t e r s o l i d i f i c a t i o n e v e n t u a l l y f o r m i n g t h e c e l l s t r u c t u r e t o m i n i m i z e t h e i r e n e r g y . An a l t e r n a t i v e mechanism has been p r o p o s e d by H o l m e s 1 1 1 i n w h i c h t h e c e l l s t r u c t u r e i s a t t r i b u t e d to c o n s t i t u t i o n a l s u p e r c o o l i n g a t the s u r f a c e , s i m i l a r to c e l l 112 f o r m a t i o n i n m e t a l a l l o y s . T h i s mechanism a p p e a r s u n l i k e l y b e c a u s e o f the low i m p u r i t y l e v e l s i n the GaAs, h i g h s t o i c h i o m e t r y a t t h e i n t e r f a c e and slow g r o w th v e l o c i t i e s . In a d d i t i o n to c e l l s t r u c t u r e s on GaAs c r y s t a l s , l o n g l i n e a r a r r a y s o f d i s l o c a t i o n s a r e a l s o o b s e r v e d as shown i n F i g u r e 3.1b at L. The l i n e a r a r r a y s a r e o b s e r v e d i n a r e a s h a v i n g a 4 2 d i s l o c a t i o n d e n s i t y of l e s s t h a n 2x10 /cm and p r o d u c e a s m a l l t i l t o r i e n t a t i o n d i f f e r e n c e o f about 0.01° i n t h e c r y s t a l a c r o s s t h e l i n e . These a r r a y s a r e r o u g h l y s i m i l a r to l i n e a g e sub-b o u n d a r i e s i n m e l t grown m e t a l c r y s t a l s a t t r i b u t e d t o t h e c o n d e n s a t i o n of v a c a n c i e s i m m e d i a t e l y b e h i n d t h e i n t e r f a c e , f o r m i n g d i s l o c a t i o n l o o p s w h i c h c l i m b to form l i n e a g e b o u n d a r i e s . S l i p l i n e s a r e sometimes o b s e r v e d on e t c h e d GaAs w a f e r s as shown i n F i g u r e 3.1a a t S, g e n e r a l l y i n a r e a s o f l o w e r d i s l o c a t i o n d e n s i t y ( 1 0 3 / c m 2 ) 1 1 3 . 15 S p e c i f i c o b s e r v a t i o n s and d i s c u s s i o n s of d i s l o c a t i o n g e n e r a t i o n and m u l t i p l i c a t i o n i n GaAs a r e g i v e n below : 1. The g e n e r a t i o n o f d i s l o c a t i o n s by t h e r m a l s t r e s s e s has 114 been r e p o r t e d by M i l v i d s k i i and c o - w o r k e r s and o t h e r s 1 1 ^ * ' 1 1 * 5 . T h e r m a l s t r e s s e s i n t h e g r o w i n g c r y s t a l r e s u l t from r a d i a l and a x i a l t e m p e r a t u r e g r a d i e n t s . When t h e l o c a l s t r e s s i s g r e a t e r t h a n t h e c r i t i c a l r e s o l v e d s h e a r s t r e s s , g l i d e o c c u r s on t h e _ 117 118 (111) s l i p p l a n e s i n <110> d i r e c t i o n s ' . T h i s 119 mechanism was p r o p o s e d f o r S i by B i l l i g and was 12 0 a p p l i e d t o Ge by P e n n i n g 2. The most p r o b a b l e mechanism f o r t h e g e n e r a t i o n o f d i s l o c a t i o n s i s s t r e s s c o n c e n t r a t i o n a t h e t e r o g e n e o u s s o u r c e s at the c r y s t a l s u r f a c e or i n t h e b u l k m a t e r i a l . S m a l l p r e c i p i t a t e s o f As have been f o u n d a t 3 2 d i s l o c a t i o n s Amorphous p r e c i p i t a t e s o f Ga or As have 3 0 been o b s e r v e d on the c e l l w a l l s i n undoped GaAs I n s u l a r p o l y c r y s t a l 1 i n e GaAs h a v i n g d i a m e t e r s o f 1000°A have been o b s e r v e d i n S i doped GaAs w h i c h a r e 30 a s s o c i a t e d w i t h d i s l o c a t i o n g e n e r a t i o n . S t e i n e m a n n 121 and Z i m merly a s s o c i a t e d i s l o c a t i o n g e n e r a t i o n w i t h p r e c i p i t a t e s of e x c e s s Ge or i m p u r i t y atoms. E x c e s s Ga v a c a n c i e s 1 1 ^ ' 1 2 2 i n p a r t i c u l a r and n a t i v e p o i n t d e f e c t s 123125 i n g e n e r a l w h i c h p r e c i p i t a t e i n t o d i s l o c a t i o n l o o p s have been c o n s i d e r e d as a s o u r c e of d i s l o c a t i o n s . 12 6 12 7 L a g o w s k i et a l . ' have p r o p o s e d a t h e o r y i n w h i c h 16 t h e Ga v a c a n c y Is t h e c r i t i c a l n a t i v e d e f e c t i n the f o r m a t i o n of t h e d i s l o c a t i o n l o o p s . T h i s t h e o r y i s p r e s e n t e d i n p a r t b o f A p p e n d i x I. o 3. The s t r e s s d i s t r i b u t i o n i n g r o w i n g c r y s t a l s has been 12 8 c o n s i d e r e d i n s e v e r a l ways. N i k i t e n k o and Indenbom used p h o t o e l a s t i c methods t o o b s e r v e the s t r e s s d i s t r i b u t i o n i n c r y s t a l s . They a l s o used m a t h e m a t i c a l models t o e s t a b l i s h t h e s t r e s s f i e l d i n a g r o w i n g c r y s t a l and d e r i v e d t h e d i s l o c a t i o n d i s t r i b u t i o n b a s e d on l o c a l s t r e s s l e v e l s above the c r i t i c a l r e s o l v e d s h e a r s t r e s s . The d i s t r i b u t i o n t h e y p r e d i c t e d a g r e e d r e a s o n a b l y w e l l w i t h o b s e r v a t i o n s . The c o r r e l a t i o n of t h e r m a l s t r e s s f i e l d s t o d i s l o c a t i o n s has a l s o been o b s e r v e d u s i n g X - r a y d i f f r a c t i o n to measure l a t t i c e s t r a i n s i n G a A s 1 2 9 - 1 3 1 , p h o t o e l a s t i c m e t h o d s 1 3 2 , 1 3 3 and p h o t o 1 u m i n e s c e n t s c a n n i n g 1 3 4 . In summary, s e v e r a l c a u s e s f o r t h e o r i g i n o f d i s l o c a t i o n s i n GaAs have been p r o p o s e d i n t h e l i t e r a t u r e . In c r y s t a l s grown from m e l t s f a r from s t o i c h i o m e t r y t h e Ga v a c a n c y may c o n t r o l t h e f o r m a t i o n o f d i s l o c a t i o n s . Under normal growth c o n d i t i o n s , however s t r e s s e s p l a y a f u n d a m e n t a l r o l e i n c o n t r o l l i n g d i s l o c a t i o n d e n s i t i e s by a g l i d e mechanism. More e x p e r i m e n t a l e v i d e n c e s u p p o r t i n g the s t r e s s r e l a t e d mechanism i s p r e s e n t e d i n t h e n e x t c h a p t e r . 17 CHAPTER 4 DISLOCATION DENSITY AND CRYSTAL GROWTH The d e n s i t y and d i s t r i b u t i o n o f d i s l o c a t i o n s i n LEC grown GaAs c r y s t a l s i s s t r o n g l y d e p e n d e n t on a number o f g r o w t h p a r a m e t e r s . The d i s l o c a t i o n d e n s i t y may be r e d u c e d , i m p r o v i n g t h e c r y s t a l q u a l i t y , by c h a n g i n g t h e g r o w t h c o n d i t i o n s : 1) R e d u c i n g t h e r a d i a l and a x i a l t h e r m a l g r a d i e n t s d u r i n g g r o w t h 2) A d d i n g i m p u r i t i e s t o s o l u t i o n h a r d e n t h e c r y s t a l i n c r e a s i n g the CRSS 3) R e d u c i n g v a r i a t i o n s i n t h e c r y s t a l r a d i u s d u r i n g g r o w t h 4) M a i n t a i n i n g s t o i c h i o m e t r y o f t h e Ga and As i n t h e m e l t . More u n i f o r m dopant and i m p u r i t y d i s t r i b u t i o n i n t h e c r y s t a l may be o b t a i n e d by s t o p p i n g f l u i d f l o w i n t h e m e l t due to c o n v e c t i on. 4•1 S t r e s s e s i n t h e C r y s t a l Due t o T h e r m a l G r a d i e n t s T h e r m a l s t r e s s e s i n the c r y s t a l i n LEC GaAs growth depend p r i m a r i l y on 1) t h e c r y s t a l d i m e n s i o n s and 2) t h e ambient v a r i a b l e s a f f e c t i n g t h e t e m p e r a t u r e d i s t r i b u t i o n i n t h e c r y s t a l . 18 4.1.1 C r y s t a l D i m e n s i o n s In t h i s c a t e g o r y t h e v a r i a b l e s a r e c r y s t a l d i a m e t e r , c r y s t a l l e n g t h , cone a n g l e and neck and s e e d d i m e n s i o n s . I n c r e a s i n g t h e d i a m e t e r of t h e c r y s t a l g e n e r a l l y i n c r e a s e s t h e d i s l o c a t i o n d e n s i t y . At v e r y l a r g e d i a m e t e r s t h i s may not be t h e c a s e . I n c r e a s i n g t h e d i a m e t e r o f c r y s t a l s from 5.0 - 7.5 cm d i a m e t e r to 12.7 - 15.2 cm d i a m e t e r d i d n o t change the 1 8 d i s l o c a t i o n d e n s i t y The i n c r e a s e i n d i s l o c a t i o n d e n s i t y w i t h i n c r e a s i n g d i a m e t e r can be due t o an i n c r e a s e i n a x i a l a n d / o r r a d i a l t h e r m a l 13 5 13 6 g r a d i e n t s . E x p e r i m e n t a l o b s e r v a t i o n s a r e c o n t r a d i c t o r y R e s u l t s o f c a l c u l a t i o n s a r e a l s o c o n t r a d i c t o r y . A c c o r d i n g t o 13 7 J o r d a n e t a l . b o t h a x i a l and r a d i a l g r a d i e n t s i n c r e a s e w i t h 13 5 r a d i u s . On t h e o t h e r hand, B r i c e and B u c k l e y - G o l d e n and 13 8 Humphreys r e p o r t t h a t a x i a l t e m p e r a t u r e g r a d i e n t s and a x i a l t e m p e r a t u r e c u r v a t u r e s d e c r e a s e w i t h i n c r e a s i n g r a d i i . The EPD i n d i c a t i n g d i s l o c a t i o n d e n s i t y , i n c r e a s e s w i t h d i s t a n c e from t h e s e e d end o f t h e c r y s t a l . The d i s l o c a t i o n d i s t r i b u t i o n a c r o s s t h e c r y s t a l has a W shape, as shown i n F i g u r e 4.1., w h i c h i s m a i n t a i n e d t h r o u g h o u t the c r y s t a l . In low 113 d i s l o c a t i o n d e n s i t y c r y s t a l s E l l i o t e t a l . have r e p o r t e d h i g h EPD v a l u e s a t b o t h t h e s e e d and t a i l ends o f t h e c r y s t a l . The e f f e c t of cone a n g l e on EPD has been e v a l u a t e d e x p e r i m e n t a l l y by Chen and H o l m e s 1 1 0 . They f o u n d t h a t t h e EPD d e c r e a s e s w i t h i n c r e a s i n g cone a n g l e up t o a v a l u e o f a b o u t 19 F i g u r e 4.1 R a d i a l d i s l o c a t i o n d e n s i t y p r o f i l e s a c r o s s w a f e r s o b t a i n e d from t h e f r o n t , m i d d l e , and t a i l o f a c r y s t a l . The r a d i a l p r o f i l e s a r e "W" shaped, and t h e a v e r a g e EPD i n c r e a s e s from t h e f r o n t t o t h e t a i l . 20 25 d e g r e e s . Above t h i s v a l u e t h e y f o u n d no c o r r e l a t i o n between 3 9 t h e EPD and cone a n g l e . T h i s a g r e e s w i t h Watanabe et a l . T h e r m a l s t r e s s e s depend on t h e e l a s t i c c o n s t a n t s of GaAs. A c c o r d i n g l y t h e c r y s t a l o r i e n t a t i o n s h o u l d a f f e c t t h e d i s l o c a t i o n 1 1 R d e n s i t y . F o r h o r i z o n t a l Bridgman g r o w t h o f GaAs P l a s k e t e t a l . have f o u n d t h a t the l o w e s t d i s l o c a t i o n d e n s i t y was o b t a i n e d f o r c r y s t a l s grown i n t h e <013> d i r e c t i o n . T h i s c a n n o t be t a k e n a d v a n t a g e of b e c a u s e c i r c u l a r GaAs c r y s t a l w a f e r s h a v i n g (100) s u r f a c e s a r e r e q u i r e d f o r p r o d u c t i o n o f I C ' s . 4.1.2 T h e r m a l C o n d i t i o n s D u r i n g C r y s t a l Growth T h e r m a l g r a d i e n t s i n t h e c r y s t a l depend d i r e c t l y on t h e t h e r m a l c o n d i t i o n s i n t h e s u r r o u n d i n g e n v i r o n m e n t t h r o u g h h e a t t r a n s f e r at t h e b oundary of t h e c r y s t a l . The h e a t t r a n s f e r p r o c e s s can be c h a r a c t e r i z e d i n a s i m p l e way by h e a t t r a n s f e r c o e f f i c i e n t s and t h e ambient t e m p e r a t u r e a r o u n d th e c r y s t a l . The main f a c t o r s a f f e c t i n g the h e a t t r a n s f e r a r e : gas p r e s s u r e , b o r o n o x i d e l a y e r t h i c k n e s s , and t h e geometry and p o s i t i o n o f t h e h e a t e r and s h i e l d i n g s y s t e m . I n c r e a s i n g gas p r e s s u r e i n c r e a s e s the E P D 3 9 ' 1 1 0 ' 1 1 ^ . T h i s e f f e c t i s e x p l a i n e d i n terms o f t h e v a r i a t i o n o f t h e h e a t t r a n s f e r c o e f f i c i e n t 1 1 0 , w h i c h a c c o r d i n g t o c a l c u l a t i o n s 13 7 13 9 i n c r e a s e s as the s q u a r e r o o t o f t h e p r e s s u r e ' The change i n h e a t t r a n s f e r c o e f f i c i e n t between the c r y s t a l and gas c a n n o t e x p l a i n t h e v a r i a t i o n i n t h e EPD o b s e r v e d . 21 The gas p r e s s u r e d u r i n g c r y s t a l growth c a n n o t be r e d u c e d to r e d u c e d i s l o c a t i o n d e n s i t y . W i t h o u t s u f f i c i e n t p r e s s u r e at h i g h t e m p e r a t u r e s As atoms l e a v e t h e c r y s t a l . E x c e s s Ga on t h e s u r f a c e w i l l r e s u l t i n p i t t e d s u r f a c e s , t w i n s and p o l y c r y s t a l i n i t y 110,140,141 j n a d d i t i o n , c h a n g i n g t h e gas p r e s s u r e changes th e a t o m i c f r a c t i o n o f As i n t h e m e l t . T h i s can i n f l u e n c e the 14 2 e l e c t r i c a l r e s i s t i v i t y o f t h e m a t e r i a l The d i s l o c a t i o n d e n s i t y i s a l s o a f f e c t e d by t h e t y p e of i n e r t gas u s e d . A n i t r o g e n a t m o sphere g i v e s an EPD one o r d e r of 3 9 m agnitude h i g h e r t h a n a r g o n . W i t h o t h e r i n e r t a t m o s p h e r e s t h e EPD c o u n t s were f o u n d t o i n c r e a s e i n the o r d e r K r , A r , and 143 144 He ' The e f f e c t i s a t t r i b u t e d t o t h e d i f f e r e n t h e a t t r a n s f e r e f f i c i e n c i e s o f the g a s e s which change th e t h e r m a l g r a d i e n t i n the b o r o n o x i d e e n c a p s u l a n t . In a c o n v e n t i o n a l M e l b o u r n grower i n c r e a s i n g t h e B O l a y e r d e c r e a s e s the d i s l o c a t i o n d e n s i t y i n the c r y s t a l . D o u b l i n g t h e e n c a p s u l a n t t h i c k n e s s from 15 t o 30 mm r e d u c e s by h a l f t h e a x i a l , . ,.145-147 . . * c « , J 3 5 , 1 4 8 g r a d i e n t . At p r e s e n t 50 mm t h i c k l a y e r s a r e u s e d Enhanced h e a t i n g o f the B 2 ° 3 l a y e r t h r o u g h windows i n t h e s u s c e p t o r c y l i n d e r r e s u l t s i n lower a x i a l g r a d i e n t s and t h e r e f o r e l o w e r EPD. The a d d i t i o n of b a f f l e s above the c r u c i b l e t o r e d u c e c o n v e c t i o n of t h e gas r e d u c e s the a x i a l and r a d i a l g r a d i e n t s t o 15°C/cm and 3°C/cm r e s p e c t i v e l y f o r a B o 0 - t h i c k n e s s o f 30 mm. With t h i s t e c h n i q u e 5 cm d i a m e t e r c r y s t a l s can be p r o d u c e d w i t h 3 2 d i s l o c a t i o n d e n s i t i e s of 10 /cm i n l a r g e a r e a s . 22 4.2 A l l o y A d d i t i o n to the GaAs The r e d u c t i o n or e l i m i n a t i o n o f d i s l o c a t i o n s i n GaAs by 14 9 a l l o y a d d i t i o n s to the m e l t was r e p o r t e d as e a r l y as 1972 . The e f f e c t i v e n e s s o f s p e c i f i c a d d i t i o n s i n r e d u c i n g the as grown d i s l o c a t i o n d e n s i t y i n GaAs (20-25 mm d i a m e t e r ) i s shown i n 150 F i g u r e 4.2 . I t can be seen t h a t Te i s t h e most e f f e c t i v e i n r e d u c i n g the d i s l o c a t i o n d e n s i t y f o l l o w e d by In, Sn and Zn. S e k i 151 and c o w o r k e r s d e t e r m i n e d t h a t Zn, S, Te, A l and N a r e 15 2 15 3 e f f e c t i v e i n r e d u c i n g the d i s l o c a t i o n d e n s i t y . S i l i c o n ' and 154 Boron have a l s o been shown t o have t h e same e f f e c t . D i s l o c a t i o n f r e e GaAs has been o b t a i n e d d o p i n g the m e l t w i t h 15 5 N (20 mm i n d i a m e t e r ) , Te (22 mm i n d i a m e t e r , <111> c r y s t a l ) 1 5 6 , S i (40-50 mm d i a m e t e r ) 1 5 7 , In (50 mm i n ,. . ,35,36,158 d i a m e t e r ) One i m p o r t a n t a s p e c t o f d o p i n g i s t h a t t h e a d d i t i o n p r o d u c e s n- or p - t y p e m a t e r i a l . I f s e m i - i n s u l a t i n g ( S i ) GaAs i s r e q u i r e d , o n l y i s o e l e c t r o n i c i m p u r i t i e s can be added. Indium i s t h e p r o m i s i n g i m p u r i t y t o d e c r e a s e d i s l o c a t i o n d e n s i t y and o b t a i n . . , ^. . ,159-162 s e m i - i n s u l a t i n g m a t e r i a l The p r i m a r y e f f e c t of d o p i n g i s to i n c r e a s e the c r i t i c a l s t r e s s f o r d i s l o c a t i o n g e n e r a t i o n . F o r undoped GaAs the CRSS i s 18 3 7 g/mm w h i l e f o r Te-doped GaAs (2x10 atoms/cm ) t h e CRSS i s 16 3 16 3 40 g/mm . T h i s e f f e c t , as e x p l a i n e d by M i l v i d s k i i e t a l . , a p p e a r s b e c a u s e h i g h t e m p e r a t u r e and low s t r e s s e s c r e a t e 23 f a v o u r a b l e c o n d i t i o n s f o r the f o r m a t i o n of a s t a b l e i m p u r i t y a t m o sphere ( C o t t r e l l a t m o s p h e r e s ) s u r r o u n d i n g moving C [atom- cnr3J F i g u r e 4.2 Mean d e n s i t y o f " g r o w n - i n " d i s l o c a t i o n s i n GaAs s i n g l e c r y s t a l s (20-25 mm i n d i a m e t e r ) grown by t h e C z o c h r a l s k i LEC T e c h n i q u e , as a f u n c t i o n of d o p a n t c o n c e n t r a t i o n : (1) Te, (2) Sn, (3) In, (4) Zn. d i s l o c a t i o n s . T h i s r e d u c e s e f f e c t i v e n e s s o f an e l e m e n t i n 2 g i v e n by a f a c t o r U /D where atoms w i t h d i s l o c a t i o n s and c o e f f i c i e n t . the d i s l o c a t i o n v e l o c i t y . The s t o p p i n g d i s l o c a t i o n movement i s U i s t h e e l a s t i c i n t e r a c t i o n of D i s t h e i m p u r i t y d i f f u s i o n 24 A number of s p e c i f i c mechanisms have been p r o p o s e d t o a c c o u n t f o r t h e e f f e c t of s o l u t e atoms on d i s l o c a t i o n m o b i l i t y . 151 S e k i e t a l . a s s o c i a t e d d i s l o c a t i o n movement w i t h b r e a k i n g o f bonds between s o l u t e e l e m e n t s and t h e m a t r i x , w i t h l i m i t e d 164 s u c c e s s . Sher e t a l . r e l a t e d t h e bond l e n g t h (d) t o d i s l o c a t i o n e n e r g i e s and h a r d n e s s i n s e m i c o n d u c t o r s . They showed t h a t d i s l o c a t i o n e n e r g i e s per u n i t l e n g t h a r e p r o p o r t i o n a l t o -3 -9 -5 -11 d - d and h a r d n e s s t o d - d T h i s a n a l y s i s c o u l d be u s e d t o a c c o u n t f o r the r e d u c t i o n i n d i s l o c a t i o n d e n s i t y i n GaAs 165 1 5 1 1 5 5 by a d d i n g BAs and GaN ' and p r e d i c t s GaP a d d i t i o n s w i l l r e d u c e th e d e n s i t y . The r e d u c t i o n i n d i s l o c a t i o n d e n s i t y by In can be a c c o u n t e d f o r by s o l u t i o n h a r d e n i n g 1 6 6 . In t h i s c a s e t h e s o l u t e e n t i t y i s not t h e In atom a l o n e but c o n s i s t s o f a c l u s t e r o f f i v e atoms. The c l u s t e r i s formed by one In atom bounded by f o u r As atoms, I n A s 4 > i n a t e t r a h e d r a l c o n f i g u r a t i o n w h i c h i s embedded i n a GaAs m a t r i x . These r e s u l t s a r e s u p p o r t e d by the e x p e r i m e n t a l o b s e r v a t i o n s . t h a t the f e e (Ga.In) s u b l a t t i c e p a r a m e t e r i n c r e a s e s l i n e a r l y w i t h In c o n c e n t r a t i o n and t h a t the Ga-As and In-As bond l e n g t h r e m a i n s r o u g h l y c o n s t a n t as x i s v a r i e d i n G a ' 1 X ^ I n X A s 1 6 ^ . The d i l a t i o n of an I n A s 4 t e t r a h e d r a as compared to a GaAs^ t e t r a h e d r a i s 21 % . T h i s i s semi q u a n t i t a t i v e l y c a l c u l a t e d t o have a s t r o n g e r e f f e c t t h a n s o l u t i o n h a r d e n i n g i n m e t a l s . S o l u t e a d d i t i o n s t o the GaAs m e l t can m a r k e d l y i n f l u e n c e t h e b e h a v i o u r of d e v i c e s f a b r i c a t e d on t h e c r y s t a l w a f e r . 25 1) I f s u f f i c i e n t s o l u t e i s added c o n s t i t u t i o n a l s u p e r c o o l i n g c o u l d d e v e l o p a t t h e i n t e r f a c e p r o d u c i n g s o l u t e m i c r o s e g r e g a t i o n i n the c r y s t a l 2) L i n e a g e s t r u c t u r e can be d e v e l o p e d i n t h e c r y s t a l p r o d u c i n g o r i e n t a t i o n v a r i a t i o n s . 3) M i c r o d e f e c t s , i n c l u d i n g p r e c i p i t a t e s can be p r e s e n t i n the c r y s t a l due t o t h e s o l u t e p r e s e n t . As an example, Te a d d i t i o n s at low l e v e l s p r o d u c e s t a c k i n g f a u l t s i n t h e 168-173 c r y s t a l . Te a d d i t i o n s a t h i g h l e v e l s p r o d u c e p r i s m a t i c d i s l o c a t i o n s i n a d d i t i o n to s t a c k i n g 1 7 2 1 7 3 168 f a u l t s ' . S a d d i t i o n s have t h e same e f f e c t H e l i c o i d a l d i s l o c a t i o n s were o b s e r v e d i n GaAs w i t h s m a l l 18 3 a d d i t i o n of Te (2x10 atoms/cm ) and w i t h Sn, S and Zn , . . . . 168,174 a d d i t i o n s C o n t r o l l e d a d d i t i o n s of e l e m e n t s t o GaAs a r e made t o p r o d u c e p- or n - t y p e c r y s t a l s . The e l e m e n t s s e l e c t e d s h o u l d r e s u l t i n the d e s i r e d t y p e of c r y s t a l w i t h m i n i m a l o t h e r d e f e c t s p r o d u c e d , as w e l l as t h e r e d u c t i o n i n d i s l o c a t i o n d e n s i t y . I t has been shown t h a t S i i s t h e b e s t dopant f o r GaAs t o p r o d u c e n - t y p e b e h a v i o u r , 18 3 1 7 5 1 7 6 at l e v e l s o f ne a r 10 atoms/cm , as compared t o Te and S 3 2 In t h i s c a s e d i s l o c a t i o n s d e n s i t i e s o f 3x10 /cm a r e o b t a i n e d w i t h no m i c r o d e f e c t s . At h i g h e r dopant l e v e l s , above 18 3 3x10 atoms/cm , s t r a i g h t and h e l i c o i d a l d i s l o c a t i o n s become p r o n o u n c e d . S i m i l a r r e s u l t s a r e o b t a i n e d w i t h In dopant f o r 19 3 l e v e l s g r e a t e r t h a n 2x10 atoms/cm . At h i g h In l e v e l s 26 20 3 (10 atoms/cm ) t h r e e d i f f e r e n t r e g i m e s of d i s l o c a t i o n s have 17 7 been r e p o r t e d by P i c h a u d e t a l . as shown i n F i g u r e 4.3 . In the f i g u r e t h e In c o n c e n t r a t i o n i s shown t o i n c r e a s e w i t h d i s t a n c e a l o n g t h e growth d i r e c t i o n ( p u l l i n g a x i s ) w h i c h changes the d i s l o c a t i o n d e n s i t y . Position along the pulling axis F i g u r e 4.3 H y p o t h e t i c a l d i s t r i b u t i o n of t h e dopant ( I n ) a l o n g t h e p u l l i n g a x i s of the i n g o t . The i n d i u m c o n c e n t r a -t i o n o s c i l l a t e s a r o und a mean v a l u e w h i c h i s p r o p o r t i o n a l to the d i s t a n c e from t h e top o f the i n g o t . At t h e s e e d end and m i d d l e of t h e c r y s t a l , d i s l o c a t i o n s a r e t a n g l e d w i t h a banded p e r i o d i c a l d i s t r i b u t i o n normal t o the growth d i r e c t i o n . In t h e f i n a l t h i r d o f t h e c r y s t a l t h e bands d i s a p p e a r and t h e d i s l o c a t i o n d e n s i t y i s r e d u c e d . The o s c i l l a t i o n s i n t h e In l e v e l s shown s c h e m a t i c a l l y i n t h e f i g u r e a r e a s s o c i a t e d w i t h c o n v e c t i v e f l o w i n t h e m e l t . 27 S t r i a t i o n o r l i n e a r b o u n d a r i e s a r e o b s e r v e d i n undoped GaAs 17 8 c r y s t a l s . The s t r i a t i o n d e n s i t y can be r e d u c e d by a p p l y i n g a 17 9 m a g n e t i c f i e l d a t k i l o g a u s s l e v e l s t o undoped GaAs , Se 1 7 9 1 8 0 137 doped ' and In doped m a t e r i a l . W i t h a v e r t i c a l m a g n e t i c f i e l d t h e r m a l o s c i l l a t i o n s i n the m e l t due t o c o n v e c t i o n can be r e d u c e d t o l e s s t h a n 0.3°C 1 8 1 but not e l i m i n a t e d 1 8 0 . However, at t h i s time i t i s not c l e a r how the m a g n e t i c f i e l d and c o n v e c t i v e f l o w q u a n t i t a t i v e l y change the c r y s t a l c h a r a c t e r i s t i c . N u m e r i c a l 18 2 183 s i m u l a t i o n s and m o d e l l i n g i n d i c a t e m a g n e t i c f i e l d s a t k i l o g a u s s l e v e l s do not s u p p r e s s c o n v e c t i v e f l o w . R e c e n t r e s u l t s 184 show a 2 KGauss f i e l d can s t a b i l i z e f l o w and t h e r m a l f i e l d s The i n f l u e n c e o f a m a g n e t i c f i e l d on t h e i m p u r i t y d i s t r i b u t i o n i n grown c r y s t a l s i s complex. Carbon c o n c e n t r a t i o n s a r e d e c r e a s e d 181 and Chromium l e v e l s a r e i n c r e a s e d R e s i d u a l i m p u r i t i e s a r e changed, as e v i d e n c e d by a r e d u c t i o n i n e l e c t r i c a l r e s i s t i v i t y of undoped c r y s t a l s 1 8 5 . The a d d i t i o n of In t o GaAs t o r e d u c e d i s l o c a t i o n d e n s i t i e s w i t h o u t c h a n g i n g the e l e c t r i c a l p r o p e r t i e s p r e s e n t s d i f f i c u l t i e s . M a c r o s e g r e g a t i o n of the In a l o n g t h e c r y s t a l a x i s w i l l o c c u r as i n F i g u r e 4.3 . In a d d i t i o n the l a t t i c e s p a c i n g i n GaAs changes w i t h t h e In c o n c e n t r a t i o n w h i c h a f f e c t s t h e q u a l i t y of e p i t a x i a l l a y e r s d e p o s i t e d on the s u r f a c e i n d e v i c e f a b r i c a t i o n . S p e c i f i c a l l y , m i s f i t d i s l o c a t i o n s a r e p r o d u c e d a t t h e SI GaAs s u b s t r a t e and MBE d e p o s i t e d GaAs above a c r i t i c a l d e p o s i t e d l a y e r t h i c k n e s s . The c r i t i c a l l a y e r t h i c k n e s s d e c r e a s e s e x p o n e n t i a l l y w i t h i n c r e a s i n g In c o n c e n t r a t i o n . F o r a s i g n i f i c a n t 28 r e d u c t i o n o f d i s l o c a t i o n s , In c o n c e n t r a t i o n s g r e a t e r t han 19 3 2 0 3 10 atoms/cm a r e r e q u i r e d . At c o n c e n t r a t i o n s o f 10 atoms/cm the c r i t i c a l t h i c k n e s s of d e p o s i t e d m a t e r i a l i s about 1 m i c r o n w h i c h i s s m a l l . The e f f e c t of In a l l o y i n g i n FET c h a r a c t e r i s t i c has been 18 7 examined by H u n t e r e t a l . . U s i n g d i r e c t i o n i m p l a n t a t i o n on In a l l o y e d c r y s t a l w a f e r the FET's showed u n i f o r m p r o p e r t i e s a l o n g t h e w a f e r . Inhomogeneous FET's c h a r a c t e r i s t i c a r e e x p e c t e d from a r r a y s f a b r i c a t e d on w a f e r s w i t h i n h o m o g e n e i t y i n t h e r e s i s t i v i t y . Non u n i f o r m r e s i s t i v i t i e s a l o n g r a d i a l and a x i a l d i r e c t i o n s a r e c h a r a c t e r i s t i c o f In doped GaAs c r y s t a l s w i t h 18 8 d i s l o c a t i o n or d i s l o c a t i o n f r e e m a t e r i a l The u n i f o r m i t y i n the FET p r o p e r t i e s o b t a i n e d by H u n t e r e t a l . c o u l d be a r e s u l t of a p o s t s o l i d i f i c a t i o n a n n e a l i n g p r o c e s s as a r e s u l t o f t h e low growth v e l o c i t i e s and low t h e r m a l g r a d i e n t s d u r i n g c r y s t a l g r o w t h . B u l k a n n e a l i n g has p r o d u c e d u n i f o r m i t y improvements i n 18 8 10 3 undoped GaAs and In doped GaAs 29 CHAPTER 5 MODELS OF DISLOCATION GENERATION IN GaAs M a t h e m a t i c a l models f o r d i s l o c a t i o n g e n e r a t i o n by g l i d e due to t h e r m a l s t r e s s e s have been d e v e l o p e d u s i n g d i f f e r e n t a p p r o a c h e s f o r t h e c a l c u l a t i o n of t h e t h e r m a l f i e l d i n t h e c r y s t a l as w e l l as t h e t h e r m o e l a s t i c s t r e s s f i e l d . 5.1 S t r e s s F i e l d s 1. The t e m p e r a t u r e f i e l d i n t h e g r o w i n g c r y s t a l has been 18 9 c a l c u l a t e d n u m e r i c a l l y a s s u m i n g t h e i n t e r f a c e i s a p a r a b o l o i d o f r e v o l u t i o n . The boundary c o n d i t i o n s were d e t e r m i n e d e x p e r i m e n t a l l y by m e a s u r i n g t h e nea r s u r f a c e t e m p e r a t u r e s at a number of p o s i t i o n s a l o n g the c r y s t a l . The t h e r m o e l a s t i c s t r e s s e s were c a l c u l a t e d a s s u m i n g a c y l i n d r i c a l c r y s t a l w i t h f l a t f a c e s and u s i n g a p l a i n s t r a i n a p p r o x i m a t i o n . The r e s u l t s a r e shown i n F i g u r e 5.1 f o r a <111> grown c r y s t a l . The c a l c u l a t e d i s o t h e r m s and RSS a r e shown as a f u n c t i o n o f p o s i t i o n i n t h e c r y s t a l i n (a) and (b) f o r two c r y s t a l s of d i f f e r e n t d i m e n s i o n s . The number t o the r i g h t of t h e t e m p e r a t u r e s g i v e s t h e CRSS. I t i s a p p a r e n t t h a t t h e r e a r e a few a r e a s where t h e RSS i s l e s s t h a n t h e CRSS (shown by t h e dashed l i n e s ) . The i s o t h e r m s i n p a r t s o f t h e f i g u r e a r e f i r s t c o n c a v e f o l l o w i n g t h e i n t e r f a c e shape and change t o convex a f t e r t h e 1200°C i s o t h e r m . Growth c o n d i t i o n s and c r y s t a l c h a r a c t e r i s t i c s a r e not g i v e n . In p a r t s ( c ) and (d) o f the f i g u r e 30 0-V 0.8 rIK (I 0.1/ fi• g 9, 710 F i g . 5.1 (a) and (b) - I s o t h e r m s and s h e a r s t r e s s t o p o g r a p h y i n two g a l l i u m a r s e n i d e s i n g l e c r y s t a l grown under d i f f e r e n t c o n d i t i o n s . The f i g u r e s n e x t t o the c u r v e s a r e x v a l u e s (kg/mm ) c o r r e s p o n d i n g t o t h e c o n s t a n t - s t r e s s l i n e s . The dashed c u r v e s o u t l i n e r e g i o n s i n w h i c h th e e f f e c t i v e s t r e s s e s a r e l o w e r t h a n t h e r e d u c e d y i e l d s t r e s s . The f i g u r e s i n p a r e n t h e s e s a l o n g t h e o r d i n a t e , a x i s g r e t h e e x p e r i m e n t a l c r i t i c a l s t r e s s e s i n 10 kg/mm . ( c ) and (d) - D i s t r i b u t i o n of s h e a r s t r e s s e s T., and T 3 ( c ) and d i s l o c a t i o n d e n s i t y (d) o v e r t h e c r o s s -s e c t i o n of a g a l l i u m a r s e n i d e s i n g l e c r y s t a l . 31 the mean RSS shows the t y p i c a l W- shaped d i s t r i b u t i o n of the d i s l o c a t i o n s a l o n g t h e w a f e r d i a m e t e r ; t h e s t r e s s symmetry i s not o b t a i n e d . The e f f e c t of growth c o n d i t i o n s i s n o t a n a l y s e d . 2. The t e m p e r a t u r e f i e l d i n g r o w i n g GaAs has been d e t e r m i n e d a n a l y t i c a l l y by J o r d a n et a 1 . 1 3 7 • 1 4 8 • 1 9 0 . They u s e d a q u a s i -s t e a d y s t a t e a p p r o x i m a t i o n of the h e a t c o n d u c t i o n e q u a t i o n i n c y l i n d r i c a l c o o r d i n a t e s . F o r t h e boundary c o n d i t i o n s t h e y assumed a c o n s t a n t t e m p e r a t u r e a t a f l a t s o l i d / l i q u i d i n t e r f a c e and c o n v e c t i o n / r a d i a t i o n heat l o s s at t h e s u r f a c e o f t h e c r y s t a l f o l l o w i n g Newton's Law of c o o l i n g . The h e a t t r a n s f e r c o e f f i c i e n t s u sed were e v a l u a t e d s e p a r a t e l y as a f u n c t i o n of temper-13 9 191 a t u r e ' . U s i n g t h e c a l c u l a t e d t h e r m a l f i e l d s , t h e s t r e s s e s i n the c r y s t a l were c a l c u l a t e d u s i n g a p l a i n s t r a i n a p p r o x i m a t i o n , and t h e RSS was d e t e r m i n e d f o r a <100> o r i e n t e d c r y s t a l . The l o c a l d i s l o c a t i o n d e n s i t y was assumed to be p r o p o r t i o n a l t o t h e t o t a l RSS. T h i s was d e f i n e d as t h e sum of the a b s o l u t e v a l u e s o f RSS a c t i n g on {111} <110> s l i p s y s t e m . The r e s u l t s a r e shown i n F i g u r e 5.2 i n which t h e t o t a l RSS (TRSS) i s p l o t t e d on a t r a n s v e r s e p l a n e of a c y l i n d r i c a l c r y s t a l . T y p i c a l f o u r - f o l d symmetry i s o b s e r v e d w i t h s t r e s s minima midway between the o u t s i d e and c e n t r e of the c r y s t a l a l o n g t h e <110> d i r e c t i o n s . The p r i n c i p a l c o n c l u s i o n s d e r i v e d from t h e model f o l l o w : 1) D o u b l i n g t h e r a d i u s of the c y l i n d r i c a l c r y s t a l from 2 to 4 cm more t h a n d o u b l e s the TRSS. 2) The d i s l o c a t i o n d e n s i t y i n c r e a s e s w i t h i n c r e a s i n g h e a t t r a n s f e r c o e f f i c i e n t s . 32 3) The d i s l o c a t i o n d e n s i t y can h e a t t r a n s f e r c o e f f i c i e n t i s one o r d e r o f magnitude s m a l l t h e c a l c u l a t i o n s . be r e d u c e d t o z e r o i f t h e s m a l l enough, e s t i m a t e d as er t h a n t h e v a l u e s used i n 3. The t e m p e r a t u r e f i e l d i s c a l c u l a t e d n u m e r i c a l l y and t h e t h e r m a l s t r e s s e s d e t e r m i n e d . However, i n t h i s c a s e s t r e s s r e l a x a t i o n d u r i n g growth i s i n c l u d e d i n t h e a n a l y s i s (Vakhrameev 192 e t a l . ). The t h e r m a l f i e l d i s d e t e r m i n e d by s o l v i n g t h e s t e a d y s t a t e t h e r m a l c o n d u c t i o n e q u a t i o n f o r t h e e n t i r e g r o w t h s y s t e m i n c l u d i n g c r y s t a l , m e l t , gas and c r u c i b l e . The e n c a p s u l a n t B O 19 3 i s n e g l e c t e d The t h e r m o e l a s t i c s t r e s s f i e l d i s o b t a i n e d by s o l v i n g the d i s p l a c e m e n t t h e r m o e l a s t i c e q u a t i o n by a f i n i t e 19 4 d i f f e r e n c e method R e s u l t s a r e shown i n F i g u r e 5 . 3 ( a - c ) . In F i g u r e 5.3(a) and (b) the d i s l o c a t i o n d e n s i t y i s shown as a f u n c t i o n o f t e m p e r a t u r e f o r a B u r g e r v e c t o r p e r p e n d i c u l a r t o and i n c l i n e d to the growth d i r e c t i o n <111>. A c o n s i d e r a b l e f r a c t i o n of t h e d i s l o c a t i o n s i s o b s e r v e d t o be on t h e p e r i p h e r y o f t h e c r y s t a l a t t e m p e r a t u r e s w e l l below the m e l t i n g t e m p e r a t u r e . F i g u r e 5 . 3 ( c ) shows d i s l o c a t i o n d e n s i t i e s , t h e r m o e l a s t i c s t r e s s e s , r e l a x e d s t r e s s e s and CRSS f o r undoped GaAs a l o n g the a x i s o f t h e c r y s t a l . Two w e l l d e f i n e d r e g i o n s a r e o b s e r v e d where d i s l o c a t i o n s a r e formed, one n e a r th e c r y s t a l l i z a t i o n f r o n t at 1238°C and t h e o t h e r n e a r 1140°C. T h e r m o e l a s t i c s t r e s s e s i n t h i s c a s e a r e r e l a x e d about 80 % . The g r o w t h c o n d i t i o n s a r e not g i v e n and t h e e f f e c t o f g r o w t h p a r a m e t e r s i s not d i s c u s s e d . 33 F i g u r e 5.2 T R S S c o n t o u r s f o r the t o p w a f e r o f a <001> GaAs b o u l e . 34 a b c 5.3 D i s t r i b u t i o n of t h e c a l c u l a t e d d i s l o c a t i o n d e n s i t y i n a g a l l i u m a r s e n i d e s i n g l e c r y s t a l b e i n g grown i n t h e <111> d i r e c t i o n f o r s l i p s y s t e m s w i t h B u r g e r s d i s l o c a t i o n v e c t o r s p e r p e n d i c u l a r (a) and i n c l i n e d (b) t o t h e growth a x i s at t h e f o l l o w i n g t e m p e r a t u r e s : 1) 1234, 2) 1200, 3) 1140, 4) 1050 C - T. ( c ) D i s t r i b u t i o n o f c a l c u l a t e d d i s l o c a t i o n d e n s i t y 1) t h e r m o e l a s t i c s t r e s s , 2) r e l a x e d t h e r m a l s t r e s s , 4) and c r i t i c a l s t r e s s f o r the f o r m a t i o n of d i s l o c a t i o n i n undoped GaAs a t t h e c o r r e s p o n d -i n g t e m p e r a t u r e , 3) a l o n g th e a x i s o f a s i n g l e c r y s t a l d u r i n g i t s g r o w t h ; CF) c r y s t a l l i z a t i o n f r o n t . 35 195 4. Dussaux has employed a f i n i t e e l e m e n t method t o o b t a i n b o t h t h e r m a l and s t r e s s f i e l d s . The t h e r m a l f i e l d was c a l c u l a t e d by s o l v i n g the s t e a d y h e a t c o n d u c t i o n e q u a t i o n i n t h e c r y s t a l s u b j e c t to Newton's Law o f C o o l i n g a t the c r y s t a l s u r f a c e as done . . , . . 137,148,190 by J o r d a n e t a l . The n u m e r i c a l scheme c h o s e n p e r m i t s more r e a l i s t i c b o u n d a r y c o n d i t i o n s t o be used s u c h as t e m p e r a t u r e g r a d i e n t s o u t s i d e t h e c r y s t a l and t e m p e r a t u r e d e p e n d e n t h e a t t r a n s f e r c o e f f i c i e n t s . In a d d i t i o n d i f f e r e n t g e o m e t r i e s can be c o n s i d e r e d . The s t r e s s f i e l d i s c a l c u l a t e d u s i n g the minimum e n e r g y p r i n c i p l e method and an a x i s y m m e t r i c f i e l d i s assumed. From the s t r e s s components the Von N i s e s s t r e s s i s d e r i v e d . S t r e s s e s a r e not r e s o l v e d i n the s l i p s y s t e m . The Von M i s e s s t r e s s c o n t o u r s i n t h e c r y s t a l f o r a f i x e d b o r o n o x i d e l a y e r , and t h e r m a l g r a d i e n t s a r e p r e s e n t e d f o r two c r y s t a l d i a m e t e r s and d i f f e r e n t c r y s t a l l e n g t h s . The model i s employed to compare the LEC and LEK ( l i q u i d e n c a p s u l a t e d K r y o p o u l o s ) methods and not t o an e x t e n s i v e a n a l y s i s o f d i s l o c a t i o n g e n e r a t i o n i n LEC g r o w t h . 5. T h e r m a l s t r e s s e s have been c a l c u l a t e d u s i n g a n a l y t i c a l a p p r o a c h e s i n which th e p l a i n s t r a i n a p p r o x i m a t i o n i s not assumed. I n s t e a d of p l a i n s t r a i n an a x i s y m m e t r i c a p p r o x i m a t i o n i s u s e d . Q u a l i t a t i v e good agreement w i t h p l a i n s t r a i n and FEM 19 6 c a l c u l a t i o n s i s o b t a i n e d . U s i n g t h e same a x i s y m m e t r i c 19 7 198 a p p r o x i m a t i o n ' , i t was shown t h a t t h e p l a i n s o l u t i o n s a r e not a l w a y s v a l i d i n d e t e r m i n i n g t h e t h e r m a l s t r e e s s e s i n t h e 36 c r y s t a l . T hese c o n c l u s i o n s a r e o b t a i n e d f o r s e m i - i n f i n i t e g e o m e t r i e s . 199 6. G a l a k t i o n o v and T r o p p have c o n s i d e r e d a non s t a n d a r d a p p r o a c h t o i n t r o d u c e the e f f e c t o f a x i a l g r a d i e n t s . They assume t h a t t h e a x i a l g r a d i e n t o f t h e t o t a l s t r e s s e s ( t r a n s i e n t and r e s i d u a l ) a r e n u m e r i c a l l y e q u a l t o the t h e r m o e l a s t i c s t r e s s e s p r o d u c e d by a h y p o t h e t i c a l t e m p e r a t u r e f i e l d g i v e n by t h e a x i a l g r a d i e n t o f t h e r e a l f i e l d . In e q u a t i o n form t h i s i s e x p r e s s e d as 3 9 0. . [ T ( x , y , z ) ] = O t T ( x , y , z ) ] 3z 1 J 1 J 3z The method i s us e d t o c a l c u l a t e t h e r e s i d u a l s t r e s s e s i n i n f i n i t e c y l i n d e r s . 5 . 2 C a l c u l a t i o n of D i s l o c a t i o n D e n s i t i e s The d i s l o c a t i o n d e n s i t y a t a p o i n t i n a g r o w i n g c r y s t a l i s a f u n c t i o n o f t h e l o c a l s t r e s s e s g e n e r a t e d by t h e t h e r m a l s t r a i n s . The d e n s i t y may be assumed to be p r o p o r t i o n a l t o t h e maximum RSS (MRSS) or t o a l e s s e r v a l u e i f t h e s t r e s s i s c o n s i d e r e d t o be r e l i e v e d by p l a s t i c f l o w . T h i s has been c o n s i d e r e d i n a number o f d i f f e r e n t ways : 1. J o r d a n e t a l . (model 2) assumed t h a t t h e t h e r m o e l a s t i c s t r e s s e s were p a r t i a l l y r e l i e v e d by p l a s t i c f l o w but made no e s t i m a t e of t h e amount r e l i e v e d . The f l o w was assumed to be p r o p o r t i o n a l to t h e TRSS. 37 2. Vakhrameev e t a l . (model 3) c a l c u l a t e d t h a t 80 * o f t h e t h e r m o e l a s t i c s t r e s s Is r e l a x e d by p l a s t i c f l o w . 3. B i l l i g i n 1956 and Indenbom i n 1957 p r o p o s e d t h a t s t r e s s e s a r e c o m p l e t e l y r e l a x e d . 12 9 B i l l i g e s t i m a t e d t h e d i s l o c a t i o n d e n s i t y u s i n g t h e f o l l o w i n g s i m p l e a n a l y s i s . C o n s i d e r a t h i n s l a b o f t h i c k n e s s 6r and l e n g t h z. The a p p l i c a t i o n of a t e m p e r a t u r e g r a d i e n t 6 T / 6 r w i l l expand the h e a t e d s u r f a c e by 6r = az 6T. T h i s e x p a n s i o n w i l l bend t h e s l a b g i v i n g a c u r v a t u r e r a d i u s 1/R = ( 1 / z ) x ( 6 z / 6 r ) . I f s t r e s s e s a r e r e l a x e d by p l a s t i c d e f o r m a t i o n a number of edge d i s l o c a t i o n s a r e f o r m e d . The d e n s i t y n i s g i v e n by t h e c u r v a t u r e and B u r g e r ' s v e c t o r , n = 1/Rb, t h e r e f o r e n = (a/b) (6T/6r) U s i n g t h i s r e l a t i o n B i l l i g e s t i m a t e d d i s l o c a t i o n d e n s i t i e s 4 2 i n Ge o f the o r d e r of 3.2x10 /cm f o r g i v e n g r o w t h c o n d i t i o n s . Indenbom p r o p o s e d a s i m i l a r e x p r e s s i o n i n w h i c h the a x i a l t e m p e r a t u r e g r a d i e n t i s c o n s i d e r e d . T h i s i s g i v e n by n = (1/b) [ d ( a T ) / d t ] The above e x p r e s s i o n i s p a r t o f a more complex e q u a t i o n t h a t i n v o l v e s a t e n s o r i a l d i s l o c a t i o n d e n s i t y n, g i v e n by n = - g r a d T X a 38 where a i s t h e t e n s o r of the c o e f f i c i e n t s of l i n e a r t h e r m a l 2 0 2 2 0 3 e x p a n s i o n ' The c o n t r i b u t i o n o f t h e r a d i a l and a x i a l t e m p e r a t u r e g r a d i e n t s t o t h e t o t a l d i s l o c a t i o n d e n s i t y i s not , 119,204 c l e a r Indenbom a l s o p r o p o s e d a n o t h e r e x p r e s s i o n t o e s t i m a t e t h e t o t a l d i s l o c a t i o n d e n s i t y from p l a s t i c d e f o r m a t i o n e n = e / b L where L i s t h e d i s l o c a t i o n l e n g t h w h i c h , f o r Ge and S i , i s o f t h e 10 6 2 0V o r d e r o f 0.25 mm. The Indenbom e q u a t i o n s were e x t e n t e d ' by i n t r o d u c i n g t h e CRSS i n the g l i d e p l a n e t o o b t a i n t h e f o l l o w i n g e x p r e s s i o n f o r t h e d i s l o c a t i o n d e n s i t y •+ _ n = ( a / b ) V T n - 2 ( T / G b ) ( l / D ) c r w h i c h r e d u c e s t o t h e e q u a t i o n g i v e n by Indenbom when the CRSS i s -y z e r o . In t h e e q u a t i o n VTn i s t h e mean a x i a l t e m p e r a t u r e g r a d i e n t , D i s t h e c r y s t a l d i a m e t e r and G i s t h e s h e a r modulus. The d i s l o c a t i o n d e n s i t i e s c a l c u l a t e d w i t h t h i s e q u a t i o n a r e compared t o measurements on GaAs i n T a b l e 5.1. The columns headed N l and N2 a r e c a l c u l a t e d v a l u e s f o r t h e f i r s t and s e c o n d terms o f the above e q u a t i o n . T h i s e q u a t i o n i s n o t used i n t h e p r e s e n t i n v e s t i g a t i o n b e c a u s e i t i s i n c o n s i s t e n t w i t h the e v a l u a t i o n of d i s l o c a t i o n d e n s i t i e s from s t r e s s e s i n t h e c r y s t a l . T h i s i s b e c a u s e a c o n s t a n t a x i a l t h e r m a l g r a d i e n t does not p r o d u c e s t r e s s e s . 39 In summary from t h e r e p o r t e d r e s u l t s I t i s not c l e a r t o what e x t e n t t h e t h e r m o e l a s t i c s t r e s s e s a r e r e l i e v e d . In d e r i v i n g d i s l o c a t i o n d e n s i t i e s a d j u s t a b l e p a r a m e t e r s a r e i n t r o d u c e d i n p s e u d o - e m p i r i c a l e q u a t i o n s w h i c h a r e n o t t e s t e d under c o n t r o l l e d l a b o r a t o r y c o n d i t i o n s . In a d d i t i o n , i n the e q u a t i o n s i n w h i c h d i s l o c a t i o n d e n s i t i e s a r e d i r e c t l y p r o p o r t i o n a l t o t h e r m a l g r a d i e n t s , the r o l e of s t r e s s e s i n g e n e r a t i n g d i s l o c a t i o n s i s not c l e a r . T a b l e 5.1 O b s e r v e d (N ) and C a l c u l a t e d (N, and Nn) D i s l o c a t i o n exD 1 * 2 D e n s i t i e s f o r G a l l i u m A r s e n i d e S i n g l e C r y s t a l s . VT N ' 3 6 X 0 2 |D,cm | | o i l N i . C B > I N 9,cm | Growth method | deg/cm cm 1,0 142 5 1 0 3 1,7 1 0 4 2,2 10* 2,4 140 "3-5 10* 2,0 10* 2,2 10* 2,4 120 ~ l - 2 10* 1,7 10* 1,9 10* The C z o c h r a l s k i 2,4 120 "0,9 10* 1,7 10* 1,9 10* method 2,4 50 "5-6 1 0 3 5,7 10^ 7,8 10^ 2,7 190 5 10 2,7 10 2,9 10 0,8 450 "1 1 0 5 0,6 1 0 5 0,7 10^ 0,8 380 7-9 10* 5,3 10* 5,9 1 0 4 F r e e z o n a l 0,8 290 4-6 10 3,9 10 4,5 10 m e l t i n g 0,8 210 2-3 10 2,6 10 3,2 10 Note and N g were c a l c u l a t e d w i t h E q . ( 2 ) and Indgnbomjs e q u a t i o n , r e s p e c t i v e l y ; b = 4,10 cm |21] , a =6,2 10 deg and i t was assumed t h a t T /G - 1 10 . er 40 CHAPTER 6 OBJECTIVES In t h e p r e v i o u s c h a p t e r s i t has been p o i n t e d out t h a t d i s l o c a t i o n d e n s i t i e s a t t h e l e v e l s u s u a l l y p r e s e n t i n LEC GaAs a r e d e t r i m e n t a l to t h e p r e f o r m a n c e o f f a b r i c a t e d d e v i c e s . New t e c h n o l o g i c a l a d v a n c e s i n t h e GaAs m i c r o and o p t o e l e c t r o n i c i n d u s t r y r e q u i r e GaAs w a f e r s o f low d i s l o c a t i o n d e n s i t y or f r e e o f d i s l o c a t i o n s . D i s l o c a t i o n s i n LEC GaAs a r e g e n e r a t e d d u r i n g growth m a i n l y due t o t h e r m a l s t r e s s e s . On the b a s i s of a g l i d e mechanism t h e r m o e l a s t i c models have been d e v e l o p e d t o d e s c r i b e t h e d i s l o c a t i o n d i s t r i b u t i o n i n as grown c r y s t a l s . These models employ a n a l y t i c a l and n u m e r i c a l methods. The models can q u a l i t a t i v e l y d e r i v e t h e W-shape and f o u r - f o l d symmetry o f the d i s l o c a t i o n d i s t r i b u t i o n . However t h e y c a n n o t d e t e r m i n e t h e a x i a l d i s t r i b u t i o n i n t h e g r o w i n g c r y s t a l , nor can t h e y be u s e d t o d e v e l o p changes i n growth c o n d i t i o n s t o r e d u c e or e l i m i n a t e d i s l o c a t i o n s i n GaAs. T h i s r e s u l t s from t h e a n a l y t i c a l s o l u t i o n l i m i t a t i o n s , b o t h p l a i n s t r a i n and a x i s y m m e t r i c a p p r o x i m a t i o n s , and t h e l i m i t e d s c o p e of the Dusseaux n u m e r i c a l model. The models do not a d e q u a t e l y t a k e i n t o a c c o u n t t h e p r i m a r y g r o w t h p a r a m e t e r s d u r i n g c r y s t a l g r o w t h p r o d u c i n g t h e t h e r m a l f i e l d s on w h i c h t h e models a r e b a s e d . E x p e r i m e n t a l measurements 41 o f t h e t h e r m a l f i e l d s , as a f u n c t i o n o f the growth p a r a m e t e r s , to i n c o r p o r a t e i n t o t h e model a r e v e r y d i f f i c u l t t o make i n h i g h p r e s s u r e g r o w e r s . The main o b j e c t i v e of t h i s i n v e s t i g a t i o n i s t o f u r t h e r d e v e l o p t h e m a t h e m a t i c a l model f o r d i s l o c a t i o n g e n e r a t i o n and m u l t i p l i c a t i o n t a k i n g i n t o a c c o u n t a l l o f t h e v a r i a b l e s r e l a t e d to c r y s t a l g r o w t h . E x p e r i m e n t a l o b s e r v a t i o n s r e p o r t e d i n t h e l i t e r a t u r e of t h e r m a l f i e l d s and p h y s i c a l q u a n t i t i e s o f t h e GaAs and B O , and made i n a h i g h p r e s s u r e grower w i l l be u s e d t o e s t a b l i s h the b o u n d a r y c o n d i t i o n s i n t h e model. The model w i l l be a b l e t o d e t e r m i n e the a x i a l d i s l o c a t i o n d i s t r i b u t i o n and w i l l have t h e f l e x i b i l i t y t o i n c o r p o r a t e any change i n t h e g r o w t h c o n d i t i o n s . The model w i l l be used t o a s s e s s t h e d i s l o c a t i o n d e n s i t y i n c r y s t a l s w i t h t h e i n t r o d u c t i o n o f m o d i f i c a t i o n s o f the t h e r m a l f i e l d s i n t h e c r y s t a l g r o w e r s . The o b j e c t i v e would be t o d e v e l o p p r o c e d u r e s f o r l o w e r i n g or e l i m i n a t i n g d i s l o c a t i o n d e n s i t i e s i n th e c r y s t a l w i t h o u t i n t r o d u c i n g o t h e r d e f e c t s w h i c h a f f e c t t h e e l e c t r i c a l b e h a v i o u r of t h e c r y s t a l s . The i n v e s t i g a t i o n was c a r r i e d out i n t h e f o l l o w i n g s e q u e n c e : 1. Based on a g l i d e mechanism due t o t h e r m a l s t r e s s e s , m a t h e m a t i c a l models f o r d i s l o c a t i o n g e n e r a t i o n i n LEC GaAs d u r i n g growth and s u b s e q u e n t c o o l i n g , were f o r m u l a t e d , d e v e l o p e d and v a l i d a t e d . 42 Using the models, most important f a c t o r s a f f e c t i n g d i s l o c a t i o n g e n e r a t i o n i n GaAs c r y s t a l s d u r i n g and a f t e r growth, were determined. Based on the above r e s u l t s and the thermal h i s t o r y the r o l e of thermal s t r e s s e s i n the g e n e r a t i o n of d i s l o c a t i o n s i n LEC c r y s t a l s , were c l a r i f i e d . 43 CHAPTER 7 FORMULATION OF THE MODELS The p r o d u c t i o n o f c r y s t a l s can be d i v i d e d i n t o two p a r t s c r y s t a l g rowth, w h i c h i n c l u d e s t h e s o l i d i f i c a t i o n p r o c e s s , and t h e s u b s e q u e n t c r y s t a l c o o l i n g t o ambient t e m p e r a t u r e . B o t h p a r t s of t h e p r o c e s s a r e m o d e l l e d s e p a r a t e l y . In t h e two models th e b a s i c a s s u m p t i o n i s made t h a t t h e t e m p e r a t u r e f i e l d s and s t r e s s f i e l d s a r e d e c o u p l e d 2 ^ ® . A s i m p l i f i e d f l o w c h a r t o f t h e models w h i c h d e r i v e t h e s t r e s s f i e l d s from t h e t h e r m a l f i e l d s i s shown i n F i g u r e 7.1 The f l o w c h a r t f o r b o t h p a r t s o f t h e p r o c e s s a r e i d e n t i c a l ; t h e d i f f e r e n c e between b o t h models i s the way the t h e r m a l f i e l d s a r e c a l c u l a t e d . At a s p e c i f i c t i m e d u r i n g growth, t h e s t r e s s f i e l d s a r e d e r i v e d from the c a l c u l a t e d t h e r m a l f i e l d s . The s t r e s s components a r e t h e n u s e d t o c a l c u l a t e t h e Von M i s e s S t r e s s or t h e R e s o l v e d Shear S t r e s s (RSS) a t a g i v e n p o i n t i n t h e c r y s t a l . The RSS a r e t h e p r o j e c t i o n s of t h e s t r e s s t e n s o r i n s p e c i f i c p l a n e s and d i r e c t i o n s . In our c a s e t h o s e p l a n e s and d i r e c t i o n s a r e g i v e n by t h e g l i d e s y s t e m of GaAs {111} <110>. F o r a c r y s t a l grown i n t h e [001] d i r e c t i o n , from t h e t w e l v e c o m b i n a t i o n s o f p l a n e s and d i r e c t i o n s t h e r e a r e t e n d i f f e r e n t RSS components. I t i s assumed i n t h e model t h a t when the maximum component o f RSS i s g r e a t e r t h a n a c r i t i c a l v a l u e , d i s l o c a t i o n s a r e g e n e r a t e d and m u l t i p l y d u r i n g g l i d e . The p a r t i c u l a r p l a n e s and d i r e c t i o n s i n w h i c h t h e 44 T E M P E R A T U R E F I E L D STRESS F I E L D V O N MISES STRESS G L I D E M O D E R E S O L V E STRE ;D S H E A R ;ss M A X I M U M S H E A R S' R E S O L V E D rRESS N O DISLOCATIONS F i g u r e 7.1 Flow chart of the model used to d e r i v e the s t r e s s f i e l d s . 45 RSS a r e maxima w i l l d e t e r m i n e the g l i d e mode and c r y s t a l l o g r a p h y o f t h e d i s l o c a t i o n s b e i n g g e n e r a t e d . I t i s a l s o assumed t h a t when one mode o p e r a t e s , the s t r e s s i s r e l a x e d and t h e r e i s no f u r t h e r g l i d e i n o t h e r d i r e c t i o n s . 7.1 Model o f c r y s t a l growth 7.1.1 T e m p e r a t u r e F i e l d 7.1.1.1 G o v e r n i n g E q u a t i o n s A c o m p l e t e a n a l y s i s of t h e t e m p e r a t u r e f i e l d i n a LEC-GaAs c r y s t a l d u r i n g growth r e q u i r e s t h e s o l u t i o n of a S t e f a n ' s p r o b l e m w i t h complex b o u n d a r y c o n d i t i o n s . The e x a c t s o l u t i o n of t h i s p r o b l e m i s time dependent and i n c l u d e s the f o u r p h a s e s , c r y s t a l , gas, e n c a p s u l a n t and m e l t as w e l l as t h e mold and the h e a t i n p u t / o u t p u t to the mold. The h e a t t r a n s f e r mechanisms i n c l u d e c o n d u c t i o n , r a d i a t i o n and c o n v e c t i o n . To t r e a t t h i s p r o b l e m m a t h e m a t i c a l l y the f o l l o w i n g a s s u m p t i o n s a r e made : 1. The t e m p e r a t u r e f i e l d i n t h e c r y s t a l i s a x i a l l y s y m m e t r i c , i . e . T = T ( r , z , t ) 2. The i n t e r f a c e shape i s u n a l t e r e d by d i s s i p a t i o n of l a t e n t h e a t and r e m a i n s at the m e l t i n g p o i n t , T M P 3. Heat t r a n s f e r a t the i n t e r f a c e o f the c r y s t a l ( e x c l u d i n g t h e s o l i d i f y i n g i n t e r f a c e ) f o l l o w s Newton's Law o f C o o l i n g 46 4. The heat t r a n s f e r c o e f f i c i e n t and a m bient t e m p e r a t u r e a r e a l l o w e d t o v a r y a l o n g t h e l a t e r a l s u r f a c e of t h e c r y s t a l , i . e . i n c o n t a c t w i t h t h e e n c a p s u l a n t o r t h e g a s e o u s atmosphere 5. The t e m p e r a t u r e f i e l d i s changed by a change i n c r y s t a l l e n g t h w i t h t i m e , i . e . a q u a s i - s t e a d y s t a t e a p p r o x i m -a t i o n . W i t h the above a s s u m p t i o n s th e non- d i m e n s i o n a l e q u a t i o n o f h e a t c o n d u c t i o n , w i t h r e s p e c t t o a c o o r d i n a t e s y s t e m f i x e d t o the s o l i d i f y i n g i n t e r f a c e , as shown i n F i g u r e 7.2 , t a k e s t h e form : 3 23 l 36 3 26 36 L (6) = -r- + + r - - 2V = o (a) 3p p 3p 3? 3£ (7.1) T - T MP 0 p = r / r Q , £ = z / r Q (b) where 2V = v r Q / K , T Q i s t h e r e f e r e n c e t e m p e r a t u r e , r Q i s t h e c r y s t a l r a d i u s , v the growth v e l o c i t y and K the t h e r m a l c o n d u c t i v i t y . S o l u t i o n s must a l s o s a t i s f y t h e f o l l o w i n g g e n e r a l b o u n d a r y c o n d i t i o n s : i . D i r i c h l e t c o n d i t i o n At t h e s o l i d - l i q u i d i n t e r f a c e g i v e n by t h e s u f a c e o f r e v o l u t i o n f ( r , z ) = 0 , r < r ^ 6 = 1 (7.2) lz=0 r melt Figure 7.2 C r y s t a l c o n f i g u r a t i o n and c o o r d i n a t e the mathematical model. system used i n 48 i i . Neumann c o n d i t i o n At any p o i n t S on t h e c y l i n d r i c a l s u r f a c e o f t h e c r y s t a l , 33 33 ( — n D + — n F ) _ n = - h ( z ) r . r f i - 3 n U ) l (7.3) 9 p P 3 ? £, S 0 S a where 3 ( z ) i s t h e n o r m a l i z e d t e m p e r a t u r e o f t h e ambient a d j a c e n t t o t h e c r y s t a l s u r f a c e at a d i s t a n c e z from t h e i n t e r f a c e and 3 g i s t h e n o r m a l i z e d t e m p e r a t u r e of t h e c r y s t a l a t t h a t p o i n t ; h ( z ) i s t h e h e a t t r a n s f e r c o e f f i c i e n t between c r y s t a l s u r f a c e and ambient at t h e same p o i n t . The n u m e r i c a l scheme employed t o s o l v e t h i s i s g i v e n below. 7.1.1.2 F i n i t e E l e m e n t E q u a t i o n s Among t h e d i f f e r e n t a p p r o a c h e s f o r o b t a i n i n g t h e e l e m e n t e q u a t i o n s i n a f i n i t e e l e m e n t method, t h e G a l e r k i n ' s method was s e l e c t e d . In t h i s method, a f t e r t h e whole domain i n w h i c h a s o l u t i o n f o r t h e f i e l d v a r i a b l e 3 i s r e q u i r e d i s d i s c r e t i z e d i n s m a l l e l e m e n t s , t h e ele m e n t e q u a t i o n i s o b t a i n e d by p e r f o r m i n g the f o l l o w i n g i n t e g r a t i o n o v e r each e l e m e n t , S. . M 3 ( e ) ) N < e ) d D ( e ) D ( e ) i 0 w i t h (e) [N] {3} (e) [ H 2 N 0 . . N ] < g ^ g (7.4) 49 where t h e N's a r e t h e i n t e r p o l a t i o n f u n c t i o n s , t h e 3 ^ a r e t h e n o d a l f i e l d v a l u e s i n element (e) and g i s the d e g r e e o f freedom of t h e e l e m e n t . The i n t e r p o l a t i o n f u n c t i o n s must be s u c h t h a t t h e r e i s c o n t i n u i t y o f the f i e l d v a r i a b l e and o f i t s p a r t i a l d e r i v a t i v e s up t o one o r d e r l e s s t h a n the h i g h e s t o r d e r d e r i v a t i v e i n t h e o p e r a t o r . T h i s means t h a t i n t e r p o l a t i o n f u n c t i o n s f o r a C* p r o b l e m a r e a t f i r s t a p p a r e n t l y r e q u i r e d . However i n t e g r a t i o n by p a r t s and t h e use of the b o u n d a r y c o n d i t i o n s t r a n s f o r m t h e p r o b l e m i n s u c h a way as to show t h a t l e s s s t r i c t i n t e r p o l a t i o n f u n c t i o n s can be u s e d . These c a l c u l a t i o n s a r e p r e s e n t e d i n A p p e n d i x II where i t i s shown t h a t t h e i n i t i a l p r o b l e m g i v e n by E q u a t i o n (7.4) i s t r a n s f o r m e d i n t o t h e f o l l o w i n g e q u i v a l e n t e q u a t i o n 3N 3 g ( e ) 3N. 3 3 ( 6 ) 3 g ( e ) ( + - + 2V N. ) dV(e) + D(e) 3P 9P 3£ 9? 1 35 . + r h ( z ) f N. 3 ( E ) d S ( e ) = s ( e ) = r Q h ( z ) B ( z ) f N . d S ( 6 ) (7.5) J s ( e ) where S^ e' i s t h e s u r f a c e a r e a of e l e m e n t (e) and dS i s t h e e l e m e n t a l s u r f a c e . I t i s now c l e a r from t h e above e q u a t i o n t h a t i n t e r p o l a t i o n f u n c t i o n s f o r C^ 0^ p r o b l e m s a r e r e q u i r e d . 5 0 A s u i t a b l e element shape chosen here f o r s u b d i v i s i o n of axisymmetric bodies i s the axisymmetric r i n g element with t r i a n g u l a r c r o s s - s e c t i o n . The f i e l d v a r i a b l e i s assumed to vary l i n e a r l y i n s i d e the element and a three node element i s chosen. For these l i n e a r t r i a n g u l a r t o r o i d a l elements, i n t e r p o l a t i o n f u n c t i o n s f o r C^°^ problems are the n a t u r a l or area coodinates f u n c t i o n . The L. 's are d e f i n e d as L. ( P, C ) 2 A ( a i + bi p + c ) (7.6) where a . i = PjSc " P k ? j : c i " P k - p j a n d b i = ? j " ? k ( 7 - 7 ) where ( i , j , k) have module 3 and permute c y c l i c a l l y , ( Pj , C ^ are the c o o r d i n a t e s of the nodal p o i n t s ( v e r t i c e s ) of a t r i a n g l e numbered counter-clockwise 2 A ( 7 . 8 ) A i s the area of the t r i a n g l e The temperature w i t h i n t h i s element i s expressed by the equation 3 (e) (e) [ L 1 L2 L 3 ] ( E ) = {K ) 3x3 3x3 1x3 1x3 (a) where i j 3L. 9L 3L 3L. . { - 1 + ( 1 + 2VL.) 1) d D 1 6 ' (b) (e) 3 P 3 P 3C 1 3C (7.10) H i j ° (e) L.L . dS i J (e) ( c ) K = r h ( z ) B ( z ) A. . o a i j L . dS (e) 1 (e) (d) The e v a l u a t i o n o f [K„] , [K„] and [K.] i s g i v e n i n A p p e n d i x I I I . I n A [ K T ] i s c a l c u l a t e d e x a c t l y , [K H ] and l K A 3 a r e c a l c u l a t e d a p p r o x i m a t e l y f o r t h r e e d i f f e r e n t p e r i p h e r i a l e l e m e n t s a c c o r d i n g t o t h e i r o r i e n t a t i o n on t h e e x t e r n a l s u r f a c e w i t h r e s p e c t t o t h e a x i s o f t h e c r y s t a l ; i ) v e r t i c a l , i i ) t i l t e d and i i i ) h o r i z o n t a l p e r i p h e r i a l e l e m e n t s . T r p * e ) TTVb. , . K = ( b . b . + c . c . ) + 1 [3 p ( e ) + p.] T i j 2 A 1 J 1 > 6 J 52 where i , j = 1,2,3 p, * P 2 * P 3 (1) V e r t i c a l b o undary [ K H ] = 2 T r h ( z ) r ( ) P l l j 1/3 1/6 0 1/6 1/3 0 0 0 0 • 0 (7.11) ( i 1 ) T i l t e d Boundary 27Th(z)r ( hi 12 3P. + p. P. + P. P. + P. P. + 3 p. 0 0 0 T T h ( z ) r 0 B a ( z ) (pi + 2 p ) Al 1 1 0 53 ( H i ) H o r i z o n t a l b oundary — ( e) The same as i n ( i ) but r e p l a c i n g p b y p v ' 1 ^ i s t h e l e n g t h of t h e e l e m e n t at the b o u n d a r y . D e t a i l s o f t h e n u m e r i c a l c a l c u l a t i o n s i n c l u d i n g computer c o d i n g , t y p e o f mesh, mesh r e f i n e m e n t , m a t r i x a s s e m b l y and m a t r i x c a l c u l a t i o n s a r e g i v e n l a t e r . 7.1.2 S t r e s s F i e l d Model To c a l c u l a t e t h e t h e r m a l s t r e s s e s i n t h e c r y s t a l t h e f o l l o w i n g a s s u m p t i o n s a r e made : i . t h e body i s l i n e a r l y e l a s t i c and i s o t r o p i c i i . t h e t h e r m o e l a s t i c f i e l d i s a x i s y m m e t r i c i i i . t h e c r y s t a l i s f r e e from t r a c t i o n a t t h e s u r f a c e , i . e . a t the s u r f a c e o x n- = 0 , n i s a v e c t o r p e r p e n d i c u l a r t o t h e s u r f a c e of t h e c r y s t a l . 7.1.2.1 G o v e r n i n g and Element E q u a t i o n s To o b t a i n t h e el e m e n t e q u a t i o n , t h e minimum p o t e n t i a l e n e r g y p r i n c i p l e was u s e d . The s t r a i n e n e r g y f o r a l i n e a r e l a s t i c s o l i d i s d e f i n e d as U (u,w) = 1 p 2 [e] {a} dv (7.12) V where (a) i s t h e s t r e s s t e n s o r and [e] i s t h e s t r a i n t e n s o r w h i c h f o r t h e p r e s e n t c a s e have t h e f o l l o w i n g components 54 { o> TZ (7.13) The s t r e s s , a c c o r d i n g t o Hook's Law and t h e Duhame1-Newman c o n s t i t u t i v e e q u a t i o n t h a t a c c o u n t s f o r t h e t h e r m a l s t r a i n , i s io) [C] ({e} - {e 0>) (7.14) where [EQ] i s t h e s t r a i n c o r r e s p o n d i n g t o a f r e e e x p a n s i o n o f t h e s o l i d due to t e m p e r a t u r e ' d i f f e r e n c e s w i t h r e s p e c t t o r e f e r e n c e t e m p e r a t u r e T Q . T h i s s t r a i n f o r an i s o t r o p i c m a t e r i a l w i t h a c o e f f i c i e n t o f t h e r m a l e x p a n s i o n a i s a( T V a (7.15) 1 0 [C] i s t h e c o m p l i a n c e mat r i x whi c h f o r t h i s c a s e 1- V V V 0 E V 1-V V 0 [C] — V V 1- V 0 (1+ V ) (1-2V) 0 0 0 1 -2v 2 (7 . 16) w i t h E t h e Young modulus and v t h e P o i s s o n ' s r a t i o . The { e) s t r a i n can be d e r i v e d from t h e d i s p l a c e m e n t {d} as 55 ie ) (7.17) where [B] i s t h e f o l l o w i n g m a t r i x of d e r i v a t i v e s [B] 3r J r 0 _3 3z~ "3~i~ 3 3r (7.18) T a k i n g i n t o a c c o u n t t h e r e l a t i o n among s t r e s s , s t r a i n and d i s p l a c e m e n t , t h e p o t e n t i a l e n e r g y can be w r i t t e n as II(u,w) = U (u,w) [d] [B] [C] [B] {d} 2 [ d ] [B] [C] {eQ} dV (7.19) When t h e body i s s u b d i v i d e d i n t o s m a l l e l e m e n t s , i t i s assumed t h a t w i t h i n each e l e m e n t w i t h g nodes t h e d i s p l a c e m e n t f i e l d i s a p p r o x i m a t e d by <;>,e) = te!},e' = { i ^ O = [ N ] , d , (e) (7 . 20) 56 where [N] a r e t h e i n t e r p o l a t i o n f u n c t i o n s m a t r i x of o r d e r g and (e ) {d} a r e t h e e l e m e n t n o d a l d i s p l a c e m e n t s . In t h i s c a s e t h e m i n i m i z a t i o n p r o c e s s may be c a r r i e d out e l e m e n t by e l e m e n t . As a r e s u l t t h e f o r c e - d i s p l a c e m e n t e q u a t i o n f o r t h e e l e m e n t i s o b t a i n e d as 2gx2g 2 g x l 2 g x l [ k ] ( e ) { d } ( 6 ) = { F } ( 6 ) {d} (e) {d> {d}, (e) (e) w. w. {d} (e) g w g (7.21) 2gx2g [k] (e) 2 g x l ( F ) (e) [k] [k] [k] (e) 11 (e) i l (e) g l {F> {F} { F } (e) 1 (e) 2 (e) g ™[V ^ [ k l j ^ t k] t k ] ^ ^ [k] (e) In (e) i g (e) gg (7.22) 57 In t h e s t i f f n e s s m a t r i x [ K ] , t h e s u b m a t r i c e s [ k ] ^ j a r e t h e s t i f f n e s s m a t r i c e s a t node i and have th e form [k] (e) i j (e) 2 x 4m / x 4x4. . 4x2. . [ B ] { ( e ) [C]< e> [B]< e> dV [B] (e) 3N 3r N 3N 3z 3N 3z 3N , 3r (7.23) The i n i t i a l f o r c e m a t r i x { F Q ^ (e) l s [ F } ( C ) 1 O' i (e) 2x4 . . 4 x 4 4x1 . . [B]\(e) [C] f e 0 ] { e , dV (7.24) 7.1.2.2 R e q u i r e m e n t s f o r t h e i n t e r p o l a t i o n f u n c t i o n s . S i n c e o n l y f i r s t o r d e r d e r i v a t i v e s o f d i s p l a c e m e n t a p p e a r i n t h e i n t e g r a n d f o r the p o t e n t i a l e n e r g y , c o m p a t i b i l i t y r e q u i r e s an i n t e r p o l a t i o n f u n c t i o n w i t h c o n t i n u i t y o f d i s p l a c e m e n t a t t h e 58 e l e m e n t b o u n d a r y o n l y . However, f o r c o m p l e t e n e s s , th e I n t e r p o l a t i o n f u n c t i o n s must be a b l e t o r e p r e s e n t r i g i d body d i s p l a c e m e n t s and c o n s t a n t s t r a i n s t a t e s w i t h i n an e l e m e n t ; t h a t i s u n i f o r m s t a t e s of d i s p l a c e m e n t and f i r s t d e r i v a t i v e s o f d i s p l a c e m e n t s r e s p e c t i v e l y . T h i s C^ 1^ c o n t i n u i t y i s s a t i s f i e d w i t h i n t e r p o l a t i o n f u n c t i o n s c o n t a i n i n g l i n e a r terms s u c h as t h e n a t u r a l c o o r d i n a t e s used f o r t h e t e m p e r a t u r e f i e l d . T h i s means t h a t e l e m e n t s w h i c h a r e l i n e a r or o f h i g h e r o r d e r a r e s u i t a b l e . F o r c o n v e n i e n c e , b e f o r e o b t a i n i n g t h e s p e c i f i c form o f e l e m e n t m a t r i c e s , t h e node e q u a t i o n i s w r i t t e n i n terms o f non-d i m e n s i o n a l q u a n t i t i e s as 2x2 . . 2x1 . 2x1 . . f k ' l i j { d ' / j = i ( a ) (7.25) where E { d . } ( e ) = { d } ( e ) ( f e ) a{ T - T ) r MP 0' l0 ( e ) { k ' ) ! ^ = / [ B ' ] j [ C ] [ B ' ] J 6 ) PdPdC (c) where [ B ' ] < e ) = r Q [B][e) (a) ( 1 + V ) ( 1 - 2 V ) [ C ] = [C] (b) E 59 { F - > i r O ' l T ( e ) 6d / [ B 1 ]J [C')< i ( 7.26) V pd pd C ( c ) 7.1.2.3 F o r m u l a s f o r S t r e s s C a l c u l a t i o n s The s t r e s s t e n s o r i s c a l c u l a t e d a t e a c h node i i n e l e m e n t e u s i n g t h e f o l l o w i n g e q u a t i o n ,(e) o. o. > -1- V V V V 1 - V V v v 1-v o 0 1-2 V > - < 6.. 1 V (7.27) The s t r a i n components a t e ach node a r e c a l c u l a t e d from t h e n o d a l d i s p l a c e m e n t s as ie'}{e) - [ B 1 ] ! 6 ) < d ' ) ! e ) (7.28) F o r nodes a t t h e a x i s o f the body e Q i s s u b s t i t u t e d f o r e . 0 p The s t r e s s c a l c u l a t e d i n t h i s way i s n o n - d i m e n s i o n a l . To o b t a i n t h e s t r e s s i n a b s o l u t e u n i t s t h e f o l l o w i n g r e l a t i o n i s e mployed 60 {0> (e) E a (T MP (1-2V) T ) (7 . 29) 7.1.2.4 L i n e a r E l e m e n t s The l i n e a r e l e m e n t s a r e t r i a n g u l a r t o r o i d s w i t h nodes a t t h e v e r t i c e s o f t h e t r i a n g l e . The i n t e r p o l a t i o n f u n c t i o n s f o r t h e s e e l e m e n t s a r e t h e n a t u r a l c o o r d i n a t e s L , L 0 and L and t h e d i s p l a c e m e n t i s w r i t t e n as {d} (e) L 1 U 1 + L 2 U 2 + L 3 U 3 L 1 W 1 + L 2 W 2 + L 3 W 3 . (7.30) Mak i n g t h e c o r r e s p o n d i n g c a l c u l a t i o n s and s u b s t i t u t i o n s , t h e terms of t h e s t i f f n e s s and i n i t i a l f o r c e m a t r i c e s a r e [ k , , i j } 11 12 21 22 (a) 11 (1-2 V) P v [(1-v) b.b. + I j c.c ] — + - [b.+b.] + 2 J 4A 6 J + ( I - V ) A ;-P dpd? (b) 12 ( 1 -2 v) [ vb . c . + i J c i V P v 4 A 6 + c . J (c) 61 21 ( l - 2 v ) p V [ vb c + c b ] + c (d) J 1 2 J 1 4A 6 22 [ ( l - V ) C ^ C j + ( l - 2 v ) b l b j ] (e) 4A (7.31 ) 2 A ( b j p + ( f ) F ' (g) An I n s p e c t i o n o f t h e above r e l a t i o n s shows t h a t a l l t h e terms can be e v a l u a t e d e x a c t l y e x c e p t th e term c o n t a i n i n g 1/p w h i c h s h o u l d be i n t e g r a t e d n u m e r i c a l l y . One i n t e r m e d i a t e a p p r o x i m a t i o n c o n s i s t s of t a k i n g a v e r a g e v a l u e s of p and (~p and L = 1/3) f o r t h a t term o n l y . Once the d i s p l a c e m e n t f i e l d i s c a l c u l a t e d t h e n o d a l s t r a i n and s t r e s s e s a t e a c h e l e m e n t can be d e r i v e d by back s u b s t i t u t i o n i n t h e c o r r e s p o n d i n g e q u a t i o n s . The s t r e s s e s a t t h e c e n t r o i d of t h e e l e m e n t a r e t h e a v e r a g e s t r e s s e s . The s t r e s s a s s o c i a t e d w i t h e a c h node i s t h e a v e r a g e v a l u e o f s t r e s s e s from a l l e l e m e n t s s h a r i n g t h e node. 7.1.2.5 Q u a d r a t i c E l e m e n t The q u a d r a t i c e l e m e n t has s i x nodes, t h r e e nodes at t h e v e r t i c e s and t h r e e nodes a t m l d s i d e s . I n t e r p o l a t i o n f u n c t i o n s a r e 62 b u i l t from t h e n a t u r a l c o o r d i n a t e s . A d e t a i l e d c a l c u l a t i o n o f s t i f f n e s s and f o r c e m a t r i x e l e m e n t s i s g i v e n i n A p p e n d i x V. I t i s i m p o r t a n t t o n o t e t h a t the n o d a l [B] m a t r i x of t h e s e e l e m e n t s i n c l u d e s o n l y d e r i v a t i v e s of t h e n o n - z e r o t e r m s o f d i s p l a c e m e n t a t t h a t node i n s t e a d o f t h e d e r i v a t i v e o f a l l the terms i n the i n t e r p o l a t e d d i s p l a c e m e n t i n t h e e l e m e n t . More s p e c i f i c a l l y , i n the e l e m e n t t h e d i s p l a c e m e n t components a r e i n t e r p o l a t e d as u s u a l as i \ 6 i \ 6 u i e ; = Z N.u. w*6' = £ N.w, ( 7 . 3 2 ) j = i 3 3 j = l J J where U j and w.. a r e t h e n o d a l d i s p l a c e m e n t s and N t h e i n t e r p o l a t i o n f u n c t i o n s . F o r i n s t a n c e , by d e f i n i t i o n , . 3 u ( e ) 6 3N. e l e ; = = Z J — u ( 7 . 3 3 ) 3r j = l 9r 3 and a t r u e q u a d r a t i c element w i l l have a B el e m e n t a t node i which i s 6 3N. B 1 1 ( £ — N.) ( 7 . 3 4 ) i j = l 3r J N, = 0 N J . - 1 J * 1 However i n t h e p s e u d o - q u a d r a t i c e l e m e n t s employed h e r e , o n l y t h e term N^. u^ i s c o n s i d e r e d , i . e . 3N B = U l ( 7 . 3 5 ) i or 63 I t i s a l s o i m p o r t a n t t o n o t e t h a t f o r t h e c a l c u l a t i o n of s t r e s s e s t h e f u l l [B] m a t r i x i s used i n o r d e r t o o b t a i n r e p r e s e n t a t i v e and c o n s i s t e n t v a l u e s of s t r e s s e s . 7.1.3 Von M i s e s and R e s o l v e d S h e a r S t r e s s e s The s t r e s s t e n s o r i n c y l i n d r i c a l c o o r d i n a t e s o b t a i n e d w i t h t h e f i n i t e e l e m e n t method g i v e s a q u a n t i t a t i v e d e s c r i p t i o n o f t h e t h e r m a l l y i n d u c e d s t r e s s e s . F o r a d i s l o c a t i o n g e n e r a t i o n a n a l y s i s , t h e s e s t r e s s components s h o u l d be t r a n s f o r m e d i n t o q u a n t i t i e s t h a t can be a s s o c i a t e d w i t h the p l a s t i c d e f o r m a t i o n of t h e m a t e r i a l . T h i s s t r e s s f i e l d can be d e s c r i b e d i n terms o f t h e Von M i s e s and R e s o l v e d S h e a r S t r e s s e s (RSS) and t h e s e v a l u e s must be compared t o t h e y i e l d s t r e s s and C r i t i c a l R e s o l v e d S h e a r S t r e s s f o r GaAs to d e t e r m i n e i f d i s l o c a t i o n s a r e g e n e r a t e d . The Von M i s e s S t r e s s i s r e l a t e d t o the p r i n c i p a l s t r e s s e s by G V M = «J 1/2 [ < 0 l ' 0 2 ) 2 + (a1 ~ a 3 ) 2 + ( o 2 - o 3 ) 2 ] (7.36) The p r i n c i p a l s t r e s s e s , by d e f i n i t i o n , a r e the v a l u e s o f the s t r e s s e s t h a t d i a g o n a l i z e t h e s t r e s s t e n s o r . The R S S 1 s are o b t a i n e d by r e s o l v i n g the l o c a l s t r e s s t e n s o r on t h e s l i p p l a n e s and s l i p d i r e c t i o n s . In GaAs the g l i d e s y s t e m i s f o r m e d by the {111} p l a n e s and <110> d i r e c t i o n s g i v i n g 12 s l i p c o m b i n a t i o n s . The p r o c e d u r e as w e l l as the d e t a i l e d c a l c u l a t i o n t o o b t a i n t h e t w e l v e RSS components i s g i v e n i n A p p e n d i x V I . 64 The t w e l v e RSS f o r a c r y s t a l grown i n the [001] d i r e c t i o n a r e g i v e n i n T a b l e 7.2 I t can be s e e n t h a t i n d e p e n d e n t of t h e s t r e s s l e v e l , at e v e r y p o i n t i n s p a c e t h e r e a r e t h r e e c o m b i n a t i o n s of p l a n e s and d i r e c t i o n s t h a t have th e same r e s o l v e d s h e a r s t r e s s , t h e s e a r e (111) [110] ( T i l ) [ H O ] ( T i l ) [110] T h i s l e a v e s o n l y t e n d i f f e r e n t s t r e s s l e v e l s w h i c h w i l l be c a l l e d " g l i d e modes". The d i f f e r e n c e between modes l a b e l l e d a and b i s t h e s i g n of t h e term i n v o l v i n g t h e s h e a r s t r e s s . The t e n modes a r e l i s t e d i n T a b l e 7.1 T h r e e d i m e n s i o n a l s t r e s s c o n t o u r s a r e d i f f i c u l t t o p r o d u c e , t h e r e f o r e f o r t h e a n a l y s i s of s t r e s s d i s t r i b u t i o n two s e c t i o n s o f t h e c r y s t a l a r e used, s e c t i o n s normal and p a r a l l e l t o t h e a x i s or growth d i r e c t i o n . F o r normal s e c t i o n s s t r e s s e s as g i v e n i n T a b l e 7.1 a r e u s e d . F o r p a r a l l e l s e c t i o n s t h e (010) p l a n e i s c h o s e n i n view o f t h e e x p e r i m e n t a l e v i d e n c e t h a t h i g h e r d i s l o c a t i o n d e n s i t i e s o c c u r i n t h a t p l a n e . F o r t h e s e p l a n e s 8 = 0. S u b s t i t u t i n g i n the g i v e n e q u a t i o n s f o r the t e n modes g i v e s the r e s u l t s shown i n T a b l e 7.2 I t can be seen t h a t i n t h i s p l a n e t h e r e a r e o n l y f i v e d i f f e r e n t s t r e s s l e v e l s w i t h the c o r r e s p o n d i n g m u l t i p l i c i t y . The RSS a r e compared w i t h d i f f e r e n t c r i t i c a l s t r e s s e s g i v e n i n t h e l i t e r a t u r e f o r y i e l d , d i s l o c a t i o n g e n e r a t i o n and 6 5 m u l t i p l i c a t i o n f o r doped and undoped GaAs as d e s c r i b e d i n s e c t i o n 8 . 1 . T a b l e 7.1 R e s o l v e d Shear S t r e s s Components i n (001) C r y s t a l s P l a n e | D i r e c t i o n | R e s o l v e d Shear S t r e s s Node [110] / 6 { - ( a - O q ) C O S 2 6 + / 2 T J C O S ( 8 + TT/4 ) } 6 P y per I a ( H I ) [ O i l ] / 6 {-(0 - o 0 ) / 2 s i n e s i n ( 6 + Tr/4) + ( a _ - o 0 ) + ~g" P o t, a + a p£.cos6) I I a [101] /6 {o - a J / 2 c o s 9 s i n ( 9+TT/4 )-( o - o Q ) -P e s 6' - T p ? s i n 6 } I I I a [101] / 6 { ( a - 0 Q ) / 2 c o s 6 c o s ( e + 7 r / 4 ) - ( a r - o a ) ~~g P 0 t, t) - T p C s i n 9 } IV a [ H I ] [ O i l ] / 6 { ( o - o Q ) / 2 s i n 6 c o s ( 9+7T/4 ) + ( o - o j g P 0 C O - T _cos6} PC V b [110] / 6 (- ( a p - o Q ) cos26 + / 2 T p ^ c o s (6 + 7T/4 ) } I a [ O i l ] j/6 { - ( a - O o ) / 2 s i n 9 s i n ( e + Tr/4) + ( o r - a f i ) -6 P e c e - T ? COS0} I I b (111) [101] / 6 ( ( a -o„)/2cosesin(9+77/4)-(a^-o.) + -g- p 8 C 6 + T p ? s i n 9 } I I I a [110] / 6 {-(o - o r t ) c o s 2 6 + / 2 T C O S ( 9 + T T / 4 ) } g P 6 p ? I a C o n t . / 66 C o n t . / [ O i l ] /6 6 {(a - o Q ) / 2 s i n 6 c o 8 ( 8+TT/4) + ( o_-o Q) + p 0 t, 0 + T r c o s 6} p£ V a (111) [ T o T ] j/6 6 {(a - o J / 2 c o s 6cos ( 6+ n/4 ) - ( a - o.) + P e c e + T . s i n e ) p£ IV b [110] 6 {-( 0 - 0 Q ) C 0 S 2 0-/2 T ,,008(9+^/4)} p o pt, I b 67 T a b l e 7 . 2 R e s o l v e d S h e a r a [001] C r y s t a l S t r e s s Components i n a (010) P l a n e f o r Node | RSS | P r e v i o u s Modes | P l a n e | D i r e c t i o n | 1 A 6 I a (111) [ 110] (111) [ H O ] (111) [ 110] 2 /6 6 I b (111) [ 110] 3 6 11 V a a (111) [ o i l ] (111) [ 011] 4 jM 6 [ ( O - O J - T ] 11 V b b (111) [ O i l ] (111) [ O i l ] 5 6 [ o - o J P K 111 I I I IV IV a b a b (111) [ 101] (TTi) [ToT] (Tii) [ToT] ( i l l ) [10T] 7.2 M o d e l l i n g f o r C o o l i n g A f t e r growth Once t h e c r y s t a l has r e a c h e d i t s f i n a l l e n g t h , i t i s p u l l e d up to s e p a r a t e i t from the melt and i n i t i a t e c o o l i n g to room t e m p e r a t u r e . The e f f e c t o f c o o l i n g i n g e n e r a t i n g d i s l o c a t i o n s has not been e s t a b l i s h e d i n the l i t e r a t u r e . However, t h e c o o l i n g 68 p r a c t i c e may i n d u c e t h e r m a l s t r e s s e s t h a t w i l l g e n e r a t e more d i s l o c a t i o n s , p a r t i c u l a r l y i n t h e hot t a i l end r e g i o n . In o r d e r t o s t u d y the e f f e c t s o f c o o l i n g i n g e n e r a t i n g d i s l o c a t i o n s the f o l l o w i n g m a t h e m a t i c a l a p p r o a c h has been d e v e l o p e d . To o b t a i n t h e t i m e d e p e n d e n t t e m p e r a t u r e f i e l d an a n a l y t i c a l s o l u t i o n was c h o s e n . The s e l e c t i o n o f t h i s method was b a s e d on two f a c t o r s . a) S o l u t i o n s a r e e a s y to o b t a i n and n u m e r i c a l e v a l u a t i o n s a r e cheap compared t o n u m e r i c a l methods, b) The i m p o r t a n c e of c o o l i n g has not been s u f f i c i e n t l y e s t a b l i s h e d t o j u s t i f y the use of e x p e n s i v e and t i m e c o n s u m i n g n u m e r i c a l methods. The a n a l y t i c a l t e m p e r a t u r e f i e l d s were c a l c u l a t e d making t h e f o l l o w i n g a s s u m p t i o n s : 1. The t e m p e r a t u r e f i e l d i s t i m e d e p e n d e n t and a x i s y m m e t r i c . 2. The c r y s t a l i s a f i n i t e c y l i n d e r w i t h c o n s t a n t c r o s s -s e c t i o n . 3. The c r y s t a l i s immersed i n a medium (gas or l i q u i d ) a t a c o n s t a n t t e m p e r a t u r e . 4. Newton's Law of C o o l i n g a p p l i e s a t t h e c r y s t a l s u r f a c e ; the h e a t t r a n s f e r c o e f f i c i e n t i s c o n s t a n t and i t s v a l u e i s d e t e r m i n e d by t h e t e m p e r a t u r e and n a t u r e o f t h e s u r r o u n d i n g medium. 5. The i n i t i a l t e m p e r a t u r e of t h e c r y s t a l i s a x i a l l y d e p e n d e n t ( r a d i a l t e m p e r a t u r e g r a d i e n t s d u r i n g growth a r e 69 s m a l l ) ; and i t i s g i v e n by a p a r a b o l i c f u n c t i o n t h a t f i t s the temperature f i e l d at the a x i s of the c r y s t a l at the moment i t i s p u l l e d from the m e l t . With these assumptions, the temperature f i e l d s s a t i s f i e s the f o l l o w i n g p a r t i a l d i f f e r e n t i a l e q u a t i o n and c o n d i t i o n s u s i n g non-d i m e n s i o n a l q u a n t i t i e s as b e f o r e : 3 3 3 (P ) + 3 p 3 p 3 2 3 3 3 3 t (7.37) where t ( K / r 0 * ) t I n i t i a l C o n d i t i o n at t 6 0 = f ( P ) P 0 + P j S + P 2 C (7.38) Boundary C o n d i t i o n s , w i t h h 1 = hr at t > 0 0 3 3 3 p 3 3 3 C 3 3 3 C -h' 3 P =1 •h' 3 h 1 3 5 =o (a) (b) (c) (7.39) 70 The s o l u t i o n to t h i s p r o b l e m as shown i n A p p e n d i x V i s g i v e n by 2 * 3 ( p . £ . t * ) = 2h'[Z CAX) e~X 1 J . ( A p ) ] X 1 0 2 * {£ C 2 < Y ) e Y 1 [YcosyC + h ' s l n Y q (7.40) Y where t h e \- v a l u e s and y - v a l u e s a r e the s o l u t i o n s o f t h e f o l l o w i n g a l g e b r a i c e q u a t i o n s A J j U ) = h' J 0 ( A ) (a) 2y h' (7.41) t a n Y C t = — -j- (b) y - h 1 w i t h C j < M = ~2 ~2 (a) (h'd + A ) J 0 ( A ) and 11 C 2 ( Y ) - (b) II = s i n y ^ { p Q + P j ( C t + h ' / Y 2 ) + P 2 ( C 2 - 2 / Y 2 ) 2 C O S y h + 2 C t h ' / Y } + <-P 0 h' + p l ( 1 " h ' C t ) 2 2 P 0 h ' P1 2 p ? n ' + P 2 ( 2 ? t " h ' C t + 2 n ' / Y 2 } + - £ — - - 1 - — f - ( c ) Y Y Y 71 €t , 2 L , 2 , ( Y + h' ) + h (7.42) (d) The t e m p e r a t u r e f i e l d c a l c u l a t e d a t a g i v e n t i m e i s employed to c a l c u l a t e t h e t h e r m a l l y i n d u c e d s t r e s s f i e l d , w i t h t h e a i d of t h e f i n i t e e l e m e n t method d e s c r i b e d i n s e c t i o n 7.1 . From t h e s e s t r e s s e s t h e Von M i s e s and RSS a r e d e r i v e d and compared t o t e m p e r a t u r e d e p e n d e n t c r i t i c a l v a l u e s f o r y i e l d or d i s l o c a t i o n g e n e r a t i on. 7.3 A n a l y t i c a l S o l u t i o n s A n a l y t i c a l s o l u t i o n s f o r t h e t e m p e r a t u r e and s t r e s s f i e l d s were o b t a i n e d and n u m e r i c a l e v a l u a t i o n s o f t h e s e s o l u t i o n s were compared w i t h t h o s e o b t a i n e d w i t h f i n i t e e l e m e n t methods. The a n a l y t i c a l s o l u t i o n s d e v e l o p e d were o b t a i n e d f o r s i m p l i f i e d b o u n d a r y c o n d i t i o n s . 7.3.1 A n a l y t i c a l QSS T e m p e r a t u r e F i e l d The q u a s i - s t e a d y s t a t e d i f f e r e n t i a l e q u a t i o n (7.1) i s s o l v e d a n a l y t i c a l l y f o r a s i m p l i f i e d p r o b l e m i n which the f o l l o w i n g c o n d i t i o n s a r e a d o p t e d : 1. P l a n a r s o l i d - l i q u i d i n t e r f a c e 2. C y l i n d r i c a l c r y s t a l w i t h c o n s t a n t c r o s s - s e c t i o n 72 3. U n i f o r m h e a t t r a n s f e r c o e f f i c i e n t h and c o n s t a n t ambient t e m p e r a t u r e T f l 4. C o n s t a n t t e m p e r a t u r e a t t h e ends o f t h e c r y s t a l From t h e s e , t h e b o u n d a r y c o n d i t i o n s a r e w r i t t e n as 9 3 " 9 p p=l h 1 3 s (a) 31 = 1 (b) (7.43) <5=0 31 = 0 ; E = ^- ( c ) 0 where i s t h e t o t a l l e n g t h o f t h e c r y s t a l . The s o l u t i o n to t h e h e a t c o n d u c t i o n e q u a t i o n ( 7 . 1 ) , s u b j e c t t o t h e s p e c i f i e d b o u n d a r y c o n d i t i o n s , i s g i v e n by t h e f o l l o w i n g e q u a t i o n i n term of the B e s s e l f u n c t i o n o f z e r o and f i r s t o r d e r J Q and J j - k x C - 2 k x C T k x C v£ J 0 ( ^P) te - e e g ( p . O = 2hr e v ^ Z ; ] (7.44) A ( A +h r / ) J n ( A ) -2k, c_ 0 0 (1 - e A M where the v a l u e s a r e t h e s o l u t i o n s of the a l g e b r a i c e q u a t i o n A J j ( A ) = h r 0 J Q ( A ) (7.45) and k 2 . v 2 + x 2 A D e t a i l s of the c a l c u a t i o n s a r e g i v e n i n A p p e n d i x V I I 73 (7.46) 7.3.2 A n a l y t i c a l s o l u t i o n s f o r t h e S t r e s s F i e l d A n a l y t i c a l s o l u t i o n s f o r t h e s t r e s s f i e l d were o b t a i n e d u s i n g two d i f f e r e n t a p p r o x i m a t i o n s : p l a n e s t r a i n and a x i s y m m e t r i c . Two t y p e s o f t e m p e r a t u r e f i e l d s were employed, t e m p e r a t u r e f i e l d s t h a t depend on r a d i u s o n l y (no a x i a l t e m p e r a t u r e g r a d i e n t ) and g e n e r a l a x i s y m m e t r i c t e m p e r a t u r e f i e l d s . 7.3.2.1 P l a n e S t r a i n A p p r o x i m a t i o n In t h i s a p p r o x i m a t i o n i t i s assumed t h a t the d i s p l a c e m e n t f i e l d c o n s i s t s o f p r i m a r i l y a r a d i a l component, w i t h t h e a x i a l component c o n s t r a i n e d to m a i n t a i n z e r o a x i a l t r a c t i o n a t t h e two ends of a c y l i n d e r . F o r t h e two d i m e n s i o n a l a x i s y m m e t r i c t e m p e r a t u r e f i e l d c a l c u l a t e d i n s e c t i o n 7.3.1, the t h r e e components of n o n - d i m e n s i o n a l s t r e s s from A p p e n d i x IX a r e 2hr hr Jj(Xp) 1 ] (a) o P Xp J 0 ( A ) 2hr ( Jj(X P) - J 0(XP))] (b) o e Xp o 2hr (c) 74 where (7.47) " k ^ - 2 k A * t k A 5 e - e e K x (C) = (d) (1 - e A l ) ( \ 2 + h 2 r Q 2 ) F o r a r a d i a l t e m p e r a t u r e f i e l d g i v e n by 3 = - P 2 (7.48) the s t r e s s e s a r e g i v e n by the f o l l o w i n g r e l a t i o n s h i p s 0 p = 1/4 ( p 2 - 1) (a) O Q = 1/4 ( 3 p 2 - 1) (b) (7.49) 0 ? = p 2 - 1/2 ( c ) D e t a i l s of the c a l c u l a t i o n s a r e g i v e n i n A p p e n d i x V I I . 7.3.2.2 A x i s y m m e t r i c S o l u t i o n s A n a l y t i c a l s o l u t i o n s u s i n g t h e a x i s y m m e t r i c a p p r o x i m a t i o n were o b t a i n e d u s i n g L o v e ' s and G o o d i e r ' s p o t e n t i a l s . G o o d i e r ' s p o t e n t i a l g i v e s a p a r t i c u l a r s o l u t i o n f o r t h e t h e r m o e l a s t i c s t r e s s e s w h i l e L o v e ' s p o t e n t i a l g i v e s a g e n e r a l s o l u t i o n f o r t h e i s o t h e r m a l e l a s t i c s t r e s s e s . A c o m b i n a t i o n of b o t h p o t e n t i a l s i s n e c e s s a r y t o s a t i s f y the b o u n d a r y c o n d i t i o n s . In t h i s c a s e t h e body i s a c y l i n d e r w i t h c o n s t a n t c r o s s - s e c t i o n and f i n i t e l e n g t h . S o l u t i o n s a r e o b t a i n e d u s i n g f i n i t e F o u r i e r t r a n s f o r m s f o r 75 a x i s y m m e t r i c and r a d i a l t e m p e r a t u r e f i e l d s as i n the p l a i n s t r a i n c a s e . D e t a i l s o f t h e c a l c u l a t i o n s and s o l u t i o n s a r e g i v e n i n A p p e n d i x IX. F o r p u r p o s e s o f c o m p a r i s o n w i t h t h e f i n i t e e l e m e n t method, n o n - d i m e n s i o n a l s t r e s s component were o b t a i n e d by m u l t i p l y i n g t h e n o n - d i m e n s i o n a l s t r e s s e s by, a) 1 - 2v f o r t h e a x i s y m m e t r i c a p p r o x i m a t i o n and b) (1 - 2v) / (1 - v ) f o r t h e p l a n e s t r a i n a p p r o x i m a t i o n w i t h v = 0.29 76 CHAPTER 8 EVALUATION OF THE MODELS In t h i s c h a p t e r the r e s u l t s o f t h e models a r e compared w i t h t h e a n a l y t i c a l s o l u t i o n s p r e s e n t e d i n t h e l a s t c h a p t e r . In a d d i t i o n the t e m p e r a t u r e f i e l d s o b t a i n e d w i t h t h e f i n i t e e l e m e n t method a r e compared w i t h t e m p e r a t u r e measurements i n a h i g h p r e s s u r e M e l b o u r n p u l l e r d u r i n g g r o w t h . The model i s e v a l u a t e d on t h e b a s i s of t h e s e r e s u l t s . 8.1 Programming and I n p u t P a r a m e t e r s B ased on t h e n u m e r i c a l scheme p r e s e n t e d i n t h e l a s t c h a p t e r , programs i n FORTRAN l a n g u a g e were w r i t t e n f o r the c a l c u l a t i o n o f t e m p e r a t u r e s and s t r e s s e s i n t h e GaAs c r y s t a l d u r i n g g r o w t h . Flow c h a r t s a r e shown i n F i g u r e s 8.1 and 8.2 The f l o w c h a r t s c o r r e s p o n d i n g to t h e computer programs employed f o r c a l c u l a t i n g the s t r e s s e s w i t h l i n e a r and q u a d r a t i c e l e m e n t s a r e e s s e n t i a l l y t h e same. The mesh was a u t o m a t i c a l l y g e n e r a t e d u s i n g a computer program w i t h a f l o w c h a r t as shown i n F i g u r e 8.3. S e v e r a l d i f f e r e n t meshes u s i n g t r i a n g u l a r e l e m e n t s were t e s t e d i n o r d e r to s e l e c t the one which gave the b e s t r e s u l t s . A C h o l e s k i method was s e l e c t e d f o r s o l v i n g t h e l i n e a r s y s t e m of e q u a t i o n s t h a t r e s u l t e d from t h e f i n i t e e l e m e n t method. In t h e c a s e o f the t e m p e r a t u r e f i e l d c a l c u l a t i o n s , t h e t e s t employed f o r the s e l e c t i o n o f t h e s o l u t i o n method and optimum mesh 77 ( START thermal d l f f u s i v i t y temperature p r o f i l e boron oxide t h i c k n e s s pressure growth v e l o c i t y c r y s t a l geometry : r Q , z , cone angle, seed l e n g t h , seed l e n g t h , seed diameter. •esh data : number of nodes, elements, nodes with constant temperature ( i n t e r f a c e ) , boundary segments ( v e r t i c a l , t i l t e d , h o r i z o n t a l ) nodal c o o r d i n a t e s , system topology. I N I T I A L I Z E : [ K T ] , [ K H ] , [ K A ] , 0 For each element EVALUATE : [ k T ] e ASSEMBLE g l o b a l matrix [ ] without r e g a r d i n g boundary c o n d i t i o n s 78 F o r e a c h b o u n d a r y e l e m e n t ACCOUNT FOR c o n v e c t i o n - CALCULATE c o r r e s p o n d i n g h e a t t r a n s f e r c o e f f i c i e n t and a m b i e n t t e m p e r a t u r e - EVALUATE [ K H ] and [ K A ] - ADD [ K T ] and [ K H ] F o r e a c h node w i t h s p e c i f i e d MODIFY [ K A ] and [ K ^ ] t e m p e r a t u r e SOLVE t h e l i n e a r s y s t e m [K ] { g } = [K ] u s i n g C h o l e s k i ' s method. A PRINT t e m p e r a t u r e s t o be r e a d by PFEMS ^ PLOT t e m p e r a t u r e c o n t o u r s STOP F i g u r e 8.1 F l o w c h a r t o f t h e c o m p u t e r p r o g r a m t o c a l c u l a t e t h e t e m p e r a t u r e f i e l d i n t h e c r y s t a l u s i n g a f i n i t e e l e m e n t method. ( START ") INPUT P o i s s o n r a t i o c r y s t a l d i m e n s i o n s ; r , Z • e s h d a t a : number o f nodes, e l e m e n t s , nodes w i t h s p e c i f i e d d i s p l a c e m e n t , n o d a l s c o o r d i n a t e s , s y s t e m t o p o l o g y n o d a l t e m p e r a t u r e s I N I T I A L I Z E : [K'] , {F^} F o r e a c h e l e m e n t , a t e a c h node (e) EVALUATE FORM [k 1 ] - CRSS) PRINT : MRSS - CRSS, mode PLOT : MRSS - CRSS c o n t o u r s ^ S T O P ^ F i g u r e 8.4 Flow c h a r t o f t h e computer program t o c a l c u l a t e and p l o t RSS i n a v e r t i c a l (010) p l a n e INPUT - s t r e s s components i n r a d i a l d i r e c t i o n a t Z - t e m p e r a t u r e s GENERATE p o l a r g r i d At e a c h p o l a r node - CALCULATE t e n components o f t h e r e s o l v e d s h e a r s t r e s s (RSS) - OBTAIN maximum component o f s t r e s s (NRSS) ; GET mode - SUBSTRACT c o r r e s p o n d i n g c r i t i c a l r e s o l v e d s h e a r s t r e s s (MRSS - CRSS) L PRINT : MRSS - CRSS, mode PLOT : MRSS - CRSS c o n t o u r s ( STOP ) F i g u r e 8.4 Flow c h a r t o f t h e computer program t o c a l c u l a t e and p l o t RSS i n a (001) p l a n e 89 The i n p u t f o r the t e m p e r a t u r e program i s the n o d a l and element c o n f i g u r a t i o n , t h e nodes at t h e i n t e r f a c e and t h e segments where he a t i s t r a n s f e r r e d to the s u r r o u n d i n g a t m o s p h e r e . The p h y s i c a l d a t a i n c l u d e s gas p r e s s u r e , b o r i c o x i d e h e i g h t and t e m p e r a t u r e p r o f i l e s i n b o t h media. From t h e s e t h e h e a t t r a n s f e r c o e f f i c i e n t a t t h e c o r r e s p o n d i n g t e m p e r a t u r e i s c a l c u l a t e d i n t h e program. The h e a t t r a n s f e r c o e f f i c i e n t r e l a t i v e t o the t h e r m a l c o n d u c t i v i t y i n c l u d e s h e a t t r a n s f e r by r a d i a t i o n and c o n v e c t i o n h = h + h r c The h e a t t r a n s f e r c o e f f i c i e n t f o r r a d i a t i o n was d e r i v e d by 19 0 191 J o r d a n ' from t h e S t e f a n - B o 1 t z m a n e q u a t i o n l e a d i n g t o the f o l l o w i n g e q u a t i o n : h = (2 . 27 x 1 0 1 1 / K ) £ T 3 r t a where e i s t h e t o t a l e m i t t a n c e o f GaAs and i s a f u n c t i o n of t e m p e r a t u r e and d o p i n g l e v e l . The c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t t o t h e gas and B^Og l a y e r was c a l c u l a t e d a s s u m i n g h e a t i s t r a n s f e r r e d by f r e e 191 c o n v e c t i o n from a v e r t i c a l w a l l i n t o a f l u i d and i s g i v e n by T - T 1 / 4 h rem" 1] = ( -) h" p 1 / 2 C 1 where . 5 4 8 _ J L _ [ p 2 G ^ ^ / K ^ J 1 / 2 K. a 90 h rod t o o o 1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 T E M P E R A T U R E ( K ) F i g u r e 8.6 E s t i m a t e d r a d i a t i v e and c o n v e c t i o n h e a t t r a n s f e r c o e f f i c i e n t s f o r GaAs/B 0^ ( 1 ) , He ( g ) , N g (g) and A (g) as a f u n c t i o n or ambient t e m p e r a t u r e . The n u m e r i c a l l a b e l s a r e t h e p r o d u c t of t h e carrier c o n c e n t r a t i o n X c r y s t a l d i a m e t e r i n u n i t s of cm F i g u r e 8.7 T o t a l h e a t t r a n s f e r c o e f f i c i e n t h, i n B 2 ° 3 a n ( * a r £ o n as a f u n c t i o n of t h e ambient t e m p e r a t u r e T (1) T o t a l h e a t t r a n s f e r c o e f f i c i e n t i n B 2 ° 3 ' T o t a l h e a t t r a n s f e r c o e f f i c i e n t i n a r g o n p r e s s u r i z e d a t 30 atm. 91 K = ambient t h e r m a l d i f f u s i v i t y a p = ambient d e n s i t y a a g = c o e f f i c i e n t of t h e r m a l volume e x p a n s i o n Cp = h e a t c a p a c i t y u = v i s c o s i t y a p = p r e s s u r e 1 = h e i g h t of t h e f l u i d column f o r a l i q u i d medium p i s t a k e n as p = 1. The n u m e r i c a l e v a l u a t i o n of t h e h e a t t r a n s f e r c o e f f i c i e n t s 191 was done by J o r d a n e t a l . u s i n g t e m p e r a t u r e dependent v a l u e s o f t h e p h y s i c a l q u a n t i t i e s i n v o l v e d . The r e s u l t s f o r a gas p r e s s u r e of 1 atmosphere a r e shown i n F i g u r e 8.6 f o r t h e d i f f e r e n t media. The t o t a l h e a t t r a n s f e r c o e f f i c i e n t s f o r b o r o n o x i d e and a r g o n at 30 a t m o s p h e r e s a r e shown i n F i g u r e 8.7 In t h e program the heat t r a n s f e r c o e f f i c i e n t s a r e e v a l u a t e d by f u n c t i o n s w h i c h f i t t h e d a t a and i n c l u d e t h e e f f e c t of t e m p e r a t u r e and p r e s s u r e . O t h e r p h y s i c a l p a r a m e t e r s a r e t h e t h e r m a l d i f f u s i v i t y w h i c h i s assumed to be t e m p e r a t u r e i n d e p e n d e n t , and growth v e l o c i t y . The same n o d a l c o n f i g u r a t i o n employed i n t h e c a l c u l a t i o n o f t e m p e r a t u r e s must be used f o r t h e t h e r m a l s t r e s s c a l c u l a t i o n s . The n o d a l t e m p e r a t u r e s a r e t h e i n p u t f o r t h i s program. In a d d i t i o n the P o i s s o n r a t i o and Young modulus a r e g i v e n . The v a l u e s of t h e most i m p o r t a n t p a r a m e t e r s a r e l i s t e d i n T a b l e 8.1. 92 T a b l e 8.1 V a l u e s o f p h y s i c a l p a r a m e t e r s u s e d In t h e c a l c u l a t i o n s M e l t i n g p o i n t T h e r m al c o n d u c t i v i t y T h e r m al d i f f u s i v i t y T h e r m a l e x p a n s i o n c o e f f i c i e n t Young modulus P o i s s o n r a t i o a E / (l - 2 v ) 1238°C 0.08 Watts/cm K 0.04, ± 0.01 (800 C - 1238 C) (cm / s e c ) 1.0 X 1 0 ~ 5 (°K *) 1 . 2 X 1 0 1 1 Pa 0 . 29 2 . 86 ± 0.1 (800 C MPa ° K _ 1 1238 C) The y i e l d and c r i t i c a l s t r e s s e s employed f o r c o m p a r i s o n w i t h the MRSS were m e a s u r e d by Swaminathan and C o p l e y 211 and 16 3 M i l d v i s k i i e t a l . r e s p e c t i v e l y . The y i e l d s t r e s s measured at t e m p e r a t u r e s w e l l below t h e m e l t i n g p o i n t a r e e x t r a p o l a t e d t o t h i s p o i n t ; an i n v e r s e e x p o n e n t i a l t e m p e r a t u r e d e p e n d e n c e was assumed as the e x p e r i m e n t a l r e s u l t s s u g g e s t . The CRSS f o r undoped 10 07 o.) as 1 i 1 1 .L /2V /too 1001 KO t00 It F i g u r e 8.8 T e m p e r a t u r e dependence of t h e c r i t i c a l s t r e s s f o r d i s l o c a t i o n g e n e r a t j g n i g GaAs (1) Te-doped m a t e r i a l , n_= 2 10 " 1 8 7 X4°" 10 cm cm ; (2) T e - d o p e d m a t e r i a l , cm ; (3) Zn-doped m a t e r i a l , p = 9 X (4) undoped m a t e r i a l . 93 and doped GaAs c l o s e t o the m e l t i n g p o i n t a r e shown i n F i g u r e 8.8. I t can be n o t e d t h a t the CRSS f o r doped m a t e r i a l i s about one o r d e r o f m a g n i t u d e l a r g e r t h an f o r undoped m a t e r i a l . 8.1.2 N u m e r i c a l E v a l u a t i o n of the A n a l y t i c a l S o l u t i o n s F o r t h e n u m e r i c a l e v a l u a t i o n of the a n a l y t i c a l s o l u t i o n s f o r t h e d i f f e r e n t f i e l d s and c o n d i t i o n s , programs i n BASIC l a n g u a g e were w r i t t e n . Programs were run i n a VIC-20 m i c r o c o m p u t e r w i t h expanded memory to 8 KRam. The A v a l u e , s o l u t i o n s o f E q u a t i o n (7.45) were o b t a i n e d u s i n g g r a p h i c methods . The f i r s t f i v e r o o t s were use d . The B e s s e l f u n c t i o n J Q , , I Q and 1^ were 213 e v a l u a t e d u s i n g p o l y n o m i a l i n t e r p o l a t i o n s f o r t h e f u n c t i o n s The summation o f t h e F o u r i e r s e r i e s was c a r r i e d out u s i n g between 20 t o 40 t e r m s . T h i s was n e c e s s a r y b e c a u s e o f the t y p i c a l s low c o n v e r g e n c y o f t h i s s e r i e s . 8.2 C o m p a r i s o n of Model P r e d i c t i o n s w i t h A n a l y t i c a l S o l u t i o n s 8.2.1 T e m p e r a t u r e F i e l d N u m e r i c a l s o l u t i o n s o b t a i n e d u s i n g t h e f i n i t e e l ement method were compared w i t h a n a l y t i c a l s o l u t i o n s f o r t h e p r o b l e m d e s c r i b e d i n S e c t i o n 7.3. C a l c u l a t i o n s were p e r f o r m e d f o r two v a l u e s of t h e h e a t t r a n s f e r c o e f f i c i e n t h. The v a l u e s s e l e c t e d , 0.3 cm 1 and 0.6 cm *, a r e i n t h e range a p p l i c a b l e t o a c r y s t a l b e i n g grown i n a p r e s s u r i z e d a r g o n atmosphere of 3.04MPa. The c r y s t a l r a d i u s was 20 mm and t h e h e i g h t 40 mm. The r e s u l t s a r e shown i n F i g u r e s 8.9 94 F i g u r e 8.9 A c o m p a r i s o n of f i n i t e e l e m e n t and a n a l y t i c a l c a l c u l a t e d t e m p e r a t u r e c u r v e s f o r h = 0.3 cm 95 F i g u r e 8.10 and = 0.6 a n a l y t i c a l cm 96 F i g u r e 8.11 Mesh employed i n the c a l c u l a t i o n s of t h e t e m p e r a t u r e f i e l d s shown i n F i g . 8.9 and 8.10. Number o f nodes = 45. Number of e l e m e n t s = 64. 97 and 8.10 from w h i c h I t i s e v i d e n t t h a t t h e agreement i s good. The f i n i t e e l e m e n t method g i v e s t e m p e r a t u r e s w h i c h a r e s l i g h t l y lower than the t e m p e r a t u r e s c a l c u l a t e d a n a l y t i c a l l y . A t o t a l o f 64 e l e m e n t s were employed i n t h e c a l c u l a t i o n and t h e c o r r e s p o n d i n g number of nodes was 45. The mesh used i s shown i n F i g u r e 8.11. F u r t h e r r e f i n e m e n t o f t h e mesh d i d not a p p r e c i a b l y change th e r e s u l t s . 8.2.2 S t r e s s F i e l d s F i n i t e e l e m e n t s o l u t i o n s were o b t a i n e d f o r a c y l i n d r i c a l c r y s t a l f o r r a d i a l and a x i s y m m e t r i c t e m p e r a t u r e f i e l d s u s i n g l i n e a r e l e m e n t s . A c r y s t a l o f r a d i u s 20 mm, and l e n g t h 40 mm was d i s c r e t i z e d i n t o a mesh o f 256 e l e m e n t s w h i c h c o n s i s t s o f 153 nodes. The s t r e s s e s were c a l c u l a t e d on t h e b a s i s o f a) t h e computed n o d a l t e m p e r a t u r e s and b) a u n i f o r m t e m p e r a t u r e i n the element d e r i v e d by a v e r a g i n g t h e n o d a l t e m p e r a t u r e s . F o r r a d i a l t e m p e r a t u r e f i e l d s , the r a d i a l s t r e s s e s c a l c u l a t e d by t h e f i n i t e e l e m e n t method f o r n o d a l and a v e r a g e e l e m e n t t e m p e r a t u r e s a r e p l o t t e d as a f u n c t i o n o f r / r ^ i n F i g u r e 8.12. F o r c o m p a r i s o n t h e c o r r e s p o n d i n g s t r e s s e s d e t e r m i n e d a n a l y t i c a l l y a r e a l s o shown f o r b o t h p l a n e s t r a i n and a x i s y m m e t r i c d i s p l a c e m e n t s . The r a d i a l s t r e s s e s e f f e c t i v e l y c o i n c i d e f o r t h e two a n a l y t i c a l s o l u t i o n s and t h e f i n i t e e l ement s o l u t i o n s u s i n g t h e a v e r a g e e l e m e n t t e m p e r a t u r e . The r e s u l t s f o r t h e f i n i t e e l e m e n t method u s i n g computed n o d a l t e m p e r a t u r e s i s w e l l below th e o t h e r t h r e e . T h i s l a r g e d i f f e r e n c e i s a t t r i b u t e d 98 CO I Q_ i f UJ - 0 2 - 0 4 -- 0 6 -- 0 8 -r/rr F i g u r e 8.12 C a l c u l a t e d r a d i a l s t r e s s e s as a r a d i a l t e m p e r a t u r e f i e l d s (1) a v e r a g e d element (2) F i n i t e t e m p e r a t u r e s (3) A n a l y t i c a l A n a l y t i c a l - a x i s y m m e t r i c . f u n c t i o n o f r / r f o r F i n i t e e l e m e n t w i t h e l e m e n t w i t h n o d a l p l a n e s t r a i n (4) 99 F i g u r e 8.13 C a l c u l a t e d a z i m u t h a l s t r e s s e s as a f u n c t i o n of r / r f o r r a d i a l t e m p e r a t u r e f i e l d s (1) F i n i t e elemen? w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) A n a l y t i c a l -p l a n e s t r a i n (4) A n a l y t i c a l - a x i s y m m e t r i c . 100 i 1 1 r -0 -6 0 0 2 0 4 0 6 0 8 r/r. 10 F i g u r e 8.14 C a l c u l a t e d a x i a l s t r e s s e s as a f u n c t i o n o f r / r f o r r a d i a l t e m p e r a t u r e f i e l d s (1) F i n i t e e l e m e n t w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l e m e n t w i t h n o d a l t e m p e r a t u r e s (3) Ana 1 y t i c a l - p 1 a n e s t r a i n (4) A n a l y t i c a l - a x i s y m r a e t r i c . 101 to t h e I n c o m p a t i b i l i t y i n t h e a p p r o x i m a t i o n o f i n i t i a l s t r a i n i n c o m p a r i s o n w i t h the s t r a i n f i e l d i n t h e l i n e a r e l e m e n t . I f t h e n o d a l t e m p e r a t u r e s a r e us e d , w i t h o u t a v e r a g i n g , b o t h t h e t e m p e r a t u r e and i n i t i a l s t r a i n v a r y l i n e a r l y w i t h i n t h e e l e m e n t w h i l e t h e l i n e a r d i s p l a c e m e n t f o r m u l a t i o n g i v e s a c o n s t a n t s t r a i n w i t h i n t h e e l e m e n t , w h i c h i s i n c o n s i s t e n t . When t h e n o d a l t e m p e r a t u r e s a r e a v e r a g e d and assumed c o n s t a n t w i t h i n the e l e m e n t , t h e i n i t i a l s t r a i n i s a l s o c o n s t a n t and i s c o n s i s t e n t w i t h t h e s t r a i n a s s o c i a t e d w i t h t h e d i s p l a c e m e n t f i e l d . The a z i m u t h a l and a x i a l s t r e s s e s , as a f u n c t i o n o f r / r Q f o r the same s o l u t i o n a r e shown i n F i g u r e s 8.13 and 8.14 r e s p e c t i v e l y . The r e s u l t s i n F i g u r e 8.13 a r e g e n e r a l l y s i m i l a r t o the r a d i a l s t r e s s e s i n F i g u r e 8.10 w i t h t h e f i n i t e e l e m e n t n o d a l t e m p e r a t u r e method of i n t r o d u c i n g t h e r m a l s t r a i n g i v i n g a c u r v e f a l l i n g w e l l below the o t h e r t h r e e . The p l a n e s t r a i n a n a l y t i c a l s o l u t i o n d e v i a t e s from t h e o t h e r two a s m a l l amount w i t h i n c r e a s i n g r / r ^ . The a x i a l s t r e s s c u r v e s i n F i g u r e 8.14 have a d i f f e r e n t c o n f i g u r a t i o n t h a n t h e r a d i a l and a z i m u t h a l s o l u t i o n s . The b e s t agreement i s between t h e f i n i t e e l ement a v e r a g e t e m p e r a t u r e c u r v e and t h e a x i s y m m e t r i c c u r v e as b e f o r e . The f i n i t e e l e m e n t n o d a l t e m p e r a t u r e c u r v e i s not v a l i d f o r t h e r e a s o n s g i v e n p r e v i o u s l y . The a n a l y t i c a l p l a n e s t r a i n v a l u e s d e v i a t e s from the o t h e r two g i v i n g maximum t e n s i l e and c o m p r e s s i v e s t r e s s e s . To t e s t t h e c o n v e r g e n c e o f t h e f i n i t e e l ement p r o c e d u r e , s t r e s s c a l c u l a t i o n s were made w i t h r e f i n e d meshes f o r a r a d i a l F i g u r e 8.15 Four s t e p s i n the mesh r e f i n e m e n t used t o a n a l y s e t h e c o n v e r gency of the f i n i t e e l ement s t r e s s c a l c u l a t i o n s . (a) NN = 15 NE = 16 (b) NN = 45, NE = 16 ( c ) NN = 45, NE = 64. (d) NN 153, NE = 256 (b) Q u a d r a t i c e l e m e n t s . ( a ) , ( c ) and (d l i n e a r e l e m e n t s . ,_, o to 103 0 - 0 2 - 0 3 - 0 - 4 CM I •o. - 0 - 5 2 - 0 - 6 - 0 7 - 0 - 8 - 0 - 9 ' NODES ELEMENTS L 45 64 • 1 Q 45 16 A L 153 256 L 15 16 • 2 L 45 64 A Q 45 16 O L 153 256 10 F i g u r e 8.16 C a l c u l a t e d r a d i a l s t r e s s e s as a f u n c t i o n of r / r f o r d i f f e r e n t numbers of nodes and s i z e s of element (1) F i n i t e element with averaged element temperature (2) F i n i t e element with nodal temperatures. L = Lin e a r element, Q = Quadratic element. 104 t e m p e r a t u r e f i e l d . C a l c u l a t i o n s were made as a f u n c t i o n of r / r ^ f o r a c y l i n d e r o f h a l f a r a d i u s i n l e n g t h . The d i f f e r e n t s t e p s i n the mesh r e f i n e m e n t a r e shown i n F i g u r e 8.15. The r e s u l t s o f the s t r e s s c a l c u l a t i o n s a r e shown i n F i g u r e 8.16 u s i n g i n d i v i d u a l node t e m p e r a t u r e s and a v e r a g e e l e m e n t t e m p e r a t u r e s . The r e s u l t s i n d i c a t e t h a t l a r g e changes i n the number o f nodes and e l e m e n t s have no s i g n i f i c a n t e f f e c t on t h e c a l c u l a t e d s t r e s s e s i n b o t h c a s e s . The r e s u l t s a l s o show t h a t the l a r g e d i f f e r e n c e between th e n o d a l and a v e r a g e d e l e m e n t t e m p e r a t u r e i s not a s s o c i a t e d w i t h e l e m e n t s i z e but w i t h t h e i n c o m p a t i b i l i t y between s t r a i n s as d e s c r i b e d above. I t i s a l s o e v i d e n t t h a t t h e q u a d r a t i c e l e m e n t f o r m u l a t i o n does not l e a d t o a s i g n i f i c a n t d i f f e r e n c e i n the computed s t r e s s e s . F o r t h e same number of nodes fewer and l a r g e r e l e m e n t s a r e i n v o l v e d i n t h e q u a d r a t i c e l e m e n t f o r m u l a t i o n , as seen i n F i g u r e 8.16, and hence th e improved a c c u r a c y o f t h e q u a d r a t i c i n t e r p o l a t i o n of d i s p l a c e m e n t i s compromised by t h e c o a r s e r g r i d . The f i n i t e e l e m e n t and a n a l y t i c a l r a d i a l s t r e s s f i e l d s f o r an a x i s y m m e t r i c t h e r m a l f i e l d a r e shown i n F i g u r e 8.17. The t e m p e r a t u r e f i e l d c o r r e s p o n d s t o an h v a l u e o f 0.3 cm * f o r a c r y s t a l of r a d i u s 20 mm and l e n g t h 40 mm. The number o f nodes and e l e m e n t s were 256 and 153 r e s p e c t i v e l y . The f i n i t e e l e m e n t a v e r a g e t e m p e r a t u r e c u r v e n e a r l y c o i n c i d e s w i t h t h e a n a l y t i c a l a x i s y m m e t r i c c u r v e f o r r / r Q above 0.5, d e v i a t i n g below t h i s v a l u e . As b e f o r e , t h e f i n i t e e l e m e n t n o d a l t e m p e r a t u r e c u r v e d i f f e r s m a r k e d l y from t h e o t h e r s . The a n a l y t i c a l p l a n e s t r a i n c u r v e has a h i g h e r c o m p r e s s i v e s t r e s s t h a n the o t h e r s . 105 F i g u r e 8.17 C a l c u l a t e d r a d i a l s t r e s s e s as a f u n c t i o n of r / r f o r a x i s y m m e t r i c t h e r m a l f i e l d s (1) F i n i t e e l e m e n t w i t h a v e r a g e d e l e m e n t t e m p e r a t u r e s (2) F i n i t e e l ement w i t h n o d a l t e m p e r a t u r e s (3) A n a l y t i c a l -p l a n e s t r a i n (4) A n a l y t i c a l - a x i s y m m e t r i c . 106 The d i f f e r e n c e between the a n a l y t i c a l a x i s y m m e t r i c c u r v e and f i n i t e e l e m e n t a v e r a g e t e m p e r a t u r e c u r v e i s a t t r i b u t e d t o the s l o w c o n v e r g e n c e o f t h e F o u r i e r s e r i e s combined w i t h t h e use o f t h e f i r s t o r d e r B e s s e l f u n c t i o n i n the a n a l y t i c a l s o l u t i o n of the s t r e s s f i e l d w h i c h r e s u l t s i n l e s s p r e c i s e v a l u e s . C o n v e r g e n c e i n t h i s s e r i e s i s o s c i l l a t o r y and v a l u e s were c a l c u l a t e d by a v e r a g i n g the l a s t two terms i n summations i n v o l v i n g about 40 t e r m s . The argument i n c r e a s e s l i n e a r l y w i t h the number of terms and t h e 1^ B e s s e l f u n c t i o n s d i v e r g e v e r y r a p i d l y w i t h t h e s e a r g u m e n t s . T h i s e f f e c t i s n o t s e r i o u s when r a d i a l t e m p e r a t u r e f i e l d s a r e used b e c a u s e of t h e s i m p l i c i t y of t h e f u n c t i o n w hich i s expanded ( t h e u n i t f u n c t i o n ) , as opposed to a complex z - d e p e n d e n t f u n c t i o n w hich i s expanded i n t h e c a s e of an a x i s y m m e t r i c two d i m e n s i o n a l t e m p e r a t u r e f i e l d . The i n c l u s i o n of t h e I f u n c t i o n s was done i n o r d e r t o o b t a i n a more g e n e r a l s o l u t i o n t o t h e i s o t h e r m a l d i s p l a c e m e n t d i f f e r e n t i a l e q u a t i o n . R e c e n t l y s o l u t i o n s f o r s i m i l a r e q u a t i o n s have been o b t a i n e d i n s e m i - i n f i n i t e c y l i n d e r s i n c l u d i n g o n l y the J B e s s e l f u n c t i o n s i n 16 8 a l e s s g e n e r a l but b e t t e r behaved s o l u t i o n The r e s u l t s i n F i g u r e 8.17 a l s o show t h a t f o r a x i s y m m e t r i c t e m p e r a t u r e f i e l d s t h e p l a n e s t r a i n a p p r o x i m a t i o n g i v e s s t r e s s e s w h i c h a r e more t h a n d o u b l e the s t r e s s e s o b t a i n e d w i t h t h e f i n i t e e l e m e n t method u s i n g t h e a x i s y m m e t r i c a p p r o x i m a t i o n s . L a r g e r d i f f e r e n c e s were u s u a l l y o b s e r v e d c l o s e to the ends o f l o n g e r c r y s t a l where c o n d i t i o n s d e v i a t e m a r k e d l y from p l a n e s t r a i n . T h i s r e s u l t shows t h a t t h e p l a n e s t r a i n a p p r o x i m a t i o n i s not always good f o r t h e a n a l y s i s o f t h e r m a l l y i n d u c e d s t r e s s e s . I t s h o u l d be 107 n o t e d t h a t t h i s r e s u l t has not been r e p o r t e d i n t h e l i t e r a t u r e 2 1 4 " 2 1 7 . In summary, i t has been shown t h a t t h e r e i s good agreement between the f i n i t e e l e m e n t a n a l y s i s u s i n g a v e r a g e e l e m e n t t e m p e r a t u r e s and t h e a n a l y t i c a l s o l u t i o n w i t h t h e a x i s y m m e t r i c a s s u m p t i o n . The a n a l y t i c a l s o l u t i o n w i t h the p l a n e s t r a i n a s s u m p t i o n does not f i t as w e l l due t o t h e r e s t r i c t i o n o f a x i a l movement i n t h i s c a s e . I t may t h u s be c o n c l u d e d t h a t the l i n e a r f i n i t e e l e m e n t a n a l y s i s g i v e s s t r e s s e s t h a t a r e c o m p a r a b l e t o t h e a x i s y m m e t r i c a p p r o x i m a t i o n and w i t h the p l a n e s t r a i n a p p r o x i m a t i o n when t h a t c o n d i t i o n a p p l i e s . 8.3 C o m p a r i s o n o f Model P r e d i c t i o n s w i t h T e m p e r a t u r e Measurements The t e m p e r a t u r e d i s t r i b u t i o n i n a g r o w i n g c r y s t a l c a l c u l a t e d from the model i s compared to the r e s u l t s of t e m p e r a t u r e 218 measurements made i n a LEC GaAs M e l b o u r n c r y s t a l g r o wer. The t e m p e r a t u r e measurements were made w i t h t h e a r r a y of f o u r t h e r m o c o u p l e s shown i n F i g u r e 8.18. The t h e r m o c o u p l e s were a t t a c h e d to the seed h o l d e r and moved up w i t h the s e e d as t h e c r y s t a l was grown. T e m p e r a t u r e s were r e c o r d e d f o r t h e e n t i r e g rowth p e r i o d of the c r y s t a l , g i v i n g the r e s u l t s shown i n F i g u r e 8.19. To c a l c u l a t e t h e t e m p e r a t u r e d i s t r i b u t i o n w i t h t h e model, 2 the t h e r m a l d i f f u s i v i t y was t a k e n as 0.04 cm / s . The h e a t t r a n s f e r c o e f f i c i e n t s between th e c r y s t a l and the a r g o n and B O were d e t e r m i n e d from the v a l u e s g i v e n i n s e c t i o n 8.1. 108 F i g u r e 8.18 P o s i t i o n o f t h e r m o c o u p l e s i n GaAs c r y s t a l . B = B o r i c o x i d e l a y e r , a r g o n p r e s s u r e 3.04 MPa. R e f e r e n c e 218. 109 The ambient t e m p e r a t u r e d i s t r i b u t i o n a l o n g t h e c r y s t a l , shown i n F i g u r e 8.19 ( c u r v e 4), i s b a s e d on t e m p e r a t u r e measurements a d j a c e n t to a f i x e d p o i n t on t h e c r y s t a l a t d i f f e r e n t t i m e s d u r i n g growth, c o n v e r t i n g t i m e t o d i s t a n c e w i t h the growth v e l o c i t y . I t i s assumed t h a t t h i s t e m p e r a t u r e d i s t r i b u t i o n i s t i m e i n d e p e n d e n t . On the b a s i s o f t h i s a s s u m p t i o n , t h e measured ambient t e m p e r a t u r e i s u s e d t o d e t e r m i n e t h e h e a t t r a n s f e r c o e f f i c i e n t at each segment a l o n g the s u r f a c e o f t h e g r o w i n g c r y s t a l . The t e m p e r a t u r e d i s t r i b u t i o n w i t h i n t h e c r y s t a l w i l l change w i t h time as the c r y s t a l i s p u l l e d from t h e m e l t . The c a l c u l a t e d and measured t e m p e r a t u r e s a l o n g t h e c r y s t a l a x i s a t f o u r d i f f e r e n t c r y s t a l l e n g t h s a r e shown i n F i g u r e 8.20. A c o m p a r i s o n o f t h e c a l c u l a t e d and measured t e m p e r a t u r e s i s o n l y v a l i d a t the p o i n t where the c a l c u l a t e d t e m p e r a t u r e c o i n c i d e s w i t h t h e measured t e m p e r a t u r e , a t p o i n t s marked A, B, C and D i n F i g u r e 8.20 f o r t h e f o u r c r y s t a l l e n g t h s . Agreement between the c a l c u l a t e d and measured t e m p e r a t u r e s at t h e s e p o i n t s i s c l o s e ; w i t h i n 15°C. F o r t h e s h o r t c r y s t a l (55.0 mm), t h e measured and c a l c u l a t e d c u r v e s e f f e c t i v e l y c o i n c i d e , i n d i c a t i n g t h a t the measured c u r v e i s t i m e i n d e p e n d e n t . F o r the l o n g e r c r y s t a l s the measured c u r v e s a r e below th e c a l c u l a t e d c u r v e i n d i c a t i n g t e m p e r a t u r e d e pendence, i . e . t h a t t h e t e m p e r a t u r e a t a g i v e n p o i n t d e c r e a s e s a f t e r b e i n g measured by the t h e r m o c o u p l e as the c r y s t a l grows. The d i f f e r e n c e i n c r e a s e s w i t h i n c r e a s i n g c r y s t a l l e n g t h . 110 •20 0 20 4 0 60 80 100 120 140 160 Position Relative To Interface (mm) F i g u r e 8.19 T e m p e r a t u r e s measured w i t h t h e r m o c o u p l e s 2, 3 and 4 i n F i g u r e 8.18 as a f u n c t i o n o f t h e r e l a t i v e p o s i t i o n o f t h e t h e r m o c o u p l e s w i t h t h e i n t e r f a c e . R e f e r e n c e 218. I l l — — i 1 1 1 1 1 1 1 1 1 r 1300 Position Relative To Interface (mm) F i g u r e 8.20 Measured and c a l c u l a t e d temperatures c r y s t a l a x i s at four c r y s t a l l e n g t h s . along the 112 Fi g u r e 8.21 Measured and c a l c u l a t e d te ou t s i d e s u r f a c e of the l e n g t h s . The measured ambi shown. mperatures adjacent to the c r y s t a l at four c r y s t a l ent temperature i s a l s o 113 81 1 1 1 1 1 1 1 1 1 1 r l 1 1 1 1 1 i i • • I L 0 20 4 0 60 80 100 Position Relative To Interface (mm) F i g u r e 8.22 Measured and c a l c u l a t e d a x i a l temperature g r a d i e n t s along the c r y s t a l a x i s at four c r y s t a l l e n g t h s . 114 The t e m p e r a t u r e d i s t r i b u t i o n n e a r the edge o f the c r y s t a l , b o t h c a l c u l a t e d and measured, f o r f o u r c r y s t a l l e n g t h s i s shown i n F i g u r e 8.21. The ambient t e m p e r a t u r e d i s t r i b u t i o n i s a l s o i n c l u d e d i n t h e f i g u r e . Note t h a t a d j a c e n t t o t h e i n t e r f a c e , c u r v e (a) was measured and c u r v e (b) was u s e d as the ambient t e m p e r a t u r e i n the model s i n c e t h e i n t e r f a c e i s assumed f l a t and at t h e f r e e z i n g t e m p e r a t u r e . C o mparing t h e c a l c u l a t e d and measured v a l u e s a t p o i n t s A, B, C and D shows t h e r e i s r e a s o n a b l e a greement between the two v a l u e s . The c a l c u l a t e d v a l u e s a r e l o w e r t h a n t h e measured v a l u e s by l e s s t h a n 25°C. As w i t h t h e a x i a l t e m p e r a t u r e s the measured v a l u e s a r e below the c a l c u l a t e d v a l u e s o v e r most o f the c r y s t a l , t h e d i f f e r e n c e i n c r e a s i n g w i t h i n c r e a s i n g c r y s t a l l e n g t h . The a x i a l g r a d i e n t was a l s o measured d u r i n g growth by t h e r m o c o u p l e s 1 and 2 i n F i g u r e 8.18. The r e s u l t s a r e compared t o the c a l c u l a t e d g r a d i e n t s i n F i g u r e 8.22. The measured g r a d i e n t s a r e s i g n i f i c a n t l y below the c a l c u l a t e d g r a d i e n t s near t h e i n t e r f a c e . At t h e s e p o i n t s the measured g r a d i e n t s may c o r r e s p o n d p a r t l y t o t h e melt and p a r t l y t o t h e c r y s t a l . In a d d i t i o n , t h e p r e s e n c e o f a convex i n t e r f a c e , as i s shown l a t e r i n t h i s work, g i v e s l o w e r a x i a l g r a d i e n t s t h a n a f l a t i n t e r f a c e i n t h i s r e g i o n . F o r l o n g e r c r y s t a l s the measured g r a d i e n t s a r e about 10 % below t h e c a l c u l a t e d v a l u e s , t h e d i f f e r e n c e i n c r e a s i n g w i t h c r y s t a l l e n g t h . At the p o i n t s where the c o m p a r i s o n i s v a l i d the measured v a l u e s a r e above the c a l c u l a t e d v a l u e s but w i t h i n t h e range of the s c a t t e r of e x p e r i m e n t a l measurements. 115 In summary, the v a l i d p o i n t s of c o m p a r i s o n o f t h e c a l c u l a t e d and measured t e m p e r a t u r e s a r e i n good a g r e e m e n t . A c c o r d i n g l y , the t e m p e r a t u r e s p r e d i c t e d by the model a r e i n d i c a t i v e o f the r e a l t e m p e r a t u r e s i n t h e c r y s t a l . 8.4 The T e m p e r a t u r e Model f o r C o o l i n g - Programming and C o n v e r g e n c y To c a l c u l a t e t h e t e m p e r a t u r e f i e l d s b a s e d on t h e a n a l y t i c a l t i m e d e p e n d e n t s o l u t i o n s , a FORTRAN program was w r i t t e n . T h i s program i s shown i n A p p e n d i x X I . The f l o w c h a r t o f t h i s program i s shown i n F i g u r e 8.23. The v a l u e of X were c a l c u l a t e d u s i n g 219 c u b i c i n t e r p o l a t i o n f r o m t a b l e s , t h e f i r s t s i x r o o t s were u s e d . The Y - v a l u e s were o b t a i n e d from E q u a t i o n (7.41b) u s i n g a Newton - Raphson method t o f i n d t h e r o o t s . The f i r s t 30 v a l u e s were u s e d . W i t h t h e s e s i x X v a l u e s , the r a d i a l p a r t of the t e m p e r a t u r e c o n v e r g e d t o 98 % o f i t s f i n a l v a l u e . W i t h 30 Y v a l u e s the a x i a l p a r t o f t h e t e m p e r a t u r e c o n v e r g e d t o 98 % of i t s f i n a l v a l u e . The n o n - d i m e n s i o n a l t e m p e r a t u r e was t h e r e f o r e c a l c u l a t e d as 96 * of the e x a c t s o l u t i o n . A t y p i c a l t e m p e r a t u r e f i e l d c a l c u l a t e d d u r i n g c o o l i n g i s shown i n F i g u r e 8.24 a. The r a d i u s o f t h e c r y s t a l i s 27.5 mm and the l e n g t h i s 110.0 mm. Due t o symmetry, o n l y t h e r i g h t h a l f of the c r y s t a l i s shown. C l o s e to t h e i n t e r f a c e or t a i l end the a x i a l t e m p e r a t u r e g r a d i e n t changes from p o s i t i v e t o n e g a t i v e . A l s o a h i g h r a d i a l g r a d i e n t i s u s u a l l y o b s e r v e d as opposed to what i s o b s e r v e d d u r i n g g rowth. In v i e w o f t h i s and t h e f a c t t h a t 116 ( START / I N P U T - y eig e n v a l u e s - 3 e i g e n v a l u e s - c r y s t a l r a d i u s and length - heat t r a n s f e r c o e f f i c i e n t , h - ambient temperature - i n i t i a l a x i a l temperature For each 3 : CALCULATE c o e f f i c i e n t (3) For each Y : CALCULATE c o e f f i c i e n t C (y) For each r a d i a l p o s i t i o n : EVALUATE s e r i e s i n Bessel f u n c t i o n s 5 117 1 F o r e a c h a x i a l p o s i t i o n EVALUATE s e r i e s i n F o u r i e r f u n c t i o n s F o r e a c h p o i n t i n the g r i d CALCULATE t e m p e r a t u r e / / / PRINT n o d a l t e m p e r a t u r e s / j PLOT i s o t h e r m s / STOP F i g u r e 8.23 Flow c h a r t o f t h e computer program f o r t h e n u m e r i c a l e v a l u a t i o n of t h e a n a l y t i c a l t e m p e r a t u r e f i e l d s d u r i n g c o o l i n g o f t h e c r y s t a l . 118 a b e F i g u r e 8.24 (a) T y p i c a l temperature f i e l d o b t a i n e d d u r i n g c o o l i n g u n i t s a r e 10 °C. (b) and ( c ) Von M i s e s s t r e s s c o n t o u r s (MPa) f o r the t e m p e r a t u r e f i e l d g i v e n i n ( a ) . (b) NN = 451, NE = 800. ( c ) NN = 1105, NE = 2048. 119 f o r the s t r e s s c a l c u l a t i o n a v e r a g e t e m p e r a t u r e s a r e us e d a n o t h e r mesh r e f i n e m e n t was p e r f o r m e d . T h i s was done t o d e t e r m i n e i f f o r a g i v e n mesh s i z e the c a l c u l a t e d s t r e s s e s were r e p r e s e n t a t i v e . The r e s u l t s are shown i n F i g u r e 8.24 b and c. F i g u r e 8.24 b shows the Von M i s e s s t r e s s f i e l d I n d u c e d by the t e m p e r a t u r e f i e l d i n p a r t (a) of the f i g u r e , c a l c u l a t e d u s i n g a mesh c o n t a i n i n g 451 nodes and 800 e l e m e n t s . F i g u r e 8.24 c shows t h e same s t r e s s f i e l d o b t a i n e d e m p l o y i n g a mesh o f 1105 nodes and 2048 e l e m e n t s . I t i s s e e n t h a t e x a c t l y the same s t r e s s p a t t e r n i s o b t a i n e d w i t h s t r e s s v a l u e s which a r e about 10 * l e s s i n the c o a r s e mesh f o l l o w i n g an e x p e c t e d t e n d e n c y . The c o m p u t i n g e f f o r t i n v o l v e d , however i n c r e a s e d q u a d r a t i c a l l y w i t h t h e number of nodes. A c c o r d i n g l y the c o a r s e r mesh was s e l e c t e d . 120 CHAPTER 9 RESULTS AND ANALYSIS The m a t h e m a t i c a l model p r e s e n t e d i n t h e p r e v i o u s c h a p t e r s i s used t o s t u d y t h e e f f e c t of the d i f f e r e n t v a r i a b l e s i n g e n e r a t i n g d i s l o c a t i o n s d u r i n g growth and c o o l i n g to ambient t e m p e r a t u r e . The v a r i a b l e s r e l a t e d to c r y s t a l g eometry d u r i n g growth i n c l u d e t h e f o l l o w i n g 1. Cone a n g l e (CA), g i v e n by t h e a n g l e between the cone s u r f a c e and the h o r i z o n t a l 2. C r y s t a l l e n g t h ( C L ) , g i v e n by t h e d i s t a n c e between the s o l i d - l i q u i d i n t e r f a c e and t h e s t a r t of the cone 3. C r y s t a l r a d i u s ( R ) , 4. I n t e r f a c e shape The v a r i a b l e s a s s o c i a t e d w i t h t h e g rowth p r o c e s s i n c l u d e t h e f o l l o w i n g : 5. Growth v e l o c i t y (V) 6. Boron o x i d e t h i c k n e s s (B) 7. T h e r m a l g r a d i e n t s ( a r g o n , AG and b o r o n o x i d e , BG) 8 . Gas p r e s s u r e (GP) 9. Gas c o m p o s i t i o n The v a r i a b l e s a s s o c i a t e d w i t h t h e c o o l i n g p r o c e s s i n c l u d e the f o l l o w i n g : 121 10. The n a t u r e of t h e media i n wh i c h t h e c r y s t a l i s immersed. T h i s may be bor o n o x i d e or a r g o n gas 11. T e m p e r a t u r e o f the c o o l i n g media 12. Thermal c o n d i t i o n s i n the c r y s t a l a t t h e s t a r t of c o o l i n g . The e f f e c t of t h e above v a r i a b l e s on t h e c a l c u l a t e d s t r e s s f i e l d s and d i s l o c a t i o n d e n s i t y a r e now c o n s i d e r e d . 9.1 Cone A n g l e C r y s t a l and Growth P a r a m e t e r s Assumed R, 20 mm ; CL, 10 mm ; B, 10 mm ; BG , 100 °C/cm ; AP, 30 atm ; AG, 50°C/cm. The cone a n g l e s c o n s i d e r e d a r e 7.1, 30, 45, 54.7 and 65 d e g r e e s . The a n g l e 5 4 . 7 ° c o r r e s p o n d s t o t h e cone s u r f a c e c o i n c i d e n t w i t h t h e (111) p l a n e . The c a l c u l a t e d Von M i s e s s t r e s s d i s t r i b u t i o n on a v e r t i c a l p l a n e f o r the f i v e cone a n g l e s c o n s i d e r e d i s shown i n F i g u r e 9 . 1 ( a - e ) . The maximum Von M i s e s S t r e s s (MVMS) l e v e l s o c c u r at the s h o u l d e r where t h e cone r e a c h e s the f u l l r a d i u s o f the c r y s t a l . H i g h s t r e s s l e v e l s o c c u r a l o n g b o t h t h e cone s u r f a c e and t h e c r y s t a l a x i s . The l o w e s t Von M i s e s s t r e s s e s (LVMS) a r e below the se e d . 122 123 F i g u r e 9.1 Von M i s e s S t r e s s c o n t o u r s (MPa) i n v e r t i c a l p l a n e s f o r f i v e cone a n g l e s . (a) 7 . 1 ° , (b) 3 0 ° , ( c ) 45 , (d) 5 4 . 7 ° , (e) 6 5 ° . Cone s u r f a c e i n (d) c o i n c i d e s w i t h a (111) p l a n e . C r y s t a l r a d i u s , 20 mm ; c r y s t a l l e n g t h , 10 mm ; B 2 ° 3 t h i c k n e s s , 10 mm ; B 2 ° 3 g r a d i e n t , 100 C/cm ; a r g o n p r e s s u r e , 30 atm. ; a r g o n g r a d i e n t , 50 C/cm. 124 \Table 9.1 E f f e c t of Cone A n g l e on Th e r m a l and S t r e s s F i e l d s T h e r m a l G r a d i e n t s , °C/cm| 1 % V™ rOue* 4 s l _ : MVMS I AMRSS 1 I AMRSS/ Cone A n g l e ( ° ) | R a d i a l A x i a l | MPa MPa MVMS 55 18.4 8 . 7 0 .47 50 6 . 7 3 . 1 0 . 46 54 5 . 2 2 . 5 0 . 48 56 1 . 1 2 . 6 2 . 4 55 5 . 0 2 . 3 0 . 45 7.1 6.7 30 . 4.1 45. 2.7 54.7 3.2 65 . 2.5 The l a r g e s t MVMS, as shown i n T a b l e 9.1, o c c u r s i n the c r y s t a l w i t h the s h a r p e s t cone a n g l e of 7 . 1 ° . The MVMS d r o p s a p p r e c i a b l y when the cone a n g l e i s i n c r e a s e d from 7.1° to 3 0 ° , and d e c r e a s e s f u r t h e r by a s m a l l e r amount between 30° and 45° . The MVMS r e a c h e s a minimum f o r a cone a n g l e of 57.4° t h e n i n c r e a s e s between 52.4° and 65° . S i m i l a r b e h a v i o u r i s o b s e r v e d when t h e LVMS i s c o n s i d e r e d as a f u n c t i o n of cone a n g l e . In o r d e r t o a c c o u n t f o r t h e e f f e c t of t h e cone a n g l e on the VMS two s o u r c e s of t h e r m a l s t r e s s a r e c o n s i d e r e d namely the t e m p e r a t u r e f i e l d s and t h e g e o m e t r i c a l c o n s t r a i n t s . The t e m p e r a t u r e f i e l d i s the o r i g i n o f t h e r m a l s t r e s s e s . The s t r e s s l e v e l i s r o u g h l y d e t e r m i n e d by t h e t h e r m a l g r a d i e n t s . G e n e r a l l y , l a r g e r a d i a l t h e r m a l g r a d i e n t s combined w i t h l a r g e a x i a l g r a d i e n t s p r o d u c e l a r g e s t r e s s e s i n c y l i n d e r s . I f t h e a x i s y m m e t r i c body does not have c o n s t a n t c r o s s - s e c t i o n , a d d i t i o n a l s t r e s s e s may d e v e l o p due t o g e o m e t r i c a l c o n s t r a i n t s . 125 F o r the c r y s t a l g e o m e t r y c o n s i d e r e d h e r e t e m p e r a t u r e g r a d i e n t s a r e c a l c u l a t e d as f o l l o w s . The a x i a l g r a d i e n t s a r e c a l c u l a t e d from the t e m p e r a t u r e d i f f e r e n c e s between t h e i n t e r f a c e and a p o i n t i n t h e c r y s t a l a x i s 10 mm above, l a b e l l e d A and B r e s p e c t i v e l y i n F i g u r e 9.1(e) . The r a d i a l g r a d i e n t s a r e c a l c u l a t e d from t h e t e m p e r a t u r e d i f f e r e n c e s between p o i n t B and C which a r e a l s o shown i n F i g u r e 9 . 1 ( e ) . The r e s u l t s a r e g i v e n i n T a b l e 9.1. From T a b l e 9.1 t h e a x i a l g r a d i e n t s a r e o b s e r v e d t o be r e l a t i v e l y i n s e n s i t i v e t o t h e cone a n g l e , v a r y i n g by abo u t 3 * about t h e mean g r a d i e n t o f 53°c/cm. On t h e o t h e r hand t h e r a d i a l g r a d i e n t s v a r y a p p r e c i a b l y about t h e mean g r a d i e n t o f 4.2°C/cm. The g r a d i e n t d r o p s s h a r p l y from 6.7°C/cm between 7.1° and 3 0 ° , dr o p s f u r t h e r a t 4 5 ° , r i s e s a t 54.7 ° and t h e n d r o p s a g a i n a t 6 5 ° . C o n s i d e r i n g the MVMS v a l u e s i n T a b l e 9.1, t h e drop i n MVMS between 7.1° and 30° can be a c c o u n t e d f o r by t h e change i n r a d i a l g r a d i e n t . The minimum MVMS f o r 54.7° i s a t t r i b u t e d t o t h e g e o m e t r i c a l c o n s t r a i n t s a r i s i n g from the v a r i a t i o n s i n r a d i u s of the c r y s t a l a t t h e cone, as w e l l as t h e r a d i a l g r a d i e n t . F o r a z e r o cone a n g l e , c o n d i t i o n s s i m i l a r t o p l a i n s t r e s s w i l l p r e v a i l a t t h e cone s u r f a c e , w i t h z e r o a x i a l and s h e a r components o f t h e a x i s y m m e t r i c s t r e s s t e n s o r . Under s u c h c o n d i t i o n s the VMS w i l l have maximum v a l u e s b e c a u s e t h e r e a r e o n l y two l a r g e n o n - z e r o d i a g o n a l s t r e s s components. F o r t h e same t h e r m a l c o n d i t i o n s , when the cone i s not z e r o a s i m i l a r s t r e s s l e v e l w i l l have a d i f f e r e n t d i s t r i b u t i o n of s t r e s s components g i v i n g a t h i r d n o n - z e r o 126 p r i n c i p a l s t r e s s . The d i f f e r e n c e between t h e p r i n c i p a l s t r e s s components d e c r e a s e s as t h e cone a n g l e i n c r e a s e s , g i v i n g t h e o b s e r v e d VMS dependence w i t h cone a n g l e . F o r cone a n g l e s l a r g e r t h a n 5 4 . 7 ° a n o t h e r f a c t o r s h o u l d be i n c l u d e d i n the a n a l y s i s . Under t h e s e c o n d i t i o n s the c r y s t a l s a r e e f f e c t i v e l y l a r g e r t h a n t h e low cone a n g l e c r y s t a l s . T h e r e f o r e t h e c o n s t r a i n t s a r e such t h a t c o n d i t i o n s c l o s e r to t h o s e of p l a n e s t r a i n a p p l y . In such c a s e s i t was shown i n t h e l a s t c h a p t e r t h a t s t r e s s e s a r e l a r g e r t h a n under the more g e n e r a l a x i s y m m e t r i c c o n d i t i o n s . From the above d i s c u s s i o n , a t low cone a n g l e s t h e VMS i s e x p e c t e d to d e c r e a s e w i t h i n c r e a s i n g cone a n g l e . At h i g h cone a n g l e s , however, the VMS i s e x p e c t e d t o i n c r e a s e w i t h i n c r e a s i n g cone a n g l e . T h e r e f o r e a minimum i n the VMS s h o u l d e x i s t a t i n t e r m e d i a t e cone a n g l e s . In t h i s c a s e t h a t minimum i s o b s e r v e d f o r a cone a n g l e of 5 4 . 7 ° . The maximum component of t h e r e s o l v e d s h e a r s t r e s s (MRSS) i n v e r t i c a l (010) p l a n e s f o r t h e f i v e cone a n g l e s c o n s i d e r e d i s shown i n F i g u r e 9 . 2 ( a - e ) . The MRSS s t r e s s d i s t r i b u t i o n s a r e s i m i l a r to the VMS d i s t r i b u t i o n s . The dependence of the MRSS on the cone a n g l e i s d e t e r m i n e d by c o n s i d e r i n g t h e a b s o l u t e maximum MRSS (AMRSS) d e v e l o p e d i n t h e c r y s t a l which i s r e p r e s e n t a t i v e of th e s t r e s s l e v e l i n the whole c r y s t a l . The AMRSS o c c u r s at the s h o u l d e r as i s shown i n the VMS d i s t r i b u t i o n s . The AMRSS f o r the a n g l e s c o n s i d e r e d i s l i s t e d i n T a b l e 9.1 column 5. F o r low cone a n g l e s the AMRSS d e c r e a s e s r a p i d l y s i m i l a r t o t h a t shown f o r the VMS. F o r cone a n g l e s of 4 5 ° and l a r g e r t h e AMRSS r e m a i n s 127 128 F i g u r e 9.2 Maximum r e s o l v e d s h e a r s t r e s s (MRSS) c o n t o u r s i n MPa, i n v e r t i c a l (010) p l a n e s f o r f i v e cone a n g l e s , (a) 7.1°, (b) 3 0 ° , ( c ) 4 5 ° , (d) 5 4 . 7 ° , (e) 6 5 ° . Cone s u r f a c e i n (d) c o i n c i d e s w i t h a (111) p l a n e . C o n d i t i o n s a r e t h e same as i n F i g u r e 9.1 . 129 e s s e n t i a l l y c o n s t a n t . The l a r g e d r o p i n t h e AMRSS a t low cone a n g l e s s u p p o r t s the c o n c l u s i o n t h a t t h e s t r e s s e s a r e dep e n d e n t e n t i r e l y on t h e t h e r m a l f i e l d c h a n g e s r a t h e r t h a n on g e o m e t r i c a l c o n s t r a i n t s . At l a r g e cone a n g l e s , t h e MRSS d i f f e r s from t h e VMS. The d i f f e r e n c e can be seen i n T a b l e 9.1 column 6 where the AMRSS/MVMS i s l i s t e d . F o r a l l cone a n g l e s e x c e p t 5 4 . 7 ° t h e AMRSS i s l e s s t h a n h a l f t h e MVMS. At 54.7° a s i n g u l a r i t y o c c u r s s u c h t h a t t h e AMRSS i s more t h a n d o u b l e t h e MVMS. The s i n g u l a r i t y a t 5 4 : 7 ° cone a n g l e i s a t t r i b u t e d t o t h e model a s s u m p t i o n of no t r a c t i o n a t the c r y s t a l s u r f a c e and the d i f f e r e n c e i n the d e f i n i t i o n of t h e VMS and RSS components. The c o n d i t i o n of no t r a c t i o n r e q u i r e s the p r o j e c t i o n o f the s t r e s s t e n s o r on a d i r e c t i o n normal t o t h e c r y s t a l s u r f a c e t o be z e r o . In t h i s c a s e , f o r a g i v e n s t r e s s l e v e l , t he s t r e s s components must accommodate i n a d i r e c t i o n p a r a l l e l t o t h e c r y s t a l s u r f a c e . F o r a cone a n g l e p r e s e n t i n g a s u r f a c e p a r a l l e l t o a (111) p l a n e , t h e s t r e s s components l i e on the (111) p l a n e . In t h i s c a s e the RSS components a r e e x p e c t e d to be a t maxima s i n c e by d e f i n i t i o n t h e y a r e p r o j e c t i o n s o n t o t h e s e p l a n e s i n t h e <110> d i r e c t i o n s . The VMS, on the o t h e r hand, i s an i n d i c a t i o n o f the s h e a r s t r e s s i n i s o t r o p i c m a t e r i a l s and t h e r e f o r e does not i n c l u d e the c r y s t a 1 1 o g r a p h i c p r o p e r t i e s of the m a t e r i a l . These r e s u l t s show the a d v a n t a g e of u s i n g the MRSS o v e r t h e VMS f o r the a n a l y s i s of s t r e s s e s g e n e r a t i n g d i s l o c a t i o n s . From the VMS r e s u l t s i t may be m i s t a k e n l y c o n c l u d e d t h a t a 5 4 . 7 ° cone a n g l e i s b e n e f i c i a l i n o r d e r to r e d u c e d i s l o c a t i o n g e n e r a t i o n . A 130 d i f f e r e n t c o n c l u s i o n can be o b t a i n e d u s i n g t h e RSS which i s t h e s t r e s s g e n e r a t i n g d i s l o c a t i o n s by g l i d e . The r e s u l t s u s i n g t h e MRSS show t h a t t h e r e i s no su c h b e n e f i c i a l e f f e c t u s i n g a 5 4 . 7 ° cone a n g l e . On t h e c o n t r a r y , i f growth c o n d i t i o n s a r e su c h t h a t s t r e s s l e v e l s g i v e n by t h e VMS a r e changed, t h e e f f e c t on d i s l o c a t i o n d e n s i t i e s i s d o u b l e a t t h i s a n g l e . The p r e s e n t c a l c u l a t i o n s d i f f e r s i g n i f i c a n t l y from t h e 13 7 c a l c u l a t i o n s r e p o r t e d by J o r d a n e t a l . . In t h e p r e s e n t c a s e the MRSS i s used, whereas J o r d a n e t a l . use the t o t a l r e s o l v e d s h e a r s t r e s s (TRSS) w h i c h i s t h e sum of t h e t w e l v e RSS v a l u e s . F o r the 45° cone a n g l e t h e TRSS d i s t r i b u t i o n shown i n F i g u r e 9.3 i s s i m i l a r to the MRSS d i s t r i b u t i o n shown i n F i g u r e 9 . 2 ( c ) , but the s t r e s s l e v e l s of the TRSS a r e s e v e n t i m e s l a r g e r t h a n t h e MRSS and t h r e e t i m e s l a r g e r t h a n the VMS l e v e l s . A d d i n g the components t o make t h e TRSS i s i n c o n s i s t e n t w i t h t h e c o n c e p t of a v e c t o r i a l or t e n s o r i a l q u a n t i t y s i n c e the magni t u d e c a n n o t be c a l c u l a t e d by a l i n e a r a d d i t i o n o f components. M o r e o v e r t h e TRSS can be i n d e f i n i t e l y i n c r e a s e d by c o n s i d e r i n g an u n l i m i t e d number of s e c o n d a r y s l i p s y s t e m s w h i c h i s a l s o i n c o n s i s t e n t . The e f f e c t i v e s t r e s s a s s o c i a t e d w i t h d i s l o c a t i o n g e n e r a t i o n and movement can be d e t e r m i n e d by s u b s t r a c t i n g from t h e MRSS t h e c r i t i c a l r e s o l v e d s h e a r s t r e s s f o r y i e l d o r t h e v a l u e r e p o r t e d f o r d i s l o c a t i o n g e n e r a t i o n . T h i s i s done i n F i g u r e 9.4 i n wh i c h (a) the y i e l d s t r e s s i s s u b s t r a c t e d from the MRSS [CRSS ( y i e l d ) ] , (b) t h e CRSS f o r d i s l o c a t i o n g e n e r a t i o n g i v e n by M i l v i d s k i i and B o c h k a r e e v 1 5 0 ' 1 6 3 i s s u b s t r a c t e d [CRSS (MB)] and ( c ) t h e CRSS 131 F i g u r e 9.3 T o t a l r e s o l v e d s h e a r s t r e s s (TRSS) c o n t o u r s i n MPa f o r t h e 45 cone a n g l e c r y s t a l . Compare t h e l a r g e s t r e s s l e v e l s o f the TRSS w i t h the s t r e s s l e v e l s f o r same c r y s t a l shown i n F i g u r e 9 . 1 ( c ) f o r the VMS and F i g u r e 9.2(c) f o r the MRSS. / 4 C o n t o u r s of the MRSS (MPa) i n e x c e s s o f : (a) CRSS ( y i e l d ) ; (b) CRSS (MB) ; ( c ) CRSS (MBTe). Shaded r e g i o n s i n d i c a t e a r e a s i n wh i c h t h e MRSS i s l e s s t h a n the CRSS. 133 f o r T e - d o p e d c r y s t a l s i s s u b s t r a c t e d [CRSS (MBTe) ] . The sha d e d a r e a s i n t h e f i g u r e s i n d i c a t e where t h e e f f e c t i v e s t r e s s i s z e r o . I t can be se e n t h a t the MRSS i s l e s s t h an t h e y i e l d s t r e s s i n most of t h e c r y s t a l e x c e p t i n t h e c e n t r e and n e a r t h e s u r f a c e . The l a r g e s t s t r e s s e s o c c u r i n a r e g i o n below the s h o u l d e r a t A. The MRSS i s a l w a y s g r e a t e r t h a n t h e CRSS (MB) as shown i n ( b ) . D o p i n g w i t h Te i n ( c ) g i v e s r e g i o n s i n t h e c r y s t a l where t h e MRSS does not e x c e e d t h e CRSS (MBTe) c o m p a r a b l e t o (a) . The s p e c i f i c d i r e c t i o n s and p l a n e s a s s o c i a t e d w i t h t h e maximum r e s o l v e d s h e a r s t r e s s e s i n t h e c r y s t a l a r e shown i n F i g u r e 9.5. P l o t s o f s t r e s s d i s t r i b u t i o n f o r o t h e r cone a n g l e s a r e g i v e n i n A p p e n d i x X I I I . These p l o t s show s i m i l a r p a t t e r n s t o t h a t shown i n F i g u r e 9.4 w i t h t h e e x c e p t i o n o f t h e c r y s t a l w i t h a cone a n g l e o f 7.1° ( F i g u r e 9 . 6 ( a - c ) ) . 9.1.1 E f f e c t of Cone A n g l e on S t r e s s Symmetry The e f f e c t o f cone a n g l e on t h e MRSS d i s t r i b u t i o n on p l a n e s p e r p e n d i c u l a r t o the growth d i r e c t i o n i s shown i n F i g u r e 9 . 7 ( a -e ) . The p l a n e s i n (a-d) a r e 7.5 mm from the i n t e r f a c e , and t h e p l a n e i n (e) i s 8 mm from the i n t e r f a c e . The v e r t i c a l d i r e c t i o n i n t h e f i g u r e s i s [010] and t h e h o r i z o n t a l d i r e c t i o n [ 1 0 0 ] . In F i g u r e 9 . 7 ( a ) , f o r the s m a l l e s t cone a n g l e ( 7 . 1 ° ) , the s t r e s s d i s t r i b u t i o n i s complex w i t h low s t r e s s e s a t t h e c e n t r e f o l l o w e d by a r i n g w i t h h i g h e r s t r e s s e s w h i c h e x h i b i t s f o u r - f o l d symmetry. 134 O-O-O-O-O-D O A A A Q o o A A A LJ) 6 O A A • O o o AO o A 6 o • • o • ' \ o o o o o o. I I I I I I V I o I o o o o o x o o o o o, I o 6 V o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o\>. \ 6 o o o o o o o o o

o o o o • • • • o-o- o o o o o o o o o o o o • • o 1 o o • • • • • A o o o o • • • o 1 1 o 1 o 1 ? o A • • • • • o o o o o o o o I o 1 o 1 ? o A • • • • • A o o o o o o o o A • • • • • • A o o o o o o 1 o 1 o 1 o A • • • • • • • A o o 0 o o 1 o 1 ? o A • • • • • • • • A A o o o 1 o 1 o A • • • • • • • • • • A A A 1 • I 1 o- o--o--o--0--o- -o - O - -0--o - 0-•0-0-o- o-•o-1 -o ( I I I ( T i l ( i n ( TT I ( T i l ( M l M I 0 1 C I I 0 3 I I T 03 (T T 0 ] COT I 1 C O M ] tO I I ] ( O i l ] II o n rT o n [ToT ] l I OT] F i g u r e 9.5 S l i p mode d i s t r i b u t i o n i n the ( 0 1 0 ) p l a n e f o r the 45° cone a n g l e c r y s t a l c o r r e s p o n d i n g t o the MRSS d i s t r i b u t i o n shown i n F i g u r e 9 . 2 ( c ) . 135 Midway between the c e n t r e and t h e edge o f the w a f e r t h e r e i s a r i n g w i t h minimum s t r e s s e s w h i c h e x h i b i t s c i r c u l a r symmetry. At t h e edge o f the w a f e r the s t r e s s e s i n c r e a s e t o a maximum v a l u e . The s t r e s s a t t h e edge i s f i v e t i m e s l a r g e r t h a n th e s t r e s s at t h e c e n t r e . T h i s complex p a t t e r n i s c o n s i s t e n t w i t h what i s o b s e r v e d i n F i g u r e 9.6(a) a t 7.5 mm from t h e i n t e r f a c e . The r i n g a t t h e c e n t e r w i t h h i g h e r s t r e s s e s i s due t o t h e i r r e g u l a r c o n t o u r s i n t h e upper h a l f of t h e c r y s t a l , at A i n F i g u r e 9 . 6 ( a ) . F o r h i g h e r cone a n g l e s the s t r e s s d i s t r i b u t i o n i s s i m p l e r . The c r y s t a l s w i t h 30° and 4 5 ° cones shown i n F i g u r e 9.7(b) and ( c ) , e x h i b i t a l m o s t c i r c u l a r symmetry w i t h low s t r e s s e s i n t h e c e n t r a l a r e a w h i c h i n c l u d e s h a l f t h e t o t a l s u r f a c e a r e a . O u t s i d e t h i s r e g i o n the s t r e s s r a p i d l y i n c r e a s e s t o w a r d s the edge o f t h e w a f e r . F o r b o t h cone a n g l e s t h e s t r e s s e s at t h e edge a r e about f i v e t i m e s l a r g e r t han a t the c e n t r e . F o r l a r g e r cone a n g l e s a r e g i o n of h i g h e r s t r e s s e s s t a r t s t o b u i l d up a t the c e n t r a l r e g i o n , as shown i n F i g u r e 9.7(d) and ( e ) , p r o d u c i n g t h e c h a r a c t e r i s t i c W-shaped s t r e s s d i s t r i b u t i o n a c r o s s t h e d i a m e t e r . Fo r the l a r g e s t cone a n g l e (65°) t h e s t r e s s e s a t t h e c e n t r e a r e t h r e e t i m e s l a r g e r t h a n the m i n i m a l s t r e s s e s a t t h e mid r a d i u s p o s i t i o n . At t h e edge the s t r e s s e s a r e a bout e i g h t t i m e s l a r g e r t h a n th e minimum v a l u e s . I t i s shown l a t e r t h a t t h e q u a l i t a t i v e c h a r a c t e r i s t i c s o f symmetry p r e s e n t e d h e r e a r e g e n e r a l . T h i s i s b e c a u s e the symmetry p a t t e r n s o f the s t r e s s f i e l d s a r e i n d e p e n d e n t of t h e t h e r m a l g r a d i e n t s , p r o v i d i n g 136 t h e t e m p e r a t u r e p r o f i l e r e m a i n s l i n e a r and the g r o w t h c o n d i t i o n s ( r a d i u s , b o r o n o x i d e t h i c k n e s s , e t c . ) r e m a i n unchanged. The d e n s i t y and d i s t r i b u t i o n o f d i s l o c a t i o n s i n t h e c r y s t a l i s r e l a t e d to t h e l o c a l e x c e s s s t r e s s above the c r i t i c a l r e s o l v e d s h e a r s t r e s s (MRSS-CRSS). When the CRSS ( Y i e l d ) i s t a k e n as the CRSS, the r e s i d u a l s t r e s s depends on t h e cone a n g l e . F o r t h e s m a l l e s t cone a n g l e the MRSS i s a l w a y s l a r g e r t h a n the CRSS ( Y i e l d ) and the symmetry i s v e r y s i m i l a r t o t h e symmetry o f the MRSS as shown i n F i g u r e 9 . 6 ( a ) . F o r l a r g e r cone a n g l e s th e MRSS i n e x c e s s o f t h e CRSS ( Y i e l d ) i s g r e a t e r t h a n z e r o i n t h e c e n t r a l and p e r i p h e r a l r e g i o n s i n the w a f e r . T h i s i s shown i n F i g u r e 9.8 f o r t h e 6 5 ° cone a n g l e . S i m i l a r r e s u l t s a r e o b t a i n e d f o r t h e o t h e r cone a n g l e s . The s t r e s s d i s t r i b u t i o n s on c r o s s - s e c t i o n s 2.5 mm from the i n t e r f a c e a r e shown f o r cone a n g l e s 7.1° ( F i g u r e 9.9(a-b) and 4 5 ° ( F i g u r e 9 . 9 ( c ) ) . In F i g u r e 9.9(a) the MRSS d i s t r i b u t i o n e x h i b i t s a W shape a c r o s s th e d i a m e t e r and has e i g h t - f o l d symmetry i n t h e c e n t r e . The MRSS-CRSS ( Y i e l d ) ( F i g u r e 9 . 9 ( b ) ) i n t h e c e n t r a l r e g i o n i s below z e r o so t h a t no d i s l o c a t i o n s or symmetry p a t t e r n s w i l l be e v i d e n t . As the cone a n g l e i n c r e a s e s t h e e i g h t - f o l d symmetry i n the c e n t r e i s r e p l a c e d by f o u r - f o l d symmetry as shown i n F i g u r e 9.9(c) f o r a 45° cone a n g l e . In t h i s c a s e t h e d i s l o c a t i o n symmetry w i l l be e v i d e n t . I t can a l s o be o b s e r v e d i n t h i s f i g u r e t h a t t h e c e n t r e has s t r e s s l e v e l s t h r e e t i m e s l a r g e r t h a n the edge. The s t r e s s d i s t r i b u t i o n a l o n g th e r a d i u s depends on t h e d i r e c t i o n . In the [110] d i r e c t i o n s t h e s t r e s s s t a r t s t o 137 i g u r e 9.6 C o n t o u r s i n MPa of the MRSS i n e x c e s s o f (a) CRSS ( Y i e l d ) ; (b) CRSS (MB) and ( c ) CRSS (MBTe). In most of the c r y s t a l the MRSS i s l a r g e r t h a n the c r i t i c a l v a l u e s . The bump shaped c o n t o u r s (A) g i v e complex s t r e s s d i s t r i b u t i o n s i n p e r p e n d i c u l a r c r o s s - s e c t i o n s . 138 a 139 140 C 141 d g u r e 9.7 MRSS c o n t o u r s (MPa) i n c r o s s - s e c t i o n s p e r p e n d i c u l a r t o t h e c r y s t a l a x i s f o r f i v e cone a n g l e s . (a) 7 . 1 ° , (b) 30°, ( c ) 4 5 ° , (d) 54. 7 ° , (e) 65 . S e c t i o n (a-d) a r e 7.5 mm from t h e i n t e r f a c e and s e c t i o n (e) i s 8.0 mm from the i n t e r f a c e . The h o r i z o n t a l d i r e c t i o n c o r r e s p o n d s t o t h e [100] d i r e c t i o n and the v e r t i c a l d i r e c t i o n c o r r e s p o n d s t o t h e [010] d i r e c t i o n . 142 F i g u r e 9.8 C o n t o u r s of t h e MRSS-CRSS ( Y i e l d ) (MPa) f o r the 65° cone a n g l e c r y s t a l . MRSS c o n t o u r s a r e shown i n F i g u r e 9 . 7 ( e ) . At h i g h cone a n g l e s MRSS l e v e l s a r e l a r g e r t h a n CRSS at the c e n t r e and o u t s i d e p a r t o f the w a f e r . a 144 145 F i g u r e 9.9 S t r e s s c o n t o u r s (MPa) i n c r o s s - s e c t i o n 2.5 mm from t h e i n t e r f a c e . (a) and (b) i n a 7.1 cone a n g l e c r y s t a l , ( c ) i n a 45 cone a n g l e c r y s t a l , (a) MRSS c o n t o u r s , (b) and ( c ) MRSS-CRSS ( Y i e l d ) . F o r the 7.1° cone a n g l e t h e r e i s e i g h t - f o l d symmetry a t the c e n t r e i n (a) which i s not seen i n (b) b e c a u s e s t r e s s l e v e l s a r e l e s s t h a n CRSS. F o r the 45° cone a n g l e t h e r e i s f o u r - f o l d symmetry. 146 d r o p c l o s e r to the c e n t e r t h a n i n any o t h e r d i r e c t i o n ; i n a d d i t i o n t h e s t r e s s r e m a i n s low even c l o s e t o t h e edge. As a r e s u l t l a r g e r a r e a s o f low s t r e s s e s a r e p r e s e n t i n the <110> d i r e c t i o n s . S i m i l a r c o n c l u s i o n s were o b t a i n e d w i t h the h i g h e r cone a n g l e s . In a l l the c a s e s c o n s i d e r e d t h e r e i s one common c h a r a c t e r i s t i c p r e s e n t . At the edge o f t h e w a f e r e i g h t - f o l d symmetry i s always p r e s e n t w i t h minima i n t h e <100> and <110> d i r e c t i o n s . T h i s i s more a p p a r e n t i n F i g u r e 9 . 7 ( d ) , where the maxima a r e s y m m e t r i c a l l y d i s t r i b u t e d . The e i g h t - f o l d symmetry a t th e edge i s a s s o c i a t e d w i t h an e i g h t - f o l d d i s t r i b u t i o n of the s l i p mode. T h i s i s shown i n F i g u r e 9.10. I t i s a l s o o b s e r v e d t h a t t h e l o c a l minima a t t h e edge i n the <100> and <110> d i r e c t i o n s a r e a s s o c i a t e d w i t h a change i n t h e s l i p mode. 9.1.2 E f f e c t of T h e r m a l C o n d i t i o n s In o r d e r to a s s e s s t h e e f f e c t of the t h e r m a l c o n d i t i o n s on the s t r e s s d i s t r i b u t i o n d u r i n g growth, s t r e s s f i e l d s a r e d e t e r m i n e d i n c r y s t a l s h a v i n g a 4 5 ° cone a n g l e f o r d i f f e r e n t t h e r m a l g r a d i e n t s i n the b o r o n o x i d e and a r g o n g as, as l i s t e d i n T a b l e 9.2 . The c a l c u l a t e d t e m p e r a t u r e d i s t r i b u t i o n i n t h e g r o w i n g c r y s -t a l f o r a range of t h e r m a l g r a d i e n t s i s shown i n F i g u r e 9.11(a-d ) . The i s o t h e r m s a r e o b s e r v e d t o be v e r y f l a t f o r low t h e r m a l g r a d i e n t s w i t h a s m a l l c u r v a t u r e a t t h e s h o u l d e r of the c r y s t a l . 147 o ( 1 " " I ) [ 1 1 0 1 0 ( 1 1 i ) L O T 1 ] • ( T " " 1 ) 10 I I D ft ( I 1 ) L 1 OT 3 • ( T i n [ T O T ] * ( i T I ) 11 o f ] B ( I 7 I ) C O I I 3 e ( 7 I I ) [ OT I 3 C 0 I 0 3 • ( I I I ) ( I I I ) ( T i l ) ( T T I ) [ 1 0 13 [ T I 03 [ M O D t I T 03 ^ f t * ft ft A * * A . * ft /° ° * * ft ^ ° ° ° • ft A A ft s a o a a a a D f t A B # # / D ° D O D A ( S • • • • • O f t ft ft ft ft ft o o a A • • • • • • • f t fta 99 ft ft ft ft o o o s ft • • • • • • • 4 * 8 9 9 9 9 o o o o o • ft A ft 9 ft O O o • • ft ft ft ft • • • ft ft a a \ a a a a a^ a a a a a a ° o • • " - \ # Q 9 a a B B a a a ^ ft • • a a a a a a a 0 0 • • • a a a a a a a - ^ • • • • • • • f t f t B 9 9 9 9 0 0 0 e « d O A f t » B e \ 9 0 0 0 9 0 0 f t f t < * B 999Z99**9 9 \ a 0 0 0 0 0 * * * * 9 9 e 0 0 0 O 9 o o o a a a a a 9 f t • • • • • O O O O O O 9 9 9 [ | 0 0 3 0 B O O O 0 0 0 9 0 > • 0 0 9 9 9 9 9 9 B • 9 9 9 9 9 9 9 • » » 9 0 9 9 9^ • • 9 9 9 9 9 ^ * • 9 9 9 J # • • 9 • 0 . V a • 9 • • ft • • • • a • a ft A ft • • • • ft ft 9 • • • ft ft • A ft • 0 ft • ft A • • 0 9 0 9 9 9 0 # 9 9 9 9 9 9 ft ft ft ft ft m * ft ft ft ft 9 ft ft ft 9 9 ft ft ft 9 9 ft ft ft 9 9 ft ft ft 9 9 * • 0 F i g u r e 9.10 S l i p mode d i s t r i b u t i o n i n a (001) p l a n e c o r r e s p o n d i n g t o t h e MRSS d i s t r i b u t i o n shown i n F i g u r e 9 . 7 ( c ) f o r the 45 cone a n g l e c r y s t a l a t 7.5 mm from the i n t e r f a c e . The e i g h t - f o l d d i s t r i b u t i o n o f t h e mode at t h e edge o f t h e s e c t i o n i s a s s o c i a t e d w i t h t h e e i g h t -f o l d symmetry of the MRSS. 148 a b 149 F i g u r e 9.11 T e m p e r a t u r e d i s t r i b u t i o n as a f u n c t i o n of e x t e r n a l t e m p e r a t u r e g r a d i e n t f o r a 4 5 ° cone a n g l e c r y s t a l . T h e r m a l g r a d i e n t s i n the b o r o n o x i d e a r e : (a) 50°C/cm, (b) 100°C/cm, ( c ) 200°C/cm and (d) 400°C/cm. T e m p e r a t u r e s a r e g i v e n i n 10 °C. F o r low g r a d i e n t s i s o t h e r m s a r e n e a r l y f l a t and s l i g h t l y convex. F o r l a r g e r g r a d i e n t s i s o t h e r m s a r e c u r v e d and c o n c a v e . 150 T a b l e 9.2 E f f e c t of Ambient T e m p e r a t u r e on A x i a l T e m p e r a t u r e G r a d i e n t and S t r e s s T e m p e r a t u r e G r a d i e n t s , °C/cm B o r o n o x i d e | A r g o n | A x i a l | AMRSS, MPa 50 25 25 0.59 100 50 48 2.55 200 100 84 5.12 400 100 98 11.91 F o r a t e m p e r a t u r e g r a d i e n t of 400°C/cm ( F i g u r e 9 . 1 1 ( d ) ) , the i s o t h e r m s a r e c l e a r l y c u r v e d w i t h the c u r v a t u r e i n c r e a s i n g near the s h o u l d e r . The f i g u r e a l s o shows t h a t t h e a x i a l t e m p e r a t u r e g r a d i e n t i s h i g h e r t h a n the r a d i a l g r a d i e n t . The a x i a l g r a d i e n t s i n t h e c r y s t a l f o r t h e d i f f e r e n t imposed g r a d i e n t s a r e l i s t e d i n T a b l e 9.2. I t can be s e e n t h a t t h e s e g r a d i e n t s a r e not l i n e a r l y r e l a t e d . In t h e same t a b l e t h e l a r g e s t MRSS (AMRSS), w h i c h o c c u r s below the s h o u l d e r , i s a l s o l i s t e d . The r e l a t i o n between the a x i a l g r a d i e n t and t h e AMRSS i s not l i n e a r . The s t r e s s d i s t r i b u t i o n i n the c r y s t a l g r o w i n g under a t h e r m a l g r a d i e n t of 50°C/cm i s shown i n F i g u r e 9.12(a) and ( b ) , f o r a 200°C/cm g r a d i e n t i n F i g u r e 9.13(a) and (b) and f o r a 400°C/cm g r a d i e n t i n F i g u r e 9.14(a) and ( b ) . P a r t (a) g i v e s t h e MRSS, p a r t (b) the MRSS-CRSS ( Y i e l d ) . At 50°C/cm ( F i g u r e 9 . 1 2 ( a ) ) the MRSS has a d i f f e r e n t s t r e s s d i s t r i b u t i o n t h a n a t h i g h e r g r a d i e n t s s p e c i f i c a l l y the h i g h s t r e s s below t h e s h o u l d e r 151 F i g u r e 9.12 S t r e s s c o n t o u r s (MPa) i n a C 0 1 0 ^ p l a n e f o r a 45° cone a n g l e c r y s t a l grown w i t h a 50 C/cm g r a d i e n t i n t h e bo r o n o x i d e , (a) MRSS c o n t o u r s does not show t h e bump shaped s t r e s s d i s t r i b u t i o n below t h e s h o u l d e r i n ( a ) . The MRSS-CRSS ( Y i e l d ) i s p o s i t i v e o n l y i n a few r e g i o n s i n ( b ) . 152 F i g u r e 9.13 (a) MRSS c o n t o u r s and (b) MRSS-CRSS ( Y i e l d ) c o n t o u r s f o r a 200 C/cm g r a d i e n t i n t h e b o r o n o x i d e . U n i t s a r e i n MPa. MRSS s t r e s s a r e l a r g e below t h e s h o u l d e r i n ( a ) . The MRSS-CRSS i s g r e a t e r t h a n z e r o i n most of the c r y s t a l i n ( b ) . 153 Q b 154 O-O -OO-O -O 6 o ft ft ft 6 9 o ft ft ft cb I I I o o ft ft a 6 6o ft ft D 6 6 O D O o o IV o o o o o o o o o 6 o o 6 o o 6 o o o o o o o o V o o o o o o o o o\>s o o o o o o os o o o o o o o o \ \ o o o o o o o o o o o o o o o o o o o o o o o o o ^ 6 o o O O O O O O O O O O D O O O O O O f t f t f t f t f t f t f t f t D O O O O ft ft ft ft ft A ft ft A ft ftND O O f t f t f t f t f t f t f t O O O O O O D ^ J \ 6 o o o o ft ft ft ft ft ft ft ft ft ft ft • o o • • • ft ft ft ft o o o o o • • 6 6 o • • • • ft ft o o o o o o o • o 6 o o • • • • ft ft o o o o o o o 6 o • • • • • ft ft o o o o o o o o ? ° • • • • • • ft ft o o o o o o 6 o o • • • • • • • • ft ft o o o o ft o o 1 o • • • • • • D • Q ft ft ft O D O - f t . -ft-- f t - .ft-- f t - -ft. -ft--ft-• ft--ft. - o - - o - - o - - o - -o-6 F i g u r e 9.14 (a) MRSS c o n t o u r s . (b) MRSS-CRSS ( Y i e l d ) c o n t o u r s . ( c ) S l i p mode d i s t r i b u t i o n . G r a d i e n t i n t h e b o r o n o x i d e i s 400 C/cm. In (a) c o n t o u r s a r e s i m i l a r t o t h o s e o b t a i n e d f o r a 200°C/cm g r a d i e n t . S t r e s s l e v e l s have d o u b l e d . In (b) o n l y a s m a l l a r e a i n the see d d e v e l o p e d s t r e s s e s l e s s t h a n t h e CRSS. In ( c ) the mode d i s t r i b u t i o n i s s i m i l a r to t h a t shown i n F i g u r e 9.5 f o r a 100°c/cm g r a d i e n t . 155 d i s a p p e a r s . At the h i g h e r g r a d i e n t s , F i g u r e s 9.13(a) and 9.14(a) t h e MRSS c o n f i g u r a t i o n i s s i m i l a r . The MRSS l e v e l i n c r e a s e s as the t h e r m a l g r a d i e n t i n c r e a s e s . T h i s i s shown i n p a r t (b) of F i g u r e s 9.12 to 9.14. F o r a g r a d i e n t 50°c/cm a l m o s t t h e whole c r y s t a l s e c t i o n has MRSS-CRSS ( Y i e l d ) l e v e l s below z e r o . The s l i p mode wh i c h i s o p e r a t i v e at 400°C/cm i s t h e same to the mode which o p e r a t e s a t 100°C/cm as seen by c o m p a r i n g F i g u r e s 9 .14(c) and 9.5. From t h i s i t can be c o n c l u d e d t h a t s i m i l a r s l i p modes come from s i m i l a r s t r e s s c o n f i g u r a t i o n s and t h i s i s i n d e p e n d e n t of the v a l u e of t h e c o n s t a n t t e m p e r a t u r e g r a d i e n t . S i m i l a r s l i p modes a r e e x p e c t e d f o r s t r e s s d i s t r i b u t i o n s w i t h s i m i l a r r e l a t i o n among s t r e s s components. In a d d i t i o n t h e symmetry of the MRSS does not change when the t h e r m a l g r a d i e n t i s i n c r e a s e d from 100°C/cm t o 400°C/cm as shown by F i g u r e s 9 . 7 ( c ) and 9.15. 9.1.3 E f f e c t of the Heat T r a n s f e r C o e f f i c i e n t C o n d i t i o n s : BG, 100°C/cm ; AG, 50°C/cm In o r d e r to d e t e r m i n e how s e n s i t i v e t h e c a l c u l a t i o n s a r e t o the m a g n i t u d e of the h e a t t r a n s f e r c o e f f i c i e n t s , t h e c a l c u l a t i o n s were r e p e a t e d w i t h v a l u e s of the he a t t r a n s f e r c o e f f i c i e n t i n c r e a s e d and d e c r e a s e d by a f a c t o r of 1.3 r e s p e c t i v e l y . The r e s u l t s a r e shown i n F i g u r e 9.16 f o r the t e m p e r a t u r e p r o f i l e s a t the s u r f a c e of the c r y s t a l . F o u r p r o f i l e s a r e p r e s e n t e d ; t h r e e c o r r e s p o n d to the t h r e e d i f f e r e n t heat t r a n s f e r c o e f f i c i e n t s and the f o u r t h c o r r e s p o n d s t o t h e ambient t e m p e r a t u r e . The 156 CO 1 0 ] F i g u r e 9.15 MRSS c o n t o u r s i n MPa i n a c r o s s - s e c t i o n a t 7.5 mm from t h e i n t e r f a c e f o r t h e c r y s t a l shown i n F i g u r e 9 . 1 4 ( a ) . The symmetry i s s i m i l a r to t h a t shown i n F i g u r e 9.7(c) f o r a 100°C/cm g r a d i e n t . 157 t e m p e r a t u r e p r o f i l e s a t t h e s u r f a c e and c e n t r e l i n e , w h i c h a r e not shown, a r e v e r y s i m i l a r t o t h o s e i n F i g u r e 9.16. The l a r g e s t e f f e c t o f the change i n h e a t t r a n s f e r c o e f f i c i e n t i s o b s e r v e d at t h e se e d end. The change i n t e m p e r a t u r e f o l l o w s the change i n the hea t t r a n s f e r c o e f f i c i e n t . At t h e c r y s t a l / c o n e j u n c t i o n t h e t e m p e r a t u r e change i s s m a l l , a p p r o x i m a t e l y 5°C. At t h e se e d t h e e f f e c t i s more p r o n o u n c e d b e c a u s e the s e e d r a d i u s i s s m a l l and h e a t t r a n s f e r i s c o n t r o l l e d a t t h e s e e d s u r f a c e . In t h e b u l k c r y s t a l t h e r e i s mixed c o n t r o l at t he s u r f a c e and i n the b u l k m a t e r i a l . As a r e s u l t , a change i n he a t t r a n s f e r c o e f f i c i e n t does not s u b s t a n t i a l l y m o d i f y t h e t e m p e r a t u r e f i e l d . The s t r e s s f i e l d s a r e shown i n F i g u r e 9.17 and 9.18 f o r the two h e a t t r a n s f e r c o e f f i c i e n t s h / 1.3 and h X 1.3 r e s p e c t i v e l y , (a) c o r r e s p o n d s t o the MRSS d i s t r i b u t i o n and (b) c o r r e s p o n d s t o the MRSS-CRSS ( Y i e l d ) . C o m p aring t h e maximum v a l u e s of MRSS o c c u r r i n g below t h e s h o u l d e r , i t can be seen t h a t the s t r e s s v a r i e s o n l y a b o u t 20 * i n the whole span of h e a t t r a n s f e r c o e f f i c i e n t v a l u e s . The span r e p r e s e n t s 53 % o f t h e o r i g i n a l v a l u e s a t t h e c o r r e s p o n d i n g t e m p e r a t u r e . I n s i d e t h e c r y s t a l , c h a n g i n g the heat t r a n s f e r c o e f f i c i e n t has a s t r o n g e f f e c t on the s t r e s s f i e l d . Note t h a t the minimum v a l u e of MRSS i n c r e a s e s from 0.05 MPa t o 0.16 MPa. I n c r e a s i n g t h e h e a t t r a n s f e r c o e f f i c i e n t does not change t h e d i s l o c a t i o n d i s t r i b u t i o n ( F i g u r e 9.17(b) and F i g u r e 9 . 1 8 ( b ) ) . T h i s can be 158 0 I 2 3 Position Relative To Interface ( c m ) F i g u r e 9.16 T e m p e r a t u r e p r o f i l e s a t the s u r f a c e o f 45 cone a n g l e c r y s t a l s f o r t h r e e ( l i f e r e n t c o n d i t i o n s . Curve H c o r r e s p o n d s t o t h e t e m p e r a t u r e s c a l c u l a t e d u s i n g the o r i g i n a l h e a t t r a n s f e r c o e f f i c i e n t v a l u e s . In c u r v e s H / 1.3 and H x 1.3 t h e o r i g i n a l h e a t t r a n s f e r c o e f f i c i e n t v a l u e s were d i v i d e d and m u l t i p l i e d by 1.3 r e s p e c t i v e l y . 159 F i g u r e 9.17 S t r e s s c o n t o u r s i n MPa d e r i v e d from the t e m p e r a t u r e f i e l d o b t a i n e d u s i n g h e a t t r a n s f e r c o e f f i c i e n t v a l u e s 1.3 l a r g e r t han o r i g i n a l v a l u e s . (a) MRSS c o n t o u r s , (b) MRSS-CRSS ( Y i e l d ) . 160 F i g u r e 9.18 S t r e s s c o n t o u r s i n MPa f i e l d o b t a i n e d u s i n g h e a t 1.3 t i m e s s m a l l e r t h a n c o n t o u r s . (b) MRSS-CRSS 20 % a r e o b s e r v e d i n t h e (a) and F i g u r e 9 . 1 7 ( a ) . d e r i v e d from t h e t e m p e r a t u r e t r a n s f e r c o e f f i c i e n t v a l u e s o r i g i n a l v a l u e s . (a) MRSS ( Y i e l d ) . V a r i a t i o n s o f o n l y maximum MRSS v a l u e s between 161 a c c o u n t e d f o r by t h e i n c r e a s e i n the t h e r m a l g r a d i e n t s i n the c r y s t a l r e s u l t i n g from t h e i n c r e a s e i n h e a t t r a n s f e r c o e f f i c i e n t , w h i c h l e a d s to two o p p o s i t e e f f e c t s . These a r e t h e h i g h e r t h e r m a l s t r e s s e s and t h e h i g h e r CRSS i n the c r y s t a l r e s u l t i n g from the l o w e r t e m p e r a t u r e s . When b o t h e f f e c t s a r e c o n s i d e r e d t h e net r e s u l t of t h e i n c r e a s e i n h e a t t r a n s f e r c o e f f i c i e n t on the d i s l o c a t i o n d i s t r i b u t i o n i s n e g l i g i b l e 9.1.4 E f f e c t o f N o n - l i n e a r i t y i n t h e T e m p e r a t u r e P r o f i l e The t e m p e r a t u r e f i e l d i n t h e c r y s t a l depends a l m o s t e n t i r e l y on two p a r a m e t e r s , t h e h e a t t r a n s f e r c o e f f i c i e n t a t t h e c r y s t a l s u r f a c e and t h e t e m p e r a t u r e p r o f i l e i n the media s u r r o u n d i n g the c r y s t a l . These two v a r i a b l e s a r e i n t e r r e l a t e d and may depend on many f a c t o r s l i k e h e a t i n p u t i n t o the mold, c r y s t a l d i a m e t e r and gas p r e s s u r e . However when the t e m p e r a t u r e p r o f i l e , t h e h e i g h t of the b o r o n o x i d e l a y e r , t h e gas c o m p o s i t i o n and t h e p r e s s u r e a r e known, the h e a t t r a n s f e r i s d e t e r m i n e d at each p o i n t on the c r y s t a l s u r f a c e . T h i s h e a t t r a n s f e r c o e f f i c i e n t , t o g e t h e r w i t h the t e m p e r a t u r e p r o f i l e , c r y s t a l s d i m e n s i o n s , and growth v e l o c i t y , d e t e r m i n e the t e m p e r a t u r e f i e l d i n s i d e t h e c r y s t a l . In th e p r e v i o u s s e c t i o n i t was shown t h a t a 30 * v a r i a t i o n i n the h e a t t r a n s f e r c o e f f i c i e n t does not s u b s t a n t i a l l y a f f e c t the s t r e s s f i e l d . However i t was shown t h a t c h a n g i n g t h e t e m p e r a t u r e p r o f i l e i n t h e s u r r o u n d i n g media has an i m p o r t a n t e f f e c t . I n c r e a s i n g or d e c r e a s i n g t h e t h e r m a l g r a d i e n t m a r k e d l y changes the t h e r m a l s t r e s s e s . In t h o s e c a l c u l a t i o n s t h e t e m p e r a t u r e p r o f i l e i n b o t h t h e b o r o n o x i d e and the a r g o n gas was assumed to 162 v a r y l i n e a r l y w i t h d i s t a n c e from t h e s o l i d / l i q u i d i n t e r f a c e . T h i s may not be the c a s e , as shown by t h e t e m p e r a t u r e p r o f i l e s m easured a l o n g the c r y s t a l s u r f a c e . In o r d e r t o d e t e r m i n e t h e i m p o r t a n c e of n o n - l i n e a r i t y o f t h e imposed t e m p e r a t u r e p r o f i l e , t e m p e r a t u r e s and s t r e s s e s a r e c a l c u l a t e d f o r t h e f o u r growth c o n d i t i o n s l i s t e d i n T a b l e 9.3 T a b l e 9.3 E f f e c t of N o n - l i n e a r i t y o f the Ambient T e m p e r a t u r e P r o f i l e on S t r e s s T e m p e r a t u r e G r a d i e n t s , °C/cm 200, z < 1.0 100, z > 1.0 AT i n B O . Run 1 1 2 3 I B 2 0 3 | Ar g o n | °C 140 100 350 100 350 100 , z < 1.0 50, z > 1.0 50 200 45 , z < 1.0 90 , z > 1.0 180 Note Boron o x i d e t h i c k n e s s = 25 mm ; a r g o n p r e s s u r e = 30 atm. ; r a d i u s = 20 mm ; l e n g t h = 10 mm ; cone a n g l e = 30° . z i s the d i s t a n c e from the s o l i d / l i q u i d i n t e r f a c e . 163 The c a l c u l a t i o n s a r e d i v i d e d i n two s e t s 1, 2 and 3, 4 t a k i n g i n t o a c c o u n t the d i f f e r e n c e i n t e m p e r a t u r e a c r o s s t h e b o r o n o x i d e l a y e r . Each p a i r of c o n d i t i o n s g i v e s s i m i l a r a v e r a g e t e m p e r a t u r e g r a d i e n t s a c r o s s t h e e n c a p s u l a n t . The d i f f e r e n c e i s i n t h e t e m p e r a t u r e p r o f i l e . In 1 t h e g r a d i e n t i s c o n s t a n t , i n 2 and 3 t h e g r a d i e n t i s l a r g e r c l o s e t o t h e m e l t , and i n 4 t h e g r a d i e n t i s l a r g e r c l o s e to the e n c a p s u l a n t / g a s i n t e r f a c e . The MRSS f o r t h e f o u r c a s e s a r e g i v e n i n F i g u r e 9 . 1 9 ( a - d ) . C o m p a r i n g (a) and (b) i t i s seen t h a t t h e r e l a t i v e s t r e s s d i s t r i b u t i o n i n b o t h c a s e s a r e s i m i l a r . The AMRSS below t h e s h o u l d e r f o r ca s e 2 i n (b) i s t w i c e as l a r g e as t h e e q u i v a l e n t s t r e s s f o r 1 i n ( a ) . The minimum MRSS i n s i d e t h e c r y s t a l i n (b) i s a b o u t 20 t i m e s l a r g e r t h a n i n ( a ) . C o m p a r i n g 3 and 4 i n F i g u r e 9.19 t h e MRSS d i s t r i b u t i o n s d i f f e r . In (d) t h e s t r e s s c o n c e n t r a t i o n o c c u r s a l o n g the cone s u r f a c e r a t h e r t h a n below t h e s h o u l d e r as i n c a s e s 1 t o 3. The AMRSS on t h e cone s u r f a c e i n (d) i s a bout 1.6 t i m e s l a r g e r t h a n i n ( c ) f o r 3. The l o w e s t s t r e s s i n (c ) o c c u r s a t two p o s i t i o n s , i n t h e cone and below t h e cone. In F i g u r e 9.19(d) the l o w e s t s t r e s s o c c u r s o n l y below the cone. The v a l u e of t h e minimum MRSS i n ( c ) and (d) i s t h e same. The symmetry of the s t r e s s e s i n (001) p l a n e s p e r p e n d i c u l a r t o t h e growth d i r e c t i o n i s s i m i l a r f o r 1, 2 and 3 o f T a b l e 9.3 and s i m i l a r to the symmetry o b t a i n e d f o r c r y s t a l s grown w i t h a 1 cm deep e n c a p s u l a n t and a g r a d i e n t of 100°C/cm. These symmetry p a t t e r n s a r e shown i n F i g u r e 9 . 7 ( c ) and 9 . 9 ( c ) . The symmetry o f th e s t r e s s e s f o r 4, however, i s f o u r - f o l d a t s e c t i o n s 5.0 and 164 165 F i g u r e 9.19 MRSS (MPa) c o n t o u r s f o r a c r y s t a l g r o w i n g under f o u r d i f f e r e n t c o n d i t i o n s g i v e n i n T a b l e 9.3. (a) Run #1 ; (b) Run #2 ; (c) Run #3 ; (d) Run #4. From (a) to (b) the AMRSS d o u b l e s . In (d) t h e bump shape below t h e s h o u l d e r does not a p p e a r . 166 7.5 mm from the i n t e r f a c e . At 5.0 mm e v i d e n c e of t w o - f o l d symmetry i s o b s e r v e d as shown i n F i g u r e 9.20. The MRSS-CRSS ( Y i e l d ) f o r c o n d i t i o n s 1 t o 4 a r e shown i n F i g u r e 9 . 2 1 ( a - d ) . F o r 1 t h e s t r e s s o v e r l a r g e a r e a s of the c r y s t a l i s l e s s t h a n the CRSS, f o r 2 o n l y s m a l l a r e a s have s t r e s s e s below the CRSS. S i m i l a r r e s u l t s a r e o b t a i n e d f o r 3 and 4. In 4, however, the r e g i o n w i t h z e r o s t r e s s a t the cone has moved t o a p o s i t i o n below th e cone. When c o m p a r i n g the s t r e s s e s o b t a i n e d f o r a b o r o n o x i d e l a y e r 2.5 cm t h i c k ( T a b l e 9.3) w i t h s t r e s s e s g e n e r a t e d w i t h a 1 cm l a y e r , t h e MRSS-CRSS ( Y i e l d ) f o r 1 i s c o m p a r a b l e to the d i s t r i b u t i o n o b t a i n e d u s i n g a g r a d i e n t of 100°C/cm a c r o s s t h e e n c a p s u l a n t ( F i g u r e 9 . 4 ( a ) ) . I t i s n o t e d t h a t i n 1 l a r g e r g r a d i e n t s a r e p r e s e n t , 40 * l a r g e r i n t h e c r y s t a l and 300 * l a r g e r i n the cone when compared to the g r a d i e n t s i n a 1 cm t h i c k l a y e r . T h i s r e s u l t shows the i m p o r t a n c e o f s u p p r e s s i n g t h e t h e r m a l d i s c o n t i n u i t y o c c u r i n g w i t h the 1 cm t h i c k e n c a p s u l a n t . The s t r e s s d i s t r i b u t i o n of F i g u r e 9.21(b) f o r case 2 i s c o m p a r a b l e to the d i s t r i b u t i o n i n F i g u r e 9.13(b) f o r a 1 cm t h i c k l a y e r . Comparable d i s t r i b u t i o n s a r e a l s o o b t a i n e d i n F i g u r e 9.21(c) f o r c a s e 3 and F i g u r e 9.4(a) f o r a 1 cm l a y e r . T h i s shows t h a t f o r t h i s c r y s t a l l e n g t h , i n c r e a s i n g t h e d e p t h of the b o r o n o x i d e from 1 to 2.5 cm w i t h the same t e m p e r a t u r e p r o f i l e i n the ambient does not d e c r e a s e t h e d i s l o c a t i o n d e n s i t y . In a d d i t i o n i t can be o b s e r v e d t h a t t h e a r e a s w i t h s t r e s s e s l e s s t h an the CRSS ( Y i e l d ) i n F i g u r e 9.21(c) a r e s i m i l a r t o t h o s e i n F i g u r e 9 . 2 1 ( a ) . 167 CO 10 ] F i g u r e 9.20 MRSS (MPa) c o n t o u r s i n a (001) p l a n e a t a d i s t a n c e of 5.0 mm from the i n t e r f a c e i n t h e c r y s t a l shown i n F i g u r e 9.19(d) ( r u n #4). The f o u r - f o l d symmetry w i t h a s l i g h t t w o - f o l d symmetry i s o b s e r v e d . 168 169 c d 21 MRSS-CRSS ( Y i e l d ) c o n t o u r s (MPa) f o r the f o u r g r o w th c o n d i t i o n s shown i n T a b l e 9.3 and MRSS c o n t o u r s shown i n F i g u r e 9.19 (a) Run #1 ; (b) Run #2 ; (c) Run #3 ; (d) Run #4 . 170 In 1, however, the g r a d i e n t Is a l m o s t t w i c e as l a r g e as the a v e r a g e g r a d i e n t i n 3. T h i s shows the d e t r i m e n t a l e f f e c t on s t r e s s of g r a d i e n t s w h i c h a r e not c o n s t a n t . From the r e s u l t s p r e s e n t e d i n t h i s s e c t i o n i t has been shown t h a t the e f f e c t of t h e shape o f the imposed t e m p e r a t u r e p r o f i l e i s v e r y i m p o r t a n t and t h a t t h e a p p r o x i m a t i o n of a c o n s t a n t g r a d i e n t i n the t e m p e r a t u r e p r o f i l e i n the b o r o n o x i d e , as done 19 5 by Dusseaux , g i v e s s t r e s s e s w h i c h a r e d i f f e r e n t t h a n the s t r e s s e s o b t a i n e d u s i n g v a r i a b l e g r a d i e n t s . In a d d i t i o n i t has been shown t h a t i n c r e a s i n g t h e b o r o n o x i d e t h i c k n e s s a l o n e , w i t h o u t c o n s i d e r i n g t h e changes i n the t h e r m a l p r o f i l e s i n t h e s u r r o u n d i n g media, does not c o n t r i b u t e t o a s u b s t a n t i a l d e c r e a s e i n t h e s t r e s s l e v e l s . 9 . 2 C r y s t a l L e n g t h C o n d i t i o n s R, 27.5 mm ; B, 21.0 mm CL : a) 13.75 mm ; b) 27.5 mm ; c) 55.0 mm ; d) 82.5 mm ; e) 110 mm . In the p r e v i o u s s e c t i o n i t was shown t h a t the a m bient t e m p e r a t u r e p r o f i l e i s a v e r y i m p o r t a n t v a r i a b l e i n d e t e r m i n i n g the s t r e s s l e v e l i n a g r o w i n g c r y s t a l . T h i s i s f o r b o t h t h e a x i a l t e m p e r a t u r e g r a d i e n t and t h e c u r v a t u r e of t h e t e m p e r a t u r e p r o f i l e . As a r e s u l t i t i s v e r y i m p o r t a n t to use, as i n p u t i n the model, t e m p e r a t u r e p r o f i l e s w h i c h a r e as c l o s e as p o s s i b l e t o r e a l c o n d i t i o n s i n s i d e t h e c r y s t a l growth chamber. Measurements 171 o f t e m p e r a t u r e p r o f i l e s d u r i n g g r o w t h have been r e p o r t e d u s i n g t h e t h e r m o c o u p l e a r r a n g e m e n t shown i n F i g u r e 8.18. The r e s u l t s a r e shown i n F i g u r e 8.19 i n wh i c h c u r v e 4 g i v e s t h e ambient t e m p e r a t u r e a d j a c e n t t o t h e c r y s t a l s u r f a c e . The MRSS d i s t r i b u t i o n f o r t h e f i v e c r y s t a l l e n g t h s c o n s i d e r e d a r e shown i n F i g u r e 9 . 2 2 ( a - e ) . Comparing d i s t r i b u t i o n s shows the f o l l o w i n g . 1) In a l l c a s e s h i g h s t r e s s l e v e l s o c c u r a t the c e n t r e and the o u t s i d e p a r t o f t h e c r y s t a l . F o r t h e s h o r t e s t c r y s t a l , (a) h i g h s t r e s s e s a r e a l s o p r e s e n t c l o s e t o the s o l i d - l i q u i d i n t e r f a c e . 2) The l o c a t i o n of t h e maximum (AMRSS) i s alw a y s a t t h e c r y s t a l s u r f a c e and i t s p o s i t i o n i n t h e a x i a l d i r e c t i o n c hanges w i t h c r y s t a l l e n g t h . F o r c r y s t a l l e n g t h s l e s s t h a n t h e t h i c k n e s s o f t h e e n c a p s u l a n t the p o s i t i o n o f th e AMRSS i s below t h e s h o u l d e r . F o r l o n g e r c r y s t a l s the AMRSS i s above t h e e n c a p s u l a n t - g a s s u r f a c e . 3) The minimum s t r e s s e s o c c u r a t b o t h ends of the c r y s t a l and a l s o i n a narrow a x i a l band a l o n g t h e c r y s t a l , u s u a l l y h a l f way between t h e c e n t r e and o u t s i d e p a r t o f the c r y s t a l . The p o s i t i o n o f the minimum moves t o the c r y s t a l s u r f a c e a t b o t h ends. The s t r e s s d i s t r i b u t i o n i n t h e r a d i a l d i r e c t i o n a lways e x h i b i t s a W shape . C l o s e t o t h e ends t h e v a l l e y s i n the W a r e c l o s e r t o the o u t s i d e p a r t of t h e c r y s t a l . 173 4) The v a l u e of the AMRSS which i s r e p r e s e n t a t i v e of the s t r e s s l e v e l i n t h e whole c r y s t a l , i n c r e a s e s w i t h c r y s t a l l e n g t h , r e a c h i n g a maximum v a l u e f o r ( c ) , and s l i g h t l y d e c r e a s e s f o r l o n g e r c r y s t a l s . The maximum AMRSS f o r ( c ) , f o r a c r y s t a l l e n g t h of 55.0 mm ( a s p e c t r a t i o = d i a m e t e r / l e n g t h = 1) i s t h e r e s u l t of two main f a c t o r s . F i r s t , h i g h e r s t r e s s e s a r e e x p e c t e d above the e n c a p s u l a n t s u r f a c e b e c a u s e of the d i s c o n t i n u i t y i n t h e media s u r r o u n d i n g t h e c r y s t a l . T h i s p r o d u c e s a sudden change i n h e a t t r a n s f e r c o e f f i c i e n t and g i v e s a maximum c u r v a t u r e i n the t e m p e r a t u r e p r o f i l e i n the s u r r o u n d i n g media. In F i g u r e 8.19 c u r v e 4, t h i s i s o b s e r v e d a t 30 mm from the i n t e r f a c e . As a r e s u l t of t h e s e changes i n the t e m p e r a t u r e f i e l d t h e s t r e s s e s a r e h i g h . The s e c o n d f a c t o r c o n t r i b u t i n g to the l a r g e s t AMRSS f o r ( c ) i s r e l a t e d t o t h e geometry o f t h e d e f o r m a t i o n . F o r t h e 55 mm c r y s t a l l e n g t h t h e e f f e c t of the t h e r m a l t r a n s i t i o n o c c u r s a t t h e m i d l e n g t h of the c r y s t a l . The m a t e r i a l i n t h i s r e g i o n i s more r e s t r a i n e d t o d e f o r m t h a n t h e r e g i o n s c l o s e t o t h e ends. T h i s q u a s i - p l a n e s t r a i n d e f o r m a t i o n g i v e s h i g h e r s t r e s s e s . The c o n t o u r s of t h e MRSS-CRSS ( Y i e l d ) f o r the f i v e c r y s t a l o f i n c r e a s i n g l e n g t h s a r e shown i n F i g u r e 9 . 2 3 ( a - e ) . The r e s u l t s a r e s i m i l a r t o t h e MRSS c o n s i d e r e d p r e v i o u s l y . In a d d i t i o n i t can be o b s e r v e d t h a t a t the s h o r t e s t l e n g t h f o r (a) t h e r e i s a s m a l l a r e a i n t h e cone as w e l l as below t h e cone where t h e MRSS i s l e s s t h a n the CRSS ( Y i e l d ) . F o r t h e two l a r g e s t c r y s t a l s ( ( d ) and ( e ) ) 175 t h e top of the c r y s t a l does not d e v e l o p s t r e s s e s h i g h e r than the CRSS ( Y i e l d ) . When the CRSS (MB) s t r e s s e s f o r d i s l o c a t i o n g e n e r a t i o n i n undoped GaAs i s c o n s i d e r e d , t h e c o n t o u r s and s t r e s s v a l u e s a r e v e r y s i m i l a r t o t h o s e o b t a i n e d f o r t h e MRSS ( F i g u r e 9.22). The c o n t o u r s of the MRSS-CRSS (MBTe) i n T e - d o p e d m a t e r i a l a r e s i m i l a r t o t h o s e o b t a i n e d when the y i e l d s t r e s s i s c o n s i d e r e d and shown i n F i g u r e 9.23. The o p e r a t i v e s l i p mode of t h e MRSS as a f u n c t i o n of p o s i t i o n i n t h e c r y s t a l i s shown i n F i g u r e 9 . 2 4 ( a - e ) . The d i s t r i b u t i o n i n d i c a t e s t h a t t h e s l i p mode o p e r a t i n g may not be a s s o c i a t e d w i t h t h e s t r e s s l e v e l . The s l i p mode a l t e r n a t i v e l y may be r e l a t e d t o s p e c i f i c r e g i o n s i n t h e c r y s t a l . The most f r e q u e n t modes a r e I I I and IV. Mode I I I a p p e a r s i n t h e a r e a of maximum s t r e s s above t h e e n c a p s u l a n t s u r f a c e and at t h e c e n t r e of the c r y s t a l . I t a l s o a p p e a r s i n the cone and i n t h e c e n t r a l r e g i o n a t a d i s t a n c e from th e i n t e r f a c e g r e a t e r t h a n 27.5 mm. Mode IV p r e f e r e n t i a l l y a p p e a r s i n the f o l l o w i n g r e g i o n s (a) c l o s e to t h e i n t e r f a c e (b) above t h e r e g i o n of maximum s t r e s s e s and ( c ) below the s h o u l d e r . The o t h e r s l i p modes a r e l e s s f r e q u e n t . 9.2.1 E f f e c t o f c r y s t a l L e n g t h on S t r e s s Symmetry The e f f e c t of c r y s t a l l e n g t h on s t r e s s symmetry i s p r e s e n t e d i n two ways. F i r s t , d i f f e r e n t c r o s s - s e c t i o n s a r e f o l l o w e d d u r i n g g rowth and t h e symmetry changes a r e d e s c r i b e d . F o l l o w i n g t h i s the symmetry a t each c r y s t a l l e n g t h i s c o n s i d e r e d and t h e changes w i t h l e n g t h a r e r e p o r t e d . 176 •-D-O-D-O-O-B-B - B - B - B - B - B - f l - B - B - B - B -O-O-O-O-O-O-O-O-B-B-^-^-^-O-O / • • • • • • • • • • • • • • • • • • • • • • • • a a a o a o o o o o o o o ^ ^ o ^ i / . O D a Q O a a o a D i i i i i i n i a Q Q G Q a Q D Q D o o o o o o o o ^ a a ^ o 0 o 4 4 4 4 4 4 ^ D « « t * * « « * * * « « « o 4 4 4 4 4 < l * * « * o o o o o o o 4 _ /o 0 o o o 4 4 o o o o o o o o o o o o o o o o o o o o o B B B B B B a a a a o a a o « / ° ° 0 O O 0 O O O 0 0 0 0 O 0 O 0 O O 0 O 0 0 o 0 O 0 0 0 O B B B D D O D a D D D D 0 » o 0 ° 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o i D D D D o a o a a D o i O o 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a r j a r j a a a o a a a « / o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a a o D D D O O o o i • - • o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o i o-o-o-o-o-o-o-o-o-o-o-o-o-o-o- o - o - o - o - o - o - o - o - o - o - o - o - o - o - o - o - o - o - o - o o - o - o o - o - o - o - o - o- o - c - o - 6 D-Q-O-O-O / * • • • • • o o • • a a ' o _ o o o o o w O n O / O o o 0 0 0 0 0 p 0 g 0 ° ° o o o o S ° o o O o o O O / o o ° o ° ° 0 0 0 0 • " • 0 0 0 0 0 0 0 0 OO 0 - 0 - 0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 B-B-B-B-B-B-B-B-B-O-O-O-O-O-O-O-O-O-O-• • • • • • • • • • a o a o o o o o o • • o o d d o o o a o o r j o o o o o o O O O O O O O O O O I I I I I I I Q Q O O O O O O O O O O I I I I D E I D D O O O O O O O O O O O I I O O D O D O O O O O O O O O O O O D D D O D A O O O O O O O O O O O O O Q D D Q O O O O O O O O O O O O O O O O O O O 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 - 0 - 0 - 0 - 0 -a -o-4-4 -a-o 0 0 o 4 4 o 4 O O O < J • • • o o ^ a a c ^ • a • a • a • o a • • a • f O O O O O O f • 0 - 0 - 0 - 0 - 0 - 0 - 0 a - a - a - D - o - o - o - o - D - o - o - o - o - o - o - o ^ -4 O o o o — -I— — — I— 0 0 — I -I — I -CO 1—4 X CO •*-> £ 4-> to E CO c >> cu i n u 1—4 0 c -CM CO • 4-> -^^ CO E >> •—• E Si 0 O cu O > --1 -1-4 i-i E E ^—-cu i n J= t> 4-> CO --(1 1-1 O £ tM .—. ECO ' IO CO t o 00 as CO co s CM • . E cu - — E cu +-> u lO 3 to t> 0 E CM b E cu CO C O •1-1 O -11 • e CO c m 3 a 2 • r t 1—( O T 3 —H X CO 03 CO U CO C7> CU Si 3 to •—) 177 C o n s i d e r i n g the s t r e s s symmetry d u r i n g growth f o u r s e c t i o n s f i x e d i n t h e c r y s t a l a r e examined a t 8.25 mm, 49.5 mm, 77.0 mm and 104.5 mm from the cone. The symmetry and s t r e s s l e v e l s i n t h e s e c r o s s - s e c t i o n s a r e c o n s i d e r e d i n r e l a t i o n t o d i s l o c a t i o n f o r m a t i o n . In the model the d i s l o c a t i o n d e n s i t y formed a t any g i v e n t i m e and p o s i t i o n i s assumed t o be p r o p o r t i o n a l t o the MRSS-CRSS ( Y i e l d ) . However, t h e s t r e s s l e v e l changes d u r i n g g r o w t h . I t i s t h e r e f o r e i m p o r t a n t t o i n t r o d u c e two new c o n s i d e r a t i o n s . The f i r s t i s r e l a t e d to h a r d e n i n g . The e f f e c t of h a r d e n i n g i s to d e c r e a s e t h e e f f e c t i v e s t r e s s i n the c r y s t a l due to d i s l o c a t i o n i n t e r a c t i o n s . The d e c r e a s e i n s t r e s s i s p r o p o r t i o n a l t o t h e s q u a r e r o o t of t h e d i s l o c a t i o n d e n s i t y , i . e . A x /~Ii, where A i s the i n t e r a c t i o n c o n s t a n t and n i s the 19 2 d i s l o c a t i o n d e n s i t y . A c c o r d i n g t o Vakhrameev e t a l . A v a r i e s - 2 from 2 t o 4 x 10 MPa x m. The m a g n i t u d e of s t r e s s i n v o l v e d i n - 3 - 2 t h e i n t e r a c t i o n v a r i e s between 4 x 10 MPa and 4 x 10 MPa f o r 2 4 2 d i s l o c a t i o n d e n s i t i e s of 10 to 10 /cm These s t r e s s e s a r e n e g l i g i b l e w i t h r e s p e c t to the t h e r m o e l a s t i c s t r e s s e s d e v e l o p e d d u r i n g g r owth. T h e r e f o r e i t may be c o n c l u d e d t h a t the h a r d e n i n g e f f e c t i s m i n i m a l f o r normal d i s l o c a t i o n d e n s i t i e s . The s e c o n d c o n s i d e r a t i o n i s p a r t i a l l y a c o n s e q u e n c e of t h e f i r s t and i s r e l a t e d to the i n c r e a s e i n d i s l o c a t i o n s a f t e r e ach s t e p d u r i n g growth. Because t h e r e i s no h a r d e n i n g e f f e c t i t i s assumed t h a t the d i s l o c a t i o n d e n s i t y i n a g i v e n s e c t i o n i n c r e a s e s p r o p o r t i o n a l l y t o the d i f f e r e n c e i n MRSS-CRSS ( Y i e l d ) v a l u e s between two s t e p s . The f i n a l d e n s i t y i s g i v e n by the maximum s t r e s s r e a c h e d at each p o i n t . 178 The s p e c i f i c o b s e r v a t i o n s i n the f o u r s e c t i o n s f o l l o w . In a l l c a s e s the MRSS-CRSS ( Y i e l d ) i s c o n s i d e r e d . 1) S e c t i o n at 8.25 mm from the cone. CL : (a) 13.75 mm ; (b) 27.5 mm ; ( c ) 55.0 mm; (d) 82.5 ram. The s t r e s s d i s t i b u t i o n s a t the f o u r s t e p s a r e shown i n F i g u r e 9 . 2 5 ( a - d ) . The d i s t r i b u t i o n shown i n (a) c o r r e s p o n d s t o an e a r l y s t a g e of growth when the c r y s t a l i s c o n t a i n e d by the e n c a p s u l a n t . The s t r e s s l e v e l i n most of t h e c r y s t a l s e c t i o n i s l e s s t h a n "1 MPa. The symmetry changes d e p e n d i n g on t h e p o s i t i o n i n t h e s e c t i o n . C i r c u l a r symmetry i s o b t a i n e d i n t h e c e n t r e which changes t o f o u r - f o l d , e i g h t - f o l d , c i r c u l a r and f i n a l l y e i g h t - f o l d on moving from the c e n t r e to the edge of t h e c r y s t a l . In F i g u r e 9.25(a) the d i s l o c a t i o n d e n s i t y i s low and has t h e same symmetry. In (b) the s t r e s s l e v e l at t h e edge i s about 6 t i m e s h i g h e r than i n ( a ) . The changes a r e not as i m p o r t a n t at t h e c e n t r e where the s t r e s s has not q u i t e d o u b l e d . In a r i n g midway between the c e n t r e and t h e edge the s t r e s s has s u b s t a n t i a l l y i n c r e a s e d . The symmetry i s a l m o s t c i r c u l a r e x c e p t at the edge where the e i g h t - f o l d symmetry i s s t r o n g e r t h a n i n ( a ) . In ( c ) t h e s t r e s s a t t h e p e r i p h e r y has d e c r e a s e d 30 * w i t h r e s p e c t t o ( b ) . At the c e n t r e t h e s t r e s s has d o u b l e d . In the c e n t r a l a r e a t h e symmetry has t a k e n a more d e f i n i t e f o u r - f o l d p a t t e r n w h i c h a p p e a r s a g a i n i n t h e r i n g midway between the c e n t r e and t h e edge. In t h i s c a s e t h e r e i s a s l i g h t t w o - f o l d symmetry which can be seen as an e l o n g a t i o n of t h e minimum s t r e s s a r e a i n t h e [110] d i r e c t i o n w i t h 179 a 180 181 182 g u r e 9.25 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e at a d i s t a n c e of 8.25 mm from the cone a t f o u r c r y s t a l l e n g t h s . (a) 13.75 mm ; (b) 27.5 mm ; ( c ) 55.0 mm ; (d) 82.5 mm. C r y s t a l r a d i u s 27.5 mm. 183 r e s p e c t t o the [110] d i r e c t i o n . In (d) t h e s t r e s s l e v e l has d e c r e a s e d i n t h e whole wafer and t h e r e f o r e no more d i s l o c a t i o n s a r e g e n e r a t e d w i t h f u r t h e r g r o w t h . At t h e end o f growth the f i n a l d i s l o c a t i o n d e n s i t y d i s t r i b u t i o n i n t h i s w a f e r w i l l be d e t e r m i n e d by the maximum s t r e s s r e a c h e d d u r i n g g r o w t h . At the edge t h i s s t r e s s i s r e a c h e d i n ( b ) . At t h e c e n t r e and midway r e g i o n t h e l a r g e s t s t r e s s i s r e a c h e d i n ( c ) . From t h e s e maximum v a l u e s i t may be p r e d i c t e d t h a t the w a f e r w i l l show a W-shaped d i s l o c a t i o n d i s t r i b u t i o n a l o n g a d i a m e t e r . The b r a n c h e s of the W w i l l be more t h a n t w i c e as h i g h as the c e n t r e . The e i g h t - f o l d symmetry a t t h e edge w i l l be h a r d l y n o t i c e d s i n c e i t o c c u r s i n a narrow r i n g w i t h d i s l o c a t i o n v a r i a t i o n s of t h e o r d e r o f 10 % . The f o u r - f o l d symmetry w i l l be a l s o v e r y weak. 2) S e c t i o n at 49.5 mm from the t h e cone. CL : (a) 55.0 mm; (b) 82.5 mm . The s t r e s s d i s t r i b u t i o n s f o r c r o s s - s e c t i o n s at 49.5 mm from the cone i s shown i n F i g u r e 9.26(a) and ( b ) . F i g u r e 9.26(a) c o r r e s p o n d s to a s t r e s s d i s t r i b u t i o n c l o s e t o the i n t e r f a c e . The f o l l o w i n g c h a r a c t e r i s t i c s can be d i s t i n g u i s h e d . The c e n t r a l p a r t has f o u r - f o l d symmetry and t h e r e s t o f t h e s u r f a c e has a l m o s t c i r c u l a r symmetry. The s t r e s s l e v e l i s t h e same a t t h e c e n t r e and t h e edge, and t h e minimum o c c u r s c l o s e t o the edge. In (b) t h e s t r e s s l e v e l i n t h e c e n t r a l r e g i o n has i n c r e a s e d by 50 % and a t the edge the s t r e s s has d o u b l e d w i t h r e s p e c t to ( a ) . The symmetry i n (b) i s a l m o s t c i r c u l a r t h r o u g h o u t the 184 185 F i g u r e 9.26 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e a t a d i s t a n c e of 49.5 mm from t h e cone a t two c r y s t a l l e n g t h s . (a) 55.0 mm ; (b) 82.5 mm. C r y s t a l r a d i u s 27.5 mm. 186 s e c t i o n . The f i n a l maximum d i s l o c a t i o n d e n s i t y i n t h i s w a f e r may be d e t e r m i n e d by t h e s t r e s s e s d e v e l o p e d i n ( b ) . In t h i s c a s e a W-shaped d i s t r i b u t i o n i s p r e d i c t e d w i t h t h e c e n t e r o f the W o f the same h e i g h t as t h e b r a n c h e s . S i n c e a c o n s i d e r a b l e number of d i s l o c a t i o n s a r e g e n e r a t e d i n (a) w i t h f o u r - f o l d symmetry, t h i s w i l l be p r e s e n t i n t h e f i n a l d i s t r i b u t i o n . When t h e d i s l o c a t i o n d e n s i t y d i s t r i b u t i o n p r e d i c t e d i n t h i s s e c t i o n i s compared w i t h t h e f i n a l d i s l o c a t i o n d i s t r i b u t i o n g i v e n i n (1) f o r a s e c t i o n c l o s e t o the cone, the p r e d i c t e d d i s l o c a t i o n s f a r from the cone w i l l be 10 % l o w e r i n t h e o u t e r r e g i o n and 50 % h i g h e r i n t h e c e n t r e . 3) S e c t i o n at 77.0 mm from t h e cone. CL (a) 82.5 mm; (b) 110.0 mm . The s t r e s s d i s t r i b u t i o n s f o r a waf e r 77 mm from the cone a r e shown i n F i g u r e 9.27(a) and ( b ) . S i m i l a r p a t t e r n s as i n 2) a r e o b s e r v e d i n t h i s c a s e . The d i f f e r e n c e s a r e t h a t i n (a) the f o u r -f o l d symmetry i s expanded and i n (b) t h e r e a r e f o u r minimum s t r e s s r e g i o n s midway between the c e n t r e and the edge i n the <100> d i r e c t i o n s . 4) S e c t i o n a t 104.5 mm from the cone. CL : 110.0 mm. cone and The o n l y c r o s s -c o r r e s p o n d s to i t i s c l o s e t o s e c t i o n a v a i l a b l e a t t h i s d i s t a n c e from the the l o n g e s t c r y s t a l shown i n F i g u r e 9.21(e) t h e s o l i d / l i q u i d i n t e r f a c e . The s t r e s s 187 a 188 F i g u r e 9.27 MRSS-CRSS ( Y i e l d ) (MPa) i n a (001) p l a n e a t a d i s t a n c e of 77.0 mm from t h e cone at two c r y s t a l l e n g t h s , (a) 82.5 mm ; (b) 110.0 mm. C r y s t a l r a d i u s 27.5 mm. 189 d i s t r i b u t i o n i n t h i s s e c t i o n i s v e r y s i m i l a r t o the d i s t r i b u t i o n shown i n F i g u r e 9 . 2 7 ( a ) . I f growth i s c o m p l e t e d when t h i s l e n g t h i s r e a c h e d t h e d i s l o c a t i o n d i s t r i b u t i o n a t t h e t a i l end w i l l have th e f e a t u r e s o b s e r v e d i n F i g u r e 9 . 2 7 ( a ) . T h e s e a r e 1) an expanded f o u r - f o l d symmetry, 2) a d i s l o c a t i o n d i s t r i b u t i o n i n t h e r a d i a l d i r e c t i o n w i t h a W shape a c r o s s the d i a m e t e r h a v i n g a minimum v e r y c l o s e to t h e edge, a wide peak i n t h e c e n t r e , and b r a n c h e s e q u a l l y h i g h . The a v e r a g e d i s l o c a t i o n d e n s i t y i n t h i s w a f e r w i l l be h a l f of t h e d i s l o c a t i o n d e n s i t y f o r a wafer c o n s i d e r e d i n 3) a t 27.5 mm. I f i n s t e a d of f o l l o w i n g t h e s t r e s s d i s t r i b u t i o n s d u r i n g g r o w t h i n s p e c i f i c s e c t i o n s , the d i s t r i b u t i o n s of s t r e s s e s a r e o b s e r v e d a l o n g the c r y s t a l a t e a c h o f t h e f i v e l e n g t h s c o n s i d e r e d , t h e f o l l o w i n g p a t t e r n s can be o b s e r v e d . 1) The e i g h t - f o l d symmetry a t t h e edge o f the s e c t i o n s i s al w a y s p r e s e n t . T h i s symmetry i s a s s o c i a t e d w i t h an e i g h t - f o l d d i s t r i b u t i o n of t h e s l i p mode of the MRSS. 2) In t h e r a d i a l d i r e c t i o n , t h e s t r e s s d i s t r i b u t i o n a lways shows a W shape. 3) The f o u r - f o l d symmetry i s s t r o n g e r c l o s e t o t h e i n t e r f a c e between 5.5 mm and 11.0 mm. I t a l s o a p p e a r s at t h e top of t h e c r y s t a l n e a r t h e cone. 190 4) A s l i g h t t e n d e n c y to a t w o - f o l d symmetry when p r e s e n t i s a l w a y s a c c o m p a n i e d by a f o u r - f o l d symmetry. 5) F a r from t h e ends, at l e a s t 13.75 mm, t h e s t r e s s symmetry i s a l m o s t a x i s y m m e t r i c w i t h s l i g h t f o u r - f o l d symmetry a t the c e n t e r and e i g h t - f o l d symmetry a t the edge . 6) F o r c r y s t a l l e n g t h s l a r g e r t h a n 55.0 mm, c r o s s - s e c t i o n s f a r from t h e i n t e r f a c e have the minimum s t r e s s l e v e l s i n t h e <100> d i r e c t i o n s r a t h e r t h a n i n t h e <110> d i r e c t i o n s . The a r e a where t h i s minimum o c c u r s i s v e r y smal1 . 9.3 C r y s t a l R a d i u s C o n d i t i o n s : R, 40.0 mm ; CA, 30° ; B, 21.0 mm ; AP, 30 atm ; CL (a) 10.0 mm ; (b) 40.0 mm ; (c) 80.0 mm ; (d) 100.0 mm . The e f f e c t of i n c r e a s i n g t h e c r y s t a l r a d i u s from 27.5 mm t o 40 mm on i n t e r n a l c r y s t a l s t r e s s e s and d i s l o c a t i o n d i s t r i b u t i o n s i s d e t e r m i n e d a s s u m i n g t h a t t h e t e m p e r a t u r e p r o f i l e i n t h e medium s u r r o u n d i n g the c r y s t a l has not changed when t h e r a d i u s i s i n c r e a s e d . In t h i s c a s e t h e t e m p e r a t u r e p r o f i l e i s g i v e n i n F i g u r e 8.19 ( c u r v e 4 ) . V a l u e s f o r t h e MRSS at t h e f o u r c r y s t a l l e n g t h s c o n s i d e r e d a r e shown i n F i g u r e 9 . 2 8 ( a - d ) . The MRSS d i s t r i b u t i o n s f o l l o w the 191 same g e n e r a l p a t t e r n s as t h o s e o b s e r v e d w i t h the s m a l l e r c r y s t a l r a d i u s , w i t h two main d i f f e r e n c e s . The f i r s t i s t h a t the maximum s t r e s s , c o n s i d e r i n g t h e whole growth p r o c e s s , o c c u r s when t h e c r y s t a l i s 40.0 mm l o n g i n ( b ) , w i t h an a s p e c t r a t i o of 1 r a t h e r t h a n 2 as i n the s m a l l e r c r y s t a l . T h i s d i f f e r e n c e i s c o n s i s t e n t w i t h the e x p l a n a t i o n g i v e n i n t h e l a s t s e c t i o n . The maximum s t r e s s u s u a l l y o c c u r s above t h e e n c a p s u l a n t s u r f a c e . I f t h i s p o s i t i o n c o i n c i d e s w i t h t h e m i d l e n g t h p o s i t i o n i n the c r y s t a l t h e r e i s an e x t r a c o n t r i b u t i o n to t h e s t r e s s due t o the q u a s i -p l a n e s t r a i n c o n d i t i o n s p r e v a i l i n g t h e r e . The s e c o n d d i f f e r e n c e i s t h e h i g h e r s t r e s s l e v e l f o r t h e l a r g e r c r y s t a l . In t h i s c a s e i n c r e a s i n g the r a d i u s 45 % i n c r e a s e s t h e s t r e s s e s by 40 % i n d i c a t i n g t h a t the MRSS i n c r e a s e s p r o p o r t i o n a l l y w i t h the r a d i u s . The e f f e c t of i n c r e a s i n g t h e r a d i u s on s t r e s s l e v e l s has been e x p l a i n e d i n t h e l i t e r a t u r e by c o n s i d e r i n g the e f f e c t of i n c r e a s i n g the r a d i u s on t h e t h e r m a l f i e l d . As p o i n t e d out p r e v i o u s l y , the r e s u l t s f o r t h e e f f e c t o f r a d i u s on t e m p e r a t u r e f i e l d s a r e c o n t r a d i c t o r y . T h i s c o u l d r e s u l t from t h e l i m i t a t i o n s o f the s o l u t i o n s employed t o s t u d y t h i s e f f e c t . In the p r e s e n t i n v e s t i g a t i o n t h e e f f e c t of r a d i u s on t h e r m a l g r a d i e n t s i s f i r s t c o n s i d e r e d as a p o s s i b l e c a u s e f o r the o b s e r v e d e f f e c t on s t r e s s e s . The c o m p a r i s o n can be made u s i n g two c r i t e r i a . I t can be made f o r two c r y s t a l s of same a s p e c t r a t i o , or between two c r y s t a l s w i t h t h e same l e n g t h . In t h i s i n v e s t i g a t i o n the s e c o n d method i s c h o s e n . (The c o n c l u s i o n s o b t a i n e d w i t h b o t h methods a r e s i m i l a r ) . F o r t h e c o m p a r i s o n c r y s t a l l e n g t h s f o r which the 192 maximum s t r e s s e s o c c u r a r e c h o s e n . F o r t h e 27.5 mm r a d i u s c r y s t a l t h e l e n g t h i s 55 mm. F o r the 40.0 mm r a d i u s c r y s t a l t h e l e n g t h i s 40 mm. Because the l e n g t h s a r e d i f f e r e n t , a n o t h e r l e n g t h f o r the 40 mm r a d i u s c r y s t a l i s a l s o c o n s i d e r e d , s p e c i f i c a l l y 80 mm l e n g t h . F o r the t h r e e c r y s t a l s , g r a d i e n t s i n two d i r e c t i o n s a r e c o n s i d e r e d ; a x i a l g r a d i e n t s a l o n g t h e c r y s t a l a x i s and a v e r a g e r a d i a l g r a d i e n t . The c a l c u l a t e d g r a d i e n t s a r e shown i n F i g u r e 9.29(a) f o r the a x i a l g r a d i e n t s and (b) f o r t h e r a d i a l g r a d i e n t s as a f u n c t i o n of d i s t a n c e from the i n t e r f a c e . Curve (1) c o r r e s p o n d s t o t h e 27.5 mm c r y s t a l and c u r v e s (2) and (3) f o r t h e 40 mm c r y s t a l . I t can be o b s e r v e d i n the f i g u r e s t h a t the c u r v e (3) i s below c u r v e (1) i n (a) and c u r v e (1) i s between (2) and (3) i n ( b ) . From t h e s e o b s e r v a t i o n s i t can be c o n c l u d e d t h a t the t h e r m a l f i e l d i s not i n f l u e n c e d by changes i n r a d i u s and t h a t the l a r g e change i n s t r e s s o b s e r v e d c a n n o t be a c c o u n t e d f o r by the change i n t h e r m a l f i e l d . An a l t e r n a t i v e e x p l a n a t i o n f o r t h e e f f e c t of r a d i u s on s t r e s s i s r e l a t e d to the s p e c i f i c g e o m e t r y of t h e c r y s t a l . In the c a s e of c y l i n d r i c a l b o d i e s t h e r a d i a l g r a d i e n t has a d i f f e r e n t e f f e c t on s t r e s s e s t han i n c u b i c g e o m e t r i e s . In c y l i n d e r s a c o n s t a n t r a d i a l g r a d i e n t can d e v e l o p s t r e s s e s ; i n cubes i t c a n n o t . A r a d i a l g r a d i e n t i n a c y l i n d e r g e n e r a t e s i n c o m p a t i b i l i t i e s i n the s t r a i n components f o r f r e e e x p a n s i o n . From t h e p r e s e n t r e s u l t s i t i s c o n c l u d e d t h a t the same r a d i a l g r a d i e n t i n two c y l i n d e r s of d i f f e r e n t r a d i u s c r e a t e s l a r g e r i n c o m p a t i b i l i t i e s i n a c r y s t a l w i t h l a r g e r r a d i u s . T h i s i s more c l e a r l y s een when i t i s c o n s i d e r e d t h a t t h e e f f e c t of t h e r m a l 194 F i g u r e 9.29 (a) A x i a l a l o n g the c r y s t a l a x i s and (b) r a d i a l t h e r m a l g r a d i e n t s as a f u n c t i o n of d i s t a n c e from th e i n t e r f a c e f o r two c r y s t a l r a d i u s . Curve (1) f o r a r a d i u s of 27.5 mm ; and c u r v e s (2) and (3) f o r a r a d i u s of 40.0 mm. C r y s t a l l e n g t h s a r e (1) 55.0 mm ; (2) 40.0 mm and (3) 80.0 mm. 195 s t r a i n i s i n c l u d e d as an i n i t i a l s t r a i n c a l c u l a t e d as a f r e e e x p a n s i o n f r o m a r e f e r e n c e t e m p e r a t u r e . T h i s f r e e e x p a n s i o n ( c o n t r a c t i o n i n t h i s c a s e ) i n c r e a s e s w i t h i n c r e a s i n g d i s t a n c e f r o m t h e c e n t r e . The d e g r e e o f i n c o m p a t i b i l i t y i s e x p e c t e d t o f o l l o w t h e e x p a n s i o n , w h i c h i n t u r n w i l l g e n e r a t e l a r g e r s t r e s s e s . The e f f e c t o f a c o n s t a n t r a d i a l g r a d i e n t G on t h e s t r e s s i n c y l i n d e r s o f d i f f e r e n t r a d i i c an be q u a n t i t a t i v e l y e v a l u a t e d u s i n g t h e p l a n e s t r a i n a p p r o x i m a t i o n . The s t r e s s components f o r a t e m p e r a t u r e f i e l d T = -Gr G a E Or - ( r - r ) 3 1 - V <2r - r 0 ) a E 1 - v Oz = G ( r - 2 / 3 r Q ) a E l - v I t c a n be s e e n t h a t t h e s t r e s s c o m p o n e n t s i n c r e a s e s l i n e a r l y w i t h t h e r a d i u s r . The MRSS-CRSS ( Y i e l d ) c o n t o u r s f o r t h e f o u r l e n g t h s c o n s i d e r e d a r e shown i n F i g u r e 9 . 3 0 ( a - d ) . The r e s u l t s shown a r e s i m i l a r t o t h o s e o b t a i n e d w i t h t h e s m a l l e r c r y s t a l , w i t h a r e a s h a v i n g s t r e s s l e v e l s b e l o w t h e CRSS i n ( a ) and ( d ) . The d i s t r i b u t i o n o f t h e MRSS-CRSS ( Y i e l d ) f o r t h e f o u r c r y s t a l 197 l e n g t h s show c o n t o u r s and l e v e l s w hich a r e v e r y s i m i l a r t o the MRSS c o n t o u r s . The d i s t r i b u t i o n of MRSS-CRSS (MBTe) a r e s i m i l a r to t h o s e i n F i g u r e 9 . 3 0 ( a - d ) . 9.3.1 E f f e c t of R a d i u s on S t r e s s Symmetry The s t r e s s symmetry i n c r y s t a l s w i t h f o u r d i f f e r e n t l e n g t h s has been examined. The c r o s s - s e c t i o n s s t u d i e d c o r r e s p o n d t o t h e same r e l a t i v e p o s i t i o n s c o n s i d e r e d i n the c r y s t a l s w i t h s m a l l e r r a d i u s . As b e f o r e , t h e a n a l y s i s was done i n two ways namely f o l l o w i n g a f i x e d c r o s s - s e c t i o n i n the c r y s t a l d u r i n g g r o w t h and a n a l y s i n g the symmetry d i s t r i b u t i o n i n t h e c r y s t a l f o r each c r y s t a l l e n g t h . From the s e c o n d a n a l y s i s , t h e c o n c l u s i o n s a r e s i m i l a r t o t h o s e o b t a i n e d f o r t h e s m a l l e r r a d i u s . From t h e f i r s t a n a l y s i s by f o l l o w i n g a c r o s s - s e c t i o n and c o m p a r i n g the r e s u l t s w i t h t h o s e o b t a i n e d f o r t h e s m a l l e r r a d i u s c r y s t a l , t h e f o l l o w i n g c o n c l u s i o n s were r e a c h e d . T h e r e i s a c o r r e l a t i o n of symmetry w i t h d i s t a n c e from th e cone between the two c r y s t a l r a d i i . T h i s c o r r e l a t i o n i s g i v e n i n T a b l e 9.4 which was o b t a i n e d i n t h e f o l l o w i n g way. C o n s i d e r t h e s e c t i o n s at 77 mm (2.8 x R) f o r the 27.5 mm c r y s t a l and 72 mm (1.8 x R) f o r the 40 mm c r y s t a l . B o th s e c t i o n s have v e r y s i m i l a r s t r e s s s y m m e t r i e s d u r i n g g r o w t h . In t h i s c a s e the s t r e s s symme-t r i e s shown i n F i g u r e 9.27(a) and (b) c o r r e s p o n d i n g t o a r e l a t i v e d i s t a n c e from the cone of 2.8 t i m e s the r a d i u s i s r e p r o d u c e d i n t h e l a r g e r c r y s t a l but a t a r e l a t i v e d i s t a n c e of 1.8 t i m e s th e r a d i u s . S i m i l a r c o r r e l a t i o n s a r e o b t a i n e d f o l l o w i n g o t h e r s e c t i o n at t h e same d i s t a n c e s from th e cones f o r the two r a d i u s . 198 T a b l e 9. 4 T a b l e of Symmetry C o r r e l a t i o n s R a d i u s [mm ] D i s t a n c e from R e l a t i v e D i s t a n c e | S h o u l d e r [mm] | from s h o u l d e r | F i g u r e 27 40 . 5 . 0 8.25 0.3 12.0 0.3 9 . 25 27 40 . 5 . 0 77.0 2.8 72.0 1.8 9 . 26 27 40 . 5 . 0 104.5 3.8 112.0 2.8 9 . 27 Because t h i s c o r r e l a t i o n i s w i t h a c t u a l d i s t a n c e , the e f f e c t of t h e t h e r m a l f i e l d i s e x p e c t e d t o p r e d o m i n a t e o v e r the e f f e c t of t h e boundary c o n d i t i o n s . I f t h e symmetry i s d e t e r m i n e d by the t h e r m a l f i e l d a l o n e , t h e r e s h o u l d a l s o be a s t r o n g c o r r e l a t i o n between the s y m m e t r i e s and t h e a c t u a l d i s t a n c e from the i n t e r f a c e . T h i s c o r r e l a t i o n i s not o b s e r v e d . On t h e c o n t r a r y , f o r l o n g c r y s t a l s t h e r e i s c o r r e l a t i o n o f s y m m e t r i e s but w i t h the r e l a t i v e d i s t a n c e from t h e i n t e r f a c e f o r same c r y s t a l l e n g t h s . The c o r r e l a t i o n w i t h a c t u a l d i s t a n c e from t h e cone, however, s u g g e s t s t h a t t h e t h e r m a l h i s t o r y of t h e w a f e r i s i m p o r t a n t i n d e t e r m i n i n g the s t r e s s symmetry. T h i s would r e s u l t s i n s e c t i o n s p a s s i n g t h r o u g h t h e same t h e r m a l f i e l d s h a v i n g t h e same symmetry h i s t o r y r e g a r d l e s s of t h e c r y s t a l r a d i u s . 199 9.4 Growth V e l o c i t y C o n d i t i o n s R , 27.5 mm CL, 55.0 mm B, 21 mm T e m p e r a t u r e p r o f i l e as i n F i g u r e 8.19, c u r v e 4, V e l o c i t y (a) 0.0001 cm/s, (b) 0.001 cm/s , (c) 0.01 cm/s To d e t e r m i n e t h e e f f e c t of changes i n t h e g r o w th v e l o c i t y on t h e t h e r m a l and s t r e s s f i e l d s , t h e c a l c u l a t i o n s were r e p e a t e d w i t h g r o w th v e l o c i t i e s of 0.0001 and 0.01 cm/s. The t e m p e r a t u r e f i e l d s f o r t h e t h r e e v e l o c i t i e s c o n s i d e r e d a r e shown i n F i g u r e 9 . 3 1 ( a - c ) . C o m paring F i g u r e 9.31(b) and ( a ) , i t i s n o t e d t h a t d e c r e a s i n g t h e v e l o c i t y has l i t t l e e f f e c t on the t e m p e r a t u r e d i s t r i b u t i o n . I n c r e a s i n g t h e v e l o c i t y ( F i g u r e 9.31(b) and (c) ) s i g n i f i c a n t l y i n c r e a s e s the a x i a l and r a d i a l t e m p e r a t u r e g r a d i e n t s i n t h e c r y s t a l . The r e s u l t s i n d i c a t e t h a t a t v e l o c i t i e s of 0.001 cm/s and l o w e r the t h e r m a l system i s a t s t e a d y s t a t e , and e f f e c t i v e l y i n d e p e n d e n t of v e l o c i t y . Above 0.001 cm/s t h i s i s not t h e c a s e , p r i m a r i l y due t o the v a l u e o f t h e r m a l d i f f u s i v i t y used (0.04 cm/s) w h i c h i s c o m p a r a b l e t o t h e v e l o c i t y . The s p e c i f i c e f f e c t of g r o w t h v e l o c i t y on the t h e r m a l f i e l d s i s complex. In t h e q u a s i s t e a d y s t a t e a p p r o x i m a t i o n , t h e t e m p e r a t u r e f i e l d c h anges o n l y as a r e s u l t of the movement of the s o l i d i f y i n g i n t e r f a c e ; t h e i n i t i a l t r a n s i e n t i s n e g l e c t e d . In t h e p r e s e n t c a l c u l a t i o n s , and i n d e p e n d e n t of the h e a t t r a n s f e r a t the c r y s t a l 200 201 C F i g u r e 9.31 T e m p e r a t u r e f i e l d s f o r t h r e e growth v e l o c i t i e s (a) 0.0001 cm/s, (b) 0.001 cm/s and ( c ) 0.01 cm/s. T e m p e r a t u r e g i v e n i n 10 °C. L i t t l e change i s o b s e r v e d from (a) to ( b ) . From (b) to ( c ) g r a d i e n t s have i n c r e a s e d . R a d i u s 27.5 mm, l e n g t h 55 mm, e n c a p s u l a n t t h i c k n e s s 21 mm. •-%f\L f'U 202 s u r f a c e , t h e r e a r e two l i m i t i n g c a s e s . At low v e l o c i t i e s s t e a d y s t a t e f i e l d s a r e e x p e c t e d ; a t h i g h v e l o c i t i e s u n i f o r m t e m p e r a t u r e f i e l d s a r e e x p e c t e d w i t h t h e t e m p e r a t u r e the same as th e moving b o u n d a r y . F o r c o m p a r a b l e v a l u e s of v e l o c i t y and d i f f u s i v i t y any q u a l i t a t i v e a n a l y s i s must i n c l u d e t h e f a c t t h a t t h e e x t e r n a l s u r f a c e i s c o o l i n g f o l l o w i n g Newton's law of c o o l i n g . In t h i s c a s e t h e s i t u a t i o n i s c o m p l i c a t e d by t h e f a c t t h a t t h e r e i s mixed c o n t r o l i n t h e b u l k and the s u r f a c e o f t h e c r y s t a l w i t h a B i o t number w h i c h has v a l u e s c l o s e to one. The MRSS c o n t o u r s c o r r e s p o n d i n g t o t h e t h r e e t h e r m a l f i e l d s shown i n F i g u r e 9.31(a-c) a r e g i v e n i n F i g u r e 9 . 3 2 ( a - c ) . C o m p aring t h e MRSS v a l u e s a t 0.0001 cm/s w i t h t h o s e a t 0.001 cm/s, t h e d i f f e r e n c e s a r e s m a l l ; a p p r o x i m a t e l y 2 % f o r the h i g h e s t v a l u e s of the MRSS and 4 % f o r t h e l o w e s t . Comparing 0.01 cm/s w i t h 0.001 cm/s, the h i g h e s t v a l u e s o f MRSS have a p p r o x i m a t e l y d o u b l e d and the l o w e s t v a l u e s more t h a n d o u b l e d . In a d d i t i o n , t h e a r e a c l o s e to the i n t e r f a c e w i t h minimum MRSS d i s a p p e a r s as t h e v e l o c i t y i n c r e a s e s . 9.5 T h e r m a l C o n d i t i o n s The t e m p e r a t u r e d i s t r i b u t i o n i n t h e g r o w i n g c r y s t a l i s depe n d e n t on t h e t h e r m a l e n v i r o n m e n t s u r r o u n d i n g t h e c r y s t a l and the c r y s t a l g e o m e t r y . The e f f e c t o f t h e t h e r m a l e n v i r o n m e n t i s m o d e l l e d u s i n g t h e t e m p e r a t u r e measurements r e p o r t e d by Gr a n t e t 218 a l . as shown i n F i g u r e 8.19, c u r v e 4. 204 C F i g u r e 9.32 MRSS-CRSS ( Y i e l d ) (MPa) f o r the t h r e e t e m p e r a t u r e f i e l d s shown i n F i g u r e 9.31(a-c) c o r r e s p o n d i n g t o t h r e e growth v e l o c i t i e s . (a) 0.0001 cm/s, (b) 0.001 cm/s and ( c ) 0.01 cm/s. In (a) and (b) t h e s t r e s s f i e l d s a r e s i m i l a r . In ( c ) t h e s t r e s s d i s t r i b u t i o n and s t r e s s v a l u e s change. 205 The t h e r m a l p r o f i l e f o r the d i f f e r e n t t h i c k n e s s e s of bo r o n o x i d e i s m o d e l l e d a s s u m i n g t h a t the t e m p e r a t u r e at the top and bott o m o f the o x i d e i s i n d e p e n d e n t o f t h i c k n e s s f o r c o n s t a n t power i n p u t . T h i s makes the t e m p e r a t u r e g r a d i e n t a c r o s s the o x i d e l i n e a r l y p r o p o r t i o n a l to the t h i c k n e s s , as d e m o n s t r a t e d 14 6-148 e x p e r i m e n t a l l y I t i s a l s o assumed t h a t r e d u c i n g t h e a x i a l g r a d i e n t s i n t h e chamber by i n c r e a s i n g the power i n p u t or i n c r e a s i n g the b o r o n o x i d e t h i c k n e s s changes the magn i t u d e o f t h e l o c a l t e m p e r a t u r e but does not change the shape o f the t e m p e r a t u r e p r o f i l e . T h i s means t h a t o n l y the c o e f f i c i e n t s i n t h e p o l y n o m i a l s f i t t i n g t h e o r i g i n a l p r o f i l e a r e p r o p o r t i o n a l l y r e d u c e d by a g i v e n f a c t o r f o r th e new growth c o n d i t i o n s . The b o r o n o x i d e t h i c k n e s s e s c o n s i d e r e d a r e 21, 40 and 50 mm the l a t t e r b e i n g t h e maximum t h i c k n e s s c u r r e n t l y used e x p e r i m e n t a l l y . F o r each t h i c k n e s s , s e v e r a l t e m p e r a t u r e g r a d i e n t s a r e c o n s i d e r e d . The c r y s t a l r a d i i examined a r e 27.5 mm and 40.0 mm. 9.5.1 R a d i u s 27.5 mm 9.5.1.1 Boron o x i d e t h i c k n e s s 21.0 mm A v e r a g e g r a d i e n t s (a) 66°c/cm, (b) 33°C/cm, (c) 17°C/cm, (d) 8°C/cm The t e m p e r a t u r e p r o f i l e s c o n s i d e r e d a r e g i v e n i n F i g u r e 9.33. F i v e p r o f i l e s a r e shown. The p r o f i l e l a b e l l e d G w i t h t h e 206 F i g u r e 9.33 T e m p e r a t u r e p r o f i l e s a l o n g t h e c r y s t a l s u r f a c e i n the e n v i r o n m e n t s u r r o u n d i n g t h e c r y s t a l employed i n the c a l c u l a t i o n s . The p r o f i l e s a r e d e r i v e d from F i g u r e 8.19, c u r v e 4, r e p r o d u c e d as c u r v e G. The v a l u e s of g r a d i e n t a r e a v e r a g e d i n the c r y s t a l l e n g t h c o n s i d e r e d . E n c a p s u l a n t t h i c k n e s s 21 mm. 207 s t e e p e s t g r a d i e n t , i s t h e same as shown i n F i g u r e 8.19, c u r v e 4, w h i c h was d e t e r m i n e d e x p e r i m e n t a l l y . The r e s u l t s f o r t h e MRSS-CRSS ( Y i e l d ) f o r f o u r t e m p e r a t u r e p r o f i l e s a r e shown i n F i g u r e 9 . 3 4 ( a - d ) . The s t r e s s c o n t o u r s f o r t h e t e m p e r a t u r e p r o f i l e G were shown i n F i g u r e 9 . 3 3 ( c ) . C o m paring F i g u r e 9.34(a-d) i t can be n o t e d t h a t t h e s t r e s s d i s t r i b u t i o n p a t t e r n s a r e s i m i l a r i n t h e f o u r c a s e s . The s t r e s s l e v e l s , however, d e c r e a s e s c o n s i d e r a b l y w i t h t h e a v e r a g e g r a d i e n t . As a r e s u l t of the lower s t r e s s l e v e l s the a r e a w i t h z e r o s t r e s s g r a d u a l l y i n c r e a s e s from (a) t o ( d ) . The r e g i o n s w i t h z e r o s t r e s s s t a r t to grow from the r e g i o n s w i t h lower s t r e s s e s . These r e g i o n s a r e i n t h e s e e d , s h o u l d e r and above the i n t e r f a c e edge. At t h e l o w e s t g r a d i e n t i n (d) most o f t h e c r y s t a l has s t r e s s e s w h i c h a r e l e s s t h a n th e CRSS ( Y i e l d ) . The two r e m a i n i n g r e g i o n s w i t h non z e r o s t r e s s e s a r e l o c a t e d where the h i g h e s t s t r e s s e s u s u a l l y a p p e a r ; i n t h e c r y s t a l s u r f a c e above the e n c a p s u l a n t and i n the c r y s t a l a x i s . 9.5.1.2 Boron o x i d e t h i c k n e s s 40.0 mm AVG (a) 58 cm/s, (b) 29 cm/s, ( c ) 19 cm/s B 50.0 mm AVG (a) 50°c/cm. (b) 25°C/cm, ( c ) 12.5°C/cm. 209 c d F i g u r e 9.34 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r t e m p e r a t u r e p r o f i l e s w i t h a v e r a g e g r a d i e n t s (a) 33 C/cm, (b) 17 C/cm, (c) 11 C/cm and (d) 8 C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm. E n c a p s u l a n t t h i c k n e s s 21 mm. 210 The t e m p e r a t u r e p r o f i l e s f o r b o t h e n c a p s u l a n t t h i c k n e s s e s a r e shown i n F i g u r e s 9.35(a) and ( b ) . In (a) f o r t h e 40 mm e n c a p s u l a n t and i n (b) f o r the 50 mm. In e a c h c a s e t h r e e t e m p e r a t u r e p r o f i l e s a r e c o n s i d e r e d , t h e a v e r a g e g r a d i e n t f o r each p r o f i l e i s a l s o g i v e n . F o r c o m p a r i s o n t h e o r i g i n a l p r o f i l e f o r the 21.0 mm e n c a p s u l a n t i s a l s o shown. The r e s u l t s f o r the MRSS-CRSS ( Y i e l d ) f o r the two e n c a p s u l a n t t h i c k n e s s e s a r e shown i n F i g u r e s 9 . 3 6 ( a - c ) f o r t h e 40 mm t h i c k n e s s and F i g u r e 9.37(a-c) f o r t h e 50 mm t h i c k n e s s . P a r t s (a) t o ( c ) c o r r e s p o n d s to t h e t h r e e d i f f e r e n t t h e r m a l p r o f i l e s shown i n F i g u r e 9.35(a) and ( b ) . To o b s e r v e t h e e f f e c t of i n c r e a s i n g t h e e n c a p s u l a n t t h i c k n e s s o n l y t h e t h r e e f i g u r e s to be compared a r e : 9 . 23(c) f o r t h e 21 mm, 9.36(a) f o r t h e 40 mm and 9.37(a) f o r t h e 50 mm t h i c k n e s s . I t can be n o t e d t h a t i n c r e a s i n g t h e b o r o n o x i d e t h i c k n e s s changes t h e r e l a t i v e s t r e s s d i s t r i b u t i o n . The changes a r e the e x t e n d e d low s t r e s s r e g i o n c l o s e to t h e i n t e r f a c e and the s h i f t of t h e s t r e s s c o n c e n t r a t i o n t o a p o s i t i o n above the e n c a p s u l a n t s u r f a c e . F o r t h i c k encapsu1 a n t s , the l a r g e and u n i f o r m low s t r e s s r e g i o n i n the low p a r t of the c r y s t a l has a s t r e s s d i s t r i b u t i o n i n a r a d i a l d i r e c t i o n w h i c h m a i n t a i n s t h e W shape w i t h e x t e n d e d v a l l e y s and s h a r p peaks i n the c e n t r e and edge o f t h e c r y s t a l . In t h e c a s e of t h e 50 mm t h i c k n e s s i n F i g u r e 9.37(a) t h e s t r e s s c o n c e n t r a t i o n r e g i o n below the s h o u l d e r i s s m a l l b e c a u s e the e n c a p s u l a n t i s o n l y 5 mm s h o r t e r t h a n th e c r y s t a l l e n g t h . 211 F i g u r e 9.35 T e m p e r a t u r e p r o f i l e s used i n t h e c a l c u l a t i o n s f o r two b o r o n o x i d e t h i c k n e s s e s . (a) 40 mm, (b) 50 mm. The p r o f i l e s a r e d e r i v e d from c u r v e G. The v a l u e s of g r a d i e n t s g i v e n a r e a v e r a g e d a l o n g t h e c r y s t a l l e n g t h . 211 F i g u r e 9.35 T e m p e r a t u r e p r o f i l e s used i n the c a l c u l a t i o n s f o r two b o r o n o x i d e t h i c k n e s s e s . (a) 40 mm, (b) 50 mm. The p r o f i l e s a r e d e r i v e d from c u r v e G. The v a l u e s of g r a d i e n t s g i v e n a r e a v e r a g e d a l o n g t h e c r y s t a l l e n g t h . 212 213 F i g u r e 9.36 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s . (a) 58°C/cm, (b) 29°C/cm, ( c ) 19°C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm, b o r o n o x i d e t h i c k n e s s 40 mm. 214 215 F i g u r e 9.37 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s . (a) 50°C/cm, (b) 25 C/cm, ( c ) 17°C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm, b o r o n o x i d e t h i c k n e s s 50 mm. 216 The a b s o l u t e s t r e s s a l s o changes w i t h an i n c r e a s e i n the e n c a p s u l a n t t h i c k n e s s . D o u b l i n g t h e t h i c k n e s s r e d u c e s by h a l f the maximum s t r e s s . When t h e r m a l p r o f i l e s w i t h l o w e r g r a d i e n t s a r e c o n s i d e r e d f o r b o t h e n c a p s u l a n t t h i c k n e s s e s , t h e r e g i o n i n t h e c r y s t a l w i t h z e r o MRSS-CRSS ( Y i e l d ) expands from t h e low s t r e s s r e g i o n s c l o s e to t h e i n t e r f a c e as the g r a d i e n t d e c r e a s e s . The l a r g e s t z e r o s t r e s s r e g i o n i s o b t a i n e d i n F i g u r e 9 . 37(c) f o r an e n c a p s u l a n t t h i c k n e s s of 50 mm and a g r a d i e n t o f 12.5°c/cm. I t i s n o t e d t h a t s i m i l a r s u r f a c e a r e a s were o b t a i n e d w i t h a 21 mm t h i c k n e s s f o r a g r a d i e n t o f 8°C/cm. T h i s shows t h a t i n d e p e n d e n t of e n c a p s u l a n t t h i c k n e s s , a c r i t i c a l g r a d i e n t of about 10°C/cm s h o u l d be a c h i e v e d i n o r d e r to o b t a i n l a r g e a r e a s w i t h s t r e s s e s l e s s t h a n the CRSS ( Y i e l d ) . From t h e p r a c t i c a l p o i n t o f view, a t h i c k e r e n c a p s u l a n t i s p r e f e r r e d f o r the f o l l o w i n g r e a s o n s . To g e t the d e s i r e d 10°C/cm l e v e l , t h e t h e r m a l g r a d i e n t s h o u l d be r e d u c e d e i g h t t i m e s w i t h the 21 mm t h i c k n e s s and o n l y t h r e e t i m e s w i t h t h e 50 mm t h i c k n e s s . T h i s i s b e c a u s e o f t h e r e d u c t i o n of g r a d i e n t s when i n c r e a s i n g the t h i c k n e s s . In a d d i t i o n i n low g r a d i e n t e n v i r o n m e n t s l a r g e a r e a s of c r y s t a l a r e e x p o s e d to h i g h t e m p e r a t u r e s . W i t h o u t p r o p e r e n c a p s u l a t i o n t h e r e i s d e c o m p o s i t i o n of GaAs, r e s u l t i n g i n t h e f o r m a t i o n of l i q u i d Ga dr o p s w h i c h damages t h e c r y s t a l and l e a d s to n o n - s t o i c h i o m e t r i c m e l t s w h i c h i s a l s o d e t r i m e n t a l . 217 9.5.2 R a d i u s 40.0 mm 9.5.2.1 Boron o x i d e t h i c k n e s s 21 mm AVG : a) 14°C/cm, (b) 7°C/cm The r e s u l t s f o r the MRSS-CRSS ( Y i e l d ) w i t h a b o r o n o x i d e l a y e r t h i c k n e s s o f 21 mm a r e shown i n F i g u r e 9.38(a) and ( b ) . P a r t (a) c o r r e s p o n d s t o t h e p r o f i l e l a b e l l e d G/4 ( 1 4 ° C / c m ) and (b) t o t h e p r o f i l e G/8 (7°C/cm) i n F i g u r e 9.33. I t i s n o t e d t h a t the a v e r a g e g r a d i e n t s i n t h e s e p r o f i l e s a r e l o w e r b e c a u s e of the l o n g e r c r y s t a l c o n s i d e r e d . C o m p aring F i g u r e 9.38(a) and (b) w i t h F i g u r e 9.34(c) and (d) f o r t h e 27.5 mm c r y s t a l , i t can be n o t e d t h a t i n t h e c a s e of t h e 40 mm c r y s t a l , t h e r e l a t i v e z e r o MRSS-CRSS ( Y i e l d ) a r e a f o r the same p r o f i l e i s not as l a r g e as i n t h e c a s e o f t h e 27.5 mm c r y s t a l . In t h e 40 mm c r y s t a l , however, t h e t o p of t h e c r y s t a l i n F i g u r e 9.38(b) shows z e r o s t r e s s . T h i s i s due t o t h e d i f f e r e n c e i n l e n g t h between the two c r y s t a l s . 9.5.2.2 Boron o x i d e t h i c k n e s s 40 mm AVG : (a) 46°C/cm, (b) 26°C/cm, (c) 15°C/cm, (d) 9°C/cm. The MRSS-CRSS ( Y i e l d ) c o n t o u r s f o r t h e f o u r g r a d i e n t s a r e shown i n F i g u r e 9 . 3 9 ( a - d ) . Note t h a t t h e p r o f i l e w i t h an a v e r a g e g r a d i e n t o f 9°C/cm i s not shown i n F i g u r e 9 . 3 5 ( a ) . The 9°C/cm a v e r a g e g r a d i e n t i n the e n c a p s u l a n t and gas i s f i v e t i m e s s m a l l e r t h a n t h e o r i g i n a l t e m p e r a t u r e p r o f i l e l a b e l l e d G i n F i g u r e 9.33. Comparing the r e s u l t s o f F i g u r e s 9.39(a-d) w i t h t h o s e i n F i g u r e 9.36(a-d) f o r t h e 27.5 mm c r y s t a l i t can be o b s e r v e d 218 F i g u r e 9.38 MRSS-CRSS ( Y i e l d ) (MPa) f o r two (a) 14°C/cm, (b) 7 C/cm. R a d i u s b o r o n o x i d e t h i c k n e s s 21 mm. a v e r a g e g r a d i e n t s . 40 mm, l e n g t h 80 mm, 220 c d F i g u r e 9.39 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r a v e r a g e g r a d i e n t s . (a) 46°C/cm, (b) 26°C/cm, ( c ) 15°C/cm, (d) 9°C/cm. R a d i u s 40 mm, l e n g t h 80 mm, b o r o n o x i d e t h i c k n e s s 40 mm . 221 t h a t the c o n c e n t r a t i o n of s t r e s s e s i n the l a r g e r c r y s t a l o c c u r s a t t h e m i d l e n g t h i n s t e a d of t h e t o p of the c r y s t a l as i n t h e 27.5 mm c r y s t a l . In a d d i t i o n i t i s o b s e r v e d t h a t t o o b t a i n s i m i l a r r e l a t i v e a r e a s w i t h z e r o MRSS-CRSS ( Y i e l d ) , the g r a d i e n t s i n the e n v i r o n m e n t s u r r o u n d i n g t h e 40 mm c r y s t a l s h o u l d be f u r t h e r r e d u c e d . 9.5.2.3 Boron O x i d e t h i c k n e s s 50 mm, AVG : (a) 43°C/cm, (b) 14°C/cm, (c) 7°C/cm. In o r d e r t o d e t e r m i n e i f t h e s t r e s s l e v e l has r e a c h e d a maximum v a l u e c o n s i d e r i n g t h e whole growth p e r i o d , s t r e s s c a l c u l a t i o n s a r e made f o r a 40 mm c r y s t a l w i t h a l e n g t h c o m p a r a b l e t o t h e e n c a p s u l a n t t h i c k n e s s . The c r y s t a l l e n g t h i s 52 mm and t h e a v e r a g e g r a d i e n t i s 50°C/cm. The r e s u l t s f o r MRSS-CRSS ( Y i e l d ) a r e shown i n F i g u r e 9.40. I t i s o b s e r v e d t h a t the s t r e s s c o n c e n t r a t i o n o c c u r s below t h e s h o u l d e r . In F i g u r e 9.41(a) the d i s t r i b u t i o n f o r the same s t r e s s f o r a c r y s t a l l e n g t h of 80 mm i s shown. In t h i s c a s e t h e s t r e s s c o n c e n t r a t i o n o c c u r s above t h e e n c a p s u l a n t s u r f a c e . The s t r e s s v a l u e i n t h e l o n g e r c r y s t a l i s h i g h e r t h a n t h e l a r g e s t s t r e s s v a l u e i n t h e s h o r t e r c r y s t a l . From t h e s e r e s u l t s and t h o s e o b t a i n e d w i t h t h e 27.5 mm c r y s t a l r a d i u s i t i s p o s s i b l e t o g e n e r a l i z e t h e f i n d i n g t o most of t h e s i t u a t i o n s i n LEC gr o w t h . The l a r g e s t s t r e s s a t a g i v e n c r y s t a l l e n g t h o c c u r s above t h e e n c a p s u l a n t s u r f a c e . I f t h i s 222 F i g u r e 9.40 MRSS-CRSS ( Y i e l d ) (MPa) f o r a c r y s t a l l e n g t h of 52 mm c o m p a r a b l e t o t h e b o r o n o x i d e t h i c k n e s s of 50 mm. R a d i u s 40 mm. A v e r a g e g r a d i e n t 50°C/cm. 223 224 F i g u r e 9.41 MRSS-CRSS ( Y i e l d ) (MPa) f o r t h r e e a v e r a g e g r a d i e n t s , (a) 43°C/cm, (b) 14°C/cm, (c) 7°C/cm. R a d i u s 40 mm, l e n g t h 80 mm, b o r o n o x i d e t h i c k n e s s 50 mm. 225 p o s i t i o n i s h a l f - w a y a l o n g the c r y s t a l l e n g t h , t h e s t r e s s i s t h e l a r g e s t i n t h e whole growth p e r i o d . The s t r e s s d i s t r i b u t i o n s f o r t h e t h r e e g r a d i e n t s c o n s i d e r e d a r e shown i n F i g u r e 9 . 4 1 ( a - c ) . As i n t h e c a s e of t h e 40 mm e n c a p s u l a n t , t h e g r a d i e n t s h o u l d be f u r t h e r r e d u c e d to o b t a i n s i m i l a r r e l a t i v e a r e a s w i t h z e r o s t r e s s when c o m p a r i n g w i t h t h e 27.5 mm c r y s t a l s d i s t r i b u t i o n s . The e v a l u a t i o n of the r e s u l t s p r e s e n t e d i n t h i s s e c t i o n a r e summarized i n T a b l e 9.4. In t h i s t a b l e t h e l a r g e s t v a l u e o f MRSS-CRSS ( Y i e l d ) i s g i v e n as a f u n c t i o n of b o r o n o x i d e t h i c k n e s s , g r a d i e n t o f the t h e r m a l p r o f i l e and c r y s t a l r a d i u s . The s t r e s s v a l u e s c o r r e s p o n d t o c r y s t a l s w i t h an a s p e c t r a t i o o f 2. F o r e a c h c o n d i t i o n the r e l a t i v e s t r e s s i n c r e m e n t due t o an i n c r e a s e i n r a d i u s i s a l s o r e p o r t e d . I t i s c l e a r from t h e t a b u l a t e d v a l u e s t h a t t h e s t r e s s d e c r e a s e s as more f a v o u r a b l e growth c o n d i t i o n s a p p l y , i . e . t h i c k e r e n c a p s u l a n t and lo w e r g r a d i e n t . I t i s a l s o o b s e r v e d t h a t the r e l a t i v e s t r e s s change due t o an i n c r e a s e i n r a d i u s i n c r e a s e s as t h e s t r e s s l e v e l d e c r e a s e s ( o r more f a v o u r a b l e c o n d i t i o n s a r e p r e s e n t ) . In the c a s e of the t h i c k e s t e n c a p s u l a n t and t h e l o w e s t g r a d i e n t used i n t h e c a l c u l a t i o n s , t h e s t r e s s i n c r e a s e s 143.7 % when i n c r e a s i n g t h e r a d i u s from 27.5 mm to 40 mm. T h i s shows t h a t t h e e f f e c t on s t r e s s e s w i t h i n c r e a s i n g t h e r a d i u s i s not l i n e a r . A c o m p a r i s o n of the s t r e s s c o n t o u r s f o r a l l c o n d i t i o n s l i s t e d i n the t a b l e shows t h a t s i m i l a r s t r e s s d i s t r i b u t i o n s a r e T a b l e 9.4 E f f e c t of Thermal C o n d i t i o n s on S t r e s s e s B o r o n O x i d e AMRSS - CRSS ( Y i e l d ) MPa T h i c k n e s s | G | 1 % [mm] R = 2.75 cm | R = 4.0 cm change G 7.02 9.65 37.46 G/2 3.76 21.0 G/4 1.78 2.76 55.0 G/6 1.03 G/8 0.65 1.02 56.0 40 . 0 G G/2 G/3 G/5 4 . 39 1 . 97 1 . 22 6 . 77 3.21 2.01 1 . 02 54 . 2 62 . 9 64 . 7 50 . 0 G G/2 G/3 G/5 3 . 26 1.14 0 . 64 5 . 61 1 . 56 0 . 47 72.08 143.7 227 o b t a i n e d f o r s i m i l a r v a l u e s of s t r e s s . F o r i n s t a n c e , s i m i l a r a r e a s w i t h z e r o s t r e s s a r e g i v e n i n t h e c r y s t a l s w i t h t h e f o l l o w i n g c o n d i t i o n s 1) B = 21 mm, G/6, r = 2.75 mm ; 2) B = 21 mm, G/8, r = 40 mm ; 3) B = 40 mm, G/5, r = 40 mm. 9.6 Gas P r e s s u r e and C o m p o s i t i o n C o n d i t i o n s : AP, 2 atm ; R, 27.5 mm ; CL, 55 mm ; B, 21 mm ; T e m p e r a t u r e p r o f i l e s as i n F i g u r e 9.33 ; AVG : (a) 66°C/cm, (b) 33°C/cm, (c) 17°C/cm, (d) ll°C/cm. The e f f e c t of gas p r e s s u r e i s c o n s i d e r e d i n the model t h r o u g h t h e e f f e c t of p r e s s u r e on t h e c o n v e c t i v e p a r t of t h e he a t t r a n s f e r c o e f f i c i e n t between c r y s t a l and gas. In the e q u a t i o n s used f o r the n u m e r i c a l e v a l u a t i o n , t h e c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t changes w i t h t h e s q u a r e r o o t o f p r e s s u r e . The r e s u l t s f o r the MRSS-CRSS ( Y i e l d ) a r e shown i n F i g u r e s 9.42(a-d) f o r f o u r g r a d i e n t s . The e f f e c t of p r e s s u r e on the f o u r g r a d i e n t s can be a n a l y s e d by c o m p a r i n g t h e s t r e s s v a l u e s w i t h t h e r e s u l t s o b t a i n e d f o r a p r e s s u r e o f 30 a t m o s p h e r e s . F o r t h i s F i g u r e 9.42(b-c) s h o u l d be compared w i t h F i g u r e s 9 . 3 4 ( a - c ) . I t i s o b s e r v e d t h a t the s t r e s s c o n f i g u r a t i o n f o r the f o u r g r a d i e n t s a t 2 a t m o s p h e r e s i s s i m i l a r t o t h e s t r e s s c o n f i g u r a t i o n f o r t h e same 229 c d .42 MRSS-CRSS ( Y i e l d ) (MPa) f o r f o u r t e m p e r a t u r e p r o f i l e s w i t h a v e r a g e g r a d i e n t s . (a) 33°c/cm, (b) 17°C/cm, (c) 11 C/cm and (d) 8 C/cm. R a d i u s 27.5 mm, l e n g t h 55 mm. E n c a p s u l a n t t h i c k n e s s 21 mm. Argon p r e s s u r e 2 atm . 230 imposed t e m p e r a t u r e p r o f i l e s a t a p r e s s u r e o f 30 a t m o s p h e r e s . At t h e l a r g e s t g r a d i e n t c o n s i d e r e d , t h e s t r e s s d e c r e a s e s o n l y 3 % from 30 to 2 a t m o s p h e r e s . F o r t h e low e r g r a d i e n t s t h e d e c r e a s e i s i n t h e o r d e r o f 20 %. F o r t h e l o w e s t g r a d i e n t c o n s i d e r e d t h e a r e a w i t h z e r o MRSS-CRSS ( Y i e l d ) i n F i g u r e 9.42(d) i n c r e a s e d about 25 % f o l l o w i n g t h e d e c r e a s e i n t h e l a r g e s t s t r e s s v a l u e . The r e s u l t s p r e s e n t e d h e r e show t h a t the e f f e c t o f p r e s s u r e i s n ot as i m p o r t a n t as might be e x p e c t e d . The weak e f f e c t of p r e s s u r e o b s e r v e d i n the p r e s e n t c a l c u l a t i o n s when a s t r o n g e r e f f e c t i s e x p e c t e d , can be a c c o u n t e d f o r i n t h e f o l l o w i n g way. In the model the e f f e c t of p r e s s u r e i s i n c l u d e d as a f f e c t i n g t h e c o n v e c t i v e component of t h e h e a t t r a n s f e r c o e f f i c i e n t as t h e s q u a r e r o o t of p r e s s u r e . R e d u c i n g the p r e s s u r e from 30 t o 2 a t m o s p h e r e s r e d u c e s t h e v a l u e of c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t by 74 % . At low p r e s s u r e s the c o n v e c t i v e p a r t i s l e s s t h a n 10 % o f t h e t o t a l v a l u e of t h e h e a t t r a n s f e r c o e f f i c i e n t . In t h i s c a s e the maximum v a r i a t i o n i n t h e t o t a l c o e f f i c i e n t a s s o c i a t e d w i t h t h e r e d u c t i o n i n p r e s s u r e w i l l be l e s s t h a n 30 * I t was shown i n S e c t i o n 9.1 above, t h a t a 30 % change i n he a t t r a n s f e r c o e f f i c i e n t does not s u b s t a n t i a l l y a f f e c t t h e s t r e s s l e v e l i n t h e c r y s t a l . T h i s e x p l a i n s why t h e e f f e c t of p r e s s u r e i n t h e p r e s e n t c a l c u l a t i o n s i s not s i g n i f i c a n t . A s t r o n g e r e f f e c t of p r e s s u r e i s e x p e c t e d b e c a u s e p r e s s u r e may m a r k e d l y a f f e c t t h e t e m p e r a t u r e p r o f i l e of t h e media s u r r o u n d i n g the c r y s t a l . In t h e p r e s e n t c a l c u l a t i o n s , i t was assumed t h a t c h a n g i n g t h e p r e s s u r e does not a l t e r t h e t e m p e r a t u r e 231 o f t h e e n v i r o n m e n t . T h i s may not be the a c t u a l s i t u a t i o n . When the p r e s s u r e c h a n g e s , not o n l y t h e h e a t t r a n s f e r c o e f f i c i e n t a t the c r y s t a l - g a s i n t e r f a c e changes but a l s o t h e e f f i c i e n c y i n h e a t t r a n s f e r i n t h e gas i s a l t e r e d . T h i s h i g h e r e f f i c i e n c y w i l l be m a n i f e s t e d by a l a r g e r h e a t t r a n s f e r c o e f f i c i e n t a t the b o r o n o x i d e - g a s i n t e r f a c e . The net e f f e c t w i l l be t o d e c r e a s e t h e t e m p e r a t u r e o f t h e b o r o n o x i d e s u r f a c e i n c r e a s i n g the g r a d i e n t a c r o s s t h e e n c a p s u l a n t and p r o b a b l y i n t h e g a s . The change i n heat t r a n s f e r c o e f f i c i e n t a t t h e b o r o n o x i d e -gas s u r f a c e can be q u a l i t a t i v e l y d e s c r i b e d , a s s u m i n g a f r e e c o n v e c t i o n mechanism a p p l i e s a t t h i s s u r f a c e . In t h i s c a s e t h e h e a t t r a n s f e r c o e f f i c i e n t a s s o c i a t e d w i t h t h i s p r o c e s s can be w r i t t e n as I / O h = Nu k/1 = 0.14 (Gr P r ) ' (k/1) (9.1) where Nu, Gr and Pr a r e t h e N u s s e l t , G r a s h o f and P r a n d l numbers r e s p e c t i v e l y . "k" i s t h e t h e r m a l c o n d u c t i v i t y . "1" i s t h e c h a r a c t e r i s t i c l e n g t h of the h o r i z o n t a l h e a t e d s u r f a c e from w h i c h h e a t i s e x t r a c t e d . I f i t i s assumed t h a t t h e gas behaves l i k e an i d e a l g as, t h e p r e s s u r e dependence i s i n t r o d u c e d i n the G r a s h o f number t h r o u g h t h e d e n s i t y . In t h i s c a s e t h e h e a t t r a n s f e r c o e f f i c i e n t w i l l depend on p r e s s u r e w i t h an e x p o n e n t 2/3. F o r t h i s p r e s s u r e dependence th e h e a t t r a n s f e r c o e f f i c i e n t i s r e d u c e d by 83 % when d e p r e s s u r i z i n g the chamber from 30 t o 2 a t m o s p h e r e s . At t h e e n c a p s u l a n t - g a s s u r f a c e t h i s change i s more i m p o r t a n t t h a n s i m i l a r changes o f the c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t a t 232 t h e c r y s t a l - g a s s u r f a c e s i n c e i n t h e f i r s t c a s e c o n v e c t i o n i s t h e main h e a t t r a n s f e r mechanism. T h i s i s b e c a u s e b o r o n o x i d e i s t r a n s p a r e n t t o r a d i a t i o n . C o n s e q u e n t l y t h e t h e r m a l g r a d i e n t a c r o s s t h e e n c a p s u l a n t w i l l be more d i r e c t l y a f f e c t e d by p r e s s u r e c h a n g e s . On t h e o t h e r hand, i n c r e a s i n g the p r e s s u r e i n c r e a s e s the h e a t t r a n s f e r c o e f f i c i e n t at t h e c r y s t a l - g a s s u r f a c e . In t h i s c a s e h e a t e x t r a c t i o n from t h e c r y s t a l i s i m p r o v e d r e d u c i n g t h e r m a l g r a d i e n t s i n the gas. The n e t e f f e c t o f i n c r e a s i n g t h e c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t at t h e c r y s t a l s u r f a c e and i n c r e a s i n g t h e g r a d i e n t s a c r o s s t h e e n c a p s u l a n t c o u l d r e s u l t i n a s t r o n g e r e f f e c t i n the s t r e s s d i s t r i b u t i o n i n t h e c r y s t a l t h a n any c h a n ges i n t h e c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t . 14 3-144 The e x p e r i m e n t a l r e s u l t s o f Emori e t a l . a r e i n agreement w i t h the e f f e c t of p r e s s u r e on t h e t h e r m a l g r a d i e n t a c r o s s t h e e n c a p s u l a n t d i s c u s s e d above. F o r a r g o n gas, r e d u c i n g 2 t h e p r e s s u r e from 20 to 5 kg/cm r e d u c e s t h e t h e r m a l g r a d i e n t i n t h e e n c a p s u l a n t from a p p r o x i m a t e l y 160°C/cm t o 140°C/cm ; the t h i c k n e s s o f e n c a p s u l a n t i s not g i v e n . F o r neon and h e l i u m g a s e s l a r g e r g r a d i e n t s were measured, w i t h neon h a v i n g t h e l a r g e s t g r a d i e n t . C h a n g i n g gas p r e s s u r e i n neon has a s t r o n g e r e f f e c t on g r a d i e n t s t h a n i n h e l i u m . They have e x p l a i n e d t h e r e s u l t s by c a l c u l a t i n g t h e h e a t t r a n s f e r c o e f f i c i e n t s f o r the d i f f e r e n t g a s e s and p r e s s u r e s . F o r t h e c a l c u l a t i o n h e a t t r a n s f e r from a v e r t i c a l w a l l was assumed. In t h i s c a s e t h e h e a t t r a n s f e r c o e f f i c i e n t e q u a t i o n i s w r i t t e n as h = 0.53 (k/1) (Gr P r ) 1 / 4 (9.2) 2 33 T h i s e q u a t i o n i n v o l v e s the same q u a n t i t i e s as i n E q u a t i o n ( 9 . 1 ) . The d i f f e r e n c e s a r e t h e v a l u e s o f t h e n u m e r i c a l c o e f f i c i e n t s , t h e e x p o n e n t s a f f e c t i n g t h e q u a n t i t i e s and t h e meaning o f t h e c h a r a c t e r i s t i c l e n g t h "1". In t h i s c a s e "1" i s t h e l e n g t h of t h e c r y s t a l w hich a c t s as a v e r t i c a l w a l l . The c a l c u l a t i o n s show a v e r y good c o r r e l a t i o n between the g r a d i e n t i n t h e b o r o n o x i d e f o r t h e d i f f e r e n t g a s e s and p r e s s u r e s w i t h t h e h e a t t r a n s f e r c o e f f i c i e n t v a l u e s . T h i s c o r r e l a t i o n i s r e p r o d u c e d i n F i g u r e 9.43, c u r v e A. The c o r r e l a t i o n , however, i s b a s i c a l l y i n c o n s i s t e n t s i n c e the measurements were made w i t h o u t a c r y s t a l b e i n g p r e s e n t . M o r e o v e r , i n t r o d u c i n g t h e c r y s t a l and u s i n g a l a r g e r h e a t t r a n s f e r c o e f f i c i e n t w i l l t e n d t o r e d u c e t h e t e m p e r a t u r e g r a d i e n t a c r o s s t h e e n c a p s u l a n t as e x p l a i n e d above. F o r t u i t o u s l y , t h e c o r r e l a t i o n i n F i g u r e 9.43 ( c u r v e A) g i v e s t h e c o r r e c t t e n d e n c y but t h r o u g h a d i f f e r e n t mechanism. The gas p r e s s u r e a f f e c t s t h e t e m p e r a t u r e g r a d i e n t a c r o s s t h e e n c a p s u l a n t t h r o u g h changes i n the h e a t t r a n s f e r c o e f f i c i e n t a t t h e e n c a p s u l a n t - g a s s u r f a c e . A c o r r e l a t i o n between h e a t t r a n s f e r c o e f f i c i e n t v a l u e s f o r h e a t t r a n s f e r from an h o r i z o n t a l w a l l 14 3 14 4 ( E q u a t i o n ( 9 . 1 ) ) and measured g r a d i e n t s from E m o r i et a l . ' g i v e s the r e s u l t s shown i n F i g u r e 9.43, c u r v e B. In t h i s c a s e a d e v i a t i o n from l i n e a r i t y i s o b s e r v e d . The c o r r e l a t i o n , however, i s c o n s i s t e n t w i t h the p h y s i c a l p r o c e s s a n a l y s e d . From the model r e s u l t s and t h e above d i s c u s s i o n i t i s p o s s i b l e to c o n c l u d e t h a t the gas p r e s s u r e and gas c o m p o s i t i o n 234 V e r t i c a l Heat T r a n s f e r Coe f f i c ien t (W/cm K) £ u O c cu •o o v . o 5 i d 3 10 i d 3 2 00 1 1 1 1 1 1 1 1 1 / s , / ^^^^ 1 1 1 _ A V ^x - d i r e c t i o n s . 4) At 27.5 mm from t h e i n t e r f a c e t h e r e i s t w o - f o l d symmetry. 265 2 6 6 267 C 268 F i g u r e 10.3 MRSS-CRSS ( Y i e l d ) (MPa) c o n t o u r s i n (001) p l a n e s a t f o u r d i s t a n c e s from t h e bottom ( i n t e r f a c e ) i n t h e c r y s t a l shown i n F i g u r e 10.2(b) 10 s, (a) 2.75 mm. (b) 8.25 mm ( c ) 16.5 mm (d) 27.5 mm . 269 The s t r e s s d i s t r i b u t i o n and symmetry a r e t i m e d e p e n d e n t . At 2.75 mm from t h e i n t e r f a c e t h e e i g h t - f o l d symmetry i n F i g u r e 1 0 . 3(a) a t 10 s e c o n d s changes at 60 s e c o n d s to the e i g h t - f o l d symmetry shown i n F i g u r e 1 0 . 4 ( a ) . At 8.25 mm f r o m th e i n t e r f a c e , t h e two and f o u r - f o l d s y m m e t r i e s i n F i g u r e 10.3(b) a t 10 s e c o n d s change at 60 s e c o n d s t o the t w o - f o l d symmetry shown i n F i g u r e 1 0 . 4 ( b ) . 10.1.1.2 I n i t i a l G r a d i e n t GC/2 = 35°C/cm In t h i s c a s e the s t r e s s e s r e a c h a maximum a t 10 s e c o n d s . The t e m p e r a t u r e f i e l d i s shown i n F i g u r e 1 0 . 5 ( a ) and t h e c o r r e s p o n d i n g MRSS-CRSS ( Y i e l d ) f i e l d i n F i g u r e 1 0 . 5 ( b ) . C o m p a r i n g F i g u r e 10.5(a) w i t h F i g u r e 1 0 .4(a) f o r a 70°C/cm g r a d i e n t i t i s n o t e d t h a t the i s o t h e r m s f o r t h e 35°C/cm g r a d i e n t have l a r g e r c u r v a t u r e t h a n f o r t h e 70°C/cm g r a d i e n t . The MRSS-CRSS ( Y i e l d ) d i s t r i b u t i o n i n F i g u r e 10.5(b) i s s i m i l a r t o t h e d i s t r i b u t i o n i n F i g u r e 10.4(b) f o r t h e 70°C/cm g r a d i e n t . L a r g e c u r v a t u r e i n t h e i s o t h e r m s and l a r g e s t r e s s e s a r e s t i l l p r e s e n t at 60 s e c o n d s as shown i n F i g u r e 1 0 . 6 ( a - b ) . The MRSS-CRSS ( Y i e l d ) i n a c r o s s - s e c t i o n a t 2.75 mm from th e i n t e r f a c e has e i g h t - f o l d symmetry. At 8.25 mm t h e s t r e s s has a s t r o n g t w o - f o l d symmetry ( F i g u r e 1 0 . 7 ( b ) ) . The t w o - f o l d symmetry g r a d u a l l y changes t o a n e a r c i r c u l a r symmetry w i t h s m a l l t r a c e s o f f o u r - f o l d symmetry g i v e n by weak l o c a l minima i n t h e <110> d i r e c t i o n s as shown i n F i g u r e 1 0 . 7 ( b ) . The U-shaped s t r e s s d i s t r i b u t i o n s a l o n g a d i a m e t e r i s p r e s e n t i n a l l c r o s s - s e c t i o n s . 270 271 F i g u r e 10.4 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s at two d i s t a n c e s from t h e bottom i n t h e c r y s t a l shown i n F i g u r e 10.2 (d) 60 s, (a) 2.75 mm (b) 8.25 mm. 272 b F i g u r e 10.5 (a) T e m p e r a t u r e f i e l d (10 C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 1000 C a f t e r 10 s. I n i t i a l g r a d i e n t 35°C/cm. 273 F i g u r e 10.6 (a) T e m p e r a t u r e f i e l d (10°°C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n a t 1000 C a f t e r 60 s. I n i t i a l g r a d i e n t 3 5°C/cm. 274 a 275 F i g u r e 10.7 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s a t two d i s t a n c e s from t h e bottom i n t h e c r y s t a l shown i n F i g u r e 10.5 (b) 10 s. (a) 8.25 mm (b) 27.5 mm. 276 10.1.1.3 I n i t i a l G r a d i e n t GC/4 = 17.5°c/cm The t e m p e r a t u r e f i e l d ( F i g u r e 1 0 . 8 ( a ) ) g i v e s i s o t h e r m s w h i c h have t h e h i g h e s t c u r v a t u r e among t h e i n i t i a l g r a d i e n t s c o n s i d e r e d . The MRSS-CRSS ( Y i e l d ) ( F i g u r e 10.8(b) f i e l d i n t h e r e g i o n c l o s e to the i n t e r f a c e i s s i m i l a r to the p r e v i o u s c a s e s . The r e g i o n w i t h l a r g e s t r e s s n e a r t h e c r y s t a l s u r f a c e and a d j a c e n t t o t h e i n t e r f a c e i s expanded t o encompass n e a r l y a l l o f th e c r y s t a l . The s t r e s s d i s t r i b u t i o n a l o n g t h e d i a m e t e r i s U-sh a p e d . The MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s shows 1) e i g h t - f o l d symmetry c l o s e t o t h e i n t e r f a c e 2) t w o - f o l d symmetry above t h e i n t e r f a c e and up t o a d i s t a n c e from the i n t e r f a c e of 16.5 mm 3) Near c i r c u l a r symmetry a t 27.5 mm from t h e i n t e r f a c e w i t h low s t r e s s e s i n t h e c e n t r e c o v e r i n g more t h a n h a l f t h e s e c t i o n s u r f a c e a r e a and l a r g e s t r e s s g r a d i e n t s a t the edge. These g i v e a U-shaped s t r e s s d i s t r i b u t i o n w i t h a b r o a d b a s e . The l a r g e s t r e s s e s p e r s i s t a f t e r 60 s e c o n d s but t h e y a r e not l a r g e r t h a n t h e ones o b s e r v e d a t 10 s e c o n d s . The s t r e s s d i s t r i b u t i o n i n c r o s s - s e c t i o n s a t 60 s e c o n d s i s s i m i l a r t o t h e d i s t r i b u t i o n a t 10 s e c o n d s . A l o n g a d i a m e t e r t h e s t r e s s d i s t r i b u t i o n t e n d s t o t a k e a V shape r a t h e r t h a n U shape. At a d i s t a n c e o f 27.5 mm from the i n t e r f a c e t h e c e n t r a l r e g i o n i n t h e 277 F i g u r e 10.8 (a) T e m p e r a t u r e ( Y i e l d ) (MPa) at 1000 C a f t e r f i e l d ( 1 0 O U C ) and (b) MRSS-CRSS f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n 10 s. I n i t i a l g r a d i e n t 17.5°C/cm. 278 w a f e r shows a w e l l d i s t i n g u i s h e d e i g h t - f o l d symmetry ( F i g u r e 1 0 . 9 ) . The s t r e s s l e v e l i n t h i s s e c t i o n i s h i g h e r t h a n a t 10 s e c o n d s and t h e r e f o r e the symmetry may be e v i d e n t i n t h e d i s l o c a t i o n d e n s i t y d i s t r i b u t i o n . 10.1.2. Boron O x i d e The c a l c u l a t i o n s a r e r e p e a t e d f o r t h e same i n i t i a l t h e r m a l f i e l d s i n t h e c r y s t a l used above 70°C/cm and 17.5°C/cm and a s s u m i n g the s u r r o u n d i n g medium i s b o r o n o x i d e . The t e m p e r a t u r e and s t r e s s f i e l d s f o r t h e t h r e e t h e r m a l g r a d i e n t s GC, GC/2 and GC/4 a r e shown i n F i g u r e 10.10 t o 10.12. P a r t s a and b show th e two f i e l d s i n t h a t o r d e r . R e s u l t s a t 10 s e c o n d s a r e shown which e x h i b i t s the h i g h e s t c o o l i n g s t r e s s e s . The MRSS-CRSS ( Y i e l d ) d i s t r i b u t i o n s i n F i g u r e 10.10(b) t o 10.12(b) a r e s i m i l a r i n shape t o the d i s t r i b u t i o n s o b t a i n e d w i t h an a r g o n a t m o s p h e r e , but s t r e s s e s a r e 20 * h i g h e r i n m a g n i t u d e . The MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s p r e s e n t some d i s t i n c t i v e c h a r a c t e r i s t i c s . At 10 s e c o n d s and 27.5 mm from t h e i n t e r f a c e the t w o - f o l d symmetry i s r e p l a c e d by a ne a r c i r c u l a r symmetry w h i c h i s a l s o p r e s e n t a t 16.5 mm. In a d d i t i o n c r o s s -s e c t i o n s a t 5 s e c o n d s show t h a t t h e e i g h t - f o l d symmetry c l o s e t o t h e i n t e r f a c e and t h e t w o - f o l d symmetry above do not form i n s t a n t l y but e v o l v e from a c l o s e to c i r c u l a r symmetry and a f o u r - f o l d symmetry r e s p e c t i v e l y . 279 F i g u r e 10.9 MRSS-CRSS ( Y i e l d ) (MPa) i n (001) p l a n e s a d i s t a n c e of 27.5 mm from t h e bottom i n t h e c r y s t a l shown i n F i g u r e 10.8 (d) 10 s. 0 280 a b F i g u r e 10.10 (a) T e m p e r a t u r e f i e l d (10 C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i d e a t 1000°C a f t e r 10 s. I n i t i a l g r a d i e n t 70 C/cm. 281 F i g u r e 1 0 . 1 1 (a) T e m p e r a t u r e f i e l d ( 1 0°"c) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i d e a t 1 0 0 0 ° C a f t e r 1 0 s. I n i t i a l g r a d i e n t 35°C/cm. 282 b F i g u r e 10.12 (a) T e m p e r a t u r e f i e l d (10 C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n b o r o n o x i d e at 1000°C a f t e r 10 s. I n i t i a l g r a d i e n t 17.5°C/cm. 283 10.2 Ambient T e m p e r a t u r e 8 Q Q ° C / C I B In t h i s c a s e o n l y an a r g o n a t m o s p h e r e i s c o n s i d e r e d s i n c e t h e b o r o n o x i d e l a y e r i s g e n e r a l l y w e l l above 8 0 0 ° C . The t e m p e r a t u r e and s t r e s s f i e l d s a f t e r 10 s e c o n d s f o r t h r e e i n i t i a l t e m p e r a t u r e g r a d i e n t s a r e shown i n F i g u r e s 10.13 t o 10.15. The s t r e s s d i s t r i b u t i o n s a r e seen t o be s i m i l a r to t h a t o b t a i n e d f o r 1000°C, and t h e s t r e s s l e v e l s between t h o s e o b t a i n e d when the s u r r o u n d i n g media was a r g o n and b o r o n o x i d e . The s t r e s s f i e l d s i n t h e c r o s s - s e c t i o n s e x h i b i t a few d i f f e r e n t f e a t u r e s , t h e most p r o m i n e n t d i f f e r e n c e b e i n g the l a c k o f l o c a l minima i n t h e < 1 0 0 > d i r e c t i o n s . 10.3 A n a l y s i s of the R e s u l t s f o r C o o l i n g The most s i g n i f i c a n t r e s u l t from the r e s u l t s d e s c r i b e d i n the l a s t s e c t i o n i s t h a t a l l c o n d i t i o n s examined gave much l a r g e r s t r e s s e s t h a n t h e s t r e s s l e v e l s d e v e l o p e d d u r i n g g r o w t h . T h i s c l e a r l y i n d i c a t e s the i m p o r t a n c e o f p r o p e r c o o l i n g to m i n i m i z e d i s l o c a t i o n d e n s i t y i n t h e t a i l end of t h e c r y s t a l and i n some c a s e s i n t h e e n t i r e c r y s t a l . C o o l i n g i n a r g o n i s shown to p r o d u c e s m a l l e r s t r e s s e s t h a n c o o l i n g i n b o r o n o x i d e . T h i s r e s u l t , i n a v e r y b r o a d s e n s e , can be d i r e c t l y c o r r e l a t e d w i t h the h e a t t r a n s f e r c o e f f i c i e n t , s i n c e l a r g e r h e a t t r a n s f e r c o e f f i c i e n t s p r o d u c e l a r g e r s t r e s s e s . The e f f e c t o f t h e h e a t t r a n s f e r c o e f f i c i e n t i s s u c h t h a t a l a r g e r v a l u e w i l l c o o l t h e s u r f a c e more e f f i c i e n t l y , l e a d i n g to l a r g e r t h e r m a l g r a d i e n t s i n b o t h r a d i a l and a x i a l d i r e c t i o n s . 284 F i g u r e 10.13 (a) T e m p e r a t u r e f i e l d (10 C) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 800°C a f t e r 10 s. I n i t i a l g r a d i e n t 70 C/cm. 285 F i g u r e 10.14 (a) T e m p e r a t u r e f i e l d ( l O ^ c ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 800°C a f t e r 10 s. I n i t i a l g r a d i e n t 35°C/cm. 286 F i g u r e 10.15 (a) T e m p e r a t u r e f i e l d ( 1 0 O U C ) and (b) MRSS-CRSS ( Y i e l d ) (MPa) f i e l d f o r a c r y s t a l c o o l i n g i n a r g o n at 800°C a f t e r 10 s. I n i t i a l g r a d i e n t 17.5 C/cm. 287 In a d d i t i o n to t h e e x t e r n a l c o n d i t i o n s , t h e c o n d i t i o n s i n t h e c r y s t a l a t t h e s t a r t of c o o l i n g must a l s o be c o n s i d e r e d . Low t h e r m a l g r a d i e n t s i n the c r y s t a l g i v e s s t r e s s e s a l o n g t h e s u r f a c e o f t h e c r y s t a l as a r e s u l t of t h e l a r g e r a d i a l g r a d i e n t s . However, the m a g n i t u d e o f the s t r e s s e s n e a r t h e i n t e r f a c e c a n n o t be e x p l a i n e d i n terms of r a d i a l and a x i a l g r a d i e n t s s e p a r a t e l y . T h i s i s shown i n F i g u r e 10.16 f o r a 800°C a r g o n t e m p e r a t u r e and F i g u r e 10.17 f o r a 1000°C b o r o n o x i d e t e m p e r a t u r e . In each c a s e two i n i t i a l g r a d i e n t s a r e c o n s i d e r e d , (a) GC and (b) GC/2. In F i g u r e 10.16 t h e c o m p a r a b l e s t r e s s e s i n b o t h c a s e s i s a t t r i b u t e d to the l a r g e r r a d i a l g r a d i e n t i n c u r v e (a) and l a r g e r a x i a l g r a d i e n t i n c u r v e ( b ) . In F i g u r e 10.17 t h e l a r g e r r a d i a l g r a d i e n t i n c u r v e (b) t h a n i n F i g u r e 10.16 can a c c o u n t f o r the l a r g e r s t r e s s e s . The l a r g e s t s t r e s s f o r i n i t i a l c o n d i t i o n GC (a) i n F i g u r e 10.17 c a n n o t be a c c o u n t e d f o r by a d i f f e r e n c e i n a x i a l or r a d i a l g r a d i e n t . In t h i s c a s e t h e l a r g e s t s t r e s s i s a t t r i b u t e d t o the r a p i d change i n r a d i a l g r a d i e n t ( c u r v a t u r e ) w i t h d i s t a n c e from t h e i n t e r f a c e o b s e r v e d . The changes i n r a d i a l g r a d i e n t c r e a t e more c o n s t r a i n s f o r a f r e e t h e r m a l e x p a n s i o n which l e a d s t o h i g h e r s t r e s s e s . The above a n a l y s i s shows t h e a d v a n t a g e of c a l c u l a t i n g t h e r m a l s t r e s s e s u s i n g the a x i s y m m e t r i c a p p r o x i m a t i o n o v e r th e p l a n e s t r a i n a p p r o x i m a t i o n w h i c h c a n n o t a c c o u n t f o r a x i a l t e m p e r a t u r e v a r i a t i o n s . 2 0 0 " 1 1 2 0 -1 0 8 0 -1 0 4 0 -F i g u r e 10.16 T e m p e r a t u r e p r o f i l e s i n t h e c r y s t a l c o o l i n g i n a r g o n a t 800 C f o r two i n i t i a l g r a d i e n t s i n t h e c r y s t a l , (a) 70 C/cm (b) 35 C/cm. The r i g h t p a r t c o r r e s p o n d s to the r a d i a l p r o f i l e s and the l e f t p a r t to t h e a x i a l p r o f i l e . F u l l and b r o k e n l i n e s c o r r e s p o n d t o the a x i s and s u r f a c e t e m p e r a t u r e s r e s p e c t i v e l y . F i g u r e 10.17 T e m p e r a t u r e p r o f i l e s i n the c r y s t a l c o o l i n g i n b o r o n o x i d e at 1000°C f o r two i n i t i a l g r a d i e n t s i n t h e c r y s t a l . (a) 70°C/cm (b) 35 C/cm. The r i g h t p a r t c o r r e s p o n d s to the r a d i a l p r o f i l e s and t h e l e f t p a r t t o the a x i a l p r o f i l e . F u l l and b r o k e n l i n e s c o r r e s p o n d to the a x i s and s u r f a c e t e m p e r a t u r e s r e s p e c t i v e l y . to oo 290 CHAPTER 11 SUMMARY AND CONCLUSIONS In th e p r e s e n t I n v e s t i g a t i o n the s t r e s s d i s t r i b u t i o n i n GaAs c r y s t a l s has been c a l c u l a t e d , a n a l y s e d and r e l a t e d t o d i s l o c a t i o n f o r m a t i o n d u r i n g s o l i d i f i c a t i o n and c o o l i n g . The c a l c u l a t i o n s were made a s s u m i n g t h a t t h e m a t e r i a l i s t h e r m o e l a s t i c , and t h a t a x i s y m m e t r i c c o n d i t i o n s a p p l y . The n u m e r i c a l s o l u t i o n s o f t h e d i f f e r e n t i a l e q u a t i o n s were o b t a i n e d e m p l o y i n g f i n i t e e l e m e n t t e c h n i q u e s . F o r t h e t e m p e r a t u r e c a l c u l a t i o n s t h e q u a s i - s t e a d y s t a t e h e a t c o n d u c t i o n e q u a t i o n was employed and t h e e l e m e n t e q u a t i o n s were o b t a i n e d u s i n g the G a l e r k i n ' s method. The b o u n d a r y c o n d i t i o n s assumed c o n s t a n t t e m p e r a t u r e a t t h e s o l i d / l i q u i d i n t e r f a c e and Newton's law of c o o l i n g a t t h e c r y s t a l s u r f a c e . L i n e a r t r i a n g u l a r t o r o i d a l e l e m e n t s were used t o d i s c r e t i z e t h e c r y s t a l . The e l e m e n t e q u a t i o n s f o r t h e s t r e s s c a l c u l a t i o n s were o b t a i n e d u s i n g t h e minimum e n e r g y p r i n c i p l e . L i n e a r and q u a s i -q u a d r a t i c e l e m e n t s were used t o d i s c r e t i z e t h e c r y s t a l domain. N u m e r i c a l v a l u e s o f t h e f i n i t e e l e m e n t s o l u t i o n s s a t i s f y i n g s i m p l i f i e d b o u n d a r y c o n d i t i o n s were compared w i t h n u m e r i c a l v a l u e s o f a n a l y t i c a l s o l u t i o n s . In t h e s t r e s s c a l c u l a t i o n s , n u m e r i c a l s o l u t i o n s were o b t a i n e d f o r r a d i a l and a x i s y m m e t r i c t e m p e r a t u r e f i e l d s and compared w i t h p l a n e s t r a i n and a x i s y m m e t r i c a n a l y t i c a l s o l u t i o n s . In a d d i t i o n , t h e t e m p e r a t u r e s c a l c u l a t e d w i t h t h e n u m e r i c a l method were compared w i t h 291 t e m p e r a t u r e s measured i n a h i g h p r e s s u r e g r ower. The m a t h e m a t i c a l model f o r t h e t e m p e r a t u r e and s t r e s s f i e l d s were e v a l u a t e d on t h e b a s i s of t h e s e r e s u l t s . The most i m p o r t a n t r e s u l t s and c o n c l u s i o n s o b t a i n e d from t h e e v a l u a t i o n a r e g i v e n below. T e m p e r a t u r e F i e l d 1. The f i n i t e e l e m e n t s o l u t i o n s of t h e t e m p e r a t u r e e q u a t i o n gave r e s u l t s i n good agreement w i t h the n u m e r i c a l v a l u e s o f t h e a n a l y t i c a l s o l u t i o n s , o b t a i n e d f o r t h e same p r o b l e m . F o r t h e a n a l y t i c a l s o l u t i o n s s i m p l i f i e d b o u n d a r y c o n d i t i o n s were used c o n s i s t i n g o f c o n s t a n t t e m p e r a t u r e s a t t h e end of t h e c r y s t a l and c o n s t a n t h e a t t r a n s f e r c o e f f i c i e n t a t t h e c r y s t a l - g a s i n t e r f a c e . The h e a t t r a n s f e r c o e f f i c i e n t s u s e d were 0.3 and 0.6 cm The c r y s t a l was t a k e n as a c y l i n d e r o f a s p e c t r a t i o two . 2. R e f i n e m e n t of t h e mesh i n t h e f i n i t e e l e m e n t s o l u t i o n s d i d not change the n u m e r i c a l v a l u e s o f t h e c a l c u l a t e d t e m p e r a t u r e s . 3. The c a l c u l a t e d t e m p e r a t u r e s a r e i n good agreement w i t h r e p o r t e d t e m p e r a t u r e measurements i n GaAs c r y s t a l s i n a M e l b o u r n c r y s t a l grower at 3.04 MPa p r e s s u r e . 292 S t r e s s F i e l d 4. The s t r e s s components c a l c u l a t e d by t h e f i n i t e e l e m e n t method c o n v e r g e t o d i f f e r e n t v a l u e s d e p e n d i n g on t h e i n i t i a l s t r a i n v a l u e s ( n o d a l t e m p e r a t u r e s ) u s e d i n t h e c a l c u l a t i o n s . 5. F o r l i n e a r and q u a s i - q u a d r a t i c d i s p l a c e m e n t s i n s i d e the e l e m e n t , a l i n e a r i n i t i a l s t r a i n i n t h e e l e m e n t g i v e s s t r e s s components c l o s e to one o r d e r o f m a g n i t u d e h i g h e r t h a n a c o n s t a n t i n i t i a l s t r a i n . 6. F o r a g i v e n n o d a l c o n f i g u r a t i o n , t h e l i n e a r e l e m e n t f o r m u l -a t i o n w i t h a c o n s t a n t i n i t i a l s t r a i n g i v e s s t r e s s components t h a t c o n v e r g e f a s t e r t h a n w i t h t h e p s e u d o - q u a d r a t i c e l e m e n t . T h i s i s a t t r i b u t e d t o t h e use o f an i n c o m p l e t e B m a t r i x i n the p s e u d o - q u a d r a t i c e l e m e n t . 7. F o r r a d i a l t e m p e r a t u r e f i e l d s , t h e s t r e s s e s c a l c u l a t e d by f i n i t e e l e m e n t u s i n g a v e r a g e t e m p e r a t u r e s a r e i n good agreement w i t h a n a l y t i c a l a x i s y m m e t r i c s o l u t i o n s . They a g r e e l e s s w e l l w i t h a n a l y t i c a l p l a n e s t r a i n s o l u t i o n s . The f i n i t e e l e m e n t s o l u t i o n s u s i n g l i n e a r i n i t i a l s t r a i n s d i f f e r m a r k e d l y from the a n l y t i c a l s o l u t i o n s . 8 . F o r a x i s y m m e t r i c t e m p e r a t u r e f i e l d s t h e s t r e s s e s c a l c u l a t e d w i t h t h e f i n i t e e l e m e n t method a r e t h r e e t i m e s s m a l l e r t h a n t h e s t r e s s e s c a l c u l a t e d u s i n g t h e p l a n e s t r a i n a p p r o x i m a t i o n . The a n a l y t i c a l a x i s y m m e t r i c s t r e s s v a l u e s a g r e e l e s s w e l l w i t h t h e f i n i t e e l e m e n t s o l u t i o n s due t o t h e d i v e r g e n c y of 293 t h e B e s s e l f u n c t i o n o f f i r s t o r d e r f o r l a r g e numbers o f terms i n t h e F o u r i e r s e r i e s employed i n the s o l u t i o n s . S p e c i f i c r e s u l t s on t h e model f o r m u l a t i o n were o b t a i n e d . C a l c u l a t i o n s were made f o r a c r y s t a l l e n g t h o f 10 mm, r a d i u s 20 mm, cone a n g l e 4 5 ° , e n c a p s u l a n t t h i c k n e s s 10 mm. The r e s u l t s c o n s i s t o f t h e f o l l o w i n g . 9. C a l c u l a t e d s t r e s s v a l u e s have been r e p o r t e d i n wh i c h t h e 12 RSS v a l u e s a r e added t o g i v e a l o c a l RSS. A d d i n g t h e 12 RSS g i v e s s t r e s s d i s t r i b u t i o n s w i t h s t r e s s l e v e l s w h i c h a r e 7 t i m e s l a r g e r t h a n the MRSS and 3 t i m e s l a r g e r t h a n t h e VMS d i s t r i b u t i o n s . A d d i n g t h e RSS components i s i n c o n s i s t e n t w i t h t h e c o n c e p t of a t e n s o r i a l q u a n t i t y . 10. C h a n g i n g t h e h e a t t r a n s f e r c o e f f i c i e n t i n a span r e p r e s e n t i n g 53 % o f t h e o r i g i n a l v a l u e s does not s u b s t a n t i a l l y change the t e m p e r a t u r e and s t r e s s d i s t r i b u t i o n i n t h e c r y s t a l . The s t r e s s l e v e l s change o n l y 20 % 11. C h a n g i n g t h e t e m p e r a t u r e g r a d i e n t i n t h e e n v i r o n m e n t s u r r o u n d i n g the c r y s t a l has a s t r o n g e f f e c t on t e m p e r a t u r e and s t r e s s d i s t r i b u t i o n s i n the c r y s t a l . The a x i a l t e m p e r a t u r e g r a d i e n t i n t h e c r y s t a l i s u s u a l l y h a l f t h e g r a d i e n t o f t h e e n v i r o n m e n t , e x c e p t a t t h e h i g h e s t g r a d i e n t o f 400°C/cm u s e d w h i c h g i v e s a x i a l g r a d i e n t s one q u a r t e r of the e n v i r o n m e n t g r a d i e n t . The maximum s t r e s s i n t h e c r y s t a l d e c r e a s e s p r o p o r t i o n a l l y t o t h e d e c r e a s e i n g r a d i e n t o f t h e e n v i r o n m e n t e x c e p t at the l o w e s t g r a d i e n t s n e a r 50°c/cm. 294 12. A s t r e s s c o n c e n t r a t i o n u s u a l l y o c c u r s below the c r y s t a l s h o u l d e r f o r c r y s t a l l e n g t h s c o m p a r a b l e t o t h e e n c a p s u l a n t t h i c k n e s s . The c o n c e n t r a t i o n d i s a p p e a r s a t low g r a d i e n t s ( 5 0 ° C / c m ) . 13. I n c r e a s i n g t h e g r a d i e n t from 100°C/cm to 400°C/cm has l i t t l e e f f e c t on t h e o p e r a t i v e s l i p s y s t e m . The changes on s t r e s s d i s t r i b u t i o n s y m m e t r i e s i n t r a n s v e r s e p l a n e s a r e m i n i m a l . 14. The s t r e s s f i e l d on t r a n s v e r s e s e c t i o n s o f t h e c r y s t a l u s u a l l y e x h i b i t s e i g h t - f o l d symmetry a t the edge. The symmetry i s a s s o c i a t e d w i t h t h e s l i p mode of the MRSS w h i c h has an e i g h t - f o l d d i s t r i b u t i o n . 15. I n c r e a s i n g t h e e n c a p s u l a n t t h i c k n e s s from 10 mm t o 25 mm w i t h o u t c h a n g i n g t h e t e m p e r a t u r e p r o f i l e i n the e n v i r o n m e n t s u r r o u n d i n g the c r y s t a l has l i t t l e e f f e c t on the t e m p e r a t u r e and s t r e s s d i s t r i b u t i o n . 16. The t e m p e r a t u r e p r o f i l e shape i n t h e b o r o n o x i d e s i g n i f i c a n t -l y i n f l u e n c e s t h e s t r e s s l e v e l and s t r e s s d i s t r i b u t i o n i n t h e c r y s t a l . a) A c o n s t a n t g r a d i e n t a c r o s s t h e e n c a p s u l a n t g i v e s t h e l o w e s t s t r e s s v a l u e s . b) A n o n - c o n s t a n t g r a d i e n t i n t h e b o r o n o x i d e changes t h e s t r e s s symmetry, r e s u l t i n g i n s t r o n g e r f o u r - f o l d symmetry on t r a n s v e r s e p l a n e s . 295 The model was used t o s t u d y the e f f e c t of t h e growth c o n d i t i o n . The main r e s u l t s and c o n c l u s i o n s a r e g i v e n below. Cone A n g l e The cone a n g l e s c o n s i d e r e d were 7 ° , 3 0 ° , 4 5 ° , 5 4 . 7 ° and 6 5 ° . E n c a p s u l a n t t h i c k n e s s and c r y s t a l l e n g t h were 10 mm c r y s t a l r a d i u s 20 mm. The r e s u l t s i n d i c a t e t h a t : 17. The VMS and MRSS d i s t r i b u t i o n s a r e s i m i l a r f o r e a c h cone a n g l e . 18. The VMS e x h i b i t s a minimum s t r e s s l e v e l f o r t h e cone a n g l e 5 4 . 7 ° which c o r r e s p o n d s t o a cone p a r a l l e l t o t h e (111) p l a n e . At low cone a n g l e s the s t r e s s b e h a v i o u r can be a c c o u n t e d f o r by the d e c r e a s e i n r a d i a l t e m p e r a t u r e g r a d i e n t s . At l a r g e cone a n g l e s the s t r e s s i n c r e a s e s p o s s i b l y due t o c o n s t r a i n t s i n t h e s t r a i n f i e l d . 19. The MRSS l e v e l s a r e i n d e p e n d e n t o f the cone a n g l e . 20. The MRSS g i v e s l e v e l s g e n e r a l l y h a l f the VMS l e v e l s . At 5 4 . 7 ° cone a n g l e the MRSS i s two t i m e s l a r g e r t h a n the VMS. The s i n g u l a r i t y i s due t o t h e c o n d i t i o n of no t r a c t i o n a t the cone s u r f a c e . F o r a cone s u r f a c e c o i n c i d i n g w i t h a (111) p l a n e t h e RSS components a r e a t a maximum. 21. The s t r e s s symmetry i n t r a n s v e r s e p l a n e s changes w i t h cone a n g l e . At 2.5 mm from t h e i n t e r f a c e t h e symmetry i n t h e c e n t r a l a r e a changes from e i g h t - f o l d f o r 7° cone a n g l e t o 296 f o u r - f o l d f o r l a r g e r a n g l e s . At t r a n s v e r s e s e c t i o n s 50 mm from th e i n t e r f a c e t h e symmetry changes from f o u r - f o l d f o r t h e 7° cone a n g l e t o a x i s y m m e t r i c f o r t h e l a r g e r a n g l e s . At the edge o f the s e c t i o n s t h e r e i s a l w a y s e i g h t - f o l d symmetry. F o r t h e g i v e n growth c o n d i t i o n s t h e s e s y m m e t r i e s may not be a p p a r e n t i n d i s l o c a t i o n s d i s t r i b u t i o n s b e c a u s e the s t r e s s l e v e l s a r e l o w e r t h a n t h e c r i t i c a l y i e l d s t r e s s e s . C r y s t a l L e n g t h The c r y s t a l l e n g t h s c o n s i d e r e d were up t o 110 mm l o n g . Two c r y s t a l r a d i i were s t u d i e d 27.5 mm and 40.0 mm. The c o n c l u s i o n s a r e v a l i d f o r a 21 mm e n c a p s u l a n t u n l e s s i t i s s p e c i f i e d t h a t t h e same c o n c l u s i o n i s v a l i d f o r o t h e r c o n d i t i o n s . 22. F o r any c r y s t a l l e n g t h t h e r a d i a l s t r e s s d i s t r i b u t i o n i s W-s h aped w i t h h i g h e r s t r e s s e s at the c r y s t a l c e n t r e and n e a r the v e r t i c a l s u r f a c e s . The v a l l e y s i n t h e W t e n d t o be c l o s e r t o the o u t s i d e s u r f a c e s n e a r th e top and bottom ends o f t h e c r y s t a l . & 23. Lower s t r e s s e s a r e o b s e r v e d at b o t h ends of t h e c r y s t a l f o r c r y s t a l l e n g t h s l a r g e r t h a n the e n c a p s u l a n t t h i c k n e s s . 24. F o r a c r y s t a l s h o r t e r t h a n th e e n c a p s u l a n t t h i c k n e s s , t h e r e i s a s t r e s s c o n c e n t r a t i o n below t h e . s h o u l d e r . F o r l o n g e r c r y s t a l s t h e r e i s a s t r e s s c o n c e n t r a t i o n above t h e e n c a p s u l a n t s u r f a c e . These a r e v a l i d f o r any e n c a p s u l a n t t h i c k n e s s and t e m p e r a t u r e g r a d i e n t s i n t h e e n v i r o n m e n t 297 s u r r o u n d i n g the c r y s t a l . I t s h o u l d be n o t e d t h a t t h i s may not be t h e ca s e f o r s h o r t c r y s t a l s and l i n e a r t e m p e r a t u r e p r o f i l e s i n the e n c a p s u l a n t as d e s c r i b e d i n p a r a g r a p h 12 above . 25. The s t r e s s l e v e l i n c r e a s e s w i t h c r y s t a l l e n g t h r e a c h i n g a maximum f o r a c r y s t a l l e n g t h t w i c e t h e e n c a p s u l a n t t h i c k n e s s . The s t r e s s s l i g h t l y d e c r e a s e s f o r l o n g e r c r y s t a l s . T h i s r e s u l t i s v a l i d f o r a l l e n c a p s u l a n t t h i c k n e s s e s and t h e r m a l g r a d i e n t s s t u d i e d . The maximum s t r e s s above t h e e n c a p s u l a n t i s due to the t h e r m a l d i s c o n t i n u i t y a t t h e e n c a p s u l a n t s u r f a c e . When t h i s c o i n c i d e s w i t h t h e m i d - l e n g t h p o s i t i o n i n the c r y s t a l q u a s i - p l a n e s t r a i n c o n d i t i o n s c o n t r i b u t e t o g i v e t h e l a r g e s t s t r e s s l e v e l d u r i n g g r o w t h . 26. The s l i p mode c o r r e s p o n d i n g t o t h e MRSS c a n n o t be a s s o c i a t e d w i t h a s t r e s s l e v e l . In l o n g i t u d i n a l (010) p l a n e s t h e most common modes a r e I I I , IV and V. 27. The s t r e s s symmetry i n t r a n s v e r s a l (001) p l a n e s shows t h e f o l l o w i n g p a t t e r n s : a) T h e r e i s always e i g h t - f o l d symmetry at t h e edge of t h e s e c t i o n s . b) The f o u r - f o l d symmetry i s s t r o n g e r c l o s e r t o t h e s o l i d / l i q u i d i n t e r f a c e . I t a l s o a p p e a r s a t the se e d end. 298 c) T w o - f o l d symmetry r e s u l t s from a d e g e n e r a t i o n of the f o u r - f o l d symmetry. I t i s m a n i f e s t e d by an e l o n g a t i o n o f t h e minima i n t h e <110> and <110> d i r e c t i o n s . d) F a r from the ends, t h e r e i s a x i s y m m e t r y , e x c e p t a t t h e edge o f t h e s e c t i o n where t h e r e i s e i g h t - f o l d symmetry. e) F o r c r y s t a l l e n g t h s l a r g e r t h a n two r a d i i and s e c t i o n s f a r from t h e i n t e r f a c e , t h e minimum s t r e s s l e v e l s a r e i n t h e <100> d i r e c t i o n s r a t h e r t h a n i n t h e <110> d i r e c t i o n s . 28. The d i s l o c a t i o n d i s t r i b u t i o n p r e d i c t e d w i t h t h e model f o r n o r m a l g r o w t h c o n d i t i o n s shows t h a t : a) The d i s l o c a t i o n d e n s i t y a t t h e s e e d and t a i l ends a r e l ower t h a n f a r from the ends. b) The f o u r - f o l d symmetry a l w a y s forms c l o s e t o t h e i n t e r -f a c e . c) T h e r e i s a c o r r e l a t i o n of s t r e s s symmetry w i t h d i s t a n c e from the cone between two c r y s t a l s w i t h r a d i u s 27.5 mm and 40.0 mm. Growth V e l o c i t y _ 3 29. F o r g r o w t h v e l o c i t i e s of 10 cm/sec and l o w e r , the temper-a t u r e f i e l d i s at s t e a d y s t a t e , and the e f f e c t o f growth v e l o c i t y on t h e s t r e s s f i e l d i s n e g l i g i b l e . F o r l a r g e r v e l o c i t i e s l a r g e r g r a d i e n t s and s t r e s s e s a r e o b t a i n e d . 299 E f f e c t of R a d i u s 30. I n c r e a s i n g the r a d i u s i n c r e a s e s t h e s t r e s s l e v e l s . T h e r e i s l i t t l e change on the r e l a t i v e s t r e s s d i s t r i b u t i o n . The e f f e c t o f i n c r e a s i n g t h e r a d i u s on s t r e s s l e v e l s depends on t h e t h e r m a l c o n d i t i o n s i n t h e e n v i r o n m e n t . F o r t h i n e n c a p s u l a n t s (21 mm) and normal g r a d i e n t s ( 1 0 0 ° C / c m ) the r e l a t i v e s t r e s s l e v e l i n c r e m e n t i s s i m i l a r t o t h e r e l a t i v e r a d i u s i n c r e m e n t . F o r t h i c k e n c a p s u l a n t s (40-50 mm) a nd/or low t h e r m a l g r a d i e n t s the r e l a t i v e e f f e c t o f i n c r e a s i n g the r a d i u s i s 2 t o 3 t i m e s l a r g e r t h a n t h e r e l a t i v e r a d i u s i n c r e m e n t . E f f e c t of T h e r m a l C o n d i t i o n s I n c r e a s i n g t h e e n c a p s u l a n t t h i c k n e s s and d e c r e a s i n g t h e t h e r m a l g r a d i e n t i n t h e e n v i r o n m e n t s u r r o u n d i n g t h e c r y s t a l d e c r e a s e s the s t r e s s l e v e l . The r e l a t i o n between s t r e s s l e v e l and g r a d i e n t r e d u c t i o n i s n e a r l y l i n e a r . The r a d i a l and a x i a l t e m p e r a t u r e g r a d i e n t s i n t h e c r y s t a l do not s i g n i f i c a n t l y change w i t h a change i n c r y s t a l r a d i u s f r o m 27.5 mm t o 40.0 mm. The s t r e s s l e v e l change c a n n o t be a c c o u n t e d f o r by changes i n t h e t h e r m a l g r a d i e n t s . The h i g h e r s t r e s s l e v e l w i t h t h e l a r g e r r a d i u s i s due t o an i n c o m p a t i b i l i t y of t h e s t r a i n f i e l d i n a c y l i n d e r a r i s i n g f rom r a d i a l t e m p e r a t u r e g r a d i e n t s . A g i v e n r a d i a l g r a d i e n t c r e a t e s l a r g e r s t r e s s e s i n a l a r g e r c r y s t a l . 31 . 32 . 33 . 300 34. To o b t a i n l a r g e a r e a s (80 * o f t h e c r y s t a l ) i n w h i c h t h e s t r e s s e s a r e l o w e r t h a n t h e y i e l d s t r e s s , an a v e r a g e g r a d i e n t i n t h e s u r r o u n d i n g e n v i r o n m e n t s h o u l d be l e s s t h a n 10°C/cra f o r t h e 27.5 mm c r y s t a l and 7°C/cm f o r t h e 40.0 mm c r y s t a l . T h i s r e q u i r e s t h a t t h e g r a d i e n t d u r i n g n o r m a l g r o w t h be r e d u c e d by a f a c t o r o f 6 t o 8 f o r e n c a p s u l a n t t h i c k n e s s o f 21 mm. Gas P r e s s u r e and N a t u r e 35. The l a r g e e f f e c t o f p r e s s u r e on d i s l o c a t i o n d e n s i t y o b s e r v e d e x p e r i m e n t a l l y c a n n o t be a c c o u n t e d f o r by t h e c o r r e s p o n d i n g p r e s s u r e d e p e n d e n c e o f t h e h e a t t r a n s f e r c o e f f i c i e n t b e t w e e n t h e c r y s t a l and t h e s u r r o u n d i n g g a s . The e f f e c t o f p r e s s u r e i s l i k e l y r e l a t e d t o e f f e c t s i n t h e s u r r o u n d i n g g a s . The t r a n s f e r e f f i c i e n c y o f t h e gas w i l l c h a n g e w h i c h c a n s i g n i f i c a n t l y m o d i f y t h e t h e r m a l g r a d i e n t s a c r o s s t h e e n c a p s u l a n t and i n t h e g a s . T h i s i s i n d i c a t e d by t h e l a r g e r h e a t t r a n s f e r c o e f f i c i e n t s b e t w e e n t h e e n c a p s u l a n t s u r f a c e and gas f o r h i g h e r gas p r e s s u r e . S o l i d / L i q u i d I n t e r f a c e Shape-Convex C u r v a t u r e 36. A c o n v e x i n t e r f a c e s i g n i f i c a n t l y m o d i f i e s t h e s t r e s s d i s t r i b -u t i o n i n a r e g i o n a p p r o x i m a t e l y one r a d i u s f r o m t h e i n t e r f a c e . The m o d i f i c a t i o n s c o n s i s t o f t h e f o l l o w i n g a) A s t r e s s c o n c e n t r a t i o n a t t h e i n t e r f a c e e d g e . 301 b) A U-shaped s t r e s s d i s t r i b u t i o n c l o s e to the i n t e r f a c e . c) The above c h a r a c t e r i s t i c s do not change w i t h c r y s t a l l e n g t h . d) H i g h e s t s t r e s s v a l u e s a r e o b t a i n e d at t h e edge of t h e i n t e r f a c e f o r a l l c r y s t a l l e n g t h s . T h i s i n d i c a t e s t h a t d i s l o c a t i o n s a r e g e n e r a t e d i m m e d i a t e l y a f t e r s o l i d i f i c a t i o n . e) S t r e s s l e v e l s a r e r e d u c e d by i n c r e a s i n g the e n c a p s u l a n t t h i c k n e s s and d e c r e a s i n g t h e t e m p e r a t u r e g r a d i e n t s . The s t r e s s c o n c e n t r a t i o n i s not e l i m i n a t e d by i n c r e a s i n g t h e e n c a p s u l a n t t h i c k n e s s . f ) I n c r e a s i n g the c r y s t a l r a d i u s does not change the s t r e s s l e v e l or d i s t r i b u t i o n c l o s e to t h e i n t e r f a c e . Concave C u r v a t u r e A c o n c a v e i n t e r f a c e shape s u b s t a n t i a l l y m o d i f i e s th e s t r e s s d i s t r i b u t i o n ' i n r e g i o n s a d j a c e n t to and about one r a d i u s t h i c k n e s s from the i n t e r f a c e . The m o d i f i c a t i o n s c o n s i s t o f t h e f o l l o w i n g a) S t r e s s c o n c e n t r a t i o n s a r e d e v e l o p e d at t h e c e n t r e and edge of the c r y s t a l a t t h e i n t e r f a c e . The s t r e s s l e v e l s a r e t h e l a r g e s t and a bout t w i c e as l a r g e as s t r e s s l e v e l s o b s e r v e d above the e n c a p s u l a n t s u r f a c e . 302 b) I n c r e a s i n g the c r y s t a l r a d i u s does n o t change the s t r e s s d i s t r i b u t i o n . The s t r e s s l e v e l i n c r e a s e s p r o p o r t i o n a l l y t o t h e r e l a t i v e change i n r a d i u s . C o o l i n g t h e C r y s t a l to Ambient T e m p e r a t u r e a f t e r Growth The e f f e c t on t e m p e r a t u r e and s t r e s s d i s t r i b u t i o n s d u r i n g c o o l i n g has been a n a l y s e d . The t e m p e r a t u r e f i e l d s were o b t a i n e d u s i n g a n a l y t i c a l time dependent s o l u t i o n s o f t h e h e a t c o n d u c t i o n e q u a t i o n . S o l u t i o n s were o b t a i n e d a s s u m i n g a p a r a b o l i c i n i t i a l t e m p e r a t u r e p r o f i l e i n the a x i a l d i r e c t i o n . I t was a l s o assumed t h a t t h e c r y s t a l i s immersed i n a medium w h i c h i s e i t h e r a r g o n or b o r o n o x i d e and the medium i s a t a c o n s t a n t t e m p e r a t u r e . The t e m p e r a t u r e s were 800°C or 1000°C f o r t h e a r g o n atmosphere and 1000°C f o r t h e b o r o n o x i d e . The a n a l y t i c a l s e r i e s s o l u t i o n s were f o u n d to c o n v e r g e to 96 % of the t h e o r e t i c a l l i m i t v a l u e . The s t r e s s f i e l d s were c a l c u l a t e d u s i n g t h e n u m e r i c a l f i n i t e e l e m e n t method employed f o r the s t r e s s c a l c u l a t i o n s d u r i n g g rowth. The a n a l y s i s f o c u s e d on a r e g i o n a d j a c e n t t o t h e i n t e r f a c e and e x t e n d i n g to a d i s t a n c e of a r a d i u s from the i n t e r f a c e . The c r y s t a l r a d i u s and l e n g t h were 27.5 mm and 110 mm r e s p e c t i v e l y . T e m p e r a t u r e p r o f i l e s showing t h r e e g r a d i e n t s were c o n s i d e r e d . The main r e s u l t s and c o n c l u s i o n s f o l l o w . 38. The t e m p e r a t u r e and s t r e s s f i e l d s d u r i n g c o o l i n g d i f f e r m a r k e d l y from the f i e l d s o b t a i n e d d u r i n g g rowth. In t h e r e g i o n o f i n t e r e s t c l o s e to the i n t e r f a c e the d i f f e r e n c e s a r e : 303 a) L a r g e r r a d i a l g r a d i e n t s . b) L a r g e r s t r e s s l e v e l s of t h e o r d e r o f two t o f o u r t i m e s h i g h e r t h a n d u r i n g g r o w t h . The s p e c i f i c c h a r a c t e r i s t i c s of t h e f i e l d s a r e : a) The l a r g e s t s t r e s s i s r e a c h e d between 10 and 20 s e c o n d s a f t e r c o o l i n g s t a r t s . b) In most c a s e s the e q u i l i b r i u m t e m p e r a t u r e i s r e a c h e d a f t e r 5 t o 10 m i n u t e s . c) The s t r e s s l e v e l i s not s t r o n g l y d e p e n d e n t on c o o l i n g and i n i t i a l c o n d i t i o n s . L a r g e r s t r e s s e s a r e o b t a i n e d w i t h l a r g e r r a d i a l and a x i a l g r a d i e n t s . T h e s e combined w i t h d i f f e r e n t a x i a l g r a d i e n t s a l o n g t h e a x i s and a t the c r y s t a l s u r f a c e g i v e the l a r g e s t s t r e s s e s . d) The s t r e s s l e v e l d e c r e a s e s r a p i d l y w i t h d i s t a n c e from the i n t e r f a c e ; t h e l a r g e r t h e i n i t i a l a x i a l g r a d i e n t i s , the s h o r t e r t h e d i s t a n c e . In a c t u a l c o o l i n g c o n d i t i o n s t h i s may not be t h e c a s e b e c a u s e the t e m p e r a t u r e i n t h e media i s not c o n s t a n t , as assumed. The symmetry o f the s t r e s s i n (001) t r a n s v e r s e p l a n e s m a r k e d l y d i f f e r s from t h e s y m m e t r i e s o b t a i n e d d u r i n g g r owth. The most i m p o r t a n t c h a r a c t e r i s t i c s a r e : a) The r a d i a l s t r e s s d i s t r i b u t i o n a l w a y s shows a U or V shape i n s t e a d o f t h e u s u a l W shape. 304 b) At 2.75 mm from the i n t e r f a c e t h e e i g h t - f o l d symmetry i s s t r o n g e r and a p p e a r s i n a l a r g e r r i n g a t t h e edge which i s about h a l f the w a f e r a r e a . c) At 8.25 mm from t h e i n t e r f a c e t w o - f o l d symmetry i s o b s e r v e d which i s formed by an e l o n g a t i o n o f the two minima i n t h e <110> and <110> d i r e c t i o n s and a d i s p l a c e -ment o f t h e s e minima t o a p o s i t i o n c l o s e r t o the edge of the w a f e r . d) F o r d i s t a n c e s l a r g e r t h a n 8.25 mm t h e symmetry depends on c o o l i n g c o n d i t i o n s and t i m e . The d i f f e r n t s y m m e t r i e s o b s e r v e d a r e t w o - f o l d , e i g h t - f o l d or n e a r l y a x i s y m m e t r i c w i t h f o u r minima e i t h e r i n t h e <100> or <110> d i r e c t i o n s . e) The symmetry i s time d e p e n d e n t . The t w o - f o l d symmetry e v o l v e s from a f o u r - f o l d symmetry p r e s e n t a t an e a r l y s t a g e d u r i n g c o o l i n g . The e i g h t - f o l d symmetry c l o s e t o the t a i l end e v o l v e s from a n e a r l y c i r c u l a r symmetry. 40. The r e s u l t s s u g g e s t t h a t a c o n s i d e r a b l e number of d i s l o c -a t i o n s may be g e n e r a t e d d u r i n g c o o l i n g g i v i n g d i s l o c a t i o n d e n s i t i e s two t o f o u r t i m e s l a r g e r t h a n f a r from the t a i l . In t h i s c a s e t h e l a r g e r d e n s i t i e s o b s e r v e d i n LEC c r y s t a l s may be a c c o u n t e d f o r by t h e s t r e s s e s g e n e r a t e d d u r i n g the c o o l i n g p r o c e s s . The t w o - f o l d s y m m e t r i e s o b s e r v e d e x p e r i m e n t a l l y i n w a f e r s from t h e seed end s u p p o r t t h i s c o n c l u s i o n . 41. The s i m i l a r i t y between the EL2 d i s t r i b u t i o n s i n wafer from t h e t a i l end showing th e t w o - f o l d symmetry and sometimes 305 minima i n the <100> d i r e c t i o n s s u p p o r t s th e mechanism 8 0 81 p r o p o s e d by Holmes e t a l . ' f o r t h e EL 2 f o r m a t i o n . T h i s mechanism as d e s c r i b e d i n A p p e n d i x I, i n v o l v e s d i s l o c a t i o n c l i m b d u r i n g c o o l i n g . Summary of the C o n c l u s i o n s A m a t h e m a t i c a l model f o r t e m p e r a t u r e and s t r e s s c a l c u l a t i o n s d u r i n g growth and c o o l i n g o f LEC GaAs has been d e v e l o p e d and v a l i d a t e d . The model r e s u l t s d e s c r i b e t h e d i s l o c a t i o n d i s t r i b u t i o n i n LEC GaAs w i t h a mechanism f o r d i s l o c a t i o n f o r m a t i o n i n w h i c h o n l y t h e r m a l s t r e s s e s a r e i n v o l v e d . The e f f e c t on d i s l o c a t i o n d i s t r i b u t i o n of the d i f f e r e n t growth v a r i a b l e s i s p r e s e n t e d and d i s c u s s e d . The c a l c u l a t i o n s show t h a t l a r g e a r e a s i n t h e c r y s t a l can have l o c a l r e s o l v e d s h e a r s t r e s s below the c r i t i c a l r e s o l v e d s h e a r s t r e s s e s and t h e r e f o r e be f r e e of d i s l o c a t i o n s . T h i s r e q u i r e s low t e m p e r a t u r e g r a d i e n t s , between 7 and 10°C/cm f o r 5.5 and 8.0 cm d i a m e t e r c r y s t a l s . The i m p o r t a n c e of c o o l i n g on d i s l o c a t i o n f o r m a t i o n has been e s t a b l i s h e d . 306 REFERENCES 1. L. H o l l a n , J.P. H a l l a i s and J.C. B r i c e ; C u r r e n t T o p i c s i n M a t e r i a l S c i e n c e . 5.E. K a l d i s Ed. N o r t h H o l l a n d . Amsterdam, 1980, pp.1-218. 2. D.N. McQuiddy, J.W. W a s s e l , J.B. L a g r a n g e and W. Wisseman ; IEEE T r a n s , on M i c r o w a v e and T e c h n i q u e s , MTT-3 2 ( 9 ) , 1984, pp.997-1008. 3. P. G r e i l i n g , IBID, pp.1144-1156. 4. C.A. S o l t e , S e m i c o n d u c t o r s and S e m i m e t a l s , S e m i i n s u 1 a t i n g GaAs, 20, 1984, pp.89-158. 5. L.F. Eastman, IBID, pp.42-45. 6. T.E. B e l l . , IEEE S p e c t r u m , O c t . 1 9 8 5 , pp.46-52. 7. P. R o b i n s o n , BYTE. Nov.1984, pp.211-227. 8. J.P. N o b l a n c , S e m i - i n s u 1 a t i n g I I I - V M a t e r i a l s , S h i v a P u b l . L t d . , 1882, pp.380-393. 9. N. Bar-Chaim, K.Y. Lau, I. Ury and A. Y a r i v , A p p l . Phys. L e t t . , 4 4 ( 1 0 ) , 1984, pp.941-943. 10. T. Sanada, S. Yamakoshi, 0. Wada, T. F u j i i , T. S a k u r a i , and M. S a s a k i , A p p l . Phys. L e t t . , 4 4 ( 3 ) , 1984, pp.325-327. 11. R.P. G a l e , J.C.C. Fan, G.W. T u r n e r , R.L. Chapman and J.V. Pa n t a n o , A p p l . Phys. L e t t . , 4 4 ( 6 ) , 1984, pp.632-634. 12. R. Birenbaum, C a n a d i a n R e s e a r c h , Dec.1985, pp.14-19. 13. E.P.A. Metz, R.C. M i l l e r and R. M a z e l s k y , J . A p p l . P hys., 33, 1962 , pp.2016. * 14. J.B. M u l l i n , B.W. Staugham and W.S. B u c k e l l , J . Phys. Chem. S o l i d s , 26, 1965, pp.782. 15. J.B. M u l l i n , R.J. H e r i t a g e , C.H. H o l l i d a y and B.W. Straugham, J . C r y s t a l Growth, 34, 1968, pp.281. 16. T.R. A u c o i n , M.J. Wade, R.L. Ros s , R.O. Savage, S o l i d S t a t e T e c h n . , Jan.1979, pp.59-67. 17. R.C. P u t t b a c h , G. E l l i o t and W.M. F o r d , I n t . Conf . V a por Growth E p i t a x y / A m . Conf. C r y s t a l Growth, 5 t h , San D i e g o , C a l i f . , 1981. 307 18. B . F o r d , J . G a l t , J . B a r r e r a and N . H e l g e l a n d , ACCG-6, ICVGE-6, A t l a n t i c C i t y , New J e r s e y , J u l y 1984, pp.1-20. 19. G . E l l i o t , AACG/West-8, F a l l e n L e a f L a k e , CA., June 4-7, 1985 . 20. R.K. W i l l a r d s o n i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.96-110. 21. W.C. Dash, J . A p p l . Phys . , 3 0 ( 1 4 ) , 1959, pp.355-358. 22. W. B a r d s l e y , D.T.J. H u r l e and B.C. J o y c e , J . C r y s t a l Growth, 40, 1977, pp.13-20. 23. IBID, pp. 21-28. 24. IBID, 42, 1977, pp.47-482. 25. A.S. J o r d a n , R. C a r u s o , A.R. Von N e i d a and J.W. N e i l s e n , J . A p p l . Phys., 52, 1981, pp.3331. 26. D. V a n d e r m a t e r , A.G. E l l i o t and C h i a - L i Wei, AACG/West-8, F a l l e n L e a f Lake, CA., June 4-7, 1985. 27. C.R. L e w i s , C.W. F o r d and J.G. Werthen, A p p l . Phys. L e t t . , 4 5 ( 8 ) , 1984, pp.895-897. 28. A.J.R. de Kock, W.M. Van W i j g e r t , J.H.T. Hengst and J.M.P.L. H u y b r e g t s , J . C r y s t a l Growth, 31, 1977, pp.13-28. 29. T. Kamejima, J . M a t s u i , Y. S e k i and H. Watanabe, J . A p p l . Phys., 5 0 ( 5 ) , 1979, pp.3312-3321. 30. F.A. Ponce, F.C. Wang and R . H i s h e s i n " 3 r d I n t e r . C onf. on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. Blakemore ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.68-75. 31. A. A u t h i e r , J . C r y s t a l Growth, 42, 1977, pp.612-620. 32. A.G. C u l l i s , P.D. A u g u s t and D.J. S t i r l a n d , J . A p p l . Phys., 4 1 ( 5 ) , 1980, pp.2556-2560. 33. F . W e i n b e r g , P r i v a t e C o m m u n i c a t i o n . 34. G. J a c o b , J.P. F a r g e s , C. S h e m a l i , M. Duseaux, J . H a l l a i s , W.J. B a r t e l s and P . J . R o s k n o e r , J . C r y s t a l Growth, 57, 1982, pp.245-258. 35. H. Khoda, K. Yamada, H. N a k a n i s h i , T. K o b a y a s h i , J . Osaka and K. Hoshikawa, J . C r y s t a l Growth, 71, 1985, pp.813-816. 308 36. F. Hyuga, H. Kohda, H. N a k a n i s h i , T. K o b a y a s h i and K. Hoshikawa, A p p l . Phys. L e t t . , 4 7 ( 6 ) , 1985, pp.620-622. 37. T. Shimada, K. T e r a s h i m a , H. N a k a j i m a and T. Fukuda, J a p . J . A p p l . P h y s . , 2 3 ( 1 ) , 1984, pp.L23-L25. 38. IBID, 2 3 ( 7 ) , 1984, pp.L441-L444. 39. M. Watanabe, T. F u j i i , S. W a s h l z u k a , S. Y a s h i r o , J . U s h l z a w a and S. Matsumura, ACCG-6, ICVGE-6, A t l a n t i c C i t y , N.J., J u l y 15-20, 1984. 40. A.G. E l l i o t , C. Wei, R. F e r r a r o , G. Woolhouse, M. S c o t t and R. H i s k e s , J . C r y s t a l Growth, 70, 1984, pp. 169-178. 41. S. C l a r k and D.J. S t i r l a n d , I n s t . Phys. C o n f . S e r . , 6 0 ( 7 ) , 1981, pp. 339-344. 42. R.J. R o e d e l , A . J . Von N e i d a , R. C a r u s o and L.R. Dawson, J . E l e c t r o c h . S o c ., 126, 1979, pp.637. 43. T. Kamejima, F. S h i m u r a , Y. Matsumoto, H. Watanabe and J . M a t s u i , J a p . J . A p p l . Phys., 2 3 ( 1 1 ) , 1982, pp.L721-L723. 44. P.M. P e t r o f f and R.L. Hartman, A p p l . P h ys. L e t t . , 23, 1973, pp.469. 45. W.A. B r a n t l e y and D.A. H a r r i s o n , i n " P r o c . IEEE R e l i a b i l i t y P h y s i c s Symp.", A p r i l 1973, pp.267. 46. G. Zaeschmar, i n "AGARD P r o c " , London, Ed. H. Hodara ( N a t l . T e c h . I n f o . S e r v i c e , S p r i n g f i e l d , VA. ) ( 2 1 9 ) , 1977. 47. Y. K a d o t a , K. C h i n o , J a p . J . A p p l . P h y s . , 2 2 ( 1 0 ) , 1983, pp.1563-1566. 48. G. J a c o b , C. V e n g e r , J.P. F a r g e s , J . H a l l a i s , G.M. M a r t i n , M.G. B e r t h and G. P o i b l a n d , I n t . Phys. C o n f . S e r . , ( 5 6 ) , 1981, pp.455-464. 49. J.V. D i L o r e n z o , A.S. J o r d a n , A.R. Von N e i d a and P. O'Connor, i n " 3 r d I n t e r . C o n f . on S e n i - I n s u 1 a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. Blakemore ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984). 50. Y. N a n i s h i , S. I s h i d a , T. Honda, H. Yamazaki and S. Miyazawa, J a p . J . A p p l . Phys., 2 1 ( 6 ) , 1982, pp.L335-L337, 51. Y. N a n i s h i , S. I s h i d a and S. Miyazawa, J a p . J . A p p l . Phys., 2 2 ( 1 ) , 1983, pp.L54-L56. 52. S. Miyazawa, Y. I s h i i , A. I s h i d a and Y. N a n i s h i , A p p l . Phys. L e t t . , 4 3 ( 9 ) , 1983, pp.853-855. 309 53. T. Takebe, M. Shimazu, A. K a w a s a k i , T. K o t a n i , R. N a k a i , K. K i k u c h i , S. M u r a l , K. Tada, S. A k a i and T. S u z u k i , i n " 3 r d I n t e r . C onf. on S e m i - I n s u l a t i n g I I I - V Compounds", Kah-n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.335-346. 54. H.V. W i n s t o n , A.T. H u n t e r , H.M. O l s e n , R.P. B r y a n and R.E. Lee, A p p l . Phys. L e t t . , 4 5 ( 4 ) , 1984, pp.447-449. 55. H. Y a m a z a k i , T. Honda, S. I s h i d a and Y. K a w a s a k i , A p p l . Phys. L e t t . , 45( 10), 1984, pp.1109-1111 . 56. S. Myazawa, T. M i z u t a n i and H. Y a m a z a k i , J a p . J . A p p l . Phys., 2 1 ( 9 ) , 1982, pp.L542-L544. 57. M. P e i g e n , W. J u , Z. Y u a n x i , Y. J i n h u a and L. Shouchum i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", Kah-n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.134-140. 58. R.T. B l u n t , S. C l a r k and D.J. S t i r l a n d , IEEE T r a n s , on Microwave and T e c h n i q u e s , MTT-30(7), 1982, pp.943-949. 59. R.T. B l u n t , i n "Semi-1nsu1 a t i n g I I I - V M a t e r i a l s " , E v i a n 1982, S. Makram-Ebeid and B. Tucks e d s . , ( S h i v a , N a n t w i c h , E n g l a n d 1982), pp.107-112. 60. T. Matsumura, H. E m o r i , K. T e r a s h i m a and T. Fukuda, J a p . J . A p p l . Phys., 22, 1983, pp.L154. 61. A. Tamura and T. Onuma, J a p . J . A p p l . Phys., 2 4 ( 4 ) , 1985, pp.510-511. 62. T. Honda, Y. I s h i i , S. Miyazawa, H. Yamazaki and Y. N a n i s h i , J a p . J . A p p l . Phys., 22, 1983, pp.L270-L272. 63. K. Watanabe, H. N a k a n i s h i , K. Yamada, and K. Hoshikawa, A p p l . Phys. L e t t . , 4 5 ( 6 ) , 1984, pp.643-645. 64. F. Hyuga, J a p . J . A p p l . Phys., 2 4 ( 2 ) , 1985. pp.L160-L162. 65. M. O t s u b o , M. N a k a t a n i and K. S h i r a h a t a , E v i a n 1982, S. Makram-Ebeid and B. T u c k s e d s . , ( S h i v a , N a n t w i c h , E n g l a n d 1982). pp.130-133. 66. I. G r a n t , D. Rumsby, R.M. Ware, M.R. B r o z e l and B. Tuck, IBID, pp.98-106. 67. M.R. B r o z e l , L. E a v e s and J . P . J . McCann, i n " 3 r d I n t e r . C o n f . on Semi-Insu1 a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.287-301. 310 68. S. Makram-Ebeid, P. L a n g l a d e and G.M. M a r t i n , IBID, pp.184-201 . 69. P.F. L i n d q u i s t , J . A p p l . P hys., 48, 1977, pp.1262. 70. E.M. S w i g g a r d , S.H. Lee and F.W. Von B a t c h e l d e r , I n t . Phys. Conf. S e r . , 45, 1979, pp.125. 71. R.G. W i l s o n and C A . Evans, J r . I n t . Phys. Conf. S e r . , 56, 1981, pp.563. 72. W. K u t t , D. B l i m b e r g , M. M a i e r , H. K r a u t l e , F. K o h l and E. B a u s e r , A p p l . Phys. L e t t . , 44( 11 ), 1984, pp.1078-1080. 73. C.D. B r a n d t , A.M. H e n n e l , L.M. P a w l o w i c z , F.P. Dabkowski, J . L a g o wski and H.C. G a t o s , A p p l . Phys. L e t t . , 4 7 ( 6 ) , 1985, pp.607-609. 74. A.G. M i l n e s i n "Deep I m p u r i t i e s i n S e m i c o n d u c t o r s " , W i l e y , New York, 1973, pp.57. 75. A.M. Huber, N.T. L i n h , M. V a l l a d o n , J . L . Debrun, G.M. M a r t i n , A. M i t o n n e a u and A. M i r c e a , J . A p p l . Phys., 50, 1979, pp.4022. 76. G.M. M a r t i n , G. J a c o b , J . P o i b l u d , A. G o l t z e n e and C. Schwab, I n s t . Phys. Conf. S e r . , ( 5 9 ) , 1981, pp.281-286. 77. T. I s h i d a , M. Maeda and S. T a k e u c h i , A p p l . Phys., 21, 1980, pp.257 . 78. E.R. Weber, H. Ennen, U. Kaufmann, J . W i n d s c h e i f and J . S c h n e i d e r , J . A p p l . Phys., 53, 1982, pp.6140. 79. J . L a g o w s k i , H.C. G a t o s , J.M. P a r s e y , K. Koda, M. Kaminska, and W. W a l a k i e w i c z , A p p l . Phys. L e t t . , 40, 1982, pp.342. 80. D.E. Holmes, R.T. Chen, K.R. E l l i o t t , C.G. K i r k p a t r i c k and P.W. Yu, IEEE T r a n s , on Microwave T h e o r y and T e c h n i q u e s , MTT-30(7), 1982, pp.949-955. 81. D.E. Holmes, R.T. Chen, K.R. E l l i o t t and C.G. K i r k p a t r i c k , A p p l . Phys. L e t t . , 4 0 ( 1 ) , 1982, pp.46-51. 82. C.G. K i r k p a t r i c k , R.T. Chen, D.E. Holmes, P.M. A s b e c k , K.R. E l l i o t t , R.D. F a i r m a n and J.R. O l i v e r i n " S e m i c o n d u c t o r s and S e m i m e t a l s " , S e m i n s u l a t i n g GaAs, 20, 1984, pp.159-231. 83. L.B. Ta, H.M. Hobgood, A. R o h a t g i and R.N. Thomas, J . A p p l . Phys., 5 3 ( 8 ) , 1982, pp.5771-5775. 84. D.E. Holmes, R.T. Chen, K.R. E l l i o t t and C.G. K i r k p a t r i c k , A p p l . Phys. L e t t . , 4 3 ( 3 ) , 1983, pp.305-307. 311 85. D.E. Holmes, H. Kuwamoto, C.G. K i r k p a t r i c k and R.T. Chen, i n " 3 r d I n t e r . Conf. on S e m i - 1 n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. Blakemore ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.204-213. 86. D.J. S t i r l a n d , I. G r a n t , M.R. B r o z e l and R.M. Ware, I n s t . Phys. C o n f . P r o c , (67) S e c . l , 1983, pp.285-290. 87. M.S. S k o l n i c k , D.A.O. Hope and B. C o c k a y n e , i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.446. 88. D.J. S t i r l a n d , M.R. B r o z e l and I. G r a n t , A p p l . Phys. L e t t . , 4 6 ( 1 1 ) , 1985, pp.1066-1068. 89. K. Wada and N. Inoue, A p p l . Phys. L e t t . , 4 7 ( 9 ) , 1985, pp.945-947 . 90. K.R. E l l i o t t , R.T. Chen, S.G. Greenbaum and R.J. Wagner i n " 3 r d I n t e r . C onf. on Semi-Insu1 a t i n g I I I - V Compounds", Kah-n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.239-245. 91. IBID, A p p l . Phys. L e t t . , 4 4 ( 9 ) , 1984, pp.907-909. 92. U. Kaufmann, J . W i n d s c h e i f , M. B e a u m l e r , J . S c h n e i d e r and F. K o h l , i n " 3 r d I n t e r . C onf. on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.246-253 . 93. E.R. Weber i n " 3 r d I n t e r . C o n f . on Semi-1nsu1 a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.296-301 . 94. N. T s u k a d a , T. K i k u t a and K. I s h i d a , J a p . J . A p p l . Phys., 2 4 ( 9 ) , 1985, pp.L689 -L692. 95. J . L a g o w s k i , D.G. L i n , T.P. Chen, M. S k o w r o n s k i and H.C. G a t o s , A p p l . Phys. L e t t . , 4 7 ( 9 ) , 1985, pp.929-931. 96. M. T a n i g u c h i , Y. M o c h i z u k i and T. Ikoma, i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.231-245. 97. M. T a n i g u c h i and T. Ikoma, A p p l . P hys. L e t t . , 4 5 ( 1 ) , 1984, pp.69-71 . 312 98. J . L a g o w s k i , D.J. L i n , T. Aoyama and H.C. G a t o s , A p p l . Phys. L e t t . , 4 4 ( 3 ) , 1984, pp.336-338. 99. IBID, i n " 3 r d I n t e r . Conf. on S e n i - 1 n s u 1 a11ng I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J.S. Blakemore ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1984), pp.223-230. 100. K. I s h i d a , A. Y a h a t a and T. K i k u t a , J a p . J . A p p l . P hys., 2 4 ( 4 ) , 1985, pp.L250-L252 . 101. A. K a d o t a and K. C h i n , J a p . J . A p p l . P h y s . , 2 2 ( 1 0 J , 1983, pp.1563-1566. 102. F. Hasegawa, N. Yamamoto and Y. N a n n i c h i , A p p l . P h ys. L e t t . , 4 5 ( 4 ) , 1984, pp.461-463. 103. J . Osaka, F. Hyuga and K. Watanabe, A p p l . P h ys. L e t t . , 4 7 ( 1 2 ) , Dec.1985, pp.1307-1309. 104. R.T. Chen, D.E. Holmes and P.M. A s b e c k , A p p l . Phys. L e t t . , 4 5 ( 4 ) , 1984, pp.549-561 . 105. A.T. H u n t e r , H. Kimura, J.P. Baukus, H.V. W i n s t o n and O.J. Marsh, A p p l . Phys. L e t t . , 4 4 ( 1 ) , 1984, pp.74-76. 106. B. W a k e f i e l d , P.A. L e i g h , M.H. Lyons and C R . E l l i o t t , A p p l . Phys. L e t t . , 4 5 ( 1 ) , 1984, pp.66-68. 107. C P . Lee, i n "Semi-1nsu1 a t i n g I I I - V M a t e r i a l s " , E v i a n 1982, S. Makram-Ebeid and B. Tucks e d s . , ( S h i v a , N a n t w i c h , E n g l a n d 1982), pp.324-335. 108. S. Makram-Ebeid A. M i t o n n e a u and G. L a u r e n c e , IBID, pp.336-343 . 109. C. K o c o t and C. S t o l t e , IEEE T r a n s , on M i c r o w a v e and T e c h n i q u e s , MTT-30 ( 7 ) , 1982, pp.963-968. 110. R.T. Chen and D.E. Holmes, J . C r y s t a l Growth, 61, 1983, pp.111-124. 111. D.E. Holmes, K.R. E l l i o t t , R.T. Chen and C.G. K i r k p a t r i c k , i n " S e m i - I n s u l a t i n g I I I - V Compounds", E v i a n 1982, S. Makram-Ebeid and B. T u c k s e d s . , ( S h i v a , N a n t w i c h , E n g l a n d 1982), pp.10-27. 112 . 113 . G. Shoeck and W.A. T i l l e r , P h i l . Mag., 5, 1960, pp.43-63 A.G. E l l i o t , C. Wei, R. F e r r a r o , G. Woolhouse, M. S c o t t and R. H i s k e s , J . C r y s t a l Growth, 70, 1984, pp.169-178. 313 114. Yu. A. G r i g o r i e v , J . P . G r i s h i n , G.F. J u z n e t s o v , M.G. M i l v i d s k i , V.B. O s v e n s k i , I.N. S h e r s h a k o v a and S.S. S h i f r i n , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 4 ( 2 ) , 1980, p p . 3 0 0 - 3 0 3 . 115. J.C. B r i c e , J . C r y s t a l G r o w t h , 7, 1970, p p . 9 - 1 2 . 116. T.S. P l a s k e t , J.M. W o o d a l l and A. S e g m u l l e r , J . E l e c t r o c h . S o c , 118, 1971, pp.115-117. 117. E. S c h m i d and N. B o a s , " P l a s t i c i t y o f C r y s t a l s " , Chapman and H a l l L t d . , L o n d o n , 1968. 118. J . J . G i l m a n , " M i c r o m e c h a n i c s o f F l o w i n S o l i d s " , McGraw H i l l Book Co., N.Y., 1968. 119. E. B i l l i g , P r o c . Roy. S o c , A235, 1956, p p . 3 7 - 5 5 . 120. P. P e n n i n g , P h i l i p s Res. R e p t s . , 13, 1958, pp.79-97. 121. A. S t e i n e m a n n and U. Z i m m e r l i , i n " C r y s t a l G r o w t h " , B o s t o n , J u n e 20-24, 1966, H.S. P e i s e r Ed. L o n d o n , Pergamon P r e s s , 1967, p p . 8 1 - 8 7 . 122. J.C. B r i c e and G.D. K i n g , N a t u r e , 209, 1966, pp.1364. 123. M. Duseaux and G. J a c o b , A p p l . P h y s . L e t t . , 4 0 ( 9 ) , 1982, pp.790-792 . 124. G. J a c o b , i n "Semi-1nsu1 a t i n g I I I - V M a t e r i a l s " , E v i a n 1982, S. M a k r a m - E b e i d and B. T u c k s e d s . , ( S h i v a , N a n t w i c h , E n g l a n d 1 9 8 2 ) , pp.2-18. 125. G. J a c o b , J . P . F a r g e s , C . S h e m a l i , M. D u s e a u x , J . H a l l a i s , W.J. B a r t e l s and P . J . R o s k n o e r , J . C r y s t a l G r o w t h , 57, 1982, p p . 2 4 5 - 2 5 8 . 126. J . L a g o w s k i , H.C. G a t o s , T. Aoyama and D.G. L i n , i n " 3 r d I n t e r . C o n f . on S e m i - 1 n s u l a t i n g I I I - V Compounds", Ka h - n e e -t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , p p . 6 0 - 6 7 . 127. I B I D , A p p l . P h y s . L e t t . , 4 5 ( 6 ) , 1984, p p . 6 8 0 - 6 8 2 . 128. V . I . N i t i k e n k o and V.L. Indenbom, Sov. P h y s . C r y s t . , 6 ( 3 ) , 1961, p p . 3 4 1 - 3 4 6 . 129. S. Y a s u a m i , H. M i k a m i and A. H o j o , J a p . J . A p p l . P h y s . , 2 2 ( 1 0 ) , 1983, pp.1567-1569. 314 130. G.T. Brown, M.S. S k o l n i c k , G.R. J o n e s , B.K. T a n n e r r and S . J . B a r n e t t , I n " 3 r d I n t e r . C o n f . on S e m i - 1 n s u l a t 1ng I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , pp.77-82 . 131. T. K i t a n o , T. I s h i k a w a , H. Ono and J . M a t s u i , i n " 4 t h C o n f . on S e m i - I n s u l a t i n g I I I - V M a t e r i a l s , May 1 8 - 2 1 , 1986. Hakone, J a p a n . 132. M. Yamada, P h y s . L e t t . , 4 7 ( 4 ) , 1985, pp.365-367. 133. P. D o b r i l l a and J . S . B l a k e m o r e , i n " 4 t h C o n f . on S e m i -I n s u l a t i n g I I I - V M a t e r i a l s , May 18-21, 1986. Hakone, J a p a n . 134. H.J. H o r e l , M. A l b e r t , D. G u i d o t t i and E. P a r r e l , i n " 4 t h C o n f . on S e m i - I n s u l a t i n g I I I - V M a t e r i a l s , May 18-21, 1986. Hakone, J a p a n . 135. J.C. B r i c e , J . C r y s t a l G r o w t h , 2, 1968, p p . 3 9 5 - 4 0 1 . 136. V.A. B o r o d i n , V.N. E r o f r e v , J.A. S t a r t s e v and V.A. T a t a r c h e n k o , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 0 ( 7 ) , 1976, pp.103-105. 137. A.S. J o r d a n , R. C a r u s o and A.R. Von N e i d a , The B e l l S y s . T e c h n . J . , 5 9 ( 4 ) , 1980, p p . 5 9 3 - 6 3 7 . 138. I.M. B u c k l e y - G o l d e n and C . J . Humphreys, pma., 3 9 ( 1 ) , 1979, pp.41-57 . 139. A.S. J o r d a n , J . C r y s t a l G r o w t h , 4 9 ( 3 ) , 1980, p p . 6 3 1 - 6 4 2 . 140. R. T h y a g a r a j a n , R.C. N a r u l a and T.R. P a r a s h a r , I n d i a n J . P u r e and A p p l . P h y s . , 17, 1979, pp.650-654. 141. B. L e n t , M. B o n n e t , N. V i s e n t i n and J . P . D u c h e m i n , M i c r o e l e c t r o n i c s J . , 1 3 ( 1 ) , 1982, pp.5-9. 142. Y. K a d o t a , M. K a k i m o t o , Y. Masa, A. T a n a k a and T. Yokoyama, i n " 3 r d I n t e r . C o n f . on S e m i - 1 n s u 1 a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , pp.157-159. 143. H. E m o r i , T. M a t s u r a u r a , T. K i k u t a and T. F u k u d a , J a p . J . A p p l . P h y s . , 2 2 ( 1 1 ) , 1983, p p . 1 6 5 2 - 1 6 5 5 . 144. H. E m o r i , K. T e r a s h i m a , F. O r i t o , T. K i k u t a and T. F u k u d a , i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , pp.111-117. 315 145. T. F u k u d a , K. T e r a s h i m a , T. K a t s u m a t a , F. O r i t o , S. Ozawa, T. O k o b a t a and T. S a t o , ACCG/6, OCVGE/6, A t l a n t i c C i t y ( N . J . ) , J u l y 1984. 146. T. S h i m a d a , K. T e r a s h i m a , H. N a k a j i m a and T. F u k u d a , J a p . J . A p p l . P h y s . , 2 3 ( 1 ) , 1984, p p . L 2 3 - L 2 5 . 147. T. S h i m a d a , T. O b o k a t a and T. F u k u d a , J a p . J . A p p l . P h y s . , 2 3 ( 7 ) , 1984, pp.L441-L444 . 148. A.S. J o r d a n , A.R. Von N e i d a and R. C a r u s o , J . C r y s t a l G r o w t h , 70, 1984, pp.555-573. 149. N.S. B e l y a t s u k a y a , S.P. G r i s h i n a , E.V. L o p a t i n , M.G. M i l v i d s k i , V.P. O s v e n s k i i and V.G. F o r m i n , Sov. P h y s . C r y s t . , 17, 1972 , pp.126. 150. M.G. M i l v i d s k i i , V.B. O s v e n s k i i and S.S. S h i f r i n , J . C r y s t a l G r o w t h , 52, 1981, p p . 3 9 6 - 4 0 3 . 151. Y. S e k i , H. Watanabe and J . M a t s u i , J . A p p l . P h y s . , 4 9 ( 2 ) , 1978, p p . 8 2 2 - 8 2 8 . 152. T. S u z u k i , S. A k a i , K. Kohe, I . N i s h i d a , K. F u j i t a and N. K i t o , Sumitomo E l e c . T e c h . Rev., 18, 1978, pp.105. 153. P.D. G r e e n e , J . C r y s t a l G r o w t h , 50, 1982, pp.612. 154. K. T a d a , A. K a w a s a k i , T. K o t a n i , R. N a k a i , T. Kabebe, S. A k a i and T. Yamaguchi , i n " 3 r d I n t e r . C o n f . on S e m i -I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , pp.36-44. 155. G. J a c o b , J . C r y s t a l G r o w t h , 59, 1982, p p . 6 6 9 - 6 7 1 . 156. Yu. A G r i g o r i e v , S.P. G r i s h i n , G.F. K u z n e t s o v , M.G. M i l v i d s k i i , V.B. O s v e n s k i i , I.N. S h e r s h a k o v a and S.S. S h i f r i n , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 4 ( 2 ) , 1980, p p . 3 0 0 - 3 0 3 . 157. R. F o r n a r i , C. P a o r i c i , L. Z a n o t t i and G. Z u c c a l l i , J . C r y s t a l G r o w t h , 63, 1983, pp.415. 158. H. M i y a i r i , T. I n a d a , T. O b o k a t a , M. N a k a j i m a , T. K a t s u m a t a and T. Fukuda,. J a p . J . A p p l . P h y s . , 2 4 ( 9 ) , 1985, p p . L 7 2 9 -L732 . 159. D.L. B a r r e t , S. M c G u i g a n , H.M. Hobgood, G.W. E l r i s g e and R.N. Thomas, J . C r y s t a l G r o w t h , 70, 1984, pp.179-184. 316 160. H.M. Hobgood, R.N. Thomas, D.L. B a r r e t , G.W. E l r i d g e , M.M. S o p i r a and M.C. D r i v e r , i n " 3 r d I n t e r . C o n f . on S e m i -I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , p p . 1 4 9 - 1 5 6 . 161. E . J . F o u l k e s , M.R. B r o z e l , I . G r a n t , P. S i n g e r , B. W a l d o c k and R.M. Ware, I B I D , pp.160-164. 162. H. K i m u r a , C.B. A f a b l e , H. M. O l s e n , A.T. H u n t e r and H.V. W i n s t o n , J . C r y s t a l G r o w t h , 70, 1984, p p . 1 8 5 - 1 9 0 . 163. M.G. M i l v i d s k i i and E.P. B o c h k a r e v , J . C r y s t a l G r o w t h , 44, 1978, pp.61-74. 164. A. S h e r , A.B. Chen and W.E. S p i c e r , A p p l . P h y s . L e t t . , 4 6 ( 1 ) , 1985, p p . 5 4 - 5 6 . 165. S. M i y a z a w a , 1983 E u r o p e a n P a t e n t A p p l i c a t i o n 8 33021652. (From R e f . 164 ) . 166. H. E h r e n r e i c h and J . P . H i r t h , A p p l . P h y s . L e t t . , 4 6 ( 1 ) , 1985, p p . 6 6 8 - 6 7 0 . 167. J.C. M i k k e l s e n J r . , and J.B. B o y c e , P h y s . Rev. B.28, 1983, pp.7130. 168. T. K a m e j i m a , J . M a t s u i , Y. S e k i and H. W a t a n a b e , J . A p p l . P h y s . , 5 0 ( 5 ) , 1979, pp. 3 3 1 2 - 3 3 2 1 . 169. D. L a i s t e r and G.M. J e n k i n s , J . M a t e r . S c i e n c e , 3, 1968, pp.584. 170. D. L a i s t e r and G.M. J e n k i n s , P h i l . Mag., 20, 1 9 7 1 , pp.361 ; and I B I D , 23, p p . 1 0 7 7 . 171. L.M. M o r g u l i s , M.G. M i l v i d s k i i and B.B. O s v e n s k i i , I z v . Ak. Nauk. SSSR. S e r . F i z . , 3 8 ( 7 ) , 1974, p p . 6 5 - 7 3 . 172. P.M. H u t c h i n s o n and P.S. R o b s o n , P h i l . Mag., 30, 1974, p p . 6 5 - 7 3 . 173. S.S. R u v i m o v , L.M. S o r o k i n , M. P a z i m a n , I . K h a i n d e n r a i k h , R. S h o l t s and R.O. S t a r o b o g a t o v , Sov. P h y s . S o l i d S t a t e , 2 4 ( 5 ) , 1982, p p . 8 6 9 - 8 7 0 . 174. S.S. S h i f r i n and A.V. M a r k o v , Sov. P h y s . C r y s t . , 2 5 ( 5 ) , 1980, p p . 6 2 5 - 6 2 7 . 175. R. F o r n a r i , P. F r a n z o s i , G. S a l v i a t i , C. F e r r a r i and C. G h e z z i , J . C r y s t a l G r o w t h , 72, 1985, p p . 7 1 7 - 1 2 5 . 176. M.P. S c o t t , S.S. Laderman and A.G. E l l i o t , A p p l . P h y s . L e t t . , 45( 1 2 ) , 1985, pp. 1 280-1282. 317 177. B. P i c h a u d , N. Bur 1 e - D u r b e c , F. M i n a r i and M. D u s e a u x , J . C r y s t a l G r o w t h , 71, 1985, p p . 6 4 8 - 6 5 4 . 178. M. N a k a j i m a , T. K a t s u m a t a , K. T e r a s h i m a and K. I s h i d a , J a p . J . A p p l . P h y s . , 2 4 ( 1 ) , 1985, pp. L 6 5 - L 6 8 . 179. J . Osaka and K. O s h i k a w a , i n " 3 r d I n t e r . C o n f . on S e m i -I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , p p . 1 2 6 - 1 3 3 . 180. J . O s a k a , T. K o b a y a s h i and K. H o s h i k a w a , J a p . J . A p p l . P h y s . , 2 3 ( 4 ) , 1984, p p . L 1 9 5 - L 1 9 7 . 181. K. T e r a s h i m a , T. K a t s u m a t a , F. O r i t o and T. F u k u d a , J a p . J . A p p l . P h y s . , 2 3 ( 4 ) , 1984, p p . L 3 0 2 - L 3 0 4 . 182. W. L a n g l o i s and K i Lun L i , J . C r y s t a l G r o w t h , 62, 1983, p p . 4 8 1 . 183. G.M. O r e p e r and J . S z e k e l e y , J . C r y s t a l G r o w t h , 64, 1983, pp.505. 184. M. M i h e l c i c and K. W i n g e r a t h , J . C r y s t a l G r o w t h , 7 1 , 1985, pp.163-168. 185. K. T e r a s h i m a , T. K a t s u m a t a , F. O r i t o , T. K i k u t a and T. F u k u d a , J a p . J . A p p l . P h y s . , 2 2 ( 6 ) , 1983, p p . L 3 2 5 - L 3 2 7 . 186. M. S h i n o h a r a , T. I t o , K. Yamada and Y. Imamura, J a p . J . A p p l . P h y s . , 2 4 ( 9 ) , 1985, p p . L 7 1 1 - L 7 1 3 . 187. H.V. W i n s t o n , A.T. H u n t e r , H.M. O l s e n , R.P. B r y a n and R.E. L e e , i n " 3 r d I n t e r . C o n f . on S e m i - I n s u l a t i n g I I I - V Compounds", K a h - n e e - t a 1984, ed. by D.C. Look and J . S . B l a k e m o r e ( S h i v a , N a n t w i c h , C h e s h i r e , E n g l a n d 1 9 8 4 ) , p p . 4 0 2 - 4 0 5 . 188. S. M i y a z a w a , T. Honda, Y. I s h i and S. I s h i d a , A p p l . P h y s . L e t t . , 4 4 ( 4 ) , 1984, p p . 4 1 0 - 4 1 2 . 189. N.A. A v d o n i n , S.S. V a k h r a m e e v , M.G. M i l v i d s k i i , V.B. O s n s k i i , B.A. S a k h a r o v , V.A. S m i r n o v and Yu . F . S h c h e l k i n , I z v . Ak. Nauk. SSSR. S e r . F i z . , 3 6 ( 3 ) , 1972, p p . 5 0 2 - 5 0 7 . 190. A.S. J o r d a n , R. C a r u s o , A.R. Von N e i d a and J.M. N i e l s e n , J . A p p l . P h y s . , 5 2 ( 5 ) , 1981, p p . 3 3 3 1 - 3 3 3 6 . 191. A.S. J o r d a n , J . C r y s t a l G r o w t h , 4 9 ( 3 ) , 1980, p p . 6 3 1 - 6 4 2 . 192. S.A. V a k h r a m e e v , V.B. O s v e n s k i i and S.S. S h i f r i n , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 4 ( 2 ) , 1980, pp.54-58. 318 193 194 195 . 196 , 197 . 198 , 199 200 201 202 203 204 205 206 207 208 209 M.G. M i l v i d s k i i , V.A. S m i r n o v , I.V. S t a r s h i n o v a and Yu. F. S h c h e l k i n , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 0 ( 7 ) , 1976, pp.97-102 . S.S. V a k h r a m e e v , M.G. M i l v i d s k i i , V.B. O s v e n s k i i , V.A. S m i r n o v and Yu.F. S h c h e l k i n , G r o w t h o f C r y s t a l s , 12, 1977, ed. by A.A. C h e r n o v , C o n s u l t a n t s B u r e a u , N.Y., 1984, pp.296-301 . M. D u s e a u x , J . C r y s t a l G r o w t h , 6 1 , 1983, p p . 5 7 6 - 5 9 0 . G. S z a b o , J . C r y s t a l G r o w t h , 73, 1985, p p . 1 3 1 - 1 4 1 . T. I w a k i and N. K o b a y a s h i , T r a n s . ASME, J . A p p l . Mech., AM-48, 1981, pp.866. N. K o b a y a s h i p p . 96-110. and I w a k i , J . C r y s t a l G r o w t h , 73, 1985, E.V. G a l a k t i o n o v and E.A. T r o p p F i z . , 4 0 ( 7 ) , 1976, pp.62-68. I z v . Ak. Nauk. SSSR. S e r D.I. A n t o n o v , E.N. K o l e s n i k o v a , U.M. Krymov, S.P. N i k a n o r o v , M.P. P r o s k u r a and V.S. Y u t e r e v , I z v . Ak. Nauk. SSSR. S e r . F i z . , 40, 1970, p p . 6 9 - 7 3 . D.I. A n t o n o v , E.V. G a l a k t i o n o v , V.M. Krymov and E.A. T r o p p , I B I D , pp.74-77. V.L. Indenbom, Sov. P h y s . C r y s t . , 2, 1958, pp.587. F.R.N. N a b a r r o , " T h e o r y o f C r y s t a l D i s l o c a t i o n s " O x f o r d U n i v . P r e s s , L o n d o n , 1967. V . I . N i k i t e n k o and V.L. Indenbom, Sov. P h y s . C r y s t . , 6 ( 3 ) , 1961, p p.341-346. V.L. Indenbom, I z v . Ak. Nauk. SSSR. S e r . F i z . , 3 7 ( 1 1 ) , 1973, p p . 5 - 1 1 . S.V. T s i v i n s k i i , 1 9 73, p p.163-165. S.V. T s i v i n s k i i , 1 976, pp.165-166. I z v . Ak. Nauk. SSSR. S e r . F i z . , 3 7 ( 1 1 ) , I z v . Ak. Nauk. SSSR. S e r . F i z . , 4 0 ( 7 ) , J . L . N o w i n s k i , " T h e o r y o f Thermoe1 a s t i c i t y w i t h A p p l i c -a t i o n s " , S i j t h o f f and N o o r d h o o f I n t . P u b l . , A l p h e n Aan den R i j n . 1978. K.H. Huebner and E.A. T h o r n t o n , "The F i n i t e E l e m e n t Method f o r E n g i n e e r s " , J . W i l e y and S o n s , N.Y., 1982. 319 210. R.D. Cook, " C o n c e p t s and A p p l i c a t i o n o f F i n i t e E l e m e n t A n a l y s i s " , 2nd ed. J . W i l e y and S o n s , N.Y., 1981. 21 1 . V. S w a m i n a t h a n and S.M. C o p l e y , J . Am. Ceram. S o c . , 58, 1975, pp.482. 212. H.A. N a n c a r r o w , P r o c . P h y s . S o c . , 45, 1 9 3 3 , pp.462. 213. Handbook o f M a t h e m a t i c a l F u n c t i o n s , Ed. by M. A b r a m o w i t z and I.A. S t e g u n , D o v e r , N.Y., 1965. 214. R.H. G a l l a g h e r , J . P a d l o g and P.P. B i j l a a r d , ARS J o u r n a l , May 1962, p p . 7 0 0 - 7 0 7 . 215. E. W i l s o n , AIAA J o u r n a l , 3 ( 1 2 ) , D e c . 1 9 6 5 , p p . 2 2 6 9 - 2 2 7 4 . 216. N.P. D a r i o and W.A. B r a d l e y , I n t . J . f o r Num. Methods i n Eng . , 5, 1973, p p . 5 7 3 - 5 8 3 . 217. R.W. C l o u g h , and Y. R a s h i d , J . o f t h e Eng. Mech. D i v . , ASME, EMI, 1965, p p . 7 1 - 8 5 . 218. I . G r a n t , B. S m i t h , D. Rumsby and R.W. Ware, C a m b r i d g e I n s t r u m e n t Co., D u s t a t Rd. , C a m b r i d g e , P r i v a t e Commun i c a t i o n . 219. H.S. C a r s l a w and J.C. J a e g e r , " C o n d u c t i o n o f Heat i n S o l i d s " 2nd e d . , O x f o r d P r e s s , O x f o r d , 1958. 320 APPENDIX I EFFECT OF DISLOCATIONS ON GaAs AND DEVICES I.1 E f f e c t o f D i s l o c a t i o n on P r o p e r t i e s The s e m i - i n s u l a t i n g p r o p e r t y o f GaAs makes i t s u i t a b l e f o r use as s u b s t r a t e f o r t h e f a b r i c a t i o n o f i n t e g r a t e d c i r c u i t s , s i m p l i f y i n g d e v i c e i s o l a t i o n and p e r m i t t i n g low c a p a c i t a n c e 49 i n t e r c o n n e c t i o n s t h r o u g h t h e s u b s t r a t e . The c h o i c e o f i o n i m p l a n t a t i o n f o r d e v i c e f a b r i c a t i o n i m p o s e s r i g o r o u s c o n d i t i o n s on s u b s t r a t e p r o p e r t i e s , e s p e c i a l l y h o m o g e n e i t y . The s e m i -i n s u l a t i n g p r o p e r t y i s e s s e n t i a l . Inhomogeneous FET p e r f o r m a n c e has been c o r r e l a t e d w i t h d i s l o c a t i o n d i s t r i b u t i o n i n Cr doped and 5 0-53 undoped s e m i - i n s u l a t i n g GaAs . M o r e o v e r , on a m i c r o - s c a l e l e v e l , i t i s f o u n d t h a t t h e FET t h r e s h o l d v o l t a g e i s a f f e c t e d by d i s l o c a t i o n s l o c a t e d a t l e s s t h a n 20-30 m i c r o n s f r o m t h e FET. T h e r e has been no c o n s e n s u s on how o r how much, t h e t h r e s h o l d 5 4 5 5 v o l t a g e i s a f f e c t e d ' . R e c e n t l y , t h i s c o r r e l a t i o n has been e x a m i n e d more c a r e f u l l y and r e l a t e d t o t h e i n t e r a c t i o n o f d i s l o c a t i o n s as s o u r c e s o f s i n k s , o r p o i n t d e f e c t s and t h e EL2 l e v e l c o n c e n t r a t i o n d i s t r i b u t i o n w h i c h i s s t r o n g l y c o r r e l a t e d w i t h FET c h a r a c t e r i s t i c s . I n a d d i t i o n s , a g r e a t amount of e f f o r t has been d i r e c t e d t o e v a l u a t e t h e r o l e o f d i s l o c a t i o n s on s e m i - i n s u 1 a t i n g p r o p e r t i e s . D i s l o c a t i o n d i s t r i b u t i o n s have been d i r e c t l y c o r r e l a t e d w i t h i i 4. «- - K <-• 56,57 . ... 58-61 l e a k a g e c u r r e n t d i s t r i b u t i o n , r e s i s t i v i t y , and c a r r i e r 321 c o n c e n t r a t i o n i n S i i m p l a n t e d L E C - g r o w t h , s e m i - i n s u 1 a t i n g 6 2 6 4 GaAs ' . L e a k a g e c u r r e n t and s h e e t r e s i s t a n c e have M-shaped d i s t r i b u t i o n , w h i l e r e s i s t i v i t y and c a r r i e r c o n c e n t r a t i o n have t h e W-shape. I n a d d i t i o n , i t i s f o u n d t h a t d i s l o c a t i o n s a f f e c t t h e s h e e t c a r r i e r c o n c e n t r a t i o n w i t h i n a b o u t a 75 m i c r o n r a d i u s 64 a r e a I n C r - d o p e d LEC GaAs t h e r e p o r t s a r e c o n f l i c t i n g . On one h a n d , i t i s f o u n d t h a t Cr f o l l o w s a M-shaped d i s t r i b u t i o n i n v e r s e o f t h e W-shaped EPD d i s t r i b u t i o n , s u g g e s t i n g t h a t t h e d i s l o c a t i o n s can a f f e c t t h e Cr c o n c e n t r a t i o n and a n n e a l i n g b e h a v i o u r o f d o n o r i m p u r i t i e s ^ . On t h e o t h e r hand, no v a r i a t i o n 6 6 o f Cr c o n c e n t r a t i o n a s s o c i a t e d w i t h d i s l o c a t i o n i s f o u n d , and t h e r e s i s t i v i t y v a r i a t i o n s f o l l o w t h e W-shaped d i s t r i b u t i o n . M o r e o v e r r e s i s t i v i t y does n o t c o r r e l a t e w i t h Cr e x c e p t a t h i g h c o n c e n t r a t i o n s . I t was a l s o r e p o r t e d t h a t Cr c o n c e n t r a t i o n a c r o s s a w a f e r f o l l o w s a U-shaped d i s t r i b u t i o n , w h i l e t h e Cr++ 6 7 c o n c e n t r a t i o n f o l l o w s a W-shaped d i s t r i b u t i o n Cr i s u s u a l l y a d ded t o t h e m e l t t o o b t a i n s e m i - i n s u 1 a t i n g GaAs. A t p r e s e n t , e x t e n s i v e s t u d i e s a r e b e i n g c a r r i e d o u t i n o r d e r t o u n d e r s t a n d t h e mechanisms t h a t d e t e r m i n e t h e s e m i - i n s u 1 a t i n g 6 8 p r o p e r t i e s o f GaAs . The p r o d u c t i o n o f h i g h r e s i s t i v i t y m a t e r i a l s d e p e n d s on a c r i t i c a l c o m p e n s a t i o n among t h e d i f f e r e n t d o p a n t s p r e s e n t . I n t h e f o u r - l e v e l model an e x c e s s o f s h a l l o w d o n o r s i s c o m p e n s a t e d by an e x c e s s o f deep a c c e p t o r s o v e r deep 6 9 d o n o r s . I n t h e t h r e e - l e v e l model an e x c e s s of a c c e p t o r o v e r 7 0 d o n o r s i s c o m p e n s a t e d by t h e deep d o n o r s . The s h a l l o w d o n o r s 322 a r e b e l i e v e d t o be due t o S and S i o r t o t h e i n t e n t i o n a l d o p i n g o f Te. S h a l l o w a c c e p t o r s a r e due m a i n l y t o C, Mn o r o t h e r i m p u r i t i e s . The e n e r g y l e v e l s o f s h a l l o w d o n o r s and a c c e p t o r s a r e u b i c a t e d c l o s e t o t h e c o n d u c t i o n and v a l e n c e band r e s p e c t i v e l y . The deep a c c e p t o r i s due t o Cr and t h e deep d o n o r i s t h e so c a l l e d EL2 o r EL2 f a m i l y . B o t h a r e m i d - g a p l e v e l s . F o r C r - d o p e d GaAs t h e f o u r l e v e l c o m p e n s a t i o n mechanism a p p l i e s w h i l e f o r u ndoped GaAs t h e t h r e e l e v e l mechanism a p p l i e s . The most i m p o r t a n t c o m m e r c i a l l y a v a i l a b l e SI s u b s t r a t e i s 7 1 C r - d o p e d . However, t h e l a r g e d i f f u s i o n c o e f f i c i e n t o f Cr has d e t r i m e n t a l e f f e c t s i n t h e I C ' s t e c h n o l o g y . A t t e m p t s t o 7 2 s u b s t i t u t e Cr f o r t h e one o r d e r of m a g n i t u d e s l o w e r Vanadium i s u n l i k e l y b e c a u s e V anadium p l a y s no d i r e c t r o l e i n t h e 7 3 c o m p e n s a t i o n p r o c e s s i n GaAs . These two f a c t s l e a d t o c o n c e n t r a t e t h e e f f o r t s on undoped SI GaAs and c o n s e q u e n t l y on u n d e r s t a n d i n g t h e n a t u r e and r o l e o f E L 2 . I n t h i s r e v i e w a s h o r t summary o f t h e f i n d i n g s on EL2 i s g i v e n b e l o w b e c a u s e of t h e i n t e r a c t i o n o f t h e EL2 w i t h d i s l o c a t i o n s . 7 3 O r i g i n a l l y t h e EL2 l e v e l was a s s o c i a t e d w i t h o x y g e n u n t i l 7 4 7 6 i t was d e m o n s t r a t e d t h a t i t was n o t due t o t h i s e l e m e n t ' In 7 6 a d d i t i o n M a r t i n e t a l have shown t h a t i t i s n o t r e l a t e d t o C r . A l t e r n a t i v e l y , a s t r o n g c o r r e l a t i o n w i t h t h e d i s l o c a t i o n d i s t r i b u t i o n i s f o u n d ; t h e EL2 c o n c e n t r a t i o n a l o n g t h e w a f e r showed t h e t y p i c a l W-shaped d i s t r i b u t i o n . I t i s p r o p o s e d t h a t t h e EL2 o r i g i n i s due t o a c o m p l e x l a t t i c e d e f e c t g r o w i n g i n t h e p r e s e n c e o f s t r e s s . T h i s was s u p p o r t e d by t h e f i n d i n g t h a t t h e 323 7 7 EL2 l e v e l i s c r e a t e d i n GaAs d u r i n g m e c h a n i c a l d e f o r m a t i o n and t h a t a n t i s i t e d e f e c t s f o r m d u r i n g p l a s t i c d e f o r m a t i o n by 7 8 d i s l o c a t i o n c l i m b . I t was t h e n p r o p o s e d t h a t t h e EL 2 i s t h e 7 9 A s ( G a ) a n t i s i t e o r a c o m p l e x c o n t a i n i n g t h e a n t i s i t e In a d d i t i o n , t h e s t o i ch i ome t r y of t h e m e l t i n LEC GaAs i s shown t o c o r r e l a t e w i t h t h e SI p r o p e r t i e s o f t h e m a t e r i a l w i t h a t r a n s i t i o n f r o m SI f o r As r i c h m e l t s t o p - t y p e m a t e r i a l a t t h e 8 0 — 8 2 c r i t i c a l As c o n c e n t r a t i o n o f 0.475 atom f r a c t i o n . T h i s t r a n s i t i o n i s a l s o o b s e r v e d d u r i n g a n n e a l i n g o f SI undoped Ga 8 3 r i c h m e l t s The p r o p o s e d r e a c t i o n l e a d i n g t o t h e a n t i s i t e t h r o u g h d i s l o c a t i o n c l i m b i s : V(Ga) + A s ( A s ) > A s ( G a ) + V ( A s ) The most s t r i k i n g c o r r e l a t i o n o f EL2 l e v e l d i s t r i b u t i o n w i t h 8 4 8 5 EPD d i s t r i b u t i o n ' i s shown i n F i g u r e 1.1 ( a . b ) where t h e EL2 l e v e l d i s t r i b u t i o n i s shown f o r w a f e r s f r o m t h e s e e d end ( a ) and f r o m t h e t a i l end ( b ) . The t y p i c a l f o u r - f o l d symmetry o f d i s l o c a t i o n c o r r e l a t e s p e r f e c t l y a t t h e s e e d end. I t i s i n t e r e s t i n g t o n o t e t h e two f o l l o w i n g a s p e c t s : f i r s t f o u r l o c a l m i n i m a a r e o b s e r v e d i n t h e <110> and s e c o n d , a t t h e s e e d end a t w o - f o l d symmetry a p p e a r s w i t h a m i r r o r p l a n e c o i n c i d e n t w i t h a (110) p l a n e . T w o - f o l d symmetry of d i s l o c a t i o n s a t t h e s e e d end 3 3 has been r e p o r t e d by W e i n b e r g . N e v e r t h e l e s s , t h e f a c t t h a t t h e EL2 l e v e l i s n o t d i r e c t l y p r o p o r t i o n a l t o d i s l o c a t i o n s has l e d t o t h e p r o p o s a l t h a t t h e EL2 c o n c e n t r a t i o n i s p r o p o r t i o n a l t o t h e 8 6 d i s l o c a t i o n d e n s i t y and t o t h e amount o f d i s l o c a t i o n c l i m b . A t 90 91 94 95 p r e s e n t t h e a n t i s i t e has been f o u n d ' ' ' and shown t o be 324 F i g u r e 1.1 EL2 c o n t o u r p l o t t a k e n a t t h e s e e d o f a ( 1 0 0 ) 3 - i n - d i a m LEC GaAs c r y s t a l . The s o l i d d o t s i n d i c a t e p o s i t i o n s where a b s o r p t i o n m e asurements were made, and t h e c o n t o u r l i n e s were drawn t o be c o n s i s t e n t w i t h t h e m e a s u r e m e n t s . The number a s s i g n e d t o e a c h c o g t o u g i n d i c a t e d t h e EL2 c o n c e n t r a t o r ) ^ i n u n i t s o f 10 cm ( i . e . , 2.05 means 2.05 X 10 cm ). The c r o s s - h a t c h e d a r e a s i n d i c a t e l o c a l maxima. 325 F i g u r e 1 . 1 ( a ) EL2 c o n t o u r p l o t a t t h e t a i l end o f t h e c r y s t a l d e p i c t e d i n F i g u r e 1 ( a ) . T h i s EL 2 d i s t r i b u t i o n has a m i r r o r p l a n e c o i n c i d e n t w i t h a ( 1 1 0 ) p l a n e . 326 9 7 9 3 s t a b l e a t h i g h t e m p e r a t u r e s ' and b e l i e v e d t o be t h e o r i g i n ft 9 o f t h e EL2 l e v e l . The e n h a n c e d c o n c e n t r a t i o n o f EL2 l e v e l a t d i s l o c a t i o n s has a l s o been a t t r i b u t e d t o t h e a g g r e g a t i o n o f EL2 c e n t e r s s i m i l a r t o 8 7 a C o t t r e l l a t m o s p h e r e . W h a t e v e r t h e m e c h a n i s m f o r [ E L 2 ] enhancement i s , i t has been d e m o n s t r a t e d t h a t d i s l o c a t i o n s p l a y a f u n d a m e n t a l r o l e . T h i s i s b a s e d on t h e d i r e c t o b s e r v a t i o n o f t h e 8 8 EL2 c o n c e n t r a t i o n a t s i n g l e d i s l o c a t i o n s However, t h e r e i s n o t c o m p l e t e u n d e r s t a n d i n g o f t h e s e m i -i n s u l a t i n g m echanism i n GaAs. 9 6 9 7 1) T h e r e i s more t h a n one midgap t r a p ( a n EL2 " f a m i l y " ) 2) A midgap l e v e l r e l a t e d t o o x y g e n w i t h l a r g e r e l e c t r o n c a p t u r e c r os s - s e c t i on has been i d e n t i f i e d 9 8 ' " . 3) The c h a r a c t e r i z a t i o n t e c h n i q u e s o f EL2 have been i n c o n s i s t e n t 1 0 0 , 1 0 1 , s p e c i f i c a l l y , d i f f e r e n t r e s p o n s e o f t h e mid gap l e v e l have been o b t a i n e d i n h e a t t r e a t e d 10 2 h o r i z o n t a l B r i d g e m a n grown and LEC grown GaAs 4) T h e r e i s a c l o s e c o r r e s p o n d e n c e b e t w e e n t h e i n c r e a s e i n s h e e t and r e s i s t a n c e and an i n c r e a s e i n EL2 c o n c e n t r a t i o n ( o p p o s e d t o what i s e x p e c t e d ) i n d i s l o c a t i o n f r e e . 10 3 GaAs The EL2 l e v e l has been a s s o c i a t e d w i t h u n d e s i r e d b a c k g a t i n g e f f e c t s 1 0 8 , 1 1 0 . T h i s r e i n f o r c e s t h e need f o r a c o m p l e t e u n d e r s t a n d i n g o f t h e o r i g i n and p r o p e r t i e s o f t h i s l e v e l . 327 The p r e s e n c e o f c a r b o n i n GaAs has been shown t o a f f e c t 104 d i r e c t l y t h e t h r e s h o l d v o l t a g e o f i m p l a n t e d FET ( c a r b o n c o n c e n t r a t i o n i n LEC GaAs d e p e n d s on t h e w a t e r c o n t e n t o f t h e 10 5 e n c a p s u l a n t ). C a r b o n i s f o u n d s e g r e g a t e d a t t h e c e l l w a l l s o f 106 t h e c e l l u l a r a r r a y s of d i s l o c a t i o n s A l s o i t has been shown t h a t o x y g e n , chromium and s i l i c o n i m p u r i t i e s i n u ndoped GaAs s e g r e g a t e d t o t h e d i s l o c a t i o n c l u s t e r s 4 3 . I .2 D i s l o c a t i o n s and F e r m i L e v e l D i s l o c a t i o n s i n GaAs have been c o r r e l a t e d w i t h a s h i f t o f 12 6 12 7 F e r m i l e v e l by L a g o w s k i ' . T h i s i s i l l u s t r a t e d i n F i g u r e I . 2 ( a - c ) . In F i g u r e 1.2(a) t h e e f f e c t o f t h e m e l t c o m p o s i t i o n on d i s l o c a t i o n d e n s i t y i s shown f o r l i g h t l y doped GaAs. N o t e t h a t t h e minimum o c c u r s above 0.500 a t o m i c f r a c t i o n . The s h i f t i s w i t h i n t h e u n c e r t a i n t y of t h e m e a s u r e m e n t s . I n F i g u r e 1.2(b) and ( c ) t h e F e r m i e n e r g y and d i s l o c a t i o n d e n s i t y a r e shown as a f u n c t i o n o f c a r r i e r c o n c e n t r a t i o n . The c o n c e n t r a t i o n of d o p a n t i s b e l o w t h e i m p u r i t y h a r d e n i n g r e g i m e . Note t h a t n - t y p e d o p i n g r e d u c e s t h e d i s l o c a t i o n d e n s i t y . T h i s e f f e c t i s a c c o u n t e d f o r by a v a c a n c y c o n d e n s a t i o n mechanism i n w h i c h t h e Ga v a c a n c i e s may be t h e c r i t i c a l n a t i v e d e f e c t . The As v a c a n c y w h i c h can a l s o be i m p o r t a n t i n d i s l o c a t i o n g e n e r a t i o n , can be c r e a t e d upon m i g r a t i o n o f t h e Ga v a c a n c y t o t h e n e i g h b o u r i n g As s i t e , V (Ga) + A s ( A s ) > V ( A s ) + A s ( G a ) I n t h i s r e a c t i o n t h e As a n t i s i t e v a c a n c i e s a r e midgap l e v e l s ( V ( G a ) A s ( G a ) i s a l s o c r e a t e d . B o t h i n t h e l o w e r h a l f and V ( A s ) i n 328 I06 Arsenic fraction m melt,Xfl5 0.495 0.500 0.505 0.510 I0 2 0 p-typ€ • n-type _|_ 611 613 615 617 619 621 623 Arsenic source temperature,TAs(°C) F i g . 1.2 a D i s l o c a t i o n d e n s i t y vs a r s e n i c s o u r c e t e m p e r a t u r e ( m e l t s t o i c h i o m e t r y ) f o r l i g h t l y doped n - t y p e and p-t y p e GaAs I017 I0 1 6 I0 1 6 I0 1 7 Carrier concentration (cm-3) I0« F i g . 1.2 b,c D i s l o c a t i o n d e n s i t y v s 300-K f r e e - c a r r i e r c o n c e n t r a t i o n f o r c r y s t a l s grown f r o m optimum m e l t s t o i c h i o m e t r y and u n d e r o p t i m a l t h e r m a l s t r e s s e s . U pper p o i t i o n shows t h e c o r r e s p o n d i n g v a l u e s o f t h e F e r m i e n e r g y a t 1100-K. 329 t h e u p p e r h a l f o f t h e b a n d ) . T h e i r o c c u p a n c i e s w i l l depend on t h e F e r m i l e v e l . The amount o f n e u t r a l s t a t e s w o u l d d e t e r m i n e t h e m i g r a t i o n o f t h e v a c a n c i e s and t h e a b i l i t y t o c o a l e s c e i n t o d i s l o c a t i o n l o o p s . The downward s h i f t o f t h e F e r m i l e v e l c a u s e d by t h e n- t o p - t y p e t r a n s i t i o n i n c r e a s e s t h e f r a c t i o n o f n e u t r a l V ( G a ) s t a t e s . I n l i g h t l y doped m a t e r i a l t h e a b o v e r e a c t i o n t a k e s p l a c e b e t w e e n c h a r g e d ( o c c u p i e d ) s t a t e s V ( G a ) + + + A s ( A s ) > A s ( G a ) + V ( A s ) + + 3e-The r a t e o f r e a c t i o n d e c r e a s e s w i t h t h e t h i r d power o f e l e c t r o n c o n c e n t r a t i o n . S i n c e d i s l o c a t i o n d e n s i t y i n c r e a s e s upon t r a n s i t i o n t o p - t y p e i t i s assumed t h a t t h e V ( G a ) m i g r a t e s r a t h e r t h a n t h e V ( A s ) s i n c e t h e r e a c t i o n i n v o l v i n g t h i s t y p e o f d e f e c t w o u l d l e a d t o t h e o p p o s i t e b e h a v i o u r w i t h t h e t r a n s i t i o n f r o m n-t o p - t y p e m a t e r i a l . The e x a c t mechanism f o r v a c a n c y c o n d e n s a t i o n , h o w e v e r , i s n o t known. 330 APPENDIX I I I n t e g r a t i o n by P a r t s o f t h e E l e m e n t E q u a t i o n f o r t h e T e m p e r a t u r e F i e l d A u s e f u l f o r m u l a f o r t h e i n t e g r a t i o n by p a r t s c a n be w r i t t e n as [ 2 1 0 ] ,(e) N P , dD (e) D (e ) N, £ P d D ( e ) + (e) N P n ^ d S ( e ) ( I I . 1 ) and ' N 1 ( P ) , d D ( e ) ( e ) P N. P d D ( e ) + D (e) N P n dS * C * ( I I . 2 ) (e) Where N and P a r e g i v e n f u n c t i o n s o f £ and p , and t h e comma i n d i c a t e s d e r i v a t i v e , n ^ and n p a r e d i r e c t o r c o s i n e s o f t h e n o r m a l n t o t h e e l e m e n t a l s u r f a c e d S v ' i n t h e £ and p d i r e c t i o n s r e s p e c t i v e l y . The i n t e g r a l t o i n t e g r a t e by p a r t s i s : (e) 1 3p 2 36 3 2 6 2V P 3p 3C 33 dD (e ) 0 ( I I . 3 ) U s i n g t h e above f o r m u l a e f o r i n t e g r a t i o n by p a r t s , we g e t D N . (e ) 1 1 P 3 33 P 3p 3p .(e) dD (e) 3N, 33 d D ( e > + D (e) 3p 3p _33 3p n dS (e) ( I I .4) 331 and 3 33 ( e ) 1 3? 3£ dD (e) 3N. 33 , . d D ( 6 ) ( e ) 3C 3C 33 N ( e ) 1 H n^dS ( e ) ( I I . 5 ) S u b s t i t u t i n g i n ( I I . 3 ) , i t i s o b t a i n e d t h a t 3N i 33 3N A 33 33 - 2V N ( e ) 3p 3p 3C 3? 1 3C d D < e ) + 33 N . ( e ) 1 3p 33 3? n^ dS ( e ) U s i n g t h e b o u n d a r y c o n d i t i o n ( 7 . 3 ) we f i n a l l y g e t t h a t 3N. 33 3N 33 . + + 2V N 33 ,(e) 3p 3p 35 3C 1 3? d D ( e > + + r. (e) N . h ( z ) 3 ( 6 ) d S ( 6 ) = r l 0 N.h z 3 z dS (e ) (e) 332 APPENDIX I I I E v a l u a t i o n o f t h e M a t r i x E l e m e n t s f o r t h e T e m p e r a t u r e F i e l d a) E v a l u a t i o n o f K, i j M a k i n g t h e f o l l o w i n g s u b s t i t u t i o n s i n E q u a t i o n s ( 7 . 1 0 ) d D ( e ) = 2 TT p d p d £ 3L. i_ 3p 3 L . c . 1 2 A 35 2 A we g e t 2 TT = ~ ( b . b . + c . c . ) T i j ( 2 A ) 2 1 J 1 j p dpdC + 2Vb j 2 TT (2 A) J L ;.pdpd 5 S u b s t i t u t i n g p = I p,L. and u s i n g t a b l e s f o r t h e i n t e g r a l s o f k = l k k t h e n a t u r a l c o o r d i n a t e s we g e t : i J Trp( e> A 2 * V h l (e) ( b . b . + c . c . ) + 1 [ 3 p^ ' + p . ] i j i j 6 J where (e) ( I P, ) /3 i = l 333 b) E v a l u a t i o n o f K " i j T h e s e e l e m e n t s a r e e v a l u a t e d f o r t h r e e d i f f e r e n t o r i e n t a t i o n o f t h e e x t e r n a l s u r f a c e o f t h e p e r i p h e r i a l e l e m e n t s : i ) v e r t i c a l s u r f a c e s ( p a r a l l e l t o t h e c r y s t a l a x i s ) ; i i ) t i l t e d s u r f a c e s ( i n c l i n e d w i t h r e s p e c t t o t h e a x i s ) and i i i ) h o r i z o n t a l s u r f a c e s ( p e r p e n d i c u l a r t o t h e a x i s ) . i ) V e r t i c a l s u r f a c e C o n s i d e r an e l e m e n t l i k e t h e one i n t h e f i g u r e The o n l y c o n t r i b u t i o n t o t h e i n t e g r a l ( 7 . 1 0 c ) comes f r o m t h e s u r f a c e i - j . The e l e m e n t a l s u r f a c e a r e a i n t e r m s o f t h e l o c a l z k r v a r i a b l e £ i s dS ( e ) = 2 T T p d £ w i t h p = c o n s t a n t . T h e r e f o r e K = r Q h ( z ) L . L . i J dS (e) = r Q h ( z ) 2iTp L . L . d £ i J H . . i J 0 where 1. . i s t h e d i s t a n c e b e t w e e n nodes i and j . B e t w e e n t h e s e i 3 two nodes t h e n a t u r a l c o o r d i n a t e s c a n be w r i t t e n as 334 S u b s t i t u t i n g and i n t e g r a t i n g we g e t i * j i j 2TTh(z) r Q p i = J i j 1 . 2TT h ( z ) r Q p L I i i ) T i l t e d S u r f a c e F o r an e l e m e n t w i t h t i l t e d e x t e r n a l s u r f a c e t h e e l e m e n t a l s u r f a c e a r e a c a n be w r i t t e n as (e ) 1 d S i e ; = 2TTp.dc-where £ i s t h e l o c a l c o o r d i n a t e as shown i n t h e f i g u r e Then i j 2 TT r Q h ( z ) i j L . L . n d ; i J ^ 335 p c a n be w r i t t e n as a f u n c t i o n o f p^ , p ^ and t h e l o c a l i c o o r d i n a t e £ as P i + < Pj " P ^ 1 . . i J S u b s t i t u t i n g p , and f o r t h e a b o v e e x p r e s s i o n and i n t e g r a t i n g we g e t [ K H ] 1 . . 27Th(z) r U ~ 12 3 p i + p j p . + p . i J p . + p . i M j p i + 3 p j i i i ) H o r i z o n t a l S u r f a c e F o r an e l e m e n t w i t h h o r i z o n t a l e x t e r n a l s u r f a c e t h e e l e m e n t a l s u r f a c e a r e a can be w r i t t e n as The n a t u r a l c o o r d i n a t e s a r e a l s o w r i t t e n as L. = 1 l i J and 336 l J —c A p p r o x i m a t i n g p by p = ( Pj + Pj ) /2 K H = 2 TT r Q h ( z ) p i j (S) r l i j L J L J dp I n t e g r a t i n g , t h e e l e m e n t s a r e i = j K. i j 2TT r Q h ( z ) p (S) i * j i j 2 TT r h ( z ) p ( S ) — ^ 6 c) E v a l u a t i o n o f E l e m e n t s K M a k i n g t h e same s u b s t i t u t i o n s as i n b, f o r d S ^ e ^ , L. and L. i 3 and p i n ( 7 . 1 0 d ) f o r t h e t h r e e c a s e s and i n t e r a t i n g we g e t i ) V e r t i c a l B o u n d a r y E l e m e n t TT h ( z ) r Q 6 a ( z ) P l u ^ 1 i i ) T i l t e d B o u n d a r y E l e m e n t {K A> = TT h ( z ) r Q 6 a ( z ) ( P A + 2 p ) J L L 337 i i i ) H o r i z o n t a l B o u n d a r y E l e m e n t r 0 6 a ( z ) P l i j 1 I 338 APPENDIX IV E v a l u a t i o n o f S t i f f n e s s M a t r i x E l e m e n t s f o r L i n e a r E l e m e n t s S u b s t i t u t i n g t h e e x p r e s s i o n s f o r [ B 1 ] and [C'] and m u l t i p l y i n g t h e f o u r e l e m e n t s o f t h e s t i f f n e s s m a t r i x o f e l e m e n t e a r e : 1 b L b L k = [ ( 1 - v ) b b . + V 2 A L - A - + v 2 A — + ( 2 A r 1 J p p L L . 1 - 2 V + (1 - V) (2A) LrJ— + c c ] pdpdC 1 c .L . 1 - 2 v k 1 ? = r [vb b + v 2 A — 1 - J - + c.b ] p d p d c : 1 £ ( 2 A ) Z 1 J p 2 1 J 1 C i L i 1 - 2 V k 0 1 = [vb .c. + v2A + c.b.] pdpd£ 2 1 ( 2 A ) 2 J 1 p 2 J 1 , 1 1 - 2 V k 2 2 " 77772 I d - V) c . C j + — b . b j ] pdpd£ I 2A } 2 The f o r c e v e c t o r components a r e 3 3 9 A l s o the i n i t i a l f o r c e v e c t o r i s 2A b. + 2 A 1 L . l • p dpdC U s i n g t a b l e s f o r the i n t e g r a t i o n of area c o o r d i n a t e s we get 1 - 2V p k = [ ( 1 - v ) b b + c c ] + 1 1 1 J 2 1 J 4 A V + (b . + b . ) + (1 - v) A L i L . 1 dPdC 1 - 2V P v k = [vb c + c i b J + c - j X d 1 3 2 J 4 A 6 J 1 - 2V V k 2 1 = [ V b i C i + C i b i ] + C i d l 3 1 2 J 1 4A 6 1 1 - 2V k 2 2 = n i - v ) c i C j + b.b J 2 1 j 4 A 340 APPENDIX V Q u a d r a t i c E l e m e n t C a l c u l a t i o n s The s t i f f n e s s m a t r i x f o r t h e q u a d r a t i c e l e m e n t i s a 12 x 12 m a t r i x w i t h t h r e e d i f f e r e n t r e g i o n s I [ k 1 ,13 [ k 1 ^ 22 [ k ' ] 2 3 S y m m e t r i c [ k ' ] 3 1 [k- j 32 [ k 1 ^33 [ k ' ] 4 1 [ k 1 ] 4 2 [ k ' [k ,44 [ k « ] 4 5 t k ' [ k ' ] 5 1 [ k 1 ^52 l~k' j 53 [k ]" [ k ' ] 5 5 [ k 1 j 56 [ k ' ] 6 1 [k- j 62 Ck' ^63 [k ,64 [ k ' ] 6 5 [ k ' j 66 111 11 t h e [k •jqp a r e t h e 2 X 2 m a t r i c e s r e l a t i n g nodes q and The d i s p l a c e m e n t v e c t o r f o r any e l e m e n t i s a 12 X 1 m a t r i x as 1 (e ) w e l l as t h e f o r c e m a t r i x {F } o w. 11 12 (d> ( e ) w. 61 62 341 The I n t e r p o l a t i o n f u n c t i o n s f o r t h e e l e m e n t a r e b u i l t f r o m t h e a r e a c o o r d i n a t e s as ' i + 3 L. ( 2 L i - 1) 4 L i L i + l i = 1 , 2 , 3 and i + 1 h a s module t h r e e ; i . e . 1 = 3 1 + 1 = 1 (e) The f o r m o f t h e [ B ' ] v m a t r i x f o r node q d e p e n d s on t h e v a l u e o f f o r q < 3 4 L 2A L q < 2 L q - *> (4 L q - 1) and f o r q > 3 [ B 1 ] ( e ) 3+i 2 A V i + l + L i b i + 1 2 A L i L i + l c . L . „ + L . c . , l l + l l i+1 c . L . , + L . c . . l l + l i l + l b . L . , + L . b . . l l + l i l + l a g a i n i + 1 has module 3 342 U s i n g t h e s e [ B 1 ] m a t r i c e s p e r f o r m i n g t h e i n t e g r a t i o n s we s t i f f n e s s modal m a t r i x e l e m e n t s i n E q u a t i o n ( 7 . 2 5 c ) o p e r a t i n g and g e t t h e f o l l o w i n g v a l u e s f o r t h e i n t h e t h r e e r e g i o n s . a ) R e g i o n I , nodes 1 t o 3 Case 1 q = p 11 [ ( 1 - v ) b q b p + l - 2 v Z p + 2p v c c ] 3- + (b + b ) 2 P q 1 0 ( 2 A ) 15 L (2L - 1) L ( 2 L - 1) + ( 1 _ v ) | j i / _ a a E p_ P 1 L 1 + P 2 L 2 + P 3 L 3 d L l d L 2 ,qp 12 2v ( v b c + q p Z p + 2p V c . . n _q . p c b ) ( =*—) + K-Q P 1 0 ( 2 A ) 15 .,qp '21 2v [ v c b + q P c b ] P q E p + 2p K n 10(2A) vc. 15 22 2v = [ ( 1 - v) c q c p + b b ] q P Z p + 2p M n z_q_ 1 0 ( 2 A ) 343 Case 2 q * p V >qp k l l 1-2V [ (1 - v ) b b + q p c c ] ( • p q 1 p + p + p n _g ( 3 0 ( 2 A ) v 30 (b + b ) + q p L (2 L - 1) L (2L - 1 ) + (1 -V) | J | / 9 9 E E dL.dL. P 1 L 1 + P 2 L 2 + P 3 L 3 1 2 12 1 - 2 V Z p + p + p [vb c + c b ] ( E q ~ ) q P 2 q P 3 0 ( 2 A ) V c 30 . ,qp 21 2v [ vc b + q P I p + p + p c b ] ^ — 9—) P Q 3 0 ( 2 A ) v c 30 ..qp '22 2V [ ( 1 v ) c c + q p I p + p + p b b ] ( — - S ^ -3-) Q P 3 0 ( 2 A ) q = j + 3 b) R e g i o n I I , Nodes q, p > 3 p = i + 3 Case 1 i = j k l 3 l + 1 ' 3 + J = — 1 l i + 2 v ( b i + b i + l + b j + b J + l> + 1 1 15 2 A 1 - 2 V I ' + + 16 (1 - v ) I . 2 2A 344 ,3 + i , 3+j 12 2 15 V I 14 1 - 2V I 2A + 2 V < C j + C j + 1> + 41 2A ,3 + i , 3+j '21 V I 41 1 - 2v I 15 2A + 2V (ct + c 1 + 1 ) 14 2A .,3 + i , 3 + j 22 15 (1 - V ) H + 1 - 2v 1 I 1 2A Where ; = 2 b . b . ( Z p n + 2 p . + 1 ) + 2 b i + 1 b j + 1 ( E p n + 2 P i ) + b i b j + l ( Z P n + Pi+1 + Pj> + b i + l b j ( Z P n + P i + P j + 1> J | 1 1 + 1 ' J + 1 d L l d L 2 Z p n L n l14 2 b i C j ( Z p n + 2 p i + l ) + 2 b i + l C j + l ( Z P n + 2 p i > + b i C j + l ( Z p n + p i + l + p j > + b i + l c j C P n + p i + p j + l ) I ' = 2 c . b , (Zp + 2p, .) + 2 c . ,b. , ( E p + 2p.) 41 I j * *n » K i + 1 l + l j+1 v K n wi + C i b j + 1 ( Z p n + P i + l + Pj> + c i + l b j ( J P n + P i + P j + i> Case 2 i * j * i + 1 j + 1 = i , 3+i , 3+j 11 15 2 A I j + v ( b j + 2b i + 1 2b V. 1 1 - 2 v I ' 2A + 16 (1 - v ) I. , 3 + i , 3+j 12 VI 14 2v 15 2 A + V ( 2 C j + c ) + 41 2A 3+ i , 3 + j V i 21 15 41 2A 2v + v ( c . + 2 c . ,) + v l l + 1 ' 14 2A 3+1, 3+j 2v 22 1 5 ( 2 A) (1 - V ) I£ + Where I " 1 b i b j ( Zp. p i + l p j + l } b i + l b j + l (£ P . p j ) + b.b. , ( Zp + p. . + p.) + 2 b . ,b. ( Zp + 2 p . ) 1 j+1 v K n K i + 1 K j 1+1 j K n K i 346 l U = b i C i ( Z p n + P i + 1 + P j + 1> + b i + l C i + l ( Z p n + P i + P j ) + + V j + l ( Z P n + P i + 1 + P j > + 2 b i + l C i ( Z P n + 2 P i ) I " = c.b. (Zp + p. . + p. ,) + c. „b. . (Zp + p. + p.) + 41 i j K i + 1 K j + 1 i + l j+1 K n wi H j + C i b j + 1 ( Z p n + P 1 + l + P j ) + 2 c i + l b j E P n + 2 P i > Case 3 j * i * j+1 i + 1 = j • 2 1 - V k , 3 + i , 3 + j = + v ( 2 b . + b. + b. + 2 b , ,) + 11 15 2 A 1 1 1 + 1 J J + 1 1 - 2v I 4 + + 1 6 ( 1 _ v } j 2 2A " i n i t l 3 + i , 3+j 2 V l 1 4 . , . 1 ~ 2 V *41 k 2 M + V ( C J + 2 C j + l ) + 15 2A J J 2 2A II i II i u , 3 + i . 3+j 2 V l 4 1 , 1 2 v *14 k 2 = + v ( 2 c + c ) + £ l 15 2A 2 2A 2 1 - 2v k 2 2 " ( 1 " V ) I 4 " + J 4 ' " 1 5 ( 2 A ) 2 347 Where I " ' = b b (Zp + P. + P ) + b. b. (Zp + p. + p.) + 1 i j v yn M i + 1 + i + 1 j + 1 v yn M i wj' + 2 b i b j + l ( Z p n + 2 p j > + b i + l b j ( Z p n + p i + p j + l ) I " 1 = b . c , (Zp + p. . + p. ., ) + b. c. , (Zp + p . + p.) + 14 i j K n * i +1 j + 1 l + l j + l ' n " i K j + 2 b . c . . (Zp + 2 p. ) + b. , c . (Zp + p. + p. ,) i j +1 K n K j i + l j ^ n K i " j +1 l l l - C i b j ( Z p n + p i + l + p j + l ) + C i + l b j ( Z p n + p i + p j > + + 2 c . b . , (Zp + 2 p. ) + c. . b. (Zp + p. + p. ,) i j + l V M n K j ' l +1 j K n K I H j +1 ) R e g i o n I I I , M i x e d Nodes q < 3 ; p = 3 + i ; i = 1,2,3 Case 1 q = i •a i+3 1 1 " v k l " \ *1 + V ( 3 b q " b i + 2 b i + l ) + 30 2 A 4 1 - 2v c I 4 + 4 ( 1 - v ) I 5 2 A . n 1 V , 1 - 2 v c I ' *\V - — — V + V ( 2 c i + 1 - c.) + - 3 — ^ -1 2 30 2 A Q 4 1 + 1 1 2 2 A 348 •q.i+3 1 ' , 1 - 2V b q V k o ; = c I , + 3Vc + u — 2 1 30 2A q 1 q 2 2A 'q,i+3 1 , 1 - 2 v , K H = ( 1 _ v ) c , + b i 2 2 3 0 ( 2 A ) q 4 2 q 1 where I 1 = ( 3 b . . - b . ) Z p + p ( 4 b . + l i b . - D . ,b. 1 l + l l wn wq y l i + 1 ' M i + 1 I 1 A = ( 3 c . , - c . ) Z p + p ( 4 c . + 1 1 c . J - n . , c . 4 i + 1 i K n K q i i + 1 M i + 1 I L (2L - 1) L . L . . M » L » L D L I D L 2 2 P n L n Case 2 q * i i + 1 * q •a 3+i 1 ( 1 " V ) = b I . - v ( b . - b. + b ) + 1 1 30 2A Q 1 1 1 + 1 Q l - 2 v c I " 9 + 4 ( 1 - V ) I K 5 2 A •q,3+i 1 V b a I 4 " , , 1 - 2 ^ C q V k = - V ( c + c ) + l & 30 2A 2 2A 349 1 v c l " l - 2 v b I " K ' 3 + 1 = — — a _ J _ _ v c + g _ j _ 21 -~ q o 30 2 A 2A .'q.3 + i 22 1 - 2 V 3 0 ( 2 A ) (1 - V ) c q I 4 + B 1 1 q i where ( b . - b. ) (4p - Z p ) - (p.b. , + p. l i + l q K n K i i + l H i + 1 i ( c , - c. (4 - Z p ) - ( p . b . . + p. ,b.) v i i + l ' v q *n wx i + l M i + 1 I Case 3 i * q ; i + l = q .'q.3 + i 11 1 - v 30 2A b I + v (3b + 2 b . - b J 1 ) + q 1 q l i+1 1 - 2v c 2A I 4 + 4 ( 1 - V ) I g ' q,3 + i 12 30 2A b r + v ( 2 c . - c . , ) + q 4 l i + l 1 - 2 V c I "' 9 1 2A 350 q , 3 + i 22 3 0 ( 2 A ) (1 - V) c i " ' + q 4 2V q i where •i i I 1 ( 3 b , - b. .) Z p + p ( l i b . + 4b. ,) - p.b. , i l + l K n q 1 l + l K i l + l I 4 " - < 3 c i " c i + l ) Z P n + Pq ( 1 1 C i + 4 c i + l > - P l C i + l d) C a l c u l a t i o n o f f o r c e m a t r i x e l e m e n t s F ' 0 q S u b s t i t u t i n g [ B ' ] and [ C 1 ] i n t o ( 7 . 2 6 c ) and p e r f o r m i n g t h e m u l t i p l i c a t i o n and i n t e g r a t i o n we g e t : f o r q < 3 < Fo> l 3 P q q f o r q > 3 < Fo> i + 3 b , ( Z p + p. ,) + b. , (Z p + . ) + 2A i x n i + 1 l +1 "n l c . ( Z p + p . . ) + c . , ( Z p + p . ) i n " i +1 i + l ^ n K i 351 e) S t r a i n Components The s t r a i n c o m p o n e n t s as a f u n c t i o n o f t h e r e d u c e d d i s p l a c e m e n t f o r t h e c a l c u l a t i o n o f s t r e s s e s a t node q i n e l e m e n t e a r e Case 1 q < 3 1 [3b u , - b , u . , - b . u , p,q ~2~E~ q red,q q + 1 red,q+1 q + 2 r e d , q + 2 + 4b , u. + 4b . u„ ,1 q + 1 3 + q q-1 3 + q - l J u , P _ r e d , q E - Q " P q e _ = 1 [ 3 c w , - c , w . « - c „ w „ + 2 A q r e ( J . q q + l red,q+1 q + 2 r e d , q + 2 + 4c ., w . n + 4 c . w . „ ., 1 q+1 r e d , 3 + q q-1 r e d , 3 + q - l ' _ = 1 [ 3 ( c u . + b w . ) - ( c . , u , p ^ ' q 2~A~ q r e d . q q r e d . q l + l red,q+1 + b w ) — (c u + b w ) + i + 1 r e d , q + 1 q + 2 r e d , q + 2 q + 2 r e d , q + 2 + 4 ( c ., u , „ + b H w , „ ) + q+1 red,q+3 q+1 red,q+3 + 4 ( C q - l U r e d , q - l + 3 + b q - l W q - l + 3 ) ] 352 Case 2 q > 3 ; q = 3+1 ; i = 1,2,3. £ P 3 + 1 " 2 V [ b i " r e d , ! + b i + l " r e d , i + 1 ~ b i + 2 U r e d , i + 2 + + 2 ( b . + b. ,) u J J O + i i+1 r e d , i + 3 + 2 b i - l ( u r e d , 1 + 1 + 3 + U r e d , i - l + 3 ) ] r o . i = 1 [ c . w j i + c. , w , . . - c . „ w , , « + s.,3 + i 2 - 1 i r e d . i l + l r e d , i + 1 i + 2 r e d , i + 2 + 2 (c . + c . H ) w _ , + l l + l r e d , i + 3 + 2c (u + w i l i - 1 v r e d , 3 + ( i + l ) r e d , 3 + ( i - 1 ) ' J Y ^ • o = 1 [ c . u , . + b . w , . + c . .. u . . « + p 4 , i + 3 2 ^ l r e d . i i r e d , I i + 1 r e d , i + 1 + b i + l W r e d , i + 1 ~ ( c i + 2 " r e d , i + 2 + b i + 2 W r e d , i + 2 ) + + 2 [ ( c . + c. ) u , . „ + ( b . + b. H ) w J . „ + i l + l r e d , i + 3 l l + l r e d , i + 3 + C i - l ( U r e d , ( i + l ) + 3 + U r e d , i - l + 3 ) + + b i - l ( W r e d , 3 + i + l + W r e d , 3 + i - l ) ] ] 353 APPENDIX VI C a l c u l a t i o n o f R e s o l v e d S h e a r S t r e s s e s The 12 s l i p p l a n e and d i r e c t i o n c o m b i n a t i o n s f o r t h e {111} <011> g l i d e s y s t e m a r e g i v e n i n T a b l e V . I . F o r a c r y s t a l grown i n t h e [ 0 0 1 ] d i r e c t i o n v h i c h i s c o i n c i d e n t w i t h t h e Z - a x i s , t h e t h r e e d i r e c t i o n s i n t h e (111) p l a n e , f o r i n s t a n c e , a r e shown i n t h e F i g u r e . S i m i l a r f i g u r e s f o r t h e o t h e r t h r e e ( 111) p l a n e s can be drawn The f i r s t s t e p , f o r o p e r a t i o n a l r e a s o n s , i s t o p r o j e c t t h e s t r e s s t e n s o r o n t o a c a r t e s i a n c o o r d i n a t e s s y s t e m . The s e c o n d s t e p c o n s i s t s o f r o t a t i n g t h e c a r t e s i a n s y s t e m i n o r d e r t o make one o f t h e a x i s c o i n c i d e n t w i t h t h e g l i d e d i r e c t i o n and any o f t h e o t h e r a x i s p e r p e n d i c u l a r t o t h e g l i d e p l a n e . The s h e a r s t r e s s on t h a t p l a n e and d i r e c t i o n i s t h e c o r r e s p o n d i n g r e s o l v e d s h e a r s t r e s s t o be c a l c u l a t e d . F o r t h e c a l c u l a t i o n s t h e d e f i n i t i o n o f t h e t e n s o r i s u s e d . A s e t o f q u a n t i t i e s T, w i t h r e s p e c t t o a x 354 c o o r d i n a t e s y s t e m i s a t e n s o r i f u n d e r a r o t a t i o n o f t h e s y s t e m t h e q u a n t i t i e s T, t r a n s f o r m s as T = M.T.M" 1 where M i s t h e o p e r a t o r p e r f o r m i n g t h e r o t a t i o n o f a x i s w h i c h i s d e f i n e d p o s i t i v e when i s done i n t h e c l o c k w i s e d i r e c t i o n . a) S t r e s s i n C a r t e s i a n C o o r d i n a t e s The t r a n s f o r m a t i o n f r o m a c y l i n d r i c a l s y s t e m o f c o o r d i n a t e s ( P , 6, z ) t o a c a r t e s i a n ( x , y, z ) i s i d e n t i c a l t o a r o t a t i o n - 9 o v e r t h e z - a x i s as shown i n F i g u r e . Z e The m a t r i x f o r t h i s t r a n s f o r m a t i o n i s cos6 - s i n e 0 M z (-6) = s i n e cos e 0 0 0 1 f o r t h i s t y p e o f t r a n s f o r m a t i o n s t h e i n v e r s e o p e r a t i o n i s 355 and t h e r e f o r e o x x o x y a x z o y x o y y a y z a x z a y z az z w h i c h g i v e s -0) = M z < ~ e > = M z ( e ) cos6 -sine 0 = sine cose 0 X 0 0 1 -cos6 s i n9 0 X -s in6 cos8 0 0 0 1 a XX = °P c o s e + a e s i n2 6 °yy ' = °P s i n e + a6 2 cos e a z z 0 z °xy ' s i n e cos e ( O P " °e a x z = T P z cos6 a y z ! = T p Z s in6 p 0 pz 0 b) Sample C a l c u l a t i o n o f t h e RSS i n t h e ( 1 1 1 ) P l a n e and [1101 D i r e c t i o n Two r o t a t i o n s a r e p e r f o r m e d : w i t h t h e f i r s t r o t a t i o n o v e r t h e z - a x i s by an a n g l e a = 3 / 4 IT t h e r o t a t e d s y s t e m (x ' , y', z' = z) has t h e x ' - a x i s c o i n c i d e n t w i t h t h e [ 1 1 0 ] d i r e c t i o n ; w i t h t h e s e c o n d r o t a t i o n o v e r t h e x ' - a x i s by an a n g l e 3 s u c h t h a t c o s 3 = / 3 / 3 , t h e new s y s t e m ( x " = x', y" , z") has t h e z " - a x i s 356 p e r p e n d i c u l a r t o t h e ( 1 1 1 ) p l a n e . I n t h i s c a s e t h e d e s i r e d s t r e s s component i s o . The m a t r i x f o r t h e c o m b i n e d r o t a t i o n i n t h e o r d e r t h e r o t a t i o n i s p e r f o r m e d , i s c a l c u l a t e d as M(o . 3 ) M x, (3 ) M z ( a ) w i t h and M x,(3) 1 0 0 0 c o s B sin3 0 -sin(3 c o s S M z ( a ) co s a -s i n a 0 s i n a 0 co s a 0 0 1 M u l t i p l y i n g b o t h m a t r i c e s t o o b t a i n M ( a , 3 ) and p e r f o r m i n g t h e r o t a t i o n o f t h e t e n s o r t h e d e s i r e d a „ component i s : X z x" z (o - a ) s i n a c o s a s i n 3 + xx yy 2 2 + a ( s i n a s i n 3 - c o s a sin3 ) + xy + a c o s a c o s 3 + o s i n a c o s 3 x z y z S i m i l a r c a l c u l a t i o n s a r e The p e r f o r m e d r o t a t i o n s f o r e a c h c a s e a r e l i s t e d r e p e a t e d f o r t h e and c o r r e s p o n d i n g i n T a b l e V I . 1 . o t h e r 11 p r o j e c t i o n s , c a l c u l a t e d component 357 T a b l e V I . 1 R o t a t i o n p e r f o r m e d f o r t h e c a l c u l a t i o n o f t h e RSS ROTATIONS | S l i p | S l i p | 1 2 ( C a l c u l a t e d p l a n e d i r e c t i o n Component | a x i s | a n g l e | a x i s | a n g l e | | 110 z 3/4 TT x 1 g x " z " 111 O i l x TT/4 Z * 3 z"x" 101 y TT/4 X ' 3 x " y " 101 y 3/4 TT x' - 3 x " y " T i l O i l x TT/4 Z ' T T/2- 3 y " z " 110 z TT/4 X ' - 3 x " z " O i l x -TT/4 z' - ( T T - 3 ) x " z " 111 101 y -3/4 TT Z * - ( T T - 3 ) X " Z " 110 z -TT/4 x' 3 x " z " O i l x -TT/4 z ' - 3 x " z " 111 101 y TT/4 X ' T T/2 - 3 x " z " 110 z -3/4 TT x ' - 3 x " z " When t h e v a l u e s o f t h e c a r t e s i a n c o m p o n e n t s o f s t r e s s a r e r e p l a c e d i n t e r m s o f t h e c y l i n d r i c a l c o m p o n e n t s t h e t w e l v e RSS a r e : 358 T a b l e V I . 2 R e s o l v e d S h e a r S t r e s s component i n t h e <110> ( 1 1 1 ) s l i p | P l a n e | D i r e c t i o n | R e s o l v e d S h e a r S t r e s s [ 1 1 0 ] / 6 < - ( 0 - 0 O ) ( c o s 2 e - s i n 2 6 )+x ( c o s 9 - s i n 0 ) } —- p 0 p z ' b ( 1 1 1 ) [ O i l ] . o 2 /6 { - ( 0 s i n 0+o„cos 6)+ 6 p 9 + ° _(0„-O f l)sin0cos9+T cos9 } z z p 0 pz [ 1 0 1 ] .— 2 2 /6 {o co 0+a„sin 9-a +(o - a Q ) s i n 6 c o s 0 - a s i n 0 ) — p 0 zz ' p 0' pz b [ 1 0 1 ] 2 2 / ? {o c o s 8 + o n s i n 0-a - ( a - a „ ) c o s 0 s i n 0 - T s i n 0 } —q P 0 zz p 0 pz [ T i l ] [ O i l ] 2 2 /6 {-(o s i n 0 + a Q c o s 0)+ 6 p 0 + 0 +(o -o„ ) c o s 0 s i n 0 - T cos0} zz p 0 p z [ 1 1 0 ] 2 2 /6~ { - (o - o n ) c o s 0 - s i n 0 )+T ( c o s 0 - s i n 0 ) } g P o p z [ O i l ] / 6 ~ { - ( a s i n 2 0 + a Q c o s 2 0 ) + ~6 P 6 + o - ( 0 - O Q ) c o s 0 s i n 0 - T cos0} zz P o P z ( 1 1 1 ) [ 1 0 1 ] 2 2 /6~ {o cos 0+a„sin 0-~6" P 6 -a +(o.-o f l ) c o s 6 s i n 0 + T . s i n 0 } zz P 0 P z [ 1 1 0 ] 2 2 /?T { - (Op -Og ) ( c o s 0 - s i n 0 ) + x p z ( c o s 0 - s i n 0 ) } 6 Cont . / 359 C o n t . / [ O i l ] / ~ (-(o. sln 26+Q Q cos 0 ) + +0 +(a -o„ ) cos0 sln0+T cos8 } zz p 0 p z (111) [101] /6~ (o cos 0 + a Q s i n 0-~6 P 6 -a -(a -o n ) cos0 sin©+T sin0 } z p 0 p z [110] /6" {-(o - a Q ) ( c o s 2 0 - s l n 2 0 )-T (cos0+sin0)} 6 P y P z 360 U s i n g t r i g o n o m e t r i c r e l a t i o n s t h e y c a n be p u t i n a more e l e g a n t f o r m as f o l l o w s : T a b l e V I . 3 Compact f o r m o f t h e RSS f r o m T a b l e V I . 2 | P 1 a n e | D i r e c t i o n | R e s o l v e d S h e a r S t r e s s | Mode | [ n o ] / 6 ~ { - ( 0 -Oa ) c o s 2 6 +/2T r c o s (8 +TT/4 ) } ~6 P 6 P C I a (111) [ o T i ] / 6 ~ { - ( a -Or, ) / 2 s i n 6 s i n (8 +TT/4 ) + ( a r - 0 Q ) + ~6~ p 6 ? 6 +a _ c o s 8 } PC 11 a [ i o T ] /6~ (a -Or, ) / 2 c o s 8 s i n (8 +TT/4 ) - ( a r -o Q ) -~"g~ P D C o -T r s i n 8 } PC 111 a [ToT] ~ { (o - o Q ) / 2 c o s 6 c'os (0+TT/4 ) - ( o c - a Q ) -— p 0 C 8 - x p C s i n 0 } IV a [ i n ] [ o T i ] / 6 " { ( o - 0 Q ) / 2 s i n e c o s ( 0+Tr/4) + (a - a Q ) -6 P o C o -T COS0 } PC V b [ n o ] /~" { - ( O p -Og ) cos 2 0 +/2T p^ C O S (0 +TT/4 ) } 6 I a [ O i l ] /6~ {-(Op-Og ) / 2 s i n 0 s i n ( 0 + T r / 4 ) + (a^-Og ) -6 -T p ^ COS0) 11 b ( T T i ) [ToT] / i ~ { ( O D - O Q ) / 2 c o s 0 s i n ( 0 + T r / 4 ) - ( O r - O g ) + 6 + T p C s i n 0 } 111 a [ i T o ] / 6 ~ { - ( 0 -O ) COS20+/2T C O S ( 0 + T T / 4 ) } ~e p 6 PC I a C o n t . / 361 Cont . / [ O i l ] / 6 ~ { ( o -0. ) / 2 s i n 6 c o s ( e + T r / 4 ) + (o -a.) + 6 p y C o + T _cos6} PC V a ( 1 1 1 ) [ToT] /6~{(0 - 0 Q ) / 2 c o s 6 c o s ( e + T T / 4 ) - ( a r - 0 Q ) + 6 P o C o + T r s i n 8 ) PC IV b [!!o] Z i " { - ( 0 -0 )cos29-/2 T C O S ( 6 + T T / 4 ) } 6 P 9 PC I b 362 APPENDIX V I I T e m p e r a t u r e F i e l d D u r i n g C o o l i n g The p r o b l e m t o s o l v e i s g i v e n by t h e f o l l o w i n g e q u a t i o n s . 1 3 33 323 33 ( p ) + — = r ( V I I . l ) p 3p 3p 3 ^ 9t I . C . 1 s a t t * = 0 3 0 = P 0 + P l ^ + P 2 ^ ( V I I . 2 ) B . C . 1 s a t t * > 0 33 / = -h'3 ( V I I . 3 ) 3p p = l 33 / = -h'3 ( V I I . 4 ) 3? C=Ct 33 / = h'3 ( V I I . 5 ) A s o l u t i o n i s o b t a i n e d by s e p a r a t i o n o f v a r i a b l e s i . e . 3(p. £. t * ) = R ( p ) Z ( C ) T * ( t * ) ( V I I . 6 ) - T t * M o r e v e r , we assume T * ( t * ) a e , ¥ i s c o n s t a n t . S u b s t i t u t i n g 3 i n ( V I I . l ) and o p e r a t i n g we g e t 363 1 1 d dR(p) 1 d 2 Z ( C ) (p ) + - = - f ( V I I . 7 ) R(P) P d p d p Z(C) dC 2 2 w h i c h i s s a t i s f i e d i f e a c h t e r m i s c o n s t a n t , s a y -X and -y r e s p e c t i v e l y . T h i s g i v e s t h e f o l l o w i n g o r d i n a r y d i f f e r e n t i a l e q u a t i o n s and c o n d i t i o n s d 2R 1 dR + + R = 0 ( V I I . 8 ) d ( X p ) 2 (Xp) d(Xp) w i t h R s u c h t h a t dR / = -h'R ( V I I . 9 ) dp p=l and d 2 z 2 — + y Z = 0 (VI I.10) dC 2 w i t h Z s u b j e c t t o dZ / = -h'Z ( V I I . 11 ) d £ ? = t i t dZ / = h ' Z (VI I.12) d? ? = 0 and a l s o X, y and T must s a t i s f y 364 ( V I I .13) The s o l u t i o n s o f ( V I I . 8 ) and ( V I I . 9 ) a r e t h e B e s s e l f u n c t i o n s o f z e r o o r d e r , i . e . R ( p ) J Q ( X p ) f o r a l l t h e A v a l u e s s a t i s f y i n g t h e a l g e b r a i c e q u a t i o n ( s e e A p p e n d i x V I I I ) As shown i n A p p e n d i x V I I I , t h e s e f u n c t i o n s c o n s t i t u t e a c o m p l e t e and o r t h o g o n a l s e t o f v e c t o r s . The s o l u t i o n s o f ( V I I . 1 0 ) a r e t h e h a r m o n i c f u n c t i o n s , i n o r d e r t o s a t i s f y t h e B.C.'s ( V I I . 1 1 ) and ( V I I . 1 2 ) we c h o o s e as s o l u t i o n s Z (C) = A c o s y K + B s i n y £ ( V I I . 1 5 ) s u b s t i t u t i n g i n ( V I I . 1 2 ) and ( V I I . 1 3 ) we o b t a i n r e s p e c t i v e l y t h a t X J j (a) = h' J Q (X) (VI I .14 ) A Y ( V I I . 1 6 ) B h and 2Y h t a n Y C T = Y' ( V I I . 1 7 ) 365 ( V I I . 1 7 ) g i v e s t h e c o n d i t i o n t o o b t a i n t h e y - v a l u e s . M o r e o v e r , t h e f u n c t i o n s ( V I I . 1 5 ) s u b j e c t t o ( V I I . 1 1 ) and ( V I I . 1 2 ) a r e o r t h o g o n a l ( s e e C a r s l a w and J a e g g e r ) . The g e n e r a l s o l u t i o n f o r 3 i s t h e r e f o r e where t h e s u m m a t i o n e x t e n d s t o a l l t h e A and y - v a l u e s w h i c h a r e r o o t s o f ( V I I . 1 4 ) and ( V I I . 1 7 ) r e s p e c t i v e l y . To o b t a i n t h e c o e f f i c i e n t s C*( \,y ) t h e i n i t i a l c o n d i t i o n ( V I I . 2 ) i s a p p l i e d and t h e i n n e r p r o d u c t i n t h e s p a c e - f u n c t i o n i s p e r f o r m e d , t h a t i s 3( p- 1*) = Z C*( a.y) e 2 2 - ( A 2 + Y ) t * J Q ( X p ) [ Y c o s y C + h r s i n y C ] (VI I.18) fC t = C*(A,Y> d p ( V I I . 19 ) J 0 I t i s o b s e r v e d t h a t C*(A,Y) can be w r i t t e n as C*(X,Y) = C1(X) C 2 ( Y ) ( V I I . 2 0 ) A f t e r p e r f o r m i n g t h e i n t e g r a t i o n t h e c o e f f i c i e n t s a r e f o u n d t o be 366 CAX) = ( V I I . 2 1 ) ( h , < J + A ) J Q ( A ) and C 2 ( y ) = 1 1 / 1 ( V I I . 2 2 ) w i t h 't (y 2 + h ' 2 ) + h' ( V I I . 2 3 ) and I I = s i n y ^ { p Q + P l ( t i t + h ' / Y 2 ) + P 2 ( C 2 - 2 / Y 2 + 2 th'/j2)} + C 0 S Y 4 t 2 2 + — <-P 0h' + P j ( l - h'C t) + P 2 ( 2 ? t - h'Cj + 2 h ' / Y ) } + Y P n h ' p, 2p h 1 + 1 ^ — ( V I I . 2 4 ) Y Y Y A l s o t h e s o l u t i o n f o r 3 c a n be w r i t t e n as a p r o d u c t o f two i n d e p e n d e n t s e r i e s _ A 2 t * 3( p. £ . t * ) = 2 h 1 [ Z C ( A) e J n ( A p ) ] A 1 0 . Y 2 t * {Z C 2 ( Y ) E [ Y C ° S Y £ + h ' s i n y ? ] } ( V I I . 2 5 ) Y 367 APPENDIX V I I I A n a l y t i c a l S o l u t i o n o f t h e T e m p e r a t u r e F i e l d The p a r t i a l d i f f e r e n t i a l e q u a t i o n t o be s o l v e d i s : 3 2 3 l 96 3 2 3 33 3 p 2 p 3p 3 £ 2 3C s u b j e c t t o t h e f o l l o w i n g B o u n d a r y C o n d i t i o n s 33 / = - h r Q 3 ( a ) 2V = 0 ( V I I I . 1 ) 3p p= 1 a t £ = 0 (b) ( V I I I . 2 ) a t £ = C t (c) E q u a t i o n ( V I I . 1 ) can be s o l v e d by s e p a r a t i n g v a r i a b l e s 3 ( p,C ) = R(p ) Z(£ ) w h i c h l e a d s t o t h e f o l l o w i n g two o r d i n a r y d i f f e r e n t i a l e q u a t i o n d 2R 1 dR + + R = 0 ( V I I I . 3 ) d ( A p ) 2 Xp d(Ap) 368 d 2R dZ — - 2V - X Z = 0 ( V I I I . 4 ) d«T d£ S o l u t i o n s o f ( V I I I . 3 ) a r e t h e B e s s e l f u n c t i o n s o f z e r o o r d e r R(P)•J Q (XP) E q u a t i o n ( V I I I . 4 ) i s l i n e a r and homogeneous w i t h c o n s t a n t c o e f f i c i e n t s w i t h t h e g e n e r a l s o l u t i o n £ / V 2 + 2 — E V V 2 + A 2 V£ Z(C) = ( A x e> / V + B x e ^ V A ) e V ^ where A^ and B^ a r e c o n s t a n t t o be d e t e r m i n e d . The g e n e r a l s o l u t i o n i s t h e r e f o r e 6 (p,C) = e V C ZJ Q(Xp) [ A A e k * C + B x e k ^ 5 ( V I I I . 5 ) X 2 2 where = V + A . and t h e su m m a t i o n i s c a r r i e d o u t o v e r a l l t h e p o s s i b l e v a l u e s o f From ( V I I I . 2 a ) we g e t t h a t X j J f ( X ) = h r Q J Q ( X ) ( V I I I . 6 ) f r o m w h i c h t h e v a l u e s o f X a r e o b t a i n e d . From ( V I I I . 2 b ) and ( c ) i t i s o b t a i n e d t h a t 369 and 1 = I J 0 ( A p ) [ A x + B A ] A V C t k A C t - \ l t e I Jg(Ap) [ A ^ e + e ] A ( V I 1 1 .7) ( V I I I . 8 ) In o r d e r t o c a l c u l a t e A-^ and fr o m t h e above e q u a t i o n s i t i s n e c e s s a r y t o show t h a t t h e f u n c t i o n s J(Ap ) f r o m ( V I I I . 6 ) f o r m a c o m p l e t e s u b - s e t o f o r t h o g o n a l f u n c t i o n s . To do t h i s l e t us c a l c u l a t e t h e c o e f f i c i e n t s f o r t h e e x p a n s i o n o f t h e u n i t f u n c t i o n i n t e r m s o f J ( k p ) , t h a t i s 1 p J 0 ( k p ) d = z 0 A J0 e(p,C) = 2 h r e " Z A (A + I T r ^ ) J Q ( A ) kA^ - 2 k A ^ t kA? - e e ( V I I I . 1 5 ) , - 2 k A C t 1 - e 2 2 2 w i t h k = V + A and t h e A's s a t i s f y A A J j ( A ) = h r Q J Q ( A ) ( V I 1 1 . 1 6 ) 372 APPENDIX IX P l a n e S t r a i n A n a l y t i c a l S t r e s s e s The p l a n e s t r a i n a n a l y t i c a l s o l u t i o n s f o r s t r e s s e s a r e d e r i v e d a s s u m i n g t h e r e i s o n l y r a d i a l d i s p l a c e m e n t and a l l o w i n g an a x i a l d i s p l a c e m e n t i n o r d e r t o s a t i s f y t h e c o n d i t i o n o f no a x i a l t r a c t i o n a t t h e ends o f t h e c y l i n d e r . I n n o n - d i m e n s i o n a l v a r i a b l e s t h e s e s o l u t i o n s a r e 3 Pd p 3pd p ( I X . 1 ) , 1 3p d p + rP 3pdp - 3 ( I X . 2 ) A = 2 3 p d p - 3 ( I X . 3 ) w i t h a c o n v e r s i o n f a c t o r g i v e n by a E ( T M P " V d i m 1 - V ( I X . 4 ) A. A x i s y m m e t r i c T h e r m a l F i e l d F o r t h e g e n e r a l t e m p e r a t u r e f i e l d g i v e n by E q u a t i o n ( V I I I . 1 5 ) t h e s t r e s s c o m p o n e n t s , a f t e r i n t e g r a t i n g by p a r t s , a r e 373 ve h r o op = 2 h r Q e V^ Z K x ( £) [ f X X J j ( A p ) A p J 0 ( A ) ( I X . 5 ) o„ = 2 h r e v ^ Z K U ) { f - + [ * J n ( A p ) ] > ( I X . 6 ) 9 ° A A Jn(X) Xp ° V C r 2 h r Q ^ X X V A p ) J 0 ( A ) ( I X . 7 ) where KXU> _ 2 k > ^ i - 2 2 2 (1 - e A fc ) ( A + i T r * ) ( I X . 8 ) To o b t a i n t h e s e e x p r e s s i o n s t h e f o l l o w i n g i n t e g r a l was u s e d ,1 J Q ( Z ) ZdZ = J (Z) Z ( I X . 9 ) The e v a l u a t i o n o f s t r e s s e s a t t h e c e n t e r t o t h e c y l i n d e r i s a c c o m p l i s h e d by u s i n g t h e f o l l o w i n g l i m i t i n g v a l u e s J Q ( 0 ) J, ( A p ) 1 and 1 / A p p->- 0 1/2 ( I X . 1 0 ) 374 B. R a d i a l T e m p e r a t u r e F i e l d F o r a t e m p e r a t u r e f i e l d g i v e n by 3 s t r e s s a r e i m m e d i a t e l y o b t a i n e d as : p t h e v a l u e s o f op 1 / 2 1 ( P 1) ( I X . 11) a e = 1 (3 P 2 - 1) ( I X . 1 2 ) 1/2 ( I X . 1 3 ) 375 APPENDIX X ANALYTICAL AS ISYMMETRIC SOLUTIONS FOR STRESSES X . 1 A x i s y m m e t r i c T e m p e r a t u r e F i e l d A) L o v e ' s P o t e n t i a l * 3 The r e d u c e d L o v e ' s p o t e n t i a l L = L / E a S ^ r s a t i s f i e s t h e i o b i h a r m o n i c d i f f e r e n t i a l e q u a t i o n : 2 2 * V V L = 0 i a where a od p a p a v w i t h L , by symmetry, o n l y a f u n c t i o n o f p and £ . P e r f o r m i n g a c o s i n e f i n i t e F o u r i e r t r a n s f o r m on t h e b i h a r m o n i c e q u a t i o n we g e t A 2 2 ,2 , , 2 2 I d n TT d I d n TT dp p d p £~ dp" p d p £ t 2~) L c ( n , p ) where by d e f i n i t i o n t h e f o l l o w i n g r e l a t i o n s were u s e d F f c {L ( £ , P ) > S L c ( n , p ) £t „ n TT£ L (£,p)cos d£ and F f c <• a 2L*(£, P ) a7 2 * C t 9^L n TT £ cos a£' d£ 376 (-1)' 3L 3£ 3L C t 3C 2 2 n TT T L c ( n - P ) w i t h t h e a s s u m p t i o n t h a t 3L 3L 3C 3C 0 The a n t i t r a n s f o r m i s p e r f o r m e d by s u m m a t i o n o f t h e f o l l o w i n g s e r i e s 1 „ 2 °° „ nrrC L ( C p ) = L (0) + Z L ( n . p ) c o s A f a i r l y g e n e r a l s o l u t i o n o f t h e b i h a r m o n i c e q u a t i o n w h i c h i s t h e m o d i f i e d b i - B e s s e l e q u a t i o n , i s o b t a i n e d as a c o m b i n a t i o n o f t h e m o d i f i e d B e s s e l f u n c t i o n s o f o r d e r z e r o and one as L ( n , p ) = A ( l ) I (1 ) + B ( l ) (1 p ) 1,(1 p ) c ' n o n n n K 1 n K w i t h l n = nTT/^ what c a n be v e r i f i e d u s i n g t h e f o l l o w i n g r e c u r r e n t r e l a t i o n s among d e r i v a t i v e s o f t h e m o d i f i e d B e s s e l f u n c t i o n s x I ' n ( x ) = x I ^ U ) - x I n ( x ) ; x I ' n ( x ) = x I n + 1 ( x ) + x I n ( x ) ; 3 7 7 The f u n c t i o n s a r e n o t i n c l u d e d b e c a u s e t h e y d i v e r g e f o r p -»- 0. The g e n e r a l f o r m o f t h e a n t i t r a n s f o r m e d L o v e ' s p o t e n t i a l i s t h e r e f o r e : L * U . P) = I [ A U J I ( 1 P) + B ( l ) ( 1 p) 1 . ( 1 p) c . n o n n n i n £ t n= 1 c o s 1 £ n w i t h A j and c o n s t a n t s t o be d e t e r m i n e d f r o m t h e b o u n d a r y n n c o n d i t i o n s . B) G o o d i e r ' s P o t e n t i a l * 2 I n t e r m s o f a r e d u c e d p o t e n t i a l ( l - v ) / (1 +v) a S ^ r and t h e n o n d i m e n s i o n a l q u a n t i t i e s p , £ , and 3 , t h e G o o d i e r ' s p o t e n t i a l can be a c c o m p l i s h e d by s o l v i n g t h e d i f f e r e n t i a l e q u a t i o n 2 * 2 V i n n-n n + 1 *A ut) + 3? where A.n <|>x(p.C) s i n l n £ d £ w i t h t h e a n t i t r a n s f o r m g i v e n by 4>A (£.p) £ t n = 1 We g e t t h e t r a n s f o r m e d d i f f e r e n t i a l e q u a t i o n as 3 1 3 < — • - — - l / ) (n . p ) = J 0 ( A p ) Z (n) 3p p 3p Where i t was assumed t h a t 3<1> 34> 3£ 3£ f o r a p a r t i c u l a r s o l u t i o n . 379 A l s o Z, n (n) = F o {Z, (£)} A, n s A The d i f f e r e n t i a l e q u a t i o n f o r (b. can be m o d i f i e d t o g e t A» n d 2 I d l n 2 * J 0 ( X p ) + —x) (b, „ (n.p) = — Z. n (n) d ( A p ) 2 p d(Ap) A 2 X , n ' A 2 A , n A p a r t i c u l a r s o l u t i o n c a n be o b t a i n e d as O'x.n - A V A p ) S u b s t i t u t i n g and u s i n g t h e f o l l o w i n g r e l a t i o n s among d e r i v a t i v e s o f J ^ a n d : J ' 0 ( A p ) = - J j ( X p ) and J j U p ) J " 0 ( A p ) = - J n ( A p ) + Ap we g e t t h a t ZA,n< n> \ 2 i 2,,2 A + 1 /A n and zA , n ( " > ^A.n = " x 2 + 1 2 J ° U P ) 380 A p p l y i n g t h e a n t i t r a n s f o r m , 2 oo z (n) *A = - J 0Qp> — Z 2' n 2 s i n 1 C £ t n=l (A + l n ) The c o m p l e t e s o l u t i o n f o r i s t h e r e f o r e 4) (p.C) 2hr. Z A J o ( > A 2 ( A 2 + h 2 r 2 ) J Q ( A ) 2 oo z (n) s i n 1 £ E A .n n i C t n=l (1 + l n 2 /A 2) (1 - e ~ 2 k A C t ) w h i c h c a n be p u t i n a more s u i t a b l e way as * 4 h r oo 4) (p.£) = Z s i n 1 £* € t n = 0 I J 0 ( A p ) J Q ( A ) ( A 2 + h 2 r Q 2 ) ( A 2 + l n 2 ) ( l "2 k A ^ t , e ) Z , (n) A, n C. C a l c u l a t i o n o f C o n s t a n t s A j and and S t r e s s e s n n The n o n - d i m e n s i o n a l c o m p o n e n t s o f s t r e s s d e r i v e d f r o m L o v e ' s and G o o d i e r ' s p o t e n t i a l s a r e 9 * 2 * 9 » 3 L 1 3 4) on(e.p) = [vv L —] + — ( — - — - B ) M 3£ dp l - v 3p 381 9 t 1 9L 1 1 3 3p 3£ 1-v 3p3£ S u b j e c t t o t h e f o l l o w i n g b o u n d a r y c o n d i t i o n s o = x _ = 0 P PC and o p.= 1 E- 1 5 " 5 , £= o A f t e r d e r i v a t i n g , t h e s t r e s s c o m p o n e n t s a r e a X { < I 0 ( 1 n P > t A l n ( 2 V - 1 ) ] + n 1 + t B l ( 1 n p > - " n l n p 2 2 2 h r Q Z A , n ( n ) t J Q ( X p ) 1„ A + - ^ ( A p l / A p l 1 _ V ~2kl^t 2 2 2 2 (1 - e A *) ( A + h r ^ ) [ 1 + ( W A ) ] J Q ( X ) s i n 1 £ n* 382 2 V- f I l ( 1 n P ) 3 £ s l n 1 C K J L _ A - i o ( l n p ) ( 2 V - l ) B j ] l n C n v 1 p n n t n 2 h r Q Z (n) t J ^ A p ) /Ap - J Q ( A p ) (1 + l n 2 / A 2 ) ] + ^ ' 2k A (A 2+ h 2 r 0 2 ) J Q ( A ) (1 - e A *) (1 + 1 ^ / A 2 ) 7 s i n 1 5 { ( I 0 ( l n P ) [Aj - 2(2 - V, B ] n v n n + ( 1 n p ) B l > V + n V A P > Z A , n ( n ) 2 h r + Z 1 ' V \ 2 2 2 ~ 2 R A C t 2 2 A ( A % h rQ ) (1 - e A l ) (1 + 1„ A ) } PC «t n I c o s V { < I 0 ( 1 n P ) B l p + l l { 1 n p ) n v. n [Aj + 2 ( 1 -y) Bj ]} l n + n n 2h r _ + " 1 I n ^ V A p> Z A , n ( n ) } A A ( A ^ h 2 r 0 2 ) J 0 ( A ) d + l n 2 / A 2 ) d - e 383 T h e s e c o m p o n e n t s o f n o n - d i m e n s i o n a l s t r e s s s h o u l d be m u l t i p l i e d by E a 3 t o o b t a i n t h e s t r e s s i n a b s o l u t e u n i t s ; i . e . | o | J 4 = F S „ | O I . F o r t h e c a l c u l a t i o n o f s t r e s s e s a t t h e a x i s , dim a f p = 0, t h e f o l l o w i n g l i m i t s a r e u s e d : 1/2 J ^ O ) = 0 J 0 ( 0 ) I 0 ( x ) J j ( x ) x 0 x 0 1/2 The e v a l u a t i o n o f t h e c o n s t a n t s A^ and n n i s c a r r i e d o u t by s o l v i n g t h e s y s t e m o f l i n e a r a l g e b r a i c e q u a t i o n s r e s u l t i n g f r o m t h e a p p l i c a t i o n o f t h e b o u n d a r y c o n d i t i o n s a and T P = l PC = 0 p = i A i n 1,(1 ) 1 n •] + B, [ I l ( l n ) l n - ( 2 V - 1) I 0 ( l n ) ] 2 h r 0 1 2 Z K. (n) ( l / + h r ) 1-v 1 3 A , n " ° n A l W + B l [ I 0 ( 1 „ » J n + 2 ( 1 " v ) ! l ( 1 n ) ] n n 1 - v 1„ X 2 Z K X . n ( n ) 384 where Z>.n<"> -2k £ A 2 ( A 2 + h 2 r Q 2 ) (1 + l n 2 / X 2 ) [1 - e A t ] S o l v i n g f o r A j and B j we g e t n 2hr = ~ — (Z K (n) ( I n ( l ) [1 + 2hr ( l - v ) ] + 2 n A ( l - v ) l n 2 X , n 0 n n 0 1 ( 1 + 1 ^ H n ( h r Q + 2 ( l - v ) ) + 2 h r ( 1 - v ) ] } and 1 2 h 2 r 0 2 ZKX n ( n ) J n B l - 7 < - " " "TT- [ V V + > n A 1 - v 1 hr„ n 0 where 2 li ( 1 n > 2 * = 'o'V ln ~ 2 t 2^ -v) • l n 2 3 D. C a l c u l a t i o n o f Z X, n ZA.n<"> " F s , - (-1) e 2 2 n TT 2 2 n TT (V-k x)» • (v+k A)" + 2 . A n a l y t i c a l A x i s y m m e t r i c S o l u t i o n f o r (3 = p The same p r o c e d u r e f o r m p a r t 1 i s f o l l o w e d a p p l i e d t o a 2 t e m p e r a t u r e f i e l d t h a t depends on r a d i u s o n l y , i . e . 3 = -p . A. L o v e ' s P o t e n t i a l The d i f f e r e n t i a l e q u a t i o n f o r t h e L o v e ' s p o t e n t i a l i s t h e same as shown i n P a r t A, as w e l l as t h e s o l u t i o n i . e . 2 °° L*(£,p) = Z [A I 0 ( 1 n P ) + B l ( 1 n P ) ^ ( ^ P * ! 0 0 8 1 n ^ 4 n=l n n B. G o o d i e r ' s P o t e n t i a l The d i f f e r e n t i a l e q u a t i o n f o r t h e G o o d i e r ' s P o t e n t i a l i s 2 * * 2 * 3d) 1 dd> 3n .2 * 2 . — + - 1 4> -p f „ 2 . n * n H i 3p p 3p 386 where n TT s i n £ d £ [1 - ( - D ] The p a r t i c u l a r s o l u t i o n p r o p o s e d i s n n )> s i n 1 ( J 2 X l ( 1 n p ) 3 — I { [ — 2 - _ A - ! ( 1 p ) B ( 2 v - 1 ) ] l n 3 + 5* X „ P n n 387 [1 - < - l ) ] ( l - v ) 1 1 n n P )> s l n l n C °e Z ( { I 0 ( l n p ) [ A j - 2 ( 2 -v) B j ] + I j d ^ ) B j } l n ; I n n n 4 [1 - ( - 1 ) " ] ( 1 - v ) „ ' 1 ~ 3 J S l n 1 n i and 2 Z ( { I 0 { 1 n P ) ( 1 n P ) B l + I l ( 1 n p ) [ A l + 2 ( 1 _ v ) B l ] } ln + (. n n n 2 [1 - ( - I ) " ] p> c o s 1 t% 1 - v 1 2 ' n These n o n - d i m e n s i o n a l components o f s t r e s s e s s h o u l d be m u l t i p l i e d by E a 3j. t o o b t a i n t h e s t r e s s l e v e l i n a b s o l u t e u n i t s ; i . e . < a>dim - E a * f <°> The e v a l u a t i o n o f t h e c o n s t a n t s A j and B j i s done as b e f o r e , n n u s i n g t h e b o u n d a r y c o n d i t i o n s : i ) o = 0 a t p = 1 P A l [ I 0 ( 1 n > " I l ! 1 " > ] + B l [ I l ( 1 n > ln " <2v " l ) n 1 n n 388 [1 - (-D ] (1 ) 1, + 1) f o r n = 2n (1 - v ) 1, *2 + 1) with 1 = n (2n + 1)TT i i ) f r o m T = 0 a t P = 1 A l V C ' + B l [ I0 ( 1 n * » C + 2 ( 1 " V ) * i O n n T h a t i s t h e o n l y n o n - z e r o and come f r o m odd v a l u e s o f t h e n n i n t e g e r n S o l v i n g f o r A^ and B j and d r o p i n g t h e a s t e r i s k A l " - n M ^ 4 1 T=l/T P0=.39894+.01328*T+.00225»T~2-.00157»T"3 Q0=.00916»T~4-.02057*T~5+.02635«T~6-.01647«T~7+.0039 LET LET LET 8 LET LET LET LET I0=EXP(3.75/T)«(PO + CIO) »SQR(T/3.75> Pl= .39894- .03988*T- .00362»T~2+ .00163«T~3- . 01031 «T' Ql=.02282«T~5-.02895»T~6+.01787»T"7-.0042«T~8 I1=EXP(3.75/T>«(Pl+Ql)«SQR(T/3.75) RETURN DATA .29,2 44 1 X I I . 3 P r o g r a m f o r t h e N u m e r i c a l E v a l u a t i o n o f A n a l y t i c a l A x i s y m m e t r i c S t r e s s e s f o r A x i s y m m e t r i c T e m p e r a t u r e F i e l d s 1 REM CALCULATION OF SIGR 2 DIM A L ( 5 ) 4 READ H,RO,K,V,NU,ZT 5 LET CT=(V*RO)/(2*K) 6 0PEN4,4:CMD4:PRINT CHRSC27);CHRS<37);CHRS(67);"120" 7 PRINT C H R S O l ) ; " C A L C U L A T I O N OF RADIAL STRESSES" 8 PRINT C H R S C 3 0 ) ; C H R S ( 2 7 ) ; C H R S ( 4 8 ) ; " A N A L Y T I C A L L Y " 9 FOR M=l TO 5 10 :READ AL(M) 11 :PRINT AL(M) 12 NEXT M 13 PRINT "H=";H;"RO=";RO;"V=";V;"K=";K;"NU="; NU;"ZT=";ZT 15 FOR L=3 TO 5 16 LET Z = ( Z T * . 1 ) " 2 * 2 ~ ( L - 1 ) 17 PRINT CHRS(10);"HEIGHT=";Z;CHRS(10) 18 FOR 1=1 TO 11 19 LET SP=0.0 20 LET R O = ( I - l ) * . l 21 FOR N=l TO 5 22 :LET LN=N*3.1416/ZT 23 :LET T=LN/3.75 25 : I F T<=1. THEN GOSUB 100 26 : I F T>1. THEN GOSUB 150 27 :LET D=I0~2«LN-I1~2*(2*(1-NU)+LN~2)/LN 31 REM CALC OF KT 32 :LET KT=0 33 :FOR M=l TO 5 35 :GOSUB 180 37 .'LET KT=KT+ZA/(CZ*AL(M)~2) 39 : NEXT M 41 REM CAL ALN 43 :LET A1=I0»(LN~2+2*H*R0*(1-NU)) 44 :LET A2=I1*(LN"2*(H*R0+2*(1-NU))+2*H*R0*(l -NU))/LN 46 :LET AN=2*H*R0*(Al+A2)*KT/(D*(1-NU)*LN~2) 49 REM CALC OF BLN 50 :LET CB=-2*(H*R0)"2/(D»(1-NU)«LN"2) 51 :LET B=I0+I1«LN/(H«RO) 52 :LET BN=CB*B«KT 55 REM CALC SRR 58 : I F R0=0 THEN GO TO 83 59 :LET T=LN»R0/3.75 60 : I F T<=1. THEN GOSUB 100 61 : I F T>1. THEN GOSUB 150 63 :LET Sl=(10*(AN-BN*(2«NU-1))+11*(BN*LN*RO-AN/(LN«RO)))*LN o 65 REM CALC OF KT J 66 :LET S2=0 67 :FOR M=l TO 5 68 : GOSUB 180 442 69 : LET X=AL(M)»RO 70 : IF X<=3. THEN GOSUB 200 71 : IF X>3. THEN GOSUB 250 72 : LET J2=J0«(LN/AL(M)>~2 73 : LET J3=J1/X 74 : LET X=AL(M) 75 : IF X< = 3. THEN GOSUB 200 76 : IF X>3. THEN GOSUB 250 77 : LET J4=ZA/(JO«CZ> 78 : LET S2=S2+J4««SIN(LN»Z) 82 IGOTO 93 83 :LET Sl=(AN/2-BN*<2»NU-1))»LN~3 84 :LET KJ=0 85 :F0R M = l TO 5 86 : GOSUB 180 87 : LET X=AL(M) 88 : IF X<=3. THEN GOSUB 200 89 IF X>3. THEN GOSUB 250 90 : LET KJ=KJ+ZA«((LN/KA)~2+.5)/«SIN(LN«Z> 93 : PRINT ,,N = ";N; "SP=M;SP 94 NEXT N 95 LET SR=2»SP/ZT 96 PRINT"RO=";RO; "SR=,,;SR 97 NEXT I 98 NEXT L 99 PRINT#4:CL0SE4:END 100 REM CALCULATE 10 AND II FOR T<=1 101 LET P0=l+3.51562»T-2+3.08994«T~4+l.20674«T~6 102 LET 00=.26597»T~8+.03607«T~10+.00458»T~12 103 LET IO=PO+QO 105 LET Pl=.5+.8789«T"2+.51499«T~4+.15084*T~6 106 LET 01=.02658*T~8+.00301»T~10+.00032»T~12 108 LET I1=(P1+Q1)»T*3.75 110 RETURN 150 REM CALCULATE 10 AND II FOR T>1 151 LET T=l/T 155 LET P0=.39894+.01328»T+. 00225«T~2-.00157»T~3 158 LET Q0=.00916«T~4-.02057«T~5+.02635«T~6-.01647«T~7+.0039 2«T~8 159 LET I0=EXP(3.75/T>«(PO+QO)*SQR(T/3.75) 160 LET Pl=.39894-.03988«T-.00362*T~2+.00163«T"3-.01031»T~4 161 LET 01=.02282«T"5-.02895«T~6+.01787«T~7-.0042»T A8 162 LET I1=EXP(3.75/T)*(Pl+Ql)«SQR(T/3.75) 165 RETURN 180 REM CALCULATION OF ZA AND CZ 181 LET KA=SQR(AL(M)"2+CT-2) 182 LET ET=EXP(-KA«ZT) 183 LET EV=EXP(CT»ZT) 184 LET CZ=(AL(M > ~2+(H»RO)~2)« 443 189 LET ZA=LN*ET*(Z1-Z2) 193 RETURN 200 REM CALCULATION OF JO AND J l FOR X<=3 201 LET Y=X/3 202 LET G1=1-2.245*Y~2+1.26562*Y~4-.31638*Y~6 203 LET G2=.04445*Y~8-.00394*Y~10+.00021»Y~12 204 LET J0=G1+G2 206 LET G3=.5-.56249*Y~2+.21093«Y~4 207 LET G4=.03954*Y~6+.00443*Y~8-.00031*Y~10 208 LET J1=(G3+G4)»X 210 RETURN 250 REM CALCULATION OF JO AND J l FOR X>3 251 LET Y=3/X 252 LET Fl= .79788-.00552*Y-"2-.00009*Y~3+.00137*Y~4 253 LET F2=-.00072*Y~5+.00014»Y"6 254 LET T1=X-.78539-.04166*Y-.00004*Y~2+.00262*Y~3 255 LET T2=-.00054*Y~4-.00029*Y~5+.00013*Y"6 256 LET J0=(F1+F2)*C0S(T1+T2)/SQR M R S S : ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) co o o o o 453 X I I I . 1 . 1 . 2 C r o s s - s e c t i o n s a t 2.5 m f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe) 454 455 456 4 5 7 X I I I . 1 . 1 . 3 C r o s s - s e c t i o n s a t 7.5 ma f r o i t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe) 4 5 9 X I I I . 1 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 461 a 462 463 c X I I I . 1 . 2 . 2 C r o s s - s e c t i o n s a t 7.5 mm f r o n t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; 465 466 X I I I . 1 . 3 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d ) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 468 a 469 X I I I . 1 . 3 . 2 C r o s s - s e c t i o n s a t 2.5 urn f r o m t h e i n t e r f a c e ( a ) MRSS-CRSS ( Y i e l d ) ; (b) MRSS-CRSS (MBTe) 470 471 b 472 X I I I . 1 . 3 . 3 C r o s s - s e c t i o n s a t 7.5 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MBTe) 473 474 477 478 479 480 X I I I . 1 . 4 . 2 C r o s s - s e c t i o n s a t 2.5 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; 4 8 1 a 482 X I I I . 1 . 4 . 3 C r o s s - s e c t i o n s a t 7.5 urn f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; 484 485 X I I I . 1 . 5 . 1 ( a ) T e a p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 486 487 X I I I . 1 . 5 . 2 C r o s s - s e c t i o n s a t 8.0 mn fro» t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; M R S S - C R S S (Y) , M Pa 490 M R S S - C R S S ( M B ) . M P a M R S S - C R S S ( T e ) , M P a X I I I . 1 . 6 . 1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 491 M R S S . M P o H E I G H T = 0 . 5 c m a [ 0 1 0 3 492 t 493 M R S S - C R S S ( M B ) - M P o H E I G H T = 0. 50 c m C CO I 0 ] 494 X I I I . 1 . 6 . 1 . 2 C r o s s - s e c t i o n s a t 5 mm fro» t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe) 495 M R S S , M Po H E I G H T = 0 . 7 5 c m [ O I O ] 496 M R S S - C R S S (Y ), MPa HE I GHT = 0.7 5 cm b CO 10] 497 M R S S - C R S S ( M B ) , M P o H E I G H T = 0 . 7 5 c m C CO I 0 ] 498 M R S S - C R SS(Te) , MPo HE I G H T = 0 . 7 5 c m d CO I 0 ] X I I I . 1 . 6 . 1 . 3 C r o s s - s e c t i o n s a t 7.5 f r o a t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe) 500 M R S S , M P a M R S S - C R S S (Y) , M Pa 5 0 1 M R S S - C R S S (Te) , M P a d X I I I . 1 . 6 . 2 . 1 ( a ) T e a p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MBTe) . 502 X I I I . 1 . 6 . 2 . 2 C r o s s - s e c t i o n a t 2.5 mm f r o n t h e i n t e r f a c e , MRSS 503 504 M R S S - C R S S ( Y) , MPa b H E I G H T = 0 .7 5 c m CO 10] X I I I . 1 . 6 . 2 . 3 C r o s s - s e c t i o n s a t 7.5 an f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; 506 b c 507 o - o - o - o - o - o 6 o A A & • p 0 4 4 i l l I I I O 60 A A • 6 O O O D o • I V o 000 000^ 6 0 0 0 0 0 0 V A 6 0 0 0 0 0 oso 6 0 0 0 0 0 0 o \ > O O O O O O O O O O ^ O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 o \ > 1 \ 000 O O O O O O O O O O N 600 O O O O O O O O O O O O O O O O O A A A A A A A A O . 1 \ O O O O A A A A A A A A A & A • O O A A A A A A A O O O O O D o^d O O O O O A A A A A A A A A A A O O 6 O D O • • A A O O O O O O O O O O O O O O O Q A A O O O O O O O I I O O D O D O O A A O O O O O O O O O D • • A A O O O O O D o 6 6 6 ? O D O O O D O A A O O O O O O O O D O O D O D D O A A O O O O A O O - O D O D O O D O O O A A A O O -A-A-A-A- A- A-A-O-O-O- O-O-O 6-A-A-^ d X I I I . 1 - 6 . 3 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) S l i p Mode. 508 M R S S - C R S S ( Y ), MPa HE I G H T = 0 . 7 5 cm a CO I 0 ] 509 O ( o ( D ( A ( • ( [ 1 1 0 1 LOT I ] 10 I U L I O T ] [ T 0 T 3 b tO 1 0 ] A a e M O T ] I I O T ] t O I I ] [ O i l ] [7 I 0 ] [ 1 1 0 ] t I T 0 ] A a a / S » * A a / - - a a a a • a o • • • A A / °*» a o • • o A A ° o a .A* A o a a a a a o o o o a a a A A a o o o o o o • • e o o o • • • N a a a. • • » _ \ • • » 8 a 8 \ a a o a a a • a - - ^ « a a a a a a • • • % D 9 * « a a a a a a a • n o D D O A A A A a a o o • o a a • o I a I 4 G a a c e o a A A A A o o o 9 9 9 9 0 9 O A A A A A • \ 9 9 9 9 9 & * A 9 V • • ^ ^ A A 9 9 A 9 • 9 A 9 9 9 O • • • • a l j w ~ y 9 • • • • • • o a a S B B B * • • • • ^ • • • o o o a a a a a * I 9 0 D 0 D A a 0 0 0 0 0 0 9 9 9 [ 1 0 0 1 * _ _ I 4 • ® 9 © 0 « B 0 0 0 0 9 9 9 « A " • • o a a a o 9 9 9 9 9 9 A A A A 'A. _ ° B 9 9 9 9 9 9 ® 0 • • • 9 9 9 « « 0 ® ® 9 * 9 • ^ 9 9 * 9 • "99 • a / X I I I . 1 . 6 . 3 . 2 C r o s s - s e c t i o n s a t 7.5 mm f r o m t h e i n t e r f a c e ( a ) MRSS-CRSS ( Y i e l d ) ; (b) S l i p Mode. 511 M R S S - C R S S (MB) , M P a M R S S - C R S S (Te) , M P a d e X I I I . 1 . 7 . 1 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 513 M R S S - C RSS ( Y) , M Po H E I G H T =0. 2 5 c m a CO 10] 514 M R S S - CRSS ( Y ), MPo HE I GHT = 0 . 7 5 c m b CO I 0 ] C I 0 0 3 X I I I . 1 . 7 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e f r o n t h e i n t e r f a c e ( a ) 2.5 nm ; (b) 7.5 mm. M R S S . M P a M R S S - C R S S ( Y ) , M P a M R S S - C R S S ( M B ) , M P a M R S S - C R S S ( T e ) , M P a 518 M R S S - CRSS ( Y ), MPa H E I G H T =0. 2 5 c m CO I 0 ] I I . 1 . 7 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t 2.5 an f r o m t h e i n t e r f a c e 519 M R S S , M Po H E l G H T = 0.7 5cm a [0-103 520 I I . 1 . 7 . 2 . 3 C r o s s - s e c t i o n s a t 7.5 mm fro« t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) ; 521 X I I I . 2 C r y s t a l L e n g t h R, 27.5 mm ; B.21 mm ; AP, 30 atm. ; CA, 30° . XI I I .2. 1 CL, 13.75 mm X I I I . 2 . 1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 2 . 1 . 2 C r o s s - s e c t i o n s (a) MRSS-CRSS ( Y i e l d ) a t 5.5 f r o m t h e i n t e r f a c e ; (b) MRSS a t 11.0 mm f r o m t h e i n t e r f a c e ; ( c ) MRSS-CRSS ( Y i e l d ) a t 11.0 mm f r o m t h e i n t e r f a c e XI I I.2.2 CL, 27.5 mm X I I I . 2 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f : (a) 5.5 mm ; (b) 11.0 mm ; ( c ) 19.25 mm ; (d) 24.75 mm ; (e) 27.5 mm . XI I I.2.3 CL, 55.0 mm X I I I . 2 . 3 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 2 . 3 . 2 MRSS-CRSS ( Y i e l d ) a t 5.5 mm f r o m t h e i n t e r f a c e . X I I I . 2 . 3 . 3 C r o s s - s e c t i o n a t 11.0 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (B) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe). X I I I . 2 . 3 . 4 MRSS-CRSS ( Y i e l d ) a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 19.25 mm ; (b) 24.75 mm X I I I . 2 . 3 . 5 C r o s s - s e c t i o n a t 33 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (B) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; (d) MRSS-CRSS (MBTe). X I I I . 2 . 3 . 6 MRSS-CRSS ( Y i e l d ) a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 38.5 mm ; (b) 46.75 mm ; ( c ) 52.25 mm. X I 1 1 . 2 . 4 CL, 82.5 mm 522 X I I I . 2 . 4 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 2 . 4 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f (a) 5.5 mm ; (b) 11.0 mm ; ( c ) 19.25 mm ; (d) 24.75 mm ; (e) 33.0 mm ; ( f ) 38 .5 mm ; (g) 46.75 mm ; (h) 52.25 mm ; ( i ) 60.5 mm ; ( j ) 66 mm ; ( k ) 74.25 mm ; (1) 79.75 mm . X I I I . 2.5 CL, 110 mm X I I I . 2 . 5 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 2 . 5 . 2 MRSS-CRSS ( Y i e l d ) i n c r o fro m t h e i n t e r f a c e o f (a) 5.5 mm; ( b ) 1 1 . 0 (d) 33.0 mm ; (e) 96. s s - s e c t i o n s a t a d i s t a n c e mm ; ( c ) 24.75mm ; 2 5 mm 526 a 527 528 c X I I I . 2 . 1 . 2 C r o s s - s e c t i o n s ( a ) MRSS-CRSS ( Y i e l d ) a t 5.5 f r o m t h e i n t e r f a c e ; (b ) MRSS a t 11.0 mm f r o m t h e i n t e r f a c e ; ( c ) MRSS-CRSS ( Y i e l d ) a t 11.0 mm f r o m t h e i n t e r f a c e . 530 X I I I . 2 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 531 i a 532 533 c 534 535 e X I I I . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f ( a ) 5.5 am ; (b) 11.0 mm ; ( c ) 19.25 am ; (d) 24.75 am ; (e) 27.5 mm . 536 X I 1 1 . 2 . 3 . 1 (a) (b) (d) T e n p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) w ~3 538 X I I I . 2 . 3 . 2 MRSS-CRSS ( Y i e l d ) a t 5.5 mm f r o m t h e i n t e r f a c e 539 540 541 542 XI I I .2.3 3 C r o s s - s e c t i o n a t 11.0 B I D f r o n t h e i n t e r f a c e ( a ) MRSS ; (B) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; ( d ) MRSS-CRSS (MBTe) 543 544 X I I I . 2 . 3 . 4 MRSS-CRSS ( Y i e l d ) a t a d i s t a n c e f r o m t h e i n t e r f a c e o f ( a ) 19.25 mm ; (b) 24.75 mm 545 546 547 o c 548 X I I I . 2 . 3 . 5 C r o s s - s e c t i o n a t 33 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (B) MRSS-CRSS ( Y i e l d ) ; ( c ) MRSS-CRSS (MB) ; ( d ) MRSS-CRSS (MBTe) 549 550 551 X I I I . 2 . 3 . 6 MRSS-CRSS ( Y i e l d ) a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a ) 38.5 urn ; (b) 46.75 mm ; ( c ) 52.25 B B . 553 554 X I I I . 2 . 4 . 1 ( a ) Te»perature and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 5 5 5 a 556 5 5 7 c 558 d 559 560 5 6 1 562 i 564 565 566 X I I I . 2 . 4 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f (a) 5.5 R n ; (b) 11.0 mm ; ( c ) 19.25 mm ; (d) 24.75 mm ; ( e ) 33.0 mm ; ( f ) 38 .5 mm ; (g) 46.75 mm ; ( h ) 52.25 mm ; ( i ) 60.5 mm ; ( j ) 66 mm ; ( k ) 74.25 mm ; (1) 79.75 mm . a 5 6 7 569 570 5 7 1 572 573 574 e X I I I . 2 . 5 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a ) 5.5 mm ; (b) 11.0 mm ; ( c ) 24.75 mm ; ( d) 33 . 0 mm ; ( e ) 96.25 ma . 575 X I 1 1 . 3 C r y s t a l R a d i u s R, 40 mm ; B, 21 mm ; CA, 30° ; AP, 30 atm. X I 1 1 . 3 . 1 CL, 20 mm X I I I . 3 . 1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 3 . 1 . 2 C r o s s - s e c t i o n s a t 8 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) X I I I . 3 . 1 . 3 C r o s s - s e c t i o n s a t 16 mm f r o m t h e i n t e r f a c e ( a ) MRSS ; (B) MRSS-CRSS ( Y i e l d ) XI I I.3.2 CL, 40 mm X I I I . 3 . 2 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) . X I I I . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f (a) 8 mm ; (b) 16 mm ; ( c ) 28 mm ; (d) 36 mm . XI I I .3.3 CL, 80 mm X I I I . 3 . 3 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 3 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f (a) 8 mm ; (b) 16 mm ; ( c ) 28 mm ; (d) 36 mm ; (e) 48 mm ; ( f ) 56 mm ; (g) 68 mm ; (h) 76 mm . XI1 1 . 3 . 4 CL, 100 mm (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . XI I I . 3.5 CL, 120 mm X I I I . 3 . 5 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 3 . 5 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f (a) 8 mm ; (b) 16 mm ; ( c ) 28 mm ; (d) 36 mm ; (e) 48 mm ; ( f ) 56 mm ; (g) 68 mm ; (h) 76 mm ; ( i ) 88 mm ; ( j ) 96 mm ; ( k ) 108 mm ; (1) 116 mm . 577 XI 11 .3 . 1 . 1 (a) (b) (d) T e m p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 578 579 X I I I . 3 . 1 . 2 C r o s s - s e c t i o n s a t 8 am f r o m t h e i n t e r f a c e ( a ) MRSS ; (b) MRSS-CRSS ( Y i e l d ) 580 581 b XI I I .3. 1.3 C r o s s - s e c t i o n s a t ( a ) MRSS ; (B) 16 nm f r o m t h e i n t e r f a c e MRSS-CRSS ( Y i e l d ) 583 X I I I . 3 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) 584 a 585 b 586 e 587 X I I I . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f ( a ) 8 i n ; (b) 16 mm ; ( c ) 28 am ; (d) 36 am . o 0 1 oo CO 590 XI I I .3.3.1 ( a ) (b) (d) T e m p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 591 592 593 c 594 595 596 597 598 X I I I . 3 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f ( a ) 8 mm ; (b) 16 mm ; ( c ) 28 mm ; (d) 36 mm ; ( e ) 48 ma ; ( f ) 56 mm ; (g) 68 mm ; (h) 76 mm . 599 CL, 100 BB ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 602 £09 604 X I I I . 3 . 5 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 605 606 607 608 609 610 611 612 614 615 616 X I I I . 3 . 5 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e o f t h e i n t e r f a c e o f ( a ) 8 Bm ; (b) 16 B B ; ( c ) 28 mm ; (d) 36 i i ; (e) 48 B B ; ( f ) 56 am ; ( g ) 68 B B ; ( h ) 76 BB ; (1) 88 Bm ; ( j ) 96 BB ; ( k ) 108 B B ; (1) 116 B B . 617 XI 11.4 G r o w t h V e l o c i t y R 27.5 mm ; CL, 55 mm ; CA, 30° ; B, 21 mm X I I I . 4 . 1 V, 0.0001 cm/s (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 4 . 2 V, 0.01 cm/s (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 618 620 d e X I I I . 4 . 1 V, 0.0001 cu/a ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 621 a 623 o X I I I . 4 . 2 V, 0.01 cm/s (a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 624 X I I I . 5 T h e r m a l C o n d i t i o n R, 27.5 mm CL , 55 mm ; CA, 30 ; AP, 30 atm X I I I . 5 . 1 B , 21 mm X I I I . 5 . 1 . 1 G/2 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I .5. 1 .2 G/4 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I .5. 1 .3 G/6 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 5 . 1.4 G/8 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I . 5 . 2 B, 4 0 mm X I 1 1 .5.2 . 1 G (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 5 . 2 . 2 G/2 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 5.2 . 3 G/3 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I . 5.3 B, 50 mm X I I I .5.3.1 G (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 625 XI I I.5.3.2 G/2 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I.5.3.3 G/3 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 626 a 628 XI 11 .5.1 .1 G/2 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 629 630 631 XI I I .5.1 .2 G/4 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) a 633 634 d e XI I I .5. 1 . 3 G/6 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 635 a 637 XI I I .5.1 . 4 G/8 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 638 639 T e m p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 64 1 642 643 d e X I I I . 5 . 2 . 2 G / 2 ( a ) T e u p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 645 646 d e XI I I .5.2.3 G/3 (a ) T e u p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 647 649 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; (c) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 650 a XI I I .5.3.2 G/2 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; a 653 654 XI I I . 5 . 3 . 3 G/3 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 655 X I I I . 6 T h e r m a l C o n d i t i o n s R, 40 mm CL, 80 mm ; CA, 30° ; AP, 30 atm. X I I I . 6 . 1 B,21 mm XI 11.6.1.1 G/4 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I .6.1 .2 G/8 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I.6.2 B, 40 mm X I 1 1 . 6 . 2 . 1 G (a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) X I I I . 6 . 2 . 2 G/2 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) X I I I . 6 . 2 . 3 G/3 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I . 6.2.4 G/5 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I . 6 . 3 B, 50 mm XI I I .6 . 3 . 1 G XI 11 . 6 . 3 . 1 . 1 CL, 60 ram (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) XI I I.6.3.1.2 CL, 80 mm (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 656 X I I I . 6 . 3 . 2 G/3 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I . 6 . 3.3 G/5 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 658 659 e G/4 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 660 662 XI I I .6.1.2 G/8 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d ) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 663 a 665 d e X I I I . 6 . 2 . 1 G ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d ) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 666 667 668 669 670 671 3 If > XI I I .6.2.3 G/3 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 672 674 1.042 1.066 1.091 1.115 1.140 1.164 1.189 1.213 676 677 679 680 XI 1 1 . 6 . 3 . 1 . 1 CL, 60 mm ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 681 a 682 683 XI I I .6.3.1.2 CL, 80 mm ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 684 a 6 8 5 686 XI I I . 6 . 3 . 2 G/3 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 687 a 690 X I I I . 7 A r g o n P r e s s u r e , 2 a t m o s p h e r e s . R, 27.5 mm ; CL, 55 mm ; CA, 30° ; B, 21 mm XI I I . 7 . 1 G (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) XI I I . 7 . 2 G/2 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I .7.3 G/4 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) XI I I .7 . 4 G/6 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) a 693 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e ) MRSS-CRSS (MBTe) 696 XI I I .7.2 G/2 (a ) T e n p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) G/4 (a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d ) MRSS-CRSS (MB) ; (e) MRSS-CRSS 700 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d ) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBT 703 X I I I . 8 C u r v a t u r e o f t h e S o l i d / L i q u i d I n t e r f a c e CA, 30 ; AP, 30 atm. X I I I . 8 . 1 Convex I n t e r f a c e X I I I . 8 . 1 . 1 B, 21 mm ; G . X I I I . 8 . 1 . 1 . 1 R, 27.5 mm XI 11.8.1.1 . 1 . 1 CL, 27.5 mm (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . XI I I . 8 . 1 . 1. 1 .2 CL, 55 mm X I I I . 8 . 1 . 1 . 1 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . XI I I . 8 . 1 . 1 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s f r o m t h e i n t e r f a c e o f (a) 11 mm ; (b) 24.75 mm ; ( c ) 38.5 mm ; (d) 52.25 mm ; XI I I .8.1 . 1 . 1 .3 CL, 82.5 mm X I 1 1 . 8 . 1 . 1 . 1 . 3 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 8 . 1 . 1 . 1 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t ( a l o n g t h e a x i s ) d i s t a n c e s f r o m t h e i n t e r f a c e o f (a) 11 mm ; (b) 24.75 mm ; ( c ) 38.5 mm ; ( d ) 52.5 mm ; (e) 66 mm . X I I I . 8 . 1 . 1 . 2 R, 40.0 mm ; B, 21 mm ; G ; CL, 80 mm . X I 1 1 . 8 . 1 . 1 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . XI I I .8.1.1.2.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a) 16 mm ; (b) 36 mm ; ( c ) 56 mm . X I I I . 8 . 1 . 2 B, 50 mm ; R, 2.75 mm X I I I . 8 . 1 . 2 . 1 G X111.8.1.2.1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 704 XI I I . 8 . 1 . 2. 1 .2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a) 11 mm ; (b) 36 mm ; ( c ) 56 mm ; (d) 76 mm X I I I . 8 . 1 . 2 . 2 . G/3 X I I I . 8 . 1 . 2 . 2 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 8 . 1 . 2 . 2.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a) 11 mm ; (b) 36 mm ; ( c ) 56 mm ; (d) 76 mm X I I I . 8 . 2 C o n c a v e I n t e r f a c e B,21 mm ; G . X I I I . 8 . 2 . 1 R, 27.5 mm ; CL, 55 mm . X I I I . 8 . 2 . 1 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) . X I I I . 8 . 2 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 16.5 mm ; ( c ) 30.25 mm ; (d ) 4 4 mm X I I I . 8 . 2 . 2 R, 40 mm ; CL.80 mm . X I I I . 8 . 2 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) . X I I I . 8 . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 16.5 mm ; ( c ) 30.25 mm ; (d ) 44 mm 705 706 707 708 709 710 X I I I . 8 . 1 . 1 . 1 . 1 CL, 27.5 mm (a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 711 a 712 713 X I I I . 8 . 1 . 1 . 1 2 . 1 ( a ) (b) (d) T e m p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 714 a 715 716 717 d X I I I . 8 . 1.1.1.2.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s f r o m t h e i n t e r f a c e o f (a ) 11 am ; (b) 24.75 a m ; ( c ) 38.5 a m (d) 52.25 am ; 718 a 720 X I I I . 8 . 1 . 1 . 1 . 3 . 1 ( a ) T e n p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 721 722 723 724 725 X 1 1 1 . 8 . 1 . 1 . 1 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t ( a l o n g t h e a x i s ) d i s t a n c e s f r o m t h e i n t e r f a c e o f (a ) 11 aa ; (b) 24.75 am ; ( c ) 38.5 an ; (d) 52.5 aa ; (e) 66 am . 726 727 728 X I I I . 8 . 1 . 1 . 2 . 1 ( a ) (b) ( d ) T e u p e r a t u r e and Von M i s e s S t r e s s MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 729 730 731 c 732 X I I I . 8 . 1 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) fro» t h e i n t e r f a c e o f (a) 16 ma ; ( b ) 36 mm ; ( c ) 56 mm . 733 a 735 X I I I . 8 . 1 . 2 . 1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRS S ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 736 a 737 738 739 XI I I . 8 . 1 . 2 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f ( a ) 11 mm ; (b) 36 mm ; ( c ) 56 mm ; (d) 76 mm 742 X I I I . 8 . 1 . 2 . 2 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 743 744 745 746 XI 11.8.1.2.2.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f (a ) 11 mm ; (b) 36 mm ; ( c ) 56 mm ; (d) 76 mm. a 748 749 X I I I . 8 . 2 . 1 . 1 ( a ) T e m p e r a t u r e and Von M i s e s S t r e s s ( b ) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; ( e ) MRSS-CRSS (MBTe) 750 751 752 753 d 8.2.1.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o m t h e i n t e r f a c e o f ( a ) 2.75 BB) ; (b) 16.5 BB ; ( c ) 30.25 B B ; (d) 44 BB . 754 755 756 X I I I . 8 . 2 . 2 . 1 (a) T e m p e r a t u r e and Von M i s e s S t r e s s (b) MRSS ; ( c ) MRSS-CRSS ( Y i e l d ) ; (d) MRSS-CRSS (MB) ; (e) MRSS-CRSS (MBTe) 757 758 7 5 9 760 d X I I I . 8 . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t d i s t a n c e s ( a l o n g t h e a x i s ) f r o n t h e i n t e r f a c e o f ( a ) 2.75 an ; (b) 16.5 B B ; ( c ) 30.25 an ; ( d ) 44 B B . 761 APPENDIX XIV TEMPERATURE AND STRESS PLOTS FROM THE COMPUTER PROGRAMS OUTPUT (COOLING) U n i t s a r e , 1 0 3 o C f o r t h e t e m p e r a t u r e s and MPa f o r t h e s t r e s s e s . R, 27.5 mm ; CL, 110 mm . X I V . 1 A m b i e n t T e m p e r a t u r e 800°C, A r g o n X I V . 1 . 1 I n i t i a l G r a d i e n t GC X I V . 1 . 1 . 1 Time 10 s e c o n d s X I V . 1 . 1 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 1 . 1 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a ) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 25.5 mm . X I V . 1 . 1 . 1 Time 10 s e c o n d s X I V . 1 . 1 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 1 . 1 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a ) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 1 . 1 . 2 Time 20 s e c o n d s (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 1 . 1 . 3 Time 60 s e c o n d s (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . 762 X I V . 1 . 1 . 4 Time 300 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) X I V . 1 . 2 I n i t i a l G r a d i e n t GC/2 ; Time 10 s e c o n d s . X I V . 1 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 1 . 3 I n i t i a l G r a d i e n t GC/4 X I V . 1 . 3 . 1 Time 10 s e c o n d s X I V . 1 . 3 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) . X I V . 1 . 3 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 1 . 3 . 2 Time 20 s e c o n d s (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MBTe) . X I V . 1 . 3 . 3 Time 60 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . 764 X I V . 1 . 1 . 1 1 ( a ) ( c ) ( e ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 766 767 768 769 d X I V . 1 . 1 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f ( a ) 2.75 mm ; ( b ) 8.25 mm ; ( c ) 16.5 mm ; (d) 25.5 mm . 772 e f X I V . 1 . 1 . 2 T i a e 20 s e c o n d s ( a ) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s (c) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 775 X I V . 1 . 1 . 3 Time 60 s e c o n d s ( a ) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 778 e f X I V . 1 . 1 . 4 T i m e 300 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) c 780 d XIV.1.2.1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 782 783 784 785 X I V . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o a t h e i n t e r f a c e o f : ( a ) 2.75 an ; ( b ) 8.25 BID ; ( c ) 16.5 mm ; (d) 2 7.5 mm . 788 X I V . 1 . 3 . 1 . 1 ( a ) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s (c) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; (e ) MRSS-CRSS (MB) . 789 790 b 791 c 792 d XIV.1.3.1.2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o u the i n t e r f a c e o f (a) 2.75 B B ; (b) 8.25 B B ; ( c ) 16.5 B B ; (d) 27.5 B B . e 795 X I V . 1 . 3 . 2 Time 20 s e c o n d s ( a ) T e m p e r a t u r e ; ( b ) Von N i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MBTe) . 798 e f X I V . 1 . 3 . 3 T i a e 60 seco n d s (a) T e u p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 799 X I V . 2 A m b i e n t T e m p e r a t u r e 1000°C X I V . 2 . 1 B o r o n O x i d e X I V . 2 . 1 . 1 I n i t i a l G r a d i e n t GC X I V . 2 . 1 . 1 . 1 Time 5 s e c o n d s X I V . 2 . 1 . 1 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 1 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 1 . 1 . 2 Time 10 s e c o n d s X I V . 2 . 1 . 1 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 1 . 1 . 3 Time 20 s e c o n d s X I V . 2 . 1 . 1 . 3 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 1 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27 . 5 mm . X I V . 2 . 1 . 1 . 4 Time 60 s e c o n d s (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 2 I n i t i a l G r a d i e n t GC/2 ; Time 10 s e c o n d s . (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 3 I n i t i a l G r a d i e n t GC/4 X I V . 2 . 1 . 3 . 1 Time 10 s e c o n d s 800 X I V . 2 . 1 . 3 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 3 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 1 . 3 . 2 Time 20 s e c o n d s X I V . 2 . 1 . 3 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 1 . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 A r g o n X I V . 2 . 2 . 1 I n i t i a l G r a d i e n t GC X I V . 2 . 2 . 1 . 1 Time 5 s e c o n d s (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 1 . 2 Time 10 s e c o n d s X I V . 2 . 2 . 1 . 2 . 1 (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 . 1 . 3 Time 20 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 1 . 4 Time 60 s e c o n d s X I V . 2 . 2 . 1 . 4 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . 801 X I V . 2 . 2 . 1 . 4 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 . 1 . 5 Time 300 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS (MB) . X I V . 2 . 2 . 2 I n i t i a l G r a d i e n t GC/2 X I V . 2 . 2 . 2 . 1 Time 10 s e c o n d s X I V . 2 . 2 . 2 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 2 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 . 2 . 2 Time 20 s e c o n d s X I V . 2 . 2 . 2 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t 1 o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d ) 27.5 mm . X I V . 2 . 2 . 2 . 3 Time 60 s e c o n d s X I V . 2 . 2 . 2 . 3.1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 2 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 . 3 I n i t i a l G r a d i e n t GC/4 X I V . 2 . 2 . 3 . 1 Time 10 s e c o n d s X I V . 2 . 2 . 3 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 802 X I V . 2 . 2 . 3 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . X I V . 2 . 2 . 3 . 2 Time 60 s e c o n d s X I V . 2 . 2 . 3 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) . X I V . 2 . 2 . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . 805 X I V . 2 . 1 . 1 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 806 807 808 809 d XIV.2.1.1 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e from t h e i n t e r f a c e o f (a) 2.75 am ; (b) 8.25 mm ; ( c ) 16.5 i n ; (d) 27.5 am . 812 X I V . 2 . 1 . 1 . 2 . 1 (a) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 8 1 3 814 815 816 X I V . 2 . 1 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 am ; (d) 27.5 aa . 819 X I V . 2 . 1 . 1 . 3 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 820 82 1 822 c 823 d X I V . 2 . 1 . 1 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f (a) 2.75 B I B ; ( b ) 8.25 ; ( c ) 16.5 i n ; (d ) 27 . 5 B H i . 825 e f X I V . 2 . 1 . 1 . 4 Time 60 s e c o n d s (a) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s ( c ) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 829 e f X I V . 2 . 1 . 2 I n i t i a l G r a d i e n t GC/2 ; Time 10 s e c o n d s . (a) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s ( c ) MRSS ; ( d ) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 832 X I V . 2 . 1.3. 1.1 (a ) ( c ) ( e ) T e u p e r a t u r e ; (b) Von M i s e s S t r e s s MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 833 834 835 836 d X I V . 2 . 1 . 3 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a ) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm . 839 X I V . 2 . 1 . 3 . 2 . 1 (a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 841 842 843 d X I V . 2 . 1 . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o n t h e i n t e r f a c e o f (a ) 2.75 BB ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 am . 845 846 X I V . 2 . 2 . 1 . 1 Time 5 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s (c) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 848 X I V . 2 . 2 . 1 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 850 851 852 c 853 X I V . 2 . 2 . 1 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f ( a ) 2.75 BB ; (b) 8.25 nm ; ( c ) 16.5 mm ; ( d ) 27.5 BB . 854 856 X I V . 2 . 2 . 1 . 3 T i n e 20 s e c o n d s ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 857 X I V . 2 . 2 . 1 . 4 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; 859 860 861 862 d X I V . 2 . 2 . 1 . 4 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : (a ) 2.75 mm ; ( b ) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 urn . X I V . 2 . 2 . 1 . 5 Time 300 s e c o n d s ( a ) T e m p e r a t u r e ; ( b ) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS (MB) . 866 867 e X I V . 2 . 2 . 2 . 1 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MBTe) 868 869 870 87 1 X I V . 2 . 2 . 2 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o o t h e i n t e r f a c e o f (a) 2.75 BB ; (b) 8.25 BB ; ( c ) 16.5 mm ; (d) 27.5 mm . e 874 f X I V . 2 . 2 . 2 . 2 . 1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 875 876 877 878 d X I V . 2 . 2 . 2 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o a t h e i n t e r f a c e o f (a) 2.75 mm ; (b) 8.25 am ; ( c ) 16.5 mm ; (d) 27.5 BB . 2.3.1 ( a ) T e u p e r a t u r e ; ( b ) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; (e) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 882 883 884 885 d X I V . 2 . 2 . 2 . 3 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o a t h e i n t e r f a c e o f ( a ) 2.75 am ; (b) 8.25 BB ; ( c ) 16.5 BB ; (d) 27.5 B B . 886 888 X I V . 2 . 2 . 3 . 1.1 (a) ( c ) ( e ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 889 890 891 892 d X I V . 2 . 2 . 3 . 1 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o n t h e i n t e r f a c e o f (a ) 2.75 a n ; (b) 8.25 i n ; ( c ) 16.5 a a ; ( d ) 27.5 a n . 894 895 XIV . 2.2.3.2.1 ( a ) T e m p e r a t u r e ; (b) Von M i s e s S t r e s s ( c ) MRSS ; (d) MRSS-CRSS ( Y i e l d ) ; ( e ) MRSS-CRSS (MB) ; ( f ) MRSS-CRSS (MBTe) 896 897 8 9 8 899 X I V . 2 . 2 . 3 . 2 . 2 MRSS-CRSS ( Y i e l d ) i n c r o s s - s e c t i o n s a t a d i s t a n c e f r o m t h e i n t e r f a c e o f : ( a ) 2.75 mm ; (b) 8.25 mm ; ( c ) 16.5 mm ; (d) 27.5 mm .