VACUUM DEPOSITED OPTICAL PHASE FILTERS b y S t e p h e n G r a f • B . A . ' S c , U n i v e r s i t y o f T o r o n t o , 1970 T h e s i s S u b m i t t e d I n P a r t i a l F u l f i l m e n t O f T h e R e q u i r e m e n t s F o r T h e D e g r e e O f M a s t e r O f A p p l i e d S c i e n c e i n t h e D e p a r t m e n t o f E l e c t r i c a l E n g i n e e r i n g We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a A p r i l , 1 9 7 6 ( a ) S t e p h e n G r a f , 1976 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e H e a d o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f The U n i v e r s i t y o f B r i t i s h C o l u m b i a 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 D a t e So /pi ABSTRACT The advantages of an optical spatial phase f i l t e r constructed by thickness variations are put forward and a method of fabricating such a device using vacuum deposition techniques is detailed. The design and construction of a vacuum system to produce such a device i s outlined. The system comprises a vacuum chamber with a source holder for zinc sulfide, an electronically controlled shutter, an aperture, and a substrate and holder mounted on an x-y motion table driven by stepper motors. The system is controlled by a mini-computer and measurements of thickness are made by an ellipsometer controlled by the minicomputer. Experiments conducted with the system determine the spatial resolution and closed loop control capabilities to be adequate. An analysis of the results of the tests concludes that with further refinements i t seems feasible to fabricate spatial phase f i l t e r s by using vacuum deposition techniques. - i i -CONTENTS Page Abstract i Table of Contents i i L i s t of Tables i i i L i s t of Figures i v Acknowledgement v Introduction 1 Chapter I - Background 4 Chapter II - Hardware and Software 12 Chapter III - Results and Conclusions 32 References and Bibliography 46 Appendix I - A program to Calculate Phase Changes Produced by Varying Thickness 47 Appendix II - A Program to Calculate Fourier Transform Twice 53 Appendix III - L i s t i n g of the Software Written f o r the PDP-8e. 56 LIST OF TABLES Device 33 of Computer Interface Scan of Aluminum Coated Substrate - iv -LIST OF FIGURES Page 1. Transmission and Reflection Optical Systems 5 2. Angle of Incidence 6 3. Spatial Fourier Transform Example 10 4. Vacuum Chamber Details 13 5. Ellipsometer Schematic 16 6. Flowchart of Subroutine BAL 24 7. Analyzer Scan of Squares 1-3 35 8. Polarizer Scan of Squares 1-3 36 9. Polarizer and Analyzer Scan of Square 4 37 10. Analyzer Scan for Squares Deposited While on Control - 39 11. Polarizer Scan for Squares Deposited While on Control 40 12. A-V Plot (Experimental) 42 13. &-«pPlot (Calculated) 43 ACKNOWLEDGEMENT The author wishes to express his sincere thanks and gratitude to Professor L. Young f o r his supervision and f o r h i s patience which i s above and beyond the c a l l of duty. Special thanks i s due to the author's wife, Margaret-Ellen Graf, f o r her d i l i g e n t e f f o r t s i n typing and proofreading. Acknowledgement i s also due to Professor B. P. Hildebrand f o r suggesting the topic, to M. Thewalt f o r h i s assistance i n carrying i t out, and to Mr. J . Stuber of the machine shop i n the Department of E l e c t r i c a l Engineering f o r his excellent work. - 1 -INTRODUCTION This thesis is an investigation of the practicality of producing optical phase f i l t e r s using vacuum deposition techniques. Consider an optical system consisting of two parallel planes separated by some distance. The electromagnetic f i e l d intensity in one plane is a function of the intensity in the other plane. To produce specific intensity functions in one plane from a particular intensity function in the other requires, in general, a complex valued f i l t e r to be placed between the two. An example of such a f i l t e r i s a lens. An ideal lens can be represented mathematically as a 1 multiplicative factor of the form, exp -jc(x 2+y 2) (1) where c i s a constant and x, y are perpendicular reference axes. It is desirable to be able to produce more complicated phase functions than that of the lens. In fact, the correc-tions that must be made to a real lens so that i t approximates the ideal more closely require a much more complex phase function. 2 A simple form of phase f i l t e r was used by Tsujiuchi to correct lens aberrations and to produce optical systems with two f o c i i . The f i l t e r s used were very simple in that they consisted only of a pattern of half wavelength retardations. Approximations were made in the calculations of the f i l t e r pattern in order to easily fabricate the devices. - 2 -Recently holographic techniques have been used to pro-duce phase f i l t e r s . 4 In the referenced work the authors used an amplitude hologram. Less than ten per cent of the signal power was deflected into the beam that has the desired altered phase.^ The most straightforward method of producing a pattern of phase v a r i a t i o n would seem to be the use of a transparent material with a pattern of thickness v a r i a t i o n . The material must have an index of r e f r a c t i o n d i f f e r e n t from the trans-mission medium so that the speed of l i g h t i s d i f f e r e n t i n the f i l t e r . Thus the thickness variations convert to phase v a r i -ations. With the aid of an index matching layer a phase f i l t e r of t his type passes a l l of the available input signal power and is thus a s i g n i f i c a n t improvement over the holographic type of f i l t e r . The thickness v a r i a t i o n type of phase f i l t e r could conceivably be used in many applications i n the f i e l d of o p t i c a l information processing and s p a t i a l f i l t e r i n g where conventional photographic holograms are now used. Researchers at I.B.M. have produced thickness v a r i a t i o n phase f i l t e r s which they c a l l Kinoforms.^ The devices are constructed by bleaching computer generated photonegatives. Bleaching removes the dark material in the negative, leaving a transparent pattern of thickness. It i s pointed out that the ideal way of fab r i c a t i n g such devices would be to produce the thickness d i r e c t l y and not r e l y on a transformation from - 3 -i n t e n s i t y to phase. In t h i s thesis an in v e s t i g a t i o n i s made of a method of fa b r i c a t i n g a two dimensional device with thickness v a r i a -tions suitable f o r use as a phase f i l t e r i n an o p t i c a l system. Starting with a p a r a l l e l faced slab or substrate of transparent material, additional material must be added or removed to produce a thickness v a r i a t i o n over the surface. Removal of material was not further explored, although developments i n l a s e r etching techniques make i t look f e a s i b l e . There are a number of methods of adding material to a sub-strate such as vacuum deposition, sputtering and screening. Of these, vacuum deposition seemed to be the most promising technique and was singled out f o r investigation. Vacuum deposition was chosen f o r further study f o r a number of reasons. The technique has been used widely i n the f i e l d of optics f o r various purposes such as a n t i - r e f l e c t i o n films and multi-layer frequency s e l e c t i v e f i l t e r s . The materials used i n vacuum deposition have been studied and y o Q -] Q are well documented. ' ' ' The following chapters describe the work performed to investigate the f e a s i b i l i t y of f a b r i c a t i n g phase f i l t e r s by vacuum deposition techniques. Chapter I i s a description of the proposed f i l t e r and the method of production. Chapter II describes the hardware designed and constructed, and the software written. Chapter III i s a summary of the re s u l t s and conclusions of the investigation. - 4 -CHAPTER I - BAC KGROUND A d i e l e c t r i c material w i l l cause a phase change of the l i g h t transmitted through i t i n the following way. Consider Figure 1(a). The o p t i c a l system between the two f i x e d r e f -erence planes ZQ and z^ can be considered as a system with a transmission c o e f f i c i e n t T. i s the Fresnel r e f l e c t i o n c o e f f i c i e n t from medium i to medium j . The r e f l e c t i o n c o e f f i c i e n t f o r perpendicularly polarized l i g h t i s T = ( 1 + r Q 1 r 1 2 - f r 0 1 + r 1 2 ) _ j ( 9 +Q +Q ) 1 + r Q 1 r 1 2 e 2 (2) r. ( 3 ) and f o r p a r a l l e l p o l a r i z a t i o n r. (4) n^cosfi. + n.cos0? 0± and 0^ are defined i n Figure 2. The o p t i c a l path lengths 9.'s are given by 9 i = X n i d i c o s 0 i ( 5 ) - 5 -n o n 1 n 2 d 0 d1 d 2 Figure 1(a) n o d o d i Figure 1(b) + i k Transmission and. Reflection Optical Systems - 6 -F i g u r e 2 . Angle o f Incidence where?!is the wavelength of the l i g h t , i s the r e f r a c t i v e index of the i ^ 1 medium, and d^ i s the thickness of the i ^ 1 medium. By varying the thickness d^, the phase change i n t r o -duced by the o p t i c a l system i s altered. A s i m i l a r r e s u l t can be achieved by using the r e f l e c t i o n geometry of Figure 1 ( b ) . The o p t i c a l system between the two planes ZQ and z^ can be characterized by a r e f l e c t i o n c o e f f i c i e n t R = ( 1 +r Q 1 + F 1 2 + r Q 1 ^ 2 ) ( r Q 1 + ^ 2 e " J 2 9 1 ) ( g ) 1 + r 0 1 r 1 2 e - J 2 9 1 The computer program i n Appendix I was used to calculate the phase changes produced by varying the thickness of the d i e l e c t r i c layer. The a r b i t r a r y zero of phase change was chosen to occur when the d i e l e c t r i c layer has zero thickness. Appendix I l i s t s the computed change of phase due to d i e l e c -t r i c thickness. For the transmission geometry, the o p t i c a l constants used i n the equations were chosen f o r a f i l m of magnesium fl u o r i d e on glass i n a i r . For the r e f l e c t i o n geometry, the constants used correspond to a f i l m of zinc s u l f i d e on aha aluminum backing i n a i r . These constants were chosen because they represent materials that have been frequently used i n the f i e l d of optics. A phase f i l t e r , being a device which a l t e r s the phase of a plane wave as a function of two dimensions, could be - 8 -used i n much the same manner as an interference hologram to store information and create images. This property can be demonstrated by u t i l i z i n g the Fourier transformation property of a lens. A lens displays the two dimensional s p a t i a l Fourier transform of the i n t e n s i t y of one of i t s f o c a l planes i n the other f o c a l plane. Thus, i f an image i s placed i n the f o c a l plane of a lens, i t s Fourier transform would appear i n the other f o c a l plane. The Fourier trans-form of a r e a l image i s i n general a complex valued function. The amplitude part of such a function can be e a s i l y constructed with a photographic transparency. I f a phase f i l t e r could be constructed with the appropriate pattern of phase, one should be able to produce an image from the complex valued Fourier transform. Even without the amplitude part of the f i l t e r , i t should be able to produce a reasonable image. This experiment was simulated numerically by using the Fast Fourier Transform program available on the University of B r i t i s h Columbia I.B.M. 360 computer system. A two dimensional black-white image was d i g i t i z e d and then transformed into the s p a t i a l frequency plane. There the i n d i v i d u a l s p a t i a l frequencies were altered by normal-i z i n g each amplitude to unity while leaving the phases i n t a c t . This simulates the e f f e c t of i l l u m i n a t i n g the phase f i l t e r without amplitude compensation with a unit amplitude plane wave. The Fourier transform of the altered transform was then taken. This corresponds to the reconstruction process with a lens. Taking the Fourier transform twice, - 9 -instead, of taking the transform and i t s inverse, r e s u l t s i n the axes being inverted. The program written to demonstrate t h i s e f f e c t i s listed, i n Appendix I I . The input to the program i s the d i g i t i z e d pattern of Figure 3(a). The i n t e n s i t y function i s spread by the'amplitude normalizing. However, the bright areas, as indicated by the pattern of Figure 3(b), s t i l l show a reproduction of the o r i g i n a l . The r e s u l t s of the computer experiment demonstrate the c a p a b i l i t i e s of a phase f i l t e r . Vacuum deposition requires that the material to be deposited be heated to the vapour state and then condensed on the substrate. To produce a phase f i l t e r with vacuum techniques, involves the deposition of a varying thickness d i e l e c t r i c on the surface of a substrate such that the thickness i s a function of the p o s i t i o n on the surface. This involves c o n t r o l l i n g the p o s i t i o n of deposition and also c o n t r o l l i n g the thickness of deposition. P o s i t i o n of deposition can be c o n t r o l l e d by collimating the vapour from the deposition source into a narrow beam and exposing the substrate only to that beam. The substrate must then be moved about so that the beam covers the entire surface. Use of t h i s method r e s t r i c t s the s p a t i a l resolution to the fineness of the beam. An ellipsometer was available to measure the thickness of the deposited layer. The measurements from the ellipsometer could be used to determine the thickness of the layer that was currently being deposited - 1 0 -*"* ** ** ** ** **************** Or i g i n a l Image **************** ** ** ** ** ** * ** ** Figure 3(a) * ** * ** ** **** * * **** * * Second Transform * * * **** * * * ****. * ** ** Figure 3(b) Spatial Fourier Transform Example - 1 1 -and thus indicate when the layer was thick enough before proceeding to the next area. The ellipsometer had been previously automated by connecting i t to a D i g i t a l Equipment Corporation PDP 8-e minicomputer. This computer, was i d e a l l y suited to control the positioning of the substrate and to control the thick-ness of the deposition at any one point. I t would also be simple to communicate the pattern of phase required to a minicomputer since the pattern would, i n a l l p r o b a b i l i t y , be generated by a large computer. To further investigate the f e a s i b i l i t y of producing phase f i l t e r s by vacuum techniques, additional apparatus had to be designed, constructed and tested. The control strategy had also to be designed and implemented. - 12 -CHAPTER I I - HARDWARE AND SOFTWARE The technique of vacuum d e p o s i t i o n r e q u i r e s a chamber equipped w i t h a pumping system t h a t can maintain pressures lower than 1 x 10 Torr. In t h i s chamber, the source m a t e r i a l to be deposited must be heated to a h i g h tempera-tur e so t h a t i t v a p o r i z e s . The subs t r a t e must be h e l d i n p r o x i m i t y to the source so t h a t the vapour condenses on i t s s u r f a c e . Figure 4 i s a sketch of the vacuum system designed and b u i l t to t e s t the f e a s i b i l i t y of producing a p a t t e r n of v a r y i n g t h i c k n e s s d e p o s i t . The main s e c t i o n of the chamber houses an x-y movement upon which the substrate i s mounted. The x-y movement i s d r i v e n by two stepper motors mounted w i t h i n the chamber and powered from an e l e c t r i c a l feedthrough on the si d e of the chamber. The r e a r of the chamber has a connection to the pumping system. The f r o n t s e c t i o n of the chamber has angled s i d e s and a b a r r e l shaped nosepiece. The s i d e s , which form a "V" w i t h an i n t e r i o r angle of 140 degrees, are f i t t e d w i t h windows such t h a t a l i g h t beam e n t e r i n g the center of one window at r i g h t angles would s t r i k e the substrate at an angle of incidence of 70 degrees and r e f l e c t out the other window. An e l e c t r o m a g n e t i c a l l y operated s h u t t e r i s f i t t e d along the center l i n e of the chamber as c l o s e to the p o i n t of i n t e r s e c t i o n w i t h the r i g h t angles t o the windows as p o s s i b l e without i n t e r f e r i n g w i t h the passage of l i g h t from - 1 3 -HI 1 n rn 1 3 I _ J L O _ 4 - : — i f 1 i A 5 7 8 1 - e l e c t r i c a l feedthrough 2 - vacuum pump connection 3 - x-y motion table and drive motors 4 - o p t i c a l windows 5 - shutter 6 - substrate holder 7 - collimator 8 - source 9 - high current feedthrough Figure 4 . Vacuum Chamber Details - 14 -window to substrate to window. Between the shutter and substrate i s a mask with a square aperture. The b a r r e l of the chamber contains the source. The source i s a round tantalum tube that i s connected to high current e l e c t r i c a l feedthroughs at the end of the b a r r e l . The endpiece also contains an e l e c t r i c a l feedthrough f o r the operation of the shutter. The source shutter and mask a l l l i e along the center l i n e of the chamber. Thus, the source i s only able to deposit material on that section of the substrate v i s i b l e to the source through the mask and then, only when the shutter i s open. The motion of the x-y movement presents d i f f e r e n t areas of the substrate to the source. The windows are f i t t e d i n such a way that the entire chamber can be placed between the two arms of an e l l i p -someter. Thus, the thickness of the area being deposited can be monitored i n s i t u . The chamber i s constructed of helium-arc welded type 316 st a i n l e s s s t e e l . The front section separates from the main chamber to allow s e r v i c i n g of the substrate. The two sections are bolted together and sealed with a large "0" r i n g . The source and feedthroughs are mounted on a flange that i s bolted to the front end of the bar r e l section. The entire chamber i s mounted on a large aluminum plate that f a c i l i t a t e s l o c a t i n g the unit on the ellipsometer. The pumping system connected to the rear of the main chamber consists of a mechanical rotary pump f o r roughing from atmospheric pressures and an o i l d i f f u s i o n pump f o r higher vacuums. This arrangement of pumps i s able to adequately maintain a pressure of less than 1 x 10 Torr. The chamber and x-y movement were designed for this experiment. The construction was carried out by Mr. J. Stuber. The ellipsometer used to monitor film thickness had been previously equipped to make measurements under control of a minicomputer. An ellipsometer i s a device which measures two optical quantities called A and r1 which are related to the reflection coefficients of an optical system by t a n t e J A = ^ £ ( 7 ) Rs where Rp i s the reflection coefficient for parallel polarized light and R i s the reflection coefficient for perpendicular s polarized light. A schematic diagram of the ellipsometer is given in Figure 5. The polarizer and analyzer are polaroids and the quarter wave plate is a Soleil Babinet compensator that introduces a phase change of 90 degrees between the perpendic-ular and parallel polarizations of the light beam. The intensity of the light emerging from the analyzer is given by I = IQ sin2(lP+A) - s i n 2 r s i n 2 ^ - A ' ) (8) A (is defined by - 16 -1 - laser light source 2 - polarizer with shaft encoder and drive motor 3 - sample 4 - quarter wave plate 5 - analyzer with shaft encoder and drive motor 6 - photomultiplier tube light detector Figure 5. Ellipsometer Schematic - 17 -tan A ' = sin£tan(2P-~) (9) where S i s the r e t a r d a t i o n of the quarter wave p l a t e , and A i s the analyzer s e t t i n g and P i s the p o l a r i z e r s e t t i n g . Making a measurement wi t h the e l l i p s o m e t e r , or balancing the e l l i p s o m e t e r , involves determining a combination of po-l a r i z e r and analyzer s e t t i n g s that produces a n u l l i n the l i g h t i n t e n s i t y emerging from the analyzer. With the quarter wave p l a t e set at -45° to the plane of i n c i d e n c e , at e x t i n c t i o n the r e l a t i o n s between & and P, and V and A are: ^ = 90° - 2P 135° > P > -45° ( 1 0 ) V = A 90° > A > 0 and A = 2P - 90° 225° > P > 45° V = 180°- A 180° > A > 90° A d e t a i l e d l i s t of a l l combinations of analyser and p o l a r i z e r s e t t i n g s that produce a n u l l i s given by F.L. 12 McCrackin et a l . Becaus.e the s i g n a l from the p h o t o m u l t i p l i e r f a l l s to i n s i g n i f i c a n t l e v e l s near a n u l l , i t was not p o s s i b l e to determine the p o s i t i o n of the n u l l d i r e c t l y . F o r t u n a t e l y , both I versus A and I versus P c h a r a c t e r i s t i c s are symmetri-c a l about the n u l l p o i n t . I versus P i s symmetrical provided S i s c l o s e to 90 degrees. Thus, by determining equal i n t e n -s i t i e s on e i t h e r side of the minimum, the p o s i t i o n of the n u l l can be determined as the midpoint. Both the p o l a r i z e r and analyzer are d r i v e n by stepping - 18 -motors geared so that one step rotates the polaroid by 0.01 degrees. The positions of the polarizer and analyzer are measured by a shaft encoder connected to the drive gearing in each unit. The two encoders are read by a multi-plexed decoder to provide a five digit BCD output which ranges from 000.00 degrees to 3'59.99 degrees. The analyzer shaft encoder was mounted in opposition to the scale engraved in the analyzer so that the reading from the encoder must be complimented by 360 degrees to make i t compatible. The light intensity monitored by the photomultiplier i s read through a multiplexed ten bit analog to di g i t a l converter. The ellipsometer had previously been interfaced to a PDP-8e minicomputer. The shaft encoder and photomultiplier were input to the computer and the computer was able to turn the stepper motors on the analyzer and polarizer. The inter-face was expanded so that the computer was able to rotate the stepper motors connected to the x-y drive in the vacuum chamber. The shutter was also operated through the computer interface. Operator communication to the system was made via an ASR-33 teletype. The teletype handler program operates the teletype under interrupt control. A l l input from the key-board is put into a buffer u n t i l i t i s used and removed by a program requiring input. A l l print output i s put into another buffer which the teletype handler tries to keep empty by outputting the contents on the printer. Since teletype input and output are performed on an interrupt basis, the - 19 -computer i s able to carry out control tasks i n the back-ground while serving the teletype. A simple operating system was written to allow an operator to i n i t i a t e control actions from the keyboard. When f i r s t started, the operating system i n i t i a l i z e s f l a g s and counters used throughout the programs i n the system. The only other function of the operating system i s to check the keyboard buffer f o r inputs and translate these inputs into control programs to execute. Commands take the form of two truncated ASCII characters. The operating system compares inputs with a table of names i t recognizes. I f a match i s made, the control program i n the address table corresponding to the name table i s executed. The control programs are a l l subroutines that return to the operating system when they have completed t h e i r task. For t h i s thesis, i t was required to operate the e l l i p s o -meter and the shutter and x-y drive i n the chamber. Also a higher l e v e l program was required to coordinate these controls i n such a way as to produce a deposit of a required thickness. Two commands that were implemented were "set the po l a r i z e r " (SP), and "set the analyzer" (SA). E i t h e r command expected a f i v e d i g i t input from the keyboard that represented the p o s i t i o n required of the analyzer or po l a r i z e r . These two programs f i r s t read the shaft encoder to determine the present p o s i t i o n of the unit and then output the appropriate number of steps to turn the unit to the required p o s i t i o n i n the d i r e c t i o n that required the - 20 -least motion. The two commands to move the x-direction and y-direction stepper motors on the x-y drive in the chamber were given the names MX and MY respectively. The programs associated with these commands expected inputs from keyboard to indicate direction of movement in the plane and the distance of travel. Direction was indicated by "F" and "R". An "F" meant to the right in the x-direction and up in the y-direction when looking at the chamber from the source end. "R" i s the opposite of "F". A l l four stepper motors, the shaft encoder multiplexer and the shutter switch were connected to device 33 in the computer interface. This device was a set of twelve f l i p flops, one per b i t of the computer word as defined in Table 1. The I0P2 pulse from the computer output the accumulator to set the f l i p flops. The I0P4 pulse was used to send a pulse to the stepper motors that had their enable bit set. The pulse was steered to the clockwise or counter-clockwise input on the stepper motor controllers by the direction b it. Thus, any of the four stepper motors could be moved by f i r s t setting i t s enable and direction bits with an I0P2 pulse and then sending an I0.P4 pulse for each step. Once the gating for a motor had been set, a routine labelled STEP was used to output one step pulse to the motor. The motors used had a resonance at approximately 200 steps per second. To run the motors at a speed above the resonance required that they be accelerated from a stopped position. - 21 -Device 3 3 of Computer Interface B i t P o s i t i o n Function 0 P o l a r i z e r motor d i r e c t i o n 1 P o l a r i z e r motor enable 2 Analyzer motor d i r e c t i o n 3 Analyzer motor enable 4 Y-axis motor d i r e c t i o n 5 Y-axis motor enable 6 X-axis motor d i r e c t i o n 7 X-axis motor enable 8 Unused 9 Unused 10 Shutter control 11 Shaft encoder gate Table 1 - 22 -Since timing was generated by software, i t was not convenient to run more than one motor at a time. The hardware status of device 33 was stored in a location labelled DIR. Bit 9 of DIR was used for a flag to indicate that acceleration was required. The routine STEP accelerated the motors by shorten-ing the time between pulses from a maximum when the flag was f i r s t set to a minimum after a certain number of pulses had been sent. At this time the flag was cleared. The output of the multiplexed shaft encoder was connected to device 30 in the interface. The shaft encoder was always set to read the analyzer when the analyzer motor was selected, and the polarizer, when the polarizer motor was selected. The I0P2 pulse was used to strobe the high order two BCD digits into the accumulator and the I0P4 pulse was used to strobe the three low order BCD digits. These numbers were read by a program named RDSFT and were stored in locations SHFTH and SHFTL respectively. The output from the photomultiplier on the ellipsometer was measured by the computer with an analog to d i g i t a l converter, device 32 in the interface. The program, ANALG, was responsible for reading the analog to d i g i t a l converter and converting the reading into volts. To take a reading from the ellipsometer requires that the polarizer and analyzer be positioned so that the output from the photomultiplier i s a minimum. The suggested procedure i s to f i r s t balance, that i s , find a minimum of, 11 the polarizer. Then the analyzer i s balanced. The - 23 -polarizer i s again balanced and f i n a l l y the analyzer i s balanced again. This procedure can be commanded from the keyboard with a BE input. The procedure i s really a combina-tion of the two commands BA and BP which balance the analyzer and polarizer respectively. These two routines set the gating for the appropriate stepper motors and then c a l l upon a common routine called BALU. The routine BAL (see Figure 6) determines the position of a minimum photomultiplier reading by finding equal intensities around a minimum. To avoid noise problems due to low signal levels, the sum of many readings is taken. Fi r s t a running sum of readings is taken by moving the motor one step, reading the photomultiplier and adding the reading to the sum. The sum is taken over sixty-four steps. A second running sum i s taken and compared with the f i r s t . If the second sum i s larger, the motor i s reversed and the routine restarted. Otherwise, the f i r s t sum i s replaced by the second and the second sum is taken again and again compared with the f i r s t . A flag i s set to indicate the minimum has not yet been passed. At some point the second sum w i l l be larger than the f i r s t indicating that the minimum has been passed. Another set of readings i s taken and this sum is saved as the comparison on one side of the minimum. The motor i s reversed and run back two sets of readings. The next set of readings is saved, reading by reading, along with the running sum. From here on, every time the motor is stepped, the newest reading is put at the beginning of the - 24 -FLOWCHART OF SUBROUTINE BAL BAL J ENTRY POINT, 1-+BLFLAG SET FLAG TO INDICATE MINIMUM' NOT BEING APPROACHED. STBL ASUM TAKE A GROUP OF READINGS. O^E >OSCT s t UM1 INITIALIZE POSITION COUNTER. SAVE FIRST GROUP OF READINGS. BALLP1 FIGURE 6 - 25 -NO 2 ACOMP1 NO ASUM SUM SUM2 YES ACOMPO SUM1 ^SUM2^ YES POS1 4 I BALLP1 TAKE ANOTHER SET OF READINGS. SAVE SECOND SET. IS MINIMUM BEING APPROACHED? COMPARE SUCCESSIVE READINGS TO DETERMINE IF MINIMUM IS STILL BEING APPROACHED. REPLACE FIRST READING WITH SECOND AND ITERATE. - 26 -0 * BLFLAG CHANGE DIRECTION OF DRIVE MOTOR. SET FLAG TO INDICATE MINIMUM IS BEING APPROACHED. 2 ACOMP1 YES /^SUM1 ^ \ \ 2 S U M 2 X CHECK IF STILL APPROACHING MINIMUM. NO P0S2 ASUM TAKE ANOTHER SET OF READINGS TO USE FOR COMPARISON. - 2 7 -SUM -» SUM1 SAVE COMPARISON SUM OF READINGS. AREV REVERSE DIRECTION OF DRIVE MOTOR. STKL \ MOVE NUMBER OF STEPS 7 IN ONE SET OF AMOVE / • READINGS. (STKL) STKL \ MOVE BACK A SECOND SET OF READINGS, AMOVE ASTORE TAKE A SET OF READINGS AND SAVE EACH READING IN A FIRST-IN-FIRST-OUT STORE. SUM SUM2 SAVE SUM OF ABOVE SET OF READINGS. 28 -3*STKL POSCT . SET POSITION POINTER TO INDICATE DISTANCE MOVED FROM START OF COMPARISON SUM. ACOMP2 S U M 1 / HAS EQUAL POSITION ON OPPOSITE SIDE OF MINIMUM BEEN REACHED? NO POS3 POSCT+1 -> POSCT ADVANCE POSITION COUNTER. ARDPTO / TAKE A READING. PUT NEW READING IN STACK AND REMOVE OLDEST READING. 10 - 29 -SUM2+NEW -0LD-*SUM2 UPDATE SET SUM WITH NEW READING. ASTEP AC0MP2 MOVE MOTOR TO NEXT READING AND ITERATE. 11 P0S4 AREV POSCT/2 -> AC REVERSE DRIVE MOTOR DIRECTION. DIVIDE DISTANCE BETWEEN CURRENT POSITION AND COMPARISON. SUM POSITION IN HALF. AMOVE ^ RETURN ^ MOVE TO BALANCE POSITION. RETURN FROM BAL SUBROUTINE. - 30 -buffer and the oldest one i s removed. The running sum is also adjusted by adding on the newest reading and subtract-ing the oldest. This running sum i s compared with the comparison sum and as soon as i t is equal to or larger than the comparison sum, the position of the minimum can be determined as the midpoint of the two sums. The motor is reversed and driven to the midpoint. The analyzer and polarizer positions and photomultiplier reading at the bal-ance point are printed on the teletype. The shutter in the chamber could be operated from the keyboard with the two commands "open shutter" (OS), and "close shutter" (CS). These commands changed the state of a f l i p flop on device 33 in the interface. The shutter s o l e n o i d was energized by a power transistor driven by the f l i p flop. Closed loop control of film thickness was accomplished by setting the analyzer and polarizer to the positions at which a balance would occur i f the film were the correct thickness. The shutter was then opened un t i l the photo-multiplier output dropped to a minimum. The shutter was closed to stop the deposition process. This procedure was commandable from the keyboard and given the name SB, "stop on balance". For noise immunity, the SB program uses sums of readings instead of a single reading of the photo-multiplier. A typical sequence of commands that produces a deposit of a specified thickness is the following: - 3 1 -MX F 0 0 1 MY F 0 0 1 SA 4 7 . 2 1 SP 3 2 5 . 5 4 SB The MX and MY commands move the substrate to a desired p o s i t i o n and the SA and SP commands move the analyzer and p o l a r i z e r to the balance p o s i t i o n . The SB command f i n a l l y opens the shutter and closes i t when a balance occurs. The distances f o r the MX and MY commands are i n units of the mask aperture width so that adjoining areas can be reached by moving i n increments of one. The teletype input program was written so that the paper tape reader on the ASR 3 3 was enabled i f there was room i n the input buffer. Thus, the operation of the system could be controlled with commands stored on paper tape. In t h i s way the thickness pattern of the substrate could be generated on a large computer system where i t could be converted to analyzer and p o l a r i z e r settings. The large computer system would then generate an ASCII paper control tape. The physical pattern could then be produced with the hardware described by read-ing t h i s tape. - 3 2 -CHAPTER III - RESULTS AND CONCLUSIONS To test the performance of the equipment, two experi-ments were conducted. The f i r s t experiment consisted of depositing material to study the deposition process and products. The second experiment was a check of the closed loop control of the system. The substrate used was an optical glass f l a t , 25 x 2 5 millimeters. The substrate was coated with a layer of vacuum deposited aluminum to give i t a reflecting surface. The substrate was transferred to the x-y movable holder in the vacuum chamber. The chamber was evacuated in prepara-tion for deposition of zinc sulfide. Before any depositions were made on the bare aluminum surface of the substrate, the surface was checked for uniformity. This was accomplished by moving the x-y holder so that the ellipsometer could take readings of different areas of the surface. A map of the surface uniformity is given in Table 2 . The x-y holder was then set to a corner of the substrate and the evaporation current turned on. The shutter was opened and zinc sulfide allowed to deposit through the aperture onto the substrate. The ellipsometer was used to observe the evaporation process. After a suitable thickness of zinc sulfide had been deposited, the evaporation was halted by closing the shutter. The x-y holder was then moved a distance equal to the width of the aperture, - 33 -• • • 56.85 ' 56.69 56.50 « 55.76 ! ' 46.18 ! 46.18 46.16 | 46.21 | 1 ; 57.03 ' 56.82 56.59 55.85 ! 46.19 ! 46.19 46.15 \ 46.24 | ; 57.41 | 57.30 57.00 56.57 ! 46.17 ! 46.18 46.21 I 46.20 | — - T - -. j | 57.76 |- 57.56 .57.42 56.85 1 ! 46.11 ! 46.17 46.10 | 46.27 ! — - T ' 58.88 * 58.64 58.01 ' 57.17 \ 46.03 \ 46.03 \ 46.05 ! 46.08 ] Top - Polarizer Bottom - Analyzer Table 2. Scan of Aluminum Coated Substrate - 34 -1.59 millimeters. The shutter was then again opened to deposit onto an area adjacent to the f i r s t . A thickness of zinc s u l f i d e d i f f e r e n t from the f i r s t area was then deposited on the second. The procedure was repeated f o r a t h i r d time to form three adjacent areas of d i f f e r e n t thicknesses. After the t h i r d area, the shutter was closed and the x-y holder moved at r i g h t angles a' distance twice the width of the aperture. At t h i s position, a thickness of zinc s u l f i d e was again deposited. The holder was then positioned a l i t t l e beyond the edge of the l a s t square deposited and an ellipsometer reading was taken. The holder was then moved a small distance, 47 micrometers, towards the square and another reading was taken. This process was repeated u n t i l the p r o f i l e of the entire square was obtained. The holder was then positioned near the area of the three adjacent squares and a s i m i l a r scan was made along the center l i n e of the three squares. The readings are presented graphically i n Figures 7, 8 and 9. The second experiment was performed to determine the c a p a b i l i t i e s of the control system. For t h i s experiment d i f f e r e n t areas of the same substrate were used. Suitable values of p o l a r i z e r and analyzer readings were chosen from the f i r s t set of evaporations. These readings were used to produce a control tape f o r the second experiment. Four areas adjacent to one another were to be evaporated upon. The vacuum system was prepared and evacuated. After the (units of 4 7 JA m) Figure 7 . Analyzer Scan of Squares 1 - 3 F i g u r e 8 . ( u n i t s of 47JJ m) P o l a r i z e r Scan of Squares 1 - 3 - 37 -F i g u r e 9- P o l a r i z e r and A n a l y z e r Scan of Square 4 - 38 -evaporation current was turned on, the control tape was read into the computer and the computer was allowed to control the evaporations and movements of the x-y holder. The photomultiplier reading was observed while the process was taking place. The control system successfully found a null on the f i r s t square deposited, halted deposition and went on to the next square. On the second square, the null was very shallow and two shallow nulls were bypassed before manual intervention caused the process to proceed to the third and fourth squares. The control system again successfully detected nulls on these two areas and halted evaporation. After the fourth square, the evaporation current was turned off and the ellipsometer was used to scan the center line of the four squares taking readings at short intervals. The scan is graphically presented in Figures 10 and 11. Finally, the holder was moved to a bare area and with the shutter open, continuous ellipsometer readings were taken. The A-f curve from this data was plotted in Figure 12. Using the average values of polarizer and analyzer readings from Table 2, the optical constants of the aluminum substrate, as viewed through the windows on the chamber, 11 were determined using McCracken's program. Using values for the index of zinc sulfide, the A~f curve for the f i l t e r was calculated again using McCracken's program. This curve i s presented graphically in Figure 13. The scan of the bare aluminum substrate indicated that Analyzer Figure 1 0 . Analyzer Scan f o r Squares Deposited While on Control F i g u r e 1 1 . P o l a r i z e r Scan f o r Squares Deposited While on C o n t r o l - 41 -the s u r f a c e was uniform;.to an e q u i v a l e n t t h i c k n e s s of 20 angstroms of z i n c s u l f i d e as judged from t h e ^ - ^ curve of F i g u r e 13. The •A and V readings f o r the aluminum covered s u b s t r a t e , however, do not f i t on the c a l c u l a t e d curve f o r z i n c s u l f i d e on aluminum. The reason f o r t h i s i s probably t h a t the "bare" aluminum i s not r e a l l y bare but has a c o a t i n g of aluminum oxide which forms when aluminum i s exposed to a i r . T h e r e f o r e , the e l l i p s o m e t e r i s a c t u a l l y measuring the aluminum and aluminum oxide l a y e r as the s u b s t r a t e . The r e s u l t s of the f i r s t experiment i n d i c a t e mixed con-c l u s i o n s . The e l l i p s o m e t e r scan of the d e p o s i t e d squares p o i n t to nonuniform d e p o s i t i o n s and t h i s was confirmed by v i s u a l examination of the s u b s t r a t e . The squares l a b e l l e d 2 and 4 i n F i g u r e s 7, 8 and 9 were uneven. The scan does, however, show c l e a r l y the d e f i n i t i o n of the squares. The edges of the square are d e f i n e d by d r a s t i c changes i n e l l i p s o m e t e r readings and the c e n t e r s e c t i o n s are reasonably smooth. The e l l i p s o m e t e r curve drawn from the measurements of the second experiment, F i g u r e 12, d i f f e r s from the t h e o r e t i c a l curve f o r z i n c s u l f i d e on aluminum, F i g u r e 13. Again, the most probable cause f o r t h i s i s the c o a t i n g of aluminum oxide on the bare s u b s t r a t e . The index of vacuum dep o s i t e d z i n c s u l f i d e f i l m s has been d i s c o v e r e d to depend on the d e t a i l s of d e p o s i t i o n such as r a t e of d e p o s i t i o n , 8 temperature and p r e s s u r e . These f i n d i n g s c o u l d a l s o c o n t r i -bute to the d i f f e r e n c e . F i g u r e 1 2 . A - V P l o t (Experimental) F i g u r e 1 3 . A-f P l o t ( C a l c u l a t e d ) - 44 -The computer control of thickness was successful to a limited, extent. The actual control mechanism and algorithm performed well. The shutter was automatically closed to stop deposition a f t e r just passing the low point of a minimum from the ellipsometer readings. A poor sel e c t i o n process caused values of p o l a r i z e r and analyzer readings to be chosen as setpoints. The chosen readings did not f a l l ' o n the curve of Figure 12. The poor set-points were evidenced by the shallow minimum i n the ellipsometer output. The control system stopped deposition when i t came as close as possible to the setpoints. During the deposition of the square l a b e l l e d "D" i n Figures 10 and 11, a sharp minimum was observed and as seen from l a t e r analysis, the control system came very close to the desired setpoints. The setpoints are shown as dotted straight l i n e s i n Figures 10 and 11. The equipment b u i l t and experiments made have only tested the f e a s i b i l i t y of producing phase f i l t e r s with vacuum deposition techniques. To produce useful devices, the s p a t i a l resolution of the deposition system must be increased by an order of magnitude. This involves smaller apertures and closer tolerances on the positioning mecha-nisms. The experiments conducted have shown that the resolution used i s attainable. The deposition system must be c a l i b r a t e d and errors introduced by the surface condition of the substrate must be accounted f o r . During the tests of t h i s thesis, these factors were ignored as only r e l a t i v e - 45 -thickness of deposit was aimed f o r . The control and measurement systems seem capable of the tasks required of them. Thus, i f further tests to c a l i b r a t e the system were made, absolute thickness variations should be achievable. In summary, a method of f a b r i c a t i n g o p t i c a l phase f i l t e r s has been investigated. Possible uses of an o p t i c a l phase f i l t e r have been proposed. The hardware to f a b r i c a t e such a phase f i l t e r using vacuum deposition techniques was designed and constructed. Software was written to control production of the phase f i l t e r s by a d i g i t a l computer. And f i n a l l y , the f i r s t steps were taken to produce the devices. The d i f f i c u l t i e s encountered were not fundamental i n nature and require only refinements i n technique to solve. - 46 -REFERENCES AND BIBLIOGRAPHY 1. Goodman, J.W.: Introduction to Fourier Optics, p. 80, McGraw H i l l , New York, 1968. 2. Tsujiuchi, J . : "Correction of Optical Images by Com-pensation of Aberrations and by Spatial Frequency F i l -t e r i ng", Progress i n Optics, Volume 2:133 (1963). 3. Ibid, pp. 145-149. 4. Upatnieko, J . , A. Vander Lugt and E. Leith: "Correction of Lens Aberrations by Means of Holograms", Journal of Applied Optics, Volume 5:589 (1966). 5. Ibid, p. 590. 6. Lesem, L.B., P.M. Hirsh, and J.A. Jordan J r . : IBM Jour-nal of Residential Development, Volume 13:150 (1969). 7. McCabe, L., and J. Metals: AIME Transactions, Volume 200:969 (1954).. 8. Rood, J.L.: "Evaporated Zinc Sulfide Films", Journal of the Optical Society of America, Volume 41:201 (1951). 9. H a l l , J.F., and W.F.C. Ferguson: "Optical Properties of Cadmium Sulfide and Zinc Sulfide from 0.6 Micron to 14 Microns", Journal of the Optical Society of America, Volume 45:714 (1955) . 10. Holland, L., and Steckelmacher, W.: Vacuum, Volume 2:346 (1952). 11. McCrackin, F.L.: A Fortran Program for Analysis of Ellipsometer Measurements, N.B.S. TN479, 1969. 12. McCrackin, F.L., Passaglia, E., Stromberg, R.R., and Steinberg, H.L.: Journal of Research of the National Bureau of Standards, 67A (1963). - 47 -•APPENDIX I A Program to C a l c u l a t e Phase Changes Produced .by V a r y i n g Thickness - 4 8 -27 JAN. 76 00: 00 DCO SCRC - F O R T R A N C O M P I L E R 1 C 2 C TO CALCULATE REFLECTION COEFFICIENT OF FOLLOWING SYSTEM _ 3 C : : , . _ 4 C * * * / 5 C * * * / 6 C * * * / — 7 C » NO * * / 8 C * * NI * / 9 c « no * itx 10 C * * D l * / N2 1 1 C * * * / " 12 C * * * / - '. _ 13 C 14 C ZO Z l _15 :£ ; : 16 C 17 COMPLEX CTHETA,CTHET1,CTHET2,DPO,DPI .R01P, R01S. R12P. R12S 13 COMPLEX NO, NI, N2, PHI. R l . R2. R3. REF. CEXP, CMPLX -19 C 20 C 21 r. I N P U T P f l R Q M F T F R t ! n=71-?0 A F IXFD DISTANCE 22 C NO.NI. N2 REFRACTIVE INDICIES 23 C WL WAVELENGTH OF LIGHT 24 C DINC ' INCREMENT AT WHICH TO .CAL REFL COEF 25 C 26 READ(5. 1) NO. NI. N2. D. DINC, WL ?7 1 FORMAT (9F13 O) 28 C 29 C 30 C PRINT OUT CONSTANTS 31 C 32 WRITE(6,2) NO. NI. N2» WL. tt ? FORMAT ( 1 H 1 / I 1 OX • AHNO = ( . F 5 2 , 1H. , F 5 : 2 , 1H ) , 34 1 /10X.6HN1 = <, F5. 2, 1H. . F5. 2, 1H), 35 2 /10X.6HN2 = <. F5. 2, 1H, , F5. 2, 1H ), 36 3 / /1OX, 12HWAVELENGTH =, F6. O, 9HANGSTROMS, 37 4 / / /5X,9HTHICKNESS, 10X, 12HPHASE CHANGE, 38 5 /5X,11H 60 C CALCULATE OPTICAL PATH LENGTHS 61 C 62 DP0=2. *DO*PI*NO*CTHETA/WL 63 DP 1 =2. « P I « D 1 * N 1 «CTHET 1 /WL - - •-•— — - — — 64 c 65 c c r f t | r ' M ATF P P P I P C T T H N COPFFT^TPNT 67 c 68 R l - 1 . +R01P+R12P+R01P*R12P 69 R2=R01P+R12P*CEXP 71 REF=*CEXP(DP0*CMPLX<0. , - 2 . )) 7 ? r. 73 C 74 C CALCULATE PHASE OF REFLECTION COEFFICETNT 75 c . — — 76 ANGLE=ATAN2(AIMAG*180. /PI 77 IF 111 COMPLEX N l ,N2 , THETA, RS, RP, CSQRT, SI, SR, PHI 11? c 113 c 114 c CALCULATE SINE OF ANGLE OF INCIDENCE 115 c 116 SI=CSQRT<1. -THETA*THETA) ~ . . — 117 c 118 c 119 c USE S N E L L ' S LAW TO CALCULATE SINE OF ANGLE OF REFRACTANCE 120 c 121 S R = N 1 » S I / N 2 122 c 123 c 124 c CAI CIJI ATF C r i R T N P H P OMRI F H F R F F R O P T a M H F 125 c 126 •PHI=CSQRT<1. -SR*SR) 127 c 128 c 129 c CALCULATE REFLECTION COEFFIC IENTS 130 c 131 RP=(N1*PHI-N2#THETA)/(N1*PHI+N2*THETA) 132 RS= < N1 « T H E T A - N 2 * P H I ) / (N1 #THETA+N2*PH I ) 133 c 134 c 135 RETURN - " "' 136 END - 51 -N O = ( i . oo. o. oo> N I = ( 2 . 2 3 , 0 : 0 0 ) N 2 = ( 1. 2 0 . - 6 9 0 ) W A V E L E N G T H = 6238. A N G S T R O M S T H I C K N E S S ( A N G S T R O M S ) P H A S E C H A N G E ( D E G R E E S ) 0. 20; 40: 60. eo. TOO: 356. 70 356. 50 356. 23 -355. 89 355. 46 - — — ____ ~ - - - - -•- - — 120. 140. 160. 180. 200. 2.20. 354. 29 353. 52 352: 61 351. 53 350 .27 • 'ZAt>— '•—• , —- v. 240. 260. 280. 300. 320. 340. — — 347. 08 345. 10 342 82 340. 21 337. 22 — — 3 3 3 . 81 -• : : •"- ~ "zr 360. 380. 400. 420. 440. — 460. 329. 93 325. 53 320. 57 315. 00 308. 80 *3f)1 O A - •,' . • 480. 500. 520. 540. 560. — '—580. •: x. y*r 294. 44 286. 33 277. 71 268. 71 259. 47 •——^1 • 600 620. 640. 660. 680. T O O : •e->J\J. J~- X 241. I O 232. 32 224. 02 216. 29 209. 19 202. 7g — . . •„;_ ------- -— — r--720. 740. 760. 196. 95 191. 78 187. 18 780. 800. 820. 183. 12 179. 54 ~ :—t 7/-.—Art 840. 860. 880. 173. 65 171. 26 169. 17 : • - — -900. 920. 94TX — 167. 37 165. 81 — 1 f_A—A1——• 960. 163. 33 • ..„.. - 52 980. 162. 35 IOOO. 161. 53 1020. 160. 85 1040. 160. 28 1060. 159. 82 1080. 159. 45 1100. 159. 15 1120. 158. 93 1140. 158. 76 1160. 158. 65 1180. 153. 57 1200. 158. 52 1220. 158. 50 1240. 158. 50 1260. 153. 50 1230. 158. 50 1300. 153. 50 1320. 158. 48 1340. 153. 45 1360. 153. 38 1330. 153. 27 1400. 158. 12 1420. 157. 92 1440. 157. 65 1460. 157. 30 1480. 156.86 1500. 156. 33 1520. 155. 68 1540. 154. 90 1560. 153. 98 1580. 152. 89 1600. 151. 61 1620. 150. 12 1640. 148.39 1660. t 4 * r 3 9 -1680. 144. 09 1700. 141. 46 1720. 133. 44 1740. 135. 00 1760. 131. 08 1780. 126. 65 1800. 121. 65 1820. 116. 04 1840, 109. 79 1860. 102. 39 1880. 95. 34 1900. — 87. 20 1920. 78. 55 1940. 69. 52 1960. 60. 28 1980. 51. 02 2000 41. 93 - 53 -APPENDIX II A Program to Calculate Fourier Transform Twice - 5 4 -27 JAN. 76 OO: 04 DCO SCRC F O R T R A N ^ C O M P I L E R 1 C 2 C r—Tr~ C A PROGRAM TO CALCULATE A TWO DIMENSIONAL SPA U A L f - U U K J t K 4 C TRANSFORM, NORMALIZE THE TRANSFORM, AND TAKE THE 5 C TRANSFORM A SECOND TIME. 6 C 7 C .. ' ". S DIMENSION NA(64> , B (64. 64 ) , C (64 >, ND (2 > — 9— —CT3MPCEX~A(64, 64 ) , AAA(64, 64 ) , CMPLX 10 N=64 11 ND(1)=N 12 ND<2)=N ' • • " _ ~ ~ " ~ ; 13 C 14 C vs— -c —DEFINE- "BRIGHT AREAS BY * , OTHERWISE BLANK. 16 C 17 READ(6,104) BLANK, STAR 18 c - • . • '- • " • - .......... .- j. •- - -~— — 19 C 20 C INPUT A PATTERN (BRIGHT AREA = 8 ) 2 T - - c — -22 DO 1 1=1,64 23 READ(5, 101) (NA (J ) , J=T, N) 24 101 FORMAT (6411 ) " -.25 c 26 c . . . . . . . 27 -e -— IN IT IAL IZE F IELD TO 0. 28 c 29 DO 1 J = l , N 30 A ( I , J)=CMPLX<0. ,0. ) . . . . . . . 31 c 32 c SS - — e — — SET BRIGHT AREAS TO 1 . — ! : : : 34 c 35 I F (NA (J ) . EQ. 8) A ( I , J)=CMPLX(1. , 0. ) 36 i CONTINUE 37 c 38 c —• 3 9 -— e — — •—DO FIRST TRANSFORM (EXTERNAL SUBROUTINE) 40 41 CALL F0UR2 68 IF(Z. EQ. O. ) GO TO 49 69 AAA (I, J ) =AAA ( T, J) / Z — — " ' 70 49 IF(Z. LT. A2) A A A ( I , J ) = 1. 71 50 CONTINUE —72 e ' : 73 C 74 C DO SECOND TRANSFORM. 75 C -76 CALL FOLIR2 ( AAA, ND, 2 , - 1 , +1 ) 77 AMAX=0. ~^TS DO 3 I--1, N 79 DO 3 J=1.N SO A< I ,J )=AAA. GT. AA ) C ( J ) =STAR ^ ~ 106 5 CONTINUE 107 4 WRITE(6, 105) ( C ( J ) » J = 1 , N ) -+Oe * 0 5 — FORMAT(2X, 64A1 )— 109 STOP 110 END - 56 -APPENDIX III L i s t i n g of the Software Written f o r the PDP-8e - 57 -837 6 0 1 0 0 0 0 0 0 SHF'TH J 0 / V A R I A B L E S 007 7 0 1 0 1 0 0 0 0 SHFTL J 0 01 0 0 •0102 0 0 0 0 DVML, 0 0 1 0 1 0 1 0 3 0 0 0 0 DVMH, 0 0102 0 1 0 4 0 0 0 0 MSDIGt 0 0103 0 10 5 0 0 0 0 D.NjiJM VJ> 0 0104 0 1 0 6 0 0 0 0 ASUML. 0 010b 0 1 0 7 0 0 0 0 ASUMHJ 0 010 6 0 1 1 0 0 0 0 0 DIR, 0 0107 0 1 1 1 0 1 0 0 STKL, 100 0 1 1 0 0 1 1 2 7 7 00 STKLC, - 100 0111 0 1 1 3 0 0 0 0 SUMH1 > 0 0 1 1 2 0 114 03 00 SUMH2, 0 0.1..L3 .0.1.1 5 0 0 0 0 SUML1, 0 0 1 1 4 0 1 1 6 00 00 SUML2, 0 0 1 1 5 0 117 0 0 0 0 STPC:\1T> 0 0 1 1 6 0 1 20 1177 STSTX, 1177 0117 0121 0 0 0 0 AL, 0 0120 0 1 2 2 0 0 0 0 AH, 0 0121 0 1 2 3 0 0 0 0 3L> 0 0 1 2 2 0 1 2 4 0 0 0 0 BH, 0 0 1 2 3 0 12 5 0 0 0 0 UL, 0 0 1 2 4 0 1 2 6 0 0 0 0 CH> 0 0 1 2 5 0 1 27 0 0 0 3 POLCD, 3 0 1 2 6 0 1 30 40 1 0 MZCD, 40 10 0127 0131' 0 2 0 0 M2XCD, 200 01 30 0 1 3 2 00 40 K g * CD, 40 0131 0 1 33 0 0 0 0 U:-:CL, 0 01 32 0 1 34 0 0 0 0 DECH. 0 r* \ o c r.\ f.\ r.\ fA nIT C T I , B l J J U 1 *> C i— » 01 34 0 i 36 0 0 0 0 DESTH* 0 0 1 3 5 / 0 1 3 6 / 01 37 + 200 01 40 / 0141 / 0142 /INTERRUPT S E R V I C E 01 43 / 0144 0 2 0 0 3 3 7 0 • I NTSEH, OCA AC CUM /SAVE AC 01 4 5 0201 7 0 0 4 RAL 0 1 4 6 0 2 0 2 3371 DC A L I N K /SAVE L I N K 01 47 0 2 0 3 7 7 0 1 ACL 0 1 50 0 2 0 4 3 3 7 2 DC A MQSAVE /SAVE MQ 0151 0 2 0 5 6031 K S F /KEYBOARD? 0 1 5 2 0 2 0 6 7 4 10 SKP 01 53 0207 530 2 JMP KK3RD 01 54 02 10 6041 TS F / T E L E T Y P E ? 0 1 5 5 021 1 7 4 1 0 SKP 0 1 5 6 . 02 12 5 2 2 3 JMP TELTP / I F N E I T H E R 0157 0 2 1 3 7 3 8 0 EXT I NT, CLA CLL ._• /THEN E X I T 01 60 0 2 1 4 137 1 TAD LI NK 01 61 021 5 7 1 10 C L L RAR / R E S T O R E ' L I N K 31 62 021 6 1 372 TAD L-JQSAVE ' 0 1 63 0 2 1 7 7 421 MQL /RESTORE MQ 01 64 02 2 0 137 0 TAD AOCUM /RESTORE AC' 01 65 0 2 2 1 600 1 ION /TURN INT ON 01 66 0 2 2 2 5400 JiMP I 0 /RETURN 01 67 / 0170 / 017 1 / T E L E T Y P E S E R V I C E 0 1 7 2 / 017 3 0 2 2 3 1 37 3 TELTP, TAD TELCNT /ARE THERE MORE 01 7 4 0 2 2 4 7 4 5 0 SNA /CHAR TO T/PE - 58 -0175 0 2 2 5 5244 JMP CTHUP /NO 017 6 022 6 7 0 41 C I A / Y E S 0177 0 2 2 7 7 001 IAC 0200 02 30 7041 C I A /DECREMENT CHAR 020 1 0231 ' 3373 DCA T E L C N T /COUNTER 0202 0 2 3 2 1012 TAD T Y P E P T / E N D OF B U F F E R 020 3 02 33 7041 C I A / A R E A REACHED? 0204 0 2 3 4 1 3 62 TAD ENDBUF 3205 0 2 3 5 7 640 SZA CLA 020 6 . 02 3 6 5241 JMP NOTEND /NO 0207 0 2 37 1 3 63 TAD S T B U F / Y E S , R E S E T TO 02 10 0240 30 1 2 DCA T Y P E P T / S T A R T 02 1 1 0241 1412 NO TEND, TAD I T Y P E P T / G E T CHAR FROM 02 12 / B U F F E R 02 1 3 0 2 4 2 604 6 T L S / T Y P E IT 02 1 4 0 2 4 3 52 1 3 JMP E X T I N T • / E X I T 02 1 5 0 2 4 4 7 201 CTHUP, CLA IAC /NO MORE CHAR 02 1 6 0 2 4 5 33 64 DCA T F L A G / S E T T F L A G 0217 0 2 4 6 60 42 T C F / C L E A R TTY FLAG 0220 / T O STOP TTY 0221 0247 52 13 JMP EXT IN T / E X I T 0222 / 022 3 / 0224 / P U T CHAR U 1 B U F F E R TO B E T Y P E D 0225 / 022 6 0 2 5 0 0 0 0 0 B U F F E R , 0 /CHAR IN AC 0227 0251 341 1 DCA j. B U F P T / P U T CHAR IN B U F F 02 30 0 2 5 2 23 7 3 ISZ T E L C N T / I N C R E CHAR COUNT 02 31 0 2 5 3 1 373 B U F L P 1 , TAD T E L C N T / C H E C K FOR F U L L 02 32 02 54 13 63 TAD S T 3 U K / B U F F E R . WAIT .'.1 O '1 o w c o o c\ o K IJ ^ v> -7 .'.'.Vi 1 1 U "I * C I A '/'IN LOOP U'N'TTL 0234. 0 2 5 6 3 62 TAD ENDBUF / T H E R E IS ROOM 0 2 3 5 0 2 5 7 7 650 SNA C L A 023 6 02 60 5253 JMP BUI-LP] 02 37 0261 60 02 I OF /NOT F U L L . TURN 0240 / O F F I NT TO A V O I D 0241 / C O M P L I C A T I O N S 0242 02 62 1011 TAD B U F P T / C H E C K FOR END 0243 02 63 7041 C I A / O F B U F F E R AREA 0244 02 64 13 62 TAD ENDBUF 024 5 0 2 6 5 7 640 SZA CLA 0 2 4 6 0 2 6 6 5271 JMP NOTEDB " / N O T END 0247 02 67 13 63 TAD S T B U F / E N D - R E S E T TO 0250 0270 30 1 1 DCA B U F P T / S T A R T 0251 027 1 13 64 N 0 T E D 3 , TAD T FLAG / T E S T . T F L A G 02 52 0 2 7 2 7 640 SZA C L A / F L A G UP - MUST 0253 0 2 7 3 527 6 JMP C L T F L G / R E S T A R T TTY 0254 0 2 7 4 600 1 I ON / N O T UP - C O N T I N U E 0255 027 5 5 650 JMP I B U F F E R / E X I T - AC C L E A R 025 6 0 27 6 33 64 C L T F L G , DCA T F L A G / C L E A R T F L A G 0257 027 7 60 40 S P F / R E S T A R T TTY BY 02 60 • / S E T T I N G TTY FLAG 02 61 / T O R A I S E INT . 02 62 0300 6001 I ON / C O N T I N U E 02 63 0 30 1 5650 JMP I B U F F E R / E X I T - AC C L E A R 02 64 / 02 65 / 02 66 /KEYBOARD S E R V I C E 02 67 / 0 2 7 0 0 3 0 2 60 34 KY3RD, KRS / R E A D KBD 027N1 0 3 0 3 3 4 1 3 DCA I KYBDPT / S T O R E 027 2 0 3 0 4 2 3 7 4 ISZ KBDCNT / I N C R E CHAR COUNT 0273 0 3 0 5 1013 TAD KYBDPT . / C H E C K F-OR END 59 -0 2 7 4 0 3 0 6 7 0 4 1 C I A - / O F B U F F E R A R E A 0 2 7 5 0 3 0 7 1 3 6 5 T A D E N D K 3 F / A N D R E S E T I F 0 2 7 6 0 3 1 0 7 6 4 0 S Z A C L A / A T E N D 0 2 77 0 3 1 1 5 3 1 4 J M P K l M E M D 0 3 0 0 0 3 1 2 . 13 6 6 T A D 3 T K Y B F 0 3 0 1 0 3 1 3 3 0 1 3 DC A K Y 8 DP T 0 3 0 2 0 3 1 4 1 3 7 4 K Y N E N D * T A D K B D C N T / T E S T FOR F U L L 0 3 0 3 0 3 1 5 1 3 6 6 T A D S T K Y 3 F / B U F F E R 0 3 0 4 0 3 1 6 7 0 4 1 C I A 9 3 0 5 0 3 1 7 13 65 T A D E N D K 3 F 0 3 0 6 0 3 2 0 7 6 5 0 S N A C L A 0 3 0 7 0 3 2 1 5 3 2 4 J M P S E T K F L / B U F F E R F U L L 0 3 1 0 0 3 2 2 6 0 3 2 K C C / N O T F U L L - S E T 0 3 1 1 / R E A D E R R U N 0 3 1 2 0 3 2 3 5 2 1 3 J M P E X T I NT / E X I T 0 3 1 3 0 3 2 4 7 2 0 1 5 E T . K F L , C L A I A C / F U L L - S E T KY F L A G 0 3 1 4 . 0 3 2 5 3 3 67 ' D C A K Y F L A G 0 3 1 5 0 3 2 6 6 0 3 0 KG F / C L E A R K B D F L A G 0 3 1 6 /DO N O T S E T R E A D E R 0 3 17 / R U N 0 3 2 0 0 3 2 7 5 2 1 3 J M P E X T I N T / E X I T 0 3 2 1 / 0 3 2 2 / 0 3 2 3 / T O R E M O V E A C H A R A C T E R F R O M K B D B U F F E R 0 3 2 4 / 0 3 2 5 0 3 3 0 . ' 0 0 0 0 R E A D 3 * 0 0 3 2 6 0 3 3 1 1 3 7 4 T A D K B D C N T / I F B U F F E R I S 0 3 2 7 0 3 3 2 7 6 5 0 S N A C L A / E M P T Y * W A I T F O R 0 3 3 3 0 3 3 3 . 5 3 3 1 J M P . - 2 / S O M E I N P U T 0 3 3 1 0 3 3 4 I O F / I N T O F F TO A V O I D ('53 3 2 / C Q M P L ' I C A T I OX'S 0 3 3 3 0 3 3 5 7 2 4 0 C L A CM A / D E C R E M E N T C H A R 0 3 3 4 0 3 3 6 1 3 7 4 T A D K 3 D C N T / C O U N T E R 0 3 3 5 0 3 3 7 3 3 7 4 D C A K 3 D C N T 0 3 3 6 0 3 4 0 10 14 T A D R E A D P T / C H E C K FOR E N D O F 0 3 3 7 0 3 4 1 7 0 41 C I A / B U F F E R A N D R E S E T 0 3 4 0 0 3 4 2 1 3 6 5 T A D E N D K 3 F / I F A T E N D 0 3 4 1 0 3 4 3 7 6 4 0 S Z A C L A 0 3 4 2 0 3 4 4 5 3 4 7 J M P K Y N D 2 0 3 4 3 0 3 4 5 1 3 6 6 T A D S T KIT'S H 0 3 4 4 3 3.4 6 3 0 1 4 D C A R E A D P T 0 3 4 5 0 3 4 7 1 3 67 K Y N D 2 > T A D KY F L A G /WAS R E A D E R 0 3 4 6 0 3 5 0 7 6 4 0 S Z A C L A / S T O P P E D ? 0 3 4 7 0 3 5 1 5 3 5 5 J M P F L A G U P / Y E S 0 3 5 3 0 3 5 2 1 4 1 4 T A D I R E A D P T /NO - G E T C H A R 0 3 51 0 3 5 3 6 0 0 1 I O N / L E A V E I N A C 0 3 5 2 0 3 5 4 5 7 3 0 J M P I R E A D 3 / E X I T 0 3 5 3 0 3 5 5 3 3 6 7 F L A G U P * D C A K Y F L A G . / C L E A R K Y F L A G 0 3 5 4 0 3 5 6 6 0 3 2 K C C / R E S T A R T R E A D E R 0 3 5 5 0 3 5 7 1 4 1 4 T A D I R E A D P T / G E T C H A R A C T E R 0 3 5 6 0 3 6 0 6 0 0 1 I ON . / L E A V E I N A C 0 3 57 0 3 6 1 5 7 3 0 J M P I R E A D 3 / E X I T 3 3 6 0 0 3 6 2 • 7 1 7 7 E'M D 3 U F , 7 1 7 7 / E N D O F O U T P U T 0 3 6 1 . / B U F F E R 0 3 6 2 0 3 63 6 7 7 7 S T 3 U F * 6 7 7 7 / S T A R T O F O U T P U T 0 3 6 3 / B U F F E R 0 3 6 4 • 0 3 6 4 0 0 0 0 T F L A G * 0 0 3 6 5 0 3 6 5 7 3 7 7 E N D K 3 F * 7 3 7 7 / E N D O F I N P U T 0 3 6 6 / B U F F E R 0 3 67 0 3 6 6 7 1 7 7 S T K Y 3 F* 7 1 7 7 / S T A R T O F I N P U T 0 3 7 0 / B U F F E R 0 3 7 1 0 3 6 7 0 0 0 0 K Y F L A G * 0 0 3 7 2 0 3 7 0 0 0 0 0 A C C U M * 0 - 60 -0 3 7 3 0 3 7 1 0 0 0 0 L I N K * 0 0 3 7 4 0 3 7 2 3 0 0 0 M 3 S A V E * 0 0 3 7 5 0 3 7 3 0 0 0 0 T E L C N T * 0 0 3 7 6 0 3 7 4 0 0 0 0 K 3 D C N T * 0 0 3 7 7 / 0 4 0 0 / 0 4 0 1 * 4 0 0 0 4 0 2 / 0 4 0 3 / 0 4 0 4 / T O P R O D U C E A C A R R I A G E R E T U R N A N D L I N E 0 4 0 5 / F E E D 0 4 0 6 / 0 4 0 7 0 4 0 0 0 0 0 0 C R L F * 0 0 4 1 0 0 4 0 1 7 2 0 0 C L A 0 4 1 1 0 4 0 2 1 2 1 5 T A D K 2 1 5 / C R C H A R 0 4 1 2 0 4 0 3 4 4 5 4 J M S I A B U F F / T Y P E I T 0 4 1 3 0 4 0 4 1 2 1 4 T A D K 2 1 2 / L F C H A R 0 4 1 4 0 4 0 5 4 4 5 4 J M S I A B U F F / T Y P E I T 0 4 15 0 4 0 6 5 6 0 0 J M P I C R L F / E X I T - A C C L E A R 0 4 1 6 / 0 4 1 7 / 0 4 2 0 / T O P R O D U C E A S P A C E 0 4 2 1 / 0 4 2 2 0 4 0 7 0 0 0 0 S P A C E * 0 0 4 2 3 0 4 1 0 7 2 0 0 C L A 0 4 2 4 0 4 1 1 1 2 1 6 T A D K 2 4 0 / S P A C E C H A R 0 4 2 5 0 4 1 2 4 4 5 4 J M S I A B U F F / T Y P E I T 0 4 2 6 0 4 1 3 5 6 3 7 J M P I S P A C E / E X I T - A C C L E A R 0 4 2 7 / 0 4 3 0 0 4 1 4 0 ? 1 '?. K 2 1 2 * 2 1 2 0 4 3 1 0 4 1 5 0 2 1 5 K g 1 5 * 2 T 5 0 4 3 2 0 4 1 6 0 2 4 0 K 2 4 0 * 2 4 0 0 4 3 3 / 0 4 3 4 / 0 4 3 5 / T O U N P A C K A WORD A N D P R I N T I T O U T 0 4 3 6 / S I M I L A R TO P R I N T P R O G R A M I N DEC M A N U A L 0 4 3 7 / 0 4 4 0 0 4 1 7 0 0 0 0 P R I N T * 0 0 4 4 1 0 4 2 0 7 3 0 0 C L A C L L 0 4 4 2 0 4 2 1 3 3 0 1 D C A S T N B R 0 4 4 3 0 4 2 2 1 3 0 0 T A D N U M B E R 0 4 4 4 0 4 2 3 7 0 0 4 R A L 0 4 4 5 0 4 2 4 3 3 0 1 D C A S T N B R 0 4 4 6 0 4 2 5 1 2 7 4 U N P A C K * T A D H 0 T N 3 R 0 4 4 7 0 4 2 6 3 3 0 5 D C A S T R O T 0 4 5 0 0 4 2 7 1 3 0 1 T A D S T N B R 0 4 5 1 0 4 3 0 7 0 0 4 R A L 0 4 5 2 0 4 3 1 2 3 0 5 I S Z S T R O T 0 4 5 3 0 4 3 2 5 2 3 0 J M P . - 2 0 4 5 4 0 4 3 3 3 3 0 1 DCA S T N B R . 0 4 5 5 0 4 3 4 7 0 0 4 R A L 0 4 5 6 0 4 3 5 3 3 7 4 D C A L K P R T 0 4 5 7 0 4 3 6 1 3 0 1 T A D . S T N B R 0 4 6 0 0 4 3 7 0 2 7 3 A N D M A S K 0 4 61 0 4 4 0 1 2 7 6 T A D K 2 6 0 0 4 62 0 4 4 1 4 4 5 4 J M S I A B U F F 0 4 63 0 4 4 2 1 3 7 4 T A D L K P R T 0 4 6 4 0 4 4 3 7 1 10 C L L R A R 0 4 6 5 0 4 4 4 2 3 0 2 I S Z D I G C T R 0 4 6 6 0 4 4 5 5 2 2 5 J M P U N P A C K 0 4 67 0 4 4 6 5 6 1 7 J M P I P R I N T 0 4 7 0 / 0 4 7 1 / - 61 -0 4 7 2 / T O P R I N T TH E N U M B E R I N T H E A C A S A 3 0 4 7 3 / D I G I T B C D N U M B E R 0 4 7 4 / 0 4 7 5 0 4 4 7 0 0 0 0 P R T D C 0 0 4 7 6 0 4 5 0 3 3 0 0 D C A N U M B E R / S T O R E 0 4 7 7 0 4 5 1 1 3 0 3 T A D K C 3 / S E T NO O F D I G I T S 0 5 0 0 0 4 5 2 3 3 0 2 D C A D I G C T R / T O 3 0 5 0 1 . 0 4 5 3 1 2 7 7 T A D K C 4 / S E T NO O F B I T S 0 5 0 2 0 4 5 4 3 2 7 4 DCA R O T N B R / P E R D I G I T TO 4 0 5 0 3 0 4 5 5 1 3 0 4 T A D MA S K I 7 / S E T U P 4 B I T M A S K 0 5 0 4 0 4 5 6 3 2 7 3 ' D C A M A S K 0 5 0 5 0 4 57 4 2 1 7 J M S P R I N T / U S E P R I N T 0 5 0 6 0 4 60 5 6 4 7 J M P I P R T D C / E X I T - A C C L E A R 0 5 0 7 / 0 5 1 0 / 0 5 1 1 / T O P R I N T T H E N U M B E R I N T H E A C A S A 0 5 1 2 / 4 D I G I T O C T A L N U M B E R 0 5 1 3 / 0 5 1 4 0 4 61 0 0 0 0 P H T O C , 0 0 5 1 5 0 4 6 2 - 3 3 0 0 DCA N U M B E R / S T O R E N U M B E R 0 5 1 6 0 4 6 3 1 2 7 7 T A D K C 4 / S E T NO O F D I G I T S 0 5 1 7 0 4 6 4 3 3 0 2 D C A D I G C T R / T O 4 0 5 2 0 0 4 6 5 1 3 0 3 T A D K C 3 / S E T NO O F B I T S 0 5 2 1 0 4 6 6 3 2 7 4 D C A R O T N B R / P E R D I G I T TO 3 0 5 2 2 0 4 67 1 2 7 5 T A D ' M A S K 7 / S E T UP A 3 B I T 0 5 2 3 0 4 7 0 3 2 7 3 D C A M A S K / M A S K 0 5 2 4 0 4 7 1 4 2 1 7 J M S P R I N T / U S E P R I N T 0 5 2 5 0 4 7 2 5 6 6 1 J M P I P R T O C / E X I T - A C C L E A R 0 5 2 6 / 0 5 2 7 0 4 7 3 0 0 0 0 M A S K , 0 0 4 7 4 r.\ {>. f* ,'A *J ij tj *_» RO TN 3 R r.\ * */ 0 5 3 1 0 4 7 5 0 0 0 7 MAS K 7 > 7 0 5 3 2 • 0 4 7 6 0 2 6 0 K 2 60> 2 6 0 0 5 3 3 ~ 0 4 7 7 7 7 7 4 K C 4 , - 4 0 5 3 4 0 5 0 0 0 0 0 0 N U M B E R , 0 0 5 3 5 0 5 0 1 0 0 0 0 S T N B R , 0 0 5 3 6 0 5 0 2 0 0 0 0 D I G C T R , 0 0 5 3 7 0 5 0 3 7 7 7 5 KC3> - 3 0 5 4 0 0 5 0 4 0 0 1 7 M A S K 1 7 > 17 0 5 4 1 0 5 0 5 0 0 0 0 S T R O T , 0 0 5 4 2 / 0 5 4 3 / 0 5 4 4 / T O R E A D T H E A N A L O G C H A N N E L W H O S E C O D E 0 5 4 5 / I S I N T H E A C 0 5 4 6 / 0 5 4 7 0 5 0 6 0 0 0 0 A N A L G , 0 0 5 5 0 0 5 0 7 6 3 2 3 6 3 2 3 / C H A N N E L S E L E C T 0 5 5 1 0 5 1 0 6 3 2 1 6 3 2 1 / W A I T FOR F L A G 0 5 5 2 0 5 1 1 5 3 1 0 J M P . - 1 0 5 5 3 0 5 1 2 7 3 0 0 C L A C L L 0 5 5 4 0 5 1 3 6 3 2 4 6 3 2 4 / R E A D 0 5 5 5 0 5 1 4 7 0 4 0 CM A / I N P U T I N O P P O S I T E 0 5 5 6 / L O G I C 0 5 5 7 0 5 1 5 4 4 5 3 J M S I A M U L T 5 / M U L T B Y 5 0 5 6 0 0 5 1 6 7 4 2 ! . M Q L 0 5 6 1 0 5 1 7 7 7 0 1 A C L / S P L I T R E S U L T I N T O 0 5 6 2 ' 0 5 2 0 0 3 4 0 A N D M K 7 7 0 0 / 2 WORDS 0 5 63 0 5 2 1 7 0 1 2 R T R 0 5 64 0 5 2 2 7 0 1 2 R T R / D I V I D E H I G H WORD 0 5 65 0 5 2 3 7 0 12 R T R / B Y 6 4 0 5 6 6 0 5 2 4 4 4 5 3 J M S I A M U L T 5 0 5 6 7 0 5 2 5 4 4 5 3 J M S I A M U L T 5 / M U L T B Y 2 5 0 5 7 0 0 5 2 6 3 3 4 2 D C A SH I GH / S T O R E -. 62 -0 5 7 1 0 5 2 7 7 7 0 1 A C L 0 5 7 2 0 5 3 3 0 3 4 1 A N D M K 7 7 / G E T LOW H A L F 0 5 7 3 0 5 3 1 4 4 5 3 J M S I A M U L T 5 0 5 7 4 0 5 3 2 4 4 5 3 J M S I A M U L T 5 / M U L T B Y 2 5 0 5 7 5 0 5 3 3 0 3 4 0 • A N D M K 7 7 0 0 / D I V I D E LOW H A L F 0 5 7 6 0 5 3 4 7 0 0 2 B S w / B Y 64 0 5 7 7 0 5 3 5 13 4 2 T A D S H I G H / P U T H A L V E S B A C K 0 6 0 0 0 5 3 6 7 0 1 0 R A R / D I V I D E B Y 2 0 6 01 / R E S U L T I S TO 0 6 0 2 / M U L T 3 Y C 1 0 0 0 / 1 0 2 4 ) 0 6 0 3 0 5 3 7 5 7 0 6 J M P I A N A L G / E X I T - R E S U L T 0 6 0 4 / L E F T I N A C 0 6 0 5 0 5 4 0 7 7 0 0 M K 7 7 0 0 * 7 7 0 0 0 6 0 6 0 5 4 1 0 0 7 7 M X 7 7 * 7 7 0 6 0 7 0 5 4 2 0 0 0 0 S H I G H * 0 0 6 1 0 '/ 0 6 1 1 / 0 6 1 2 / T O I N I T I L I Z E T H E P O I N T E R S A N D F L A G S 0 6 1 3 / F O R T H E O P E R A T I N G S Y S T EM 0 6 1 4 / 0 6 1 5 0 5 4 3 0 0 0 0 I N I T Z E * 0 0 6 1 6 0 5 4 4 7 2 0 0 C L A 0 6 1 7 0 5 4 5 1 3 6 6 T A D K K 1 7 7 7 / I N I T I L I Z E 0 6 2 0 0 5 4 6 3 0 1 1 D C A B U F P T / P O I N T E R S 0 6 2 1 0 5 4 7 1 3 6 6 T A D K K 1 7 7 7 0 6 2 2 0 5 5 0 3 0 1 2 D C A T Y P E P T 0 6 2 3 0 5 5 1 1 3 67 T A D K K 2 1 7 7 0 6 2 4 0 5 5 2 3 0 13 D C A K Y B D P T 0 6 2 5 0 5 5 3 13 6 7 T A D K K 2 1 7 7 0 62 6 0 5 5 4 3 0 1 4 DCA ' R E A D P T 0 6 2 7 0 5'5 5 7 2 0 1 • C L A I A C 0 6 3 0 0 5 5 6 3 7 7 0 D C A I A T F L A G / S E T F L A G S 0 6 3 1 0 5 5 7 7 2 0 1 C L A I A C 0 6 3 2 0 5 6-0 3 7 7 1 D C A I A K F L A G 0 6 3 3 0 5 6 1 3 7 7 3 DCA I A T L C N T / C L E A R C O U N T E R S 0 6 3 4 0 5 62 3 7 7 2 D C A I A K Y C N T 0 6 3 5 0 5 6 3 6 0 3 2 K C C 0 6 3 6 0 5 64 6 0 0 1 I ON / T U R N I N T E R R U P T ON 0 6 3 7 0 5 65 5 7 4 3 J M P I I N I T Z E / E X I T - A C C L E A R 0 6 4 0 / 0 6 4 1 0 5 6 6 67 7 7 K K 1 7 7 7 * 6 7 7 7 0 6 4 2 0 5 67 7 1 7 7 K K 2 1 7 7 * 7 1 7 7 0 6 4 3 0 5 7 0 0 3 6 4 A T F L A G * T F L A G 0 6 4 4 0 5 7 1 0 3 6 7 A K F L A G * K Y F L A G 0 6 4 5 0 5 7 2 0 3 7 4 A K Y C N T * K B D C N T 0 6 4 6 0 5 7 3 0 3 7 3 A T L C N T * T E L C N T 0 6 4 7 0 5 7 4 0 0 0 0 L K P R T * 0 0 6 5 0 / 0 6 5 1 / 0 6 5 2 * 6 0 0 0 6 5 3 / 0 6 5 4 / 0 6 5 5 / P U T O U T P U L S E TO S T E P M O T O R S 0 6 5 6 / 0 6 5 7 0 6 0 0 0 0 0 0 S T E P 1 * 0 0 6 6 0 0 6 0 1 6 3 3 4 6 3 3 4 / P U L S E TO S T E P 0 6 6 1 0 6 0 2 7 2 0 0 C L A 0 6 6 2 3 6 0 3 1 2 1 0 T A D WT / W A I T L O O P 0 6 6 3 0 6 0 4 7 0 0 1 I A C 0 6 6 4 0 6 0 5 7 4 4 0 S Z A 0 6 6 5 0 6 0 6" 5 2 0 4 J M P . - 2 . 0 6 6 6 0 6 0 7 5 6 0 0 J M P I S T E P 1 / E X I T - A C C L E A R 0 6 6 7 0 6 1 0 . 6 5 0 0 WT* ' 6 5 0 0 / D E L A Y FOR A R A T E - 63 -0 6 7 0 / O F 4 0 0 S T E P S / S E C 0 67 1 / 0 67 2 / 0 6 7 3 0 6 1 1 0 0 0 0 W A I T * 0 0 67 4 . 0 6 1 2 3 2 2 5 D C A EM D T I M 0 6 7 5 0 6 1 3 6 3 4 2 6 3 4 2 0 6 7 6 0 6 1 4 6 3 4 1 W L P 1 * 6 3 4 1 •den 0 6 1 5 5 2 1 4 J M P . - 1 -07 0 0 0 6 1 6 6 3 4 4 6 3 4 4 0 7 0 1 0 61 7 7 0 4 0 C M A 0 7 0 2 0 6 2 0 7 0 4 1 C I A 0 7 0 3 0 6 21 1 2 2 5 T A D E N D T I M 0 7 0 4 0 6 2 2 7 4 4 3 S Z A 0 7 0 5 0 6 2 3 5 2 1 4 J M P WLP1 0 7 0 6 0 6 2 4 5 6 1 1 J M P 1 W A I T 0 7 0 7 0 6 2 5 0 0 0 0 . EN DT IM * 0 0 7 10 / 0 7 1 1 / 0 7 1 2 / R E A D S H A F T E N C O D E R 0 7 13 / 0 7 14 0 6 2 6 0 0 0 0 R D S F T * 0 0 7 1 5 0 6 2 7 7 2 0 0 C L A 0 7 1 6 0 6 3 0 6 3 0 2 6 3 0 2 / R E A D A N D S T O R E 0 7 17 0 6 3 1 3 1 0 0 D C A S H F T H / 2 M S D 0 7 2 0 0 6 3 2 6 3 0 4 . 6 3 0 4 / R E A D A N D S T O R E 0 7 2 1 0 6 3 3 3 1 0 1 D C A S H F T L / 3 L S D 07 2 2 0 6 3 4 5 6 2 6 J M P I R D S F T / E X I T - A C C L E A R 0 7 2 3 / 0 7 2 4 / 0 7 2 5 / R E A D D I G I T A L M O L T M E T E R 0 7 2 6 / 0 7 2 7 0 6 3 5 0 0 0 0 R D D V M * 0 0 7 3 0 0 6 3 6 7 3 0 0 C L A C L L / R E A D H I G H WORD 0 7 31 0 6 3 7 6 3 1 1 6 3 1 1 0 7 3 2 0 6 4 0 0 2 5 2 A N D M A S K 4 0 / T E S T F L A G I N 0 7 3 3 0 6 4 1 7 4 4 0 S Z A / B I T 6 0 7 3 4 0 6 4 2 5 2 3 6 J M P . - 4 / W A I T FOR F L A G . 0 7 3 5 ' 0 6 4 3 7 2 0 0 C L A / T O GO DOWN 0 7 3 6 0 6 4 4 6 3 0 1 6 3 0 1 / R E A D A N D S T O R E 0 7 3 7 0 6 4 5 3 1 0 2 DCA D V M L / L O W WORD 0 7 4 0 0 6 4 6 6 3 1 1 6 3 1 1 / R E A D A N D S T O R E 0 7 4 1 0 6 4 7 0 2 5 3 A N D M A S . K 3 7 / H I G H WORD ( O N L Y 07 4 2 0 6 5 0 3 1 0 3 D C A DVMH / l B C D C H A R ) 0 7 4 3 0 6 5 1 5 6 3 5 J M P I R D D V M / E X I T - A C C L E A R 0 7 4 4 0 6 5 2 0 0 4 0 M A S K 4 0 * 4 0 0 7 4 5 0 6 5 3 0 0 3 7 M A S K 3 7 * 3 7 0 7 4 6 / 0 7 4 7 / 0 7 5 0 / T O A C C E L E R A T E M O T O R S 07 51 / 0 7 5 2 0 6 5 4 0 0 0 0 S T E P * 0 07 -53 0 6 5 5 7 2 0 0 C L A 0 7 5 4 0 6 5 6 1 1 1 0 T A D D I R / C H E C K A C C E L F L A G 0 7 5 5 / ( B I T 9 O F DI R ) 0 7 5 6 0 6 5 7 0 3 1 5 A N D M S K D 1 0 7 5 7 0 6 6 0 7 6 4 0 S Z A C L A 0 7 6 0 0 6 6 1 5 2 67 J M P A C C S T / F L A G = 1 » S T A R T 0 7 6 1 / A C C E L E R A T I O N 0 7 6 2 0 6 62 1 3 1 6 T A D A C C S T P / F L A G = 0 * C O N T I N U E 0 7 6 3 / A C C E L E R A T I O N 0 7 6 4 0 6 6 3 7 6 4 0 S Z A C L A / C H E C K FOR E N D 0 7 6 5 / O F A C C E L 0 7 6 6 0 6 6 4 5 3 0 2 J M P A C C N T U /NO - C O N T A C C E L - 64 -0 7 67 0 6 65 4 2 0 0 J M S S T E P 1 / Y E S - S T E P M O T O R 0 7 7 0 0 6 6 6 5 6 5 4 J M P I S T E P / E X I T - A C C L E A R 0 7 7 1 0 6 6 7 7 0 0 1 A C C S T * I A C / S T A R T A C C E L 0 7 7 2 0 6 7 0 7 4 4 0 S Z A / L E T M O T O R S E T T L E 0 7 7 3 0 67 1 5 2 67 J M P . - 2 0 7 7 4 0 6 7 2 1 3 1 5 T A D M S K D 1 0 7 7 5 0 67 3 7 0 4 0 C M A 0 7 7 6 0 67 4 0 1 1 0 A N D DI R / C L E A R F L A G I N 0 7 7 7 0 6 7 5 3 1 1 0 D C A DI R / D I R TO C O N T I N U E 1 0 0 0 / A C C E L E R A T I O - N 1 0 0 1 0 67 6 1 3 1 7 T A D S K C 1 6 / S E T N U M B E R O F 1 0 0 2 0 6 7 7 3 3 1 6 D C A A C C S T P / S T E P S I N A C C E L 1 0 0 3 0 7 0 0 1 3 2 0 T A D WT1 / S E T O R I G I N A L 1 0 0 4 0 7 01 3 3 2 1 D C A W T I M E / E X T R A D E L A Y 1 0 0 5 0 7 0 2 4 2 0 0 A C C N T U * J M S S T E P 1 / S T E P M O T O R 1 0 0 6 0 7 0 3 1 3 2 1 T A D W T I M E 1 0 0 7 0 7 0 4 1 3 2 2 T A D A C T I M E / D E C R E A S E E X T R A 18 1 0 0 7 0 5 3 3 2 1 DC A W T I M E / D E L A Y T I M E 10 1 1 0 7 O 6 1 3 2 1 T A D W T I M E 10 12 0 7 0 7 7 0 0 1 I A C / W A I T E X T R A D E L A Y 10 1 3 0 7 10 7 4 4 0 S Z A 1 0 1 4 0 7 1 1 5 3 0 7 J M P 1 0 1 5 0 7 12 2 3 1 6 I S Z A C C S T P / I N C R E M E N T A C C E L 1 0 1 6 / C O U N T E R 1 0 1 7 0 7 13 5 6 5 4 J M P I S T E P 1 0 2 0 0 7 1 4 5 6 5 4 J M P I S T E P / E X I T - A C C L E A R 10 2 1 0 7 1 5 1 0 0 0 M S K D 1 * 1 0 0 0 / M A S K FOR F L A G 1 0 2 2 0 7 1 6 0 0 0 0 A C C S T P * 0 / A C C E L S T E P C O U N T 1 0 2 3 0 7 17 7 7 6 0 S K C 1 6* - 2 0 / N U M B E R O F A C C E L 10 2 4 / S T E P S 10 2 5 0 7 2 0 L: *-/ r.i WT! * 5 7 0 £ / 0 R I G I ' NAL E X T R A 1 0 2 6 / D E L A Y 1 0 2 7 0 7 21 0 0 0 0 W T I M E * 0 / T E M P S T O R A G E 10 3 0 0 7 2 2 0 1 0 0 A C T I M E * 1 0 0 - / D E C R E A S E J N D E L A Y 1 0 3 1 / 1 0 3 2 / 1 0 3 3 / T O C O M P L I M E N T A N A L Y Z E R R E A D I N G BY 3 6 0 . 0 0 1 0 3 4 / 1 0 3 5 0 7 2 3 0 0 0 0 A N Z C P * 0 1 0 3 6 0 7 2 4 7 2 0 0 C L A 1 0 3 7 0 7 2 5 1 1 0 1 T A D S H F T L / C O N V E R T L S D S 1 0 4 0 0 7 2 6 4 4 4 2 J M S .1 A D C B I N / ( S H F T L ) TO B I N 1 0 4 1 0 7 2 7 7 0 4 1 C I A 1 0 4 2 0 7 3 0 1 3 4 5 T A D K 1 0 0 0 D / 1 0 0 0 ( D E C ) - S H F T L 10 4 3 0 7 3 1 4 4 4 1 J M S I A B N B C D / C O N V E R T TO 3 C D 1 0 4 4 0 7 3 2 1 1 0 5 T A D D N U M B / P U T B C D R E S U L T 1 0 4 5 0 7 3 3 3 1 0 1 D C A S H F T L / B A C K I N S H F T L 1 0 4 6 0 7 3 4 1 1 0 0 T A D S H F T H / C O N V E R T M S D S 1 0 4 7 0 7 3 5 4 4 4 2 J M S I A D C B I N / ( S H F T H ) TO B I N 1 0 5 0 0 7 3 6 7 0 4 1 C I A 1 0 5 1 0 7 3 7 1 1 0 4 T A D M S D I G / 3 5 ( D E C ) + C A R R Y 1 0 5 2 0 7 4 0 1 3 4 6 T A D K 3 5 D / - S H F T H 1 0 5 3 0 7 41 4 4 4 1 J M S I A B N B C D / C O N V E R T T O B C D 10 5 4 0 7 4 2 1 1 0 5 T A D DN U M 3 / P U T B C D R E S U L T 1 0 5 5 0 7 4 3 3 1 0 0 D C A S H F T H . / I N S H F T H 1 0 5 6 0 7 4 4 5 7 2 3 J M P I A N Z C P / E X I T - A C C L E A R 10 5 7 0 7 4 5 17 5 0 K 1 0 0 0 D * 1 7 5 0 / l 0 0 0 ( D E C 10 6 0 0 7 4 6 0 0 4 3 K 3 5 D * 4 3 / 3 5 ( D E C ) 10 61 / 10 6 2 / 10 63 * 1 0 0 0 10 6 4 / 10 6 5 / - 65 -1 0 6 6 / C O N V E R T 3 D I G I T B C D I N A C TO B I N A R Y 10 67 / L E A V E R E S U L T I N A C 1 0 7 0 / 1 0 7 1 1 0 0 0 0 0 0 0 D C B I N > 0 1 0 7 2 1 0 0 1 7 4 2 1 M Q L / S A V E B C D N O . 1 0 7 3 10 0 2 7 7 0 1 A C L 1 0 7 4 1 0 0 3 0 2 2 5 A N D M K 1 7 / S E P A R A T E L S D 107 5 1 0 0 4 3 2 2 4 D C A O C N B R / S T O R E A S B I N 107 6 1 0 3 5 7 7 0 1 A C L 107 7 1 0 0 6 0 2 2 6 A N D M K 3 6 0 / S E P A R A T E M I D D L E 1 1 0 0 - 1 0 0 7 7 1 1 2 C L L R T R / D I G I T 1 1 01 1 0 1 0 7 0 1 2 R T R / R I G H T J U S T I F Y 1 1 0 2 1 0 1 1 4 2 3 0 J M S M U L T 10 / M U L T B Y 10 1 1 0 3 1 0 1 2 1 2 2 4 T A D O C N B R . / A D D T O B I N N O . 1 1 0 4 10 1 3 3 2 2 4 D C A O C N B R 1 1 0 5 1 0 1 4 7 7 0 1 A C L 1 1 0 6 1 0 1 5 0 8 2 7 A N D M K 7 4 0 0 / S E P A R A T E M S D 1 1 0 7 10 1 6 7 1 0 6 C L L R T L / R I G H T J U S T I F Y 1 1 1 0 1 0 1 7 7 0 0 6 R T L 1 1 1 1 1 0 2 0 7 0 0 4 R A L 1 1 1 2 1 0 2 1 4 2 4 4 J M S M L T 1 0 0 / M U L T B Y 1 0 0 1 1 1 3 1 0 2 2 1 2 2 4 T A D O C N B R / A D D T O B I N N O . 1 1 1 4 1 0 2 3 5 6 0 0 J M P I D C B I N / E X I T - B I N I N A C 1 1 1 5 1 0 2 4 0 0 0 0 O C N B R , 0 / S T O R A G E FOR B I N 1 1 1 6 1 0 2 5 0 0 1 7 M K 1 7 , 17 / M A S K FOR L S D 1 1 1 7 ' ' 1 0 2 6 0 3 6 0 M K 3 6 0 , 3 6 0 / M A S K FOR M I D D I G 1 1 2 0 1 0 2 7 7 4 0 0 M K 7 4 0 0 , 7 4 0 0 / M A S K FOR M S D 1 1 2 1 1 1 2 2 1 1 2 3 1 "1 2 4 1 1 2 5 1 1 2 6 I 1 2 7 I I 3 0 1 1 3 1 1 1 3 2 1 1 3 3 1 1 3 4 11 5 7 1 1 6 0 1 1 61 1 1 6 2 1 1 63 1 1 6 4 1 0 3 0 1 0 3 1 10 3 2 1 0 3 3 0 0 0 0 4 2 3 4 7 1 0 4 5 6 3 0 / / / M U L T N O . I N A C B Y 10 / M U L T 1 0 , 0 J M S C L L J M P M U L T 5 R A L I - M U L T 10 / / / M U L T / N O . I N A C B Y 5 L E A V E R E S U L T I N AC / M U L T B Y 5 / M U L T B Y 2 L E A V E R E S U L T I N A C 1 1 3 5 1 0 3 4 0 0 0 0 M U L T 5 , 0 1 1 3 6 10 3 5 3 2 4 3 D C A M N B R / S T O R E N O . 1 1 3 7 1 0 3 6 1 2 4 3 T A D M N B H 1 1 4 0 1 0 3 7 7 1 0 4 C L L R A L / M U L T B Y 2 1 1 4 1 10 4 0 7 1 0 4 C L L H A L / M U L T B Y 2 1 1 4 2 1 0 4 1 1 2 4 3 T A D M N B R / A D D N O . 1 1 4 3 1 0 4 2 5 6 3 4 J M P I M U L T 5 / I E 5 X = 2 X + 2 X + X 1 1 4 4 1 0 4 3 0 0 0 0 M N B R , 0 / T E M P S T O R A G E 1 1 4 5 / 1 1 4 6 / 1 1 4 7 / M U L T A C B Y 1 0 0 - R E S U L T I N A C 1 1 5 0 / 1 1 5 1 1 0 4 4 0 0 0 0 . M L T 1 0 0 , 0 1 1 5 2 1 0 4 5 4 2 3 0 J M S M U L T 10 / M U L T B Y 1 0 1 1 5 3 1 0 4 6 4 2 3 0 J M S M U L T 10 / M U L T B Y 10 1 1 5 4 1 0 4 7 5 6 4 4 J M P I M L T 1 0 0 1 1 5 5 / 1 1 5 6 / 10 5 0 1 0 5 1 0 0 0 0 , 3 3 4 2 / C O N V E R T B I N N O . I N A C / R E S U L T I N M S D I G ( M O S T / D N U M 3 ( D E C I M A L N O . ) -/ 3 N 3 C D , 0 D C A 3 N B R • TO 4 D I G I T S B C D S I G D I G I T ) A N D ON P A G E 0 / S T O R E B I N - 6 6 -1 1 6 5 1 0 5 2 7 1 0 3 C L L 11 6 6 10 5 3 3 1 0 4 DCA MS D I G / C L E A R 1 1 6 7 10 5 4 1 3 4 2 T A D B N 3 R 117 0 10 5 5 1 3 4 4 BN L P 1, T A D K C 1 0 0 0 / S U S T 1 0 0 0 FROM 1 1 7 1 10 5 6 7 5 0 0 SMA / B I N N O . 1 1 7 2 10 5 7 5 2 6 3 J M P B A C K / I F A C I S N O T N E G 1 1 7 3 10 60 7 4 3 0 S Z L / O R L I N K = 0 T H E N 1 1 7 4 1 0 6 1 5 2 6 3 J M P B A C K / I N C R E M E N T M S D I G 1 1 7 5 10 6 2 5 2 6 6 J M P F I N I S H / A N D S U B T 1 0 0 0 117 6 10 6 3 2 1 0 4 B A C K , I S Z M S D I G / A G A I N 1 1 7 7 10 6 4 7 1 0 0 C L L 1 2 0 0 1 0 6 5 5 2 5 5 J M P B N L P 1 1 2 0 1 1 0 6 6 3 3 4 2 F I N I S H , D C A B N 3 R / I F A C I S L T 0 1 2 0 2 1 0 67 1 3 4 4 T A D K C 1 0 0 0 / A N D L=l , T H E N 1 2 0 3 1 0 7 0 7 0 4 1 C I A / H A V E S U 3 T 1 0 0 0 1 2 0 4 1 0 7 1 1 3 4 2 T A D 3 N B R / O N C E TOO O F T E N 1 2 0 5 1 0 7 2 3 3 4 2 D C A B N B R / A D D 1 0 0 0 B A C K ON 1 2 0 6 / 1 2 0 7 1 0 7 3 7 3 0 0 C L A C L L 1 2 1 0 1 0 7 4 3 3 4 3 D C A D I G / C L E A R 121 1 1 0 7 5 1 3 4 2 . T A D B N B R 1 2 1 2 1 0 7 6 1 3 4 5 B N L P 2 , T A D K C 1 0 0 / S U B T 1 0 0 FROM B I N 1 2 1 3 1 0 7 7 7 5 0 0 S M A / I F A C I S N O T N E G 12 14 1 1 0 0 5 3 0 2 J M P B K 2 / T H E N I N C R E M E N T 1 2 1 5 1 1 0 1 5 3 0 4 J M P F N H 2 ' / D I G A N D S U B T 1 2 1 6 1 1 0 2 2 3 4 3 B K 2 , I S Z D I G / A G A I N 1 2 1 7 1 1 0 3 5 2 7 6 J M P B N L P 2 1 2 2 0 1 1 0 4 3 3 4 2 F N H 2 , D C A B N B R / A C I S N E G - S A V E 1 2 2 1 1 1 0 5 1 3 4 3 T A D D I G / P U T N O . O F S U B T 1 2 2 2 1 1 0 6 7 10 6 C L L R T L / I N M S D P O S I T I O N 1 2 2 3 •11-07 - 7 0 0 - 6 R T L / O F D N U M B 1 2 2 4 1 1 1 0 3 1 0 5 D C A DNUMB 1 2 2 5 1 1 1 1 1 3 4 5 T A D K C 1 0 0 / A D D 1 0 0 B A C K 1 2 2 6 1 1 1 2 7 0 4 1 C I A / T O B I N N O . 1 2 2 7 1 1 1 3 1 3 4 2 T A D B N B R 1 2 3 0 1 1 1 4 3 3 4 2 D C A B N B R 1 2 3 1 / 1 2 3 2 1 1 1 5 7 3 0 0 C L A C L L 1 2 3 3 1 1 1 6 3 3 4 3 D C A D I G • / C L E A R 1 2 3 4 1 1 1 7 1 3 4 2 T A D B N B R 1 2 3 5 1 1 2 0 1 3 4 6 B N L P 3 , T A D K C 1 0 / S U B T 10 FROM 1 2 3 6 1 1 2 1 7 5 0 0 S M A / B I N N O . I F 1 2 3 7 1 1 2 2 5 3 2 4 J M P B K 3 / A C I S N O T N E G 1 2 4 0 1 1 2 3 5 3 2 6 J M P F N H 3 / I N C R D I G A N D 1 2 4 1 1 1 2 4 2 3 4 3 B K 3 , I S Z D I G / S U B T A G A I N 1 2 4 2 1 1 2 5 5 3 2 0 J M P B N L P 3 1 2 4 3 1 1 2 6 3 3 4 2 F N H 3 , D C A B N B R / A C I S N E G - S A V E 1 2 4 4 1 1 2 7 1 3 4 3 T A D D I G / P U T N O . O F S U B T 1 2 4 5 1 1 3 0 1 1 0 5 T A D D N U M 3 /IN M I D D I G O F 1 2 4 6 1 1 3 1 7 1 0 6 C L L R T L / D N U M B 1 2 4 7 1 1 3 2 7 0 0 6 R T L 1 2 5 0 1 1 3 3 3 1 0 5 D C A D N U M B 1 2 5 1 1 1 3 4 1 3 4 6 T A D K C 1 0 / A D D 10 B A C K TO 1 2 5 2 1 1 3 5 7 0 4 1 C I A / B I N NO. 1 2 5 3 1 1 3 6 1 3 4 2 T A D B N B R 1 2 5 4 1 1 3 7 1 1 0 5 TAD DNUMB / P A R T L E F T I S L S D 1 2 5 5 1 1 4 0 3 1 0 5 D C A DNUMB / O F D N U M B 1 2 5 6 1 1 4 1 5 6 5 0 J M P I B N B C D / E X I T - A C C L E A R 1 2 5 7 12 60 1 1 4 2 0 0 0 0 B N B R , 0 / S T O R F O R B I N NO. 1 2 6 1 1 1 4 3 0 0 0 0 Din, 0 / S T O R F O R D I G 12 6 2 1 1 4 4 6 0 3 0 K C 1 0 0 0 , 6 0 3 0 / - 1 0 0 0 12 63 ' 1 1 4 5 7 6 3 4 K C 1 0 0 , 7 6 3 4 / - 1 0 0 - 67 -12 64 1 1 4 6 7 7 6 6 K C 1 0 * 7 7 6 6 / - 10 . 12 6 5 / 12 6 6 / 12 6 7 * 1 3 0 0 1 2 7 0 / 1 2 7 1 / 1 2 7 2 / T O S T O K E A S E T O F R E A D I N G S I N A S T A C K 1 2 7 3 / F I X E D L E N G T H S T A C K • - L A T E S T A D D I T I O N 127 4 / R E P L A C E S E A R L I E S T - I N P U T I N A C -1 2 7 5 / O U T P U T L E F T I N A C 127 6 / 1 2 7 7 • 1 3 0 0 0 0 0 0 S T A C K * 0 1 3 0 0 1 3 0 1 3 3 2 3 D C A S V S T K l / S A V E A D D I T I O N 1 3 0 1 1 3 0 2 1 0 1 8 T A D E N D S T K T 3 0 2 T 3 0 3 7 0 41 C I A / C H E C K FOR E N D O F 1 3 0 3 1 3 0 4 1 1 1 1 T A D S T K L / S T A C K A R E A A N D 1 3 0 4 1 3 0 5 1 1 2 0 T A D S T S T K / R E S E T TO S T A R T 1 3 0 5 1 3 0 6 7 4 4 0 S Z A / I F A T E N D 1 3 0 6 . 1 3 0 7 5 3 1 2 J M P • +3 / S T A C K A R E A I S 1 3 0 7 1 3 1 0 1 1 2 0 T A D S T S T K / 1 2 0 0 TO 1 2 7 7 1 3 1 0 1 3 1 1 3 0 1 0 DCA E N D S T K 131 1 1 3 1 2 7 2 0 0 C L A 1 3 1 2 1 3 1 3 1 4 1 0 T A D I E N D S T K / R E M O V E N O . F R O M 1 3 1 3 1 3 1 4 . 3 3 2 4 DCA S V S T K 2 / S T A C K A N D S A V E I T 1 3 1 4 1 3 1 5 10 10 T A D E N D S T K 1 3 1 5 1 3 1 6 3 3 2 5 D C A EN D S K 1 / R E P L A C E I T W I T H 1 3 1 6 1 3 1 7 1 3 2 3 T A D S V S T K l / I N P U T T H A T WAS 1 3 1 7 1 3 2 0 3 7 2 5 DCA I E N D S K 1 / I N A C 1 3 2 0 1 3 2 1 1 3 2 4 T A D S V S T K 2 / P U T N O . R E M O V E D 1 3 2 1 1 3 2 2 5 7 0 0 J M P I S T A C K / I N A C - E X I T 13 8 2 1 3 2 3 ' 0-0-00 S V S T K l * 0 1 3 2 3 1 3 2 4 0 0 0 0 S V S T K 2 * .0 1 3 2 4 1 3 2 5 0 0 0 0 E N D S K 1 * 0 1 3 2 5 / 1 3 2 6 / 1 3 2 7 / T O - R E A D T H E P H O T O M U L T I P L I E R S T K L N U M B E R 1 3 3 0 . / O F T I M E S A N D K E E P A R U N N I N G SUM O F T H E 1 3 3 1 / R E A D I N G S S T O R E D I N 2 W O R D S * A S U M H * A S U M L 1 3 3 2 / 1 3 3 3 1 3 2 6 0 0 0 0 S U M * . 0 1 3 3 4 1 3 2 7 7 2 0 0 C L A 1 3 3 5 1 3 3 0 1 1 1 1 T A D S T K L / S E T C O U N T E R 1 3 3 6 1 3 3 1 7 0 4 1 C I A 1 3 3 7 1 3 3 2 3 1 1 7 D C A S T P C N T 1 3 4 0 1 3 3 3 3 1 0 7 D C A A S U M H / C L E A R S T O R A G E 1 3 4 1 1 3 3 4 3 1 0 6 D C A A S U M L 1 3 4 2 1 3 3 5 4 3 4 7 L P S U M * J M S R D P T O / R E A D P H O T O M U L T • 1 3 4 3 1 3 3 6 ' 7 1 0 0 C L L 1 3 4 4 1 3 3 7 1 1 0 6 T A D A S U M L / A D D T O A S U M L 1 3 4 5 1 3 4 0 7 4 3 0 S Z L / I F O V E R F L O W 1 3 4 6 1 3 4 1 2 1 0 7 I S Z A S U M H / I N C R E A S U M H 1 3 4 7 1 3 4 2 3 1 0 6 D C A A S U M L / S T O R E S U M 1 3 5 0 1 3 4 3 4 4 3 3 J M S I A S T E P / S T E P M O T O R 1 3 5 1 1 3 4 4 2 1 1 7 I S Z S T P C N T / L O O P 1 3 5 2 , 1 3 4 5 5 3 3 5 J M P L P S U M 1 3 5 3 1 3 4 6 5 7 2 6 J M P I SUM / E X I T - A C C L E A R 1 3 5 4 / 1 3 5 5 / 1 3 5 6 / T O R E A D P H O T O M U L T I P L I E R - R E S U L T L E F T 1 3 5 7 / I N A C 13 6 0 / 1 3 6 1 1 3 4 7 0 0 0 0 R D P T O * 0 13 6 2 1 3 5 0 7 2 0 0 C L A - 68 -13 63 1 3 5 1 1 3 5 4 T A D P H T O C D / S E T P T M C O D E 13 64 - 1 3 5 2 4 4 3 1 J M S I A A N A L G / U S E A N A L G 13 6 5 1 3 5 3 5 7 4 7 J M P I R D P T O / E X I T - R E S U T -1N 1 3 6 6 / A C 1 3 6 7 1 3 5 4 0 0 17 P H T O C D * 1 7 / C O D E FOR P T M 1 3 7 0 / A N A L G C H A N N E L 1 3 7 1 / 1 3 7 2 / 1 3 7 3 * 1 4 0 0 137 4 / 1 3 7 5 / 1 3 7 6 / T O R E V E R S E E L L I P S O M E T E R M O T O R S .1377 / 1 4 0 0 1 4 0 0 0 0 0 0 R E V * 0 1 4 0 1 . 1 4 0 1 7 2 0 0 C L A 1 4 0 2 1 4 0 2 1 1 1 0 T A D DI R 1 4 0 3 1 4 0 3 0 2 1 6 A M D M S K D 1 R / S E P A R A T E 1 4 0 4 / D I R E C T I O N 3 1 T S 1 4 0 5 1 4 0 4 7 0 4 0 CMA / C O M P L I M E N T D I R 1 4 0 6 / B I T S 1 4 0 7 1 4 0 5 0 2 1 6 A N D M S K D 1 R 1 4 1 0 1 4 0 6 3 2 2 0 - D C A C H D I R / S T O R E C O M P D I R 141 1 / B I T S 1 4 1 2 1 4 0 7 1 1 1 0 T A D DI R 1 4 1 3 1 4 1 0 0 2 1 7 A N D M S K D R 2 / C L E A R O L D D I R 1 4 1 4 / B I T S A N D F L A G 1 4 1 5 1 4 1 1 1 2 3 3 T A D F L G S E T / S E T F L A G TO 1 4 1 6 / A C C E L E R A T E 1 4 1 7 1 4 1 2 1 2 2 0 T A D C H D I R / S E T C H A N G E D D I R 1 4 2 0 / 3 I T S 1 4 2 1 1 4 1 3 6 3 3 2 6 3 3 2 •/SET - F L - I P - F L O P S 1 4 2 2 1 4 1 4 3 1 1 0 •DCA D I R / R E S T O R E I N D I R 1 4 2 3 1 4 1 5 5 6 0 0 J M P I R E V / E X I T - A C C L E A R 1 4 2 4 1 41 6 0 0 0 5 M S K D I R * 5 / M A S K FOR D I R 1 4 2 5 • / B I T S 1 4 2 6 ' 1 4 1 7 6 7 7 2 M S K D R 2 * 6 7 7 2 / T O C L E A R F L A G 1 4 2 7 / A N D D I R B I T S 1 4 3 0 1 4 2 0 0 0 0 0 C H O I R * 0 / T E M P S T O R A G E 1 4 3 1 / 1 4 3 2 •' / 1 4 3 3 / T O S E T A C C E L E R A T I O N F L A G A N D F L I P F L O P S 1 4 3 4 / F O R M O T O R S 1 4 3 5 / 1 4 3 6 1 4 2 1 0 0 0 0 S E T M * 0 1 4 3 7 1 4 2 2 3 2 3 4 D C A M O T O R / C O D E F O R M O T O R S 1 4 4 0 - / W A S I N A C 1 4 4 1 / S T O R E I T 1 4 4 2 1 4 2 3 1 1 1 0 T A D D l R 1 4 4 3 1 4 2 4 0 2 3 2 A N D M S K D R 1 /DO N O T C H A N G E 1 4 4 4 / S W I T C H F F 1 4 4 5 1 4 2 5 1 2 3 3 T A D F L G S E T / S E T F L A G TO 1 4 4 6 / S T A R T A C C E L 1 4 4 7 1 4 2 6 1 2 3 4 T A D M O T O R . / S E T M O T O R • 1 4 5 0 / I N F O R M A T I O N 1 4 5 1 1 4 2 7 6 3 3 2 6 3 3 2 . / S E T F L I P F L O P S 1 4 5 2 1 4 3 0 3 1 1 0 D C A DI R / S T O R E I N D I R 1 4 5 3 1 4 3 1 5 6 2 1 J M P I S E T M / E X I T - A C C L E A R 1 4 5 4 1 4 3 2 2 0 0 0 M S . K D R 1 * 2 0 0 0 / M A S K FOR S W I T C H 1 4 5 5 / F L I P F L O P 1 4 5 6 1 4 3 3 1 0 0 0 F L G S E T * 1 0 0 0 / T O S E T F L A G 1 4 5 7 1 4 3 4 0 0 0 0 M O T O R * 0 / T E M P S T O R A G E 14 60 / 1 4 6 1 / - 69 -14 62 /TO RUM MOTORS NUMBER 0! <• STEPS IN AC 1463 / 14 64 1435 0000 MOVE.. 0 14 65 143 6 7 041 CIA /SET COUNTER 1466 1437 3117 DCA STPCNT 14 67 1 440 4433 JMS I ASTEP /STEP MOTORS 1470 1441 2117 IS?. STPCNT 1471 1442 5240 JMP .-2 /LOOP • 147 2 1 443 5 63 5 JMP I MOVE /EXIT - AC CLEAR 147 3 / 147 4 / 147 5 /COMP0, COMP1, C0MP2, SET ADDRESSES FOR 147 6 /THE JUMP IM CMpSM (FO >R USE IN BAL ROUTINE! 1477 / 1500 1 4 44 0 12 5 COMP0> CL / I F SUM2 IS LESS 1501 1445 1307 TAD APOSl /THAN SUM1 THEN GO 1502 144 6 3 30 5 DCA S2LTS1 /TO POS 1 1503 1447 1 30 6 TAD APOS0 /OTHERWISE GO TO 1504 1450 3304 DCA S2GTS1 /POS 0 150 5 1451 52 66 JMP CMPSM 150 6 / 1507 / 1510 1452 7200 COMP1 * CLA / I F SUM2 IS LESS 1511 1'453 1 307 TAD APOSl /THAN SUM1 THEN 1512 14 54 3305 DCA S2LTS1 /GO TO POS 1 1513 1455 1310 TAD AP0S2 . ' /OTHERWISE GO TO 1514 145 6 3304 DCA S2GTS1 /POS 2 1515 1 457 5266 JMP CMPSM 1516 / 1517 / -1-520 i'4'63 '7200 CQMP2-- CLA / I F SUM2 'IS LESS 1521 1461 1311 TAD APOS3 /THAN SUM1 THEN 1522 1462 330 5 DCA S2LTS1 /GO TO POS 3 1523 1 4 63 1312 TADr AP0S4 /OTHERWISE GO TO 1524 1 4 64 330 4 DCA S2GTS1 /POS 4 1525 1465 5266 JMP CMPSM 1526 / 1527 / 1530 14 66 7200 CMPSM, CLA /TO PERFORM 1531 1467 1115 TAD SUML1 /SUM 1-SUM2 IN 1532 1470 3121 DCA,AL /D0U3LE PREC1SI ON 1533 1471 1113 TAD SUMH1 /AND TEST RESULT 1534 1 47 2 3122 DCA AH . 1535 1 473 1116 TAD SUML2 1536 1474 3123 DCA BL 1537 147 5 1114 TAD SUMH2 1540 . 147 6 312 4 DCA BH 1541 1477 4447 JMS I ADPSUB /(A-3=C> 1542 1 500 1126 TAD CH /TEST RESULT 1543 1 501 7500 SMA 1544 1502 57 0 5 JMP I S2LTS1 /SUM2 LT SUM1 1545 1503 5704 JMP I S2GTS1 /SUM2 GT SUM1 1546 1 504 0000 S2GTS1r 0 /ADDRESS SET BY 1547 1 50 5 .0000 S2LTS1i 0 /COMP ROUTINES 1550 1 506 1 622 APOS0, POS0 /LIST OF 1551 1507 1 625 APOSl, POS1 /ADDRESSES 1552 1510 1 633 APOS2, P0S2 1553 1511 1 660 AP0S3> POS3 1554 1512 1713 AP0S4> P0S4 1555 / 1556 / 1557 /TO FILL STACK ORIGINALLY AND KEEP A 1560 /SUM OF THE READINGS - 70 -1561 / 15 62 1513 0 0 0 0 S T O R E , 0 15 63 1514 7 200 CLA 1 5 64 1515 1112 TAD S T X L C / S E T COUNTER 15 65 1516 3 1 1 7 DCA S T P C N T 15 66 1517 1 120 TAD STSTK. / S E T START O F STACK 15 67 1520 3 0 1 0 DCA ENDSTX 1570 1 521 3 1 0 6 DCA ASUML / C L E A R 1571 1522 3107 DCA ASUMH 157 2 1 523 4 4 4 5 S T L P 1 , JMS I ARDPTO /READ PTM 157 3 1 524 7421 MQL / S T O R E 1574 1 525 7 70 1 A C L 157 5 1 526 34 10 DCA I ENDSTK / S T O R E IN STACK 1 57 6 1527 7 7 01 A C L 157 7 1530 7 100 C L L 1 600 1531 1 1 3 6 TAD ASUML / A D D TO ASUML 1601 1 532 310 6 DCA ASUML 1602 1 533 7 430 SZL / I N C R E ASUMH 1603 1 534 2 107 ISZ ASUMH /I F OVERFLOW 1 604 1 535 44 33 JMS I A S T E P / S T E P MOTOR 1 60 5 1 53 6 2 1 1 7 I SZ S T P C N T 1 60 6 1 537 5 3 2 3 JMP STLP1 / L O O P 1 607 1540 57 1 3 JMP I STORE / E X I T - AC CLEAR 1610 / 161 1 / 1612 / D O U B L E P R E C I S I O N ADD A + B = C 1613 / ( F R O M DEC MANUAL INTRODUCTION TO PROG) 1614 / 1615 1 541 0 0 0 0 DP ADD, 0 1616 1 542 7 300 CLA C L L •1-617 -1 54 3 11-2 1 •TAD •AL 1 620 1 544 1 123 T A D BL 1621 1 545 3 1 2 5 DCA C L 1 622 1'54 6 700 4 RAL 1 623 1547 1 122 TAD AH 1624 1 5 50 1 124 TAD BH 1625 1551 3 1 2 6 DCA CH 162 6 1 552 57 41 JMP I DPADD / E X I T - AC CLEAR 1 627 / 1630 / 1631 / D O U B L E • P R E C I S I O N SUBTRACT ION A - B = C 1632 / ( F R O M DEC : INTRO. TO PROG•) 1633 / 1634 1 553 0 0 0 0 DPSUS, 0 1 635 1554 7 300 CLA C L L 1 636 1 555 1 1 23 TAD BL 1637 1 5 5 6 7041 - C I A 1640 1557 1121 TAD A L 1641 15 60 3 1 2 5 . DCA CL 1 642 1561 7 0 0 4 RAL 1643 1 5 62 3371 DCA KPDPS 1 644 1 5 63 1 124 TAD BH • 1645 15 64 7 0 4 0 CMA 164 6 1 5 65 1 1 22 TAD AH 1.647 15 66 1371 TAD KPDPS 1 650 1 5 67 3 1 2 6 DCA CH 1651 1570 5 7 5 3 JMP I DPSU3 / E X I T - AC CLEAR 1652 1 57 1 0 0 0 0 KPDPS , 0 1653 / 1654 / 1655 *1 600 1656 / 1657 / - 71 -1 6 6 0 / T O B A L A N C E T H E E L L I P S O M E T E R 1 6 6 1 / 1 6 6 2 1 6 0 0 0 0 0 0 B A L , 0 1 6 6 3 1 6 0 1 7 2 0 1 C L A I A C / S E T F L A G TO 1 6 6 4 1 6 0 2 3 3 2 3 D C A B L F L A G / I N D I C A T E S T A R T 1 6 6 5 1 6 0 3 4 7 2 4 S T 3 L , J M S I A SUM / T A K E S E T O F R E A D S 1 6 6 6 1 6 0 4 3 3 2 1 D C A P O S C T / C L E A R P O S I T I O N 1 6 6 7 / P O I N T E R 1 6 7 0 1 6 0 5 1 1 0 7 T A D A S U M H 1 6 7 1 1 60 6 3 1 1 3 D C A SUMH 1 / S T O R E R E A D I N G S 1 67 2 1 6 0 7 1 1 0 6 T A D A S U M L / I N SUM1 ( H I G H 1 6 7 3 1 6 1 0 31 1 5 D C A S U M L 1 ' / A N D L O W ) 1 6 7 4 1 6 1 1 4 7 2 4 3 A L L P 1 * J M S I A S U M / T A K E A N O T H E R S E T 167 5 1 6 1 2 1 1 0 7 T A D A S U M H 167 6 / O F R E A D I N G S A N D 167 7 1 6 1 3 3 1 1 4 D C A S U M H 2 / S T O R E I N S U M 2 . 17 0 0 1 6 1 4 1 1 0 6 T A D A S U M L 1 7 0 1 1 61 5 3 1 1 6 D C A S U M L 2 1 7 0 2 1 61 6 1 3 2 3 T A D B L F ' L A G / C H E C K FT.AG • A 17 0 3 1 6 1 7 7 4 4 0 S Z A / C L E A R F L A G 17 0 4 / I N D I C A T E S T H A T 1 7 0 5 / A M I N I M U M I S 1 7 0 6 / B E I N G A P P R O A C H E D 1 7 0 7 1 6 2 0 5 7 2 7 J M P I A C O M P 0 / C O M P A R E SUM1 1 7 1 0 1 6 2 1 5 7 3 0 J M P I A C O M P 1 / A N D S U M 2 17 11 1 6 2 2 4 4 4 3 P O S 0 , J M S I A R E V / G O I N G A W A Y FROM 17 12 1 6 2 3 3 3 2 3 D C A B L F L A G / M I N . R E V M O T O R S 17 1 3 1 6 2 4 5 2 0 3 J M P S T B L / C L E A R F L A G • S T A R T 17 14 / O V E R A G A I N 17 15 1 6 2 5 7 2 0 0 P O S 1 , C L A / G O I N G T O W A R D A M l i 17 1 6 "1"62 6 11 1'4 T A D ' SUMH 2 / P U T S U M 2 'I'M'TO 1 7 1 7 1 6 2 7 31 1 3 D C A SUMH1 / S U M 1 1 7 2 0 1 6 3 0 1 1 1 6 T A D S U M L 2 1 7 2 1 1 6 3 1 3 1 1 5 D C A S U M L 1 / R E T U R N TO T A K E 1 7 2 2 1 6 3 2 5 2 1 1 J M P B A L L P 1 / S U M 2 . A G A I N 1 7 2 3 1 6 3 3 4 7 2 4 P 0 S 2 . . J M S I A S U M / G O I N G A W A Y F R O M 17 2 4 / M I N A F T E R H A V I N G 1 7 2 5 / P A S S E D T H R O U G H I T 1 7 2 6 / T A K E , A S E T O F 17 2 7 / R E A D I N G S TO 3 E 1 7 3 0 / U S E D FOR 1 7 3 1 / C O M P A R I S O N 1 7 3 2 1 6 3 4 4 4 4 3 J M S I A R E V / R E V M O T O R S 1 7 3 3 1 6 3 5 1 1 0 6 T A D A S U M L / S T O R E R E A D I N G S 17 3 4 1 6 3 6 3 1 1 5 D C A S U M L ! / I N SUM1 1 7 3 5 1 6 3 7 1 1 0 7 T A D A S U M H 1 7 3 6 1 6 4 0 3 1 1 3 D C A S U M H ' l 1 7 3 7 1 6 41 1 1 1 1 T A D S T K L / M O V E B A C K TWO 1 7 4 0 1 6 4 2 4 4 4 4 J M S I A M O V E / S E T S O F R E A D I N G S 1 7 4 1 1 6 4 3 1 1 1 1 T A D S T K L 17 4 2 1 6 4 4 4 4 4 4 J M S I A M O V E 1 7 4 3 1 6 4 5 4 7 2 6 J M S I A S T O R E / S T O R E N E X T S E T 17 4 4 1 6 4 6 7 2 0 0 C L A / O F R E A D I N G S I N 1 7 4 5 1 6 4 7 1 1 0 7 T A D A S U M H / S T A C K A N D S T O R E 17 4 6 1 6 5 0 3 1 1 4 D C A S U M H 2 / T H E SUM I N S U M 2 1 7 4 7 1 6 5 1 1 1 0 6 T A D A S U M L 1 7 5 0 1 6 5 2 3 1 1 6 D C A S U M L 2 1 7 5 1 1 6 5 3 1 1 1 1 T A D S T K L / S E T P O S I T I O N 17 5 2 1 6 5 4 1 1 1 1 T A D S T K L / P O I N T E R TO N O . 1 7 5 3 1 6 5 5 1 1 1 I T A D S T K L / O F S T E P S T A K E N 17 5 4 1 6 5 6 3 3 2 1 D C A P O S C T / F R O M C O M P A R I S O N 1 7 5 5 / S U M 1 7 5 6 1 6 5 7 5 7 3 1 J M P I A C 0 M P 2 / C O M P A R E S U M 2 A N D - 7 2 -17 57 /SL1M1 17 60 1 660 ' 7 2 3 0 P 0 S 3 * CLA /HAVE NOT YET 17 61 /COME TO SAME 17 62 /DISTANCE FROM MIN 17 63 /AS COMPARISON SUM 17 64 1 661 2 3 2 1 I S Z POSCT /INCRE POS POINTER 17 65 1 6 62 4 4 4 5 JMS I ARDPTO /TAKE A S I N G L E 1766 /READING 17 67 1 663 7 4 2 1 MQL 17 70 1 664 7701 A C L /STORE I T I N STACK )77 1 1 665 47 2 5 JMS I ASTACK 17 7 2 1 666 3 1 2 3 DCA BL /SUBTRACT READING 17 7 3 1 667 31 2 4 DCA 3H /REMOVED FROM STACK 17 7 4 1 670 7 731 ACL /FROM READING PUT 17 7 5 1 671 3 1 2 1 DCA AL / I N STACK 1776 1 672 3 1 2 2 DCA AH 1777 1 67 3 4 4 4 7 JMS I A D P S U B 2000 1 67 4 1125 TAD CL /ADD RESULT TO 2001 . 1 67 5 3 1 2 1 DCA AL /SUM 2 2002 1 67 6 1 1 2 6 TAD CH 2 0 0 3 1 677 3 1 2 2 . DCA AH 2004 1700 1 1 1 6 TAD SUML2 200 5 17 01 3 1 2 3 DCA BL 200 6 1702 1 1 1 4 TAD SUMH2 2007 1 7 0 3 3 1 2 4 DCA BH 2 0 1 0 1704 4 4 5 0 JMS I ADPADD 201 1 17 0 5 1 125 TAD CL 20 12 170 6 3 1 1 6 DCA SUML2 2 0 1 3 1707 1 1 2 6 TAD CH 20 1 4 17 10 3 1 1 4 DCA SUMH2 '20TS 17 11 •/<•/; 3 3 JMS I A S T E P /MOVE MOTOR ONE 201 6 /STEP 20 i 7 17 12 5 7 3 1 JMP I ACOMP2 /COMPARE SUM1 2020 /AND SUM2 2021 / I F SUM2 LT SUM1 2 0 2 2 /RETURN TO P 0 S 3 2023 17 13 4 4 4 3 P 0 S 4 * JMS I AREV /OTHERWISE HAVE 202 4 /FOUND BALANCE 2 0 2 5 /REVERSE MOTORS 2 0 2 6 17 14 7 3 0 0 CLA C L L /DRIVE TO MIDPOINT 2027 17 15 1321 TAD POSCT /OF SUM1 AND SUM2 2030 17 16 7 0 1 0 RAR 2031 17 17 4 4 4 4 JMS I AMOVE 20 3 2 17 20 5 600 JMP I BAL / E X I T - AC CLEAR 20 33 / E L L I P S O M E T E R 2 0 3 4 /UNIT L E F T AT 2 0 3 5 /BALANCED P O S I T I O N 203 6 1721 0 0 0 0 POSCT* 0 / P O S I T I O N P O I N T E R 2037 1722 3 0 0 0 HLD3L1* 0 2040 1723 0 0 0 0 B L F L A G J 0 /BALANCE FLAG 2041 1724 1 3 2 6 A SUM* SUM /ADDRESSES USED 2042 1725 1300 ASTACK* STACK . /BY BAL ROUTINE 20 43 172 6 1 5 1 3 ASTOHE* STORE 2044 1727 1444 ACOMP0* COMP0 2045 17 30 1452 ACOMP1* COMP1. 2 0 4 6 ' 1731 14 63 AC0MP2* C0MP2 2047 / 20 50 / 2051 * 2 0 0 0 2 0 5 2 / 20 53 / 20 54 . /TO SET DERI RED U N I T OF E L L I P S O M E T E R 2 0 5 5 /TO A REQUIRED P O S I T I O N -73 -2 0 5 6 / 2 0 57 2 0 0 0 0 0 0 0 S E T E L , 0 2 0 60 2 0 0 1 4 4 3 5 J M S I A R D S F T / R E A D S H A F T E N C O D E R 2 0 61 2 0 3 2 13 6 5 T A D F'W D / T O D E T E R M I N E P O S 2 0 6 2 2 0 0 3 7 1 3 4 C L L R A L / O F U N I T 2 0 6 3 2 0 0 4 7 6 3 0 S Z L C L A / D E T E R M I N E W H E T H E R 2 0 6 4 / A N Z OH P O L I S TO 2 0 6 5 2 0 3 5 4 4 51 J M S I A A N Z C P / S E T . I F A N Z 2 0 6 6 / C O M P L I M E N T BIT 3 6 0 2 0 67 2 0 3 6 1 1 0 1 T A D S H F T L 2 0 7 0 2 9 0 7 3 1 3 3 D C A D E C L / C O N V E R T P O S I T I O N 2 3 7 1 2 0 1 0 1 1 0 0 T A D S H F T H / F R O M B C D TO B I N A R Y 2 0 7 2 2 0 1 1 31 3 4 D C A D S C H 2 0 7 3 2 0 12 4 4 5 7 J M S I A D P D B N 2 0 7 4 2 0 1 3 1 1 2 5 T A D C L 2 3 7 5 2 0 1 4 3 1 0 1 D C A S H F T L / S T O R E P O S I N 2 0 7 6 2 3 1 5 1 1 2 6 T A D CK / S H A F T ( L O W , H I G H ) 2 0 7 7 2 0 1 6 3 1 0 0 D C A S H F T H 2 1 0 0 2 0 17 1 1 3 5 T A D D E S T L 2 1 0 1 2 0 2 0 3 1 2 1 D C A A L / P E R F O R M 2 1 0 2 2 0 2 1 1 1 3 6 T A D DEST 'H / ( D E S T - S H A F T ) 2 1 0 3 2 0 2 2 3 1 2 2 D C A A H 2 1 0 4 2 0 2 3 1 1 0 1 • T A D S H F T L 2 1 0 5 2 0 2 4 3 1 2 3 D C A B L 2 1 0 6 2 0 2 5 1 1 0 0 T A D S H F T H 2 1 0 7 2 0 2 6 3 1 2 4 D C A B H 2 1 1 0 2 0 2 7 4 4 4 7 S U 3 P T , J M S I A D P S U B / I S R E S U L T - V E , 21 1 1 2 3 3 3 1 1 2 6 T A D C H / 0 , OR + V E ? 2 1 1 2 2 0 31 7 6 4 3 S Z A C L A 2 1 1 3 2 0 3 2 5 2 3 6 J M P • +4 2 1 1 4 2 0 3 3 . "1 1 2 5 T A ' D C L 21 15 2 0 3 4 7 6 5 0 S N A C L A 2 1 1 6 2 3 3 5 ' 5 6 3 0 J M P I S E T E L / I F 0 T H E N D O N E 21 17 2 0 3 6 1 1 2 6 T A D C H 2 1 2 0 ' 2 0 3 7 7 7 0 0 SMA C L A / I F + V E J U M P 2 1 2 1 2 0 4 0 5 2 6 0 J M P A H E A D 2 1 2 2 2 0 4 1 1 1 3 5 T A D D E S T L 2 1 2 3 2 0 4 2 3 1 2 3 D C A B L / I F - V E I N T E R -2 1 2 4 2 0 4 3 1 1 3 6 T A D D E S T H C H A N G E D E S T A N D 2 1 2 5 2 0 4 4 3 1 2 4 D C A B H / S H A F T A N D D I R 2 1 2 6 2 0 4 5 1 1 0 1 T A D SH F T L / C O D E S ( F W D F O R 2 1 2 7 2 0 4 6 3 1 2 1 D C A A L / B K D A N D V I C E 2 1 3 0 2 0 4 7 1 1 0 0 T A D S H F T H / V E R S A ) 2 1 3 1 2 0 5 0 3 1 2 2 D C A A H 2 1 3 2 2 0 51 1 3 6 6 T A D BKWD 2 1 3 3 2 0 5 2 3 3 7 7 D C A B H L D K 21 3 4 2 0 5 3 1 3 6 5 T A D FWD 2 1 3 5 2 0 5 4 3 3 6 6 D C A B K W D 2 1 3 6 2 0 5 5 1 3 7 7 T A D 3 H L D K 2 1 3 7 2 0 5 6 3 3 6 5 D C A FWD 2 1 4 0 2 0 5 7 5 2 2 7 J M P S U B P T . /DO S U B T A G A I N 2 1 4 1 2 0 60 1 1 2 6 A H E A D , T A D C H 2 1 4 2 2 3 6 1 3 3 7 2 D C A D M S E H / S T O R E D E S T - S H A F T 2 1 4 3 2 0 6 2 1 1 2 5 T A D C L / I N DM S E 2 1 4 4 2 0 63 3 3 7 1 D C A D M S E L 2 1 4 5 2 0 64 1 1 2 6 TA 'D C H 2 1 4 6 2 3 6 5 3 1 2 2 D C A A H / P E R F O R M 2 1 4 7 2 0 6 6 1 1 2 5 T A D C L / ( D M S E - 1 8 0 . 0 0 ) 2 1 5 0 2 0 67 3 1 2 1 D C A A L / T O D E T E R M I N E 2 1 5 1 2 0 7 0 1 3 7 3 T A D H 1 8 0 / S H O R T E S T D I R E C T I O N 21 5 2 2 0 7 1 3 1 2 4 D C A B H / T O T R A V E L 2 1 5 3 2 0 7 2 1 3 7 4 T A D L 1 8 0 2 1 5 4 2 0 7 3 3 1 2 3 D C A B L - 74 -81 5 5 2 0 7 4 4 4 4 7 J M S I A D P S U B 2 1 5 6 2 0 7 5 1 1 2 6 T A D CH 21 5 7 2 0 7 6 7 7 1 0 S P A C L A 21 60 2 0 7 7 5 3 2 6 J M P M V E F W D / I F - V E OR 0 2 1 6 1 / M O V E F O R W A R D 21 6 2 2 1 0 0 1 3 7 5 T A D H 3 60 / I F + V E 21 6 3 2 1 0 1 3 1 2 2 D C A A H / P E R F O R M 21 6 4 2 1 0 2 1 3 7 6 T A D L 3 6 0 / ( 3 6 0 . 0 0 - D M S E ) 21 6 5 2 1 0 3 3 1 2 1 D C A A L 21 6 6 2 1 0 4 1 3 7 2 T A D D M S E H 21 67 2 1 0 5 3 1 2 4 D C A B H 2 1 7 0 2 1 0 6 1 3 7 1 T A D D M S E L 2 1 7 1 2 1 0 7 3 1 2 3 D C A B L 2 1 7 2 2 1 1 0 4 4 4 7 J M S I A D P S U B 2 1 7 3 2 1 1 1 1 3 6 6 T A D BKV.'D 2 1 7 4 2 1 1 2 4 4 5 2 J M S I A S E T M / S E T M O T O R S TO 2 1 7 5 2 1 1 3 ' 1 1 2 6 T A D C H / M O V E B A C K W A R D S 2 1 7 6 2 1 1 4 7 4 5 0 S N A / M O V E 1 0 0 0 0 C O C T ) 2 1 7 7 2 1 1 5 5 3 2 3 J M P . + 6 / S T E P S FOR E A C H 2 2 0 0 2 1 1 6 7 0 4 1 C I A / C O U N T I N CH 2 2 0 1 2 1 1 7 3 1 2 6 D C A C H 2 2 0 2 2 1 2 0 4 4 4 4 J M S I A M O V E 2 2 0 3 2 1 2 1 2 1 2 6 I S Z C H 2 2 0 4 2 1 2 2 5 3 2 0 J M P • - 2 2 2 0 5 2 1 2 3 1 1 2 5 T A D C L / M O V E C L S T E P S . 2 2 0 6 21 24- 4 4 4 4 J M S I A M O V E 2 2 0 7 2 1 2 5 5 6 0 0 J M P I S E T E L / E X I T - A C C L E A R 2 2 1 0 2 1 2 6 13 6 5 M V E F W D , T A D FWD 2 2 1 1 2 1 2 7 4 4 5 2 J M S I A S E T M / S E T M O T O R S TO 2 2 ! 2 21 3 0 1 3 7 2 T A D D M S E H / M O V E F O R W A R D 2 2 1 3 o-\ 3 i •7 4 5 0 S N A 2 2 1 4 21 3 2 5 3 4 0 •JMP • + 6 / M O V E A S A B O V E 2 2 1 5 2 1 3 3 7 0 4 1 C I A 2 2 1 6 2 1 3 4 3 3 7 2 D C A D M S E H 2 2 1 7 2 1 3 5 4 4 4 4 J M S I A M O V E 2 2 2 0 2 1 3 6 2 3 7 2 I S Z D M S E H 2 2 2 1 21 3 7 5 3 3 5 J M P . - 2 2 2 2 2 2 1 4 0 1 3 7 1 T A D D M S E L 2 2 2 3 2 1 4 1 4 4 4 4 J M S I A M O V E 2 2 2 4 2 1 4 2 5 6 0 0 J M P I S E T E L 2 2 2 5 / 2 2 2 6 / 2 2 2 7 / T O S E T T H E A N A L Y Z E R TO T H E P O S I T I O N 2 2 3 0 / S T O R E D I N D E S T H ^ D E S T L CA TWO WORD B I N A R Y 2 2 3 1 / N U M B E R I N T H E R A N G E 0 TO 3 5 9 9 9 D E C I M A L ) / 2 2 3 2 2 1 4 3 0 0 0 0 S E T A N > 0 2 2 3 3 2 1 4 4 1 1 3 0 T A D A N Z C D / G E T A N Z C O D E 2 2 3 4 2 1 4 5 4 4 5 2 J M S I A S E T M / S E T G A T I N G 2 2 3 5 2 1 4 6 1 1 3 0 T A D A N Z C D 2 2 3 6 2 1 4 7 3 3 6 6 D C A B K W D / S E T FWD A N D B K W D 2 2 3 7 2 1 5 0 1 3 6 7 T A D A N Z 2 / C O D E S TO . B E U S E D 2 2 4 0 2 1 5 1 3 3 6 5 D C A FWD / B Y S E T E L 2 2 4 1 2 1 5 2 4 2 0 0 J M S S E T E L 2 2 4 2 2 1 5 3 5 7 4 3 J M P I S E T A N . / E X I T - A C C L E A R 2 2 4 3 / 2 2 4 4 / 2 2 4 5 / T O S E T P O L A R I Z E R A S A B O V E 2 2 4 6 / 2 2 4 7 2 1 5 4 0 0 0 0 S E T P L , 0 2 2 5 0 2 1 5 5 1 1 2 7 T A D ' P O L C D / G E T P O L C O D E 2 2 5 1 2 1 5 6 4 4 5 2 J M S I A S E T M 2 2 5 2 21 5 7 1 1 2 7 T A D P O L C D / A S A B O V E 2 2 5 3 21 60 3 3 6 5 D C A FWD - 75 -2 2 5 4 21 61 . 1 3 7 0 T A D P 0 L 2 2 2 5 5 2 1 6 2 3 3 6 6 D C A BKWD 2 2 5 6 21 6 3 4 2 0 0 J M S S E T E L 2 2 5 7 2 1 6 4 5 7 5 4 . J M P I S E T P L / E X I T - A C C L E A R 22.60 / 2 2 61 • 2 i 6 5 0 3 0 0 FWD* 0 2 2 6 2 21 6 6 0 0 0 0 B K W O * 0 2 2 6 3 21 67 4 3 1 4 A N Z 2 * 4 3 1 4 2 2 6 4 2 1 7 0 0 0 0 2 P 0 L 2 * 2 2 2 6 5 2 1 7 1 0 0 0 0 D M S E L * 0 2 2 6 6 2 1 7 2 0 0 0 0 D M S E H * 0 2 2 67 2 1 7 3 0 0 0 4 H I 8 0 * 4 2 2 7 0 2 1 7 4 3 1 2 0 L 1 8 0 * 3 1 2 0 2 2 7 1 2 1 7 5 0 0 10 H 3 6 0 * 10 2 2 7 2 2 1 7 6 6 2 4 0 L 3 6 0 * 6 2 4 0 2 2 7 3 2 1 7 7 0 0 3 0 B H L D X * 0 2 2 7 4 * 2 2 0 0 2 2 7 5 / 2 2 7 6 / 2 2 7 7 / T O C O N V E R T A TWO WORD B C D N U M B E R TO B I N A R Y 2 3 0 0 / B C D I N D E C H * D E C L B I N A R Y I N C H * C L 2 3 0 1 / 2 3 0 2 2 2 0 0 0 0 0 3 D P D 3 N * 0 2 3 0 3 2 2 0 1 1 1 3 4 T A D D E C H / C O N V E R T H I G H 2 3 0 4 2 2 0 2 4 4 4 2 J M S I A D C B I N /WORD TO B I N 2 3 0 5 2 2 0 3 3 2 3 7 D C A D P X 2 L 2 3 0 6 2 2 0 4 3 2 4 0 D C A D P X 2 H 2 3 0 7 2 2 0 5 4 2 4 5 J M S D P X 2 2 3 1 0 2 2 0 6 4 2 4 5 J M S D P X 2 • / M U L T B Y 2 X 2 X 2 = 8 2 3 1 1 2 2 0 7 4 2 4 5 J M S D P X 2 2 3 1 2 2 2 1 0 1 2 4 3 ' T A D C N T 3 / S E T U P TO M U L T 2 3 1 3 2 2 1 1 3 2 4 4 D C A C N T 3 H D / B Y 5 X 5 X 5 = 1 2 5 2 3 1 4 2 2 1 2 1 2 3 7 T A D D P X 2 L 2 3 1 5 2 2 1 3 3 2 4 1 D C A D P X 5 L 2 3 1 6 2 2 1 4 1 2 4 0 T A D D P X 2 H 2 3 1 7 2 2 1 5 3 2 4 2 DCA D P X 5 H 2 3 2 0 2 2 1 6 4 2 5 5 J M S D P X 5 / M U L T B Y 5 ' 2 3 2 1 2 2 1 7 1 1 2 6 T A D C H 2 3 2 2 2 2 2 0 3 2 4 2 D C A D P X 5 H / N E T R E S U L T I S TO 2 3 2 3 2 2 2 1 1 1 2 5 T A D C L / M U L T D E C H B Y 2 3 2 4 2 2 2 2 3 2 4 1 D C A D P X 5 L / 1 0 0 0 C D E C I M A L ) . 2 3 2 5 2 2 2 3 2 2 4 4 I S Z C N T 3 H D 2 3 2 6 2 2 2 4 5 2 1 6 J M P . - 6 2 3 2 7 2 2 2 5 1 1 2 5 T A D C L 2 3 3 0 2 2 2 6 , 3 1 2 1 D C A A L 2 3 3 1 2 2 2 7 1 1 2 6 T A D C H 2 3 3 2 2 2 3 0 3 1 2 2 D C A A H 2 3 3 3 2 2 3 1 1 1 3 3 T A D D E C L / C O N V E R T D E C L 2 3 3 4 2 2 3 2 4 4 4 2 J M S I A D C B I N / T O B I N A R Y 2 3 3 5 2 2 3 3 3 1 2 3 D C A B L 2 3 3 6 2 2 3 4 3 1 2 4 D C A B H / A D D T O H I G H P A R T 2 3 3 7 2 2 3 5 4 4 5 0 J M S I A D P A D D 2 3 4 0 2 2 3 6 5 6 0 0 J M P I D P D B N / E X I T - A C C L E A 2 3 4 1 2 2 3 7 0 0 0 0 D P X 2 L * 0 2 3 4 2 2 2 4 0 0 0 0 0 D P X 2 H * 0 2 3 4 3 2 2 4 1 0 0 0 0 D P X 5 L * 0 2 3 4 4 2 2 4 2 0 0 0 0 D P X 5 H * 0 2 3 4 5 2 2 4 3 7 7 7 5 C N T 3 * - 3 2 3 4 6 2 2 4 4 0 0 0 0 C N T 3 H D * 0 2 3 4 7 / 2 3 5 0 / 2 3 5 1 / D O U B L E P R E C I S I O N M U L T I P L Y B Y 2 2 3 5 2 / I N P U T A N D O U T P U T TN D P X 2 H * D P M 2 L -— - 76 -2 3 5 3 / 2 3 5 4 2 2 4 5 0 0 0 0 D P X 2 , 0 2 3 5 5 2 2 4 6 1 2 3 7 T A D D P X 2 L 2 3 5 6 2 2 4 7 7 1 0 4 C L L R A L / R O T A T E O N E L E F T 2 3 5 7 2 2 5 0 3 2 3 7 D C A D P X 2 L 2 3 60 2 2 5 1 1 2 4 0 T A D D P X 2 H 2 3 61 2 2 5 2 7 0 0 4 R A L 2 3 6 2 2 2 5 3 3 2 4 0 D C A D P X 2 H 2 3 63 2 2 5 4 5 6 4 5 J M P I D P X 2 / E X I T - A C C L E A R 2 3 6 4 / 2 3 6 5 / 2 3 6 6 / D 0 U 3 L E P R E C I S I O N M U L T I P L Y B Y 5 2 3 67 / I N P U T I N D P X 5 H , D P X 5 L O U T P U T I N C H . . C L •2370 .-/ 2 3 7 1 2 2 5 5 0 0 0 0 D P X 5 , 0 2 3 7 2 2 2 5 6 1 2 4 1 T A D D P X 5 L / S E T U P TO X 2 2 3 7 3 2 2 5 7 3 2 3 7 D C A D P X 2 L 2 3 7 4 2 2 6 0 12 4 2 T A D D P X 5 H 2 3 7 5 2 2 61 3 2 4 0 D C A D P X 2 H 2 3 7 6 2 2 6 2 4 2 4 5 J M S D P X 2 / X 2 2 3 7 7 2 2 6 3 4 2 4 5 J M S D P X 2 / X 2 2 4 0 0 2 2 64 1 2 3 7 T A D D P X 2 L 2 4 0 1 2 2 6 5 3 1 2 1 D C A A L / A D D ON O R I G I N A L 2 4 0 2 2 2 6 6 12 4 0 T A D D P X 2 H / N U M B E R 2 4 0 3 2 2 67 3 1 8 2 D C A A H 2 4 0 4 2 2 7 0 1 2 4 1 T A D D P X 5 L 2 4 0 5 2 2 7 1 3 1 2 3 DCA B L 2 4 0 6 2 2 7 2 1 2 4 2 T A D D P X 5 H -2 4 0 7 2 2 7 3 31 2 4 D C A B H 8 4 1 0 2 2 7 4 4 4 5 0 J M S I A D P A D D 2 4 1 1 2 2 7 5 5 6 5 5 J M P 1 D P X 5 / E X I T - A C C L E A R 2 4 1 2 / 2 4 1 3 / 2 4 14 / T O T U R N ON P O W E R T R A N S I S T O R 2 4 1 5 / 2 4 1 6 2 2 7 6 0 0 0 0 ONSW* 0 2 4 1 7 22.7 7 7 2 0 0 C L A 2 4 2 0 2 3 0 0 1 1 1 0 T A D D I R / C L E A R B I T 1 2 4 2 1 2 3 0 1 0 3 1 5 A N D M K 2 0 0 0 / O F D I R 2 4 2 2 2 3 3 2 1 3 1 6 T A D M 0 2 0 0 0 / S E T B I T 1 O F D I R 2 4 2 3 2 3 0 3 6 3 3 2 6 3 3 2 /.SET G A T E S 2 4 2 4 2 3 0 4 3 1 1 0 D C A D I R / S T O R E C H A N G E 2 4 2 5 2 3 0 5 5 6 7 6 J M P I ONSW / E X I T - A C C L E A R 2 4 8 6 / 2 4 2 7 / 2 4 3 0 / T O T U R N O F F P O W E R T R A N S I S T O R 2 4 31 / 2 4 3 2 2 3 0 6 0 0 0 0 O F F S W , 0 2 4 3 3 2 3 0 7 7 2 0 0 C L A 2 4 3 4 2 3 1 0 1 1 1 0 T A D D I R / C L E A R B I T 1 2 4 3 5 2 3 1 1 0 3 1 5 A N D M K 2 0 0 0 / O F D I R 2 4 3 6 2 3 1 2 6 3 3 2 6 3 3 2 / S E T G A T E S 2 4 3 7 2 3 1 3 3 1 1 0 D C A D I R / S T O R E C H A N G E 2 4 4 0 2 3 1 4 5 7 0 6 J M P I O F F S W / E X I T - A C C L E A R 2 4 4 1 / 2 4 4 2 2 3 1 5 5 7 7 7 M K 2 0 0 0 , 5 7 7 7 2 4 4 3 2 3 1 6 2 0 0 0 M C 2 0 0 0 , ' 2 0 0 0 2 4 4 4 / 2 4 4 5 / 2 4 4 6 * 2 4 0 0 2 4 4 7 / 2 4 5 0 / 2 4 51 / T O B A L A N C E T H E P O L A R I Z E R A N D T Y P E - 77 -2 4 5 2 ' / O U T T H E B A L A N C E P O S I T I O N 2 4 5 3 / 2 4 5 4 2 4 0 0 0 0 0 0 8 A L P , 0 2 4 5 5 2 4 0 1 7 2 0 0 C L A 2 4 5 6 2 4 0 2 1 1 2 7 T A D P O L C D / S E T P O L 2 4 57 2 4 0 3 4 4 5 2 J M S I A S E T M / C O D E 2 4 6 0 2 4 0 4 4 2 1 4 J M S B A L U / U S E B A L U 2 4 6 1 2 4 0 5 5 6 0 0 J M P I B A L P / E X I T . - A C C L E A R 2 4 62 / 2 4 6 3 / 2 4 6 4 / T O B A L A N C E T H E A N A L Y Z E R A N D T Y P E 2 4 6 5 / O U T T H E B A L A N C E P O S I T I O N 2 4 6 6 / 2 4 67 2 4 0 6 0 0 0 0 B A L A , 0 ' 2 4 7 0- '2 '4 0 7 ' 7 2 0 0 ' C L A 2 4 7 1 2 4 1 0 1 1 3 0 T A D A N Z C D • / S E T A N Z 2 4 7 2 2 4 1 1 4 4 5 2 J M S 1 A S E T M / C O D E 2 4 7 3 2 4 1 2 4 2 1 4 J M S B A L U / U S E . B A L U 2 4 7 4 2 4 1 3 5 60 6 J M P I B A L A / E X I T - A C C L E A R 2 4 7 5 / 2 4 7 6 / 2 4 7 7 / T O B A L A N C E T H E U N I T S P E C I F I E D A B O V E 2 5 0 0 / 2 5 0 1 2 4 1 4 0 0 0 0 B A L U , 0 2 5 0 2 2 4 1 5 4 4 3 2 J M S I A S P A C E 2 5 0 3 2 4 1 6 4 4 3 2 J M S I A S P A C E / T Y P E 2 S P A C E S 2 5 0 4 2 4 1 7 4 4 4 6 J M S I A B A L / B A L A N C E 2 5 0 5 2 4 2 0 1 2 4 7 T A D C H I C D / R E A D 2 5 0 6 2 4 2 1 4 4 31 J M S I A A N A L G / P H O T O M U L T I P L I E R 2 5 0 7 2 4 2 2 3 3 5 2 D C A E S I G / S T O R E R E A D I N G 2 5 1 0 24 -23 4 4 3 5 J M S •I -AR DS-F'-T / R E A D S H A F T E N C O D E R 2 5 1 1 2 4 2 4 1 1 1 0 T A D D I R /I F A N Z T H E N C O M P 2 5 1 2 2 4 2 5 7 1 0 4 C L L R A L / B Y 3 6 0 . 0 0 2 5 1 3 2 4 2 6 7 6 3 0 S Z L C L A 2 5 1 4 2 4 2 7 ' 4 4 5 1 J M S I A A N Z C P 2 5 1 5 2 4 3 0 1 1 0 0 T A D S H F T H / P R I N T O U T 2 5 1 6 2 4 3 1 4 4 4 0 J M S I A P R T D C / S H A F T E N C O D E R 2 5 1 7 2 4 3 2 1 101 T A D S H F T L 2 5 2 0 2 4 3 3 4 4 4 0 J M S I A P R T D C 2 5 2 1 2 4 3 4 - 4 4 3 2 J M S I A S P A C E 2 5 2 2 2 4 3 5 4 4 3 2 J M S I A S P A C E / P R I N T 3 S P A C E S 2 5 2 3 2 4 3 6 4 4 3 2 J M S I A S P A C E 2 5 2 4 2 4 3 7 1 2 5 0 T A D C E 2 5 2 5 2 4 4 0 4 4 5 4 J M S I A B U F F / T Y P E E S C E R R O R 2 5 2 6 2 4 4 1 1 2 5 1 T A D C S / S I G N A L ) 2 5 2 7 2 4 4 2 4 4 5 4 J M S I A B U F F 2 5 3 0 2 4 4 3 4 4 3 2 J M S I A S P A C E / L E A V E S P A C E 2 5 3 1 2 4 4 4 1 3 5 2 T A D E S I G / P R I N T O U T E S 2 5 3 2 2 4 4 5 4 4 3 7 J M S I A P R T O C 2 5 3 3 2 4 4 6 5 6 1 4 J M P I S A L U / E X I T - A C C L E A R 2 5 3 4 2 4 4 7 0 0 1 7 C H 1 C D , 0 0 1 7 2 5 3 5 2 4 5 0 0 3 0 5 C E , 3 0 5 2 5 3 6 2 4 5 1 0 3 2 3 C S , 3 2 3 2 5 3 7 / 2 5 4 0 / 2 5 4 1 / T O DO A C O M L E T E B A L A N C E O F T H E 2 5 4 2 / E L L I P S O M E T E R A N D T Y P E O U T T H E R E S U L T S 2 5 4 3 7 2 5 4 4 2 4 5 2 0 0 0 0 B A L E , 0 2 5 4 5 2 4 5 3 1 1 2 7 T A D P O L C D / S E T P O L 2 5 4 6 2 4 5 4 4 4 5 2 J M S I . A S E T M / C O D E 2 5 4 7 2 4 5 5 4 4 4 6 J M S I A B A L / B A L A N C E P O L ~ 2 5 5 0 2 4 5 6 1 1 3 0 T A D A N Z C D / S E T A N Z 78 -2551 2457 4452 2552 24 60 44 4 6 2553 2461 1 127 2554 24 62 4452 2555 2463 444 6 25 5 6 24 64 4432 2557 24 65 4432 25 60 24 66 4432 2561 24 67 44 35 2562 247 3 1 344 25 63 247 1 44 54 25 64 2472 1345 25 65 247 3 44 54 25 66 2474 1346 25 67 247 5 4454 257 0 247 6 44 32 257 1 2477 1 1 00 257 2 2500 4440 257 3 2501 1101 257 4 2 502 4440 2575 2503 4432 257 6 2504 4432 257 7 2 50 5 44 32 2 600 250 6 ' 1347 2601 2507 4454 2602 2510 1 3 50 2603 251 1 44 54 2 604 2512 1351 260 5 2513 4454 268 6 2^14 44^2 2 607 'd 5 1 5 1130 2610 251 6 4452 261 1 2517 444 6 2612 ' 2520 '1247 261 3 2 521 4431 2614 2522 3352 261 5 2523 4435 261 6 2524 4451 2617 2525 1 100 2 620 2526 4440 2621 " . 2527 1101 2622 2530 4440 2623 2531 4432 2624 2532 4432 2625 2533 4432 262 6 2534 1250 2627 2535 44 54 2630 2536 .1251 2631 2 5 37. 44 54 2632 2540 4432 2633 2541 1352 2634 2 542 4437 2635 2543 5652 2 63 6 2544 0320 2637 2545 0317 2640' 2546 03 14 2 641 2 547 0301 2 642 2550 .031 6 2643 2551 0332 2 644 2552 0030 2645 2646 2 647 JMS I ASETM JMS I ABAL TAD POLCD JMS I ASETM JM S I ABAL JMS I ASPACE JMS I ASPACE JMS 1 ASPACE JMS I ARDSFT TAD CP JMS I ABUFF TAD CO JMS I A.3UFF TAD CLC JMS I ABUFF JMS I ASPACE TAD SHFTH JMS I APHTDC TAD SHFTL JMS I APHTDC JMS I ASPACE JMS I ASPACE JMS I ASPACE TAD CA JMS I A3UFF TAD CM JMS I ABUFF TAD CZ JMS I ABUFF JM S I ASPACE TAD AM ZC D JMS I ASETM JMS I.ABAL TAD CHI CD JMS ' I AAMALG DCA ESIG JMS I AHDSFT JMS I AAMZCP TAD SH FTH JMS I APHTDC TAD SHFTL JMS I APHTDC JMS I ASPACE JMS I ASPACE JMS I ASPACE TAD CE JMS I ABUFF TAD CS JMS I ABUFF JMS I ASPACE TAD ESI G JMS I APHTOC JMP I BALE CP* 3 2 0 CO* 3 1 7 CLC* 3 1 4 CA* • 301 CM* 3 1 6 c z * 3 3 2 ESIG* 0 / / * 2 6 0 0 /CODE /BALANCE ANZ /SET POL /CODE /BALANCE POL /TYPE 3 SPACES /READ SHAFT ENCODER /TYPE "POL /LEAVE A SPACE /PRINT OUT SHAFT /ENCODER (POL) /LEAVE 3 SPACES /TYPE "ANZ" /LEAVE A SPACE /oET ANZ /CODE /BALANCE ANZ /READ /PHOTOMULTIPLIER /STORE /READ SHAFT ENCODER /COMPLIMENT BY / 3 6 0 . 0 O /PRINT OUT SHAFT /ENCODER (ANZ) /LEAVE 3 SPACES /TYPE "ES" /LEAVE SPACE /TYPE OUT ES /EXIT - AC CLEAR - 79 -2 6 5 0 2 6 5 1 2 6 5 2 2 6 5 3 2 6 5 4 2 6 5 5 2 6 5 6 2 6 5 7 2 6 6 0 2 661 2 6 6 2 2 6 6 3 2 6 6 4 .26.65 2 6 6 6 2 6 6 7 2 6 7 0 2 67 1 2 6 7 2 2 67 3 2 67 4 2 67 5 2 6 7 6 2 67 7 2 7 0 0 2 7 0 1 2 6 0 0 2 6 0 1 2 6 0 2 2 6 0 3 2 6 0 4 2 60 5 2 60 6 2 6 0 7 2 6 1 0 2 6 1 1 2 6 1 2 2 6 1 3 0 0 0 0 4 4 3 2 4 4 3 2 4 2 1 4 4 4 60 5 6 0 0 0 0 0 0 4 4 3 2 4 4 3 2 4 2 1 4 4 4 61 5 6 0 6 / / / T O S E T T H E A N A L Y Z E R F R O M T H E K E Y B O A R D / S E T A R , 0 '• . J M S I A S P A C E J M S I A S P A C E J M S R D F V E J M S I A S E T A N J M P I S E T A R / T Y P E TWO S P A C E S / R E A D A 5 D I G I T / B C D N U M B E R / U S E S E T A N R O U T I N E / E X I T - A C C L E A R / / / T O S E T T H E P O L A R I Z E R F R O M T H E K E Y B O A R D / S E T P R * 0 J M S I A S P A C E J M S I A S P A C E J M S R D F V E J M S I A S E T P L J M P I. S E T P R / / / T O R E A D A 5 D I G I T B C D C H A R A C T E R FROM / T H E K E Y B O A R D / / T Y P E TW0 S P A C E S / R E A D N U M B E R / U S E S E T P L / E X I T - A C C L E A R 2 7 0 2 2 6 1 4 0 0 0 0 R D F V E * 0 27 0 3 2 6 1 5 4 4 5 5 J M S I A R E A D 3 27 0 4 2 6 1 6 7 4 2 1 M Q L 8 7 0 5 2 6 1 7 ' 7 n * / f vv i A C L I A 3 U F F 2 7 0 6 2 62w 4 4 5 4 1 M C 2 7 0 7 2 6 2 1 7 7 0 1 A C L 27 10 2 6 2 2 1 3 0 0 T A D M2 60 27 1 1 2 6 2 3 7 1 0 6 C L L R T L 2 7 12 2 6 2 4 ' 7 0 0 6 R T L 27 1 3 2 6 2 5 3 1 3 4 D C A D E C H 2 7 1 4 2 6 2 6 4 4 5 5 J M S I A R E A D B 2 7 1 5 2 6 2 7 7 4 2 1 M Q L 2 7 1 6 2 6 3 0 7 7 0 1 A C L 27 17 . 2 6 3 1 4 4 5 4 J M S I A B U F F 27 2 0 2 6 3 2 7 7 0 1 A C L 27 21 2 6 3 3 1 3 0 0 T A D M 2 60 27 2 2 2 6 3 4 1 1 3 4 T A D D E C H 2 7 2 3 8 6 3 5 3 1 3 4 D C A D E C H 2 7 2 4 2 6 3 6 4 4 5 5 J M S I A R E A D B 27 2 5 2 6 3 7 7 4 2 1 M Q L 27 2 6 2 6 4 0 7 7 01 A C L 2 7 2 7 2 6 4 1 4 4 5 4 J M S I A B U F F 2 7 3 0 2 6 4 2 7 7 0 1 A C L 2 7 3 1 2 6 4 3 1 3 0 0 T A D M 2 6 0 27 3 2 2 6 4 4 7 1 1 0 C L L R A R 27 3 3 2 6 4 5 7 0 1 2 R T R 2 7 3 4 2 6 4 6 7 0 1 2 R T R 2 7 3 5 2 6 4 7 3 1 3 3 D C A D E C L 2 7 3 6 2 6 5 0 4 4 5 5 . J M S I A R E A D B 2 7 3 7 2 6 5 1 7 4 2 1 M Q L 2 7 4 0 2 6 5 2 7 7 0 1 A C L v 27 41 2 6 5 3 4 4 5 4 J M S * I A B U F F 2 7 4 2 2 6 5 4 7 7 0 1 A C L 27 4 3 2 6 5 5 1 3 0 0 T A D M 2 60 2 7 4 4 2 6 5 6 7 1 0 6 C L L R T L 2 7 4 5 2 6 5 7 7 0 0 6 R T L 2 7 4 6 2 6 6 0 1 1 3 3 T A D D E C L / R E A D F I R S T C H A R / T Y P E I T / R E M O V E A S K I I C O D E / R O T A T E 4 B I T S / L E F T / S T O R E I N D E C H / G E T 2 N D C H A R / T Y P E I T / R E M O V E A S K I I / A D D T O D E C H / G E T 3 R D C H A R / T Y P E I T / R E M O V E A S K I I / S T O R E I N H I G H / O R D E R 4 B I T S O F / D E C L / G E T 4 T H C H A R / T Y P E I T / R E M O V E A S K I I / S T O R E I N M I D D L E / 4 B I T S O F / D E C L - 80 -2 7 4 7 2 6 6 1 3 1 3 3 D C A D E C L 2 7 5 0 2 6 6 2 4 4 5 5 ' J M S I A R E A D B / G E T L A S T C H A R 2 7 51 2 6 6 3 7 4 2 1 i MQL 27 5 2 2 6 64 7 7 0 1 A C L 27 5 3 2 6 6 5 4 4 5 4 J M S I A B l i F F / T Y P E I T 27 5 4 2 6 6 6 7 7 0 1 A C L 2 7 5 5 2 6 67 1 3 0 0 T A D M2 6 0 / R E M O V E A S K I I 27 5 6 2 6 7 0 1 1 3 3 T A D D E C L / S T O R E IN LOW 2 7 5 7 - 2 6 7 1 3 1 3 3 D C A D E C L / 4 B I T S O F D E C L 2 7 6 0 2 67 2 4 4 5 7 J M S I A D P D 3 N / C O N V E R T TO B I N 2 7 61 2 67 3 1 1 2 6 ' T A D CH 27 62 2 6 7 4 3 1 3 6 DCA D E S T H / S T O K E IN 2 7 6 3 2 6 7 5 1 1 2 5 T A D C L / D E S T I N A T I O N 27 6 4 2 67 6 3 1 3 5 D C A D E S T L / ( D E S T H , D E S T L ) 2 7 6 5 2 67 7 5 6 1 4 JMP I R D F V E / E X I T - A C C L E A R 27 6 6 2 7 0 0 7 5 2 0 M 2 6 0 , - 2 6 0 2 7 67 / 2 7 7 0 / 2 7 7 1 * 3 0 0 0 27 7 2 / 27 7 3 / 27 7 4 / T O MOV E M O T O R S FROM K Y B R D 2 7 7 5 / 27 7 6 3 0 0 0 0 0 0 0 M O T R , 0 2 7 7 7 3 0 0 1 4 4 3 2 J M S I A S P A C E / T Y P E S P A C E 3 0 0 0 3 0 0 2 . 4 4 5 5 J M S I A R E A D B / G E T F'R C H A R 3 0 0 1 3 0 0 3 7 4 2 1 M Q L / S A V E 3 0 0 2 3 0 0 4 7 7 0 1 A C L 3 0 0 3 3 0 0 5 4 4 5 4 J M S I A B U F F / T Y P E FR C H A R 3 0 0 4 3 0 0 6 4 4 3 2 JM S I A S P A C E / T Y P E S P A C E 3 0 0 5 3 0 0 7 1 3 0 0 T A D M O T I N F / - I -NT -ERR0GATE X Y 3 0 0 6 3 0 1 0 1 3 0 1 T A D MX 3 0 0 7 3 0 1 1 7 6 4 0 S Z A C L A 30 1 0 3 0 1 2 5 2 3 1 J M P YM / X Y IS N O T X 3 0 1 1 3 0 1 3 7 7 0 1 A C L /XY IS X 3 0 12 3 0 1 4 1 3 0 2 T A D M F / I N T E R R O G A T E 3 0 1 3 / F O R R E V . CHAR 3 0 1 4 3 0 1 5 7 6 4 0 S Z A C L A 3 0 1 5 3 0 1 6 5 2 2 2 J M P M X K / F R IS N O T F ' 3 0 1 6 3 0 1 7 1 1 3 1 T A D M 2 X C D / F R IS F - S E T 3 0 1 7 3 0 2 0 4 4 5 2 J M S I A S E T M / M O T O R S X - F O R . 3020 3 0 2 1 5 2 5 2 J M P RUMM /RUN M O T O R S 3 0 2 1 3 0 2 2 7 7 0 1 M X R , A C L / L O A D FR C H A R 3 0 2 2 3 0 2 3 1 3 0 3 T A D MR / I S IT R 3 0 2 3 3 0 2 4 7 6 4 0 S Z A C L A 3 0 2 4 3 0 2 5 5 6 0 0 J M P 1 M O T H / N O - E X I T 3 0 2 5 3 0 2 6 1 3 0 4 T A D M 2 X C D R / Y E S - S E T M O T O R S 3 0 2 6 3 0 2 7 4 4 5 2 J M S I A S E T M / T O X - R E V 3 0 2 7 3 0 3 0 5 2 5 2 J M P RUNM /RUN M O T O R S 3 0 3 0 3 0 3 1 1 3 0 0 YM, T A D M O T I N F / I S XY C H A R Y 3 0 3 1 3 0 3 2 1 3 0 5 T A D MY 3 0 3 2 3 0 3 3 7 6 4 0 S Z A C L A 3 0 3 3 3 0 3 4 5 6 0 0 J M P I M O T R /NO - E X I T 3 0 3 4 3 0 3 5 7 7 0 1 A C L / Y E S G E T FR C H A R 3 0 3 5 3 0 3 6 1 3 0 2 T A D MF 3 0 3 6 3 0 3 7 7 6 4 0 S Z A C L A 3 0 3 7 3 0 4 0 5 2 4 4 J M P M Y R 3 0 4 0 3 0 4 1 1 1 3 2 T A D M 2 Y C D / S A M E FOR Y 3 '041 3 0 4 2 4 4 5 2 J M S I A S E T M / A S FOR X 3 0 4 2 3 0 4 3 5 2 5 2 J M P RUNM 3 0 4 3 3 0 4 4 7 7 0 1 M Y R , A C L 3 0 4 4 3 0 4 5 1 3 0 3 T A D MR 3 0 4 5 3 0 4 6 7 6 4 0 S Z A C L A - 81 -304 6 3047 5 600 JMP I.MOTR 3047 30 50 1 306 TAD M2YCDR 30 50 3051 44 52 JMS I ASETM 30 5 1 30 52 4455 RUNM* JMS I AHEADB /READ FIRST OF 30 52 30 53 1307 TAD M260M /TWO DIGITS TO 30 53 30 54 7 1 0 6 CLL RTL /DETERMINE NO 30 54 3055 700 6 RTL /OF 1/16" TO 3055 30 5 6 3310 DCA SIXTN /PLATES 30 5 6 30 57 4455 JMS I AREADB 30 57 30 60 1307 TAD M2 63M 30 60 30 61 1310 TAD SIXTN 30 61 30 62 7421 MQL 30 62 30 63 7701 ACL /SAVE 30 63 30 64 4432 JMS I ASPACE /TYPE SPACE 30 64 3065 '7 7 0 1 ACL' 30 65 30 66 44 40 JMS I APRTDC /TYPE OUT MOVE-30 66 MENT OF PLATES 30 67 30 67 7731 ACL 307 0 3070 4442 JMS I ADCBIN /CONVERT MOVE-307 1 /ENT TO BINARY 307 2 307 1 7041 CIA /SET UP COUNTER . 307 3 3072 3310 DCA SIXTN 307 4. 307 3 1311 TAD SIXTEN . 307 5 307 4 4444 JMS I AMOVE /STEP 1/16" 307 6 307 5 2 3 1 0 ISZ SIXTN /STEP REQUIRED 307 7 307 6 5273 JMP .-3 /NO OF 1/16" ' 3100 3077 5 600 JMP I MOTR /EXIT - AC CLEAR 3101 3100 0000 MOT INFi 0 3102 3101 74 50 MX* -330 3103 3102 7472 MF* -306 3104 3103 7-45'6 MR* -322 3105 3104 0 300 M2XCDR, 300 3106 3105 7 447 Mr* -331 3107 3106 00 60 M2YCDR* 60 3110 3107 7 520 M2 60M* -2 60 31 1 1 3110 0000 SIXTM* 0 31 12 3111 2000 SIXTEN* 2000 31 13 3112 0330 MXC* 330 31 14 31 13 0331 MYC* 331 31 15 / 3116 / 31 17 /TO MOVE X MOTOR 3120 / 3121 3114 0000 MOTRX* 0 3122 3115 7200 CLA 3123 3116 1312 TAD MXC /PUT "X" IN MOTOR 3124 31 17 3300 DCA MOTINF / I'N FO 3125 3120 4200 JMS MOTR /USE MOTR ROUTINE 3126 3121 57 14 JMP I MOTRX /RETURN 3127 / 3130 / 3131 /TO MOVE Y MOTOR 3132 / 31 33 31 22 0000 MOTRY* 0 3134 3123 7 200 CLA 3135 3124 1313 TAD MYC /PUT "Y" IN MOTOR 31 36 3125 3300 DCA MOTINF /INFO 3137 312 6 4200 JMS MOTR /USE MOTR ROUTINE 3140 3127 5722 JMP I MOTRY /RETURN 3141 / 31 42 / 3143 *3200 3144 / - 82 -3 1 4 5 / 3 1 4 6 / T O O P E N S H U T T E R A N D W A I T F O R A B A L A N C E 3 1 4 7 / 31 5 0 3 2 0 0 0 0 0 0 S T O P * 0 3 1 5 1 3 2 0 1 4 4 5 5 J M S I A H E A D B / D E T E R M I N E NO O F 3 1 5 2 3 2 0 2 3 2 3 7 D C A S T P N O / B A L A N C E S 3 1 5 3 3 2 0 3 3 2 4 0 D C A DN F L A G / C L E A R F L A G 31 5 4 3 2 0 4 4 4 62 J M S I AONSW / O P E N S H U T T E R 31 5 5 3 2 0 5 4 2 4 3 J M S R D P 4 / R E A D P H O T O M U L T ' 3 1 5 6 3 2 0 6 3 2 4 1 D C A S M I / S T O R E R E A D I N G S 3 1 5 7 3 2 0 7 4 2 4 3 L P S T P * J M S R D P 4 / R E A D A G A I N 31 6 0 3 2 1 0 3 2 4 2 D C A S M 2 / S O R E R E A D I N G S 31 61 3 2 1 1 1 2 4 2 T A D S M 2 31 6 2 3 2 12 7 0 4 1 C I A 31 63 3 2 1 3 1 2 4 1 T A D S M I / S M 1 - S M 2 31 6 4 . 3 2 1 4 7 7 0 0 S M A C L A / T E S T R E S U L T 31 6 5 3 2 1 5 5 2 2 3 J M P U P H I L L / R E A D S I N C R E S E 31 6 6 3 2 1 6 7 0 0 1 I A C / R E A D S D E C R E A S E 31 67 3 2 1 7 3 2 4 0 D C A DN F L A G / S E T F L A G 3 1 7 0 3 2 2 0 1 2 4 2 T A D S M 2 / R E P L A C E SM I 3 1 7 1 3 2 2 1 3 2 4 1 D C A SM1 / B Y S M 2 3 1 7 2 3 2 2 2 5 2 0 7 J M P L P S T P / L O O P 3 1 7 3 3 2 2 3 1 2 3 7 U P H I L L * T A D S T P N O • / L A S T B A L ? 3 1 7 4 3 2 2 4 7 6 4 0 S Z A C L A 3 1 7 5 3 2 2 5 5 2 3 1 J M P C N T S T /NO B A L A G A I N 3 1 7 6 3 2 2 6 1 2 4 0 T A D DN F L A G / A P P R O A C H I N G M I N 3 1 7 7 3 2 2 7 7 6 5 0 S N A C L A 3 2 0 0 3 2 3 0 5 2 3 5 J M P E N D S T P / F I N I N H E D 3 2 0 1 3 2 3 1 3 2 4 0 C N T S T * D C A DN F L A G / C L E A R F L A G 3 8 0 2 3 8 3 2 1 2 4 2 T A D S M 2 / R E P L A C E SM I B Y 3 2 0 3 3 2 3 3 3 2'41 D C A SM) / S M 2 3 2 0 4 3 2 3 4 5 2 0 7 J M P L P S T P • / L O O P 3 2 0 5 3 2 3 5 4 4 6 3 E N D S T P * J M S I A O F F S W / C L O S E S H U T T E R 3 2 0 6 3 2 3 6 5 6 0 0 J M P I S T O P / E X I T - A C C L E A R 3 2 0 7 3 2 3 7 0 0 0 0 S T P N O * 0 ' 3 2 1 0 3 2 4 0 0 0 0 0 D N F L A G * 0 3 2 1 1 3 2 4 1 0 0 0 0 SM 1 * , 0 3 2 1 2 3 2 4 2 0 0 0 0 S M 2 * 0 3 2 1 3 / 32 14 / 3 2 1 5 / T O H E A D A N D SUM P H O T O M U L T 4 T I M E S 3 2 1 6 / ( S U M L E i <"T I N A C ) 3 2 1 7 / 3 2 2 0 3 2 4 3 0 0 0 0 R D P 4 * 0 3 2 2 1 3 2 4 4 1 2 5 5 T A D M 4 C 3 2 2 2 3 2 4 5 3 2 5 4 D C A C N T 4 / S E T C O U N T E R 3 2 2 3 3 2 4 6 3 2 5 6 DCA S U M P T O / C L E A R 3 2 2 4 3 2 4 7 4 4 4 5 J M S I A R D P T O / R E A D P H O T O M 3 2 2 5 3 2 5 0 1 2 5 6 T A D S U M P T O / A D D T O SUM 3 2 2 6 3 2 5 1 2 2 5 4 I S Z C N T 4 / F O U R T H T I M E ? 3 2 2 7 3 2 5 2 5 2 4 7 J M P . - 3 3 2 3 0 3 2 5 3 5 6 4 3 J M P i ' R D P 4 / E X I T SUM I N . A C 3 2 3 1 3 2 5 4 0 0 0 0 C N T 4 * 0 -3 2 3 2 3 2 5 5 7 7 7 4 M 4 C * - 4 3 2 3 3 3 2 5 6 0 0 0 0 S U M P T O * 0 3 2 3 4 / 3 2 3 5 / 3 2 3 6 * 3 4 0 0 3 2 3 7 / 3 2 4 0 / 3 2 4 1 / T O I T E R R O G A T E K E Y B O A R D A N D D E C O D E 3 2 4 2 / C O M M A N D S 3 2 4 3 / - 83 -3 2 4 4 3 4 0 0 4 4 5 6 J M S I A I M I T / I N I T I L I Z E 3 2 4 5 3 4 0 1 4 4 3 0 J M S I A C R L F / C R L F 3 2 4 6 3 4 0 2 4 4 5 5 S T S Y S * J M S I A R E A D B / R E A D A C H A R 3 2 4 7 3 4 0 3 7 4 2 1 M Q L / S A V E I T 3 2 5 0 3 4 0 4 7 7 0 1 A C L / L O A D I T 3 2 51 3 4 0 5 4 4 5 4 J M S I A B U F F / T Y P E I T 3 2 5 2 3 4 0 6 7 7 0 1 A C L / L O A D A G A I N 3 2 5 3 3 4 0 7 1 2 4 6 T A D K G 3 0 0 / S U B 3 0 0 3 2 5 4 3 4 1 0 7 0 0 2 3 SW / B Y T E SWAP 32 5 5 3 4 1 1 3 2 4 7 D C A C H A R A D / S A V E 1 S T C H A R 3 2 5 6 3 4 1 2 4 4 5 5 J M S I A R E A D B / R E A D 2 N D C H A R 3 2 5 7 3 4 1 3 7 4 8 1 M Q L 3 2 60 3 4 1 4 7 7 0 1 A C L 3 2 6 1 34-1 5 4 4 5 4 .JMS .1 A B U F F / . T Y P E I T 3 2 6 2 3 4 1 6 7 7 0 1 A C L 3 2 6 3 3 4 1 7 1 2 4 6 T A D K C 3 0 0 / S U B T 3 0 0 3 2 64 3 4 2 0 1 2 4 7 T A D C H A R A D / P U T I N LOW B Y T E 3 2 6 5 3 4 2 1 3 2 4 7 D C A C H A R A D / W I T H 1 S T C H A R 3 2 6 6 3 4 2 2 1 2 4 3 T A D S T L S T / S E T A D D R E S S O F 3 2 67 3 4 2 3 3 0 1 5 D C A L S T P T / P O I N T E R 3 2 7 0 3 4 2 4 1 4 1 5 T A D I L S T P T / G E T C O M P A R I S O N 3 2 7 1 3 4 2 5 7 0 4 1 C I A / W O R D . N E G A T E 3 2 7 2 3 4 2 6 7 4 5 0 S N A / 0 I N D I C A T E S E N D 3 2 7 3 3 4 2 7 5 2 4 1 J M P E M D L S T / O F L I S T 3 2 7 4 3 4 3 0 1 2 4 7 T A D C H A R A D / C O M P A R E 3 2 7 5 3 4 3 1 7 6 4 0 S Z A C L A /I F N O T T H E S A M E 3 2 7 6 3 4 3 2 5 2 2 4 J M P . - 6 / G E T N E X T C O M P 3 2 7 7 3 4 3 3 10 15 T A D L S T P T / A D D R E S S O F L O C 3 3 0 0 3 4 3 4 1 2 4 4 T A D A D L S T / I S SUMM 3 3 0 i 3 4 3 5 3 2 4 5 D C A A D S T O R / S A V E A D D R E S S 3 3 0 2 3 4 3 6 1 6 4 5 T A D 1 A D S T O R / G E T A D D R E S S O F 3 3 0 3 3 4 3 7 3 8 4 5 D C A A D S T O R / C O M M A N D , S A V E I T 3 3 0 4 3 4 4 0 4 6 4 5 J M S I A D S T O R / E X E C U T E C O M M A N D 3 3 0 5 3 4 4 1 • 4 4 3 0 E N D L S T * J M S I A C R L F / C R L F E N D S C O M M A N D 3 3 0 6 3 4 4 2 5 8 0 2 J M P S T S Y S / S T A R T O V E R 3 3 0 7 3 4 4 3 3 6 7 7 S T L S T * 3 6 7 7 3 3 1 0 3 4 4 4 0 0 4 0 A D L S T * 4 0 3 3 1 1 3 4 4 5 0 0 0 0 A D S T O R * 0 3 3 1 2 3 4 4 6 7 5 0 0 K C 3 0 0 * - 3 0 0 3 3 1 3 3 4 4 7 0 0 0 0 C H A R A D * 0 3 3 1 4 / 3 3 1 5 / 3 3 1 6 * 3 7 0 0 3 3 1 7 3 7 0 B 0 8 0 5 A B E * 0 2 0 5 / C O D E S FOR 3 3 2 0 . 3 7 0 1 0 2 0 1 A B A * 0 2 0 1 / C O M P A R I S O N 3 3 2 1 3 7 0 2 0 2 2 0 A 3 P * 0 2 2 0 3 3 2 2 3 7 0 3 2 3 0 1 A S A * 2 3 0 1 3 3 2 3 3 7 0 4 2 3 2 0 A S P * 2 3 2 0 3 3 2 4 3 7 0 5 1 5 3 0 A M X * 1 5 3 0 3 3 2 5 3 7 0 6 1 5 3 1 AMY * 1 5 3 1 3 3 2 6 3 7 0 7 2 3 0 2 A S B * 2 3 0 2 3 3 2 7 3 7 10 1 7 2 3 A O S * 1 7 2 3 . 3 3 3 0 3 7 1 1 0 3 2 3 A C S * 0 3 2 3 3 3 3 1 3 7 1 2 0 0 0 0 A E N D * 0 3 3 3 2 / 3 3 3 3 / 3 3 3 4 * 3 7 4 0 3 3 3 5 3 7 4 0 2 4 5 2 B B E * B A L E / A D D R E S S E S 3 3 3 6 .37 41 2 4 0 6 3 B A , B A L A ' / O F S U B R O U T I N E S 3 3 3 7 3 7 4 2 2 4 0 0 B B P * B A L P 3 3 4 0 3 7 4 3 2 6 0 0 B S A * S E T A R 3 3 4 1 3 7 4 4 2 6 0 6 ' B S P * S E T P R 3 3 4 2 3 7 4 5 3 1 1 4 3 M X * M O T R X - 8 4 -3343 37 4 6 3122 3MY> MOTRY 3344 37 47 00 64 BS3* ASTOP 3345 37 50 227 6 BOS.. ON s w 334 6 37 51 2306 3CS, OFFSW 3347 / 33 50 / NO ERRORS AANALG 00 31 AANZCP 0051 ABA 3701 ABAL 004 6 ABE 3700 A3NBCD 0041 ABP 370 2 ABUFF 00 54 ACCNTU 07 0 2 ACCST 0 667 ACCSTP 07 1 6 AC CUM 0370 ACL 7 7 01 ACOMP0 1727 ACOMP1 17 30 AC 0MP2 1731 AC RL F 00 30 ACS 37 1 1 ACTI ME 07 22 ADCBIN 0042 ADLST 3444 ADPADD 00 50 ADPD3N 00 57 ADPSUB 0047 ADSTOR 344 5 A EN D 3712 AH 0122 AHEAD 20 60 AINIT 00 5 6 AINTSR 0002 AKFXAG 0 57 1 AKYCMT 0 57 2 AL 0 121 AMOVE 0044 AMULT5 00 5 3 AMX 3705 AMY 3706 ANALG .0 50 6 ANZCD 0130 ANZ CP 0723 ANZ 2 . 2 1 67 AOFFSW 0063 AONSW 00 62 AOS '3710 APOS0 1 50 6 APOSl 1 507 AP0S2 1510 APOS3 1511 AP0S4 1512 APHTDC 0040 APRTOC 0037 ARDDVM 00 3 6 ARDPTO 004 5 AHDSFT 0035 A H E A D B 0 0 5 5 A H E V 0 0 4 3 A S A 3 7 3 3 A S 3 3 7 0 7 A S E T A N 0 0 60 A S E T M 0 0 5 2 A S E T P L 0 0 61 A S P 3 7 0 4 A S P A C E 0 0 3 2 A S T A C K 1 7 2 5 A S T E P 0 0 3 3 A S T O P 0 0 6 4 A S T O K E 1 7 2 6 A S U M 1 7 2 4 A S U M H 0 1 0 7 A S U M L 0 1 3 6 A T F L A G 3 5 7 0 A T L C ' N T 0 5 7 3 A W A I T 0 0 3 4 B A C K 1 0 6 3 B A L 1 6 0 0 B A L A 2 4 0 6 B A L E 2 4 5 2 B A L L P 1 1 6 1 1 B A L P 2 4 0 0 3 A L U 2 4 1 4 B B A 3 7 41 B 3 E 3 7 4 0 3 3 P 3 7 4 2 3 C S . 3 7 5 i BH 0 1 a 4 B H L D K 2 1 7 7 SKWD 2 1 6 6 B K 2 1 1 0 2 3 K 3 1 1 2 4 B L 0 1 2 3 B L F L A G 17 2.3 3 M X 3 7 4 5 3MY 3 7 4 6 3 N B C D 10 5 3 B N B R . 1 1 4 2 B N L P 1 1 0 5 5 B N L P 2 1 0 7 6 B N L . P 3 1 1 2 0 B O S 37 5 0 B S A 3 7 4 3 B S 3 3 7 4 7 B S P 3 7 4 4 BSW 7 0 0 2 B U F F E R 0 2 5 0 B U F L P 1 0 2 5 3 B U F P T . 0 0 1 1 C A . 2 5 4 7 C A M 7 6 2 1 C E 2 4 5 3 CH 0 1 2 6 C H A R A D 3 4 4 7 C H D I R i 4 2 0 C H I C D 2 4 4 7 C L 0 1 2 5 C L A S W P 7 7 2 1 C L C 2 5 4 6 C L T F L G 0 2 7 6 CMPSM 1466 CN 2 5 50 CNTST 32 31 CNT3 2243 CNT3HD 2244 CNT4 3254 CO 2 54 5 COMP0 1 444 COMP 1 1452 COMP 2 14 60 CP 2544 CRLF 0400 CS 2451 C.i'HOP 0.244 CZ 2551 DCBIN 1000 DECH 0134 DECL 0133 DE5TH 0 136 DESTL 0 1 3 5 DI G 1 143 DIGCTR 0 502 DI H 0110 DMSEH 2172 DMSEL 217 1 DN FL AG 3840 DNUMB 0 10 5 DPADD 1 541 DPD3N 2200 DP SUB 1553 DPX2 2245 DPX8H 2240 DPX2L 2237 DPX5 22 5 5 DPX5H 2242 DPX5L 2241 DvMH 0 1 0 3 DVML 0102 ENDBUF 0 3 62 ENDXBF 0 3 6 5 ENDLST 3441 ENDSK1 1325 ENDSTK 0010 ENDS TP 3235 ENDTIM 0 62 5 ESIG 2552 E X T I N T 0 2 1 3 F I N I S H 10 66 FLAGU P 0 3 5 5 F L G S E T 143 3 F"NH2 1104 F"NH3 1126 FWD 21 65 HLDBL1 1722 HI 83 2173 H3 60 217 5 I N I T Z E 0543 INTHPT 0330 I N T S E H 0200 KBDCNT 0 37 4 KC F 60 30 KC 10 1 146 KC100 1 1 45 KG 1 0 3 0 1.144 KG 3 0 5 3 3 KG 3 0 0 3 4 4 6 KG 4 3 4 7 7 K K 1 7 7 7 0 5 6 6 K K 2 1 7 7 0 5 67 K P D P S 1 5 7 1 K Y 3 D P T 0-31 3 KY 3 R D 3 3 0 2 K Y F L A G 0 3 67 K Y N D2 0 3 4 7 K Y N E N D 0 3 1 4 K 1 0 0 0 D 0 7 4 5 K 2 1 2 3 41 4 K 2 1 5 0 4 1 5 K 2 4 9 0 4 1 6 K 2 6 3 0 4 7 6 K 3 5 D 0 7 4 6 L I N K 0 3 7 1 L K P R T 3 5 7 4 L P S T P 3 2 0 7 L P S U M 1 3 3 5 L S T P T 0 0 1 5 L 1 8 0 2 1 7 4 L 3 6 0 - 2 1 7 6 M A S K 0 4 7 3 M A S K 17 ' 3 5 0 4 M A S K 3 7 0 6 5 3 M A S K 4 0 3 6 5 2 0 4 7 5 M C 2 3 3 G 2 3 - l 6 MF 3 1 0 2 MK1 7 1 0 2 5 M K 2 0 0 0 2 3 1 5 M K 3 6 0 1 0 2 6 MK7 4 0 0 1 0 2 7 MK7 7 0 5 4 1 MK7 7 3 0 0 5 4 0 M L T 1 0 3 1 3 4 4 MM B R 10 4 3 M O T I N F 3 1 0 0 MOTOR 1 4 3 4 MOTR 3 0 0 0 M O T R X 3 1 1 4 M O T R Y 3 1 2 2 M O V E 1 4 3 5 MQA 7 5 0 1 MQL 7 4 2 1 M Q S A V E 0 3 7 2 MR 3 1 3 3 M S D I G 0 1 0 4 M S K D I R 1 4 1 6 M S K D R 1 1 4 3 2 M S K D R 2 1 4 1 7 M S K D 1 0 7 1 5 M U L T 10 1 0 3 0 M U L T 5 1 0 3 4 M V E F W D 2 1 2 6 MX 3 1 0 1 MXC 31 1 2 MXR 3 0 2 2 MY 3 1 0 5 MYC 3 1 1 3 - 88 MYR 3 0 4 4 M 2 X C D 0 1 31 M 2 X C D R 3 1 0 4 M 2 Y C D 0 1 3 2 M 2 Y C D R 3 1 0 6 M 2 6 0 2 7 0 0 W2 6 0 M 3 1 0 7 M4C 3 2 5 5 N O T E D B 0 2 7 1 i s )0TEND 0 2 4 1 N U M B E R 0 5 0 0 O C N B R 1 0 2 4 OFFSW 2 3 0 6 ONSW 2 2 7 6 P H T O C D 1 3 5 4 P O L C D 0 1 2 7 P 0 L 2 2 1 7 0 P O S C T 1 7 2 1 P O S 0 1 6 2 2 P O S 1 1 6 2 5 P 0 S 2 1 6 3 3 P O S 3 1 6 60 P 0 S 4 17 1 3 P R I N T 0 4 1 7 P R T D C 0 4 4 7 P R T O C 0 4 6 1 R D D V M 0 6 3 5 R D F V E 2 6 1 4 R D P T O 1 3 4 7 R D P 4 3 2 4 3 R D S F T -0 62-6 R E A D S 0 3 3 0 R E A D P T 0 0 1 4 R E V 1 4 0 0 R O T N B R 0 4 7 4 RUNM 3 0 5 2 S E T A N 2 1 4 3 S E T A R 2 6 0 0 S E T E L 2 0 0 0 S E T K F L 0 3 2 4 S E T M . 1 4 2 1 S E T P L 2 1 5 4 S E T P R 2 60 6 S H F T H 0 1 0 0 S H F T L 0 1 0 1 S H I G H 0 5 4 2 S I X T E N 3 1 1 1 S I X T N 3 1 1 0 S K C 1 6 0 7 1 7 SM I 3 2 4 1 SM2 3 2 4 2 S P A C E 0 4 0 7 S P F 6 0 4 0 S T A C K 1 3 0 0 S T B L 1 6 0 3 S T 3 U F 0 3 6 3 S T E P 0 6 5 4 S T E P 1 0 6 0 0 S T K L 0 1 1 1 S T K L C 0 1 1 2 S T K Y B F 0 3 6 6 S T L P 1 1 5 2 3 S T L S T 3 4 4 3 - 89 S T N B R 3 5 0 1 S T O P 2 2 0 0 S T O R E 1 5 i 3 S T P C N T 3 1 1 7 STP. \ ' 0 3 2 3 7 S T R O T 3 5 0 5 S T S T K 3 1 2 0 S T S Y S 3 4 3 2 S U B P T 2 0 2 7 SUM 1 3 2 6 SUMH1 3 1 1 3 S U M H 2 8 1 1 4 S U M L 1 0 1 1 5 .SUM!. 2 0.1 1 6 S U M P T O 3 2 5 6 S V S T K l 1 3 2 3 S V S T K 2 1 3 2 4 SWP 7 5 2 1 S 8 G T S 1 1 5 3 4 S 2 L T S 1 1 5 3 5 T E L C N T 0 3 7 3 T E L T P 0 2 2 3 T F L A G 0 3 6 4 T Y P E P T 0 0 12 U N P A C K 3 4 2 5 U P H I L L 3 2 2 3 WA I T 0 6 1 1 W L P 1 3 6 1 4 WT 3 6 1 3 ,MT T M "Z" • CAl O 1 •V * a i J i-. rj i * n - p i r.\ "j r, r\ Vi I L tt t C YJ m 3 0 3 1