Addition-Transfer Reactions of Zirconium Alkyne Complexes b y M u r u g e s a p i l l a i M y l v a g a n a m B . S c . (Honours ) U n i v e r s i t y o f Ja f fna , S r i L a n k a . A T H E S I S S U B M I T T E D L N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F M A S T E R O F S C I E N C E i n . T H E F A C U L T Y O F G R A D U A T E S T U D I E S (Department o f C h e m i s t r y ) W e accept this thesis as c o n f o r m i n g to the standard T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A January 1989 © M . M y l v a g a n a m , 1989. In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of dj&mt£lrl^ The University of British Columbia Vancouver, Canada Date DE-6 (2/88) i i Abstract A u n i q u e type o f r e a c t i o n , n a m e l y the a d d i t i o n - t r a n s f e r p r o c e s s , has been d e v e l o p e d . T h i s r e a c t i o n t r a n s f o r m s the z i r c o n i u m a l k y n e c o m p l e x e s , C p 2 Z r ( r j 2 -a l k y n e ) ( P M e 3 ) , to 2 - d i p h e n y l p h o s p h i n o a n d 2 - t r i m e t h y l s t a n n y l a l k e n y l z i r c o n i u m c o m p o u n d s b y reac t ion w i t h PI12PCI and M e s S n C l respec t ive ly . In the f o r m e r process , the PI12P group i s f o u n d to be c i s to the Cp2ZrCl group whereas , i n the latter case, the M e 3 S n and the C p 2 Z r C l moie t i es are trans to one another . T h i s r e a c t i o n w a s also u s e d to s y n t h e s i z e d i e n y l z i r c o n i u m c o m p o u n d s h a v i n g Ph2P subst i tut ions o n the d i e n e . P r e l i m i n a r y m e c h a n i s t i c p r o p o s a l s suggest that the PI12PCI i s r eac t ing v i a a f o u r - c e n t r e p a t h w a y i n v o l v i n g the P - C l b o n d a n d one o f the Z r - C b o n d s o f the z i r c o n i u m a l k y n e c o m p l e x ; whereas Me3SnCl reacts v i a a t ransi t ion state s i m i l a r to a 7 t - complex . iii T a b l e o f C o n t e n t s : Abstract ii Table of Contents iii List of Figures vi List of Abbreviations vii Acknowledgments ix Dedication x Chapter 1: INTRODUCTION 1.1 General 1 1.2 Transition Metal Alkyne Complexes 3 1.3 Zirconium Alkyne Complexes 7 1.4 Reactivity of Zirconium Alkyne Complexes :. 11 1.5 Transmetallation Reactions 14 1.6 Transfer Reactions 15 1.7 Addition-Transfer Reactions 18 Chapter 2: RESULTS AND DISCUSSION 2.1 Synthesis of Chlorobjs(ri5-cyclopentadienyl)(diphenylphosphino-l,3-dienyl)zirconium(IV) 21 2.2 Synthesis of Zirconium Alkyne Complexes 24 2.3 Reactions of Zirconium Alkyne Complexes (4-6) with Ph2PCl 27 2.4 Mechanism for the Addition-Transfer Reaction Involving Ph2PCl 30 2.5 Reactions of Zirconium Alkyne Complexes (4-6) with Me3SnCl 32 2.6 Reaction of Cp2Zr(benzyne)(PMe3) Complex with Me3SnCl 34 2.7 Mechanism for the Addition-Transfer reaction Involving Me3SnCl 37 2.8 Conclusions and Suggestions for Future Work 39 iv er: 3 EXPERIMENTAL 3.1 General Iiiformation 41 3.2 General Procedure 1: Synthesis of (trimethylphosphine) (Ti2-alkyne)bis(T|5-cyclopentadienyl)zirconiurri(II) complexes 43 3.2.1 Synthesis of (Ti5-C5H5)2Zr(Ti2-tBuC=CH)(PMe3) 43 3.2.2 Synthesis of (TiS-C5H5)2Zr(Tl2-PhC=CH)(PMe3) 44 3.2.3 Synthesis of (r|5-C5H5)2Zr(Ti2-PhC=CMe)(PMe3) 45 3.3 General Procedure 2: Addition-Transfer Reactions of Ph2PCl and (Ti5-C5H5)2Zr(Ti2-alkyne)(PMe3) 46 3.3.1 Synthesis of (Z)-Chloro[2-diphenylphosphino-l-(l-cyclohexen-l-yl)ethenyl]bis(T|5-cyclopentadienyl) zirconium(IV) and Chloro[(Z)2-diphenylphosphino-(E)2-( 1 -cyclohexen-1 -yl)]bis(T|5-cyclopentadienyl) zirconium(IV) 47 3.3.2 Synthesis of (Z)-Chloro(2-diphenylphosphino-l-rerr-butylethenyl)bis(Ti5-cyclopentadienyl)zirconium(rV) 48 3.3.3 Synthesis of (Z)-Chloro(2-diphenylphosphino-l-phenylethenyl)bis(r|5-cyclopentadienyl)zirconium(IV) and Chloro[(Z)2-diphenylphosphino-(E)2-phenylethenyl) bis(T|5-cyclopentadienyl)zirconium(rV) 50 3.3.4 Synthesis of Chloro[(E)2-methyl-l-phenyl-(Z)2-diphenylphosphinoethenyl)bis(T|5-cyclopentadienyl) zirconium(IV) and Chloro[l-methyl-(E)2-phenyl-(Z)2-diphenyl-phosphinoethenyl)bis(T|5-cyclopentadienyl)zirconium(IV) 51 3.4 Synthesis of (Z)-Chloro(l-phenyl-2-trimethylstannylethenyl) bis(T|5-cyclopentadieyl)zirconium(rV) 52 V 3.5 Synthesis of Chloro(2-trimethylstannylphenyl) bis(Tl5-cyclopentadienyl)zirconium(IV) and Chloro-(3-rximethylstannylphenyl)bis(ri5-cyclopentadienyl)zirconiurn(IV) 53 REFERENCES 55 vi List of Figures Figure 1. V a l e n c e b o n d structures a n d e x a m p l e s o f m o n o n u c l e a r a l k y n e c o m p l e x e s 3 Figure 2. V a l e n c e b o n d structures and examples o f b i n u c l e a r a l k y n e c o m p l e x e s 4 Figure 3. A qual i ta t ive orb i ta l descr ip t ion o f m e t a l - a l k y n e b o n d i n g 5 Figure 4. T h e p r o p o s e d t rans i t ion state for the t ransmeta l la t ion r e a c t i o n 14 Figure 5. A N e w m a n pro jec t ion s h o w i n g the transfer o f a l k y l group w i t h retention o f conf igura t ion 15 Figure 6. T h e structure o f 1,2-substiruted diene resu l t ing f r o m the addi t ion- t rans fer reac t ion 20 Figure 7. 300 M H z * H N M R spectrum o f c o m p o u n d s 2 and 3 i n C7D8 22 Figure 8. 4 0 0 M H z * H N M R spectrum and N O E D I F F spec t rum o f c o m p o u n d 2 i n C7D8 23 Figure 9. T h e a l k y n e c o m p l e x e s synthes ized to study the steric a n d e lec t ronic effects o f addit ion- transfer react ions 25 Figure 10. 300 M H z * H N M R spec t rum o f c o m p o u n d s 6a a n d 6b i n C6D6 26 Figure 11. 4 0 0 M H z lU N M R spec t rum and N O E D I F F spec t rum o f c o m p o u n d 8 i n Q>D6 28 Figure 12. T h e p r o p o s e d m e c h a n i s m f o r the addi t ion- transfer reac t ion i n v o l v i n g P h 2 P C l 31 Figure 13. 300 M H z * H N M R spectrum o f c o m p o u n d 12 i n C^De 33 Figure 14. 300 M H z ! H N M R spectrum o f c o m p o u n d s 14 a n d 15 i n C 6 D 6 35 Figure 15. T h e proposed m e c h a n i s m for the f o r m a t i o n o f c o m p o u n d 14 36 Figure 16. T h e p r o p o s e d m e c h a n i s m f o r the addi t ion- transfer reac t ion i n v o l v i n g M e 3 S n C l 38 v i i L i s t of A b b r e v i a t i o n s A A n g s t r o m uni ts , 10"8cm t e r t i a r y - b u t y l g r o u p , -C(CH3)3 C C e l s i u s C p " r j ^ - c y c l o p e n t a d i e n y l l i g a n d , C5H5-d d o u b l e t d d e u t e r a t e d 5 c h e m i c a l shift E t e t h y l g r o u p , - C H 2 C H 3 H z H e r t z , c y c l e s s e c o n d s " 1 g g r a m J c o u p l i n g constant L l i g a n d m m u l t i p l e t M M o l a r M e m e t h y l M H z m e g a H e r t z m i n m i n u t e m L m i l l i l i t r e m m m i l l i m e t r e m m o l m i l l i m o l f ! N B S N - b r o m o s u c c i n i m i d e N - P S P N - ( p h e n y l s e l e n o ) p h t h a l i m i d e N - P T P N - ( p h e n y l t h i o ) p h t h a l i m i d e N M R nuc lear magnet ic resonance N O E D I F F nuc lear Overhauser effect d i f ference P h p h e n y l p p m parts per m i l l i o n R a l k y l group R . T . r o o m temperature s s i n g l e t ten t e r t ia ry T H F te t rahydrofuran T M S t e t r a m e t h y l s i l a n e ix A c k n o w l e d g m e n t I w o u l d l i k e to express m y s incere grat i tude a n d great a p p r e c i a t i o n to m y research s u p e r v i s o r P r o f . M i c h a e l D . F r y z u k f o r the encouragement a n d assistance he has p r o v i d e d d u r i n g the course o f m y w o r k . A l s o , thanks A L O T to D r . G r a h a m W h i t e , D r . C i n d y L o n g l e y , D r . N e i l M c M a n u s , a n d the sports f a n , M r . D a v i d M c C o n v i l l e , f o r their t i m e and a d v i c e d u r i n g m y research a n d w r i t i n g o f this thesis . I a l so extend m y thanks to other m e m b e r s o f P r o f . F r y z u k ' s g r o u p f o r the i r f r i e n d l y c o o p e r a t i o n , w h i c h p r o v i d e d an e x c e l l e n t a tmosphere f o r research. X F o r S h a n t h i n i , w h o s e l o v e and support have sustained m e throughout this w o r k . 1 CHAPTER 1 INTRODUCTION 1.1 General D u r i n g the past f e w d e c a d e s , n u m e r o u s n e w c l a s s e s o f o r g a n o m e t a l l i c t r a n s i t i o n meta l c o m p l e x e s have been s y n t h e s i z e d . 1 G r e a t e r u n d e r s t a n d i n g o f their r e a c t i v i t y and structural aspects has l e d to the d e v e l o p m e n t o f n e w synthetic methods i n o r g a n i c c h e m i s t r y and to a better u n d e r s t a n d i n g o f c a t a l y t i c processes . T h e o b s e r v e d c h e m o s e l e c t i v i t y , r e g i o s e l e c t i v i t y and s tereose lec t iv i ty i n these reac t ions has attracted m a n y organic chemists to i n v o l v e such reactions i n organic synthesis . In this respect , m a n y organotrans i t ion m e t a l c o m p l e x e s have been used as ca ta ly t i c and s t o i c h i o m e t r i c r e a g e n t s . 2 T h e f o l l o w i n g e x a m p l e s s h o w some o f the var ie ty o f such appl i ca t ions i n o r g a n i c synthesis (Scheme 1 ). T h e use o f t rans i t ion m e t a l a l k y n e c o m p l e x e s i n o r g a n i c synthes is has been invest igated by m a n y researchers i n recent y e a r s . 1 - 2 T h e reac t iv i ty o f the a l k y n e u p o n c o o r d i n a t i o n to a t rans i t ion meta l has e n a b l e d the d e v e l o p m e n t o f u s e f u l synthet ic t r a n s f o r m a t i o n s . C o u p l i n g r e a c t i o n s o f s u c h a l k y n e s h a v e p r o v i d e d w a y s to s y n t h e s i z e m e t a l l a c y c l e s a n d c y c l i c o r g a n i c c o m p o u n d s . In th is chapter w e w i l l d i s c u s s synthet i c aspects o f z i r c o n i u m a l k y n e c o m p l e x e s a n d t h e i r a p p l i c a t i o n s i n o r g a n i c s y n t h e s i s . T r a n s m e t a l l a t i o n a n d t ransfer r e a c t i o n s o f o r g a n o z i r c o n i u m c o m p o u n d s are b r i e f l y presented for c o m p a r i s o n w i t h the n e w react ions w h i c h have been d e v e l o p e d i n our laboratory. 2 (i) Formation of Acryloyl and Alkenyl Halides H R Cp 2 Zr^ + II C l R Cp2Zr (1) CO ( 2 ) NBS Br 0=C H >=< . R + R Cp 2 ZrCI(Br) (2) C 2 H 2 (COOMe) 2 (ii) Protecting and Stabilizing Reagents ^ ^ p j (l)Ce(IV) Fe(CO) 3 (iii) Oxidation Reactions C H p — - ^ C H o PdCI 2 / CuCI H 2 0 / 0 2 Wacker Process (iv) Asymmetric Hydrogenation P h v . H X . Cl H NBS Br H >=< R + R" Cp 2 ZrCI(Br) ,C0 2Me C0 2 Me C H o C H O , C O O H M e C O H N C O O H (v) Cyclization Reaction P h C H 2 - C - H N H C O M e Pd(OAc)2 OSiMe3 O S c h e m e 1 3 1.2 Transition Metal Alkyne Complexes Metal alkyne complexes have been reported for nearly all the transition elements.^ Studies of alkyne complexes in the past have led to the discovery of some novel reactivity patterns and interesting structural features. Alkynes have two bonding and two antibonding rc-molecular orbitals which can interact with metal d-orbitals to give mononuclear and alkyne bridged polynuclear complexes. Upon coordination the acetylenic carbon-carbon bond distance increases from 1.2uA in the free alkyne to 1.24-1.40A, and the linear R-C-C bond angle decreases to 168°-140°.4a Based on these structural aspects, metal alkyne complexes are usually drawn as metallacyclopropene complexes. Figure 1. Valence bond structures and examples of mononuclear alkyne complexes. The valence bond structures A i and A 2 represents the n and a limiting formulations of a mononuclear alkyne complex. In A 2 the alkyne acts as a four-electron donor. The carbon-carbon bond distances in these complexes are usually in 4 the r a n g e o f 1 . 2 7 - 1 . 2 9 A (S t ruc ture 1 i n F i g u r e 1). I n s o m e e l e c t r o n - d e f i c i e n t t rans i t ion m e t a l c o m p l e x e s l o n g e r c a r b o n - c a r b o n b o n d distances seem to suggest a a , 7t type in terac t ion as s h o w n i n the v a l e n c e b o n d structure A 3 , w h e r e the a l k y n e acts as a s i x - e l e c t r o n d o n o r (Structure 2 F i g u r e l ) . 4 a F i g u r e 2 . V a l e n c e b o n d structures and e x a m p l e s o f b i n u c l e a r a l k y n e c o m p l e x e s . In the case o f b i n u c l e a r c o m p l e x e s c o n t a i n i n g one a l k y n e , the a l k y n e c o u l d ei ther br idge a l o n g the meta l -meta l b o n d axis o r p e r p e n d i c u l a r to the b o n d ax is . In the f o r m e r case , the a l k y n e acts as a t w o e l e c t r o n d o n o r (to e a c h meta l ) a n d this i s represented i n B3 (F igure 2) . In the latter case the a l k y n e i s a f o u r e lec tron d o n o r ( in r e s o n e n c e f o r m B i ) a n d th is i s r e p r e s e n t e d b y the t w o l i m i t i n g v a l e n c e b o n d s t ruc tures B i a n d B 2 ( F i g u r e 2 ). I n s u c h c o m p l e x e s the c a r b o n - c a r b o n b o n d distances are i n the range o f 1.32-1.34A (Structure 3 i n F i g u r e 2 ) . 4 a 5 A s i m p l e orbi ta l descr ipt ion o f meta l -a lkyne b o n d i n g i n a m o n o n u c l e a r c o m p l e x is s h o w n i n F i g u r e 3 . E s s e n t i a l l y the b o n d i n g i n v o l v e s the donat ion o f e lectrons f r o m the 7t -bonding orb i ta l s o f the a l k y n e in to a meta l o r b i t a l o f sui table s y m m e t r y , and b a c k - d o n a t i o n o f electrons f r o m appropriate f i l l e d meta l orbi ta ls in to the Tt-ant ibonding orb i ta l s o f the a l k y n e . S u c h interact ions w i l l g i v e r ise to the m e t a l l a c y c l o p r o p e n e v a l e n c e - b o n d structure A 2 - 4 b R F i g u r e 3. A qual i ta t ive orb i ta l descr ip t ion o f m e t a l - a l k y n e b o n d i n g . A l t h o u g h m a n y t r a n s i t i o n m e t a l s react w i t h a l k y n e s , o n l y a f e w f o r m c o m p l e x e s w i t h appropriate reac t iv i ty and stabi l i ty to be a p p l i e d i n organic synthesis . PdCl2, c o m b i n e d w i t h other reagents has been used f o r the c y c l o c a r b o n y l a t i o n o f a c e t y l e n i c a l c o h o l s (equat ion 1.1).5 CpCoL , 2 has been an e f f i c i e n t catalyst for the 6 Co2(CO)8 (CO)3Co^ (1.3) R- •R + C0 2 + LYNi R R R ^ C O O H R^ ^ C f O (1.4) (1) Na/Hg/PPh3 (2) dppe (1.5) cyclotrimerization of alkynes to give aromatic compounds (equation 1.2).6 Co2(CO)s has been used as a protecting group for alkynes and for cyclizing alkyne units with an olefinic unit to give cyclic ketones (equation 1.3).7 Reactions involving Ni(0) complexes with an alkyne and CO2 give highly reactive metallacycles containing the alkyne and C O 2 coupled unit (equation 1.4).8 Furthermore, transition metals have 7 been used to s tab i l i ze h i g h l y reac t ive unstable a l k y n e s w h i c h are generated in situ (equation 1.5) . 9 1.3 Z i r c o n i u m A l k y n e C o m p l e x e s M o s t o f the k n o w n o r g a n o z i r c o n i u m c o m p l e x e s are f o r m a l l y d ° , 16 -e lec t ron , Z r ( I V ) species w i t h o n l y one empty orb i ta l and no lone p a i r o f electrons. T h e absence o f d-e lectrons suggests that a Z r ( I V ) species w o u l d not be capable o f . s tab i l iz ing n-acceptors and a - d o n o r s v i a b a c k b o n d i n g . In contrast , the h y p o t h e t i c a l " C p 2 Z r " z i r c o n o c e n e f ragment is a d 2 , 14-e lectron Zr( I I ) species . S u c h an intermediate w i t h t w o empty orbi ta ls and a pair o f unshared electrons w o u l d be idea l for interact ing w i t h n-acceptor type l i g a n d (refer to F i g u r e 3). Cp2ZrCI2 + 2n-C4H9Li -78°C THF Cp2Zr(n-C4H9)2 B-elimination 0°C - / v 2L Cp2ZrL"2* L=CO or PMe3 "Cp2Zr" reductive elimination 7 Cp2Zr H CAH 4 n 9 S c h e m e B a s e d o n the above ra t ionale , it w o u l d be p o s s i b l e to m a k e z i r c o n i u m a l k y n e c o m p l e x e s b y generat ing " C p 2 Z r " i n situ or as stable adducts w i t h a - d o n o r l i g a n d s , a n d r e a c t i n g t h e m w i t h the a p p r o p r i a t e a l k y n e . H o w e v e r at tempts to generate 8 "Cp2Zr" species using metals as reducing agents have resulted in the formation of Zr(ILT) compounds. * 0 Negishi and coworkers have successfully generated "Cp2Zr" in situ by reducing Cp2ZrCl2 with two equivalents of BuLi. The reactive "Cp2Zr" intermediate was immediately trapped with PMe3 or CO to give Cp2Zr(PMe3)2 and Cp2Zr(CO)2 respectively. Formation of n-butane and but-l-ene during the reaction suggest a pathway involving P-hydride elimination followed by reductive elimination to give "Cp2Zr" species (Scheme 2).11 The "Cp2Zr" species, or its stable adduct Cp2ZrL2, has been shown to undergo substitution with alkynes and alkenes to generate the corresponding three-membered metallacycles (Scheme 3). 1 2 Ph "Cp2ZrM PMe3 Cp2Zr(PMe3)2 Ph 2C 2 - C p 2 Z r ^ | PMe3 Ph S c h e m e 3 Cl H + R MeLi/-78°C R=R =C2Hg R =H,R=C4iHg S c h e m e 4 9 Scheme 5 Recently Buchwald and coworkers have shown that zirconium alkyne complexes can be made from the corresponding Cp2Zr(CH3)(alkenyl) complexes (Scheme 4).1^ In an analogous manner, small cyclic alkyne and benzyne complexes of ,CI , C H 3 / PMe 3 (a) R=H,R1 = OMe (b) R_R 1 = -(CH2)4-10 zirconium have also been made (Scheme 5).14 The synthetic methodology ment ioned has been successfully extended in our laboratory to the synthesis of zirconium alkyne complexes of enynes (equation 1.6).15 The crystal structures of zirconium alkyne complexes Cp2Zr(rj2-cyclohexyne) (PMe3) and Cp2Zr(ri2-l-hexyne)(PMe3) have been determined.13-14 For the former, the carbon-carbon triple-bond distance and the R-C-C bond angles of these complexes are found to be 1.295A, 126.0°, 125.2°. For the latter, these parameters are 1.286A and 135.8° respectively. These values clearly suggest that these a lkyne complexes would be best represented by the valence bond structure A-> (Fieure 1> R R R PMe3 D' R" PMe R R Scheme 6 Scheme 6 shows the most likely pathway for the formation of alkyne complexes from the corresponding alkenyl methyl zirconocene complexes.14 Pathway A involves a p-hydride elimination to form intermediate "C" followed by reductive elimination of 11 methane to give "D". The alternate mechanism, shown in B, involves C-H activation leading to the simultaneous production of methane and "D".16 Kinetic isotope effects and substitution effects on analogous zirconium complexes favour a pathway similar to C-H activation or cyclometallation.16 Further, it has been suggested that an intermediate of type "C" is very unlikely in the case of benzyne and cyclic alkyne complexes where stabilization through backbonding is a crucial factor.17 1.4 Reactivity of Zirconium Alkyne Complexes The zirconium alkyne complexes have been shown to undergo insertion reactions with various alkynes, nitriles, aldehydes, ketones and ethylene (Scheme 7). 1 3 The facility of these reactions can be attributed to the favourable ring expansion of the highly strained cyclopropene to a less strained five-membered metallacycle. Scheme 7 (continued) 12 Ph Ph cP2ZrC]f + C 4 H 9 -CSC-C 4 H 9 Cp2Zr Me3P Ph C 4 H 9 Scheme 7 C 4 H 9 N e g i s h i and c o w o r k e r s have success ful ly u t i l i z e d the r i n g expans ion react ion in an in t ramolecular fash ion to synthesize organic c o m p o u n d s f r o m enynes (Scheme 8 ) . 1 8 (1.7) (1.8) (a) R=H,R1 = OMe (b) R_R 1 = -(CH2)4-P r o t o n o l y s i s o f the z i r c o n i u m c y c l o p r o p e n e c o m p l e x o f d i p h e n y l acetylene resul ted i n the f o r m a t i o n o f c i s -a lkene and C p 2 Z r C l 2 (equation 1 . 7 ) . 1 9 A n interest ing e x t e n s i o n o f this r e a c t i o n is the c o n t r o l l e d p r o t o l o l y s i s u s i n g one e q u i v a l e n t o f p y r i d i n i u m h y d r o c h l o r i d e to se lec t ive ly c leave one o f the z i r c o n i u m - c a r b o n bonds o f the m e t a l l a c y c l o p r o p e n e ring (equation 1.8 ).15 14 Reaction of N 2 O with zirconium cyclohexyne complexes resulted in an unprecedented oxametallacyclobutene derivative of zirconocene. Treating this with acid resulted in the formation of cyclohexanone and Cp2ZrCl2 (equation 1.9 ). 2 0 1.5 Transmetallation Reactions Transmetallation reactions involve the transfer of an organic moiety from one metal to another. Experimentally it is observed that the transmetallation of a o-bonded organic moiety from certain zirconium complexes to a Lewis acidic metal halide is viable. 2 1 However, the scope of a thermodynamically favourable transmetallation process may be limited due to kinetic barriers. A mechanism involving a four-centre transition state requiring the availability of an empty orbital on each metal has been proposed by Negishi and Takahashi (Figure 4). 2 2 It is important to note that this mechanism predicts the transfer of the organic group with retention of configuration. LnM-X + Y-M1Ln -L,Jvf V Ln LnM-Y + X-M Ln V Figure 4. The proposed transition state for the transmetallation reaction. One of the extensively investigated reactions in this respect is the reaction involving haloaluminum compounds.23 Mechanistic investigation carried out with stereospecifically labelled dideuteroorganozirconium complexes and A I C I 3 have been shown to proceed with retention of configuration (Figure 5). 2 3 It is also interesting to note the reaction of Cp2ZrCl2 with alkyl aluminates has resulted in the transfer of the 15 H D Cp2ZrCI D H AICI, H. . D H Figure 5. A Newman projection showing the transfer of an alkyl group with retention of configuration. organic moiety from aluminum to zirconium (equation 1.10 ). 2 4 Transmetallation reactions with the Lewis acidic metal halides ZnCl2, CuCl, and PdCl2 have also been reported.25 R u >=< HnC Al (1) n-BuLi (2) Cp2ZrCI2 AI(CH3)2 H3C K 3 C /ZrCp, (1.10) Cl 1.6 Transfer Reactions Transfer reactions, as opposed to transmetallations, involve transfer of an organic moiety from a metal to a non-metal derivative. Such transfer reactions have been extremely useful in the synthesis of heterosubstituted dienes.26 It is important to note that the dienyl moiety is transferred stereoselectively from zirconium to the hetero-atom of the organometalloid (Scheme 9). 16 (a) R = R1 = R 2 = H O (b) R = R1 = H, R2 = OMe (c) R = R2 = H, R1 = OMe (d) R R1 =-(CH2)4-,R2 = H S c h e m e 9 17 In a s i m i l a r f a s h i o n , f i v e - m e m b e r e d r i n g m e t a l l a c y c l e s o f z i r c o n i u m u n d e r g o transfer react ions to g i v e f i v e - m e m b e r e d ring heterocycles (Scheme 10) 2 7 Scheme 10 18 1.7 A d d i t i o n - T r a n s f e r R e a c t i o n s T h e react ion o f M e 3 S n C l w i t h z i r c o n i u m a l k y n e c o m p l e x e s has s h o w n a unique type o f r e a c t i v i t y . 1 5 S c h e m e 11 shows the general case o f such a reac t ion o f an a l k y n e c o m p l e x w i t h M 1 _ X ( M 1 = metal or m e t a l l o i d c o m p o u n d , X = ha l ide) . R L = ancillary ligand M1 = organometalloid (eg: Me3Sn, Ph2P) X = Halide S c h e m e 11 U p o n e x a m i n a t i o n o f the reactants and the p r o d u c t s , i t i s o b v i o u s that this is not a s i m p l e t ransmeta l la t ion o r transfer process s ince the o r g a n i c f ragment i s s t i l l b o u n d to the meta l M . T h e r e g i o i s o m e r i c products are a result o f the fact that either o f the m e t a l - c a r b o n b o n d s o f the a l k y n e c o m p l e x c a n , i n p r i n c i p l e , be c l e a v e d . C o n s i d e r a t i o n o f the general structure o f the products s h o w s that the M ^ X b o n d adds across one o f the meta l - carbon bonds ( M - C ) r e s u l t i n g i n the transfer o f X to the meta l 19 M and M 1 to one e n d o f the a l k y n e . B a s e d o n the above d e s c r i p t i o n , w e w i l l refer to s u c h t rans format ions as addi t ion- t ransfer react ions . T h e o n l y k n o w n a d d i t i o n - t r a n s f e r r e a c t i o n i n v o l v i n g a z i r c o n i u m a l k y n e c o m p l e x o f an enyne a n d M e 3 S n C l i s s h o w n i n equat ion 1 . 1 1 . 1 5 F u r t h e r m o r e , the " C p 2 Z r C l " m o i e t y o f the product i n equat ion 1.11 can subsequently undergo a transfer r e a c t i o n w i t h M e 2 P C l (equat ion 1.12 ) . 1 5 These t w o react ions c l e a r l y i l lus trate the d i f ferences be tween the addi t ion- t ransfer reac t ion and transfer reac t ion . In genera l , the addi t ion- t ransfer reac t ion p r o v i d e s a synthet ic route to hetero-subst i tuted dienes o f the type s h o w n i n F i g u r e 6. B a s e d o n this w e inves t iga ted the r e a c t i v i t y o f z i r c o n i u m a l k y n e c o m p l e x e s w i t h P h 2 P C l . W e also s tudied the effect o f a l k y l a n d a r y l subst i tut ions o n the a l k y n e a n d the r e s u l t i n g s tereochemis t ry o f the 20 p r o d u c t s . T h e f o l l o w i n g chapters present the results o f these inves t iga t ions and the p r o p o s e d m e c h a n i s m s for the addi t ion- transfer reac t ion . M1 R 1 M, M = organotransition metal group (eg Cp2ZrCI) or organo metalloid (eg Me3Sn) F i g u r e 6. T h e structure o f a 1,2-disubstituted d i e n e r e s u l t i n g f r o m the a d d i t i o n -transfer r e a c t i o n . 21 C H A P T E R 2 R E S U L T S A N D D I S C U S S I O N 2.1 Synthesis of ChIorobis( i "| 5 -cyclopentadienyl) (diphenylphosphino-l ,3 -dienyI)zirconium(IV) A s m e n t i o n e d i n the p r e v i o u s chapter , the a d d i t i o n - t r a n s f e r r e a c t i o n c o u p l e d w i t h a t ransfer r e a c t i o n y i e l d s l - s t a n n y l - 2 - p h o s p h i n o - l , 3 - d i e n e s (equat ions 1.11, 1.12). T h e o b s e r v e d s tereochemistry i n this case has the s tannyl and the p h o s p h i n y l groups trans to one another. W i t h a v i e w to further u t i l i z e and d e v e l o p the a d d i t i o n -transfer reac t ions , w e inves t igated the reac t iv i ty o f z i r c o n i u m a l k y n e c o m p l e x e s w i t h P h 2 P C l . T h e enyne c o m p l e x 1 reacts s m o o t h l y w i t h 1 equivalent o f P h 2 P C l at r o o m temperature to g i v e a m a j o r product 2 and a m i n o r p r o d u c t 3 i n = 4:1 ra t io (equation 2.1). F i g u r e 7 s h o w s the * H N M R spectrum o f the products 2 and 3. T h e s te reochemis t ry of the m a j o r p r o d u c t 2 w a s d e t e r m i n e d b y N O E D I F F e x p e r i m e n t s . T h e o b s e r v e d enhancements o n i r r a d i a t i n g the resonances o f protons Figure 7. 300 M H z lH N M R spectrum o f c o m p o u n d s 2 and 3 i n C7D8. Figure 8. 400 M H z lVL N M R spectrum and N O E D I F F spectrum of c o m p o u n d 2 in C7D8. 24 H A , H B , the ortho protons of the phenyl rings on phosphorus and the protons of the cyclopentadienyl ligand, are all consistent with the stereochemistry shown. Figure 8 shows one such NOEDIFF experiment spectrum where the irradiation of the ortho protons of the phenyl rings resulted in the enhancement of the protons on the Cp rings and H A - Since the stereoisomers 2 and 3 were not readily separable, NOEDIFF experiments on the minor isomer were not carried out. The trans stereochemistry assigned for the minor compound 3 is based on the very large phosphorus-proton coupling constant, 3 J p - H A = 7 6 . 1 Hz, relative to 2 J p - H A = 10 -1 Hz in the major compound 2 ; the larger phosphorus coupling in 3 is typical for a trans relationship of the Ph2P group and H A , while the small coupling is consistent with a geminal disposition of the PI12P moiety and H A in 2 . Thus, the stereochemistry of the products resulting from the addition-transfer reaction is dependent upon whether Me3SnCl or Ph2PCl is used. It is interesting that in the case of Ph2PCl both possible cis isomers were formed, whereas for Me3SnCl only a single trans isomer is produced. This observation prompted us to investigate the reactivity of a range of substituted zirconium alkyne complexes towards these reagents in an attempt to understand the mechanism and the stereoselectivity of these reactions. 2 .2 S y n t h e s i s o f Z i r c o n i u m A l k y n e C o m p l e x e s Figure 9 shows the three alkyne complexes (4-6) we chose to synthesize. The choice of substituents was based on the varying steric and electronic influences they might exert during the reaction. In complex 4, the ferr-butyl group imposes steric crowding on one side, a 1, o f the cyclopropene ring with minimal effect on side a 2 (structure A , Figure 9). In compound 5 , having a phenyl group, the side a 1 of the ring 25 Cp 2Zr A PMe Me PMe I . Cp2ZrCT H PMe3 H Cp 2Zr Cp 2Zr Ph Ph 4 5 6 F i g u r e 9. T h e a l k y n e c o m p l e x e s s y n t h e s i z e d to s tudy the steric and e l e c t r o n i c effects o f addi t ion- t ransfer react ions . is less s ter i ca l ly c r o w d e d than i n 4. C o m p o u n d 6 i s an in terna l a l k y n e c o m p l e x and therefore w i l l h a v e ster ic c r o w d i n g o n b o t h s ides a 1 a n d a 2 o f the r i n g . A l s o , i n c o m p o u n d s 5 a n d 6, the p h e n y l subst i tuent m i g h t be e x p e c t e d to have a d i f f e r e n t e lectronic i n f l u e n c e than that o f an a l k y l group. T h e a l k y n e c o m p l e x e s w e r e p r e p a r e d u s i n g p r o c e d u r e s s i m i l a r to those e m p l o y e d by B u c h w a l d (Scheme 4 , C h a p t e r 1). T h e z i r c o n i u m a l k e n y l c o m p l e x e s w e r e s y n t h e s i z e d v i a h y d r o z i r c o n a t i o n o f the c o r r e s p o n d i n g a l k y n e s and c o u l d be i so la ted i n g o o d y i e l d s . 2 8 Subsequent reac t ion o f these a l k e n y l c o m p l e x e s w i t h M e L i i n T H F at - 7 8 ° C g a v e the uns tab le a l k e n y l ( m e t h y l ) z i r c o n o c e n e c o m p l e x e s w h i c h w e r e i m m e d i a t e l y extracted w i t h to luene , f i l t e r e d and then s t i r red w i t h excess P M e 3 f o r 36 hours to o b t a i n the c o r r e s p o n d i n g a l k y n e c o m p l e x e s . F i g u r e 10 s h o w s the * H N M R o f the m e t h y l - p h e n y l - a l k y n e c o m p l e x 6 a n d , as can be seen b y the t w o sets o f r e s o n a n c e s , b o t h p o s s i b l e i s o m e r s , 6a and 6b, i n an a p p r o x i m a t e l y 2:1 r a t i o are f o r m e d . C o m p o u n d s 4 and 5 gave o n l y a s ing le i s o m e r i n w h i c h the t e r m i n a l c a r b o n points d i r e c t l y towards the P M e 3 g r o u p . F i g u r e 10. 300 MHz ' H NMR spectrum of compounds 6a and 6b.in C^ Df,. 27 2.3 Reactions of Zirconium Alkyne Complexes (4-6) with PI12PCI All the reactions were carried out using one equivalent of PI12PCI in toluene at room temperature. From the reaction with the rerf-butyl alkyne complex 4, there is obtained a single product 7 (equation 2.2). The stereochemistry of the product was assigned from the results obtained from NOEDIFF experiments. Irradiating the tert-butyl group resonances resulted in an enhancement of H A and the protons of the Cp ring. Further, irradiation of the ortho protons of the phenyls on phosphorus enhanced H A and the Cp's. Also the coupling constant 2Jp-H A = 10-1 Hz, was comparable with that observed in compound 2, consistent with the assigned stereochemistry. (2.2) From the phenyl alkyne complex 5 was isolated a pale pink crystalline material consisting of a mixture of two compounds 8 and 9 in » 5:1 ratio (equation 2.3). NOEDIFF experiments involving the irradiation of the Cp's and the ortho protons of the phenyl rings on phosphorus gave enhancements which were consistent with the proposed stereochemistry (Figure 11). Also NOEDIFF experiments were useful in locating the peak corresponding to H A. The coupling constant, 2Jp-H A = 10.7 Hz, was consistent with what was observed in compounds 2 and 7. The assignment of the stereochemistry of the minor isomer was based on the coupling constant 3Jp-H A = 74.8 Hz, which is similar to that observed in compound 3, and indicates trans, vicinal Cp 2 Zr ' pph 2 >==<. Ph H A 9 R.T. / Toluene Cp 2Zr pph2 >-< Ph CHo + 10 Ph2P \ >=< Ph i ZrCp2 C H 3 1 1 (2.3) (2.4) r e l a t i o n s h i p between p h o s p h o r u s a n d H A . In a d d i t i o n , the c h e m i c a l shif t d i f ferences b e t w e e n the C p resonances a n d 3 1 P resonances o f the t w o i s o m e r s 8 a n d 9 w e r e s i m i l a r to the di f ferences observed i n 2 and 3. A t t e m p t s to c r y s t a l l i z e the p r o d u c t s f r o m the r e a c t i o n w i t h m e t h y l - p h e n y l a l k y n e c o m p l e x 6 w e r e not success fu l . T h e w h i t e p o w d e r , o b t a i n e d b y p r e c i p i t a t i o n f r o m a c rude s o l u t i o n i n toluene w i t h excess hexanes , c o n s i s t e d o f t w o c o m p o u n d s i n = 1 : 1 ra t io . T h e c h e m i c a l shif t o f the 3 1P resonances and those o f the C p ' s i n the *H N M R o f these c o m p o u n d s w e r e c o m p a r a b l e w i t h other c o m p o u n d s . B a s e d o n these 30 results the stereochemistry of the two products were assigned as shown in 10 and 11 (equation 2.4). 2.4 Mechanism for the Addition-Transfer Reaction Involving PI12PCT The proposed mechanism for the addition-transfer reaction involving PI12PCI is shown in Figure 12. Initial dissociation of PMe3, followed by the coordination of the Ph2PCl via the lone pair of electrons of the phosphorus will give the two possible intermediates, B 1 and B 2 . Rearrangement of these intermediates, by shifting the donor atom from phosphorus to chlorine, leads to the formation of transition states C 1 and C 2. As discussed in Chapter 1, such four-centred transition states have been proposed for the stereospecific transfer of alkenyl groups from zirconium to aluminum (Figure 4, Chapter 1). A similar transition state has also been proposed for the electrophilic cleavage of zirconium alkyl complexes with Br2- 2 9 The proposed four-centred transition states, C 1 and C 2, are similar to these and involve the P-Cl bond and one of the zirconium carbon bonds of the metallacyclopropene ring. As shown in Figure 12, the appropriate bond breaking and bond forming steps for C 1 and C 2 would lead to the formation of D 1 and D 2 respectively, where the Cp2ZrCl moiety and the Ph2P moiety are cis related. If the formation of C 1 and C 2 is kinetically controlled, their relative amounts will depend upon the relative bulkiness of the "R" groups. This mechanism is consistent with the observed product ratios in both the terminal and internal alkyne complexes. It is important to note that in the synthesis of complexes 4 and 5, only a single product is formed; PMe3 being coordinated to the least-hindered site. Substitution of a methyl group for hydrogen leads to the formation of both possible isomers, 6a and, 6b in =2:1 ratio (Figure 10). This seems to suggest that in complex 6, the steric environment on either side of the metallacyclopropene ring is comparable; whereas in 31 Figure 12. The proposed mechanism for the addition transfer-reaction involving Ph2PCl. 32 c o m p l e x e s 4 a n d 5 they are qui te d i f f e r e n t . T h e r e f o r e , w h e n the i n t e r n a l a l k y n e c o m p l e x 6 reacts w i t h P h 2 P C l the intermediates B 1 and B 2 w i l l be f o r m e d i n = 2:1 r a t i o . S i n c e the ra t io o f the products D 1 and D 2 are e q u a l , the t rans i t ion states C 1 and C 2 w i l l be o f e q u a l energy. T h e above ra t ionale suggests that in termediates B 1 and B 2 are i n e q u i l i b r i u m a n d that the m i n o r in termedia te , h a v i n g a h i g h e r energy , reacts faster than the m a j o r in termediate . 2 .5 R e a c t i o n s o f Z i r c o n i u m A l k y n e C o m p l e x e s (4-6) w i t h M e 3 S n C I A l l react ions i n v o l v i n g c o m p l e x e s 4-6 were carr ied out w i t h one equivalent o f M e 3 S n C l i n toluene at r o o m temperature, s i m i l a r to that descr ibed above for P h 2 P C l . F r o m the r e a c t i o n w i t h the p h e n y l a l k y n e c o m p l e x 5 there w a s o b t a i n e d a s ing le p r o d u c t 12 (equat ion 2 .5) . T h e s te reochemis t ry o f the p r o d u c t w a s a s s i g n e d b y N O E D I F F e x p e r i m e n t s . S e q u e n t i a l i r r a d i a t i o n o f the resonances due to the protons o f the C p r i n g s , the M e 3 S n , ortho protons o f the p h e n y l group and H A resul ted i n the e n h a n c e m e n t o f r e s o n a n c e s cons i s tent w i t h the p r o p o s e d s t e r e o c h e m i s t r y . T h e analys is o f the * H N M R spectrum shows a c o u p l i n g o f 46.9 H z f r o m 1 1 7 / 1 1 9 S n to * H A w h i c h s t ro ng ly suggests that the M e 3 S n group and H A are g e m i n a l . 3 0 T h e * H N M R spectrum o f the c o m p o u n d 12 is s h o w n i n F i g u r e 13. (2.5) F i g u r e 13. 300 M H z lH N M R spectrum of c o m p o u n d 12 in C6D6. 34 T h e react ion o f the tert-buty] a l k y n e c o m p l e x 4 w i t h M e 3 S n C l leads to a range o f u n i d e n t i f i a b l e p r o d u c t s , l r the case o f the m e t h y l - p h e n y l a l k y n e c o m p l e x 6, n o react ion o c c u r r e d even after 36 hours . A * H N M R spec t rum of the reac t ion m i x t u r e s h o w e d that the reactants r e m a i n e d intact . 2.6 Reaction of Cp2Zr(benzyne)(PMe3> Complex with M e 3 S n C l 1 5 In order to b l o c k the format ion o f the product h a v i n g the organot in m o i e t y trans to the z i r c o n o c e n e f ragment , the b e n z y n e c o m p l e x 13 was e x a m i n e d i n the react ion w i t h M e 3 S n C l . T h e react ion o f one equivalent o f benzyne c o m p l e x 13 w i t h M e 3 S n C l gave a w h i t e c rys ta l l ine mater ia l cons i s t ing o f t w o c o m p o u n d s 14 and 15 i n = 4:1 rat io (equation 2.6) . T h e * H N M R spec t rum o f the products i s s h o w n i n F i g u r e 14. T h e t w o sets o f double t s a n d t w o sets o f t r iplets o f equal in tens i ty i n the p h e n y l r e g i o n c l e a r l y i n d i c a t e the s tereochemistry o f the m a j o r i s o m e r 14. T h e other three broad signals i n a 1:2:1 rat io c o u l d be due to a 1,3-disubstituted p h e n y l ring ( c o m p o u n d 15), a l though the o r i g i n o f the mater ia l i s u n k n o w n at this t i m e . T h e appearance o f ! H -a Me3Sn C l C p z Z r ^ ^ CICp2Zr' a l 4 b,1 5 major aomar minor isom«r le3Sn J O Cp + denotes 1 1 7Sn / 1 1 9 Sn satellites -Sn(CH3)3 i|iiii|riii|iiii|iiii|iiii|iiii|iiiiiiiii|iiii|iiii|iiii|iiii|iiii|iiii|iiii|iiii|iiii|i»i|iiii|ii''|'ii'l A A X M iJ r r I i i I i i i i I i i i ' I ' ' ' ' 1 ' ' 1 ' | ' ' ' ' 1 F i g u r e 14. 300 M H z * H N M R spectrum o f c o m p o u n d 14 and 15 in C(,l)(x 36 Il7/ll9sn satellites for the two peaks at 7.45 ppm and 7.78 ppm indicates that they are ortho to the Me3Sn group. T Cp2Zr C 6H £ CH2PPh3 Cp2Zr\ J O CH = PPh3 (2.7) Cp 2Zr v j + CH 2-PPh 3 Figure 15. The proposed mechanism for the formation of compound 14. Figure 15 shows the possible pathway leading to the formation of the major isomer 14. A zwitterionic intermediate has been proposed for the reaction of zirconium benzyne complexes with ylids 3 1 (equation 2.7). By comparison to this the 37 intermediate E would likely be a tight ion pair. The occurrence of these reactions in a nonpolar solvent like toluene supports this contention. 2.7 M e c h a n i s m f o r t h e A d d i t i o n - T r a n s f e r R e a c t i o n I n v o l v i n g M e 3 S n C l Compared to the reactivity of P h 2 P C l , Me3SnCl gives a single product with the Cp2ZrCl and the Me3Sn moieties being trans related. A four-centred mechanism similar to that proposed for the P h 2 P C l reaction cannot lead to the observed trans stereochemistry. The lack of a lone pair of electrons on tin, as found for phosphorus, would be a possible reason for the observed difference in reactivity. The proposed mechanism for the addition-transfer reaction involving Me3SnCl is shown in Figure 16. The heterolytic cleavage of the Sn-Cl bond, followed by the addition of the Me3Sn + across the double bond of the metallacyclopropene, leads to the formation of the transition state F . The appropriate bond breaking and bond forming reaction of the 7t-complex F would lead to the formation of product G , where the Me3Sn moiety and the Cp2ZrCl moiety are trans related. The Newman projection of the transition state F is shown in F 1 . Because F 1 can only have the eclipsed conformation, the energy of this transition state will greatly depend upon the nonbonded interaction between R 1 and R . This may well explain why the internal alkyne complex 6 does not take part in the reaction. The dissociation of PMe3 is invoked as the first step even though the coordination of the CI is not initially important to the formation of F . However, such a dissociation was thought necessary for the formation of the transition state F which might otherwise be sterically crowded. Further, the PMe3 might play a role in promoting the heterolytic cleavage of the S n - C l bond via formation of a transient five coordinate adduct such as (Me3S n C l ) ( P M e 3 ) . 3 2 a A pyridine adduct, (Me3SnCl)(NC5H5), similar to the PMe3 adduct has been proposed.3 2 38 PMe3 I Cp2Zr: .R Cp2Zr Cl" ^SnMe, T PMe, .R Cp2Zr: Cp2Zr Me3SnCI R1=H Cp2Zr R SnMe3 G Figure 16. The proposed mechanism for the addition-transfer reaction involving Me3SnCl. 39 2 .8 C o n c l u s i o n s a n d S u g g e s t i o n s f o r F u t u r e W o r k A d d i t i o n - t r a n s f e r r e a c t i o n s i n v o l v i n g Ph2PCl w e r e s u c c e s s f u l l y u s e d i n the s y n t h e s i s o f 1 - p h o s p h i n y l a n d 2 - p h o s p h i n y l s u b s t i t u t e d 1 , 3 - d i e n y l - z i r c o n i u m c o m p l e x e s . R e a c t i n g Ph2PCl w i t h three d i f f e r e n t types o f a l k y n e c o m p l e x e s h a v e r e v e a l e d that the r e g i o s e l e c t i v i t y o f these reac t ions increases d r a m a t i c a l l y w i t h the increase i n steric b u l k o f the substituents o n the a l k y n e . In the case o f the r m - b u t y l a l k y n e c o m p l e x , 1 0 0 % r e g i o s e l e c t i v i t y w a s o b s e r v e d . F u r t h e r m o r e , a l l the react ions w i t h Ph2PCl gave the products w i t h c i s s tereochemistry . T h e a d d i t i o n - t r a n s f e r reac t ions w i t h M e 3 S n C l have s h o w n the reac t ion to be c h e m o s e l e c t i v e towards some t e r m i n a l a l k y n e c o m p l e x e s , w h e r e the M e 3 S n C l reacts e x c l u s i v e l y at the least h i n d e r e d site a n d a l w a y s g i v e s the trans p r o d u c t . W i t h a benzyne z i r c o n i u m c o m p l e x , an ortho d i s p o s i t i o n is f o u n d as expected. A d d i t i o n - t r a n s f e r r e a c t i o n s are q u i t e d i f f e r e n t to s i m p l e t r a n s f e r o r t r a n s m e t a l l a t i o n reac t ions i n that the s t e r e o c h e m i s t r y o f the latter a l w a y s p r o c e e d w i t h retention o f c o n f i g u r a t i o n o f the organic group regardless o f the cho ice o f meta l or m e t a l l o i d . T h e w e l l - k n o w n p r o c e s s o f o x i d a t i v e a d d i t i o n 1 c a n be c o m p a r e d to the addi t ion- t ransfer reac t ion i f one cons iders the Tt 2 - a l k y n e resonance f o r m o f the a l k y n e c o m p l e x e s rather than the m e t a l l a c y c l o p r o p e n e resonance f o r m . In the case o f a s i m p l e o x i d a t i v e a d d i t i o n reac t ion o f a meta l c o m p l e x L n M (where M is i n the f o r m a l z e r o o x i d a t i o n state) w i t h an o r g a n i c h a l i d e R X , the m e t a l increases i ts f o r m a l o x i d a t i o n state to M ( I I ) (Scheme 12). A l s o this process i n v o l v e s the c l e a v i n g o f the R - X b o n d to f o r m the M - X and the M - R bonds . T h e addi t ion- t ransfer reac t ion can be re lated to this process s ince z i r c o n i u m increases its f o r m a l o x i d a t i o n state f r o m Zr( I I ) to Z r ( I V ) . H o w e v e r , instead o f f o r m i n g a Z r - M 1 b o n d , the group M 1 is transferred to 40 (i) oxidative addition LXM + RX LXM (ii) addition-transfer R (PMe3)Cp2Zr^|| M'X Cp2Zr M i R A i Scheme 12 the other end of the alkene to which the zirconium is attached. This discussion emphasizes the uniqueness of this addition-transfer reaction. Our objective in the future is to extend the addition-transfer reaction to other organometalloid reagents containing selenium, sulphur and boron. We are also interested in probing the stereoselectivity of this reaction in an effort to generate a new method of synthesizing highly functionalized alkenes and dienes. 4 1 C H A P T E R 3 E X P E R I M E N T A L 3 .1 G e n e r a l I n f o r m a t i o n A l l m a n i p u l a t i o n s w e r e p e r f o r m e d u n d e r p u r i f i e d n i t r o g e n 3 3 i n a V a c u u m A t m o s p h e r e s H E - 5 5 3 - 2 g l o v e b o x e q u i p p e d w i t h a M O - 4 0 - 2 H p u r i f i e r , o r i n standard S c h l e n k - t y p e g l a s s w a r e under a r g o n (as s u p p l i e d ) o r p u r i f i e d n i t r o g e n . T h e t e r m " reac tor b o m b " re fers to a c y l i n d r i c a l , t h i c k - w a l l e d , P y r e x ® v e s s e l ( 5 0 - 7 5 m L i n v o l u m e ) e q u i p p e d w i t h a 5 m m K o n t e s ® needle v a l v e and a g r o u n d glass j o i n t f o r attachment to a v a c u u m l i n e . P r o t o n n u c l e a r m a g n e t i c r e s o n a n c e ( * H N M R ) spectra w e r e o b t a i n e d o n a V a r i a n X L - 3 0 0 spectrometer (at 3 0 0 M H z ) . A l l N O E D I F F exper iments w e r e c a r r i e d out o n a B r u k e r W H - 4 0 0 spectrometer (at 4 0 0 M H z ) . T h e c o m p o u n d s w e r e r u n as s o l u t i o n s o f b e n z e n e - ^ 6 (C6D6) o r to luene - ^ 8 ( C 7 D 8 ) a n d the s i g n a l p o s i t i o n s were g i v e n o n the 8 scale i n p p m w i t h reference to C6D5H at 7 . 1 5 p p m a n d C6D5CD2H at 2 . 0 9 p p m , r e s p e c t i v e l y . 3 4 1 3 C N M R spectra were r u n at 7 5 . 4 M H z o n a V a r i a n X L -3 0 0 spectrometer and the peaks are referenced to C^D^ at 1 2 8 . 0 p p m o r to the m e t h y l c a r b o n o f C 7 D 8 at 2 0 . 4 p p m . T h e 3 1 P N M R spectra w e r e a l s o r u n o n the same i n s t r u m e n t (at 1 2 1 . 4 M H z ) a n d the s i g n a l p o s i t i o n s w e r e r e c o r d e d r e l a t i v e to the e x t e r n a l reference o f P ( O M e ) 3 at 1 4 1 . 0 p p m . T h e p r o t o n - t i n c o u p l i n g constants ( J H -Sn) are g i v e n as an average o f the 1 1 7 S n and ^ S n v a l u e s . T h e o b s e r v e d i n t e g r a l v a l u e s f o r the T ] 5 - c y c l o p e n t a d i e n y l l i g a n d C p , w e r e c o n s i s t e n t l y less t h a n the 42 expected. A similar trend has been previously reported and is believed to result from a long spin-lattice relaxation time for the Cp ligand.35 The NMR solvents CgDg and C7D8 were purchased from MSD Isotopes. These solvents were dried overnight with activated 4A molecular sieves, vacuum transferred into a reactor bomb, "freeze-pump-thawed" three times and stored in the glovebox. Hexanes and THF were predried over CaH2 followed by distillation from sodium-benzophenone ketyl. Diethyl ether and toluene were distilled from sodium-benzoplTenone ketyl. Microanalyses were performed by Mr. P. Borda of this department. The products resulting from the addition-transfer reactions of Ph2PCl seem to crystallize with a fractional amount of toluene. Therefore, during the calculations of carbon and hydrogen percentages, the amount of toluene present in these compounds was also taken into account. Pumping on the samples under vacuum for 15 hours was not successful in complete solvent removal. Fractional amounts of solvent present in the dried samples was confirmed by *H NMR spectroscopy. Methyllithium (1.4 M solution) in E t 2 0 , bis(Tt 5-cyclopentadienyl)-zirconium(IV)dichloride ( C p 2 Z r C l 2 ) , trimethyltin chloride (Me3SnCl), chloro-diphenylphosphine (Ph2PCl), 3,3-dimethyl-l-butyne (rm-butylacetylene), 1-phenylpropyne (methylphenylacetylene), and 1-phenylethyne (phenylacetylene) were purchased from Aldrich Chemical Co., Inc.. The white residues present in the commercial MeLi were removed by filtration through Celite and the solvent (Et20) was evaporated. The resulting powder was redissolved in a 9:1 mixture of Et20:THF and was standardized against diphenylacetic acid in THF. This solution was stored in a reactor bomb at -10°C. Chloro(alkenyl)bis(rj5-cyclopentadienyl)zirconium(IV) complexes,36 (tri-methylphosphine)(benzyne)bis(r|5-cyclopentadienyl)zirconium(II),14 chlorobis(r|5-43 c y c l o p e n t a d i e n y l ) h y d r i d o z i r c o n i u m ( r V ) , 3 7 l i t h i u m t r i - r e r f - b u t o x y a l u m i n o h y d r i d e 3 8 and 1 - e t h y n y l c y c l o h e x e n e 3 9 were prepared by literature procedures . 3.2 General Procedure 1: Synthesis of (trimethylphosphine)(rj 2-alkyne) bis(ri 5-cyclopentadienyl)zirconium(II) Complexes T h e C p 2 Z r ( a l k e n y l ) C l c o m p l e x w a s d i s s o l v e d i n T H F a n d transferred in to a reactor b o m b . T h e reactor b o m b was then attached to a v a c u u m l i n e and the contents were c o o l e d to - 7 8 ° C . T o the c o o l e d s o l u t i o n , 1 equiva lent o f 0.38 M M e L i so lut ion w a s s y r i n g e d i n s l o w l y under a s t rong f l o w o f a r g o n . A f t e r s t i r r i n g the r e s u l t i n g s o l u t i o n for 15 m i n at - 7 8 ° C , i t w a s a l l o w e d to w a r m up to R . T . and st irred f o r 30 m i n . T h e so lvent ( T H F ) w a s then r e m o v e d under v a c u u m a n d the r e s i d u e w a s extracted w i t h to luene . T h e u n d i s s o l v e d L i C l w a s r e m o v e d b y f i l t r a t i o n t h r o u g h a l a y e r o f C e l i t e . T h e c lear s o l u t i o n was concentrated and transferred into another reactor b o m b to w h i c h an excess o f P M e 3 (10 equiva lents ) w a s a d d e d a n d st i rred f o r 36 hours at R . T . . E v a p o r a t i o n o f the solvent results i n an o i l y m a t e r i a l c o n s i s t i n g o f >80% (by N M R ) o f the z i r c o n i u m a l k y n e c o m p l e x . 3.2.1 Synthesis of (rj5-CsH 5)2Zr(ri2 - tBuC=CH)(PMe3) PMe 3 '-A C p 2 Z r ^ | H lBu 4 T h e f o l l o w i n g reagents w e r e u s e d as d e s c r i b e d i n g e n e r a l p r o c e d u r e 1. C h l o r o [ ( E ) 2 - r e r r - b u t y l e t h e n y l ] b i s ( t | 5 - c y c l o p e n t a d i e n y l ) z i r c o n i u m ( r V ) (0 .85 g , 2.5 44 mmol) dissolved in THF (10 mL), 6.58 mL of 0.38 M MeLi and 2.0 mL (>10 equivalents) of PMe3 were used. Evaporation of toluene at the end of the procedure gave a red, oily material which was dissolved in hexanes. Cooling this solution at -20°C overnight gave a yellow crystalline product (0.8g, 84%). 1H N M R : 8 (C 6D 6, 300 MHz): 0.95 (9H, d, PMe3, J p - H = 5.3 Hz), 1.48 (9H, s, rerr-butyl), 5.33 (10H, d, Cp, J P . H = 1.7 Hz), 7.54 (H A, d, J P . H A = 4.9 Hz) 3 1 P N M R : 8 (C 6D 6, 121.5 MHz): -0.64 (s). " C N M R : 5 (C 6D 6, 75.4 MHz): 16.93 (d, J P.c = 17.7 Hz), 32.96 (s), 38.47 (s), 102.19 (Cp, s), 134.38 (d, J P . C = 30.6 Hz), 196.92 (d, J P . C = 9.8 Hz). Anal. Calcd. for C 1 9 H 2 9 P Z T : C 60.11, H 7.70. Found: C 60.24, H 7.90. 3.2.2 Synthesis of ( T i 5.C 5H 5)2Zr ( T i 2-PhC=CH)(PMe3) The following reagents were used as described in procedure 1. Chloro[(E) 2-phenylethenyl]bis(T|5-cyclopentadienyl)zirconium(IV) (1.01 g, 2.81 mmol) dissolved in THF (20 mL), 7.3 mL of 0.38 M MeLi and 2.2 mL (>10 equivalents) of PMe3 were used. Evaporation of toluene at the end of the procedure gave a red, oily material which, after washing with hexanes and drying, gave a red powder in 85% purity (0.97g, 86%). Thus far this compound has not been isolated in crystalline form. 1H N M R : 8 (C6D6, 300 MHz): 0.96 (9H, d, PMe3, J P - H = 5.9 Hz), 5.31 (10H, d, Cp, J P . H = 1.7 Hz), 7.23 (1H, t, para-Ph), 7.48 (2H, t, meta-Ph), 7.86 (2H, d, ortho-Ph), 8.05 (1H, d, H A, J P . H A = 3.8 Hz). 31P N M R : 8 (C6D6, 121.5 MHz): 0.56 (s). PMe3 H Ph 5 45 3 .2 .3 S y n t h e s i s o f ( T ^ - C s H s h Z r ^ - P h C s C M e M P M e a ) PMe Ph PMe 3 Cp2Zr.^ Me Cp2Zr Me Ph 6a 6b The following reagents were used as described in general procedure 1. Chloro[(E) 2-phenyl-l-methylethenyl]bis(ri5-cyclopentadienyl)zirconium(IV) and Chloro[(E) 2-methyl-l-phenylethenyl]bis(Ti5-cyclopentadienyl)zirconium(IV) (in =4:1 ratio) (0.77 g, 2.06 mmol) dissolved in THF (10 mL), 5.4 mL of 0.38 M MeLi and 1.5 mL (> lOequivalents) of PMe3 were used. Evaporation of toluene at the end of the procedure gave a brownish oil. Attempts to crystallize with a =4:1 mixture of Et20:hexanes gave a white powder in 90% purity (0.74 g, 87%). The ratios of the isomers 6a (major) : 6b (minor) was found to be =2:1 by 3 1P NMR. 1H N M R : 8 (C 6D 6, 300 MHz): Major isomer: 0.81 (9H, d, PMe3, J P . H = 5.8 Hz), 2.59 (3H, d, Me, J P . H = 0.4 Hz), 5.34 (10H, d, Cp, J P . H = 1.6 Hz), 6.73 (2H, d, ortho-Ph), 7.24 (2H, t, meta-Ph), 7.48 (1H, t, para-Ph); Minor isomer: 0.96 (9H, d, PMe3, J P . H = 5.9 Hz), 2.44 (3H, d, Me, J P . H = 1.3 Hz), 5.32 (10H, d, J P = 1.7 Hz), 6.98 (2H, t, meta-Ph), 7.17 (1H, t, para-Ph), 7.61 (2H, d, ortho-Ph). 3 1 P N M R : 8 (C6D6, 121.5 MHz): Major isomer: -3.58 (s); Minor isomer: -0.30 (s). 46 N O E D I F F experiments: ( Q D 6 , 4 0 0 M H z ) : R e s o n a n c e subjected to i r r a d i a t i o n (8) O b s e r v e d enhancements (b) M a j o r i s o m e r 0.81 (PMe3) 5.34 (C5//5) 6.73 (ortho-Ph) 2 .59 (Me) 5.34 ( C 5 / / 5 ) 6.73 (ortho-Ph) M i n o r i s o m e r 0 .96 (PMe3) 5.32 (C5//5) 2.44 (Me) 2.44 (Me) 0.96 (Me) 7.16 (ortho-Ph) 3 .3 General Procedure 2 : Addition-Transfer Reactions of PI12PCI and ( T | 5 - C 5 H 5 ) 2 Z r ( r i 2 - a l k y n e ) ( P M e 3 ) T h e (Tj 5 - C 5 H 5 ) 2 Z r ( r i 2 - a l k y n e ) ( P M e 3 ) c o m p l e x w a s d i s s o l v e d i n toluene and transferred in to a reactor b o m b . O n e equiva lent o f PI12PCI, d i s s o l v e d i n to luene , was added to the contents i n the reactor b o m b and st irred f o r 6 hours at R . T . T h e w h i t e p r e c i p i t a t e (Cp2ZrCl2) w a s r e m o v e d b y f i l t r a t i o n t h r o u g h a l a y e r o f C e l i t e . T h e product w a s c r y s t a l l i z e d f r o m toluene and hexanes at - 2 0 ° C . 47 3.3.1 Synthesis of (Z)-ChIoro[2 -diphenyIphosphino-l- ( l -cyclohexen-l-yl)ethenyl]bis(rj 5 -cyclopentadienyl)zirconium(IV) and ChIoro[(Z) 2-d i p h e n y l p h o s p h i n o-(E)2 - ( l - c y c l o h e x e n - l - y l ) e t h e n y l ] b i s(rj 5 - c y c l o p e n -tadienyl)zirconium(IV) 2 3 The cyclohexenyl enyne complex (T[5-C5H5)2Zr(HC=CC6H9)(PMe3) 1 (0.366 g, 0.91 mmol) was dissolved in toluene (=10 mL) and Ph2PCl (0.2 g, 0.91 mmol), dissolved in (=5 mL) toluene, was added. Workup gave a white crystalline product (0.41 g, 82%). The ratios of the isomers 2 (major) : 3 (minor) was found to be 4:1 by 31PNMR. *H NMR: 8 (C 7D 8, 300 MHz): Major isomer: 1.60 (4H, m), 2.15 (4H, m), 5.46 (H B, m), 5.86 (10H, s, Cp), 7.07 (6H, m, Ph) 7.23 (H A, d, J P . H A = 10.1 Hz), 7.95 (4H, m, Ph); Minor isomer: 1.45 (4H, m), 1.82 (2H, m), 2.28 (2H, m), 5.68 (10H, s, Cp), 5.71 (H B, m), 8.37 ( H A d, J P . H A = 76.1 Hz). 3 1 P NMR: 8 (C7D8, 121.5 MHz): Major isomer: -58.38 (s); Minor isomer: -40.09 (s). " C NMR: 8 (C 7Dg, 75.4 MHz): Major isomer: 22.69 (s), 23.62 (s), 26.46 (s), 28.23 (s), 111.0 (s, Cp), 119.92 (d, J P . C = 46.8 Hz), 128.67 (d, J P . C = 7.9 Hz), 129.44 (s), 132.31 (d, J P . C = 9.4 Hz); Minor isomer: 21.39 (s), 23.13 (s), 48 28.48 (s), 25.63 (s), 110.72 (s, Cp), 128.49 (d, J P . C = 2.9 Hz), 129.76 (s), 132.69 (d, Jp.c = 10.2 Hz). Anal. Calcd. for C3oH3oClPZr.0.4C7H8: C 67.33, H 5.72. Found: C 67.29, H 5.71. NOEDIFF experiments: (C7D8, 400 MHz): Resonance subjected to irradiation (8) Observed enhancements (8) 5.46 (HB) 2.15 (cyclohexene -CH2-) 5.86 (C5//5) 5.86 (C5//5) 7.23 (/f4) 5.46 (//*) 7.95 (ortho-PPh2) 7.95 (ortho-PPh2) 5.86 (C5//5) 7.07 (meta-PPh2) 7.23 (H*) 7.23 (HA) 2.15 (cyclohexen - C H 2 - ) 5.46 (H&) 7.95 (ortho-PPh2) 3.3.2 Synthesis of (Z)-Chloro(2-diphenylphosphino-l-/er/-butyIethenyl) bis(ri 5 -cyclopentadienyl)zirconium(IV) CI 7 49 (Ti5-C 5H5)2Zr(ri 2- tBuCsCH)(PMe3) 4 (0.15 g, 0.4 mmol) was dissolved in toluene (=5 mL) and Ph2PCl (0.09 g, 0.4 mmol), dissolved in (=2 mL) toluene, was added. Workup gave a white crystalline product (0.17 g, 82%). *H NMR: 8 ( C 5 D 6 , 300 MHz): 1.13 (9H, s, CMe3), 5.87 (10H, s, Cp), 7.07 (6H, m, Ph), 7.35 (H\ d, J P . H A = 10.1 Hz), 7.95 (4H, m, Ph). 3!p NMR: 8 (C6D6, 121.5 MHz): -63.77 Hz. " C NMR: 8 (QD6, 75.4 MHz): 32.71 (s, C(CH 3)), 43.49 (s, tert-C), 110.61 (s, C5H5), 121.96 (d, Jp-c = 49.1 Hz), 128.59 (d, J P . C = 8.2 Hz), 129.38 (s), 132.34 (d, J P . C = 9.1 Hz). 136.94 (d, J P . C = 24.3 Hz). Anal. Calcd. for C28H3oClPZr.0.2C7H8: C 65.08, H 5.87. Found: C 65.29, H 6.14. NOEDIFF experiments: (C 6D 6, 400 MHz): Resonance subjected to irradiation (&) Observed enhancements (8~) 1.13 (CMe3) 5.87 (C5//5) 7.35 (H*) 5.87 (C5//5) 1.13 (CMe3) 7.95 (ortho-PPh2) 50 3 . 3 . 3 S y n t h e s i s of ( Z ) - C h l o r o ( 2 - d i p h e n y l p h o s p h i n o - l -phenylethenyl)bis(r j 5 -cyclopentacienyl)zirconiurn(IV) and Chloro[(Z)-2 -d iphenylphosphino - (E )2 -phenyle thenyI )bis ( r| 5 - cyc lopentadienyl )z i r -conium(IV) r i C l Cp2Zr P P h 2 P h 2 \ y Z r C P 2 ) = < > = < A 8 9 ( T i 5 - C 5 H 5 ) 2 Z r ( T i 2 - P h C s C H ) ( P M e 3 ) 5 (0.607 g , 1.53 m m o l ) was d i s s o l v e d i n toluene (=10 m L ) and P h 2 P C l (0.337 g , 1.53 m m o l ) , d i s s o l v e d i n (=5 m L ) toluene, was a d d e d . W o r k u p g a v e a w h i t e c r y s t a l l i n e p r o d u c t (0.63 g , 7 6 % ) . T h e r a t i o o f the i somers 8 (major) : 9 (minor) was f o u n d to be 83:17 b y 3 1 P N M R . t H N M R : 8 ( C 6 D 6 , 300 M H z ) : M a j o r i s o m e r : 6 .12 ( 1 0 H , s, C p ) , 7 .14 (9H, m ) , 7.57 ( 2 H , m ), 7.59 ( H A , d , J P . H A =10.7 H z ) , 8.24 ( 4 H , m , ortho-VPh2)i M i n o r i s o m e r : 5 .99 ( 1 0 H , s, C p ) , 9 .33 ( H A , d , J P . H A = 74.8 H z ) . 3 1 P N M R : 8 ( C 6 D 6 , 121.5 M H z ) : M a j o r i s o m e r : -55 .52 (s); M i n o r i s o m e r : -38 .88 (s). 1 3 C N M R : 8 ( Q D 6 , 75 .4 M H z ) : 110.10 (s, C p o f m a j o r i s o m e r ) , 114.12 (s, C p o f m i n o r i s o m e r ) , 125.32 (s), 126.45 (s), 128.55 (s), 128.75 ( d , J P . C = 8.1 H z ) , 129.59 (s), 132.32 (d , J P . C = 9 .6 H z ) . Anal. Calcd. f o r C 3 o H 2 6 C l P Z r . 0 . 4 C 7 H 8 : C 67 .80 , H 5.07. F o u n d : C 67.68, H 4 .99 . 51 N O E D I F F experiments: (C 6D 6, 400 MHz): Resonance subjected to irradiation (51 6.12(C5//5) 8.24 (ortho-PPh2) Observed enhancements (51 8.24 (ortho-PPh2) 7.43 (ortho-Ph) 6.12 (C5H5) 7 A3 (meta-Pb) 7.59 (//A) 3.3.4 Synthesis of C h l o r o [ ( E)2 - m e t h y l - l - p h e n y l - ( Z)2 - d i p h e n y l -phosphinoethenyl]bis(ri 5 -cyclopentadienyl)zirconium(IV) and Chloro-[1-methyl- (E)2 -phenyl- (Z)2 -di phenyl phosphinoethenyl)bis(ri 5 -cycIo-pentadienyl)zirconium(IV) Cp2Zr pph2 Ph2Pv ZrCp2 >=< >-< Ph CH 3 Ph CH 3 10 11 (ri5-C5H5)2Zr(ri2-PhC=CMe)(PMe3) 6 (0.135g , 0.32 mmol) was dissolved in toluene (=5 mL) and Ph2PCl (0.072 g, 0.32 mmol), dissolved in (=5 mL) toluene, was added. Attempts to crystallize the product were not successful. Adding excess of hexanes to the toluene solution gave a white powder (0.11 g, 62%) containing >70% of the product. The ratio of the two products, 10 and 11, was found to be 56:44 by 3 1P NMR. *H NMR: 5 (C6D6, 300 MHz): 1.73 (3H, d, Me, J P . H = 7.6 Hz), 1.97 (3H, d, Jp-H = 3.9 Hz), 5.79 (s, Cp), 5.80 (s, Cp); Phenyl resonances of both isomers: 6.92 (m), 7.08 (m), 7.24 (m), 7.86 (m). 52 3 1 P NMR: 8 (C6D6, 121.5 MHz): Major isomer: -39.41 (s); Minor isomer: -39.16 (s). 3.4 Synthesis of (Z)-Chloro(l-phenyl-2-trimethyIstannylethenyl)bis-(rj 5 -cyclopentadienyI)zirconium(IV). CpgZr HA >-< Ph SnMe3 1 2 (Tt5-C5H5)2Zr(T|2-PhC=CH)(PMe3) 5 (0.567 g, 1.42 mmol) was dissolved in (=10 mL) toluene and Me3SnCl (0.283 g, 1.42 mmol) was added. The resulting mixture was transferred into a reactor bomb and stirred for 36 hours at room temperature. Removing the solvent (toluene) under vacuum gave an orange oil. Extracting the oil with =35mL of hexanes and cooling it at -20°C overnight gave a yellow crystalline product 12 (0.57 g, 77%). *H NMR: 8 (C 6D 6, 300 MHz): 0.05 (9H, s, SnMe3, JH-Sn = 53.4 Hz), 5.77 (10H, s, Cp), 6.99 (2H, d, ortho-Ph), 7.06 (1H, t, para-Ph), 7.22 (2H, t, meta-Ph), 7.58 (HA s , JH-Sn = 46.9 Hz). 13C NMR: 8 (C 6D 6, 75.4 MHz): -7.27 (s, SnMe3, JC-Sn = 322.4 Hz), 106.91 (s, Jc-Sn = 307.3 Hz), 112.06 (s, Cp), 124.85 (s), 125.87 (s), 128.58 (s), 150.35 (s), 223.13 (s). Anal. Calcd. for C2iH25ClSnZr: C 48.25, H 4.82. Found: C 48.59, H 5.08. 53 N O E D I F F e x p e r i m e n t s : ( C 6 D 6 , 4 0 0 M H z ) : Resonance subjected to irradiation (51 Observed enhancements (&) 0.05 (SnMe3) 6.99 (ortho-Ph) 7.58 (H*) 5.77 (C5 / /5) 6.99 (ortho-Ph) 7.58 (H*) 6.99 (ortho-Ph) 0.05 (SnMe3) 5.77 (C5//5) 7.58 ( / / A ) 0.05 (SnMe3) 5.71 (C5//j) 3 . 5 S y n t h e s i s o f C h I o r o ( 2 - t r i m e t h y l s t a n n y I p h e n y l ) b i s ( r j 5 - c y c l o p e n t a -d i e n y l ) z i r c o n i u m ( I V ) a n d C h l o r o ( 3 - t r i m e t h y l s t a n n y l p h e n y I ) b i s ( r i 5 -c y c I o p e n t a d i e n y l ) z i r c o n i u m ( I V ) ( r j 5 - C 5 H 5 ) 2 Z r ( r i 2 - C 6 H 4 ) ( P M e 3 ) 1 3 (0.17 g . 0 .46 m m o l ) w a s d i s s o l v e d i n (=10 m L ) toluene and M e s S n C l (0.09 g , 0 .46 m m o l ) was added. T h e resul t ing m i x t u r e w a s t ransferred i n t o a reactor b o m b a n d st i rred f o r 36 h o u r s at r o o m temperature . R e m o v i n g the solvent (toluene) under v a c u u m gave a co lor less o i l . D i s s o l v i n g the o i l i n a so lvent m i x t u r e c o n t a i n i n g toluene and hexanes a n d c o o l i n g at - 2 0 ° C o v e r n i g h t gave a w h i t e c r y s t a l l i n e p r o d u c t (0.15 g , 63%) . T h e rat ios o f i s o m e r s 14 (major) : 15 (minor) w a s f o u n d to be 4:1 by lH N M R . Me3Sn 1 4 1 5 54 1 H N M R : 8 (C6D6, 300 M H z ) : M a j o r i s o m e r : 0 .31 ( 9 H , s, S n M e ? , J H -Sn = 49.6 H z ) , 5.87 (10H, s, C p ) , 6.99 (1H, t, J H - H = 7.2 H z ) , 7.16 (1H, t, J H - H = 7.6 H z ) , 7.45 (1H, d, J H - H = 7.2 H z , J H -Sn = 51.0 H z ) , 8.25 (1H, d, J H - H = 7.6 H z ) ; M i n o r i s o m e r : 0 .05 (s, S n M e j , J H - S n = 53.0 H z ) , 5 .84 (10H, s, C p ) , 6 .52 (1H, m ) , 7.04 (2H, m ) , 7.78 (1H, m , J H -Sn = 50.4 H z ) . 13C N M R : 8 ( C 6 D 6 , 75 .4 M H z ) : M a j o r i s o m e r : -6 .07 (s, SnMe3), 112.78 (s, C p ) ; M i n o r i s o m e r : -4.16 (s, S n M e j ) l 14.06 (s, C5H5). 55 R E F E R E N C E S ( 1 ) (a) C o l l m a n , J . P . ; H e g e d u s , L . S.; N o r t o n , J . R . ; F i n k e , R . G . Principles and Applications of Organotransition Metal Complexes; U n i v e r s i t y S c i e n c e B o o k s : M i l l V a l l e y , C A , 1987. (b) Y a m a m o t o , A . Organotransition Metal Chemistry, Fundamental Concepts and Applications; W i l e y : N e w Y o r k , N . Y . , 1986. ( 2 ) D a v i s , S . G . Organotransition Metal Chemistry, Applications to Organic Synthesis. V o l u m e 2 , P e r g a m o n Press L t d , O x f o r d , 1982. ( 3 ) (a) A l t , H . G . ; Enge lhardt , H . E . ; R a u s c h , M . D . ; K o o l , L . B . J. Am. Chem. Soc. 1985, 107, 3716. C o h e n , S. A . ; B e r c a w , J . E . Organometallics. 1985, 4 , 1006. H o f f m a n , M . D . ; H o f f m a n , R . ; F i s e l , C . R . / . Am. Chem. Soc. 1986, 104, 3858 and references there in . ( 4 ) (a) L u k e h a r t , C . M . Fundamental Transition Metal Organometallic Chemistry; B r o o k s / C o l e P u b l i s h i n g C o m p a n y : M o n t e r e y , C A , 1985 ; p p 151-167 . (b) C o t t o n , F . A . ; W i l k i n s o n , G . Advanced Inorganic Chemistry, J o h n W i l e y & S o n s : T o r o n t o , 1988, Chapter 2. ( 5 ) M u r r a y , T . F . ; S a m s e l , E . G . ; V a r m a , V . ; N o r t o n , J . R . J. Am. Chem. Soc. 1981 , 103, 7520 . ( 6 ) A l b e r s b e r g , W . G . L . ; B a r k o v i s h , A . J . ; F u n k , R . T . ; H i l l a r d , R . T . ; V o l h a r d t , K . P . C . / . Am. Chem. Soc. 1975, 97 , 5600 . ( 7 ) N i c h o l a s , K . M . ; Pett i t , R . Tetrahedron Lett.. 1971, 3475 . E x o n , C ; M a g n u s , P . / . Am. Chem. Soc. 1983, 105, 2477 . ( 8 ) H o b e r g , H . ; Schaefer , D . ; B u r k h a r d t , G . / . Organomet. Chem. 1982, 228 , C 2 1 . H o b e r g , H . ; Schaefer , D . ; B u r k h a r d t , G . ; K r u g e r , C ; R a m a o , M . J . J. Organomet. Chem. 1984, 266 , 203 . 56 (9 ) Bennet t , A . M . ; T o s h i k a t s u , Y . J. Am. Chem. Soc. 1978, 100, 1750. Bennet t , A . M . ; H a m b l e y , T . W . ; R o b e r t s , N . K . ; R o b e r t s o n , G . B . Organometallics. 1985, 4 , 1992. ( 1 0 ) K o o l , L . B . ; R a u s c h , M . D . ; Alt, H . G . ; H e r b e r h o l d , M . ; T h e w a l t , U . ; H o n o l d , B . J. Organomet. Chem. 1986, 310 , 27 . C u e n c a , T . ; H e r r m a n n , W . A . ; A s h w i r t h , T . V . Organometallics. 1986, 5 , 2 5 1 4 . ( 1 1 ) N e g i s h i , E . ; C e d e r b a u m , F . E . ; T a k a h a s h i , T Tetrahedron Lett. 1986, 27 , 2829 . ( 1 2 ) N e g i s h i , E . ; S w a n s o n , D . R . ; T a k a h a s h i , T . Chem. Lett. 1987, 623 . ( 1 3 ) B u c h w a l d , S. L . ; W a t s o n , B . T . / . A m . Chem. Soc. 1987, 109, 2544 . ( 1 4 ) (a) B u c h w a l d , S. L . ; L u m , R . T . ; D e w a n , J . C . / . Am Chem. Soc. 1986, 108, 7 4 4 2 . (b) B u c h w a l d , S. L . ; W a t s o n , B . T . / . Am. Chem. Soc. 1986, 108, 7 4 1 1 . ( 1 5 ) F r y z u k , M . D . ; Stone, C ; A l e x , R . F . Tetrahedron Lett. 1988, 2 9 , 3915 . ( 1 6 ) D i C o c i m o , R . ; S o w i n s k i , A . F . ; M o o r e , S . S. ; W h i t e s i d e s , G . M . J. Am. Chem. Soc. 1982, 104, 124. B r u n o , J . W . ; M a r k s , T . J . ; D a y , V . W . / . Am. Chem. Soc. 1982, 104, 7357 . S c h r o c k , L . E . ; B r o c k , C . P . ; M a r k s , T . J . Organometallics. 1987, 6, 232 . W a t s o n , P . L . / . Am. Chem. Soc. 1983, 105, 6 4 9 1 . ( 1 7 ) B u c h w a l d , S. L . ; N i e l s o n , R . B . ; D e w a n , J . C . / . Am. Chem. Soc. 1987, 109, 1590. B u c h w a l d , S. L . ; N i e l s o n , R . B . / . A m . Chem. Soc. 1988, 110, 3171 . ( 1 8 ) N e g i s h i , E . ; H o l m e s , S . J . ; T o u r , J . M . ; M i l l e r , J . A . / . Am. Chem. Soc. 1985, 107 , 2 5 6 8 . N e g i s h i , E . ; S w a n s o n , D . R . ; C e d e r b a u m , F . E . ; T a k a h a s h i , T . Tetrahedron Lett. 1987, 28 , 917 . ( 1 9 ) N e g i s h i , E . ; T a k a h a s h i , T . Synthesis. 1988, 1. ( 2 0 ) V a u g h a n , G . A . ; H i l l h o u s e , G . L . ; L u m , R . T . ; R h e i n g o l d , A . L . ; B u c h w a l d , S. L . /. Am. Chem. Soc. 1988, 110, 7 2 1 5 . ( 2 1 ) C a r r , D . B . ; S c h w a r t z , J . / . Am. Chem. Soc. 1977, 9 9 , 683 . ( 2 2 ) N e g i s h i , E . ; T a k a h a s h i , T . Aldrichimica Acta. 1985, 18, 31 . ( 2 3 ) C a r r , D . B . ; S c h w a r t z , J . / . Am. Chem. Soc. 1979, 101, 3521 . 57 (24 ) N e g i s h i , E . ; B o a r d m a n , L . D . Tetrahedron Lett. 1982, 2 3 , 3327. ( 2 5 ) (a) C a r r , D . B . ; S c h w a r t z , J . J. Organomet. Chem. 1977, 139, C 2 1 . Y o s h f u j i , M . ; L o o t s , M . J . ; S c h w a r t z , J . Tetrahedron Lett. 1977, 1303. ( 2 6 ) F r y z u k , M . D . ; B a t e s , G . S. ; S tone , C . Tetrahedron. Lett.. 1987, 27 , 1537. F r y z u k , M . D . ; Bates , G . S. ; Stone, C . / . Org. Chem. 1987, 52 , 2335 . ( 2 7 ) F a g a n , P . J . ; B u r n s , E . G . ; Ca labrese , J . C . / . Am. Chem. Soc. 1988, 110, 2979 . F a g a n , P . J . ; N u g e n t , W . A . / . Am. Chem. Soc. 1988, 110, 2310 . (28 ) W a i l e s , P . C ; W e i g o l d , H . ; B e l l , A . P . J. Organomet. Chem. 1971, 27 , 373 . ( 2 9 ) L a b i n g e r , J . A . ; H a r t , D . W . ; Seibert III, W . E . ; S c h w a r t z , J . J. Am. Chem. Soc. 1975, 9 7 , 385 . ( 3 0 ) M i t c h e l l , T . N . ; A m a m r i a , A . J. Organomet. Chem. 1985, 256 , 37. (31 ) E r k e r , G . ; D o r f , U . ; C z i s c h , P . ; Peterson, J . L . Organometallics. 1986, 5 , 668 . ( 3 2 ) (a) C o t t o n , F . A . ; W i l k i n s o n , G . Advanced Inorganic Chemistry; J o h n W i l e y & S o n s : T o r o n t o , 1988; p p 265 -304 . (b) R o b e r t s o n , B . K . ; M c P h e r s o n , W . G . ; M a y e r s , E . A . J. Phys. Chem. 1967, 7 1 , 3531 . ( 3 3 ) B r o w n , T . L . ; D i c k e r h o f , D . W . ; B a s o f , G . L . Rev. Sci. Instr. 1962, 33 , 4 9 1 . ( 3 4 ) S i l v e r s t e i n , R . W . ; B o s s i e r , G . C ; M o r r i l l , T . C . Spectroscopic Identification of Organic Compounds; 4th E d . ; W i l e y : N e w Y o r k , N . Y . , 1981. ( 3 5 ) A d a m , M . J . ; H a l l , L . D . / . Organomet. Chem. 1980,186, 289 . ( 3 6 ) (a) H a r t , D . W . ; B l a c k b u r n , T . F . ; S c h w a r t z , J . / . Am. Chem. Soc. 1975, 97 , 679. (b) W e i g o l d , H . ; W a i l e s , P . C ; B e l l , A . P . / . Organomet. Chem. 1971, 27 , 373 . ( 3 7 ) K a u t z n e r , B . ; W a i l e s , P . C ; W e i g o l d , H . J. Chem. Soc, Commun. 1969, 1105. ( 3 8 ) B r o w n , H . C ; F a r l i n , R . F . J. Am. Chem. Soc. 1958, 80 , 5372 . ( 3 9 ) B r a n d s m a , L . Preparative Acetylenic Chemistry; E l s e v i e r : A m s t e r d a m , 1971; p p l 2 7 and 137.