SEDIMENTOLOGICAL ADVANCES CONCERNING THE ELOCCULATIQN AND ZOOPLANKTON PELLETIZATION OF SUSPENDED SEDIMENT IN HOWE SOUND, BRITISH COLUMBIA; A FJORD RECEIVING GLACIAL MELTWATER by JAMES PATRICK MICHAEL SYVITSKI B.Sc. Lakehead Uni v e r s i t y , 1974 H.B.Sc. Lakehead University, 1975 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences and the In s t i t u t e of Oceanography We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1978 copyright J.P.M. S y v i t s k i , 1978 In presenting this thesis in partial fulfilment of the requirements f o r an advanced degree at the University of British Columbia, I ag ree t ha t the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department o r by his representatives. It is understood that copying o r publication o f this thesis for financial gain shall not be allowed without my written permission. Department of q(CJ&-@ The University of British Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1WS Date i i Foolish consistency is the hobgoblin of l i t t l e minds -R.W. Emerson i i i ABSTRACT The study of suspended sediment provides i n s i g h t s i n t o the t r a n s p o r t and accumulation of sediment i n d e p o s i t i o n a l b a s i n s . Past i n v e s t i g a t i o n s have s u f f e r e d , however, from a lack of methodology that can deal w i t h the low concentrations of suspended sediment. The theory and method of three techniques to be used i n the a n a l y s i s of suspended sediment have been out-l i n e d . 1) VSA, provides a r a p i d , accurate and p r e c i s e method of determining g r a i n s i z e d i s t r i b u t i o n s of low weight samples. The method i s based on the s o l u t i o n to a set of equations that d i s c r e t e l y d e f ine the i n c r e a s i n g volume of a homogeneous sediment sample s e t t l i n g i n an enclosed volume of water. The r e s u l t s are i n terms of sedimentation diameters, a hydrodynamically s e n s i t i v e property. 2) The Ag f i l t e r mount provides a f a s t technique f o r a low sample weight random o r i e n t e d mount to be used i n q u a n t i t a t i v e XRD a n a l y s i s . The method has e x c e l l e n t p r e c i s i o n and does not f r a c t i o n a t e the mineral component due to t h e i r s e t t l i n g v e l o c i t y . 3) Suspended sediment c o l l e c t o r s have been used to measure the downward f l u x of sediment i n the f j o r d environment. The traps have a l s o provided a means to c a l c u l a t e the n a t u r a l s e t t l i n g v e l o c i t y of f l o c c u l a t e d or otherwise enhanced p a r t i c l e settlement. Laboratory and f i e l d s t u d i e s have d e a l t w i t h the i n t e r a c t i o n of zooplankton w i t h suspended sediment. Marine zooplankton i n g e s t suspended sediment at a rate dependent on sediment concentration and mineralogy. Ingested mineral p a r t i c l e s undergo chemical and mineral transformations which are f u n c t i o n s of mineralogy, c a t i o n exchange c a p a c i t y and residence i v time i n the d i g e s t i v e t r a c t . Zooplankton f e c a l p e l l e t s have a much l a r g e r s e t t l i n g v e l o c i t y than t h e i r component p a r t i c l e s . This increased s e t t l i n g r a t e allows c l a y to be deposited where the hydrodynamic nature of the environment would only allow coarse s i l t to f i n e sand d e p o s i t i o n . G l a c i a l f l o u r ( f e l d s p a r , quartz, t r i o c t a h e d r a l mica, c h l o r i t e , amphibole, tourmaline, and v e r m i c u l i t e ) enters the s u r f a c e - l a y e r of the Howe Sound f j o r d as a sediment plume which moves q u i c k l y down i n l e t w h i l e slowly mixing w i t h the marine water. Although f l o c c u l a t i o n occurs i n the lower b r a c k i s h water of the s u r f a c e - l a y e r , mixing and d i f f u s i o n are the dominant means f o r sediment to enter the lower-marine-water. Once i n the lower-marine-water, zooplankton p e l l e t i z a t i o n and b i o l o g i c agglomeration of i n o r g a n i c f l o c c u l e s takes p l a c e . These processes that enhance the i n d i v i d u a l p a r t i c l e settlement, generate a f a s t response time between the s u r f a c e - l a y e r and the lower-marine-layer i n terms of sedimentation of p a r t i c u l a t e matter. S e t t l i n g v e l o c i t i e s of p a r t i c l e s l e s s than 1 ym have been enhanced over 1400 times. S i z e d i s t r i b u t i o n s of sediment deposited on the sea-bed are a func-t i o n of v a r i a b l e multimodal and/or non log-normal s i z e d i s t r i b u t i o n s from sub-laminae f a l l i n g through the water column. The in c r e a s e i n d e v i a t i o n away from l o g - n o r m a l i t y down i n l e t , f o r s i z e d i s t r i b u t i o n s of both suspen-ded and deposited sediment, i s an a r t i f a c t of the s i z e a n a l y t i c a l method. V TABLE OF CONTENTS PAGE ABSTRACT i i i TABLE OF CONTENTS v LIST OF TABLES x LIST OF FIGURES x i i ACKNOWLEDGEMENTS xv INTRODUCTION 1 PAPER #1: A DISCUSSION OF GRAIN SIZE DISTRIBUTION USING LOG-PROBABILITY 4 PLOTS Abst r a c t 4 I n t r o d u c t i o n 5 Problem of D e f i n i t i o n s 5 Hydromechanical Processes 7 Sediment F l o c c u l a t i o n Problem 17 Competency Problem 17 Graphic Display of L o g - p r o b a b i l i t y Frequency P l o t s 18 True diameter curve e f f e c t s 18 The p r o b a b i l i t y d i s t r i b u t i o n assumption 19 Po p u l a t i o n p r o b a b i l i t i e s 20 Truncated d i s t r i b u t i o n VS Mixed d i s t r i b u t i o n s 23 Re s o l u t i o n of mixed frequency d i s t r i b u t i o n s i n t o 25 normal (or log-normal) components Concluding Remarks 25 Acknowledgement 27 References 28 v i PAGE PAPER #2: VSA; A NEW FAST SIZE ANALYSIS TECHNIQUE FOR LOW SAMPLE 30 WEIGHT BASED ON STOKES' SETTLING VELOCITY Abstract 30 Introduction 31 Theory of Method 33 Check of Theory 35 The o r e t i c a l Example of a Four-Component System 37 Relation of Volume to Weight 40 F u l f i l l m e n t of the Assumptions of Stokes' Law (1851) 41 Methodology 42 Calcu l a t i o n of the Input for the Computer Analysis 46 Cal c u l a t i o n of Sediment Density 47 VSA Accuracy 48 Conclusion 51 Acknowledgement 56 References 57 PAPER //3: A FAST TECHNIQUE FOR A LOW SAMPLE WEIGHT RANDOM ORIENTED 60 MOUNT TO BE USED IN QUANTITATIVE XRD ANALYSIS Abstract 60 Introduction 61 Methods 61 The Ag f i l t e r mounting technique 61 Materials 63 Testing scheme 63 Diffractogram i n t e r p r e t a t i o n 64 Results 64 Discussion and Summary 67 Acknowledgements 72 References 73 v i i PAGE PAPER #4: THEORY, UTILIZATION AND RELIABILITY OF SUSPENDED SEDIMENT 74 COLLECTORS IN LAKES AND OCEANS Abstract 74 Introduction and Acknowledgement 75 Sediment Trap U t i l i t y 76 Theory of Sedimentation Rates 77 Design and Testing of Traps 81 Accuracy of Trap C o l l e c t i o n 96 Geologic Implications from Sediment Trap Results 99 Conclusion 103 References 106 PAPER #5: INTERACTION OF ZOOPLANKTON WITH SUSPENDED SEDIMENT HO Abstract 110 Introduction 111 Materials and Methods 113 Results 117 Discussion 127 Clay mineral transformations 127 Inorganic p a r t i c l e uptake 136 P e l l e t s e t t l i n g rate 137 Conclusion and Acknowledgement 138 References 140 PAPER #6: FLOCCULATION, AGGLOMERATION, AND ZOOPLANKTON PELLETIZATION 144 OF SUSPENDED SEDIMENT IN A FJORD RECEIVING GLACIAL MELT-WATER Abstract 144 Introduction 145 v i i i PAGE Methods 147 F i e l d procedure 147 Preliminary t e s t i n g of sediment trap 149 Laboratory procedure 149 Size a n a l y t i c a l procedure 150 Scanning electron microscopic analysis 151 X-radiation procedure 151 Results 152 Some physi c a l oceanographic observations 152 Pa r t i c u l a t e matter i n Howe Sound water 155 Preliminary t e s t i n g of sediment trap 165 Sedimentation rates 165 Sediment siz e d i s t r i b u t i o n s 169 Description of marine p a r t i c l e s 174 Analysis of suspended load discharge data 192 Discussion 192 Sediment-plume and oceanography 192 Sedimentation rates 194 Deep water sand flow 195 Size d i s t r i b u t i o n c h a r a c t e r i s t i c s 196 In s i t u s e t t l i n g v e l o c i t y of f j o r d suspensates . 197 Enhancement processes of p a r t i c l e s e t t l i n g 200 Clay mineralogy 206 Summary and Conclusion 208 Acknowledgements 213 References 214 SUMMARY AND CONCLUSION 220 i x PAGE APPENDIX #1: COMPUTER PROGRAM (FORTRAN) FOR VSA METHOD 223 OUTPUT EXAMPLE 228 APPENDIX #2: FIELD DATA BASE ON HOWE SOUND SEDIMENTS 230 Sediment trap data 231 Suspended sediment data 246 Size a n a l y t i c a l data 266 XRD data ' 287 Current data 288 X LIST OF TABLES TABLE 1: Data from G l a i s t e r and Nelson's curves 1: Example of a data sheet of VSA method 2: A x 2 evaluation between before and a f t e r density corrected s i z e d i s t r i b u t i o n s 3: The x 2 test for acceptance between siz e d i s t r i b u t i o n s produced from the VSA and Sedigraph methods 4: The x 2 test for acceptance between two runs of the same sample 1: Results from p r e c i s i o n t e s t i n g of mount methods 1: Table of p r e c i s i o n of past research 2: Quantitative values i n the c a l c u l a t i o n of i n s i t u s e t t l i n g v e l o c i t y of marine p a r t i c l e s 1: V a r i a t i o n i n the egestion rate of Tigriopus for various mineral suspensions 2: Elemental r a t i o s i n d i c a t i n g chemical increases or decreases of the p e l l e t residues compared to the clay standards 3: Comparison of mineral-bearing p e l l e t s e t t l i n g rates and mean p a r t i c l e s e t t l i n g rates and t h e i r equivalent s p h e r i c a l sedimentation diameter 4: P e l l e t f l u x , p e l l e t and t o t a l sedimentation rate deduced from suspended sediment traps positioned i n Howe Sound 1: Mean d a i l y temperature of Om, htm and bottom water 2: Summary s t a t i s t i c s on p a r t i c u l a t e concentrations i n Howe Sound water 3: Sedimentation rates and grain s i z e measures 4: Mineralogy of suspended and sea-bed sediments 5: Quantitative values i n the c a l c u l a t i o n of i n s i t u s e t t l i n g v e l o c i t y of marine p a r t i c l e s x i PAGE 6: Summary of enhancement calc u l a t i o n s on p a r t i c l e s e t t l i n g 203 v e l o c i t y 7: Summary of the l i n e a r r e l a t i o n s h i p s between f i e l d parameters 211 disc l o s e d i n this study Appendix #2: Sediment trap data tables (14) 231 P r e c i s i o n of trap data table (1) 245 Suspended sediment data tables (20) 246 Size a n a l y t i c a l data tables (12) 266 XRD data table (1) 287 Current data table (4) 288 x i i LIST OF FIGURES PAGE PAPER # FIGURE 1 1: C h a r a c t e r i s t i c path of a s a l t i n g grain 9 2: Size d i s t r i b u t i o n i n t e r p r e t a t i o n 21 3: Venn diagram 22 2 1: Log-probability p l o t of a t h e o r e t i c a l sample showing data 36 points used i n the analysis of the theory 2: A VSA accuracy p l o t 38 3: The VSA experimental set-up 43 4: The e f f e c t of density correction on two samples 50 5: Sample comparison between VSA and Sedigraph methods 53 6: The r e p l i c a b i l i t y of two samples 55 7: VSA computer p l o t for one sample 39 3 1: Schematic of Ag f i l t e r mounting apparatus 62 2: Diffractograms of muscovite from both powder and Ag f i l t e r 66 mount 3: Diffractograms of a 0.2-2 ym s i z e f r a c t i o n using both pipette 68 and Ag f i l t e r mount 4: The 0.701 nm to 1.00 nm peak area r a t i o vs. the percent chlo- 69 rite-muscovite matrix for powder mount and Ag f i l t e r mount 5: Diffractograms of a 2-63 ym s i z e f r a c t i o n using both pipette 70 and Ag f i l t e r mount 4 1: E f f e c t of trap t i l t with no current present 80 2: Percent error i n apparent sedimentation rate vs:. h o r i z o n t a l 82 v e l o c i t y at various t i l t angles 3: Percent error i n apparent sedimentation rate vs. h o r i z o n t a l 83 v e l o c i t y at various p a r t i c l e s i z e s 4: E f f e c t of trap t i l t with a h o r i z o n t a l current present 84 x i i i PAGE 5: Trap a r r a y s to e l i m i n a t e t i l t a n g l e 86 6: E f f e c t o f a c l o s i n g l i d above t h e t r a p o r i f i c e 89 7: F a m i l y o f c u r v e s o f s e diment t r a p c a t c h d e f i c i e n c y v s . h o r i - 92 z o n t a l v e l o c i t y a t v a r i o u s p a r t i c l e s i z e s 8: S c h e m a t i c o f dye-gun e x p e r i m e n t w i t h s h i e l d e d and u n s h i e l d e d 93 t r a p s 9: Observed and e x p e c t e d s i z e d i s t r i b u t i o n s f r o m w a t e r and t r a p 101 s e d iment 10: Sub-laminae s i z e f r e q u e n c y d i s t r i b u t i o n s from s e d i m e n t t r a p 104 d a t a 5 1: S c h e m a t i c o f one of 16 aquariums b u i l t t o c o l l e c t i n o r g a n i c 115 p e l l e t s f o r c h e m i c a l and m i n e r a l a n a l y s i s 2: V a r i a t i o n i n the e g e s t i o n r a t e o f T i g r i o p u s f o r c h a n g i n g 120 m i n e r a l s u s p e n s i o n c o n c e n t r a t i o n s . 3: XRD o f m o n t m o r i l l o n i t e s t a n d a r d and p e l l e t r e s i d u e 121 4: XRD o f t r e m o l i t e s t a n d a r d and p e l l e t r e s i d u e 122 5: XRD o f m u s c o v i t e s t a n d a r d and p e l l e t r e s i d u e 123 6: SEM m i c r o g r a p h s o f m i n e r a l - b e a r i n g f e c a l p e l l e t s 129 6 1: L o c a t i o n o f s t u d y a r e a and s a m p l i n g s i t e s 146 2: Temperature v a r i a t i o n s d u r i n g 1977 f i e l d s e a s o n : f o r 154 s t a t i o n s (1) and (2) 3: L i n e a r r e g r e s s i o n s o f IWC, S%», and T°C w i t h d i s t a n c e out 157 from t h e r i v e r mouth 4: D i l u t i o n l i n e s , i . e . , IWC v s . S% 0 158 5: P l o t o f b VS m where b i s the Y - o r d i n a t e and m i s t h e s l o p e 159 o f t h e l i n e a r r e g r e s s i o n o f IWCvs-. S%o 6: S t a t i o n (1) s u r f a c e l a y e r , A p r i l 26, 1977 160 7: V e r t i c a l d a i l y v a r i a t i o n o f IWC and OWC a t s t a t i o n (1) 161 s u r f a c e l a y e r , A p r i l 26, 1977 8: IWC v a r i a t i o n s w i t h t i m e a t s t a t i o n (1) 163 x i v PAGE 9: V e r t i c a l v a r i a t i o n s of IWC and OWC with time at 164 s t a t i o n (1) 10: ISR v a r i a t i o n s with time at s t a t i o n (1) 168 11: Log-probability p l o t s of s i z e d i s t r i b u t i o n s between 170 sediment c o l l e c t e d from traps at 4 l e v e l s , October 31, 1977, s t a t i o n (1) 12: Log-probability p l o t of s i z e d i s t r i b u t i o n s c o l l e c t e d 171 from the 55 m trap at s t a t i o n (1) with time 13: Log-probability p l o t of size d i s t r i b u t i o n s from 172 suspended sediment samples c o l l e c t e d along transect A-K 14: Log-probability p l o t of s i z e d i s t r i b u t i o n s from 173 deposited sea-bed samples c o l l e c t e d along transect A-K 15: Log-probability p l o t of size d i s t r i b u t i o n s from 175 suspended sediment samples c o l l e c t e d on November 1, 1977 16: Cummulative number percent curves of p a r t i c l e diameter 176 through the surface layer 17: SEM of s i l t grains carrying aggregates of clay and 178 organic d e t r i t u s , and clay c l a s t s 18: SEM of mineral-bearing f e c a l p e l l e t s 180 19: SEM of progressive growth of inorganic large grain 182 fl o c c u l e s 20: SEM of c o l l o i d a l f l o c c u l e s 185 21: SEM of inorganic-biogenic agglomerates 187 22: Observed and expected siz e d i s t r i b u t i o n of.deposited 198 sea-bed sediment 23: Observed and expected s i z e d i s t r i b u t i o n s from water 201 and trap samples 24: Schematic of sediment concentration i n upper Howe Sound 212 during a t y p i c a l summer freshet day APPENDIX #2 Log-probability p l o t s of sediment c o l l e c t e d from traps at 267 various l e v e l s and stations (9) XV Acknowledgements I would l i k e to s i n c e r e l y thank Dr. J.W. Murray, i n h i s capacity as thesis supervisor, for continuous moral and f i n a n c i a l support. I am also g r a t e f u l for the i n t e l l e c t u a l stimulus of my research committee: Dr. W.C. Barnes, Dr. A.G. Lewis, Dr. CD. Levings, Dr. L.M. Lavkulitch, Dr. R.L. Chase, and Dr. J.W. Murray. In t h i s respect, Dr. M. Barnes, Dr. J . Milliman and D. Swinbanks are r i g h t f u l l y included. The following s c i e n t i s t s have honourable mention: Dr. J . Luternauer, Dr. A. S i n c l a i r , Dr. C. Pharo, R. Macdonald, A. Hay, M. Bus t i n , L. Smith, and C. Thomas. The following i s an order of merit l i s t : H. Heckle (trap construc-t i o n ) , I. Solomon ( o p t i c a l s i z e a n a l y s t ) , L. Veto (SEM s c i e n t i s t ) , S. Matheson (skipper of the Active Lass), and E. Montgomery (photography). Special thanks go to two b e a u t i f u l people: my wife Kathryn and Gordon Hodge. Gordon provided f i e l d assistance i n f i v e cruises, ably aided i n lab procedures, and s k i l f u l l y provided much of the f i n a l d r a f t i n g i n t h i s t h e s i s . Kathryn, a remarkable lady, provided f i e l d assistance on s i x c r u i s e s , joined i n much of the lab work, performed much of the rough graphing, and typed and re-re-typed the t h e s i s . Ya tebe l u b l u . (In addition to the above acknowledgements, each paper includes i t s own acknowledgement). 1 INTRODUCTION T h i s t h e s i s d e s c r i b e s the s e d i m e n t a t i o n o f suspended s e d i m e n t s i n a g l a c i a l r u n - o f f f j o r d , Howe Sound, B r i t i s h C o l u m b i a . The t h e s i s f o r m a t i s a s e r i e s o f papers t h a t have a d d r e s s e d t h e m s e l v e s t o a s p e c t s o f t h e main i n v e s t i g a t i o n . The problems o f s i z e f r e q u e n c y d i s t r i b u t i o n s a r e d i s c u s s e d on t h e b a s i s o f e m p i r i c a l and t h e o r e t i c a l c o n s i d e r a t i o n s i n p a p e r #1. T h i s d i s c u s s i o n p r o v i d e s t h e f o u n d a t i o n f o r g r a i n s i z e i n t e r p r e t a t i o n i n t h e f o l l o w i n g p a p e r s . One p r o b l e m d e s c r i b e d , t h a t o f sediment f l o c c u l a t i o n , i s s p e c i f i c a l l y d e a l t w i t h i n p a p e r s #4 and #6. Three e x p e r i m e n t a l methods used i n t h e l a s t two p a p e r s a r e d e s c r i b e d i n p apers #2, #3 and #4. One o f the problems i n p a s t s t u d i e s o f suspended s e d i m e n t was a l a c k o f methodology t h a t c o u l d d e a l w i t h t h e low c o n c e n t r a -t i o n s o f p a r t i c u l a t e m a t t e r i n c o a s t a l e n v i r o n m e n t s . The need t o d e t e r m i n e t h e s i z e f r e q u e n c y d i s t r i b u t i o n s i n terms o f e q u i v a l e n t s p h e r i c a l s e d i m e n t a t i o n d i a m e t e r s f r o m v a r i o u s l o w - w e i g h t [R} suspended sediment samples p r e c l u d e s the use of s t a n d a r d S e d i g r a p h — , s e d i m e n t a t i o n b a l a n c e , C o u l t e r Counter , o p t i c a l s i z e a n a l y z e r , p i p e t t e and hydrometer methods. VSA, a r a p i d method o f d e t e r m i n i n g g r a i n s i z e d i s t r i b u t i o n s o f low w e i g h t samples i s o u t l i n e d b o t h t h e o r e t i c a l l y and e x p e r i m e n t a l l y i n p a p e r #2. The method i s based on t h e s o l u t i o n t o a s e t o f e q u a t i o n s t h a t d i s c r e t e l y d e f i n e t h e i n c r e a s i n g volume o f a homogeneous sediment sample s e t t l i n g i n an e n c l o s e d volume o f w a t e r . The r e s u l t s a r e i n terms o f s e d i m e n t a t i o n d i a m e t e r s , a h y d r o d y n a m i c a l l y s e n s i t i v e p r o p e r t y . The a c c u r a c y o f t h e method was d e t e r m i n e d w i t h s t a t i s t i c a l c o m p a r i s o n t o r e s u l t s o b t a i n e d on the S e d i g r a p h Model 5000D. The need f o r a c c u r a t e i n f o r m a t i o n on t h e m i n e r a l o g y o f m a r i n e suspended s e d i m e n t has l e d t o the use o f Ag f i l t e r s i n t h e mounting o f c l a y m i n e r a l s 2 for X-ray d i f f r a c t i o n a n a l y s i s . Paper #3, describes a method using Ag f i l t e r s and determines i t s use i n quantitative clay mineral analysis of low sample weights. The aim of paper #4 i s to: 1) provide a review of the present use of suspended c o l l e c t o r s , 2) present some of the theory behind sedimentation rates as measured by such c o l l e c t o r s , 3) out l i n e some t h e o r e t i c a l consid-erations i n trap design, emphasizing proposals to tes t future trap designs, 4) advance a method f or quantitative and q u a l i t a t i v e evaluation of trap e f f i c i e n c y , based on grain s i z e frequency d i s t r i b u t i o n s , and 5) propose future use of sediment c o l l e c t o r s i n the study of suspended sediment pop-ulations . Laboratory and f i e l d studies dealing with the i n t e r a c t i o n of zooplankton with suspended sediment are described i n paper #5. S p e c i f i c a l l y this study was designed to evaluate 1) the a b i l i t y of zooplankton to ingest autoclaved sediment, 2) the e f f e c t of suspension concentration on the rate of p e l l e t egestion, 3) whether chemical or mineral transformation would occur a f t e r p a r t i c l e s were ingested, 4) the s e t t l i n g v e l o c i t y of mineral-bearing f e c a l p e l l e t s and i t s r e l a t i o n to p e l l e t volume, 5) the e f f e c t of p e l l i c l e removal on mineral-bearing f e c a l p e l l e t break-up, and 6) the sedimentation rate of mineral-bearing f e c a l p e l l e t s n a t u r a l l y produced from pelagic zooplankton c o l l e c t e d from Howe Sound. The l a s t paper (#6), r e l y i n g i n part on the theory, methods, and labor-atory experiments of the preceding f i v e papers, d e t a i l s the sedimentation of suspended sediments i n the f j o r d , Howe Sound. In p a r t i c u l a r , i n s i g h t s into the following unresolved problems were evaluated. 1) How does the suspended sediment load behave upon entry into a fjord? 2) How does the sedimentation rate change throughout the r i v e r freshet? 3) What i s the rel a t i o n s h i p between the s i z e d i s t r i b u t i o n i n the water compared to that 3 c o l l e c t e d by sediment traps? 4) Does the s i z e d i s t r i b u t i o n of the suspended load change from the r i v e r mouth outwards or downwards i n the fjord? 5) By what mechanism do the suspended p a r t i c l e s s e t t l e out - as single p a r t i c l e s , by inorganic f l o c c u l a t i o n , by b i o l o g i c a l i n t e r a c t i o n or by other processes? 6) What are the in s i t u s e t t l i n g v e l o c i t i e s of these p a r t i c l e s ? 7) Do agents that enhance the s e t t l i n g p a r t i c l e s , i f present, influence clay mineral pat-terns along the f j o r d bottom? 8) What i s the clay mineralogy of " g l a c i a l f l o u r " ? 4 A DISCUSSION OF GRAIN SIZE DISTRIBUTION USING LOG-PROBABILITY PLOTS ABSTRACT Separation of sediment process population i s not possible using l o g - p r o b a b i l i t y p l o t s of grain s i z e concentrations, e i t h e r by s i e v i n g or d i r e c t measurement. Sedimentation diameters with other measurable grain parameters should be used. The s i g n i f i c a n c e of l o g - p r o b a b i l i t y p l o t s to i l l u s t r a t e grain s i z e d i s t r i b u t i o n i s s t i l l u n v e r i f i e d . The d i s t r i b u t i o n t a i l s of such p l o t s , though they are more v i s u a l l y accen-tuated, have a propor t i o n a l l y inherent e r r o r . 5 INTRODUCTION Glaister and Nelson (1974) in an important contribution to sedimen-tology, have suggested that log-probability plots are a valuable aid i n facies identification. The significant points in their analysis.are as follows: 1) the relative importance and the sorting of traction, saltation and suspension populations; 2) the place and nature of the junction between the line segments representing the above populations; and 3) the position of the 1-percentile value reflecting stream competency. They suggest that side wall cores and cuttings can be used to determine grain size distributions representative of specific environmental facies. Their conclusions reinforce the earlier work of Visher (1969). We re-spectively suggest that these plots do not show any more meaning than previous plots of grain size distributions, except to accentuate the t a i l s . In addition, we hope to demonstrate, on the basis of empirical and theoretical considerations, that process populations cannot be simply separated. PROBLEM OF DEFINITIONS Grounds for difference of opinion may l i e in the exact definition of sediment populations (i.e., suspended load, total load) and process populations (i.e., saltation, suspension, traction and surface creep). 6 Briggs and Middleton (1965) use the term wash load to represent the f i n e suspended m a t e r i a l that tends to remain i n suspension through the course of stream flow. They define bed-material load as sediment p a r t i -c l e s l a r g e enough to occur on the bed of the stream. Bed load was de-f i n e d by Briggs & Middleton (1965), as the coarse end of the bed-material load, transported by " r o l l i n g , s k i p p ing and s l i d i n g " . The bed load has a l s o been defined by Graf (1971), as t r a c t i o n ( i n c l u d i n g s a l t a t i o n ) pro-cesses a c t i n g on sediment m a t e r i a l , and when i n motion i t i s supported by the non-moving m a t e r i a l . Bagnold (1973) thought that bed load trans-port may be d i s t i n g u i s h e d by no upward impulses imparted to the p a r t i c l e s other than those a t t r i b u t a b l e to successive contact between the p a r t i c l e s and the bed. That p o r t i o n of the bed-material load which i s not the bed load " d i f f u s e s " i n t o the suspended sediment and i s termed the suspended load (Briggs and Middleton, 1965). The use of suspended load interchangeably and synonymously with wash load should be avoided. The wash load i s u s u a l l y caused by bank erosion whereas the suspended load i s derived by channel er o s i o n (Graf, 1971). In h i s d e f i n i n g equations Graf equated t o t a l load with bed-material load. He Is c a r e f u l to d i s t i n g u i s h that t o t a l load i s not the bed-material load when wash load i s included. The wash load (Graf, 1971) i s composed of g r a i n s i z e s f i n e r than the bulk of the bed m a t e r i a l and i s thus r a r e l y found i n the bed. E i n s t e i n (1950) suggested that the l i m i t i n g s i z e of the wash load and bed m a t e r i a l load may be chosen q u i t e a r b i t r a r i l y as the g r a i n diameter of which 10% of the bed mixture i s f i n e r . Suspended load p a r t i c l e s are continuously supported by the f l u i d turbulence. The d i v i s i o n between the suspended load and the bed load i s not c l e a r , i f i t e x i s t s ( E i n s t e i n et a l . , 1940). The d i s t i n c t i o n between 7 them i s l a r g e l y s t a t i s t i c a l (Bagnold, 1973). Suspended bed load p a r t i c l e s are ultimately part of the bed load. Graf (1971) notes•(from f i e l d observa-tions) that the quantity of suspended material (plus wash load) generally i s l a r ger than that of the bed load. The r a t i o of bed load to t o t a l load i s lower i n lowland streams than i n mountain streams. HYDROMECHANICAL PROCESSES We propose to define some of the hydraulic processes i n order to c l a r i f y the r o l e of p h y s i c a l sediment parameters. Traction i s a process of r o l l i n g and s l i d i n g . In some instances i t includes the s a l t a t i o n process i n the form of jumps so small that a d i s -persive stress i s "not" set up to any extent. The term surface creep implies that s a l t a t i o n i s n e g l i g i b l e , therefore surface creep i s synonymous with t r a c t i o n . Visher (1969; a f t e r Moss, 1963) used the phrase "a t r a c t i o n carpet of s a l t a t i n g grains". This compound terminology may be understood i n r e l a t i o n s h i p to the hydrous environment as the bed load where grains r o l l and s l i d e i n m i c r o t r a j e c t o r i e s or jumps. The s a l t a t i o n here, could not be that which produces dispersive stress due to parabolic t r a j e c t o r y c o l l i s i o n s as w i l l be defined l a t e r . Visher (1969) also used the term surface creep to mean a process re l a t e d to coarse grains, t h i s being separate from the " t r a c t i o n carpet...". The d e s c r i p t i o n of t h i s mechanism i s vague and should be avoided or redefined. If the grain shape i s constant, a large grain with l e s s density than a smaller grain might s a l t a t e f i r s t . This i s due to the greater hydraulic l i f t forces acting on i t . Also, a tabular or angular grain may s a l t a t e sooner than a s p h e r i c a l grain which i s more able to r o l l . Bagnold (1973) 8 observed that contemporaneous to s a l t a t i o n , grains of i d e n t i c a l diameter were found to use t r a c t i o n transport ( r o l l i n g and s l i d i n g ) , I t was not indicated whether t h i s was due to grain shape, grain density, or s t a t i s -t i c a l equilibrium i n such an environment. He noted, however, that r o l l i n g over a rough bed may be regarded merely as i n c i p i e n t s a l t a t i o n . Thus, a s t r i c t grain s i z e boundary between the t r a c t i o n population and the s a l t a -t i o n population, as suggested by G l a i s t e r and Nelson (1974) i s not war-ranted . G i l b e r t (1914) described the bounding motion of grains as s a l t a t i o n . Bagnold (1941) v i s u a l i z e d the grains i n s a l t a t i o n moving l i k e c o l l i d i n g ping-pong b a l l s . " I n i t i a l l y , the grain has a very large upward v e l o c i t y , w^ , and a small forward v e l o c i t y u^; however, during the subsequent f l i g h t , i t s forward motion i s increased owing to a supply of energy from the f l u i d , the upward v e l o c i t y diminishes and i s i n balance with the gravity forces at a c e r t a i n l e v e l from the ground, and eventually the l a t t e r take over e n t i r e l y " ( F i g . 1). Thus, a parabolic t r a j e c t o r y path was postulated. Bagnold (1968) redefined s a l t a t i o n as successive c o l l i s i o n s r e s u l t i n g i n a dispersive s t r e s s . The dispersive stress depends on the rate of shear, the grain s i z e , the mass and concentration of the s o l i d s , and the v i s c o -s i t y of the f l u i d . The stress supports the bed load, against gravity, as a dispersed cloud and maintains the dispersion i n a state of s t a t i s t i c a l equilibrium. His experiments showed the dispersive stress to increase as the square of the grain s i z e . E i n s t e i n and El-Samni (1949) and B i s a l and Nielsen (1962) showed that the instantaneous force, rather than the average l i f t force, should be applied when e s t a b l i s h i n g a motion c r i t e r i o n for s a l t a t i n g grains. A f t e r the p a r t i c l e has experienced the i n i t i a l upward force, i t s motion i n water and a i r appears to be b a s i c a l l y the same, and Figure 1. Characteristic path of a salting grain (after Bagnold, 1941). 10 d i f f e r s only i n degree. In a i r , the height of v e r t i c a l r i s e i s up to 1000 grain diameters and the downstream range i s correspondingly l a r g e . In aqueous environments, the v e r t i c a l path r i s e r a r e l y exceeds a few grain diameters and the whole c h a r a c t e r i s t i c path i s extremely short. K a l i n s k i (1942) held both shear stress and p a r t i c l e s i z e constant i n h i s experiment and showed the height of jump, j , to be given by: _ k ^ S p e c i f i c gravity of the p a r t i c l e J i I S p e c i f i c gravity of the f l u i d where i s an empirical constant. Taking buoyancy into account, the geometric values of the c h a r a c t e r i s t i c path w i l l be 1:1,200 for water to a i r . The f l u i d drag being greatly increased for s a l t a t i o n i n water ex-plains why the chain reaction i s absent (Bagnold, 1973). Hydraulic engi-neers and dynamic sedimentologists thus s a f e l y conclude that s a l t a t i o n , as a separate mode of sediment transport i n water, i s unimportant. They s t i l l include i t s e f f e c t , however minor, i n the equation of bed load motion. Bagnold (1941) found the t o t a l sand transport i n a i r was ^ 75% by s a l t a t i o n and the remainder was by surface creep ( t r a c t i o n ) . The t o t a l sand movement, g s t> under these conditions i s given by: , K ( 5 ) r / 2 ! A K where i s an empirical constant, g i s the acceleration due to gravity, D i s mean grain diameter, T q i s the shear s t r e s s , and i s the a i r density. Bagnold (1968) describes wind-blown sand, as opposed to dust, to be wholly 3/2 K A g 1/2 (2) 11 transported as bed load. The fines had already been carried away in sus-pension by winds of normal strength and dispersed over wide areas downwind, leaving the unsuspendable material behind. The relatively massive salta-ting grains in motion disturb the sand bed by their impacts and cause the bed to behave as a moving boundary at the threshold of movement. This only occurs in water at extremely high flow velocities. Suspension transport occurs when the turbulence intensity is equal or greater than the settling velocity. Briggs and Middleton (1965) give the diffusion equation the form: dC C W = -e - r ^ - (3) s s dy where C is the sediment concentration, s W i s the settling velocity of the particles of size D, and E is the sediment diffusion coefficient, s The right-hand side of the equation represents the rate of vertical sedi-ment diffusion due to turbulence, while the left-hand side represents the rate of settling. The bed load movement as defined by White (1940) has the form: t c = C pp' g D tan (4) where x is the c r i t i c a l bottom shear stress, c 0^ is the constant of grain packing, p' is the difference in density between flu i d and particle, D is the grain diameter or median diameter of particles in a mixture, and <|> is the angle of repose of the grains. 12 The g r a i n i s e n c l o s e d i n t u r b u l e n t f l o w , w i t h t h e f l u i d a c t i n g t h r o u g h t h e c e n t r e o f g r a v i t y o f t h e p a r t i c l e . E i n s t e i n (1942, 1950) n o t e s t h a t t h e b e g i n n i n g and t h e end o f t h e p a r t i c l e m o t i o n has t o be e x p r e s s e d w i t h t h e co n c e p t o f p r o b a b i l i t y . T h i s c o n c e p t r e l a t e s i n s t a n t a n e o u s hydrodynamic l i f t f o r c e s t o t h e p a r t i -c l e w e i g h t . H i s a n a l y s e s f o r bed l o a d e q u a t i o n s e x c l u d e s a l l p a r t i c l e s f i n e r t h a n 10% o f t h e bed m a t e r i a l , w h i c h f i l l t h e p o r e s between l a r g e r ones, p l u s a l l o f t h e bed m a t e r i a l moving i n s u s p e n s i o n . D e p o s i t i o n R ate i s g i v e n by: (AjD) (5 k 2 D a ) A L k 2 D l f 6 ( 5 ) ( E i n s t e i n , 1950) where A^D i s the. l e n g t h o f t h e i n d i v i d u a l s t e p o f each g r a i n o f d i a m e t e r D, g g i s t h e bed l o a d r a t e , i i s the.bed l o a d f r a c t i o n i n a g i v e n g r a i n s i z e , g i i s t h e r a t e , .at which, t h e .given s i z e moves t h r o u g h t h e u n i t w i d t h s s pe r u n i t t i m e , 6 p k 2 D 3 i s t h e w e i g h t o f a s i n g l e p a r t i c l e , A^ i s a c o n s t a n t o f t h e bed l o a d u n i t s t e p , k 2 i s t h e c o n s t a n t o f p a r t i c l e volume, and 6p i s t h e p a r t i c l e s s p e c i f i c g r a v i t y . E r o s i o n R ate i s g i v e n by: V k p ' t 2 — ( 6 ) ( E i n s t e i n , 1942) e where i ^ i s t h e f r a c t i o n o f t h e bed m a t e r i a l i n a g i v e n g r a i n s i z e , k^ i s t h e c o n s t a n t o f t h e g r a i n a r e a , 13 i ^ / k ^ D 2 i s the number of p a r t i c l e s D i n a u n i t area of bed s u r f a c e , p / t g i s the p r o b a b i l i t y of removal, and t i s the exchange time. t . « — = k 3 e W d Dp, 8 ( p p - p f ) 1/2 ( 7 ) ( E i n s t e i n , 1942) where k 3 i s a time s c a l e constant, p^ i s the f l u i d d e n s i t y , and Pp i s the p a r t i c l e d e n s i t y . The p r o b a b i l i t y of e r o s i o n (p e) depends upon hydrodynamic l i f t and p a r t i c l e weight: p e = f c t e f f e c t i v e weight of p a r t i c l e hydrodynamic l i f t ( 8 ) ( E i n s t e i n , 1942) or P P = f c t 2k 2(p - p f ) g D: C L k l p f ° 2 U b where CT i s the l i f t c o e f f i c i e n t , U ^ j i s the e f f e c t i v e v e l o c i t y (at the edge of the laminar sub l a y e r i f the w a l l i s smooth), U b^11.6 U A % 11.6 /gR^S t h e r e f o r e Pe = f c t 2K 2 ( p - P f ) 8 D; C L P f k 1D 2(135 gR' hS) J ( 9 ) ( E i n s t e i n , 1942) Pe = f c t 2K 2(p - p f ) D (135) k : C L p fR' hS 14 where R'^ is the hydraulic radius with respect to the grains, and S is the channel slope. The results of our study of definitions and hydromechanical processes are as follows: a) total load = bed material load + wash load (Graf, 1971) b) bed material load = bed load + suspended load c) wash load - 10% total load (Einstein, 1950) d) suspended load > bed load (in stream transport) e) traction (aqueous environment) = surface creep (air environment) f) since saltation is negligible in stream transport (equation (1)) then traction load = bed load (aqueous environment) g) in air 75% of bed material load (total load) - saltation load and 25% of the bed material load - surface creep (traction) load h) saltation should be defined as the formation of dispersive stress due to parabolic trajectories and their accompanying collisions of particles i) grain size decrease does not reflect the gradation of traction to saltation to suspension due to overlapping of these process populations The following points (j to o) relate the equations of mechanical processes in terms of direct or indirect measureable parameters from a given sediment sample. j) from equation (2) total sand movement in the air varies directly with the square root of the mean grain diameter and inversely with i the square root of the air density k) from equation (3) the diffusion of sediment suspension varies 15 d i r e c t l y w i t h the sediment s e t t l i n g v e l o c i t y 1) from equation (4) the c r i t i c a l bottom shear s t r e s s v a r i e s d i r e c t l y w i t h d e n s i t y d i f f e r e n c e between f l u i d and p a r t i c l e times the g r a i n diameter m) from equation (5) the stream d e p o s i t i o n r a t e v a r i e s i n v e r s e l y w i t h the p a r t i c l e s p e c i f i c g r a v i t y times the g r a i n diameter to the f o u r t h power n) from equations (6 & 7) stream e r o s i o n r a t e v a r i e s i n v e r s e l y w i t h the p a r t i c l e s i z e to the 5/2 power times the square root of the f l u i d d e n s i t y over the f l u i d d e n s i t y d i f f e r e n c e o) from equations (8 & 9) the p r o b a b i l i t y of e r o s i o n v a r i e s d i r e c t l y w i t h the p a r t i c l e - f l u i d d e n s i t y d i f f e r e n c e times the g r a i n s i z e and i n v e r s e l y w i t h the f l u i d d e n s i t y Thus, g r a i n s i z e r e f l e c t s h y d r a u l i c and a e o l i a n processes only i n r e l a t i o n s h i p to other p h y s i c a l parameters and i n a n o n - l i n e a r form. This complicates the task of r e l a t i n g g r a i n s i z e (curve shapes) to the n a t u r a l environment. From Table I , compiled from G l a i s t e r and Nelson (1974), we should see f o r stream environments A, B, C and D that the s a l t a t i o n load would be n e g l i g i b l e and the suspended load would be greater than the t r a c t i o n l o a d . Not one sample s a t i s f i e d both c o n d i t i o n s . Dune deposits should show s t r i c t l y a bed l o a d , comprising a s a l t a t i o n load w i t h a magnitude about three times that of the t r a c t i o n l o a d . Again, t h i s c o n d i t i o n i s not s a t i s -f i e d . We have not considered mature beach, i n t e r d i s t r i b u t a r y beach, and t i d a l f l a t d eposits due to c o n f l i c t i n g r e p o rts on the water t r a n s p o r t of sediments i n these environments. We assume th a t the s a l t a t i o n p o p u l a t i o n would be low and the suspension p o p u l a t i o n h i g h , as i s shown by the work of 16 Z of Saaple Environment Sample # Tract ion Sa l ta t ion Suspension A Braided Stream N 966 70 4 26 Deposits N 962 97 3 N 974 94.5 5.5 G 1044 72 1 25 G 1146 51 4 40 BPP 878 50 20 24 BPP 879B 11 7e 8 N 962B 30 21 48 G 754 9 86 2 B Foint Bar G 1217 1.5 94.5 2 Deposits G 1218 97 3 G 1219 86 11 G 1057 96 3.5 G 1059 95 4 G 1061 85 6 G 1009 80 17 G 1010 80 12 C Stream-Houth G 1149 93 5 Deposits G 1150 3 89 3 G 1148 1 85 9 G 1025 98 1 G 1026 80 15 G 1024 70 20 D Distr ibutary M 30 50 23 25 Channel Deposits M 29 91 7 M 31 24 59 14 E Interdistr ibutary G 1042 93 5 Beach Deposit G 1144 93 6 ? Mature Beach G 1033 94 5 Deposits G 1030 92 7 G 1051 83 7 G 1048 79 13 G 1049 60 30 G T ida l F lat G 1064 76 22 Deposits G 1062 50 40 K Dune Deposits G 1034 3 95 1 G 1328 94 2 Table 1. Data from G l a i s t e r and Nelson's curves. 17 Inman and Bagnold (1966). Two other areas which warrant d i s c u s s i o n are as f o l l o w s : 1. Sediment F l o c c u l a t i o n Problem Some suspended p a r t i c l e s may not s e t t l e f o r a lon g time. F l o c c u l a t i o n occurs i n the f i n e r grade s i z e s under c e r t a i n p h y s i c o -chemical c o n d i t i o n s , producing more r a p i d sedimentation ( E i n s t e i n and Krone, 1961). The r e d u c t i o n of r e p u l s i v e f o r c e s between p a r t i c l e s may take p l a c e by an i n c r e a s e i n i o n i c s t r e n g t h such as occurs when a f r e s h water source meets a s a l i n e environment ( i . e . , i n an e s t u a r y ) . A t t r a c t i v e f o r c e s take over i f the r e s i d u a l charges on the c l a y m i n e r a l s are s a t i s f i e d . Brownian motion, i n t e r n a l shear motion, and d i f f e r e n t i a l s e t t l i n g are a l l causes of p a r t i c l e c o l l i s i o n . Once the f l o e s have formed they s e t t l e out at t h e i r new, higher v e l o c i t y . Smaller f l o e s u s u a l l y j o i n the l a r g e f l o e s . The r e s u l t of f l o c c u l a t i o n would be to i n c r e a s e the s i z e of the f i n e p o r t i o n of the suspended load and probably cause a non-log normal p o p u l a t i o n that could be b i -modal. T h i s i s p a r t i c u l a r l y important f o r marine s i l t and c l a y s i z e a n a l y s i s . 2. Competency Problem T h i s problem i s p a r t i c u l a r l y important f o r low energy environments where s i l t and c l a y are the major c o n s t i t u e n t s . Competency of a f l o w path r e f e r s to the maximum s i z e of p a r t i c l e s of a given s p e c i f i c g r a v i t y which w i l l move at a given stream v e l o c i t y . Sundborg (1936) noted t h a t below g r a i n diameters of 0.10 mm, greater v e l o c i t y i s needed to erode i n c r e a s i n g l y f i n e r c o n s o l i d a t e d s i l t and c l a y . When the bottom sediment i s f i n a l l y eroded, the fragments are not commonly tr a n s p o r t e d as i n d i v i d u a l g r a i n s . Instead clumps of t h i s cohesive 18 sediment are given up to the bed load i n the form of stable mud c l a s t s . In consolidated sediment many c l a s t s are hard to recognize. Through mechanical analysis the sample i s generally broken down to i t s i n i t i a l s i z e components. Thus the larger c l a s t s which could r e f l e c t competency of the stream would be discounted and a f a l s e value using G l a i s t e r and Nelson's (1974) one-percentile system would r e s u l t . Another danger i n using t h i s value to r e f l e c t stream competency i s found when studying coastal environments. Often the a v a i l a b l e p a r t i c l e s are f i n e r than p a r t i c l e s that would r e f l e c t the l o c a l a v a i l a b l e energy. Here the largest of the ti n y p a r t i c l e s would have an implied competency value many times lower than the r e a l value of competency. GRAPHIC DISPLAY OF LOG-PROBABILITY FREQUENCY PLOTS True Diameter Curve E f f e c t s The expression of s i z e i n terms of sedimentation ( f a l l ) diameters, i s necessary, rather than diameters measured d i r e c t l y or by s i e v i n g . This step was not taken by G l a i s t e r and Nelson (1974) when t h e i r grain s i z e d i s t r i b u t i o n s were used to demonstrate hydromechanical processes. The sedimentation diameter i s the diameter of a sphere of s i m i l a r den-s i t y and f a l l v e l o c i t y to that of a sediment p a r t i c l e i n the same f l u i d . Briggs and Middleton (1965) point out that the f a l l diameter of p a r t i -cles i s more d i r e c t l y related to t h e i r hydraulic behaviour. F a l l diame-ters tend to be log normally d i s t r i b u t e d . Deviations from l o g normality obtained by si e v i n g (or t h i n section grain s i z e evaluation) may be la r g e l y the differe n c e between s i e v e - s i z i n g and hydraulic s i z i n g . F l u i d properties, grain s i z e , s p e c i f i c gravity and grain shape a l l a f f e c t the f a l l v e l o c i t y by d i s p l a c i n g the equilibrium condition between the weight 19 of the grain and the c o e f f i c i e n t of drag. P a r t i c l e shape i s usually underplayed by geologists i n i t s r o l e i n the hydrodynamic processes. I t i s usually only crudely estimated by techniques approximating the p a r t i c l e ' s t r i a x i a l grain dimensions. Graf and Acaroglu (1966) note that there i s no u n i v e r s a l l y accepted d e f i n i -t i o n of grain shape. Lane and Carlson (1954) note that i n suspensions, smaller more sp h e r i c a l p a r t i c l e s can s e t t l e out at the same rate as larger, less s p h e r i c a l p a r t i c l e s . In t r a c t i o n transport, the converse occurs where la r g e r , more s p h e r i c a l p a r t i c l e s are moved along with smaller, l e s s s p h e r i c a l p a r t i c l e s . Both cause an intermixing of popu-l a t i o n s . The P r o b a b i l i t y D i s t r i b u t i o n Assumption Bagnold (1968) states the problem as "the question of what form of s i z e d i s t r i b u t i o n would a deposit tend to take under conditions which remain constant with time has not yet been answered". He further stated that the natural d i s t r i b u t i o n i s commonly assumed to be an error or p r o b a b i l i t y d i s t r i b u t i o n , and a whole system of c l a s s i f i c a t i o n has grown up based on t h i s a r b i t r a r y assumption. "The extreme grades, which appear of p a r t i c u l a r importance i n the transport process, are i n the great majority of analyses present i n greater proportions than proba-b i l i t y would suggest." He p l o t s a normal error p r o b a b i l i t y curve -bx y = ae of parabolic shape, and compares t h i s to a nearly hyperbolic grain s i z e d i s t r i b u t i o n for wind-blown sands. Water transported ma-t e r i a l i s not known to behave i n the same manner. E i t h e r the s i z e i n t e r v a l s are too large, or the extreme grades have been discarded as of no s i g n i f i c a n c e , or excessive scatter shows the analysis to be un-20 r e l i a b l e . A s i m i l a r tendency towards a power-law grading decrement exi s t s f o r water-transported material, e s p e c i a l l y on the coarse side of the curves (Bagnold, 1968). Population P r o b a b i l i t i e s Linear segments of l o g - p r o b a b i l i t y p l o t s were claimed by G l a i s t e r & Nelson (1974) to represent populations deposited by d i f f e r e n t mechani-c a l processes: t r a c t i o n , s a l t a t i o n and suspension ( i . e . , three d i s t i n c t truncated normal d i s t r i b u t i o n s ) . This postulate makes the mathematical assumption that these populations are mutually exclusive. We question t h e i r a b i l i t y to segregate that portion of a d i s t r i b u t i o n deposited from a single transport process. This conclusion was also independently reached by Shea (1974). In r e a l i t y , the bed material load or population i s tranported by three processes. The bed load population i s trans-ported by t r a c t i o n and s a l t a t i o n , and the suspended load i s transported by suspension and s a l t a t i o n . The wash load alone i s a separate popula-t i o n by being a subset of the suspended load. Thus, each sediment popu-l a t i o n cannot be equated from a s i n g l e process. The process population cannot be separated from the sediment population as shown by l i n e a r segments of log p r o b a b i l i t y p l o t s ( F i g . 2). Figure 3 demonstrates t h i s point with a Venn diagram. Middleton (1976) provides the f i r s t attempt at d i r e c t evidence to prove the Visher (1969) hypothesis. He avoided l a b e l l i n g the l i n e segments of p r o b a b i l i t y plots with process populations i n favour of sediment populations. The bed load population was a l l o c a t e d to the l i n e segment for coarse grain sizes and the term intermittent suspension f o r the middle l i n e segment. He used only average siz e d i s t r i b u t i o n s of bed 2 1 Process Population CZ3 traction A l \1 saltation B I 1 suspension C let U = union Total load = n(AUBUC) = p+q + r+s+t+u + w Bed material Ioad = n(AUB)= p+t+-s + w+q + u (note here the subset r (wash load) of the suspension population is missing) Bed load = n(A) = p+s + t+w (note here only minor contr ibut ions of populations Band C) Suspended load = n (C)=r+t+w+u (note here only minor contributions of populations A and B) Figure 3. Venn diagram. K 3 23 material for a given environment and noted that the l o c a t i o n of trunca-ti o n points for i n d i v i d u a l samples was highly v a r i a b l e . The average d i s t r i b u t i o n was thought to r e f l e c t the dominant modes of sediment trans-port, i . e . , intermittent suspension ( i n a f l u v i a l environment). The i n d i v i d u a l d i s t r i b u t i o n s may possibly r e f l e c t the mechanism of transport that took place j u s t before deposition, i . e . , the bed load. These statements suggest that a f t e r averaging the i n d i v i d u a l samples containing truncated populations, the averaged d i s t r i b u t i o n w i l l have t o t a l l y new processes assigned to i t s truncated populations. Even a f t e r assuming the p o s s i b i l i t y of truncated normal d i s t r i b u t i o n s these statements remain puzzling. Although we agree that using experimental data i s a step i n the r i g h t d i r e c t i o n , the p r e c i s i o n of the data should be greatly improved (Middleton, 1976). Truncated D i s t r i b u t i o n s vs. Mixed D i s t r i b u t i o n s What i s the meaning and importance of truncation points? Middleton (1976) thought that the truncation points were r e l a t e d to (A) source, (B) mechanical breakage, and (C) hydraulic s o r t i n g . G l a i s t e r and Nelson (1974) placed importance on the truncation points being the beginning and ending of process populations f o r each sample. Middleton (1976) placed importance on the truncation points as the beginning and ending of sediment populations f o r average d i s t r i b u t i o n s i n each depositional environment. Shea (1974) placed importance on the truncation points (breaks) for the average d i s t r i b u t i o n of many depositional environments to the general patterns of breakage of parent material ( i . e . , a combina-tio n of A and B). Those who advocate the truncated population hypothesis must be c e r t a i n that no mixing has occurred between the populations. Only i n c e r t a i n modern environments may th i s be poss i b l e . In dealing 24 with paleo-environments though, (as i n the case of samples taken from w e l l cuttings) truncation of populations cannot be assumed. For i n -stance, when a beach sand i s blown landward, at what distance does the d i s t r i b u t i o n lose i t s o r i g i n a l s i z e d i s t r i b u t i o n c h a r a c t e r i s t i c s . The t r a n s i t i o n a l stage could be quite large and would evoke a mixed popula-t i o n . Tanner (1964) strongly advocated simple mixing among environments. Three of h i s p o s s i b i l i t i e s f o r one regime are: (a) a shelf area fed by two streams, each of which d e l i v e r s a sediment load having d i s t i n c t i v e s i z e parameters; (b) the mixing of a stream flow component and a wave erosion component; and (c) the mixing of two d i f f e r e n t hydrodynamic regimes. There are a c t u a l l y many examples of environments where sediment mixing can occur. They could be classed i n t o three categories: a) True mixing - the mixing of two (or more) depositional environ-ments . An example would be the mixing of wind blown sediment with a hydrous sedimentary environment ( l a c u s t r i n e , f l u v i a l , marine, or estuarine). b) T r a n s i t i o n a l mixing - the change of a depositional environment. This type of mixing would involve the completion of one form of transport and the beginning of a new form of transport (such as the previously mentioned beach deposit to dune deposit). c) Single Mode mixing - energy fluctuations i n any one depositional environment. An example would be deposition on a r i v e r bed, l a t e r p a r t i a l erosion during a high discharge, and f i n a l l y a second deposition with subsequent mixing of the two d i s t r i b u -tions before b u r i a l . 25 Resolution of Mixed Frequency D i s t r i b u t i o n s into Normal (or log-normal) Components Tanner (1964) notes that there are many methods that can be used i n the analysis of zig-zag curves. Some of these are graphical ( S i n c l a i r , 1976), some of these are arithmetic (Tanner, 1959) and some of these are p r i m a r i l y a combination of experience and i n t u i t i o n (Tanner, 1964). Most of G l a i s t e r and Nelson's (1974) d i s t r i b u t i o n s are unimodal and do not show i n f l e x i o n at the truncation points. In well sorted populations mixed with one or more minor and poorly sorted populations (as G l a i s t e r and Nelson's curves i n d i c a t e ) , and i f population overlap i s s l i g h t , b i - or t r i - m o d a l i t y would r e s u l t , with i n f l e x i o n s at the truncation points (Mundry, 1972). If the d i s t r i b u t i o n s are made up of non-truncated log-normal components, then overlap between populations must be considerable. Swinbanks (1975) used an adaptation of Harding's (1949) graphical technique for s p l i t t i n g frequency d i s t r i b u t i o n s into normal components. He s p l i t a 3 - s t r a i g h t - l i n e segment d i s -t r i b u t i o n from a coastal dune sample from Crescent Beach, F l o r i d a , using data published by Visher (1969). The r e s u l t was two log-normal populations, a ma-j o r (93%) well sorted population, and a minor (7%) very poorly sorted popula- . t i o n . The overlap of the two d i s t r i b u t i o n s i s large and the t a i l ends of the p l o t consist of the minor populations' coarse and f i n e ends. CONCLUDING REMARKS The approximate abundances of t r a c t i o n , s a l t a t i o n and suspension pop-ula t i o n s are known for stream and a i r transport. G l a i s t e r and Nelson's (1974) curves from l o g - p r o b a b i l i t y p l o t s -of grain s i z e do not r e f l e c t these abundances. We conclude that these populations are intermixed during transportation as bed load, bed material load and suspended load. Separation of sediment pro-cesses from these mixed populations would be extremely complicated even i f 26 r a t i o s of measureable parameters from a given sediment sample are used. Den-s i t y , grain shape and surface texture should be used i n addition to grain s i z e i f mechanical processes and t h e i r intermixed loads are to be separated. Sed-imentation diameters should be used instead of the d i r e c t or sieving methods. The diameter of the p a r t i c l e s i n the aforementioned equations of mecha-n i c a l processes i s not always i n a l i n e a r form. The r e s u l t a f t e r changing the diameters to logarithmic values from such non-linear data would be to produce d i s t r i b u t i v e c o e f f i c i e n t s ( i . e . , x,y,z, i n x Log D + y Log D + z Log D). The c o e f f i c i e n t s from these equations of mechanical processes could cause over-lapping of t h e i r logarithmic values. The r e s u l t i s not c l e a r . The use of l o g - p r o b a b i l i t y p l o t s has many problems. F i r s t , the assump-t i o n that grain s i z e d i s t r i b u t i o n behaves as a p r o b a b i l i t y d i s t r i b u t i o n func-t i o n i s s t i l l not v e r i f i e d . The idea that these p l o t s show mutually exclusive events or processes has been contested. Possibly the t a i l s represent part of j u s t one process, but the errors here are larges t on these p l o t s . The error siz e should be a warning to those assigning much value to the l i n e segment slope and the truncation points. The r e s u l t of d i v i d i n g the log d i s t r i b u t i o n comprised of three l i n e segments in t o log-normal components gives e i t h e r two, three or no decipherable populations. The l i n e segments then, are due to the representation of intermixed sediment populations r e s u l t i n g from mechanical processes of the system studied. Their separation cannot be e a s i l y accom-pl i s h e d on the basis of present grain s i z e a n a l y s i s . 27 ACKNOWLEDGEMENT We would l i k e to thank Dave Swinbanks for a graduate seminar at U.B.C. re l a t e d to t h i s topic and the ensuing class discussion. 28 BIBLIOGRAPHY Bagnold, R.A., 1941, Physics of blown sand and desert dunes. Methune and Co., London, 265 p. , 1968, Depo s i t i o n i n the Process of H y d r a u l i c t r a n s -p o r t : Sedimentology, v. 10, p. 45-56. , 1973, The nature of s a l t a t i o n and of 'bed-load' t r a n s p o r t i n water. Proc. R. Soc. Lond. A., v. 332, p. 473-504. B i s a l , F., and N i e l s o n , K., 1962, Movement of S o i l P a r t i c l e s i n S a l t a -t i o n : Can. J . S o i l S c i . , v. 42, p. 81-86. Br i g g s , L . I . and Middleton, G.V., 1965, Hydromechanical p r i n c i p l e s of sediment s t r u c t u r e formation: Society Econ. Paleon. M i n e r a l . S p e c i a l P u b l . , no. 12, p. 5-16. E i n s t e i n , H.A., 1942, Formulas f o r the Tra n s p o r t a t i o n of Bed-Load: Trans. Am. Soc. C i v i l Engns., v. 107, p. 561-597. , 1950, The Bed-Load Function f o r Sediment Transpor-t a t i o n i n Open Channel Flows: U.S. Dept. A g r i c , S o i l Conserv. Serv., T.B. no. 1026, p. 1-71. , Anderson, A.G., and Johnson, J.W., 1940, A D i s t i n c -t i o n Between Bed-Load and Suspended Load i n N a t u r a l Streams: Trans. Am. Geophys. Union, v. 21, p. 628-633. , and El-Samni, E.S., 1949, Hydrodynamic Forces on a Rough W a l l : Rev. Mod. Phys., v. 21, no. 3, p. 520-524. , and Drone, R.B., 1961, E s t u a r i a l Sediment Transport P a t t e r n s : Proc. Am. Soc. C i v i l Engrs., v. 87, p. 51-60. G i l b e r t , G.K., 1914, The Tra n s p o r t a t i o n of Debris by Running Water. U.S. Geol. Sur. Pr o f . Paper 86, 263 p. G l a i s t e r , R.P., and Nelson, H.W.,*1974, G r a i n - s i z e D i s t r i b u t i o n s , An A i d i n Facies I d e n t i f i c a t i o n : B u l l . Can. Pet. Geol., v. 22, p. 203-240. Graf, W.H., 1971, Hyd r a u l i c s of Sediment Transport, Chapter 9 - The T o t a l Load: McGraw-Hill, p. 203-212. , and Acaroglu, E.R., 1966, S e t t l i n g v e l o c i t i e s of n a t u r a l g r a i n s . I n t e r n a t l . Assoc. S c i . Hydrology B u l l . , v. 11, p. 27-43. Harding, J.P., 1949, The use of p r o b a b i l i t y paper f o r g r a p h i c a l analyses of polymodal frequency d i s t r i b u t i o n s : Jour. Marine B i o l . Assoc., v. 28, p. 141-153. 29 Inman, D.L., and Bagnold, R.A., 1966. Part I I . L i t t o r a l Processes. The Sea, M.N. H i l l (ed.), v. 3, p. 529-553. K a l i n s k e , A.A., 1942, C r i t e r i a f o r Determining Sand-Transport by Surface-Creep and S a l t a t i o n : Trans. Am. Geophys. Union, v. 23, p. 639-643. Lane, E.W., and Car l s o n , E.J., 1954, Some observations on the e f f e c t of p a r t i c l e shape on the movement of coarse sediments: Trans. Am. Geoph. Union, v. 35, p. 453-462. Middleton, G.V., 1976, H y d r a u l i c i n t e r p r e t a t i o n of sand s i z e d i s t r i b u -t i o n s . J . Geol. v. 84, p. 405-426. Moss, A.J., 1963, The p h y s i c a l nature of common sandy and pebbly de-p o s i t s . Part I I : Am. Jour. S c i . , v. 261, p. 297-343. Mundry, E., 1972, On the R e s o l u t i o n of Mixed Frequency D i s t r i b u t i o n s i n t o Normal Components: Mathematical Geology, v. 4, no. 1, p. 53-60 Shea, J.H., 1974, D e f i c i e n c i e s of c l a s t i c p a r t i c l e s of c e r t a i n s i z e s . J . Sed. Pe t r o l o g y , v. 44, p. 985-1003. S i n c l a i r , A.J., 1976, A p p l i c a t i o n s of p r o b a b i l i t y graphs i n mi n e r a l e x p l o r a t i o n . Assoc. E x p l . Geochem. Spec. V o l . #4, 95 p. Sundborg, Ake, 1936, The River K l a r a l v e n , a Study of F l u v i a l Processes: Geografiska Annaler, v. 38, p. 127-316. Swinbanks, D.B., 1975, A Sedimentological Study of 3 Sedimentary c y c l e s of the C a l c i f e r o u s Sandstone s e r i e s at Pittenweem. H.B.Sc. t h e s i s , St. Andrews U n i v e r s i t y , Scotland, p. 75-79. Tanner, W.F., 1959, Sample components obtained by the method of d i f -ferences. J . Sed. Pet r o l o g y , v. 29, p. 204-211. , 1964, M o d i f i c a t i o n of sediment s i z e d i s t r i b u t i o n s . J . Sed. Pet r o l o g y , v. 34, p. 156-164. V i s h e r , G.S., 1969, Grain s i z e d i s t r i b u t i o n s and d e p o s i t i o n a l processes: J . Sed. Pet r o l o g y , v. 39, p. 1074-1106. White, CM., 1940, The e q u i l i b r i u m of gra i n s on the bed of a stream: Roy. Soc. London, Proc. Ser. A, v. 179, p. 322-338. 30 VSA: A NEW FAST SIZE ANALYSIS TECHNIQUE FOR LOW SAMPLE WEIGHT BASED ON STOKES' SETTLING VELOCITY Abstract A new technique, VSA, provides a rapid, accurate and precise method of determining the grain s i z e d i s t r i b u t i o n of low weight samples. I t s name, VSA, stands for Volume Size Analysis. The apparatus i s inexpensive, requires no maintenance, and i s portable. The r e s u l t s are provided i n sedimentation diameters. A set of equations that d i s c r e t e l y define the increasing volume of a homogeneous sediment sample s e t t l i n g i n an en-closed volume of water i s solved to adequately approximate the continuous d i s t r i b u t i o n . The f i n a l d i s t r i b u t i o n i s i n terms of weight percent when bulk densities of disc r e t e s e t t l e d volumes are calculated. This c a l c u l a -t i o n was shown to have only a marginal e f f e c t on the grain s i z e d i s t r i b u -t i o n of samples having means greater than 3 ym. 31 Introduction The need to determine s i z e d i s t r i b u t i o n s from various low-weight CD suspended sediment samples precludes the use of standard Sedigraph , sedimentation balance, pipette and hydrometer methods. The new s i z e analysis method proposed here, VSA (Volume Size A n a l y s i s ) , centers on the s o l u t i o n to equations that d i s c r e t e l y define the increasing volume of a homogeneous sediment sample s e t t l i n g i n an enclosed volume of water. This s o l u t i o n has not been previously published. Oden (1915, 1924) was the f i r s t to define the problem of a homo-geneous sample s e t t l i n g i n an enclosed aqueous medium; his theory f u r -nishes the foundation for a l l future s e t t l i n g s i z e analysis methods (Krumbein and P e t t i j o h n , 1938). The s o l u t i o n for Oden's experimental setup, the Oden Balance, u t i l i z e d tangents to the Oden curve (weight of accumulated sediment VS s e t t l i n g v e l o c i t y ) , and resulted i n a cumulative frequency curve. Because Oden's method depends on the sample being uni-modal, the system quickly f e l l out of use. More modern methods of si z e analysis include: the s e t t l i n g tube, i n which a coarse sediment sample i s introduced at the top of the s e t t l i n g medium and the rate of increase of s e t t l e d sediment volume i s d i r e c t l y r e l a t e d to the s i z e d i s t r i b u t i o n of the sample p a r t i c l e s (Van Veen, 1936; Emery, 1938; Poole, 1957); the sedimentation balance, with which an increase i n weight rather than volume i s recorded (Douglas, 1946; Planked, 1962; Van Andel, 1964; Sengupta and Veenstra, 1968; F e l i x , 1969; and Gibbs, 1974); and the rapid sediment analyzer (RSA), which measures the pressure d i f f e r e n t i a l i n a column of water produced by sediment s e t t l i n g through a measured distance (Ziegler et a l , 1960; Schlee, 1966; Bascomb, 1968; Sanford and Swift, 1971; Nelson, 1976). The photoextinction method was developed to measure l i g h t i n t e n s i t y 32 through t u r b i d water r e l a t i n g the ra t e of c l e a r i n g to the s e t t l i n g of the sample (Ross, 1953; J a l v i t e and Paulus, 1956; Simmons, 1959; McKenzie, 1963; Jordan et a l . , 1971; Niitsuma, 1971; T a i r a and S c h o l l e , 1977). In a l l of these methods, except Oden's, the sample i s introduced as a u n i t at the top of the s e t t l i n g medium. Convection currents are u s u a l l y set up, g i v i n g s l i g h t l y erroneous s e t t l i n g v e l o c i t i e s (Poole, 1957; Kuenen, 1968; and Gibbs, 1972). The cost of equipment f o r these methods i s h i g h , and a l l of them r e q u i r e a sample of 2 - 10 g (Galehouse, 1967). Many of these methods are only appropriate f o r a n a l y s i s of sand, although some newer methods ( T a i r a and S c o l l e , 1977) can analyze both coarse and f i n e f r a c t i o n s . A l l of these methods give t h e i r g r a i n s i z e data i n terms of sedimentation diameters, a hydrodynamically s e n s i t i v e property (Wadel, 1934; Poole, 1957; Middleton, 1967; Sengupta and Veenstra, 1968; T a i r a and Schoole, 1977; S y v i t s k i and Murray, 1977). VSA, the method proposed here, was designed f o r r a p i d a n a l y s i s of s i l t and c l a y , and solves the Oden curve w i t h a pyramidal set of equations, thus a l l o w i n g a n a l y s i s of mulitmodal samples. I t i s cheap, r e q u i r i n g only an inexpensive c l i n i c a l - t y p e c e n t r i f u g e using c o n i c a l 15-ml 0tubes. Only 100 mg of sample i s r e q u i r e d compared w i t h a minimum of 5 g f o r the hydro-meter or p i p e t t e method. Since the a n a l y s i s i s f a s t (four samples per 85 minutes when used down to a 0.45 ym s i z e ) . t h e r e i s no-need f o r keeping sam-pl e s i n a water bath i f the water s e t t l i n g medium i s i n i t i a l l y at room tem-perature. Other methods such as the sedigraph (Gandin and Fuerstenau, 1961; O l i v i e r et a l . , 1970, 1971), the C o u l t e r Counter (McCave and J a r v i s , 1973; Walker et a l . , 1974; S w i f t et a l . , 1972), and the o p t i c a l s i z e analyzer (Schubel, 1972) can compete i n accuracy and speed of a n a l y s i s , but t h e i r cost i s h i g h . The sedigraph a l s o needs a 3 g minimum, and although the 33 Coulter Counter ^ and o p t i c a l s i z e analyzer only need a few mg, t h e i r r e s u l t s are not i n terms of sedimentation diameters. Theory of Method If p a r t i c l e s i n a uniform suspension are allowed to s e t t l e i n a tube, then at a given time T ( i ) the volume Va(i) accumulated at the bottom of the tube w i l l depend on the volume of sediment coarser than s i z e x ( i ) - the s i z e which s e t t l e s the length of the tube i n time T ( i ) - plus contributions of the f i n e r s i z e p a r t i c l e s , with the contributions being dependent on t h e i r s e t t l i n g v e l o c i t y : i . e . , x ( i ) o Va(i) = [ f(x).dx + f ' x ( i ) I f f f i y . ' OO' ^ x ( i ) Term 1 Term 2 (1) where f(x) i s the grain s i z e frequency d i s t r i b u t i o n of the sample and f'(x) i s the s e t t l i n g time of any given s i z e 'x'. In r e a l i t y , of course, the grain s i z e d i s t r i b u t i o n does not extend to i n f i n i t e sizes nor does i t extend to zero s i z e , but the above i s the general equation for any grain s i z e d i s -t r i b u t i o n . Equation (1) simply states that the sediment accumulation Va(i) i s equal to the cumulative volume percent ( f i r s t term) coarser than x( i ) with s e t t l i n g time T ( i ) plus the time dependent f r a c t i o n s (second term) of the f i n e r s i z e s . The method uses d i s c r e t e rather than continuous readings and equation (1) can be approximated by a function of d i s c r e t e sizes: N V(x)-T(i) v a ( 1 ) . . j v ( x ) + ( 2 ) Term 1 Term 2 34 where Va(i) = Total volume accumulated by time T ( i ) ; T(x) = S e t t l i n g time f or s i z e (x); V(x) = To t a l volume of sediment between sizes equivalent to s e t t l i n g time T(x-l) and T(x) ; N = To t a l number of readings. From t h i s , i f V c ( i ) i s the volume change between any time T ( i - l ) and T( i ) then V c ( l ) = £v(i) " ^ y 1 ' V(i)J + [TCi) - T ( i - i a ' Term 1 Term 2 Term 3 Here the change i n volume V c ( i ) f or any time T ( i ) i s equal to the t o t a l amount of p a r t i c l e s that have s e t t l i n g times between T ( i ) and T ( i - l ) (given as V ( i ) i n term 1), minus the amount of these same p a r t i c l e s that have previously s e t t l e d (given as ( T ( i - l ) / ( T ( i ) ) • V ( i ) i n term 2), plus the time dependent fr a c t i o n s of the other volumes of f i n e r grain sizes (given as term 3). For example, the l a s t volume increase Vc(N), i s given by Vc(N) = V(N) - T ^ - l > . V(N) (4) Term 1 Term 2 where volume V(N) having taken the longest time to s e t t l e makes up the l a s t contribution to the cumulative s e t t l e d volume, by an amount that i s depen-dent on the t o t a l amount with the s e t t l i n g times between T(N-l) and T(N) ( f i r s t term) minus the amount that has previously s e t t l e d (second term). A pyramid set of equations combining the separate constituents can now be set up to give an end product that can be v i s u a l l y seen i n an experiment. As the number of readings, N, increases towards i n f i n i t y , equation (2) be-gins to approximate equation (1). I f the volume increases, V c ( i ) , are known and the i n d i v i d u a l volumes of any given p a r t i c l e s i z e V(i) are 35 not, then by rearranging the equations given i n (3), a s o l u t i o n to such a set of pyramid equations can be obtained. In the s o l u t i o n the l a s t constituent volume to s e t t l e out, V(N) (smallest p a r t i c l e s i z e ) , must be solved f i r s t and then by back s u b s t i t u t i o n one can solve for V(N-l) and so on to V ( i ) . Equation (4) can be e a s i l y rearranged to give: V ( N ) = T(N) - (T(N-1) ' V C ( N > ( 5> With each new i t e r a t i o n of ( i ) a new term i s added such that N . V(i) = [Vc(i) - (T(i)>- T ( i - l ) ) -l V(x)/T(x)] • T ( 1 ) _ T C 1 - 1 ) <6> which i s a set of equations given by (3) rearranged to solve for the discrete p a r t i c l e volumes V ( i ) . Check of Theory Figure 1 shows a log p r o b a b i l i t y p l o t of a t h e o r e t i c a l log normal d i s t r i b u t i o n . Four sets of data from this sample were solved by equation (3) to ind i c a t e how the resultant s e t t l e d volumes would be read i n an ex-periment. The f i r s t data set was an N = 4 component system. Four par-t i c l e diameters were used with t h e i r accompanying weight percent read off the y-axis. The weight percents were converted to volumes (ml), assuming a constant p a r t i c l e density with a given weight. The s e t t l i n g times were calculated from p a r t i c l e diameters using Stokes' law. The other sets of data had N = 8, N = 12, and N = 22, r e s p e c t i v e l y . These values were recombined to bring them back i n t o a four-component system for comparison. Figure 2 shows how the readings would be under each component system i f the volumes read during the experiment corresponded to the s e t t l i n g time of the four preset p a r t i c l e s e t t l i n g times. Accur-acy increases, but tends to even out a f t e r N = 12. VSA uses an N = 16 3 6 P A R H C t E S I Z E ( / j m ) Figure 1. A l o g - p r o b a b i l i t y p l o t of a t h e o r e t i c a l sample showing points used i n the analysis of the theory. 37 system f o r such a p a r t i c l e s i z e range. Although more readings of Vc(i) could be taken during the experiment, the volume increase would soon become lower than the accuracy of detection, e s p e c i a l l y for very small sample weights. F i -gure 2 also indicates that the value of Vc(i) decreases as N goes to i n f i n i t y , for the fine end of the s i z e d i s t r i b u t i o n . This means that the resultant v o l -ume of any given s i z e i n t e r v a l on the fine end V( i ) should increase as the number of readings increases, with the converse being true for the coarse end of the s i z e d i s t r i b u t i o n (Fig. 2). To increase the v a l i d i t y of an N = 16 system the log midpoint time values between readings for the r e c i p r o c a l T values i n equation (3) can be used. By reasoning that the increase of s e d i -ment between any two times i s a function of some mid-time i n t e r v a l , not the end time, j u s t i f i e s this approximation. Also, since grain s i z e data approxi-mate a log normal d i s t r i b u t i o n , the midpoint should be the log time midpoint, which i s equivalent to the log size midpoint i f Stokes' Law applies. Figure 17, a computer pl o t of an actual sample, shows that the better approximation only s l i g h t l y a l t e r s the o r i g i n a l s o l u t i o n . Theoretical Example of a Four-Component System Step 1 - I n i t i a l Combining (Experimental Results) Vc ( l ) - f i f i • V(A) + f i f i • V(B) + |f§ • V(C) + f i f } • V(D) vc(2) - I f i i g p i • V(B) + Xt2g|« • , ^ ; C ) • V(D) 24 Figure 2. A VSA accuracy plot demonstrating that as the number of components (readings off the theoretical sample) increases, the closer the discrete equations approximate the con-tinuous distribution. Figure 7. VSA computer p l o t f o r sample Kam 14. 40 Step 2 - Subsequent S o l u t i o n V(D) V(C) V(B) V(A) T(D) T(D)-T(C) Vc(3) V c ( 2 ) V c ( l ) -•- V c ( 4 ) T(C)-T(B) T(D) T(B)-T(A) T(C) T(A) T(D) V(D) V(C) T(A) T(C) T ( C ) - T ( B ) T(B)-T(A) • V(D) - f(£y ' V(C) -T(D) T(A) T(B) V V(D) • V(B) T(B) T ( B ) - T ( A ) T h i s s o l u t i o n o n l y h o l d s i f t h e sample c o n s i s t s of o n l y f o u r d i s c r e t e s i z e s . Step 3 - B e t t e r A p p r o x i m a t i o n V ( D ) * = T ( D ) * — T(C) m,n\ * V c ( 4 ) where T ( D ) * i s t h e l o g m i d p o i n t between T(D) and T(C) , V ( D ) * i s the new volume ( b e t t e r a p p r o x i m a t i o n ) V ( C ) * = V ( B ) * = V c ( 3 ) -V c ( 2 ) -T ( C ) - T ( B ) 1 T(D) * T ( B ) - T ( A ) V ( A ) * = V c ( l ) -T ( C ) * T(A) . V ( D ) * • V ( C ) * T ( C ) * T ( C ) * - T(B) f T ( B ) - T ( A ) T(D) * V ( D ) * T(A) T ( C ) * T(D) * • V ( C ) * V(D): T(B) * T ( B ) * - T(A) T(A) T(B) * V(B)' R e l a t i o n o f Volume t o Weight E a r l i e r works have d e m o n s t r a t e d t h a t t h e volume of m a t e r i a l s e t t l i n g o u t cannot be d i r e c t l y c o n v e r t e d t o w e i g h t o f m a t e r i a l s e t t l i n g o u t . T r a s k (1930) found t h a t i n any p a r t i c u l a r sample t h e b u l k d e n s i t y i s p r a c t i c a l l y c o n s t a n t f o r a l l c o n s t i t u e n t s i n t h e s i l t range (5 - 50 um). Meade (1964) c i t e s many r e f e r e n c e s t o show t h a t as c l a y p a r t i c l e s d e c r e a s e i n s i z e , v o i d r a t i o ( p o r o s i t y ) i n c r e a s e s . Our e x p e r i m e n t s have c o r r o b o r a t e d b o t h c o n c l u s i o n s . Skempton (1953) has a l s o shown t h a t p o r o s i t y ( v o i d r a t i o ) d e c r e a s e s i n c l a y s and c o l l o i d a l c l a y s as t h e e f f e c t i v e o v e r b u r d e n p r e s s u r e i n c r e a s e s . S i n c e 41 VSA u t i l i z e s a centrifuge for the clay end of the siz e spectrum there i s i n essence an increase i n e f f e c t i v e overburden pressure due to the high angular acce l e r a t i o n . This s t i l l does not increase the bulk density of the f i n e clay f r a c t i o n s enough to equal the bulk density of the s i l t f r a c t i o n . Thus, as given i n the method below, a c a l i b r a t i o n experiment must be run on samples to determine the density of the sediment f r a c t i o n coarser than 6 ym and those fr a c t i o n s f i n e r than 6 ym. In a given environment, the co r r e c t i o n factors have been found to remain constant. If one i s not sure that such a s i m p l i s t i c assumption can be made for an area, then the time involved i n checking every sample only increases the t o t a l experimental time by 20%. F u l f i l l m e n t of the Assumptions of Stokes' Law (1851) (1) The p a r t i c l e must be s p h e r i c a l , smooth, and r i g i d , and there should be no s l i p p i n g between i t and the medium. When water and natural sediments are used, both the slippage and r i g i d i t y conditions are s a t i s f i e d (Arnold, 1911). Natural p a r t i c l e s are seldom spheres but that i s why the term 'sedimentation diameter' has come into use. Sedimentation diameter i s the diameter of a sphere having the same s p e c i f i c gravity and terminal s e t t l i n g v e l o c i t y as a given n a t u r a l p a r t i c l e under i d e n t i c a l s e t t l i n g conditions. (2) The medium may be considered homogeneous i n comparison to the s i z e of the p a r t i c l e . Water molecules are very small compared to p a r t i c l e s i z e (Krumbein and P e t t i j o h n , 1938). (3) The p a r t i c l e should f a l l as i t would i n a medium of unlimited extent. Although the tube diameters i n the present study are 2 cm, the w a l l e f f e c t s are s t i l l n e g l i g i b l e (Arnold, 1911; Krumbein and P e t t i j o h n , 1938). (4) P a r t i c l e s must have reached terminal f a l l v e l o c i t y . For s i l t and clay p a r t i c l e s t h i s condition i s reached almost i n s t a n t l y (Weyssenhoff, 1920). 42 (5) P a r t i c l e s must be greater than 0.1 ym (Galehouse, 1971). This i s neces-sary to avoid the e f f e c t s of Brownian motion of f i n e p a r t i c l e s . (6) P a r t i c l e s must be no greater than 50 ym i n diameter. Rubey (1933) noted that the observed s e t t l i n g v e l o c i t y of natural sediments d i f f e r s l i t t l e from the t h e o r e t i c a l l y determined Stokes values up to about 140 ym. The upper l i m i t f o r the VSA apparatus i s at 62 ym. Gibbs et a l . (1971) have developed an equation that calculates s e t t l i n g v e l o c i t y f o r the ent i r e range of grain s i z e s . I f VSA i s to be converted for sand a n a l y s i s , t h i s equation must be used. (7) P a r t i c l e concentration must be le s s than 1%. I r a n i and C a l l i s (1963) showed that p a r t i c l e s i n t e r f e r e with each other's s e t t l i n g path when the concentration exceeds 1%. VSA uses le s s than the 1% p a r t i c l e cut-off concentration. In summary, a l l assumptions have been s a t i s f i e d using the VSA technique. Methodology The samples are f i r s t treated with ^ 0 ^ to remove organic matter, so 3 that p a r t i c l e density can be assumed to be 2.65 g/cm . The treated samples are dr i e d , weighed and transferred to graduated 15 ml centrifuge tubes. The weight of the samples must be less than 0.3 g with a lower l i m i t of 50 mg (most samples i n t h i s report averaged 100 to 150 mg, thus decreasing the r i s k of p a r t i c l e i n t e r f e r e n c e ) . The tubes must be able to withstand at l e a s t 3300 RPM. The s e t t l i n g medium (water) contained 0.05% C a l g o n ^ as a dispersing agent. The samples are then dispersed (two minutes i n a vortex mixer + two minutes i n an u l t r a s o n i c bath, and handshaken j u s t before each experiment). The tubes are placed i n a frame with camera mount (Fig. 3) and the experiment begins with T = 0. Using a stopwatch, a photograph i s taken at predetermined time i n t e r v a l s . The l i g h t i n g consisted of a f l a s h l i g h t bulb behind each tube Figure 3. The VSA experimental setup. 44 and a 40 w a t t i n c a n d e s c e n t b u l b i n f r o n t . The camera was an SLR w i t h a 50 mm macro l e n s . The f i l m used was ASA 125 Kodak P l u s - X . The t i m e i n t e r v a l s de-pend on t h e s i z e f r a c t i o n s d e s i r e d . An example o f a d a t a s h e e t ( T a b l e 1) g i v e s t h e e l a p s e d time f o r p h o t o g r a p h s t o g i v e s e t t l i n g t i m e s a p p r o x i m a t e l y e q u i v a -l e n t t o 0.45, 1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 28, 32, 40, 48, and 64 um p a r t i c l e s i z e s . The t e m p e r a t u r e must a l s o be r e c o r d e d f o r each e x p e r i m e n t a l r u n , as s e t t l i n g time i s a f u n c t i o n o f f l u i d v i s c o s i t y w h i c h i n t u r n i s a f u n c t i o n o f t e m p e r a t u r e . E l e v e n p i c t u r e s a r e t a k e n i n a 48-minute p e r i o d ( t o the 6 ym t i m e e q u i v a l e n t ) ; t h e t u b e s a r e t h e n t r a n s f e r r e d t o a c l i n i c a l c e n t r i f u g e , w i t h an a p p r o p r i a t e head, w h i c h was c a l i b r a t e d w i t h a s t r o b o s c o p e . F i v e p i c t u r e s t a k e n o v e r t h r e e c e n t r i f u g e speeds (780, 2345 and 3300 RPM) complete t h e a n a l y s i s . , A f t e r each c e n t r i f u g e r u n t h e t u b e s a r e t a k e n o u t and t h e s e d i m e n t l a y e r i s f l a t t e n e d by t o u c h i n g each tube w i t h a v i b r o - e n g r a v i n g t o o l , t h e n r e t u r n e d t o t h e r a c k so t h a t t h e p i c t u r e may be t a k e n . S e t t l i n g d u r i n g p h o t o graphy a t t h i s s t a g e has been c a l c u l a t e d t o be n e g l i g i b l e , as o n l y t h e v e r y f i n e p a r t i c l e s i z e r e m a i n s . A f t e r t h e f i l m has been d e v e l o p e d t h e n e g a t i v e i s p l a c e d between two g l a s s s l i d e s , v i e w e d under a m i c r o s c o p e h a v i n g a c a l i b r a t e d o c u l a r , and the c u m u l a t i v e h e i g h t o f the s ediment from t h e tube b o t t o m i s r e a d and r e c o r d e d (Table 1).. The h e i g h t s a r e changed by t h e computer program t o volumes ( m l ) . S i n c e t h e t e s t tubes used i n t h i s e x p e r i m e n t have t r u n c a t e d cone-shaped l o w e r p a r t s , a s u i t a b l e f o r m u l a was used t o c o n v e r t the h e i g h t measurement t o volumes: 2 3 • h 2 2 V = i r • 3 + A, • R, •o ' h + Ro • h where R Q i s t h e r a d i u s o f t h e c e n t r i f u g e tube b o t t o m , i s t h e s l o p e of t h e cone, 4 5 VSA DATA SHEET # Sample #1 BAB 136C Sample #3 BAB 160C Sample #2 KAM 14 Sample #4 KAM 15 Lab Temperature: 23°C AEPS . T(J ) TET A TET RPM(N) H(J) (y) (sec.) (min.,sec.) (m.,s.) #1 #2 #3 #4 64 58 50 32 28 24 20 16 12 8. 6 4 3 2 1 0.45 2.5 4.5 6.5 10.0 13.0 18.0 26.0 40.5 72.0 162.0 288.0 101 .2 181.2 406.2 184.9 361 . 1 25s 45s 1 m, 5s 1m,40s 2m,10s 3m 4m,20s 6m,45s 12m 27m 48m 49m 50m,20s 54m, 5s 56m,25s 60m,55s 25s 20s 20s 35s 30s 50s 1m,20s 2m,25s 5m,15s 15m 21m 1m 1m,20s 3m,45s 2m,20s 4m,30s 780 780 780 2345 3340 2.0 2.8 3. 3 4.2 4. 7 5.8 6.4 7.5 9.4 11.2 12.4 14.8 16.5 . 19.5 25.5 26.0 2. 7 4.6 5.2 6.8 7.5 9.0 10.0 11.6 14.9 18.0 20.0 23.0 24.0 26.0 31.0 31.5 1.0 2.0 2.6 3.8 4.5 6.1 7.0 8.9 12.0 14.9 16.2 18.0 19.0 20.6 23.5 24.0 0.2 1.2 1.7 2. 7 3.1 3.9 4. 5 5. 7 7.5 9.5 10. 7 12.1 13.0 13.5 16.0 17.0 Table 1. An example of a data sheet a f t e r a n a l y s i s of f i l m taken (see F i g . 3) of four r e a l samples. AEPS = the approximate e q u i v a l e n t p a r t i c l e s i z e f o r any given s e t t l i n g time. T(J) i s the time array that i s used i n the computer a n a l y s i s . TET = t o t a l experimental time to s e t t l e any given AEPS. The VTET i s the time elapse between measure-ments. H(J) i s the t o t a l accumulated sediment height f o r any given TET. 46 h i s the height i n mm (height measured from f i l m times m a g n i f i c a t i o n r a t i o ) , V i s the volume i n ml. A l l tubes were given a p e r f e c t l y f l a t bottom by a p r o f e s s i o n a l glass blower at the 0.1 ml mark. This step i s necessary to e l i m i n a t e the t e s t tube bottom rounding problem ( F i g . 3). C a l c u l a t i o n of Time Input f o r the Computer A n a l y s i s A set of diameters was o r i g i n a l l y s e l e c t e d to give adequate coverage through the c l a y and s i l t range. The diameters then must be c a l c u l a t e d i n terms of s e t t l i n g time f o r a given distance (Tanner and Jackson, 1947). The f o l l o w i n g equation was used to provide Stokes s e t t l i n g time f o r a given par-t i c l e diameter. l o g ( t ) = -2«log(D) + 4.05 + (0.01-b) where 4.05 i s the constant at 20°C w i t h p a r t i c l e d ensity of 2.65 g/cm \ b i s 20°C minus the temperature of experiment, D i s the p a r t i c l e diameter (ym), t i s the s e t t l i n g time to f a l l 1 cm ( s e c ) . Since the f i r s t p a r t of the experiment takes place at IG the s e t t l i n g distance used i s the length of water column. The second p a r t of the experiment u t i l -i z e s the c e n t r i f u g e . Therefore, time input T(J) must be c a l c u l a t e d using the various RPM s e t t l i n g s f o r the va r i o u s readings. The f o l l o w i n g procedure can be used: P a r t i c l e A^ ^ s e t t l e s at T(a) at RPM N(a) , and at T(b) at RPM N(b), i f N(b) > N(a) then T(b) < T(a). P a r t i c l e s e t t l e s at T(c) at RPM N(b), to s e t t l e p a r t i c l e A„ at RPM N(b) a f t e r a l l of 47 p a r t i c l e s have already s e t t l e d out at the previous RPM N(a), then centrifuged f o r an addi-t i o n a l T(x) where T(x) = T(c) - T(b). Thus the t o t a l elapsed time to s e t t l e both p a r t i c l e s A^ and A^ w i l l be T(a) plus T(x) with A^ having been centrifuged at RPM N(a) and having been centrifuged at RPM N(b). (Note: The centrifuge time to s e t t l e any given p a r t i c l e s i z e consists of T ( l ) , the period of centrifuge acceleration; T(2) , the period of constant v e l o c i t y ; and T(3) , the period of centrifuge decelera-tion.) The above procedure has been given i n d e t a i l by Trask (1930) and Tanner and Jackson (1947). The following equation was used to provide Stokes' s e t t l i n g time for a given p a r t i c l e diameter using the centrifuge: log(t) = -2 log(D) + log(C T) - 2 log(N) + 9.071 where t i s the time to s e t t l e from the surface of the s e t t l i n g medium, _3 Cj, i s the correction factor f o r any temperature at density of 2.65 g/cm (see Tanner and Jackson, 1947) , 9.071 i s the constant calculated with a knowledge of R, the radius of r o t a t i o n to the tube bottom, and S, the radius of r o t a t i o n to the surface of the suspension (see Tanner and Jackson, 1947), N i s the RPM. In our experiments the s e t t l i n g distance correction due to i t s decrease with sediment accumulation was calculated to be n e g l i g i b l e . This c a l c u l a t i o n should be made, however, to j u s t i f y i t s n e g l i g i b i l i t y (Trask, 1930). Calculation of Sediment Density As previously stated, i t i s necessary to convert volume percent to' weight percent by the determination of density f o r each s i z e f r a c t i o n . How-ever, the r e s u l t s of density c a l c u l a t i o n s f o r samples used i n th i s paper, taken from inland lakes, indicate that f o r the s i z e f r a c t i o n s above 6 ym, 48 d e n s i t y i s c o n s t a n t w i t h i n e x p e r i m e n t a l e r r o r . T h e r e f o r e , i t i s o n l y n e c e s -s a r y t o d e t e r m i n e t h e d e n s i t y o f the f i v e f r a c t i o n s f i n e r t h a n 6 ym. I n a d d i t i o n , i t was found t h a t f o r each l a k e t h e d e n s i t y v a l u e s f o r any f r a c t i o n f i n e r t h a n 6 ym were s i m i l a r . I n r e t r o s p e c t , o n l y a few r e p r e s e n t a t i v e samples f r o m each e n v i r o n m e n t needed t o be a n a l y z e d . F o r t h e 10 cm c e n t r i f u g e tubes used t h e sample was a l l o w e d t o s e t t l e n a t u r a l l y u n t i l a l l t h e 6 ym p a r t i c l e s have s e t t l e d ( i . e . , 48 m i n u t e s ) . The volume s e t t l e d i s p h o t o g r a p h i c a l l y r e c o r d e d . The s u p e r n a t a n t l i q u i d i s decan-t e d , and t h e se d i m e n t on t h e b o t t o m i s r i n s e d o u t , d r i e d on an e v a p o r a t i n g d i s h and we i g h e d . From t h e volume and w e i g h t v a l u e s , b u l k d e n s i t y i s c a l c u l a -t e d f o r t h e sediment f r a c t i o n c o a r s e r t h a n about 6 ym. The s u p e r n a t a n t l i q u i d w h i c h was d e c a n t e d , i s homogenized by s h a k i n g and c e n t r i f u g e d t o o b t a i n t h e n e x t s i z e f r a c t i o n . The p r o c e d u r e t o o b t a i n a b u l k d e n s i t y v a l u e i s r e p e a t e d f o r t h i s s i z e f r a c t i o n and e v e r y o t h e r s i z e f r a c t i o n down t o 0.45 ym, g i v i n g a t o t a l o f s i x d e n s i t y v a l u e s . These a r e used t o c o n v e r t volume changes t o w e i g h t changes. The f i n a l c u m u l a t i v e c u r v e i s i n w e i g h t p e r c e n t r a t h e r t h a n volume p e r c e n t . T a b l e 2 i n d i c a t e s t h a t a f t e r t h e se d i m e n t d e n s i t y c o r r e c t i o n s were made, t h e e f f e c t upon t h e n o n - c o r r e c t e d d i s t r i b u t i o n i s m a r g i n a l i f n o t n e g l i -g i b l e . F i g u r e 4 shows t h e m i n i m a l e f f e c t (sample Kam 4 w i t h an x v a l u e o f 2 0.6) and t h e maximal e f f e c t (sample Kam 15 w i t h an x v a l u e o f 9.9). VSA A c c u r a c y The VSA method was t e s t e d u s i n g n i n e samples a g a i n s t r e s u l t s t h a t were o b t a i n e d f o r t h e s e samples on t h e S e d i g r a p h Model 5000D. The method o f com-p a r i s o n was t h e x 2 t e s t a t t h e 95% c o n f i d e n c e l i m i t s . N i n e t y - f i v e p e r c e n t o f the sample w e i g h t was used i n t h e c o m p a r i s o n . The 5% i n t h e c o a r s e end was not used s i n c e t h e S e d i g r a p h does n o t g i v e a c c u r a t e r e s u l t s i n t h i s end. T h i s 49 Sample 1D X 2 Kam 14 9.9 Kam 14 3.8 Bab 160C 4.6 Bab 136C 3.0 Kam 9 3.3 Kam 4 0 .6 Kam 1 3.1 Kam 10 2.2 Bab 133C 4 .2 Table 2. The x Z value i s f o r the comparison of a sample's s i z e d i s t r i b u t i o n before and a f t e r i t has been c o r r e c t e d f o r changes i n d e n s i t y i n the f i n e f r a c t i o n s . A low c h i value i n d i c a t e s that the d e n s i t y c o r r e c -t i o n does l i t t l e to change the s i z e d i s t r i b u t i o n . I f the 95% confidence l i m i t s are used, accounting f o r 100% of the sample weight w i t h 15 degrees of freedom, then the x 2 value would have to be greater than 25.0 before the de n s i t y c o r r e c t i o n s s i g n i f i c a n t l y a l t e r e d the s i z e d i s t r i b u t i o n to r e j e c t the hypothesis that the d i s t r i b u t i o n s are the same. 3.0 5.0 7.0 9.0 11.0 13.0 E Q U I V A L E N T S P H E R I C A L D I A M E T E R ( 0 ) Figure 4. The effect of density correction on two samples. Kam 15 and Kam 4 showed the highest and lowest density effect of the samples, respectively. 51 observation was checked using a 44 ym wet siev e on a known weight of each sam-p l e . The r e s u l t s i n d i c a t e d that the VSA method a c c u r a t e l y determined the ex-act coarse f r a c t i o n . The Sedigraph always r e g i s t e r e d no sample weight i n the coarse f r a c t i o n s of the a n a l y s i s . Table 3 i n d i c a t e s that a l l nine samples were accepted as being one and the same as i n d i c a t e d f o r both methods by the X 2 t e s t . Except f o r sample Kam 1, a l l the remaining e i g h t samples analyzed by VSA were found to have means between 0.3 and 2.2 ym coarser than by the Sedigraph. T h i s , again, i s a f u n c t i o n of the inaccurate r e s u l t s by the Se d i -graph at the coarse end of the s i z e d i s t r i b u t i o n . Figure 5 compares the two methods g r a p h i c a l l y . The r e p e a t a b i l i t y between two runs of the same sample based on the x t e s t (at the 95% confidence l i m i t s u t i l i z i n g 100% of the sample weight) i s given i n Table 4. Only one sample (Bab 136C) was r e j e c t e d . I t s r e j e c t i o n i s not unusual s i n c e the sample i s composed of over 30% f e r r i c oxides and has a p e c u l i a r behavior i n the 0.05% Calgon s e t t l i n g medium. The other samples passed the x Z t e s t w i t h means having an average v a r i a t i o n of only 0.5 ym. Figure 6 shows the r e s u l t s of two samples run twice. Conclusion The VSA method i s accurate and p r e c i s e , and has some advantages over other methods. I t i s a f a s t , p o r t a b l e , inexpensive, maintenance-free method, needing only 50 - 300 mg of sample, yet p r o v i d i n g r e s u l t s i n sedimentation diameters. One minor disadvantage i s that r e s u l t s are not immediate w i t h the a n a l y s i s but must be analyzed using e i t h e r a computer or a programmable c a l c u -l a t o r . Appendix 1 gives the F o r t r a n G program w i t h r e s u l t s from using the UBC IBM 370-168 computer. I t should be noted that although graphs are p l o t t e d using a CALC0MP Model 563 p l o t t e r , some computing systems w i l l not have such 52 Samp 1e ID Xv(y) X s ( y ) Is t h e r e an a c c e p t a n c e betweer t h e two methods based on x 2 t e s t a t t h e 95% c o n f i d e n c e l i m i t s u t i l i z i n g 95% of t h e sample- w e i g h t . Kam 15 6.8 5.5 YES Kam 14 9.0 6.8 YES Bab 160C 7.7 6.0 YES Bab 136C 5.0 3.5 YES Kam 9 2.9 2.9 YES Kam 4 3.2 2.8 YES Kam 1 2.7 2.4 YES Kam 10 5.0 3.7 YES Bab 133C 4.5 3.0 YES Table 3. The x t e s t f o r acceptance between the si^ze d i s t r i b u t i o n produced by the two methods, VSA and Sedigraph. Xv and Xs are the mean g r a i n s i z e of the VSA and Sedigraph methods, r e s p e c t i v e l y . Figure 5. The comparison of one example (Kam 14) between VSA and Sedigraph methods. 54 Sample 1D X i ( y ) X ? ( y ) Is t h e r e an a c c e p t a n c e between two runs o f t h e same sample based on x 2 t e s t a t t h e 95% c o n f i d e n c e l i m i t s u t i l i z i n g o f t h e sample w e i g h t . Kam 15 Kam 15 Bab 160C Bab 136C Kam 9 Kam 1 Sta n d a r d A St a n d a r d B 6.8 9.0 7.7 5.0 2.9 2.7 2.0 10.0 7.4 9.0 8.0 9.0 4.2 3.7 2.2 9.6 YES YES YES NO YES YES YES YES Table 4. The x test f o r acceptance between two runs of the same sample. X 7 and X 0 are the mean g r a i n s i z e of runs 1 and 2, r e s p e c t i v e l y . E Q U I V A L E N T S P H E R I C A L D I A M E T E R (0) gure 6. The r e p l i c a b i l i t y of two samples (Kam 14 and Standard A). 56 b u i l t - i n programs. I f s i m i l a r CALCOMP r o u t i n e s are not a v a i l a b l e , the sub-r o u t i n e SEDPLT and a l l main program l i n e s beginning w i t h an a s t e r i s k should be deleted r e s u l t i n g i n the p r i n t i n g of two tables per sample. The f i r s t t a b l e contains the r e s u l t s before the b e t t e r approximation r o u t i n e , whose r e s u l t s are p r i n t e d i n the second t a b l e . An added p r i n t o u t f e a t u r e i s that the s e t t l i n g times of various p a r t i c l e s i z e s f o r a p r e - s p e c i f i e d temperature are provided. Acknowledgements S p e c i a l thanks goes to J.W. Murray who financed t h i s p r o j e c t under NRC Grant # 656224. B i l l Barnes and Marc B u s t i n have our a p p r e c i a t i o n f o r c r i t i c a l l y reviewing the manuscript. The e x c e l l e n t d r a f t i n g was completed by Gordon Hodge. The Inland Waters D i r e c t o r a t e , Environmental Management Service of (R) Canada, s u p p l i e d the sediment samples and t h e i r S e d i g r a p h ^ a n a l y s i s , under the s u p e r v i s i o n of Chris Pharo who was ins t r u m e n t a l i n the completion of t h i s p r o j e c t . 57 References Arnold, H.D., 1911, Limitations imposed by s l i p and i n e r t i a terms upon Stokes' Law for the motion of spheres through l i q u i d s : P h i l . Mag., v. 22, p. 755-775. Bascomb, C.L., 1968, A new apparatus for p a r t i c l e s i z e d i s t r i b t u i o n : J . Sed. Petrology, v. 38, p. 878-884. Douglas, D.J., 1946, Interpretation of the r e s u l t s of mechanical a n a l y s i s : J . Sed. Petrology, v. 16, p. 19-40. Emery, K.O., 1938, Rapid method of mechanical analysis of sands: J . Sed. Pe-trology, v. 8. p. 105-111. F e l i x , D.W., 1969, An inexpensive recording s e t t l i n g tube for analysis of sands: J. Sed. Petrology, v. 39, p. 777-780. Galehouse, J.S., 1971, Sedimentation a n a l y s i s : In Carber, R.E. (Ed.), Proce-dures i n Sedimentary Petrology: Wiley & Son, Inc., N.Y., p. 69-94. Gandin, A.M., and M.C Fuerstenau, 1961, Determination of p a r t i c l e s i z e d i s t r i -bution by X-ray absorption: AIME Trans., v. 220, p. 364-366. Gibbs, R.J., M.D. Mathews, and D.A. Link, 1971, The r e l a t i o n s h i p between sphere s i z e and s e t t l i n g v e l o c i t y : J . Sed. Petrology, v. 41, p. 7-18. Gibbs, R.J., 1972, The accuracy of p a r t i c l e s i z e analyses u t i l i z i n g s e t t l i n g tubes: J . Sed. Petrology, v. 42, p. 141-145. Gibbs, R.J.,.1974, A s e t t l i n g tube system for sand siz e a n alysis: J . Sed. Pe-^ trology, v. 44, p. 583-588. I r a n i , R.R. and C F . C a l l i s , 1963, P a r t i c l e s i z e : Measurement, i n t e r p r e t a t i o n and a p p l i c a t i o n : John Wiley & Sons, 165 pp. Kuenen, P.H., 1968, S e t t l i n g convection and gra i n - s i z e analysis: J . Sed. Pe-trology, v. 41, p. 489-496. Krumbein, W.C, and F.J. Pettijohn, 1938, Manual of Sedimentary Petrography: Appleton Century Co., New York, N.Y., 549 pp. McCave, I.N., and J . J a r v i s , 1973, Use of the model T Coulter Counter i n siz e analysis of f i n e to coarse sand: Sedimentology, v. 20, p. 305-315. McKenzie, K.G., 1963, The adoption of a colorimeter f o r measuring s i l t - s i z e d p a r t i c l e s - A rapid photo-extinction (PE) method: J. Sed. Petrology, v. 33, p. 41-48. Meade, R.H., 1964, Removal of water and rearrangement of p a r t i c l e s during the compaction of clayey sediments - Review: U.S. Geol. Survey Prof. Paper 497-B, p. 1-23. 58 M i d d l e t o n , G.V., 1967, E x p e r i m e n t s i n d e n s i t y and t u r b i d i t y c u r r e n t s , 3. The d e p o s i t i o n o f sediment: Can. J . E a r t h S c i . , v. 4, p. 475-505. N e l s o n , T.A., 1976, An automated r a p i d sediment a n a l y z e r (ARSA): S e d i m e n t o l o g y , v. 23, p. 867-872. N i i t s u m a , N., 1971, A u t o m a t i c g r a i n - s i z e a n a l y z e r f o r s e d i m e n t o l o g i c a l i n v e s -t i g a t i o n : Tohoku U n i v . , I n s t . G e o l . P a l . , C o n t r . no. 72, p. 25-36. Oden, S., 1915, E i n e neue methode z u r mechanischen B o d e n a n a l y z e : A n t . M i t t . F. Bodenkunde, v. 5, p. 257-311. Oden, S., 1924, Methods t o d e t e r m i n e t h e s i z e d i s t r i b u t i o n o f s o i l p a r t i c l e s : I n t . S o i l S c i . Conf., Rome, Sec. 1-A, #5. O l i v e r , J.P., G.K. H i c k e n , and C. O r r , J r . . 1970/71, A u t o m a t i c p a r t i c l e s i z e a n a l y s i s i n s u b s i e v e range: Pow. T e c h n o l o g y , v. 4, p. 257-263. P l a n k e e l , F.H., 1962, An improved s e d i m e n t a t i o n b a l a n c e : S e d i m e n t o l o g y , v . 1, p. 158-163. P o o l e , D.M., 1957, S i z e a n a l y s i s o f sand by a s e d i m e n t a t i o n t e c h n i q u e : J . Sed. P e t r o l o g y , v . 27, p. 460-468. Rose, H.E., 1953, The measurement o f p a r t i c l e s i z e i n v e r y f i n e powders: Con-s t a b l e and Co., London. Rubey, W.W., 1933, S e t t l i n g v e l o c i t i e s o f g r a v e l , s a n d , and s i l t p a r t i c l e s : Am. J . S c i . , v. 25, p. 325-338. S a n f o r d , R.B., and D.J.P. S w i f t , 1971, Comparison o f s i e v i n g and s e t t l i n g t e c h -n i q u e s , u s i n g a Benthos R a p i d Sediment A n a l y z e r : S e i d m e n t o l o g y , v. 17, p. 257-264. S c h l e e , J . , 1966, A m o d i f i e d Woods H o l e r a p i d sediment a n a l y z e r : J . Sed. Pe-t r o l o g y , v. 36, p. 403-413. S c h u b e l , J.R., 1972, D i s t r i b u t i o n and t r a n s p o r t a t i o n o f suspended sediment i n the Upper Chesapeake Bay: G e o l . Soc. Am., v. 133, p. 151-167. Sengupta, S., and J.H. V e e n s t r a , 1968, On s i e v i n g and s e t t l i n g t e c h n i q u e s f o r sand a n a l y s i s : S e d i m e n t o l o g y , v. 11, p. 83-98. S h i d e l e r , G.L., 1976, A c o m p a r i s o n o f e l e c t r o n i c p a r t i c l e c o u n t i n g and p i p e t t e t e c h n i q u e s i n r o u t i n e mud a n a l y s i s : J . Sed. P e t r o l o g y , v. 46, p. 1017-1025. Simmons, G., 1959, The p h o t o - e x t i n c t i o n method f o r t h e measurement o f s i l t -s i z e d p a r t i c l e s : J . Sed. P e t r o l o g y , v. 29, p. 233-245. Skempton, A.W., 1953, S o i l m echanics i n r e l a t i o n t o g e o l o g y : Y o r k s h i r e (Eng.) G e o l . Soc. P r o c , v . 29. p. 33-62. 59 Stokes, G.G. , 1951, On the e f f e c t of the i n t e r n a l f r i c t i o n of f l u i d s on the motion of pendulums: Trans. Cambridge P h i l o s . S o c , v. 9, p. 8-106. Swift, D.J.P., J.R. Schubel, and R.W. Sheldon, 1972, Size analysis of f i n e -grained suspended sediments: A Review: J . Sed. Petrology, v. 42, p. 122-134. S y v i t s k i , J.P., and J.W. Murray, 1977, Grain-size d i s t r i b u t i o n using l o g -p r o b a b i l i t y p l o t s : A Discussion: B u l l . Can. Petroleum Geol., v. 25, p. 683-694. Taira, A., and P.A. Scholle, 1977, Design and c a l i b r a t i o n of a photo-extinction s e t t l i n g tube f o r grain s i z e a n a l y s i s : J . Sed. Petrology, v. 47, p..1347-1360. T a l v i t e , N.A. , and J.H. Paulus, 1956, Recording photometric p a r t i c l e s i z e analyzer: Review of S c i e n t i f i c Instruments, v. 27, p. 763-767. Tanner, C.B., and M.L. Jackson, 1947, Nomographs of sedimentation times f o r s o i l p a r t i c l e s under gravity or c e n t r i f u g a l a c c e l e r a t i o n : S o i l S c i . Soc. P r o c , p. 60-65. Trask, P.C., 1930, Mechanical analyses of sediments by centrifuge: Econ. Geol., v. 25, p. 581-599. Van Andel, T.H., 1964, Recent marine sediments of Gulf of C a l i f o r n i a : Am. Assoc., P e t r o l . Geol., Mem., v. 3, p. 216-310. Van Veen, J . , 1936, Onderzoekingen i n de Hoofden, i n verband met de gesteld-heid der Nederlandsche Kust: Mw. Verh. Bat. Gen. Proefonderv. Wijsbeg., v. 2, 252 pp. Wadell, H., 1934, Some new sedimentation formulas: Physics, v. 5, p. 281-291. Walker, P.H., D.D. Woodyer, and J . Hutka, 1974, P a r t i c l e s i z e measurements by Coulter Counter of very small deposits and low suspended sediment con-centrations i n streams: J . Sed. Petrology, v. 44, p. 673-679. Weyssenhoff, J . , 1920, Betrachtungen uber den Guttigkeitsbereich der Stokes-schen und der Stokes-Cunninghamschen Formel: Ann. der Physik, v. 62, p. 1-45. Zei g l e r , J.M., G.G. Whitney, and C.R. Hayes, 1960, Woods Hole rapid sediment analyzer: J . Sed. Petrology, v. 30, p. 490-495. 60 A FAST TECHNIQUE FOR A LOW SAMPLE WEIGHT RANDOM ORIENTED MOUNT TO BE USED IN QUANTITATIVE XRD ANALYSIS ABSTRACT The Ag f i l t e r mounting technique has been described. The technique a) gives consistent random oriented mounts of clay minerals; and b) does not f r a c t i o n a t e the mineral components due to t h e i r s e t t l i n g v e l o c i t y . Only a few milligrams of sample are needed for a mount of even thickness with random p a r t i c l e d i s t r i b u t i o n . The t o t a l a n a l y t i c a l p r e c i s i o n value of ± 7.5% (peak area) i s even better than the conventional powder method. The method i s sug-gested for general use i n the study of clay minerals suspended i n water or already deposited. 61 I n t r o d u c t i o n The need f o r a c c u r a t e i n f o r m a t i o n on t h e m i n e r a l o g y o f m a r i n e suspended s e d i m e n t has l e d t o t h e use o f Ag f i l t e r s i n t h e mounting o f c l a y m i n e r a l s f o r X - r a y d i f f r a c t i o n a n a l y s i s ( d ' A n g l e j a n , 1970; Manheim e t a l . , 1972; B o r n h o l d , 1972, 1975). The method i s advantageous f o r q u a l i t a t i v e a n a l y s i s i n t h a t i t can produce a mount o f even t h i c k n e s s w i t h random p a r t i c l e d i s t r i b u t i o n . Sea-s a l t can a l s o be washed out o f the c l a y s d i r e c t l y on t h e f i l t e r ( S t r i c k l a n d and P a r s o n s , 1972, p. 184). D i f f r a c t o g r a m r e s u l t s can be a c c u r a t e l y a l i g n e d u s i n g t h e 0.2359 nm, 0.2044 nm and 0.1445 nm s h a r p Ag m e t a l r e f l e c t i o n s . Qua-l i t a t i v e d i f f r a c t o g r a m s have been p r o d u c e d f r o m as l i t t l e as 0.2 mg o f sample (Manheim e t a l . , 1972) . The p u r p o s e o f t h e i n v e s t i g a t i o n was t o d e t e r m i n e whether t h e Ag f i l t e r m o u nting t e c h n i q u e c o u l d be used i n q u a n t i t a t i v e c l a y m i n e r a l a n a l y s i s o f low sample w e i g h t s . P r e v i o u s mounting t e c h n i q u e s used i n q u a n t i t a t i v e m i n e r a l a n a l y s i s have been d i s c u s s e d i n d e t a i l by Gibbs (1965) and S t o k k e and C a r s o n ( 1 9 7 3 ) . Such t e c h n i q u e s s h o u l d e n s u r e t h a t a) the mounted c l a y m i x t u r e i s i n a homogeneous l a y e r , b) t h e r e i s c o n s t a n t c l a y o r i e n t a t i o n (whether random o r p r e f e r r e d ) , and c) the a n a l y t i c a l p r e c i s i o n i s such t h a t q u a n t i t a t i v e r e s u l t s a r e m e a n i n g f u l i n t h e i r a b i l i t y t o d e t e c t s u b t l e changes i n n a t u r e . Methods The Ag f i l t e r m ounting t e c h n i q u e : The Ag f i l t e r s ( S e l a s F l o t r o n i c s ^, were 13 mm i n d i a m e t e r w i t h a n o m i n a l p o r e s i z e o f 0.45 ym. A f i l t e r i s p l a c e d i n t u s ( F i g . 1 ) . A p r e d e t e r m i n e d w e i g h t o f sample t h a t has been d i s p e r s e d i n d i s t i l l e d w a t e r i s added by drops from a p i p e t t e t o t h e f i l t e r under s u c t i o n . The Ag f i l t e r i s removed w i t h f o r c e p s t o a c l e a n e d g l a s s s l i d e and l e f t t o a i r d r y . A drop o f n a i l p o l i s h i s added t o a pre-marked s p o t on a n o t h e r g l a s s f i l t e r h o l d e r a t t a c h e d t o a s u c t i o n f i l t e r i n g a p p a r a -62 -top of filter holder • O - ring • Ag filter 13mm screen bottom-filter holder tygon tubing 6] IS stop cock tubing to collection erlenmeyer -erlenmeyer in turn is connected to filter pump u r e 1. S c h e m a t i c o f Ag f i l t e r m o unting a p p a r a t u s . 63 s l i d e and the f i l t e r i s t r a n s f e r r e d onto t h i s drop. The n a i l p o l i s h l o c a t i o n i s such that the f i l t e r w i l l l i e d i r e c t l y i n the X-ray path when i n s e r t e d i n t o the d i f f r a c t o m e t e r . The f i l t e r i s f l a t t e n e d around the edges (which c o n t a i n no c l a y due to the 0-ring used i n the above apparatus) w i t h a m i c r o s p a t u l a . The mounted specimen ( c l a y on Ag f i l t e r on glass s l i d e ) i s ready f o r X-ray a n a l y s i s or f u r t h e r treatments g l y c o l a t i o n ( 1 , 2 - e t h y l e n d i o l ) and/or heat-i n g (550°C f o r 1 hour) t y p i c a l l y used i n c l a y m ineral a n a l y s i s ( C a r r o l l , 1970). M a t e r i a l s : The f i n e l y ground standards c o n s i s t e d of muscovite (pegmatite-type) , c h l o r i t e (Cotopaxi, Colorado), k a o l i n i t e ( w e l l c r y s t a l l i z e d Georgia t y p e ) , and i l l i t e ( F i t h i a n , I l l i n o i s ) . N a t u r a l samples a l s o used were c o l l e c -ted as suspended sediment samples from a g l a c i a l run-off f j o r d , Howe Sound ( S y v i t s k i and Murray, 1978). Any s i z e f r a c t i o n a t i o n of the standards or sam-pl e s was based on Stokes s e t t l i n g v e l o c i t y as c a r r i e d out on the c e n t r i f u g e . T e s t i n g Scheme: Powder mounts were prepared w i t h approximately 200 mg each of pure standard or combination of standards thoroughly mixed by the method described by Gibbs (1965). Ten suspended sediment samples were each d i v i d e d i n t o two s i z e f r a c -t i o n s , 0.2 - 2 ym and 2.-63 ym. Ten mg of each f r a c t i o n was then mounted by the p i p e t t e on a glass s l i d e by the method described by Stokke and Carson (1973). Ten mg of each standard, combination of standards, or n a t u r a l samples were prepared and mounted on the Ag f i l t e r s as described above. In the case of comparison between the method using p i p e t t e on glass s l i d e and that using the Ag f i l t e r , the p i p e t t e samples were re-used i n the Ag f i l t e r mount to e l i m i n a t e s e p a r a t i o n e r r o r s . In .this case, the Ag f i l t e r s were weighed before and a f t e r f i l t r a t i o n to ensure exact weight t r a n s f e r . 64 The above mounts were prepared i n t r i p l i c a t e . A l l mounts used f o r comparison were prepared and analyzed the same day to e l i m i n a t e changes i n l a b o r a t o r y temperature and humidity. X - r a d i a t i o n procedure: A l l mounts were analyzed on a standard P h i l i p s ^-^ 1010-75 wide angle X-ray d i f f r a c t o m e t e r using n i c k e l f i l t e r e d copper Ka r a d i a t i o n generated at 40kV and 20mA. The s c i n t i l l a t i o n d e tector s l i t s were 1° x 0.2° x 1°. The recorder was a P h i l i p s ^ PM 8000 s t r i p chart recorder. Scan speed was l°/20/minute. Chart speed was 1 cm/minute p r o v i d i n g a graph output at l°/29/cm. The time constant was 2 s e c , w i t h counts f u l l s c a l e of 1000. D i f f r a c t o g r a m I n t e r p r e t a t i o n : Areas under the peaks were measured by both a p o l a r planimeter and by weighing a photocopy tra c e of the areas. Results Table 1 gives the p r e c i s i o n of the various mounting techniques. These r e s u l t s were based on weights of photocopy traces of peak areas, which pro-vided the more p r e c i s e method of peak area i n t e r p r e t a t i o n . The e r r o r due to roughness of the c l a y surface was measured by the d i f f e r e n c e i n an i n i t i a l run and i t s rerun a f t e r removal and r e - i n s e r t i o n i n t o the d i f f r a c o m e t e r w i t h the mount s l i g h t l y d i s p l a c e d . The p r e p a r a t i o n e r r o r was c a l c u l a t e d from the r e p l i c a t e mounts of each technique. The measure of random o r i e n t a t i o n ( f o r comparison purposes only) was c a l c u l a t e d by the sum of the non 00£ b a s a l r e f l e c t i o n s over the 001 b a s a l r e f l e c t i o n of a given standard. The Ag f i l t e r mount s t a t i s t i c a l l y (95% confidence l i m i t s ) had a s l i g h t l y higher degree of random o r i e n t a t i o n ( w i t h i n the t o t a l a n a l y t i c a l p r e c i s i o n ) than the powder mount a technique widely used f o r random o r i e n t a t i o n of c l a y minerals ( C a r r o l l , 1970). Figure 2 gives a d i f f r a c t o g r a m of muscovite from both mounting techniques demonstrating t h e i r a b i l i t y to p i c k up the non 001 b a s a l r e f l e c t i o n s . Using the 1.0 nm/0.426 nm 65 . Ag Mount Powder Mount Pipette Mount Machine P r e c i s i o n - 4.2% - 4.2% - 4.2% Error due to clay surface roughness* ND ND - 2.;0% Mounting Err o r * - 3.3% - 4.8% -9.6% Total A n a l y t i c a l P r e c i s i o n - 7.5% - 9.0% -15.8% ND - not detectable (*) - error registered a f t e r machine p r e c i s i o n i s taken into account Table 1. Results from p r e c i s i o n t e s t i n g of mount methods. 32° 30° 28° 0.285 nm 0.378 nml -2 8 26° 24° 22° 20° 18° \6 I c 14 ,'2° Ag Filter Mount / 20°C \ 10 Mica Standard "Powder Mount 20°C Figure 2. Diffractograms of muscovite from a powder mount and Ag mount of non 00 £ reflections. Note the abundance 67 peak area ratio (i.e., mica/quartz) from the suspended sediment samples, the pipette on glass slide technique had ratio values 5 times those from the Ag f i l t e r method. Figure 3, a typical comparative result of these two methods, indicates the greatly reduced 1.04 nm ( i l l i t e ) and 0.708 (Fe-chlorite) re-flections, and a more distinct separation.of the 0.334 (quartz + mica) and 0.319 (feldspar) peaks, by the Ag f i l t e r mount. Mixtures of clay standards analyzed from the Ag f i l t e r mounts were compared to powder mounts, a method which is not based on grain settling and should therefore depict the true homogeneous mixture (Gibbs, 1965). The mix-tures consisted of varying amounts of chlorite (size range 6 - 2 0 ym) and muscovite (size range .5-2 ym) i.e., 25:75, 50:50, 75:25 and 90:10. The 0.7 nm/1.0 nm peak areas of the two methods show complete agreement (Fig. 4) indicating that no settling differentiation takes place during f i l t r a t i o n . The pipette on glass slide mount method has previously been documented to cause size segregation of sample mixtures (Gibbs, 1965; Stokke and Carson, 1973). This conclusion is supported when comparing the pipette mount results to the Ag f i l t e r technique. The 1.00 nm/0.426 nm (mica/quartz) peak area ratios from the pipette mount results increased over 20 to 55 times the re- . suits given by the Ag f i l t e r mounts in the coarse fraction of the ten suspen-ded sediment samples analyzed. This i s significant since the exact same material was analyzed under both methods. Figure 5 i s a typical example of the expected low reflections from clay minerals in the coarse size fraction of a suspended sediment sample as demonstrated by the Ag f i l t e r mount. In this sample the 1.00 nm/0.426 nm ratio was increased 30.1 times through the size fractionation process of the pipette method. Discussion and Summary The Ag f i l t e r method gives consistent randomly oriented mounts of clay 28 Figure 3. Diffractograms of a suspended sediment sample 'Squamish' from the size f r a c t i o n 0.2 - 2.0 ym using both a pipette on glass s l i d e mount and a Ag f i l t e r mount. 8-4 10 25 50 75 90 % Chlorite ^ > Figure 4. The 0.71 nm / 1.00 nm peak area r a t i o vs. percent c h l o r i t e i n a chlo r i t e - m u s c o v i t e matrix f o r powder and Ag f i l t e r mount. •2 9 Pipette Mount 20°C Ag Filter Mount J 20°C \ Suspended Sediment "Squamish" (2-63nm) o Figure 5. Diffractograms of the coarse size fraction (2-63 ym) of the suspended sediment 'Squamish' sample from the pipette on glass slide mount and the Ag f i l t e r mount. 71 minerals w i t h low sample weight. The value of random o r i e n t e d mounts l i e s i n f l e c t i o n i s used to determine the k a o l i n group from the s e p t e c h l o r i t e group, p y r o p h y l l i t e from t a l c , d i o c t a h e d r a l mica from t r i o c t a h e d r a l mica, dioctahe-d r a l mixed l a y e r from t r i o c t a h e d r a l i l l i t e or h y d r o b i o t i t e , sudoite from c h l o r i t e , and d i o c t a h e d r a l smectite from t r i o c t a h e d r a l smectite (Warsaw and Ray, 1961) . The Ag f i l t e r method does not f r a c t i o n a t e the components due to t h e i r s e t t l i n g v e l o c i t y . The t o t a l a n a l y t i c a l p r e c i s i o n value i s good, even b e t t e r than the powder method. This might be a f u n c t i o n of the powder method p a r t i c l e o r i e n t a t i o n being s l i g h t l y harder to c o n t r o l ( i . e . , motion i n the packing process might cause some p r e f e r r e d o r i e n t a t i o n ) . The method i s suggested f o r general use i n the study of c l a y minerals suspended i n water or already deposited. the f a c t that the { 0 6 0 J r e f l e c t i o n of c l a y minerals i s a m p l i f i e d . 72 Acknowledgement J.W. Murray financed t h i s project under NRC Grant # 656224. The manuscript was c r i t i c a l l y reviewed by Dr. L. Lavkulitch, Dept. of S o i l Science, U.B.C; Dr. R. Chase and Dr. J.W. Murray, I n s t i t u t e of Oceanography, U.B.C; and Dr. W.C. Barnes, Dept. of Geological Sciences, U.B.C 73 REFERENCES d'Anglejan, B.F. 1970. Studies on p a r t i c u l a t e suspended matter i n the Gulf of St. Lawrence: Mar. S c i . Centre Manusc. Rept, #17, 51 pp. Bornhold, B.D.; Mascle, J.R.; and Harada,, K. 1972. Sediments i n surface waters of the Eastern Gulf of Guinea: Woods Hole Oceanogr. Inst. Tech. Rept. #2948, 28 pp. 1975. Suspended matter i n the southern Beaufort Sea: Beaurfort Sea Tech. Rept. #25b, 30 pp. C a r r o l l , D. 1970. Clay Mineral: A Guide to Their X-ray I d e n t i f i c a t i o n : Geol. Soc. Am. s p e c i a l paper 126, 80 pp. Gibbs, R.S. 1965. Error due to segregation i n quantitative clay mineral X-ray d i f f r a c t i o n mounting techniques: Am. Mineral. 50, 741-751. Manheim, F.T.; Hathaway, J . C ; Uchupi, E. 1972. Suspended matter i n surface waters oh the Northern Gulf of Mexico: Geol. Oceanogr. 17, 17-27. Stokke, P.R. and Carson, B. 1973. V a r i a t i o n i n clay mineral X-ray d i f f r a c t i o n r e s u l t s with the quantity of sample mounted: J . Sed. Pet. 43, 957-964. Stri c k l a n d , J.D.H. and Parsons, T.R. 1972. A p r a c t i c a l handbook of sea-water analysis: F i s h . Res. Bd. Can. B u l l . 167 (2nd ed.), 310 pp. S y v i t s k i , J.P. and Murray, J.W. 1978. F l o c c u l a t i o n , agglomeration,, and;zoo-plankton p e l l e t i z a t i o n of suspended sediment i n a f j o r d r e ceiving g l a c i a l meltwater: Can. Jour. Earth S c i . , i n process. 74 THEORY, UTILIZATION AND RELIABILITY OF SUSPENDED SEDIMENT COLLECTORS IN LAKES AND OCEANS ABSTRACT The theory of sedimentation r a t e s as measured by suspended sediment c o l l e c t o r s i s presented. T h e o r e t i c a l e r r o r s of sedimentation r a t e s have been shown to increase sharply and n o n - l i n e a r l y w i t h i n c r e a s i n g h o r i z o n t a l current and i n c r e a s i n g trap t i l t , and w i t h decreasing p a r t i c l e s i z e . Seven design c o n s i d e r a t i o n s have been proposed f o r f u t u r e trap c o n s t r u c t i o n . The i n s u f f i -c i e n t t e s t i n g of p r e v i o u s l y used traps renders past r e s u l t s at best semi-q u a n t i t a t i v e . I n i t i a l t e s t s suggest t h a t , a) trap t i l t should be reduced to a £ 0 . 1 ° , b) p a r t i c l e r e t e n t i o n can be s u c c e s s f u l without the use of l i d s that might cause sediment d e f l e c t i o n , c) the c o l l e c t i o n time of the organic f r a c t i o n should be over a p e r i o d of days r a t h e r than weeks, d) any upward v e r t i c a l a c c e l e r a t i o n of water over a trap o r i f i c e w i l l reduce sedimentation r a t e s , p a r t i c u l a r l y i n the f i n e s i z e f r a c t i o n , and e) values of p r e c i s i o n should be i n d i c a t e d f o r both t o t a l i n o r g a n i c and organic sediment f r a c t i o n s . A theory and method to check the accuracy of c o l l e c t o r catch a b i l i t y based on g r a i n s i z e d i s t r i b u t i o n s i s proposed. I t s s i m p l i c i t y would make i t p r a c t i c a l f o r r o u t i n e use i n freshwater environments. For marine use, the method allows the c a l c u l a t i o n of the s e t t l i n g v e l o c i t y of f l o c c u l a t e d or otherwise enhanced settlement of p a r t i c l e s where the. trap used i s an accurate c o l l e c t o r . 75 Introduction and Acknowledgement Suspended sediment c o l l e c t o r s used to measure the downward fl u x of sediment are gaining acceptance as a standard t o o l i n limnology and ocean-ology. Unfortunately, trap designs and c o l l e c t i o n r e s u l t s have been presented i n the past without a comprehensive understanding of the basic theory of sediment entrapment within the c o l l e c t o r . The lack of such theory has l e d to arguments over trap design and uncertainty as to the v a l i d i t y of pub-l i s h e d r e s u l t s . Kirchner (1975) evaluated traps by comparing the catch e f f i c i e n c i e s of various sizes of c y l i n d r i c a l traps. Quantitative and q u a l i -t a t i v e i n v e s t i g a t i o n of the r e l i a b i l i t y of traps i n various hydrodynamic environments and under varying suspended loads, has not yet been undertaken. The aim of t h i s paper i s to: 1) provide a review of the present use of suspended sediment c o l l e c t o r s , 2) present some of the theory behind sedimentation rates as measured by such c o l l e c t o r s , 3) o u t l i n e some theore-t i c a l considerations i n trap design emphasizing proposals to test future trap designs, 4) advance a method for quantitaive and q u a l i t a t i v e evaluation of trap e f f i c i e n c y , and 5) propose future use of sediment c o l l e c t o r s i n the study of suspended sediment populations. The following manuscript was c r i t i c a l l y reviewed by Dr. J.W. Murray, Dr. R. Chase, and Dr. D. Swinbanks ( I n s t i t u t e of Oceanography and Department of Geological Sciences, U.B.C); Dr. W.C. Barnes and Dr. L. Smith (Depart-ment of Geological Sciences, U.B.C); and A. Hay,. ( I n s t i t u t e of Oceanography and Department of Physics, U.B.C). Appreciation for i n s i g h t s into the problem are also extended to Dr. P. Leblonde ( I n s t i t u t e of Oceanography and Department of Physics, U.B.C.) and Dr. M. Quick (Department of C i v i l Engineering, U.B.C). 76 Sediment Trap U t i l i t y Early research i n t o the sedimentation of p a r t i c u l a t e matter (Heim, 1900; Peterson and Boysen Jensen, 1911; Moore, 1931; Reissinger, 1932; Scott and Minor, 1936; Rossolino, 1937) was p r i m a r i l y aimed at defining the quantity, content and o r i g i n of matter f a l l i n g onto the f l o o r of a lake or ocean. Studies using sediment traps as c o l l e c t i o n tools address one or more of the following t o p i c s : 1) the r e l a t i o n of sedimentary organic matter to b i o l o g i c a l p r o d u c t i v i t y ( i . e . , Thomas, 1950; Z e i t s c h e l l , 1965; T r e v a l l i o n , 1967; Funs, 1973; Pennington, 1974); 2) energy flow ( i n terms of organic matter) to and from the benthos ( i . e . , Lawacz, 1969; Johnson and Brinkhurst, 1971; Davis, 1975; Wiebe et a l . , 1976); 3) i d e n t i f i c a t i o n of planktonic remains i n r e l a t i o n to growth and reproduction of such species ( i . e . , Berger and Soutar, 1967; Welch, 1973; R i g l e r et a l . , 1974; Webster et a l . , 1975; Hargrave et a l . , 1976); 4) the f l u x of sinking p o l l e n for use i n paleoloimnologic studies ( i . e . , Davis, 1967, 1968); 5) the s e t t l i n g f l u x of pelagic zooplankton f e c a l p e l l e t s ( i . e . , Wiebe et a l . , 1976; Honjo and Roman, 1978; S y v i t s k i and Lewis, 1978); 6) transport of suspended sediment i n nearshore environments ( i . e . , Fukushima and Mizo-guchi, 1958; Basinski and Lewandowski, 1974); 7) f r a c t i o n a t i o n of phos-phates ( i . e . , Golterman, 1973); 8) major pathways and sources of trace metals ( i . e . , Hakanson, 1976; Spyridakis and Barnes, 1976); 9) i n t e n s i t y and extent of min e r a l i z a t i o n of organic matter ( i . e . , Kleerekoper, 1953); 10) the role of resuspension ( i . e . , Davis, 1968; Gasith, 1975; Oviatt and Nixon, 1975); 11) r e l a t i o n s h i p of sedimentary matter to laminated sediments ( i . e . , Moore, 1931; B r u n s k i l l , 1969; Smith, 1978); 12) p r e c i p i t a t i o n and 77 sedimentation of chemical sediments ( i . e . , B r u n s k i l l , 1969); 13) rates of p o s t g l a c i a l accumulation ( i . e . , Pennington, 1974; Hargrave et a l . , 1976; Oviatt and Nixon, 1975) ; 14) transport and d i s t r i b u t i o n of bottom sediments (Raymond and Stetson, 1931) and 15) hydrodynamics of s e t t l i n g mineral grains ( S y v i t s k i and Murray, 1978) and f r e s h l y p r e c i p i t a t i n g matter (Watanabe and Hayashi, 1971). Theory of Sedimentation Rates In the case of uniform s i z e p a r t i c l e s s e t t l i n g i n natural bodies of water, the rate of sedimentation i s d i r e c t l y proportional to p a r t i c l e con-centration. When the p a r t i c l e s are of non-uniform s i z e , the t o t a l sedimen-t a t i o n rate i s the summation of s e t t l i n g fluxes of each s i z e f r a c t i o n . Let us assume that we are dealing with a 'perfect' sediment trap that a) does not generate turbulence at i t s mouth or i n any way hinder the s e t t l i n g of p a r t i c l e s , b) retains a l l of the deposited material, and c) has i t s mouth at a l l times perpendicular to the v e r t i c a l z-axis. Then, regardless of the size-range of p a r t i c l e s present, the t o t a l true sedimentation rate, Zo, i s defined as the weight of accumulation per area of capture opening per unit time: Zo = hff(x)-V(x)-dx = b/Z(x)-dx (1) a a where f(x) i s the concentration of p a r t i c l e s of any given s i z e 'x' i n the water column, V(x) i s the s e t t l i n g v e l o c i t y f or any given s i z e 'x', a i s the smallest s i z e s e t t l i n g i n the water and, b i s the l a r g e s t p a r t i c l e s i z e s e t t l i n g i n the water, Z(x) i s the sedimentation'rate of any given s i z e 'x'. Equation (1) has been s i m p l i f i e d from: b/Z(x)-dx = b/f(x)-V(x)-dx - Es b/G(x)-dx (2) a a a z 2 " z l where Es i s the d i f f u s i v i t y of suspended sediment (usually assumed equal 78 to the v e r t i c a l d i f f u s i v i t y for water a good assumption for p a r t i c l e s i n the Stokes range), z^ and z^ are the upper and lower depth l i m i t s i n the water column f o r the study at hand, G(x) i s the change i n p a r t i c l e concentration of any given s i z e 'x' between z, and z„, and Es b /G(x)*dx i s the v e r t i c a l d i f f u s i v e f l u x . McCave (1975) has indicated that the v e r t i c a l d i f f u s i v e f l u x i s about three orders of magnitude l e s s than the s e t t l i n g f l u x ( f i r s t term i n equation (2)) and may be neglected i n marine environments below the mixed layer. For the remainder of t h i s paper i t w i l l be assumed that t h i s term i s indeed n e g l i g i b l e . Since most s i z e a n a l y t i c a l methods give s i z e frequency d i s t r i b u t i o n s i n terms of discrete s i z e f r a c t i o n s , equation (1) can be rewritten as: b b Zo = Ef(x)-V(x) = EZ(x) (3) a a where V(x) i s the 'average' s e t t l i n g v e l o c i t y of any class i n t e r v a l . The c a l c u l a t i o n of sedimentation rate only e n t a i l s the v e r t i c a l s e t t l i n g component of the p a r t i c l e s , and therefore does not change when a h o r i z o n t a l current i s present i f laminar"flow i s assumed. The s e t t l i n g component r e s u l t s from the downward g r a v i t a t i o n a l force acting on each p a r t i c l e being larger than the upward buoyant force. I f the water mass has a v e r t i c a l component to i t s movement, than this i s added or subtracted to the p a r t i c l e s ' s e t t l i n g v e l o c i t i e s , depending on whether the water mass i s moving down or up. If there i s no h o r i z o n t a l current present, and the trap mouth i s at some angle, a, from the v e r t i c a l axis, then the apparent sedimentation rate, Z i , i s given by: Z i = Zo'cosa (4) where Zo i s the true sedimentation rate. The amount c o l l e c t e d i s dependent 79 on the area of catchment and since the t i l t e d trap catchment area pro-jected onto a h o r i z o n t a l plane varies by cosa from i t s actual area (Fig. 1), equation (4) i s j u s t i f i e d . The apparent sedimentation rate, then, decreases with increasing trap t i l t . This e f f e c t only becomes s i g n i f i c a n t when a i s larger than 20° (6% error at 20°). When a ho r i z o n t a l current i s present, the apparent sedimentation rate increases and reaches a maximum when the trap mouth i s aligned between the v e r t i c a l and the h o r i z o n t a l . The t i l t e d trap c o l l e c t s both the Z i component and a new XYi component from the ho r i z o n t a l current: Di = Z i + XYi (5) where Di i s the new apparent sedimentation rate, and XYi, the apparent h o r i z o n t a l f l u x i s defined as: XYi = 6«XYo«sin(a) (6) where the l i m i t of a can vary from -90° to +90°, and 0>+9O°), the XYi term i n equation (8) drops out, and only p a r t i c l e s that have a descent angle, $, (Fig. 4b) greater than a w i l l be c o l l e c t e d i n the trap. The error would increase as the sedimentation rate of p a r t i c l e s with $ < a, increased. This error would also increase sharply and non-linearly as the h o r i z o n t a l current v e l o c i t y , v, increased, since as v increases, the number of s i z e f r a c t i o n s with ($ < a) sharply increases. Design and Testing of Traps Kirchner (1975) noted that traps have not received general acceptance because the rate of sediment accumulation i n a trap does not necessarily equal that i n a lake (or ocean). Revelle (1952) noted that a c o l l e c t i n g device that does not i n t e r f e r e with the normal process of sedimentation i s incompatible with a device that i s b u i l t to r e t a i n the depositing material. The following design considerations are proposed for the 'perfect trap'. 1) The trap must maintain an upright p o s i t i o n (ct^O. 1°) i n the current regime being studied. 2) A l l material that f a l l s through the trap opening 82 2 4 6 8 10 12 cm/sec Figure 2. Family of curves of percent error i n apparent sedimentation rate vs. ho r i z o n t a l v e l o c i t y at various t i l t angles. Data was t h e o r e t i c a l l y derived assuming a homogenous s o l u t i o n of 65 ym spheres (p =2.65) s e t t l i n g i n 15 C fresh water under laminar flow. The above curves would not e f f e c t i v e l y change i f the p a r t i c l e s s e t t l e d i n s a l i n e water at higher or lower temperatures. 83 /0 cm/sec Figure 3. Family of curves of percent error i n apparent sedimentation rate vs. h o r i z o n t a l v e l o c i t y at various p a r t i c l e sizes with a = 1°. Data was t h e o r e t i c a l l y derived assuming a homogeneous s o l u t i o n , as i n Figure 2, with the t o t a l suspended concentration held constant. 84 A PLAN VIEW At - 9 0 ° 9 0 ° oil porticl. sizes retained At - 9 0 ° > e > 9 0 ° only particles whose descent angle is 0 >e<. will be collected B 1= vertical settling component 2= horizontal current component 3 = resultant velocity vector in the water P = descent angle AX horizontal if \ current y • Zi + xyi.Cos (0°) Di= Zi + xyi.cos Di = Zi + xyi.cos(90°) Figure 4. The e f f e c t of trap t i l t w i t h a h o r i z o n t a l current present. A) i l l u s t r a t e s how various trap alignments e f f e c t equation (9) B) l a b e l s , the descent angle. 85 must be retained u n t i l the trap reaches the surface. 3) Only matter s e t t l i n g under the influence of gravity and no s e l f - p r o p e l l e d matter should be c o l l e c t e d . 4) Organic material should be preserved i n i t s natural s e t t l i n g state and not allowed to decompose and/or i n turn permit new organic growth. 5) Trace metal contamination from the device to the c o l l e c t e d sediment should be n e g l i g i b l e i f trace metal studies are being done. 6) Water motion i n and above the trap caused by i t s presence should be minimized or at l e a s t i t s consequences under-stood, o 7) C o l l e c t i o n p r e c i s i o n should be e a s i l y c a l c u l a b l e . These seven features are discussed below: 1) T i l t angle could p o t e n t i a l l y cause the most serious errors (Figs. 3 and 4), and has not been systematically tested i n traps presently used. Vi s u a l estimation of trap t i l t i n the water ( B r u n s k i l l , 1969; Wiebe et a l . , 1976) i s not accurate enough for the errors involved. A t i l t angle less than 20° has no s i g n i f i c a n t e f f e c t i n s t i l l water (equation 3), but the presence of at l e a s t some current i s nearly u n i v e r s a l . Preliminary tests by t h i s author have indicated that two trap arrays remained v e r t i c a l (a±0.1°) i n currents up to 25 cm/sec. The f i r s t , pendulum type traps attached to a r i g i d frame on a trap l i n e (Rossolimo, 1937; Thomas, 1950; Tutin, 1955; Watanabe and Hayashi, 1971; Pennington, 1974), remained v e r t i c a l as long as enough weight was attached to the base of the trap (Fig. 5a). The second array consisted of traps attached to a l i n e held t i g h t and v e r t i c a l from a ship by heavy weights that did not touch the ocean bottom (Fig. 5b). The ship had to be held stationary by an anchor l i n e , thereby l i m i t i n g the method to anchorable depths and ship time. Also, the water had to be calm 86 Figure 5. Suspension of trap arrays to e l i m i n a t e t i l t angle. For lengthy c o l l e c t i o n p e r i o d s , trap array (A) i s proposed. I t w i l l remain v e r t i c a l i n s t i l l water (A}) and w i t h a current of magnitude, v , present (A2) • For short c o l l e c t i o n periods trap array type (B) i s proposed s i n c e the traps remain v e r t i c a l due to the trap l i n e weight. 87 enough not to rock the ship. The f i r s t method i s su i t a b l e for traps c o l l e c t i n g sediment over an extended period, the second, for c o l l e c t i o n over a short period. 2) P a r t i c l e retention, has caused the widest v a r i a t i o n and expense i n trap design. I f the r a t i o of width to trap height i s very large, the p o s s i b i l i t y of resuspension of the accumulated matter e x i s t s (Hakanson, 1976). This i s e s p e c i a l l y true for funnel shaped traps (Ohle, 1962; B r u n s k i l l , 1969; Johnson and Brinkhurst, 1971; Watanabe and Hayashi, 1971; Oviatt and Nixon, 1975) where turbulent currents that form across the funnel i n l e t cause great loss of sedimenting material (Tutin, 1955). This may explain why sedimentation rates were found to decrease as funnel mouth increased (Johnson and Brinkhurst, 1971). Also, cylinder traps have retr i e v e d 3 to 4 times more sediment per mouth area than funnel traps (Pennington, 1974). Accordingly, Kirchner (1975) discounted a l l funnel r e s u l t s . Traps having mouth diameter to cylinder height of 1:5 (7cm:35cm) were f i l l e d with a known sediment weight and size (x> = 5um, S.D. = 5um) and submerged i n a r i v e r with currents up to 100 cm/sec ( S y v i t s k i and Murray, 1978). No sediment loss occurred, i n d i c a t i n g that a t a l l , t h i n , c y l i n d r i c a l trap w i l l r e t a i n a l l captured p a r t i c l e s . Weight loss can also occur upon r e t r i e v a l of some traps. R e t r i e v a l experiments of jar-tra p s being slowly drawn up with a known weight indicated no sediment loss (Scott and Minor, 1938). A layer of dye (Lugol's) placed on the bottom of c y l i n d r i c a l traps has also been used to indicate disturbance of trap sediment (Rigler et a l . , 1974; Kirchner, 1975). S y v i t s k i and Murray (1978) using c y l i n d r i c a l traps ( d i a -meter to height of 1:5) containing dyed sea water, had a known sediment weight and si z e (jx = 4.3um, S.D. = 5.2um) added to them before descent to 88 150m. A f t e r r e t r i e v a l at 0.3 m/sec only the top 7cm of the trap water had been disturbed with no resultant weight l o s s . Funnel traps (10 and 20cm diameter) tested i n a s i m i l a r manner, were found to develop 'whirlpool' eddies upon l i d l e s s r e t r i e v a l , and loss of sediment that had been placed on funnel sides was s i g n i f i c a n t . Therefore, s u i t a b l e s i z e l i d l e s s cylinders can be drawn up slowly and c a r e f u l l y to avoid sediment loss (Edmonson, 1971). When l i d s are needed for adequate r e t r i e v a l , the complexity and expense of the trap increase; e.g., messenger operated c l o s i n g apparatus (Fuhs, 1973; Davis, 1975), magnesium release mechanism (Berger and Soutar, 1967), hy-d r a u l i c l i d s (Kleerekoper, 1952), SCUBA diver a s s i s t e d (Oviatt and Nixon, 1975) and even submarine assi s t e d c l o s i n g mechanisms (Wiebe et a l . , 1976). Lids s i t u a t e d above the trap before closure further increase the turbulence over the opening and could cause sediment d e f l e c t i o n i f a h o r i z o n t a l current i s present ( F i g . 6). 3) Nylon mesh over trap openings has been used ( T r e v a l l i o n , 1967) to eliminate the capturing of f i s h and zooplankton which take up residence i n the trap over long periods of c o l l e c t i o n . Mesh that has openings large enough to allow entry to a l l non s e l f - p r o p e l l e d s e t t l i n g matter w i l l un-doubtedly admit abundant grazing c i l i a t e s and small zooplankton (Hargrave et a l . , 1976; Wiebe et a l . , 1976). 4) Grazing and accompanying b a c t e r i a l breakdown could also spur new organic growth which would r e s u l t i n a f a l s e organic sedimentation rate. The error i n organic sedimentation rates w i l l therefore increase as the c o l l e c t i o n time increases; therefore, d e t a i l e d organic studies should aim at sampling i n t e r v a l s of days rather than weeks. Johnson and Brinkhurst A Swnessenger release .closing lid with magnetic clasps collection cylinder *-0.5juTTI 0.5pm 65jixn 65pm closing lid currant flowlinas trap mouth 0.5j*n 65 pm ^0 = 0.05 cm/s ec 0^ = 0.5 cm/s sec ^ = 5 c m/sec Figure 6. E f f e c t of a c l o s i n g l i d s i t u a t e d above the trap mouth. A) i l l u s t r a t e s a messenger r e l e a s e c l o s i n g - l i d trap ( a f t e r Davis, 1975). B) provides the expected flow l i n e s of current around the i n t e r f e r i n g c l o s i n g - l i d , i f the current was d i r e c t e d i n t o the l i d at r i g h t angles, C) gives the s e t t l i n g paths of a t y p i c a l suspended sediment p a r t i c l e range (0.5 - 65 um) at three h o r i z o n t a l c u r r e n t s , v. As'v in c r e a s e s , the b a r r i e r e f f e c t of the l i d i n c r e a s e s . 00 90 (1971) found that a six-day c o l l e c t i o n period y i e l d e d inorganic material i d e n t i c a l with the sum of d a i l y c o l l e c t i o n s over the same s i x days, but more organic material. Traps with dual compartments have been designed to permit correction for attached growth (Fuhs, 1973; White and Wetzel, 1973). Preservatives (formaldehyde, chloroform, Lugol's solution) have also been used to stop organic decomposition and subsequent new organic growth (Lewacz, 1969; Rig l e r et a l . , 1974; Kirchner, 1975). I f l i v i n g organisms entered the trap, however, they would also die i n the preservative and cause an error i n the organic sedimentation rate. Not foreseeing a s o l u t i o n to the above problems, Hargrave et a l , (1976) chose to redefine organic sedimentation rates as the depositon of r e l a t i v e l y stable material a f t e r degradation during the c o l l e c t i o n . 5) Traps should be constructed out of p l a s t i c s ( a c r y l i c , PVC) attached to nylon trap l i n e s , i f trace metals are to be analyzed. This i s e s p e c i a l l y important when the c o l l e c t i o n time i s large (Scott and Minor, 1936). 6) The consequence of water motion i n and above the trap i s not very w e l l understood. The suggestions to date include: 1) traps increase the sedimentation rate by decreasing the turbulence of the water over the trap opening (Kleerekoper, 1952; Golterman, 1973); 2) traps increase the turbulence at the place of c o l l e c t i o n and therefore decrease the sedimentation rate, since l o c a l turbulence would retard the s e t t l i n g v e l o c i t y of p a r t i c l e s passing over the trap (Berger and Soutar, 1967) ; 3) increased turbulence around the trap may create deposition i n the trap (Hakanson, 1976); and 4) traps ( c y l i n d r i c a l ) do not cause turbulence above the mouth and a c t u a l l y measure the true sedimentation rate (Davis, 1967; Pennington, 1974; R i g l e r 91 et a l . , 1974; and Kirchner, 1975). Davis (1967) used Hopkins (1950) e f f i c i e n c y experiment to conclude that sediment traps do not hinder or enhance sedimentation rates. Kirchner (1975) found the catch/unit area did not increase with the increasing trap diameter and concluded that a trap does not generate e f f e c t i v e turbulence over i t s mouth. However, neither Davis (1967) nor Kirchner (1975) indicated the current regime for t h e i r tes The perturbation of flow i n the region of the trap o r i f i c e and i t s e f f e c t on the s e t t l i n g of p a r t i c l e s w i l l be a function of the trap design and the ambient flow. Some i n s i g h t can be gained from experience with pre-c i p i t a t i o n gauges, i n which a catch deficiency that increases with wind speed has been demonstrated (Linsley et a l . , 1975) due to an upward de-f l e c t i o n of the flow over the gauge o r i f i c e (Warnick, 1953). The upward acceleration associated with this d e f l e c t i o n would tend to i n h i b i t the s e t t l i n g of coarser s i z e p a r t i c l e s and eliminate the capture of the fin e s i z e p a r t i c l e s . Deficiency diagrams.like the one proposed i n Figure 7 should be worked out for a l l traps i n use. (A method i s proposed i n the following section 'Accuracy of Trap C o l l e c t i o n ' ) . The use of such i n f o r -mation would necessitate 'trap users' to d e l i m i t t h e i r current environment through use of conventional metering techniques. To compensate for the e f f e c t of wind on p r e c i p i t a t i o n measurement, shields have been devised so that the windflow above the o r i f i c e of the gauge would be p a r a l l e l , with no acceleration at the o r i f i c e (McKay, 1969). Dye-gun experiments with sediment traps i n a. flume 'with c o n t r o l l e d current v e l o c i t y are i n the early stages of t e s t i n g traps with two trap shields (Fig. 8a) by this author. The f i r s t trap s h i e l d was designed a f t e r the Canadian snow gauge s h i e l d (McKay, 1969) and i s b a s i c a l l y horn shaped 9 2 o-k / O cm/sec Figure 7. P o s s i b l e family of curves of sediment trap catch d e f i c i e n c y vs. h o r i z o n t a l v e l o c i t y at various p a r t i c l e s i z e s . At p o i n t s A, the upward v e l o c i t y generated over the trap mouth i s equal to the downward s e t t l i n g v e l o c i t y of that p a r t i c l e s i z e and such p a r t i c l e s would no longer be c o l l e c t e d by the t r a p . 93 aye gun ^shie lded sediment trap flume water dye gun unshielded trap PLAN V I E W SIDE VIEW Figure.8. A) i s a schematic of a dye-gun experiment w i t h s h i e l d e d and unshielded traps i n a c o n t r o l l e d current v e l o c i t y flume. Examples of two types of s h i e l d s p r e s e n t l y being tes t e d f o r use on sediments traps are shown i n B) and C). 94 (Fig. 8b). The second s h i e l d i s a thin f l a t plate that s i t s over a c y l i n d r i c a l trap (Fig. 8c). Both were designed to eliminate any v e r t i c a l component over the trap mouth. 7) P r e c i s i o n i s calculable by placing more than one trap, preferably four, at each s t a t i o n l e v e l . This allows c a l c u l a t i o n of the standard error (S.E.) i n sampling and the c o e f f i c i e n t of v a r i a t i o n (S.E./x*100) i n percent. I f the trap hangs v e r t i c a l l y and the sediment c o l l e c t i o n i s neither hindered nor enhanced, then the p r e c i s i o n value may r e f l e c t the retention and recovery of the trap. The i n d i v i d u a l traps at each s t a t i o n l e v e l should be w e l l seperated from each other (e.g., by 2m) i f an unbiased estimate of p r e c i s i o n i s to be calculated ( S y v i t s k i and Murray, 1978). The p r e c i s i o n of previously published trap data ranges from 1.9%-12.7% (Table 1). S y v i t s k i and Murray (1978) found that t h e i r t o t a l inorganic weight p r e c i s i o n of ±1.9% r e f l e c t e d laboratory techniques, not f i e l d recovery. The p r e c i s i o n f or organic matter of the same trap data averaged ±11.6%, i n d i c a t i n g that any v a r i a t i o n i n the sample c o l l e c t i o n was due to organic f a c t o r s . Since the c o l l e c t i o n periods ranged from s i x to twelve hours, i n 8-10°C f j o r d water with low oxygen content, the v a r i a t i o n was thought to be p a r t l y due to zooplankton and c i l i a t e grazing, and p a r t l y to the variable s e t t l i n g c h a r a c t e r i s t i c s . o f organic matter. Thus, p r e c i s i o n values should be indicated for both t o t a l inorganic and organic sediment f r a c t i o n . White and Weitzel (1973) found t h e i r sample v a r i a t i o n to i n -crease with increasing c o l l e c t i o n area and they related t h i s e f f e c t to the nonrandom entrapment of the larger detritus p a r t i c l e s i n the traps of large diameter. Two other errors i n trap methodology could a r i s e . The f i r s t i s by 95 c o e f f i c i e n t of v a r i a t i o n Author # of t r a p s / l e v e l range X data typi B r u n s k i l l (1969)** 4/level 5.6-20.9% 12.7% TSW*** White and Wetzell (19 73)** 4/level 1.2- 4.4% 2.8% TSW Pennington (1974)+ 2/level 0.0-10.0% ? TSW Gasith (1975)** 3/level 3.2- 6.9% 4.9% TSW Oviatt and Nixon (1975)** 8/level ? 10.5% TOW*** Webster et a l . (1975) 4/level 2.0-26.0% 1 TSW 2.0-17.0% 1 TCW*** Hargrave et a l . (1976) 4/level 4.0-25.0% 1 TSW S y v i t s k i and Murray (1978) 4/level 0.0- 4.6% 1.9% TIW*** 1.2-25.2% 11.6% TOW ** data presented as x ± S.E. + data presented as range/x* 100 *** TSW = t o t a l sediment weight TOW = t o t a l organic weight TCW = t o t a l carbon weight TIW = t o t a l inorganic weight Table 1 Table of p r e c i s i o n of past research 96 f i l l i n g the trap w i t h surface water before i t s l o c a t i o n at the d e s i r e d depth. This e r r o r , i n .terms of the q u a n t i t y and q u a l i t y of c o l l e c t e d m a t e r i a l , should be evaluated or e l i m i n a t e d . A n a l y s i s of the surface water taken at the time of the trap s e t , f o r suspended i n o r g a n i c and organic c o n c e n t r a t i o n , might be used to compensate f o r any q u a n t i t a t i v e contamination. N o r d l i e and Anderson (1972) f i l l e d t h e i r traps w i t h f i l t e r e d water p r i o r to s e t t i n g i n order to e l i m i n a t e any contamination. The second e r r o r a r i s e s from d i s c a r d i n g the supernatant l i q u i d immediately a f t e r trap r e t r i e v a l ( i . e . , K i r c h n e r , 1975), which removes an undetermined qu a n t i t y of m a t e r i a l and much of the f i n e r c l a y - s i z e m a t e r i a l . To obviate t h i s e r r o r , the traps should be l e f t to stand long enough to allow complete settlement, or the s o l i d matter i n the supernatant l i q u i d should be e x t r a c t e d by c e n t r i f u g e , or the top water f i l t e r e d to determine the weight of i n o r g a n i c and organic matter. Accuracy of Trap C o l l e c t i o n Hopkins (1950) and Davis (1967) tested the accuracy of c o l l e c t i o n by p l a c i n g traps i n l a r g e sedimentation tanks of s t i l l water c o n t a i n i n g a known concentration of suspensate. The e f f i c i e n c y of the containers i n c o l l e c t i n g f a l l i n g grains was estimated by comparing the observed amount c o l l e c t e d per u n i t area to the expected amount c a l c u l a t e d from the t o t a l amount of grains added to the sedimentation tank d i v i d e d by the tank area. The r e s u l t s i n d i c a t e d trap c o l l e c t i o n to be accurate but e r r o r values were not c i t e d . Sedimentation rates from traps have al s o been compared to rates determined by r a d i o m e t r i c d a t i n g (^-^Cs m e t h o d , 210pb method) of deposited 97 sediment (Pennington, 1974; Spyridakis and Barnes, 1976). This method necessitates the conversion of radiometric rates to units of g/m /year, since conversion of trap values to depth per time ( i . e . , volume of sediment c o l l e c t e d divided by the trap opening) has b u i l t - i n problems. One major problem i s the comparison of sediment bulk densities from cores to bulk densities of trap sediment (Lawacz, 1969; S y v i t s k i and Swinbanks, 1978). Spyridakis and Barnes (1976) found trap c o l l e c t i o n to be within the experimental errors of 210 P b method. One l i m i t a t i o n to using radiometric dates for comparison, i s the problem of resuspension of bottom sediment. The traps must be s t r a t e g i c a l l y emplaced i n the water column (Wiebe et a l . , 1976) so as not to c o l l e c t bottom resuspension. Traps subjected to a resuspension event would r e g i s t e r an increase i n the deposited material while the lake (or sea f l o o r ) may have had sediment eroded away (Davis, 1967). Even i f a l l the material resuspended was redeposited without loss on the bottom, the trap would s t i l l i n d i c a t e a higher sedimentation rate. The use of radiometric deposition rates for t e s t i n g trap accuracy involves the assumptions that a) bottom deposition at the core l o c a t i o n i s accurately depicted by the suspended c o l l e c t o r , b) the radiometric depositional. rate (a value averaged over a number of years) can be compared with the shorter c o l l e c t i o n period of the trap, and c) b i o l o g i c i n t e r a c t i o n ( i . e . , pelagic VS benthic) has been i d e n t i c a l i n both the trap s i t e and the core s i t e . The above method would s t i l l not i n d i c a t e the q u a l i t a t i v e capture a b i l i t y of the trap ( i . e . , the s i z e range of captured p a r t i c l e s ) . To avoid the above complications, the following theory and method, based on p a r t i c l e s i z e d i s t r i b u t i o n s , i s proposed as a simple check on the 98 quantitative and q u a l i t a t i v e catch a b i l i t y of suspended sediment c o l l e c t o r s . A s i z e d i s t r i b u t i o n of sediment c o l l e c t e d i n traps can be evaluated by a num-ber of methods that give r e s u l t s i n terms of p a r t i c l e s e t t l i n g v e l o c i t i e s . A review 6f> the l i m i t a t i o n s of each method, along with the advancement of a new s i z e a n a l y t i c a l method e s p e c i a l l y designed for the t y p i c a l l y low sample weights c o l l e c t e d i n sediment c o l l e c t o r s , i s given by S y v i t s k i and Swinbanks (1978). A si z e d i s t r i b u t i o n i s based on the weight frequency i n percent versus p a r t i c l e s i z e i n equivalent s p h e r i c a l sedimentation diameters. The s i z e d i s -t r i b u t i o n of trap c o l l e c t e d sediment i s a c t u a l l y the d i s t r i b u t i o n of i n d i v i d u a l s i z e sedimentation rates, Z(x), as defined i n equation (1) but i n weight per-cents (or rather rate percents): (Z(x)/Zo)-100 = f(x)-V(x)/Zo-100 (10) Solving for f ( x ) , the concentration of p a r t i c l e s of any given si z e f r a c t i o n 'x' i n the water column, then: f(x) = Z(x~)/V(x) . (11) The 'average' s e t t l i n g v e l o c i t y of any given si z e f r a c t i o n 'x', V(x), can be calculated from Stokes Law of S e t t l i n g with knowledge of the f l u i d v i s c o s i t y and temperature of the water overlying the sediment c o l l e c t o r . Direct compa-r i s o n of f ( x ) , as computed from sediment trap data, with the observed concen-tratio n s sampled i n the overlying waters by tests such as x 2 » could be used to determine the r e l i a b i l i t y i n terms of quantitative capture. S t a t i s t i c a l com-parison of the expected and observed siz e d i s t r i b u t i o n i n the water column i s important since the trap may q u a n t i t a t i v e l y approximate the t o t a l f l u x of ma-t e r i a l but s t i l l not capture a l l s i z e f r a c t i o n s . This discrepancy could indi-. cate enhancement or d e l e t i o n of c e r t i a n s i z e p a r t i c l e s due to the trap mouth e f f e c t (design consideration #6). I f f(x) i s converted to p e r c e n t i l e s , i t can be plotted against p a r t i c l e diameter 'x' to provide the expected siz e 9 9 d i s t r i b u t i o n of p a r t i c l e s i n the water column. The above method, using equation (11), i s r e s t r i c t e d to homogeneous water (constant f l u i d v i s c o s i t y , water temperature, and p a r t i c l e concentation) over the maximum f a l l distance of the lar g e s t p a r t i c l e . This r e s t r i c t i o n i s one of time rather than environment since most environments have ho r i z o n t a l layers of v e r t i c a l l y homogeneous water. With foreknowledge of the s t r a t i f i c a -t i o n , the time of capture could be calculated so that the maximum p a r t i c l e f a l l distance i s retained i n the homogeneous water column. The time could range from minutes to months depending on the depth of the homogeneous water and the fa s t e s t s e t t l i n g p a r t i c l e present i n the water column. A second assumption i s that the p a r t i c l e f l u x over the c o l l e c t i o n time be constant. This r e s t r i c t i o n could be tested by measuring the v a r i a b i l i t y of the p a r t i c l e concentration i n the overlying waters during the time of trap c o l l e c t i o n . I f the concentration v a r i a b i l i t y was much larger than the p r e c i s i o n of the sampling method, then the p a r t i c l e f l u x would not be constant. The resultant p a r t i c l e s i z e d i s t r i -bution i n the water column as calculated from the trap sediments would then become the 'average' s i z e d i s t r i b u t i o n over the period of c o l l e c t i o n . In t h i s case the test for sediment trap catch e f f i c i e n c y would necessitate comparison to the 'average' s i z e d i s t r i b u t i o n based on many water samples taken during the time of trap c o l l e c t i o n . P a r t i c l e s should also f a l l i n d i v i d u a l l y since the method i s based on the s e t t l i n g v e l o c i t y of each discr e t e s i z e f r a c t i o n . Inorganic f l o e s ( S y v i t -s k i and Murray, 1978) and mineral-bearing zooplankton f e c a l p e l l e t s ( S y v i t s k i and Lewis, 1978) would obviate marine environments as natural t e s t i n g grounds, however, low-productivity, high run-off fresh water lakes would be i d e a l . Geologic Implications from Sediment Trap Results The above method was undertaken i n a B r i t i s h Columbian f j o r d , Howe 100 Sound, to ind i c a t e the e f f e c t of processes that increase the i n d i v i d u a l set-t l i n g rate of suspended sediments ( S y v i t s k i and Murray, 1978). For instance, i f the trap c o l l e c t e d a greater abundance of f i n e r p a r t i c l e s than suggested from the expected sedimentation rate based on the suspended sediment siz e d i s -t r i b u t i o n , that would indicate a p a r t i c l e s e t t l i n g enhancement process ( f l o c -c u l a t i o n , zooplankton defecation) i n operation. The actual accuracy of trap catchment had not been evaluated ( i . e . , i n a fresh water environment) and, based on water motion over the. trap o r i f i c e s possibly hindering the settlement of f i n e p a r t i c l e s , the r e s u l t s are considered coarse approximations. Figure 9 gives a t y p i c a l r e s u l t of the expected and observed si z e f r e -quency d i s t r i b u t i o n s i n the water above the trap and i n the trap i t s e l f . The quantitative values are provided i n Table 2. The trap sediments overestimated the f i n e r end of the suspended sediment siz e d i s t r i b u t i o n and likewise the suspended sediments underestimated the f i n e r f r a c t i o n i n the traps, which i s opposite of the expected error e f f e c t of turbulence over the trap mouth. Since the observed values of Z(x) and f(x) i n equation (11) were known, t h i s large discrepancy was thought to be due to V(x) the average i n d i v i d u a l s e t t l i n g v e l o c i t y of a given si z e f r a c t i o n 'x'. I f we assume that Z(x) i s an accurate depiction of the observed average sedimentation rate of any given f r a c t i o n 'x', and that f(x) accurately depicts the observed suspended sediment concen-t r a t i o n of any s i z e f r a c t i o n 'x' i n the water during the time of trap c o l l e c -t i o n , then V(x) the observed average s e t t l i n g v e l o c i t y fo any si z e 'x' can be solved by rearranging equaiton (11): V(x) = Z(x)/f(x) (12) Table 2 also gives these observed values of V(x) with the t h e o r e t i c a l Stokes s e t t l i n g values of each s i z e f r a c t i o n , and i t s enhancement factor (EH). The r e s u l t indicates that the fin e clay p a r t i c l e s would mostly s e t t l e 40 6.0 8.0 10.0 12.0 14.0 Equivalent Spherical Sedimentation Diameter (0) where 0 = -log2(mm) F i g u r e 9. S i z e d i s t r i b u t i o n from e x t r a c t e d sediment from a water sample c o l l e c t e d above the trap and the sediment sample i n the trap. The expected d i s t r i b u t i o n of each other were c a l c u l a t e d using equation ( 1 1 ) . ESSD* Sedimentation Rate,Z(x) Suspension C o n c e n t r a t i o n , f ( x ) S e t t l i n g V e l o c i t y V ( x ) EH** (ym) (g/m 2/day) (g/m3) (m/day) observed expected observed expected observed expected 0.5 15.8 0.03 0.78 1018.2 20.3 0.014 1450 1.0 28.8 0.09 0.73 467.7 39.5 0.06 658 2.0 8.4 0.07 0.21 33.1 40.0 0.2 200 3.0 2.2 0.15 0.21 3.8 10.5 0.5 21 4.0 2.9 0.6 0.41 2.8 7.1 0.9 8 6.0 5.5 1.2 0.42 2.4 13.1 2. 1 6 8.0 23.4 5.1 0.83 5.7 28.2 3.8 7.4 12.1 52.1 .9.9 0.84 5.7 62.0 8.5 7.3 16.1 18.6 4.6 0.24 1.1 77.5 15.1 5.1 20.1 8.5 3.4 0.12 0.3 70.8 23.5 3.0 24.1 9.4 5.6 0.16 0.3 58.8 34.0 1.7 28.4 4.2 2.7 0.05 0.1 84.0 47.1 1.8 32.4 4.1 0.8 0.01 0.1 410.0? 61.1 ?6.7 40.1 11.0 11.5 0.10 0.1 110.0 94.1 1.2 48.2 .22.8 41.9 0.22 0.2 103.6 135.8 0.8 64.7 7.2 22.2 0.07 0.03 102.9 244.8 0.4 T o t a l 224.8 81.9 *ESSD = e q u i v a l e n t s p h e r i c a l **EH = enhancement f a c t o r = 5.4 1541.6 sedimentation diameter V(x)observed V(x)expected Table 2. Data i s based on s i z e d i s t r i b u t i o n s from p a r t i c l e s c o l l e c t e d i n the water above a trap and i n the t r a g . The c o l l e c t i o n p e r i o d was f o r 8 hours, J u l y 20, 1977, i n 10 C sea water w i t h a s a l i n i t y o f 24% 0. The l o c a t i o n was 2km seaward of the Squamish D e l t a (a o bay head d e l t a ) i n the B r i t i s h Columbian f j o r d , Howe Sound. The t r a p was l o c a t e d 5m beneath the s u r f a c e . The water sample was taken 4m above the t r a p . 103 at speeds equivalent to medium s i l t p a r t i c l e s , due to some process of s e t t l i n g enhancement. Another use of grain s i z e d i s t r i b u t i o n s from traps i s i n the study of laminated sediments. Recent i n v e s t i g a t i o n has suggested that sediment depo-s i t i o n a l processes cannot be interpreted from bulk grain s i z e analysis ( S y v i t -s k i and Murray, 1977). Grace et a l . (1978) having analyzed i n d i v i d u a l laminae i n sandy sediments, found that s i g n i f i c a n t v a r i a t i o n e x i s t s i n mean s i z e and shape of the sublamina l e v e l s i z e frequency d i s t r i b u t i o n s . Sediment c o l l e c t e d from traps might be thought of as sublaminae. Therefore, analysis of si z e d i s t r i b u t i o n s of the sublaminae, with time and condition of depositional en-vironment, might supply i n s i g h t s f o r the i n t e r p r e t a t i o n of bulk grain s i z e a n a l y s i s . Figure 10 provides corroborative evidence that s i z e frequency distribu-r tions of sublaminae vary with time. The d i s t r i b u t i o n s were from trap c o l l e c -ted sediment at one s t a t i o n and depth i n Howe Sound c o l l e c t e d during a seven month period ( S y v i t s k i and Murray, 1978). Conclusion Suspended sediment c o l l e c t o r s have an important contribution to make i n the f i e l d s of limnology and oceanology for measuring the downward f l u x of sediment. The quantitative and q u a l i t a t i v e accuracy of such c o l l e c t o r s i s presently poorly known, and previously published data i s at best semi-quanti-t a t i v e . The theory of sedimentation rates has been presented. By combining equations (1) and (9), the following equation of sedimentation rates as mea-sured by sediment traps r e s u l t : Di = { b/f (x)-V(x) «dx}'Cosa + { ( ( v b / f (x) «dx) • sina) • 6} • cos6 (13) 3. SL -90°<6<90°, -90° E u 80-60-40-20-Station(7) - 5 5 m m depth: © April ' 7 7 - 694.4 g/m2/day (2) June " 7 7 - 737.2 g/mVday (3) July 7 7 - 241.2 g/mVday ® August ' 7 7 - 1304.4 g/mVday © October " 7 7 - 122.8 g/m 2/day 2.0 4.0 6.0 80 10.0 12.0 14.0 Equivalent Spherical Sedimentation Diameter (0) where 0 = -log2(mm) Figure 1 0 . S i z e frequency d i s t r i b u t i o n s from sediment traps (sublaminae) c o l l e c t e d over a seven month span i n Howe Sound, B.C. The t o t a l i n o r g a n i c sedimentation r a t e associated w i t h each s i z e d i s t r i b u t i o n i s a l s o provided. o 105 l y and n o n - l i n e a r l y w i t h i n c r e a s i n g h o r i z o n t a l current and i n c r e a s i n g trap t i l t , and w i t h decreasing p a r t i c l e s i z e . Seven design c o n s i d e r a t i o n s have been proposed f o r fu t u r e trap construc-t i o n . The i n s u f f i c i e n t t e s t i n g of p r e v i o u s l y used„ traps f u r t h e r decreases the r e l i a b i l i t y of past r e s u l t s . I n i t i a l t e s t s suggest that a) trap t i l t can be lowered to a < 0.1°; b) p a r t i c l e r e t e n t i o n can be s u c c e s s f u l without the use of s o p h i s t i c a t e d and expensive l i d s that might cause f u r t h e r sediment d e f l e c t i o n ; c) problems s t i l l e x i s t i n the c o l l e c t i o n of the organic f r a c t i o n i t i s suggested that the c o l l e c t i o n i n t e r v a l be reduced to days rather than weeks; d) the p o s s i b l e e x i s t e n c e of an upward v e r t i c a l a c c e l e r a t i o n over the trap o r i f i c e would tend to give reduce sedimentation r a t e s , p a r t i c u l a r l y apparent i n the f i n e end of the s i z e spectrum; and e) p r e c i s i o n values of data should be i n d i c a t e d f o r both t o t a l i n o r g a n i c and organic sediment f r a c -t i o n s . A theory and method to check the q u a n t i t a t i v e accuracy of c o l l e c t o r catch a b i l i t y has been proposed. I t s s i m p l i c i t y would make i t p r a c t i c a l f o r ro u t i n e use. I t s use as a t e s t i s r e s t r i c t e d to f r e s h water environments w i t h small zooplankton populations. I t s use i n the marine f i e l d has l e d to the a b i l i t y to c a l c u l a t e the n a t u r a l s e t t l i n g v e l o c i t y of f l o c c u l a t e d or otherwise enhanced p a r t i c l e settlement. This a b i l i t y , which p r e v i o u s l y had not been recognized, i s of s i g n i f i c a n c e i n the f i e l d s of geochemistry, s e d i -mentology and b i o l o g y . Grain s i z e d i s t r i b u t i o n s from traps have a l s o been given importance i n the study of laminated sediments. 106 REFERENCES A n s e l l , A.D, 1974. Sedimentation of organic d e t r i t u s i n Lochs Et i v e and Ceram, Angyll, Scotland. Mar. B i o l . 27:263-273. Basinski, T., and Lewandowski, A. 1975. F i e l d investigations of suspended sediment. Coastal Eng. Conf., 14th Int. Proc. 2:1096-1108. Berger, W.H., and Soutar, A. 1967. Planktonic foraminifera: f i e l d experiment on production rate. Science. 156:1495-1497. B r u n s k i l l , G.U. 1969. F a y e t t e v i l l e Green Lake, New York. I I . P r e c i p i t a t i o n and sedimentation of c a l c i t e i n a meromictic lake with laminated sediments. Limnol. Oceanogr. 14:830-847. Davis, J.M. 1975. Energy flow through the benthos i n a Sco t t i s h Sea loch. Mar. B i o l . 31:353-362. Davis, M.B. 1967. Polle n deposition i n lakes as measured by sediment traps. Geol. Soc. Am. B u l l . 78:849-858. . 1968. P o l l e n grains i n lake sediments: Redeposition caused by seasonal water c i r c u l a t i o n . Science. 162:796-799. Edmonson, W.T.(ed.) 1971. International B i o l o g i c a l Programme Handbook #17. 'A manual on methods for the assessment of secondary p r o d u c t i v i t y i n fresh waters'. Blackwell S c i e n t i f i c Publ. Fuhs, G.W. 1973. Improved device for the c o l l e c t i o n of sedimenting matter. Limnol. Oceanogr. 18:989-993. Fukushima, H., and Mizoguchi, Y. 1958. F i e l d i n v e s t i g a t i o n of suspended l i t t o r a l d r i f t . Coastal Eng. Jap. 1:131-134. Gasith, A. 1975. Tripton sedimentation i n eutrophic lakes - Simple correction for the resuspended matter. Verh. Internat. Verein. Limnol. 19:116-122. Golterman, H.L. 1973. V e r t i c a l movement of phosphate fresh water, p. 509-538. In E.S. G r i f f i t h et a l . (eds.), Environmental phosphorous handbook. Wiley. Grace, J.T., Grothaus, B.T., and E h r l i c h , R. 1978. Non-normal s i z e frequency d i s t r i b u t i o n s of sand from i n d i v i d u a l laminae suggests r e i n t e r p r e -t a t i o n of conventional s i z e frequency data. Submitted to Jour, of Sed. Pet. Grim, J . 1950. Versuche zur ermittlung der produktionskoeffizienten einger planktophyten. B i o l . 3bt. 69:147-174. Hakanson, L. 1976. A bottom sediment trap for recent sedimentary deposits. Limnol. Oceanogr. 21:170-174. Hargrave, B.T., P h i l i p s , G.A., and Taguchi, S. 1976. Sedimentation measure-ments i n Bedford Basin, 1973-1974. Tech. Rept. F i s h . Bd. Can. 608:129pp. 107 Heim, A. 1900. Der Schlairanabsatz am Grund des V i e r w a l d s t a t t e r Sees. V i e r t e l -j a h r s s c h r . N a t u r f o r s c h . Ges Z u r i c h 45:144-158. Hopkins, J.S. 1950. D i f f e r e n t i a l f l o a t a t i o n and d e p o s i t i o n of c o n i f e r o u s and deciduous t r e e p o l l e n . Ecology 31:638-641. J a r n e f e l t , H. 1955. Uber d i e sedimentation des sestons. I n t . Ver. Theor. Angew. Limnol. Verh. 12:144-148. Johnson, M.G., and B r i n k h u r s t , R.O. 1971. Benthic community metabolism i n Bay of Quinte and Lake Ontario. J . F i s h . Res. Bd. Can. 28:1715-1725. K i r c h n e r , W.B. 1975. An e v a l u a t i o n of sediment trap methodology. Limnol. Oceanogr. 20: 657-660. Kleerekoper, H. 1952. A new apparatus f o r the study o f sedimentation on l a k e s . Can. J . Zoology. 30:185-190. . 1953. The m i n e r a l i z a t i o n of plankton. Jour. F i s h . Res. Bd. Can. 10: 283-291. Lawacz, W. 1969. The c h a r a c t e r i s t i c s of s e t t l i n g m a t e r i a l s and the formation of bottom d e p o s i t s i n a eutrophic l a k e . M i t t . I n t e r n a t . V e r e i n . Limnol. 17:319-331. L i n s l e y , R.K., K o h l e r , M.A., and Paulhus, J.L.H. 1975. Hydrology f o r Engineers (2nd ed.). McGraw-Hill Book Co. McCave, I.N. 1975. V e r t i c a l f l u x of p a r t i c l e s i n the ocean. Deep Sea Res. 22:491-502. McKay, D.J. 1969. Review hydr o m e t e r o l o g i c a l i n s t r u m e n t a t i o n , p.1-20. In Instrumentation and observation techniques..Proc. H y d r o l . Symp. #7, V i c t o r i a , B r i t i s h Columbia, May 14-15, 1969. Moore, H.B. 1931. Muds of the Clyde Sea Area I I I . J . Mar. B i o l . Assoc. U.K. 14:325-358. N o r d l i e , F.G., and Anderson, J.F. 1972. A sediment trap f o r use i n s o f t -bottomed l a k e s . F l o r i d a Acad. S c i . Quart. Journ. ( G a i n s v i l l e ) . 35:155-157. Ohle, W. 1962. Der S t o f f h a u s h a l t der Seen a l s Grunglage e i n e r allgemeiner Stoffwechseldynamik der Gewasser. K i e l . Meereforsch. 18:107-120. O v i a t t , CA. , and Nixon, S.W. 1975. Sediment resuspension and d e p o s i t i o n i n Narragansett Bay. E s t u a r i n e Coast. Mar. S c i . 3:201-217. Pennington, W. 1974. Seston and sediment formation i n f i v e Lake D i s t r i c t l a k e s . J . E c o l . 62: 215-251. Peterson, C.J. and Boysen Jensen, P. 1911. V a l u a t i o n of the sea. I . Animal l i f e i n the sea, i t s food and q u a n t i t y . Rep. Dan. B i o l . Stn. 20:3-76. 108 Raymond, P.E., and Stetson, H.C. 1931. A new factor i n the transportation and d i s t r i b u t i o n of marine sediments. Science. 73:105-106. Reissinger, A. 1932. Quantitative Untersuchungen uber den schlammabsatz i n Alpsee, dem Niedersonthofener See und dem Starnberger See. Arch. Hydro-b i o l . 24:535-542. Revelle, R. 1952. Discussion: 'Methods of exploring the ocean f l o o r ' by R.S. S i e t z , p.206-208. In J.D. Isaacs and C. I s e l i n (eds.), Sympo-sium of Oceanographic Instrumentation, Div. Phy. S c i . NRC publ. 309. R i g l e r , F.H., MacCallum M.E., and Roff, J.C. 1974. Production of zooplankton i n Char Lake. J. Fi s h . Res. Bd. Can. 31:637-646. Rossolimo, L. 1937. Materialy k poznanju sedimentaciiozernych o t l o z e n i j . Trudy Limnol. S t a n c i i v Kosine. 21. Schick, G.B., Isaacs, J.D., and Sessions, M.H. 1968. Autonomous instruments i n oceanographic research, p. 203-230. In F. Ah (ed.), Marine Sciences Instrumentation. 4. Scott, W., and Minor, D.H. 1936. Sedimentation i n Winona Lake and Tippecanoe Lake, Kosciusko County, Indiana, July 31, 1930, to July 30, 1935. Ind. Acad. S c i . P r o c , 1935. 45:275-286. Smith, N.D. 1978. Sedimentation processes and patterns i n a g l a c i e r - f e d lake with low sediment input. Can. Jour. Earth S c i . 15:741-756. Spyridakis, D.E., and Barnes, R.S. 1976. The e f f e c t s of waste water diversion on heavy metal l e v e l s i n the sediments of a large urban lake. O f f i c e of Water Research and Technology, Washington D.C, Project completion report, 38pp. Steele, J.H., and Baird, I.E. 1972. Sedimentation of organic matter i n a S c o t t i s h sea loch. Memorie 1st. i t a l . I d r o b i o l . 29:73—88. Stephens, K., Sheldon, R.W., and Parsons, T.R. 1967. Seasonal v a r i a t i o n s i n the a v a i l a b i l i t y of food for benthos i n a coastal environment. Ecology. 48:852-855. S y v i t s k i , J.P., and Murray, J.W. 1977. A discussion of grain s i z e d i s t r i b u t i o n using log p r o b a b i l i t y p l o t s . B u l l . Can. Petroleum Geol. 25:683-694. . , and . 1978. F l o c c u l a t i o n and zooplankton p e l l e t -i z a t i o n of suspended sediment i n a high run-off f j o r d : Howe Sound, B r i t i s h Columbia. In preparation. ., and Lewis, A.G. 1978. Interaction of zooplankton and suspended sediments. Submitted to Sedimentology. ., and Swinbanks, D.D. 1978. VSA: A new f a s t s i z e analysis technique for low sample weight based on Stokes s e t t l i n g v e l o c i t y . Submitted to Jour. Sed. Pet. 109 Tauber, H. 1965. D i f f e r e n t i a l p o l l e n d i s p e r s a l and the i n t e r p r e t a t i o n of pollen diagrams. Danm. Geol. Unders. I I . 89:1-69. Thomas, E.A. 1950. Beitrag zur methodik der produktionsforschung i n seen. Schweiz. Z. Hydrol. 12:25-37. Toyoda, L., Horie, S., and Sai j o , Y. 1968. Studies on the sedimentation i n Lake Biwa from the viewpoint of lake metabolism. M i t t . Internat. Verein. Limnol. 14:243-255. T r e v a l l i o n , A. 1967. An i n v e s t i g a t i o n of d e t r i t u s i n Southampton water. J. Mar. B i o l . Assoc. U.K. 47:523-532. Tutin, W. 1955. Preliminary observations on a year's cycle of sedimentation i n Windemere, England. Mem. 1st. I t a l i a n o Idrobiologia, Supp. 8. 467-484. Warnick, C.C. 1953. Experiments with windshields for p r e c i p i t a t i o n gauges. Trans. Am. Geophys. Union. 34:379-388. Watanabe, Y., and Hayashi, H. 1971. Investigation on the method for measuring the amount of f r e s h l y p r e c i p i t a t i n g matter i n lakes. Jap. J . Limnol. 32:40-45. Webster, T.J.M., Paranjab, M.A., and Mann, K.H. 1975. Sedimentation of organic matter i n St. Margaret's Bay, Nova Scotia. J . Fi s h . Res. Bd. Can. 32:1399-1407. Weibe, P.H., Boyd, S.H., and Winget, C. 1976. P a r t i c u l a t e matter sinking to the deep sea f l o o r at 2000m i n the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap. Jour. Mar. Res. 34:341-354. Welch, H.E. J r . 1973. Emergence of chironomidae (Diptera) from Char Lake, Resolute, Northwest T e r r i t o r i e s . Can. J . Zoo. 5:1113-1123. White, W.S., and Wetzel R.G. 1973. A modified sedimentation trap. Limnol. and Oceanogr. 18:986-988. Z e i t s c h e l , B. 1965. Zur sedimentation von seston, eine produktionsbiologische untersuchung von sinkstoffen un sedimenten der westlichen und mit t l e r e n Ostsee. K i e l . Meeresforch. Bd. 21:55-80. 110 INTERACTION OF ZOOPLANKTON WITH SUSPENDED SEDIMENT ABSTRACT Marine zooplankton i n g e s t suspended sediment at a r a t e dependent on sediment .concentration and mineralogy.. Ingested m i n e r a l ; p a r t i c l e s undergo chemical and m i n e r a l transformations which are f u n c t i o n s of mineralogy, c a t i o n exchange c a p a c i t y and residence time i n the d i g e s t i v e t r a c t . Zooplankton f e c a l p e l l e t s s e t t l e through the water column much f a s t e r than the s e t t l i n g v e l o c i t y of t h e i r component p a r t i c l e s . This increased s e t t l i n g r a t e allows c l a y to be deposited where the hydrodynamic nature of the environment would only a l l o w coarse s i l t to f i n e sand d e p o s i t i o n . C h l o r i t e , v e r m i c u l i t e and h a l l o y s i t e have formed a f t e r zooplankton i n -g e s t i o n of amphibole, m o n t m o r i l l o n i t e and muscovite standards r e s p e c t i v e l y . Such chemical changes add a new dimension to the ongoing arguments of c l a y mineral d i a g e n e s i s . I l l INTRODUCTION Inorganic p a r t i c l e s s e t t l i n g through the water column contribute the l a r g e s t weight of material to the f l o o r s of the world's oceans. These p a r t i c l e s s e t t l e i n d i v i d u a l l y or as f l o e s ; t h e i r rate of settlement being co n t r o l l e d by the nature of the p a r t i c l e . They are exposed to p h y s i c a l , chemical and b i o l o g i c a l processes which may e f f e c t some change on the nature of the p a r t i c l e during and a f t e r sedimentation. Clay mineral d i s -t r i b u t i o n i n bottom sediments has previously been explained on the basis of rate of s e t t l i n g and chemical changes a f t e r settlement. L i t t l e work has been done on the e f f e c t of b i o l o g i c a l processes occurring during and -a f t e r settlement. The present study examines the e f f e c t of zooplankton on sedimentation rates and clay mineralogy of suspended inorganic p a r t i c l e s . Previous studies have been l i m i t e d to the i n t e r a c t i o n of suspended sediment and benthic organisms (Verwey, 1952; Lund, 1957a, b; Anderson, Jonas and Odum, 1958; Rhoads, 1963; Haven and Morales-Alamo, 1966, 1968, 1972; Rhoads and Young, 1970; Chakrabarti, 1972; Boothe and Knauer, 1972; P r i o r , .1975; Cadee, 1976). The sedimentation of diatoms and coccoliths by pelagic zooplankton has also been recently investigated (Schrader, 1971; Roth, M u l l i n and Berger, 1975; Honjo, 1976; Honjo and Roman, 1978). I t has been suggested that the a c t i v i t y of pelagic zooplankton may be the means by which small mineral p a r t i c l e s , which according to the Stokes Law should require hundreds of days or even years to s e t t l e to the sea f l o o r , are apparently r a p i d l y sedimented ( L i s i t s i n , 1961; Manheim, Hathaway and Uchupi, 1972). Such a mechanism was suggested for the formation of the well-defined clay zones rel a t e d to source areas rather than,the i n d i s t i n c t mixtures that would be expected i n the event of slow deposi-t i o n and consequent extensive mixing ( L i s i t s i n , 1961). F l a t , i r r e g u l a r 112 L mineral p a r t i c l e s that range from 1 - 25 um have been reported i n large quantities i n the dige s t i v e t r a c t of a large number of deep-water f i l t e r feeding copepods (Harding, 1974). Mauchline and Fisher (1969) noted that euphasiids are known to eat mineral grains as well as organic debris. Since 70% of the p a r t i c u l a t e material i n the deep ocean i s inorganic (Wangersky, 1965) , indiscriminate f i l t e r feeders must ingest inorganic mineral p a r t i c l e s (Harding, 1974). Bacteria and adsorbed organics on suspended mineral surfaces have been suggested to provide nourishment for the f i l t e r feeding zooplankton (Robinson, 1957; Harding, 1974). Bigham (1974) has observed clay agglomerates i n f e c a l p e l l e t s and implied that p e l l e t s may be an important form of marine sedimentation. The sedimentological implication of s e t t l i n g f e c a l p e l l e t s has importance i n the v e r t i c a l transport of trace metals (Johannes and Satomi, 1966; Frankenberg, Coles and Johannes, 1967) and radionucleides (Osterberg, 1963; Fowler and Small, 1972), formation of sedimentary oozes (Smayda, 1970; Schrader, 1971; Roth et a l . , 1975; and Honjo, 1976), nutrient c y c l i n g (Honjo and Roman, 1978), and deposition of inorganic p a r t i c l e s ( t h i s paper). The study was designed to evaluate a) the a b i l i t y of zooplankton to ingest autoclaved sediment, b) the e f f e c t of suspension concentration on the rate of p e l l e t e g e s t i o n , c) whether chemical or mineral transformation would occur a f t e r p a r t i c l e s were ingested, d) the s e t t l i n g v e l o c i t y of mineral-bearing f e c a l p e l l e t s and i t s r e l a t i o n to p e l l e t volume, e) the e f f e c t of p e l l i c l e removal on mineral-bearing f e c a l p e l l e t break-up, and f) the sedimentation rate of mineral-bearing f e c a l p e l l e t s n a t u r a l l y produced from pelagic zooplankton c o l l e c t e d from Howe Sound, a high run-o f f , fjord-type estuary located i n southwestern B r i t i s h Columbia. Moore (1931) f i r s t observed that fjords contained a high percentage of zooplankton 113 p e l l e t s incorporated i n the bottom sediment, although he d i d not o b t a i n t h e i r i n o r g a n i c weight percent. MATERIALS AND METHODS a. The organism used i n the l a b o r a t o r y s t u d i e s was Ti g r i o p u s c a l i f o r n i c u s , a h a r p a c t i c o i d copepod, which was maintained at room temperature (23°C) under f l u o r e s c e n t l i g h t c o nditions,. i n Instant Oceair^ (31 %» s a l i n i t y without added tra c e metals or organics) - a commercially prepared a r t i f i c i a l sea water. Medium-rinsed T_. c a l i f o r n i c u s were l e f t i n autoclaved sea water s o l u t i o n (SWS) f o r four hours to cleanse t h e i r d i g e s t i v e t r a c t . Suspensions of 25 mg of standard c l a y s and 500 ml of SWS were each autoclaved f o r two hours to reduce the co n c e n t r a t i o n of b a c t e r i a . (Contamination d i d occur, however, during t r a n s f e r of the t e s t organism.) The c l a y standards were i l l i t e ( F i t h i a n , I l l i n o i s ) , c h l o r i t e (Cotopaxi, Colorado), t r e m o l i t e -r i c h t e r i t e , v e r m i c u l i t e ( A f r i c a n - t y p e standard), muscovite, m o n t m o r i l l o n i t e -bentonrte (Cameron, A r i z o n a ) , K a o l i n ( w e l l - c r y s t a l l i z e d type, Georgia), f e l d s p a r ( m i c r o c l i n e ) , and qua r t z . F i f t y cleaned copepods were added to each of the c l a y suspensions contained i n 1 - 1 Nalgene—^ f l a s k s which were kept at reduced l i g h t c o n d i t i o n and r o t a t e d at one RPM (New Brunswick^ r o l l e r drum) to keep the c l a y s i n suspension. ( F i f t y copepods were neces-sary to compensate f o r i n d i v i d u a l v a r i a t i o n ( Marshall and Orr, 1955).) The r o l l e r drum ran continuously f o r the 48-hour d u r a t i o n of the experiment. The copepods were then separated from the mixtures. The c l a y mixtures were s u c t i o n - f i l t e r e d onto 47 mm HA M i l l i p o r e ^ f i l t e r s (0.45 ym nominal pore s i z e ) , g e ntly washed w i t h d i s t i l l e d water to remove s a l t s , and a i r d r i e d i n a d e s i c c a t o r . The f i l t e r s were then mounted on glass s l i d e s w i t h acetone a f t e r adding a few drops of c l e a r i n g f l u i d (1:1:1 hexane:ethylene d i c h l o r i d e : l , 4 - d i o x a n e ) . 114 The above experiment was repeated with various concentrations of a sin g l e standard clay ( t r e m o l i t e ) . b. T_. c a l i f o r n i c u s i s a marine i n t e r t i d a l copepod and i n order to r e l a t e the lab studies to planktonic organisms i n the f i e l d , zooplankton were c o l l e c t e d from Howe Sound. The zooplankton, comprised mostly of copepods and euphausiids, were allowed to cleanse t h e i r d i g e s t i v e t r a c t s by swimming i n double f i l t e r e d (0.45 ym) natural sea water for 24 hours. The experiment i n a. was repeated on s i x zooplankton c o l l e c t i o n s using 30 mg/£ of c l a y -s i z e c h l o r i t e . c. A s p e c i a l copepod feeding apparatus ( F i g . 1) was b u i l t to c o l l e c t T_. c a l i f o r n i c u s f e c a l p e l l e t s for chemical and mineralogical a n a l y s i s . The copepods were free to swim into an elevated holder and feed on a clay mineral. When f e c a l p e l l e t s s e t t l e d i n the main part of the aquarium, they would pass through a 300 ym nylon screen to keep them away from the organism and thus ensure no ingestion by the copepods. When a s u f f i c i e n t number of p e l l e t s had accumulated (three weeks), they were removed and prepared for chemical and mineral a n a l y s i s . B i o l o g i c a l a c t i v i t y on the p e l l e t s was reduced with #202' F r u s t u l e s °f diatoms produced as a r e s u l t of contamination during the transfer of _T. c a l i f ornicus became a source of s i l i c o n contamination In the elemental a n a l y s i s . Quantitative element analysis u t i l i z e d the ETEC® energy dispersive SEM, for comparing elemental r a t i o s between clay standards and p e l l e t residues. The clay standards, prepared with the same weights and f i l t e r s i z e as the p e l l e t residues, were vacuum f i l t e r e d as a homogeneous layer ensuring i d e n t i c a l clay layer thickness. I t was assumed that r e l a t i v e elemental abundance did not change enough between standard and p e l l e t residue to cause a noticeable change i n 115 c INSTANT OCEAN w Sea Water Solution S 31 %o, 23° C Copepods ,0 Feca l Pe l le t s Transparent P l a s t i c D i scharge Tube -Watch G lass Phleger P las t ic Container Clay Standard 300jim P last ic Netting P l a s t i c Funne l C l a m p Figure 1. Schematic of one of s i x t e e n aquariums b u i l t to c o l l e c t i n o r g a n i c p e l l e t s f o r chemical and mineral a n a l y s i s . 116 element count due to elemental f l u o r e s c e n t i n t e r f e r e n c e . With t h i s assumption, element peak heights of the two samples were compared d i r e c t l y i n the form of c a t i o n r a t i o s . Each a n a l y s i s on the energy-dispersive SEM continued u n t i l the l a r g e s t peak (S i ) reached 8000 counts. Since there was s i l i c a e n r i c h -ment i n the p e l l e t r esidue due to the diatom contamination, aluminum was chosen as the r a t i o denominator (Table 1). In the case of t r e m o l i t e , which contains no A l , i r o n was used i n the denominator (Table 1 ) . Since p e l l e t concentrations of the f i r s t experimental run were l e s s than 1 mg, X-ray powder f i l m a n a l y s i s was c a r r i e d out w i t h the Debye-Scherrer camera. Only d-spacings l e s s than 0.5 nm could be evaluated. The second e x p e r i -mental run y i e l d e d p e l l e t concentrations greater than 1 mg. These and a corresponding standards were mounted onto separate 13 mm Ag f i l t e r s (Selas (R) F l o t r o n i c s ^ , 0.45 ym nominal pore s i z e ) , and f i x e d w i t h n a i l p o l i s h onto glass s l i d e s . Diffractograms were produced from the samples and standards a f t e r a i r d r y i n g at 20°C and heat treatment at 300°C f o r 1 hour, and 550°C f o r 1 hour. M o n t m o r i l l o n i t e and v e r m i c u l i t e were a l s o analyzed a f t e r glyeo-l a t i o n (1,2-ethanediol) before heat treatment. d. Approximately 80 mg of each m i n e r a l standard was added to i n d i v i d u a l Erlenmeyer f l a s k s c o n t a i n i n g 450 ml of the SWS. F i f t y thoroughly r i n s e d T_. c a l i f o r n i c u s that had cleansed d i g e s t i v e t r a c t s were added to each f l a s k . The p e l l e t s , l o c a t e d along the bottom edges of the f l a s k , were removed i n small q u a n t i t i e s w i t h a m i c r o p i p e t t e to a watch glass c o n t a i n i n g SWS. P e l l e t s were i n d i v i d u a l l y s e l e c t e d and added to a 1 - 1 graduated c y l i n d e r c o n t a i n i n g SWS. Each p e l l e t was timed by stop watch over a predetermined f a l l d i s t a n c e , a f t e r i t had reached t e r m i n a l v e l o c i t y . Before the p e l l e t was allowed to reach the bottom, i t was removed w i t h an extension micro-p i p e t t e to a microscope s l i d e where the . c r o s s - s e c t i o n a l area was recorded. 117 e. A f t e r the c r o s s - s e c t i o n a l area was recorded, the p e l l e t was entered i n t o a 30% ^2°2 b a t n o r a 10% HCl bath f o r 90 seconds to remove any p e l l i c l e surrounding the p e l l e t . The p e l l e t was re-entered i n t o the s e t t l i n g c y l i n d e r and i t s new s e t t l i n g time was recorded. f. Suspended sediment t r a p s , based on a prototype described p r e v i o u s l y (Webster, Paranjabe and Mann, 1975; S y v i t s k i and Murray, 1978) were used to c o l l e c t f e c a l p e l l e t s i n Howe Sound. The traps were l o c a t e d a t more than one depth at any given s t a t i o n (Table 4 ) . The study was conducted over the pe r i o d of r i v e r f r e s h e t and time of maximum zooplankton p o p u l a t i o n ( i . e . , May to November). D e s c r i p t i o n of s t a t i o n l o c a t i o n i s given i n a d e t a i l e d a r t i c l e on Howe Sound sedimentology ( S y v i t s k i and Murray, 1978). Sediment was c o l l e c t e d i n the traps over 6- to 12-hour p e r i o d s . The p e l l e t s were separated and concentrated by.a. f l o t a t i o n method ( D i l l o n , .1964), and then counted. Approximately 20 f e c a l p e l l e t s from each sample were washed w i t h d i s t i l l e d water, allowed to a i r dry, then weighed. They were next ashed i n a muffle furnace at 400°C f o r four hours and t h e i r ash weight was recorded. The remains were examined under a t r a n s m i t t e d l i g h t micro-scope which provided a v i s u a l e s t i m a t i o n of the i n o r g a n i c b i o g e n i c component. From these data the weight percent of i n o r g a n i c sediment i n one p e l l e t can be c a l c u l a t e d . The above procedure was repeated on f i v e batches of p e l l e t s per sample. F e c a l p e l l e t s c o l l e c t e d i n the f i e l d were examined and compared w i t h f e c a l p e l l e t s produced i n the l a b , w i t h the Cambridge Stereoscarf^SEM. RESULTS Table 1 i n d i c a t e s that zooplankton w i l l . i n g e s t autoclaved p a r t i c l e s w i t h a d e f i n i t e m i n eral preference. P r e f e r r e d minerals ( m o n t m o r i l l o n i t e , i l l i t e ) have the lowest residence time i n the d i g e s t i v e t r a c t and produce the l a r g e s t f e c a l p e l l e t s . Both m o n t m o r i l l o n i t e and i l l i t e had the 1 1 8 TABLE 1 MPS+ Mi n e r a l N* NPD** (hours) (um) Mo n t m o r i l l o n i t e 1900 29 1.3 140 1330 13 1.8 125 I l l i t e 1200 12 2.0 120 700 7 3.4 110 C h l o r i t e 1000 10 2.4 120 Tremolite 790 8 3.0 120 V e r m i c u l i t e 700 7 3.4 115 Muscovite 600 .6 4.0 110 600 6 4.0 110 K a o l i n 420 4 5.6 105 Feldspar 300 3 8.3 100 Quartz 210 2 11.1 100 * number of p e l l e t s counted ** number of p e l l e t s per day produced by one Ti g r i o p u s c a l i f o r n i c u s *** r e a c t i o n time e q u a l l i n g the maximum time some mineral p a r t i c l e s would r e s i d e i n the d i g e s t i v e t r a c t of a copepod assuming an even r a t e of p e l l e t e j e c t i o n + mean! . p e l l e t s i z e of lon g . a x i s Table 1. V a r i a t i o n i n the egestion r a t e of Tigriopus f o r various mineral suspensions 1 1 9 smallest mean p a r t i c l e s i z e s , although t h e i r p a r t i c l e s f l o c c u l a t e d to .floe sizes between 5 and 20 ym. An increase i n the concentration .of an acceptable p a r t i c l e , such as tremolite, causes an i n i t i a l increase i n the production of f e c a l p e l l e t s (F i g . 2) u n t i l , at 25 mg/£ of clay concentration, the highest p e l l e t pro-duction was attained. Continued increase i n the concentration, however, i s not p a r a l l e l l e d by an increase i n f e c a l p e l l e t production. The p e l l e t s i z e decreased s l i g h t l y with increasing clay concentration. The natural zooplankton produced, on an average, only h a l f the number of p e l l e t s per hour as the lab cultured T_. c a l i f ornicus. Figure 6a i s a scanning electron micrograph of a c h l o r i t e p e l l e t produced by a f r e s h l y captured zooplankton. Montmorillonite addition was associated with a large increase i n the number of T. c a l i f o r n i c u s and an increase i n swimming a c t i v i t y . O r i g i n a l stock populations increased by over 15 times i n a one-month period. In the presence of the montmorillonite suspension, the adult colouration changed abruptly from a translucent p e a r l white to a dark orange red. Analysis of powder X-ray r e f l e c t i o n s on f i l m from the f i r s t experi-mental run yielded no conclusive evidence of mineralogic change. The second experimental run, using standard powder d i f f r a c t i o n methods, did detect c r y s t a l l o g r a p h i c changes for montmorillonite ( F i g . 3), tremolite-r i c h t e r i t e ( F i g . 4) and muscovite ( F i g . 5). Generally, r e f l e c t i o n s from clay p e l l e t residue were sharper than those of the corresponding standards. This was e s p e c i a l l y evident i n the montmorillonite diffractogram (Fig. 3). There was no increase i n the v a r i a b i l i t y about the mean concentration for any one element when one compared the p e l l e t residue to the clay standard from which the residue was produced. Except for microcline, a l l clay 0 20 40 6 0 8 0 Tremolite (mg/1) 100 l o n j e n t " " ^ ^ e S e S t i ° n ° £ ^ S E i a - i * « changing mineral suspension 121 Figure 3. X-ray diffractograms of m o n t m o r i l l o n i t e - b e n t o n i t e standard and p e l l e t residue sample a f t e r various treatments.' 122 Figure 4. X-ray diffractograms of t r e m o l i t e - r i c h t e r i t e standard and p e l l e t residue sample a f t e r v a r i ous treatments. .332 nm X-ray diffractograms of muscovite standard and p e l l e t residue sample a f t e r various treatments. 124 s t u d i e d showed some c h e m i c a l change ( T a b l e 2 ) . P e l l e t s c o l l e c t e d from T_. C a l i f o r n i c u s w h i c h were f e d a v a r i e t y o f i n o r g a n i c s t a n d a r d s , were f o u n d t o have l e n g t h t o w i d t h r a t i o s o f 4:1 t o 5.4:1. The c o r r e l a t i o n c o e f f i c i e n t c a l c u l a t e d f o r i n o r g a n i c p e l l e t volume and p e l l e t s e t t l i n g r a t e was found t o be 0.88. The 95% c o n f i d e n c e b e l t f o r t h e c o r r e l a t i o n c o e f f i c i e n t was 0.73 to.0.93 (N = 1 5 ) . The l i n e a r r e g r e s s i o n e q u a t i o n , o v e r t h e range o f p e l l e t s o b s e r v e d , was c a l c u l a t e d a -4 Y = X * 10 + 4 . 9 where Y e q u a l s t h e s e t t l i n g r a t e (m/day) and X e q u a l s 3 th e p e l l e t volume (pm ) . The s e t t l i n g r a t e o f t h e s e i n o r g a n i c p e l l e t s was found t o change w i t h m i n e r a l o g y ( T a b l e 3 ) . The mean s e t t l i n g r a t e f o r the m i n e r a l - b e a r i n g f e c a l p e l l e t s i s g r e a t e r t h a n t h e s e t t l i n g r a t e f o r t h e mean p a r t i c l e s i z e i n g e s t e d , r e g a r d l e s s o f m i n e r a l o g y ( T a b l e 3 ) . The i n c r e a s e i n s e t t l i n g r a t e by t h e p e l l e t s r a n g e s f r o m many t i m e s g r e a t e r ( i n t h e c a s e o f c h l o r i t e ) t o many o r d e r s o f magnitude g r e a t e r ( i n t h e c a s e o f i l l i t e ) . T a b l e 3 a l s o shows t h e s e v a l u e s t r a n s l a t e d i n t o e q u i v a l e n t s p h e r i c a l s e d i m e n t a t i o n d i a m e t e r s . T i g r i o p u s was found t o i n g e s t p a r t i c l e s t h a t r a n g e d f r o m 0.5 ym t o 50 ym. P e l l e t s soaked i n H C l i n o r d e r t o remove any p e l l i c l e c o v e r i n g , showed no s i g n i f i c a n t d e c r e a s e i n t h e i r s e t t l i n g v e l o c i t y . P e l l e t s soaked i n ^2^2 had a s l o w e r (20%) s e t t l i n g r a t e , p r o b a b l y due t o a i r b u b b l e s f o r m i n g i n and b u o y i n g up t h e p e l l e t . B a c t e r i a and c i l i a t e a c t i o n on o r g a n i c f e c a l p e l l e t s caused t h e i n s i d e s t o s p i l l o u t . Such n a t u r a l o r i n d u c e d b r e a k -down around m i n e r a l - b e a r i n g p e l l e t s had no n o t i c e a b l e e f f e c t . The f e c a l p e l l e t w e i g h t o f p e l a g i c z o o p l a n k t o n f r o m Howe Sound ranged f r o m 7 t o 42 t i g , w i t h a mean v a l u e o f 30 y g . E i g h t y p e r c e n t o f t h e p e l l e t s c o l l e c t e d had an i n o r g a n i c w e i g h t p e r c e n t g r e a t e r t h a n 90. N i n e t y p e r c e n t o f t h e p e l l e t s had an i n o r g a n i c w e i g h t p e r c e n t g r e a t e r t h a n 72. B o t h 125. TABLE 2 Mineral •Sample Standard ' Change(%) r a t i o M i c r o c l i n e Na/Al 0.08 0.08 NC* + 3' K/Al 1.01 1.03 -2** + : Muscovite K/Al 0.39 0.44 -11 + 4 Tremolite Al/Fe 1.13 0.83 +26 + 5 Ca/Fe 2.93 3.51 -16 + 4 Mg/Fe 2.85 3.02 -6 + 3 Mn/Fe 0.25 0.26 NC + 3 Ch l o r i t e Mg/Al 0.81 1.50 -46 + 5 Fe/Al 0.46 0.32 +30 + 5 Montmorillonite--Bentonite Mg/Al 0.26 0.14 +46 + 5 K/Al 0.21 0.23 -9 + 4 Ca/Al 0.088 0.061 +25 + 5 Fe/Al 0.24 0.20 +17 + 4 Vermiculite Mg/Al 1.03 1.74 -41 + 5 K/Al 0.37 0.94 -61 + 5 Ca/Al 0.23 0.28 -18 + 4 T i / A l 0.16 0.21 -24 + 4 Fe/Al 0.40 0.54 -26 + 4 I l l i t e K/Al 0.40 0.41 -2 + 3 T i / A l 0.08 0.12 -33 + ? Fe/Al 0.24 0.22 +8 + 3 S/Al 0.12 0.11 +8 + 3 * no change ** indicates the p e l l e t residue registered a 2% decrease i n the K/Al r a t i o *** the +3% re f e r s to the r e l a t i v e a n a l y t i c a l error Table 2. Elemental r a t i o s i n d i c a t i n g chemical increases or decreases of the p e l l e t residues compared to the clay standards. 12.6. TABLE 3 Equivalent Spherical S e t t l i n g Rate (m/day) Sedimentation Diameters (x + S.D.) ' (ym) Mineral P e l l e t * P a r t i c l e s P e l l e t * * P a r t i c l e s * * * - Tremolite 227 +96 4 7 + 8 54 25 I l l i t e 169 + 66 0.08 + 12 47 1 Montmorillonite 142 + 44 ND ND ND Ch l o r i t e 127 +46 48 + 39 41 25 Quartz 115 +56 34 + 11 39 21 ND = no data * based on N > 20 ** based on mean of i n d i v i d u a l p e l l e t s '•**• based on mean of the p a r t i c l e s i z e of ingested clay standard Table 3. Comparison of mineral-bearing p e l l e t s e t t l i n g rates and mean p a r t i c l e s e t t l i n g rates and t h e i r equivalent s p h e r i c a l sed-imentation diameter. 127 i n o r g a n i c w e i g h t p e r c e n t v a l u e s i n d i c a t e t h a t most o f t h e f e c a l p e l l e t s 3 c o n s i s t o f i n o r g a n i c m a t e r i a l . The p e l l e t f l u x ranged f r o m 7.1 x 10 t o 5 2 5.8 x 10 p e l l e t s / m /day ( T a b l e 4 ) . The p e l l e t f l u x was t r a n s l a t e d i n t o 2 p e l l e t s e d i m e n t a t i o n r a t e (g/m /day) u s i n g t h e mean p e l l e t w e i g h t o f 30 yg There was no c o r r e l a t i o n between p e l l e t s e d i m e n t a t i o n r a t e and e i t h e r i n o r g a n i c o r o r g a n i c s e d i m e n t a t i o n r a t e s ( T a b l e 4 ) , s u g g e s t i n g t h a t h y d r o -g r a p h i c c o n d i t i o n s p l a y a major r o l e i n c o n t r o l l i n g t h e r a t e o f sediment a c c u m u l a t i o n i n Howe Sound. S t a t i o n 5 i s one example o f t h e r i g h t t i m e and c o n d i t i o n s f o r m i n e r a l -b e a r i n g p e l l e t s e d i m e n t a t i o n ( T a b l e 4 ) . D u r i n g J u l y 1977, between 67% and 87% o f t h e sediment f e l l as m i n e r a l - b e a r i n g f e c a l p e l l e t s w h i c h a r e c o l l e c t e d by t h e 60 m and 100 m sediment t r a p s . A n a l y z e d p e l l e t s were composed o f 98% m i n e r a l p a r t i c l e s . The h i g h m i n e r a l c o n t e n t was d e m o n s t r a t e d by t h e SEM ( F i g . 6e, f , g, h ) . R e l a t i v e l y few p e l l e t s had an o r g a n i c o u t e r c o v e r i n g ( F i g . 6 i , j ) . The p e l l e t s were composed o f c l a y p l a t e s ( m u s c o v i t e , i l l i t e , c h l o r i t e , p r i m a r i l y ) a l t h o u g h q u a r t z and f e l d s p a r were a l s o f o u n d ( F i g . 6 h ) . DISCUSSION C l a y M i n e r a l T r a n s f o r m a t i o n s A l t h o u g h p r e v i o u s s t u d i e s have i n d i c a t e d t h a t i n g e s t i o n o f c l a y m i n e r a l s by z o o p l a n k t o n may o c c u r ( e . g . R o b i n s o n , 1 9 5 7 ) , c h e m i c a l and m i n e r a l t r a n s -f o r m a t i o n s o f i n g e s t e d s e d i m e n t s have n o t been c o n s i d e r e d . T r a n s f o r m a t i o n s c o u l d o c c u r t h r o u g h b o t h m e c h a n i c a l and c h e m i c a l mechanisms w i t h i n t h e d i g e s t i v e t r a c t . The copepod d i g e s t i v e t r a c t has been r e p o r t e d t o be a c i d i c ( M a r s h a l l and O r r , 1955a) b u t t h e e x t r e m i t y o f t h e a c i d e n v i r o n m e n t has s i n c e been c o n t e s t e d by Honjo and Roman ( 1 9 7 8 ) . V i n c e n t e , Razzaghe and R o b e r t -3 -4 (1976) t r e a t e d w e a t h e r e d micas w i t h 10 N o x a l i c a c i d and 10 N H C l and demon-128 I TABLE 4 P e l l e t T o t a l Date Station// DBSL* P e l l e t Flux Sedimentation Sedimentation „ Rate** Rate (m) ( p e l l e t s / m /day) (g/m2/day) (g/m 2/day) May/77 1 45 1. 1 X 10 6 33.7 576.0 1 65 1.0 X 10 6 31.3 694.4 June/77 2 45 7.7 X 10 4 2.3 9.6 2 85 3.8 X 10 4 1.2 6.8 2 135 4.3 X 10 4 1.2 20.0 July/77 5 5 4.6 X 10 4 1.5 36.3 5 20 2.8 X 10 4 0.8 42.4 5 60 2.2 X 10 6 67.3 77.5 5 100 2.2 X 10 6 67.3 92.9 8 5 1.3 X 10 5 3.9 18.9 8 15 • 1.5 X 10 5 4.3 6.8 8 25 1.8 X ml 5.4 8.4 8 35 6.6 X 10 4 1.9 9.7 Aug./77 2 5 1.9 X 10 6 58.1 302.4 2 45 4.6 X 10 5 13.9 157.2 Sept./77 1 5 1.2 X 1 0 5 3.5 1107.2 1 20 4.6 X 10 5 13.9 1202.4 1 40 2.7 X 10 5 8.1 1080.4 1 55 3.2 X 10 5 9.7 1304.4 2 40 1.3 X 39.5 382.8 2 80 1.1 X 10 6 33.7 292.8 2 120 1.4 X 10 6 40.6 335.2 Nov./77 1 5 4.6 X 10 5 13.9 28.8 1 20 6.2 X 10 5 18.6 39.2 1 40 1.0 X 10 6 31.3 70.0 1 55 7.7 X 10 5 23.2 122.8 * depth below sea l e v e l ** based on the mean p e l l e t weight of 30ug (range 7-42) Table 4. P e l l e t f l u x , p e l l e t sedimentation r a t e , and t o t a l sedimentation rat e deduced from sediment c o l l e c t e d from suspended sediment traps at various depths per s t a t i o n throughout the s p r i n g , summer and f a l l of 1977, from Howe Sound, B.C. l 29 130 131 Figure 6. Scanning electron micrographs of mineral-bearing f e c a l p e l l e t s : A) a c h l o r i t e p e l l e t from f r e s h l y captured zooplankton; B) p e l l e t containing bent vermiculite plates; C) tremolite p e l l e t with new p l a t e - l i k e structures which are changed from the standard chain structures D); E) and i t s enlargement F), and G) are mineral-bearing f e c a l p e l l e t s c o l l e c t e d from Howe Sound; H) another na-tu r a l p e l l e t containing quartz and feldspar p a r t i c l e s ; I) and i t s enlargement J) show a seldom-found organic covering on mineral-bearing p e l l e t s from Howe Sound. 132 s t r a t e d that r e f l e c t i o n s from t r e a t e d mica changed but remained extremely sharp. This suggests that a weak a c i d i c - environment would be adequate to cause mineral transformations. The presence of d i g e s t i v e enzymes (Bond, 1934) and the p h y s i c a l mixing and g r i n d i n g a c t i o n imparted to the contents df the d i g e s t i v e t r a c t through the musculature ( S u l l i v a n , 1977), along w i t h the weak a c i d environment would f u r t h e r enhance the a b i l i t y of zooplankton to a l t e r c l a y minerals. An i n d i c a t i o n that mechanical pressure alone i s impor-tant i s given by the bent v e r m i c u l i t e p l a t e s i n the f e c a l p e l l e t shown i n Figure 6b. To examine chemical and mineral transformation of ingested sediments, c a t i o n r a t i o s were used. Aluminum was chaosen as the c a t i o n r a t i o denomin-ato r (Table 2) s i n c e A l ^ H ) ^ has low s o l u b i l i t y (pH 4 to 9) and A l has moder-ate s t a b i l i t y i n the c l a y l a t t i c e suggesting that i t should not change appre-c i a b l y . Since t r e m o l i t e - r i c h t e r i t e does not c o n t a i n A l , however, Fe was 3+ used as the denominator as Fe has a low s o l u b i l i t y at pH 4 to 7. The presence of S i n the o r i g i n a l i l l i t e standard was from euhedral p y r i t e a s s o c i a t i o n w i t h the c l a y (Table 2). P o s s i b l y the i d e n t i c a l increase i n Fe and S i n the p e l l e t residue i s f o r t u i t o u s due to the p y r i t e being ingested i n a s l i g h t l y higher: amount than the c l a y i l l i t e . An observed high m o r t a l i t y r a t e (compared w i t h the other c l a y minerals) when the copepods fed on i l l i t e , may be a r e s u l t of the s u l f i d e being d i r e c t l y or i n d i r e c t l y t o x i c . [Note: T i was too c l o s e to background noise f o r adequate i n t e r p r e t a -t i o n of the apparent T i / A l i n c r e a s e ] . The i r o n increase (Table 2) i n the c h l o r i t e p e l l e t residue i s probably 3+ Fe on the b a s i s of s o l u b i l i t y i n sea water and the a c i d environment of the d i g e s t i v e t r a c t . (There are no data a v a i l a b l e on the redox p o t e n t i a l of 3+ the copepod gut environment.) The s u b s t i t u t i o n of Fe f o r the decreased 2+ Mg may occur i n e i t h e r or both the m i c e l l a r octahedral l a y e r and the 133 brucite layer. The chemical change would satisfy the mineral st a b i l i t y and account for lack of change in XRD and the peak sharpness. Montmorillonite has a high cation exchange capacity, so i t is not surprising that the Mg/Al, Ca/Al ratios increased with only a reduction in K/Al (Table 2). Montmorillonite has a tendency to f i x Mg and transform to a vermiculite structure (Millot,..1970) . In our case the intermicellar and vacant octahedral sites could have adsorbed the Fe, Ca, and Mg cations. This produced the change from the standard broad 1.4 nm basal reflection to the sharp, well-defined peak that did not expand upon glycolation (Fig. 3). Also, the small 1.0 nm and increased 0.7 nm peaks with appropriate secondary basal reflections may have been produced by these changes. This could indicate that the montmorillonite altered in part to a 'vermiculite' structure (1.4 nm). Part of the new 'vermiculite' was completely collapsed, accounting for the enlarged 0.7 nm reflection, while some had only partially contracted (or re-expanded) to 0.99 nm. The new 'vermiculite' structure did not expand upon glycolation and collapsed to 0.95 nm at 300°C. The remaining 1.4 nm reflection at 300°C would be unaltered montmorillonite. Amino acids or other organic molecules might have entered the interlayer water position of the montmorillonite and thus kept the clay from expanding. Ensminger and Gieseking (1939, 1941, 1942) showed that montmorillonite forms complexes with proteins and that more protein is adsorbed under acid conditions. Pinck, Dyal and Allison (1954) showed that the adsorbed material was not available to enzyme attack. Oysters, clams and mullet, when fed montmorillonite, also contract i t s structure (Anderson e_t a l . , 1958) although the clay re-expanded under glycolation indicating that a vermiculite structure had not formed. 1 3 4 The muscovite p e l l e t residue had new w e l l - c r y s t a l l i z e d peaks which appeared at 0.76 nm and 0.38 nm, and completely disappeared upon heat treatment to 300°C f o r 1 hour ( F i g . 5 ) . The peaks were i n t e r p r e t e d as b a s a l r e f l e c t i o n s from a w e l l - c r y s t a l l i z e d h a l l o y s i t e ( ? ) . Hydronium ions could have replaced the weakly bonded i n t e r l a y e r K, which would account f o r the apparent K/Al decrease (Table 2) but not the.0.76 nm spacing. Since muscovite was reduced i n s i z e w i t h a b a l l m i l l , the K + i o n s t a b i l i t y may have been decreased. This would be n o t i c e d more i n the outer edges of mica p l a t e l e t s where exchange i s l i k e l y to take place (Mortland, 1958). I t i s reasonable to assume that some of the H^0 + would + be replaced by K once back i n sea water, r e c o n v e r t i n g t h i s new c r y s t a l type back to 1.0 nm mica. The 0.76 nm peak might represent some meta-s t a b l e form during t h i s conversion. The presence of A l i n the t r e m o l i t e - r i c h t e r i t e standard must be a f u n c t i o n of some ass o c i a t e d A l r i c h m i neral ( l i k e a p h y l l o s i l i c a t e ) too small i n q u a n t i t y to be detected by XRD a n a l y s i s . The increase A l / S i r a t i o i n f e r s that the ..unknown A l s i l i c a t e m i n eral was p r e f e r e n t i a l l y s e l e c t e d . W e l l -c r y s t a l l i z e d c h l o r i t e peaks (1.42 nm, 0.708 nm, 0.355 nm, and 0.28 nm) appeared upon X-ray a n a l y s i s of the p e l l e t r e s i d u e , along w i t h the stronger t r e m o l i t e - r i c h t e r i t e X-ray peaks ( F i g . 4 ) . The 1.4 nm 001 b a s a l r e f l e c t i o n disappeared upon heating to 300°C. Thus the c h l o r i t e i s unstable and might be c l o s e r to a v e r m i c u l i t e s t r u c t u r e . This would i n d i c a t e that a w e l l -defined b r u c i t e l a y e r i n the i n t e r m i c e l l a r space has not developed. Since c h l o r i t e i s a Ca-poor m i n e r a l , the Ca/Al decrease (Table 2) seems reasonable. The Ca(0H)2 being s o l u b l e i n the copepod d i g e s t i v e t r a c t , would be f r e e to leave w i t h the other d i g e s t i v e f l u i d s or be taken up by the organism. The f a c t that the t r e m o l i t e - r i c h t e r i t e standard was b a l l m i l l e d to c l a y s i z e 135 p r i o r to being fed to the copepods plus i t s high weathering p o t e n t i a l (Loughnan, 1969, p. 60) might e x p l a i n the p a r t i a l chemical and mineral t r a n s -formation. Figure 9c, a scanning e l e c t r o n micrograph of the standard, can be compared to the SEM of the t r e m o l i t e - r i c h t e r i t e p e l l e t ( F i g . 6c) to show the formation of the c l a y p l a t e s . V e r m i c u l i t e p e l l e t residue showed the l a r g e s t change i n chemistry and mineralogy. No l a r g e , w e l l - d e f i n e d X-ray r e f l e c t i o n s remained i n d i c a t i n g at l e a s t p a r t i a l c r y s t a l l o g r a p h i c d e s t r u c t i o n . A l l m e t a l l i c c a t i o n r a t i o s de-creased a f t e r i n g e s t i o n by the copepods (Table 2 ) . The A l fr e e d from the l a t t i c e breakdown would s t i l l be i n s o l u b l e e i t h e r as amorphous Al^O^ or more probably g i b b s i t e A l ^ H ) ^ . The leached c a t i o n s , having no place to be r e -sorbed i n the c r y s t a l s t r u c t u r e , would be l o s t . Those c a t i o n s could d i s s o l v e i n the d i g e s t i v e f l u i d , . o r be adsorbed by organic molecules and subsequently e i t h e r be taken up by the copepods or passed out of the d i g e s t i v e t r a c t . I n t r a c e l l u l a r concretions of Ca and Fe have been: found i n another h a r p a c t i c o i d copepod (Fahrenback, 1962) and i n the domestic housefly (Sohal, P e t e r s , and H a l l , 1977) suggesting some uptake can occur. In summary, mineral transformation of at l e a s t p a r t of some c l a y standards i s suggested to have occurred i n the d i g e s t i v e t r a c t of Tig r i o p u s c a l i f o r n i c u s . This change i s an increase or decrease i n metal c a t i o n s . A l -though the. l a s t i n g nature of .these changes has not been documented, i t i s suggested that the residence of c l a y p a r t i c l e s i n the copepod d i g e s t i v e t r a c t may be r e s p o n s i b l e f o r some of the observed d i f f e r e n c e s i n mineral t r a n s f o r -mation found i n nature. M i n e r a l s that underwent some chemical and/or m i n e r a l change had been p r e f e r e n t i a l l y s e l e c t e d by the copepods (Table 1 ) , suggesting that they may provide some c a t i o n s to p l a n k t o n i c marine organisms. The one ex-c e p t i o n , i l l i t e , contains a s u l f i d e which may have been t o x i c . 136 Inorganic P a r t i c l e Uptake The uptake p a t t e r n of i n o r g a n i c . p a r t i c l e s agrees w i t h s t u d i e s on food uptake w i t h respect to c o n c e n t r a t i o n (e.g. M a r s h a l l and Orr, 1955a; F r o s t , 1975). There thus appears to be an "optimum" conc e n t r a t i o n at which f e c a l p e l l e t production i s highest and a " t h r e s h o l d " c o n c e n t r a t i o n below which p e l l e t production i s low. T i g r i o p u s was found to i n g e s t p a r t i c l e s that ranged i n s i z e from 0.50 um to 50 ym. The lower l i m i t of p a r t i c l e u t i l i z a t i o n i n copepods had p r e v i o u s l y been found to be approximately 10 pm (Hargrave and Geen, 1970; F r o s t , 1975; Boyd, 1976; N i v a l and N i v a l , 1976). The apparent discrepancy i s explained by T i g r i o p u s i n g e s t i n g 5 to 20 ym f l o e s composed of c l a y s i z e p a r t i c l e s . The p r e f e r e n t i a l i n g e s t i o n of f l o e s over d i s c r e t e p a r t i c l e s would a l s o e x p l a i n why the most abundant m i n e r a l s , quartz and f e l d s p a r , i n the water column of Howe Sound, are not the most abundant minerals ingested by the l o c a l p e l a g i c zooplankton. N a t u r a l mineral-bearing p e l l e t s , p r i m a r i l y c l a y p l a t e s w i t h a few quartz and f e l d s p a r p a r t i c l e s , have the same b a s i c composition as the n a t u r a l i n o r g a n i c f l o e s ( S y v i t s k i and Murray, 1978). P a r t i c l e s smaller than 2 pm caught up i n a f l o e matrix are found i n abun-dance i n n a t u r a l f e c a l p e l l e t s ( F i g . 6 f ) . As an i n t e r e s t i n g a s i d e , Yudonova (1940) noted 'red' Calanus occurred i n abundance i n the Barents Sea near the surface waters during the summer. M a r s h a l l and Orr (1955b, p. 93) suggested that a " s p e c i a l food" might t r i g g e r the swarms of red Calanus observed i n Norwegian f j o r d s and the Barents Sea. Although the " s p e c i a l food" was not i d e n t i f i e d , a red c o l o u r a t i o n occurs i n T. c a l i f o r n i c u s i n an i n o r g a n i c c l a y suspension. 137 P e l l e t S e t t l i n g Rate Volume, shape, composition and compaction have been found to i n f l u e n c e s e t t l i n g r a t e s (Fowler and Small, 1972; Honjo and Roman, 1978). I f one holds the other three f a c t o r s constant, s e t t l i n g r a t e w i l l i ncrease as p e l l e t volume ( s i z e ) increases (Fowler and Small, 1972). Smayda (1969) s t r e s s e d the importance of shape ( i . e . l e n g t h to width r a t i o s ) which appears to be hydrodynamically sound (Lane and Carlson, 1954; Graf and Acaroglu, 1966; Komar and Reimers, 1978). With p e l l e t volume constant, mineral-bearing p e l l e t s e t t l i n g r a t e s (Table 3) are greater than values presented by Smayda (1969), although the shape of the mineral-bearing p e l l e t s ( l e ngth to width r a t i o s of 4:1 to 5.4:1) would suggest slower s e t t l i n g than the more s p h e r i c a l p e l l e t s presented by Smayda. A compositional change p r o v i d i n g a change i n p e l l e t d e n s i t y could account f o r t h i s increased r a t e of p e l l e t s e t t l i n g , as i n o r g a n i c mineral p a r t i c l e s w i l l normally be denser than organic matter. P e l l e t compaction v a r i e s w i t h the composition of ;the i n t e r n a l p a r t i c l e s as w e l l as the conc e n t r a t i o n of m a t e r i a l i n the p e l l e t . Compaction i s r e l a t e d , then, to p a r t i c l e d e n s i t y and the p a r t i c l e packing c o e f f i c i e n t . M a r s h a l l and Orr (1955a) and Honjo and Roman (1978) have found that the p e l l e t l e n g t h d i f f e r e d w i t h d i e t . This i s a l s o suggested by the p e l l e t s i z e v a r i a t i o n w i t h mineralogy (Table 1 ) . P e l l e t s i z e alone, though, cannot account f o r the p e l l e t s e t t l i n g r a t e v a r i a t i o n due to mineralogy (Table 3 ). Tremolite-r i c h t e r i t e p e l l e t s having the highest p a r t i c l e d e n s i t y (3.1) have the f a s t e s t s e t t l i n g v e l o c i t y . I l l i t e , the second f a s t e s t s e t t l i n g p e l l e t type, has the next highest p a r t i c l e d e n s i t y (2.8 - 2.9) which would even be higher because of the a s s o c i a t e d . p y r i t e ( d e n s i t y 5.0). M o n t m o r i l l o n i t e p e l l e t s e t t l i n g v e l o c i t y i s due to a combination of .low p a r t i c l e d e n s i t y (2.3 - 2.6) and having the l a r g e s t p e l l e t s i z e . C h l o r i t e and quartz p e l l e t s s e t t l e d 138 out the slowest, with c h l o r i t e p e l l e t s sinking f a s t e r due to the larger p e l l e t s i z e and higher p a r t i c l e density. The lack o f ^ c o r r e l a t i o n between sedimentation rate and p e l l e t sedimenta-t i o n rate (Table 4) i n Howe Sound could be due to 1) an increase i n sediment load being frequently associated with an increase i n sand which i s too coarse for zooplankton ingestion, 2) stations not having the same types and numbers of zooplankton, and 3) zooplankton population at any one s t a t i o n varies with the time of year. The destruction of an organic covering around mineral-bearing p e l l e t s , n a t u r a l l y or induced, does not s i g n i f i c a n t l y a l t e r the p e l l e t form or i t s s e t t l i n g v e l o c i t y . The clay minerals i n close contact with each other i n the p e l l e t , are held together by inorganic f l o c c u l a t i o n . CONCLUSION. Marine zooplankton ingest suspended sediment at a rate dependent on the suspension concentration and on p a r t i c l e mineralogy. Fecal p e l l e t s c o l -l e c t e d from a f j o r d r e ceiving g l a c i a l run-off were mostly composed of clay p l a t e s . Their n u t r i t i v e value probably stems from adsorbtion on the large surface areas of clays of b a c t e r i a and organic molecules. The clays that are ingested are l a r g e l y i n the form of f l o e s . Mineral p a r t i c l e s undergo chemical and mineral transformation i n the zooplankton d i g e s t i v e t r a c t , de-pending on p a r t i c a l mineralogy, cation exchange capacity and residence time i n the diges t i v e t r a c t . Mineral-bearing egested f e c a l p e l l e t s s e t t l e through the water column many times f a s t e r than the i n d i v i d u a l component mineral p a r t i c l e s . The s e t t l i n g v e l o c i t y of mineral-bearing p e l l e t s has been found to vary with constituent p a r t i c l e d e n s i t i e s and p e l l e t volume (related to packing c o e f f i c i e n t s of the p a r t i c l e s ) . When p e l l e t s are r i c h 139 i n inorganic c o n s i t i t u e n t s , the increased bulk density causes them to s e t t l e more ra p i d l y than organic f e c a l p e l l e t s . This increased rate of s e t t l i n g allows clay p a r t i c l e s to f a l l to the bottom and be deposited where the hydrodynamic environment would prevent deposition of p a r t i c l e s f i n e r than coarse s i l t . The rate of f e c a l p e l l e t formation i s at l e a s t p a r t i a l l y dependent on the concentration of p a r t i c l e s . There appears to be both an optimum and a threshold p a r t i c l e concentration that allows comparison with feeding rates. The chemical changes suffered by the various clay minerals due to zoo-plankton ingestion, need to be examined with many zooplankton species. The r e s u l t s may i n part explain diagenesis of marine clay minerals. I t may also add an i n t e r e s t i n g dimension to zooplankton n u t r i t i o n . S p e c i a l thanks go to J.W. Murray who p a r t i a l l y financed t h i s p r o j e c t under NRC Grant 65-6224. Other support came from two grants to the second author (NRC A-2067, INCRA 246). We are e s p e c i a l l y g r a t e f u l to W.C. Barnes f o r h i s s t i m u l a t i n g ideas throughout the study. 140 REFERENCES Anderson, A.E., Jonas, E.C. and Odum, H.T. (1958) A l t e r a t i o n of c l a y minerals by d i g e s t i v e processes of marine organisms. Science 127, 190-191. Bigham, G.H. (1974) Suspended sediments c o n t r i b u t e d to the southeastern U.S. c o n t i n e n t a l s h e l f : An i n v e s t i g a t i o n by scanning e l e c t r o n microscopy. Mem. I n s t . Geol. B a s s i n Aquitane 7, 103-108. Bond, R.M. (1934) D i g e s t i v e enzymes of the p e l a g i c copepod Calanus f i n m a r c h i -cus. B i o l . B u l l . 67, 461-465. Boothe, P.N. and Knauer, G.A. (1972) The p o s s i b l e importance of f e c a l mater-i a l i n the b i o l o g i c a l a m p l i f i c a t i o n of trace and heavy metals. Limnol. Oceanogr. 17, 270-274. Boyd, CM. (1976) S e l e c t i o n of p a r t i c l e s i z e by f i l t e r - f e e d i n g copepods: A p l e a f o r reason. Limnol. Oceanogr. 21, 24-38. Cadee, G.S. (1976) Sediment reworking by A r e n i c o l a marina on t i d a l f l a t s i n the Dutchwadden Sea. Netherlands Sea Res. 10, 440-460. Ch a k r a b a r t i , A. (1972) Beach s t r u c t u r e s produced by crab p e l l e t s . Sedimento- logy 18, 129-134. D i l l o n , W.P. (1964) F l o a t a t i o n technique f o r separating f e c a l p e l l e t s and small marine organisms f o r sand. Limnol.Oceanogr. 9, 601-602. Ensminger, L.E. and Gieseking, J.E. (1939) The abso r p t i o n of p r o t e i n s by mon t m o r i l l o n i t e c l a y s . S o i l S c i . 48, 467-473. . (1941) The abso r p t i o n of p r o t e i n s by mon t m o r i l l o n i t e c l a y s and i t s e f f e c t on base exchange c a p a c i t y . S o i l S c i . 51, 125-132. . (1942) Resistance of c l a y absorbed p r o t e i n s to p r o t e o l y t i c h y d r o l y s i s . S o i l S c i . 53, 205-209. Fahrenbach, W.H. (1962) The b i o l o g y of a h a r p a c t o i d copepod. Le C e l l u l e 62, 301-376. Fowler, S.W. and Small, L.F. (1972) S i n k i n g r a t e s of eupha s i i d f e c a l p e l l e t s . Limnol. Oceanogr. 17, 293-296. Frankenberg, D., Coles, S.L. and Johannes, R.E. (1967) The p o t e n t i a l t r o p h i c s i g n i f i c a n c e of C a l l i a n a s a major f e c a l p e l l e t s . Limnol. Oceanogr. 12, 113-120. F r o s t , B.W. (1975) A threshold feeding behavior i n Calanus p a c i f i c u s . Limnol. Oceanogr. 20, 263-266. Gauld, D.T. (1957) A p e r i t r o p h i c membrane i n c a l a n o i d copepods. Nature 179, 325-326. Graf, W.H. and Acaroglu, E.R. (1966) S e t t l i n g v e l o c i t i e s of n a t u r a l g r a i n s . I n t . Assoc. S c i . Hydrology B u l l . 11, 27-43. 141 Harding, G.C.H. (1974) The food of deep-sea copepods. Marine B i o l . Assoc. U.K. Jour. 54, 14-155.. Hargrave, B.T. and Geen, G.H. (1970) E f f e c t s of copepod grazing i n two natural phytoplankton populations. J . F i s h . Res. Bd. Can. 27, 1395-1403. Haven, D.S. and Morales-Alamo, R. (1966) Aspects of biodeposition by oysters and other invertebrate f i l t e r feeders. LimnOl. Oceanogr. 11, 487-498. and . (1968) Occurrence and transport of f e c a l p e l l e t s i n suspension i n a t i d a l estuary. Sed. Geol. 2, 141-151. . (1972) Biodeposition as a factor i n sedimentation of fin e suspen-ded s o l i d s i n estuaries. Geol. Soc. Am., Memoir 133, B.W. Nelson (ed.) Environmental Framework of Coastal P l a i n Estuaries 121-130. Honjo, S. (1976) Coccoliths - Production, transportation and sedimentation. Marine micropaleontology 1, 65-79. Johannes, R.E. and Satomi, M. (1966) Composition and n u t r i t i v e value of f e c a l p e l l e t s of a marine crustacean. Limnol. Oceanogr. 11, 191-197. Komar, P.D. and Reimers, C.E. (1978) Grain shape e f f e c t s on s e t t l i n g rates. Jour. Geol. 86, 193-209. Lane, E.W. and Carlson, E.J. (1954) Some observations on the e f f e c t df par-t i c l e shape on the movement of coarse sediments. Am. Geophys. Union Trans. 35, 453-462. L i s i t s i n , A.P. (-1961) D i s t r i b u t i o n and composition of suspended matter i n the seas and oceans ( i n Russian). In N.M. Strakhov (ed.), Recent sediments of seas and oceans. Izd. AN S.S.S.R., 175-231. Loughnan, F.C. (1969) Chemical Weathering of S i l i c a t e Minerals. Am. E l s e v i e r Publ. Co., New York. Lund, E.J. (1957a) A quantitative study of clearance of a turbid medium and feeding by the oyster. Univ. Texas Inst. Mar. S c i . Publ. 4, 296-312. . (1957b) S e l f - s i l t i n g by the oyster and i t s s i g n i f i c a n c e for se-dimentation geology. Univ. Texas Inst. Mar. S c i . Publ. 4, 320-327. Manheim, F.T., Hathaway, J.C. and Uchupi, E. (1972) Suspended matter i n sur-face waters of the northern Gulf of Mexico. Geol. and Oceanogr. 17, 17-27. Marshall, S.M. and Orr, A.P. (1955) On the biology of Calanus finmarchicus. VIII Food uptake, a s s i m i l a t i o n and excretion i n adult and l a r v a l stage V Calanus. Marine B i o l . Assoc. U.K. 34, 495-529. and . (1955b) The biology of a marine copepod, Cala- nus finmarchicus (Gunnerus). O l i v e r and boyd publ., Edinburgh, Twee-dale Court. 142 Mauchline, J . and Fisher, L.R. (1969) The biology of euphasiids. Adv. Mar. B i o l . . 7 , 1-454. M i l l o t , G. (1970) Geology of clays. Springer-Verlag, New York. Moore, H.B. (1931) The s p e c i f i c i d e n t i f i c a t i o n of f e c a l p e l l e t s . Jour. Marine B i o l . Assoc. U.K. 17, 359-365. Mortland, M.M. (1958) K i n e t i c s of potassium release from b i o t i t e . S o i l S c i . Soc. Am. Proc. 22, 503-508. N i v a l , P. and N i v a l , S. (1976) P a r t i c l e retention e f f i c i e n c i e s of a herbivorous copepod, A c a r t i a c l a u s i (adult and copepodite stages): E f f e c t s of gra-zing. Limnol. Oceanogr. 21, 24-38. Osterberg, C., Carey, A.G. and Curl, H. (1963) Acceleration of sinking rates of radio-nucleides i n the ocean. Nature 200, 1276-1277. Pinck, L.A., Dyal, R.S. and A l l i s o n , F.E. (1954) Protein montmorillonitic com-plexes, t h e i r properties and the e f f e c t of s o i l microorganisms on t h e i r decomposition. S o i l S c i . 78, 109-118. Pryor, W.A. (1975) Biogenic sedimentation and a l t e r a t i o n of argillaceous s e d i -ments i n shallow marine environments. Geol. Soc. Am. B u l l . 86, 1244-1254. Rhoads, D.C. (1963) Rates of sediment reworking by Y o l d i a limatula i n Buzzards Bay, Massachusetts, and Long Island Sound. Jour. Sed. Petrology 33, 723-727. and Young, D.K. (1970) The influence of deposit feeding organisms on sediment s t a b i l i t y and community trophic structure. Sears Found. J. Mar. Res. 28, 150-178. Robinson, M. (1957) The e f f e c t s of suspended materials on the reproductive rate of Daphnia magna. Univ. Texas Inst. Marine S c i . Publ. 4, 265-277. Roth, P.H., M u l l i n , M.M. and Berger, W.H. (1975) Coccolith sedimentation by f e c a l p e l l e t s : Laboratory and f i e l d observations. Geol. Soc. Am. B u l l . 86, 1079-1084. Schrader, J.H. (1971) Fecal p e l l e t s : Role i n sedimentation of pelagic diatoms. Science 174, 55-57. Smayda, T.J. (1969) Some measurements of the sinking rates of f e c a l p e l l e t s . Limnol. Oceanogr. 14, 621-626. . (1970) The suspension and sinking of phytoplankton i n the sea. Oceanogr. Mar. B i o l . Ann. Rev. 8, 353-414. Sohal, R.S., Peters, P.D. and H a l l , T.A. (1977) Origin, structure, composition and age-dependence of mineralized dense bodies (concretions) i n the mid-gut epithelium of the adult housefly, Musca domestica. Tissue and C e l l 9, 87-102. 143 S u l l i v a n , D.S. (1977) The digestive t r a c t of a harpactoid copepod, Tigriopus c a l i f o r n i C u s . A l i g h t and electron microscope study. Unpub. M.Sc. thesis, University of B r i t i s h Columbia, Canada. S y v i t s k i , J.P. and Murray, J.W. (1978) F l o c c u l a t i o n and zooplankton p e l l e t i z a -t i o n of suspended sediment i n a high run-off f j o r d ; Howe Sound, B r i t i s h Columbia, ( i n prep). Verwey, J. (1952) On the ecology of d i s t r i b u t i o n of cockle and mussel i n the Dutch Waddensee, t h e i r r o l e i n sedimentation and the source of t h e i r food supply. Archiv. Nederland. Zool. 10, 171-240. Vincente, M.A., Razzaghe, M. and Robert, M. (1977) Vermiculite (intergrade) and smectite from mica under a c i d i c conditions. Clay Minerals 12, 101-111. Wangersky, P.J. (1965) The organic chemistry of sea water. Am. S c i . 53, 358-374. Webster, T.J.M., Paranjabe, M.A. and Mann, K.H. (1975) Sedimentation of organic matter i n St. Margaret's Bay, Nova Scotia. J . F i s h . Res. Bd. Can. Udonova, O.N. (1940) Khimicheski sostav Calanus finmarchicus Barentsova Motya. Dokl. Akad". Nauk. S.S.S.R. 29, 218-224. 144 FLOCCULATION, AGGLOMERATION, AND ZOOPLANKTON PELLETIZATION OF SUSPENDED SEDIMENT IN A FJORD RECEIVING GLACIAL MELTWATER ABSTRACT G l a c i a l f l o u r (feldspar, quartz, t r i o c t a h e d r a l mica, c h l o r i t e , amphi-bole, tourmaline and vermiculite) enters the surface layer of Howe Sound, southwestern B r i t i s h Columbia, as a sediment plume which moves quickly down-i n l e t while slowly mixing with the sea water. Although f l o c c u l a t i o n occurs i n the lower, brackish waters of the surface layer, mixing and d i f f u s i o n are the dominant means for sediment to enter the lower marine water. Once i n the underlying marine water, zooplankton p e l l e t i z a t i o n and b i o l o g i c agglomeration of inorganic f l o c c u l e s takes place. These processes that enhance the i n d i v i -dual p a r t i c l e settlement, generate a f a s t response between the surface layer and the lower marine layer i n terms of sedimentation of p a r t i c u l a t e matter. Six types of marine p a r t i c l e s are described. They are: 1) sand and s i l t grains commonly with attached clay p a r t i c l e s ; 2) clay c l a s t s possibly r e l a t e d to r i v e r mudballs; 3) mineral-bearing f e c a l p e l l e t s from pelagic zooplankton; 4) large-grain inorganic f l o c c u l e s ; ; 5) c o l l o i d a l f l o c c u l e s ; and 6) inorganic-biogenic agglomerates. These p a r t i c l e s have s e t t l i n g velo-c i t i e s exceeding those of t h e i r component grains. S e t t l i n g v e l o c i t i e s of p a r t i c l e s less that 1 ym have been enhanced over 1400 times. Analysis of sediment trap data has led to the following conclusions: 1) water t u r b i d i t y cannot be used as a measure of the downward f l u x of par-t i c l e s ; 2) deep water sand discharges are common near the mouth of the Sqa-misg River, which enter the head of the f j o r d ; 3) s i z e d i s t r i b u t i o n s of se-diment deposited on the sea-bed are a function of v a r i a b l e multimodal and/or non-log-normal s i z e d i s t r i b u t i o n s from sediment f a l l i n g through the water column. 145 INTRODUCTION Fjords are s t r u c t u r a l l y - c o n t r o l l e d , U-shaped v a l l e y s that extend from a mountainous hinterland down to the sea. They have deep basins, steep sides, one or more submerged s i l l s , and one or more r i v e r s that at one time drained gl a c i a t e d alpine areas. The s a l i n i t y d i s t r i b u t i o n ; of the water i s t y p i f i e d by a shallow surface layer of fresh to brackish water from the r i v e r run-off, below which the h o r i z o n t a l and v e r t i c a l s a l i n i t y gradients of the lower marine layer are usually small. Fjords are found i n Norway, Greenland, Canada, Ch i l e , New Zealand, the United States, Scotland, and the Soviet Union, of which Canada has the greatest number. Previous geologic studies i n fjords have been l i m i t e d to describing bottom sediments and geochemistry (Bruun et a l . , 1955; Pickard, 1956; Toombs, 1956; Goss et a l . , 1963; von Huene, 1966; Skei et a l . , 1972; Macdonald and Murray, 1973; Holtedahl, 1975; Loring, 1976; S l a t t and Gardiner, 1976). How-ever, Hoskins and B u r r e l (1972), Price and Skei (1975) and Sundby and Loring (1978) have described aspects of the sedimentation and geochemistry of suspen-ded sediments. This study was designed to investigate the sedimentation of suspended sediments i n Howe Sound, a f j o r d i n . B r i t i s h Columbia which receives: copious g l a c i a l run-off ( F i g . 1). In p a r t i c u l a r , the following unresolved problems were examined: 1) How does the suspended sediment load behave upon.entry into a fjord? 2) How does the sedimentation rate change throughout the r i v e r fresh-et? 3) What i s the r e l a t i o n s h i p between the sediment i n the water column and that c o l l e c t e d by sediment traps? 4) Does the size d i s t r i b u t i o n of the sus-pended load change from the r i v e r mouth outwards or downwards i n the fjord? 5) By what: mechanism do the suspended p a r t i c l e s s e t t l e out - as s i n g l e 146 Figure 1. Location of the study area and sample s i t e s within Howe Sound. 147 p a r t i c l e s , by inorganic f l o c c u l a t i o n , by b i o l o g i c a l i n t e r a c t i o n or by other processes? 6) What are the i n s i t u s e t t l i n g v e l o c i t i e s of these p a r t i c l e s ? 7) Do agents that enhance the s e t t l i n g of p a r t i c l e s , i f present, influence clay mineral patterns along the f j o r d bottom? 8) What i s the clay mineralogy of " g l a c i a l flour"? To complete such a comprehensive study, Howe Sound was chosen since there are pre - r e q u i s i t e p h y s i c a l and chemical data a v a i l a b l e from the f i e l d s of p h y s i c a l oceanography (Pickard, 1961; Waldichuk et a l . , 1968; Crean and Agnes, 1971; B e l l , 1973, 1974, 1975), dynamic oceanography (Buckley and Pond, 1976; Buckley, 1977), geology (Mathews, 1958; Mathews et a l . , 1966; Terzaghi, 1956; Werner and Hyslop, 1968; B e l l , 1975; S y v i t s k i et a l . , i n prep.), chemis-try (Thompson and McComas, 1973, 1974; Harbo et a l . , 1974; Macdonald and Wong, 1977), and biology (Levings, 1973a, 1974; C l i f f and Stockner, 1973). Howe Sound l i e s within the P a c i f i c Ranges of the Coast Mountains and i s bounded on the south by the Georgia Lowland of the Coastal Trough. In the 42 km length of Howe Sound, there are two s i l l s , one halfway down the f j o r d and the other at the f j o r d mouth. The maximum depth of 325 m i s i n the north of the f i r s t s i l l . Only the northern 17 km of the f j o r d ( r i v e r mouth to f i r s t s i l l ) were investigated. This section of the f j o r d i s 3 km wide with a s i l l at 35 to 70 m depth at i t s southern end. The major source of freshwater i s g l a c i a l melt water and winter snowfall i n the Squamish River, which has an 3 -1 average discharge rate of 250 m -sec . The discharge i s generally highest i n 3 -1 the months of June through August (=480 m -sec ) and lowest from January to 3 - 1 2 March (=86 m -sec ). The Squamish River has a drainage area of 3636 km . METHODS F i e l d procedure: Samples were c o l l e c t e d on 10 cruises during the spring, summer and f a l l periods of 1976 and 1977 from R/V Active Lass. The ship was positioned on each of the stations ( F i g . 1) by radar t r i a n g u l a t i o n 148 and echo sounding. The ship did not anchor during s t a t i o n sampling when tran-sects were run ( i . e . , stations 1-2-3, stations 4-5-6, stations 7-8-9, or s t a -tions A - K ) . Anchoring was done only when sediment traps were placed i n the water and the current was measured. Over 800 water samples were c o l l e c t e d at various l e v e l s within the water column. Surface samples were c o l l e c t e d with a polyethylene bucket and subsurface samples with v e r t i c a l arrays of 5- and d ) 7 - l i t r e Niskin samplers. The samplers were slowly raised during Closure since t h i s procedure was found to increase the chance of accurate recovery of the fast s e t t l i n g sand f r a c t i o n . The recovered water samples were thoroughly shaken. A subsample was retained i n 1 - l i t r e Nalgene b o t t l e s from which the temperature (± 0.1°C) ahd s a l i n i t y (± 0.5%o) were measured.. Small samples (20 - 40 ml), immediately upon recovery and before shaking, were suction f i l ^ (R) tered on 47 mm HA M i l l i p o r e f i l t e r s (0.45 ym nominal pore s i z e ) . The f i l -ters were oven dried at 40°C f o r 18 hours and stored i n i n d i v i d u a l P e t r i dishes for l a t e r o p t i c a l and SEM analysis. The water samples were frozen u n t i l the p a r t i c l e concentration could be determined. Suspended sediment traps were constructed from clear a c r y l i c p l a s t i c tubing (O.D. = 8.8 cm, W.T. = 0.64 cm) which were closed at one end to make 35 cm high c y l i n d r i c a l traps. The traps were attached by s t a i n l e s s s t e e l hoseclamps to trap holders (4 traps per holder). The holders consisted of two 1.9 cm PVC pipes, 2 m i n length, that intersected at a PVC block. The block was attached to a wire with wing-nuts. (Note: For further d e t a i l s refer to Webster et a l . (1975); S y v i t s k i (1978b) or contact the senior author of t h i s paper.) Four of the above sediment traps were positioned at each depth. Four depths were monitored at stations (1), (2), (5) and (8). A t o t a l of twelve, 6 to 12 hour c o l l e c t i o n s were made. Horizontal currents were measured 149 using a Savonius-rotor surface read-out current meter. Bottom sediment samples were c o l l e c t e d along transect A-K (Fig, 1) using a Dietz-Lefond grab sampler. Preliminary t e s t i n g of sediment trap: A c y l i n d r i c a l sediment trap having a mouth diameter of 7.5 cm and height of 35 cm had 5.028 gm of sediment deposited on the cylinder bottom.. The sediment had a mean grain s i z e of 5 ym and stan-dard deviation of 5 ym. The trap was then submerged i n running water for two hours where the flow ranged up to 100 cm*sec ^. The recovered sediment was analyzed for weight loss and change i n s i z e d i s t r i b u t i o n . Four s i m i l a r traps containing dyed sea water and known quantities of sediment ("x = 4.3 ym, S.D. = 5.2 ym) were placed i n the trap holder and lowered 150 m ( s t a t i o n (2), Howe Sound). The traps were r e t r i e v e d at 0.3 m-sec ^ and the recovered sediment was weighed and siz e analyzed. This trap assembly was then lowered into a large pool of water and tested for t i l t angle with a plumb l i n e . Laboratory procedures: The water samples were immediately suction f i l t e r e d upon thawing through two pre-weighed 47 mm HA M i l l i p o r e ^ - ' f i l t e r s (0.45 ym nominal pore s i z e ) . The f i l t e r s were rinsed free of s a l t s by passing 50 ml of f i l t e r e d (0.45 ym) d i s t i l l e d water through them. The bottom f i l t e r was used as a control f o r f i l t e r weight loss (Gibbs, 1971). The f i l t e r s were then oven dried at 40°C for 18 hours before weight determination, on a Mettler ® H20 balance (± 0.50 mg). The f i l t e r s were next flame i g n i t e d using ethanol i n porcelain crucibles and then combusted at 550°C for four hours i n a muffle furnace. The remaining ash was weighed. T o t a l suspended matter (TSM), percent inorganic matter (% IOM), and the percent organic matter (% OM) were then c a l -culated. A l l the p a r t i c u l a t e matter greater than 0.2 ym was extracted from the bulk water samples by cen t r i f u g a t i o n . The extracted sediment was dried, washed i n 30% H 00 0, and sonicated before siz e analysis and/or XRD a n a l y s i s . 150 The contents of the 192 recovered traps were allowed to s e t t l e for 72 hours i n a r e f r i g e r a t o r at 4 - 6°C, a f t e r which the top 3/4 of the supernatant l i q u i d was decanted. Sediment from three of the four traps per s t a t i o n depth were washed i n d i s t i l l e d water, shaken and centrifuged repeatedly u n t i l free of s a l t s (test by AgNO^). The extracted sediment was then oven-dried at 40°C fo r 24 hours and weighed. One of the three dry trap samples was combusted for 8 hours at 400°C a f t e r an i n i t i a l heat increase period of 2 hours. The r e s u l -tant ash was weighed and the % OM and % IOM calculated. The second dry sample was bathed i n 30% H^O^ and sonicated f o r subsequent siz e a n a l y s i s . The t h i r d dry trap sample was analyzed on the Leco ^ carbon analyzer. The remaining wet sediment sample was wet sieved through a 63 ym sieve. The f e c a l p e l l e t s i n the greater than 63 ym f r a c t i o n were i s o l a t e d by the CCl^ f l o t a t i o n method ( D i l l o n , 1964), and then counted. Approximately 20 f e c a l p e l l e t s from each sample were washed with d i s t i l l e d water, allowed to a i r dry, and weighed. They were next ashed i n a muffle furnace at 400°C for four hours and t h e i r ash weight was recorded. The remains were examined under a transmitted l i g h t microscope to provide a v i s u a l estimation of the inorganic biogenic component. From these data, the weight percent of inorganic sediment i n one p e l l e t was calculated. The above procedure was repeated on f i v e batches of p e l l e t s per sample. The minus 63 ym f r a c t i o n was washed free of s a l t , and freed of organic matter (30% H^O^) and i r o n oxides ( c i t r a t e buffer-sodium d i t h i o n i t e method), f o r l a t e r XRD analysis. Size a n a l y t i c a l procedure: F i l t e r s of the small water samples, containing less than 1 mg of p a r t i c u l a t e matter per 47 mm diameter f i l t e r , were o p t i c a l l y s i z e -analyzed. Twenty-five sample f i l t e r s were mounted on glass s l i d e s with ace-tone a f t e r adding a few drops of c l e a r i n g f l u i d (1:1:1 hexane:ethylene d i c h l o -ride:1,4-dioxane). Cover s l i p s held the f i l t e r s f l a t and i n place. 1 5 1 (R) These f i l t e r slides were inserted into a Zeiss ^ phase contrast microscope connected to a Zeiss Particle Size Analyzer. Sixteen size fractions, ran-ging between 1 pm and 63 ym, were used in the analysis. Both 16x and 40x objective lenses and both light and dark phase contrasts were used in the counting of over 20,000 grains per sample. Due to random alignment of the particles on the f i l t e r (Syvitski, 1978a) the method measured the average intermediate grain diameters. Grain sphericity and grain roundness were also noted during size analysis. The volume size analysis (VSA) method (Syvitski and Swinbanks, 19 78) was used on 75 trap and water samples (> 50 mg of sedi-ment needed). The method, based on Stokes Law of Settling, produces results in equivalent spherical sedimentation diameters. The advantages and accuracy of the method are described elsewhere (Syvitski and Swinbanks, 1978). The method involved use of the UBC UBM 370-168 computing f a c i l i t y . Scanning Electron Microscopic Analysis: When the fi l t e r e d samples covered less than 1% of the filtered surface area with particulate matter, the sample was examined by SEM for the existence and quantity of flocculated material. Fecal pellets separated from the sediment traps were also examined under the (R) Cambridge Stereoscan^ SEM. X-radiatiori procedure: Samples which had their organic fraction, salt, and and free iron oxide removed, were sonicated and size separated by centrifuga-J tion into 0.2 - 2 ym and 2 - 20 ym fractions. Between 8 - 10 mg of each size fraction was mounted for quantitative XRD analysis using the Ag f i l t e r moun-ting technique (Syvitski, 1978a). The method has a total analytical precision of ± 7.5% area. The samples are mounted with random orientation of the miner-(R) als. A l l mounts were analyzed on a P h i l i p s ^ 1010-75 wide angle X-ray d i f -fractometer using nickel f i l t e r e d copper Ka radiation generated at 40 kv and 20 mA. The s c i n t i l l a t i o n detector s l i t s were 1 x 0 . 2 x 1 . The scan speed was 152 1 , 28/minute between 3 and 65 and was recorded on a P h i l i p s ® PM 8000 s t r i p recorder at 1°, 20/cm. The scan speed was decreased to h°, 28/minute between 24°-26° and 59°-63° for clay polytype determination. Each sample mount was run a f t e r g y l c o l a t i o n (1,2-ethanediol) and l a t e r heating to 500°C for 1 hour. Areas under the diffractogram peaks (1.70 nm, 1.20 nm, 1.00 nm, 0.710 nm, 0.426 nm, 0.320 nm) were measured as weights from a photocopy trace of the areas. Peak heights were measured for 0.84 nm and 0.348 nm peaks. RESULTS Some Physical Oceanographic Observations Appendix #2, the d e t a i l e d data base, contains a l l observations,and mea-surements not s p e c i f i c a l l y c i t e d i n t h i s paper. Water temperatures i n Howe Sound ranged from 7.6°C to 17.7°C during the sampling period. Three layers of t r a n s i t i o n a l temperature were observed i n the water column: the surface (0m), the h a l o c l i n e temperature maximum (htm), and the bottom marine water. The temperatures of each of these layers were averaged over the c o l l e c t i o n period f or each measured day and are l i s t e d i n Table 1. Results f or stations (1) and. (2), 1977, are shown i n Figure 2. The temperatures of both the surface and the htm increase during the day-l i g h t hours unless the day i s cloudy or stormy. The temperatures of both the surface and htm, at any one time, increase down the f j o r d and l a t e r a l l y away from the main r i v e r j e t . The v a r i a t i o n i n surface temperature i s greater than that of the htm i n the short term (hours). No short term and l i t t l e long term (months) v a r i a t i o n i n temperature was observed i n the deeper water. The deep water on the south side of the inner s i l l at s t a t i o n (9) was colder at s i m i l a r water depths than the north side of the s i l l at s t a t i o n (7). The t o t a l suspended matter ranged between 0.3 - 77.7 mg/l and 0 - 6.2 mg/SL, for inorganic weight concentration (IWC) and organic weight concentra-t i o n (OWC), res p e c t i v e l y . The htm depth was found to be an excellent way of 153 Station Date 1,2,3 June 25/76 4,5,6 July 30/76 1,2,3 Aug. 16/76 2 Sept. 24/76 1 Apr. 26/77 7,8,9 Apr. 27/77 1 May 24/77 2 May 25/77 7,8,9 May 26/77 1 June 27/77 5 June 28/77 8 June 29/77 1 July 20/77 2 July 21/77 1 Aug. 22/77 2 Aug. 23/77 7,8,9 Aug. 24/77 1 Oct. 31/77 Average Temperature (°C) 0 m htm* bottom* 11,6 9.3 10.1 12.0 8.9 10.9 11.9 9.3 11.9 12.8 -8.9 11.1 -11.5 11.8 -9.8 11.1 9.4 12.0 12.3 8.9 12.9 13.5 8.5 10.3 13.3 9.4 13.3 14.0 9.5 15.5 16.3 9.7 11.5 13.6 9.6 12.6 14.6 9.4 11.4 13.8 9.5 11.9 15.8 8.7 13.0 17.7 9.5 7.6 10.7 9.1 htm = h a l o c l i n e temperature maximum bottom = 5 m above the sea-bed Table 1. Mean d a i l y temperature of the top surface water (0 m), the h a l o c l i n e temperature maximum, and the bottom marine water. Station number Water layer — i 1 1 1 1 1 r -May June July Aug Sept Oct Nov Month, 1977 Figure 2. Temperature v a r i a t i o n s during the 1977 f i e l d season at s t a t i o n (1) and (2) i n terms of surface water, h a l o c l i n e temperature maximum and bottom marine water. 155 d i v i d i n g the surface water from the lower (deeper) marine water. The surface water has lower s a l i n i t i e s and higher and more var i a b l e mean organic weight concentration (OWC) and inorganic weight concentration (IWC) than the lower marine water. The surface layer also has larger currents than the marine layer. These surface currents fluctuate over small depth i n t e r v a l s . The current v e l o c i t y , i n 1977, ranged from 0 to 41.0 cm-sec ^ at stations (1) and (2). The surface v e l o c i t y on flood ti d e increased down the f j o r d . while the actual surface layer decreased i n thickness, whereas, during ebb t i d e , the surface v e l o c i t y decreased as the layer thickened. Thus the htm varies with depth through the t i d a l c y c l e . The surface water IWC was found to decrease down the f j o r d and l a t e r a l l y away from the main r i v e r j e t while s a l i n i t y (S% 0) increased. Figure 3 indicates the t y p i c a l l i n e a r r e l a t i o n s h i p between surface IWC, s a l i n i t y , and temperature, with distance from r i v e r mouth for November 1, 1977. P a r t i c u l a t e Matter i n Howe Sound Water The inorganic weight concentration was observed to range l i n e a r l y with s a l i n i t y through the surface l a y e r and h a l o c l i n e . These d i l u t i o n l i n e s are plotted for the various stations and sample dates i n Figure 4. The slope (m) , ordinate (b), c o r r e l a t i o n c o e f f i c i e n t ( r ) , and the number of samples (N), are given f o r these l i n e a r regressions of IWC vs. S%0 i n Table 2. There i s a l i n e a r r e l a t i o n s h i p between m and b i n these equations such that b = -26.15*m + 1.24 at r = -0.998 (Fig. 5). From a d e t a i l e d analysis of the s t a t i o n (1) surface layer on A p r i l 26, 1977, the v a r i a b i l i t y of IWC was found to decrease as s a l i n i t y increased (Fig. 6). The . v e r t i c a l d a i l y " v a r i a t i o n of IWC and OWC at t h i s s t a t i o n and date are given i n Figures 7a and 7b. Both d a i l y averages ind i c a t e a i m max-imum, something that i s frequently noted i n the stations close to the r i v e r mouth. The p o s i t i o n of the h a l o c l i n e temperature maximum (htm)for t h i s per-Inorganic Weight Concentration (mg/1) Station(s) & Date xah aah N xbh abh N 7,8,9 July 29/76 2.2 1.6 29 4,5,6 - July 30/76 3.8 2.1 25 1,2,3 - Aug. 16/76 8.1 . 5.6 24 2 - Sept. . 24/76 3.2 1.8 21 0.9 0.5 12 1 - Apr. 26/77 27.2 13.4 27 5.5 1.0 8 7,8,9 - Apr. 27/77 4.8 1.2 18 2.9 0.9 6 1 - May 24/77 5.8 1.8 8 1.6 0.3 10 2 - May 25/77 3.0 1.3 8 0.7 0.3 18 7,8,9 - May 26/77 1.6 0.2 12 0.6 0.2 14 1 - June 27/77 34.8 15.1 10 6.6o 2.6 10 5 - June 28/77 12.0 4.0 10 2.0 0.7 15 8 - June 29/77 2.9 1.0 9 1.0 0.4 13 1 - July 20/77 30.6 19.4 8 3.4 1.6 12 2 - July 21/77 24.5 12.9 8 3.2 1.1 12 1 - Aug. 22/77 47.7 15.0 13 5.7 2.9 10 2 - Aug. 23/77 18.1 9.4 12 5.7 5.0 14 7,8,9 — Aug. 24/77 5.9 4.1 15 1.0 0.5 8 1 - Oct. 31/77 3.5 1.8 10 2.0 1.1 7 IWC vs. S%« Organic Weight Concentration (mg/1) m b r N xah aah N xbh abh N . 29 1.1 0.6 29 0.26 7.3 -.98 18 1.3 0.6 25 * * ft 23 1.6 0.8 23 -0.20 5.4 -.99 13 0.9 0.4 22 0.8 0.3 12 -1.30 38.0 -.93 29 3.7 2.6 29 1.8 0.2 7 -0.27 9.8 -.87 24 1,8 0.5 18 1.6 0.4 6 -0.22 6.9 -.95 10 1.7 1.0 8 0.4 0.2 9 -0.13 4.9 -.97 12 1.5 1.2 10 0.6 0.5 17 ftft *ft ft* 12 1,0 0.2 12 0.2 0.2 14 -1.60 44.4 -.92 9 2.4 0.8 10 0.5 0.3 10 -0.58 17.8 -.96 18 0.8 0.6 10 0.4 0.2 17 -0.15 5.0 -.83 14 0.6 0.4 7 0.3 0.2 14 -2.10 56.2 -.90 15 2.3 0.9 8 0.6 0.4 12 -1.70 43.3 -.88 14 1.5 0.7 8 0.4 0.2 14 -2.30 61.6 -.89 16 3.0 1.2 12 0.6 0.5 10 -1. 10 29.5 -.90 14 1.3 0.9 12 0.7 1.0 14 -4.30 11.3 -.98 12 0.6 0.5 15 0.1 0.1 8 -0.30 -8.9 -.99 12 0.5 0.2 7 0.3 0.2 6 *_ narrow h a l o c l i n e , not enough data; ** not enough low s a l i n i t y samples x = mean; a = standard deviation; N = # of samples ah = samples taken above the h a l o c l i n e bh = samples taken below the h a l o c l i n e m = slope, b = Y-ordinate for the l i n e a r regression of IWC vs. S%„ (surface layer data) r = c o r r e l a t i o n c o e f f i c i e n t to t h i s regression l i n e (only given i f r ^ |±.80|) Table 2. Daily mean, standard deviation, and number of samples of inorganic and organic weight concentration for both the surface layer and the lower marine layer. Also shown are the lin e a r regression parameters for IWC vs. S%„ i n the surface layer. CD E O r-30 a-20 Mo o E CO Distance out from River Mouth, k m rxver mouth. 153 Figure 4. D i l u t i o n l i n e s of the surface water mixing w i t h the marine water i n terms of IWC vs. S%o . 159 160 Figure 6. D e t a i l e d a n a l y s i s of the surface l a y e r , s t a t i o n ( 1 ) , A p r i l 26, 1977. Note that the v a r i a b i l i t y of IWC decreases as S%„ i n c r e a s e s . OWC, mg/1 Salinity, % o B marine water. 162 iod i s marked against p l o t s of d a i l y temperature and s a l i n i t y (Fig, 7c), The mean surface layer inorganic-weight-concentration, IWC(xah) ranges l i n e a r l y with i t s standard deviation, IWC(aah) (Table 2). At r = 0.93, IWC(aah) = 0.42*IWC(xah) + 0.64. This r e l a t i o n also e x i s t s i n the lower marine water with IWC(abh) = 0.5«IWC(xbh) - 0.15 at r = 0.80. The mean sur-face layer organic-weight-concentration (OWC) and i t s standard deviation are also l i n e a r l y r e l a t e d with OWC(aah) = 0.52•OWC(xah) - 0.02 at r = 0.84. No such r e l a t i o n f o r organic weight concentration was found to e x i s t i n the low-er marine layer. The d a i l y average of inorganic and organic weight concentra-t i o n ranges l i n e a r l y with IWC(xah) = 20.0•OWC(xah) - 16.6 at r = 0.80. Sta-t i o n (1) was unique i n that IWC.varied d i r e c t l y with OWC at the i n d i v i d u a l sample l e v e l i n the surface layer. The regression l i n e , IWC = 16.1*OWC - 6.2 at r = 0.92, was the same for both June 27, 1977 and July 29, 1977. This l i n e a r equation d i d change, however, f o r other months at s t a t i o n (1). The mean d a i l y inorganic weight concentration of the lower marine water i s l i n e a r l y correlated with the mean d a i l y inorganic weight concentration of the surface water, with IWC(xbh) = 0.12*IWC(5cah) + 0.7 at r = 0.92. The mean d a i l y inorganic concentration i n Howe Sound increases through the summer months and declines during the f a l l . High suspended loads are brought into the Sound through infrequent and s h o r t - l i v e d spring or f a l l storms ( i . e . , A p r i l 23, 1977, Figure 8). The organic and inorganic concentra-tions were both high and var i a b l e i n the surface layer throughout the summer 'freshet' f o r s t a t i o n (1) during the spring, summer and f a l l of 1977 (Figs. 9a and b). Many times water samples from the f j o r d bottom are more turbid than other shallower water samples ( i . e . , June 27, 1977, Figs. 9a and b). Mid-depth maxima at stations (1) and (2) were also observed, though they were short l i v e d e f f e c t s and not detected i n a d a i l y average. 163 Abov* htm o -| 1 1 1 1 1 1 1 April May Jun* July Aug Sept Oct Nov Month, 1977 Figure 8. The v a r i a t i o n s i n i n o r g a n i c weight concentration above and below the h a l o c l i n e temperature maximum f o r the 1977 f i e l d season at s t a t i o n ( 1). I l l u s t r a t e d are the d a i l y mean ± one standard devia-t i o n of IWC. Note the A p r i l 26, 1977 storm peak. 164 Mean Daily IWC, mg/ I Figure 9. V e r t i c a l v a r i a t i o n s of A) i n o r g a n i c and B) organic weight concentrations at s t a t i o n (1) f o r the 1977 f i e l d season. The values p l o t t e d are d a i l y averages f o r each depth. 165 Preliminary Testing of Sediment Trap Loss of sediment from within the trap did not occur when a large h o r i - , zontal current (up to 100 cm-sec ^) passed over the trap mouth. A l l deposited sediment was retained when l i d l e s s traps were re t r i e v e d at normal winch speeds (0.3 m (17 ym) and 4.9 cj> (32 ym) i n f l e c t i o n points and 10.5 $ (0.5 - 1 ym) , 6.6 (8 - 12 ym), 5.4 <|> (24 ym) , and 4.3 (52 ym) modal peaks. The suspended sediment also have many i n f l e c t i o n points and mo-dal peaks, but these were variable between samples. Analysis of bottom sediment reveals a l i n e a r decrease i n both mean and 4 5 6 7 8 9 10 Equivalent Spherical Sedimentation Diameter, 0 Figure .11. L o g - p r o b a b i l i t y p l o t showing the l a r g e v a r i a t i o n o f s i z e d i s t r i -b u t i o n s between sediment c o l l e c t e d from sediment t r a p s a t 4 l e v e l s , October 31, 1977, at s t a t i o n ( 1 ) . CNote: each of these and other s i z e d i s t r i b u t i o n s presented i n t h i s paper are constructed from 16 e q u a l l y spaced data p o i n t s , see F i g . 23). 1/1 98 -i Equivalent Spherical Sedimentation Diameter, ^ Figure 12. L o g - p r o b a b i l i t y p l o t o f s i z e d i s t r i b u t i o n s c o l l e c t e d from the 55 m deep trap at s t a t i o n (1) throughout the 1977 f i e l d season. Note the v a r i a b l e multimodal, non-log-normal nature of the curves. I l l Stat ion 1 - A 4 5 6 7 8 9 10 Equivalent Spherical Sedimentation Diameter, rf Figure 13. Log-probability plot of size distributions from suspended sediment samples collected along transect A-K from the surface-water (0 m) on July 22, 19.77. Note the variable, non-log-normal nature of the curves. 173 4 5 6 7 8 9 10 E q u i v a l e n t S p h e r i c a l S e d i m e n t a t i o n D i a m e t e r , rf Figure 14. L o g - p r o b a b i l i t y p l o t of s i z e d i s t r i b u t i o n s from deposited sea-bed samples•collected along t r a n s e c t B-K on J u l y 22, 1977. Note the multimodal, non-log-normal nature of the curves. 174 Standard deviation grain-size s t a t i s t i c s and a general increase i n the moment measure of skewness c o e f f i c i e n t with increasing distance down the f j o r d . The grain s i z e mean decreases from 11.5 ym (s t a t i o n B) near the r i v e r mouth to 1.2 ym (s t a t i o n K) on the south side of the s i l l . Suspended sediment also roughly decrease i n mean grain s i z e down the f j o r d , i . e . , 3.3 ym at s t a t i o n (A), the r i v e r mouth, to 1.4 ym at s t a t i o n (K). There i s l i t t l e v a r i a t i o n i n the stan-dard deviation of the suspended sediment i n grain s i z e d i s t r i b u t i o n (range 3.8 ym - 2.3 ym). These samples are a l l very p o s i t i v e l y skewed (sk > 2.3) and ex-tremely l e p t o k u r t i c (kurt > 7.6). Deviation from log-normality for grain s i z e increases down the f j o r d for both bottom sediment and suspended sediment. On November 1, 1977, suspended sediment c o l l e c t e d from surface water of Howe Sound displayed a v a r i e t y of non-log-normal and bimodal s i z e d i s t r i b u t i o n s (Fi g . 15) that d i f f e r e d s i g n i f i c a n t l y from those analyzed from the July 22, 1977, cruise ( F ig. 13). Analysis of suspended sediment from other c o l l e c t i o n dates y i e l d e d further v a r i a b l e grain s i z e d i s t r i b u t i o n s . The mean grain s i z e of suspended sediment, Xs, i s l i n e a r l y correlated with the mean inorganic weight concentration of the surface layer with Xs = 0.6'IWC(xah) + 1.2 at r = 0.97. The equation i s based on data from only s t a -tions (1) and (2) and.because N = 8. should.be considered tentative... In.gen-e r a l , Xs decreases as IWC(xah) decreases. Op t i c a l analysis of p a r t i c l e diameter (intermediate cross-section) i n d i -cated l i t t l e v a r i a t i o n i n suspended sediment with increasing depth through the surface layer (Fig. 16). This method did not d i s t i n g u i s h f l o e s though, as only disc r e t e grains were measured. The average s p h e r i c i t y value i s 0.81, and the average roundness 0.73. Description of Marine P a r t i c l e s Analysis of over 400 scanning electron micrographs of Howe Sound suspen-ded sediments revealed four types of marine p a r t i c l e s : 1) attached mineral 175 Figure 15. L o g - p r o b a b i l i t y p l o t of s i z e d i s t r i b u t i o n s from suspended sediment samples c o l l e c t e d at f i v e s t a t i o n s from the surface water (0 m) on November 1, 1977. These curves show an e n t i r e l y d i f f e r e n t d i s t r i -b u t i o n as compared to those shown on Figure 13, although both are from suspended sediment samples. 176 4 6 8 1 Intermediate Cross - Sectional Diameter, $ Figure 16. Cummulative number percent curves of p a r t i c l e diameter through. the surface layer i n d i c a t i n g l i t t l e v a r i a t i o n of p a r t i c l e s i z e with depth. 177 g r a i n s ; 2) c l a y c l a s t s ; 3) mineral-bearing f e c a l p e l l e t s from p e l a g i c zooplank-ton; and 4) f l o c c u l e s ( l a r g e - g r a i n , c o l l o i d a l and i n o r g a n i c - b i o g e n i c types). A l l l a r g e s i l t p a r t i c l e s ( f e l d s p a r , quartz and hornblende) have smaller p a r t i c l e s , u s u a l l y l e s s than 1 um, attached to them ( F i g s . 17A-C). The amount attached v a r i e s considerably from g r a i n to g r a i n , but many have coatings that might increase the o r i g i n a l weight by an estimated 0.5%. The attached p a r t i -c l e s are mostly c l a y p l a t e s although organic matter i s a l s o common. This form of p a r t i c l e i n t e r a c t i o n i s described as attached m i n e r a l g r a i n s . B a l l s of c l a y , termed c l a y c l a s t s , that ranged i n diameter from 10 - 35 ym, have f r e q u e n t l y been observed as a minor c o n s t i t u e n t of the suspended s e d i -ments of Howe Sound ( F i g s . 17D-F). They are u s u a l l y well-rounded sometimes almost p e r f e c t spheres. The c l a y p l a t e s ( c h l o r i t e and b i o t i t e ) a l i g n face to face, making a very compact and dense body. The p l a t e s have a mean g r a i n s i z e of 3.5 ym. Most of the mineral-bearing f e c a l p e l l e t s were i d e n t i f i e d as being pro-duced by eupasiids or copepods. The average p e l l e t s i z e i s 100 ym i n length and 38 ym i n width ( F i g s . 18A-D). The p e l l e t s c o n t a i n up to 98% c l a y p l a t e s ( c h l o r i t e and b i o t i t e ) and minor amounts of quartz, f e l d s p a r and hornblende. Apparently, the l a r g e s t p a r t i c l e s i z e ingested was 22 ym, although the average p a r t i c l e was only 2.8 ym i n diameter. The c l a y s are t i g h t l y packed and ran-domly o r i e n t e d ( i . e . , f a c e - t o - f a c e , edge-to-edge, face-to-edge). This would produce a lower d e n s i t y than that of the c l a y c l a s t s described above. Three types of mineral-bearing f l o e s were observed: 1) la r g e g r a i n f l o e s ; 2) c o l l o i d a l f l o e s ; and 3) i n o r g a n i c - b i o g e n i c f l o e s . The l a r g e - g r a i n f l o c c u l e s are composed mostly of clay p l a t e s l a r g e r than 2 ym ( F i g . 19A-F). The c l a y alignment i s ge n e r a l l y edge-to-edge or a combination of face-to-face and edge-to-edge. (Note: the quick and gentle f i l t r a t i o n of sea water i s thought to maintain f l o e o r i e n t a t i o n . ) I n both cases the f l o e s are two-dimensional ( f l a t ) . 178 179 Figure 17. S i l t grains of quartz (17A,17C) and f e l d s p a r (17B) c a r r y i n g attached c l a y and organic p a r t i c l e s . S p h e r i c a l c l a y c l a s t s p o s s i b l y r e l a t e d to r i v e r mudballs are shown i n 17D, 17E, and 17F. 181 Figure 18. Mineral-bearing f e c a l p e l l e t s (A-D). Figure 18A al s o shows a p a r t l y damaged Skeletonema sp. A l l p e l l e t s show a l a c k of quartz and f e l d s p a r grains and abundant c l a y mineral p l a t e s . The p e l l e t of Figure 18A was produced from a p e l a g i c copepod w h i l e Figure 18D shows a p e l a g i c euphausiid f e c a l p e l l e t . 182 183 Figure 19. Progressive growth of inorganic large grain floccules (A-F). The i n i t i a l edge to edge plate configuration at S%0 = 3.0 (Fig. 19A) change to face to face configuration at S%„ = 20.0 and 29.0 respectively (Figs. 19B & 19C). Figure 19C shows atypical s i l t particles (quartz and feldspar) caught up in a floe, S%„ = 25.0. Figures 19E and 19F show the typical variety of three dimensional floes found in the lower-marine-waters. 184 The standard deviation of p a r t i c l e s i z e i n t h i s f l o e type i s usually large, The f l o e diameter range from 10 ym to 70 ym, or even la r g e r , and depends p r i -marily on the c o l l e c t i o n depth. Floes are rare i n freshwater, At depths where the s a l i n i t y of the water i s 3%<> , floes are composed of 2 to 10 p a r t i c l e s of edge-to-edge alignment. These f l o e s are less than 25 ym i n s i z e . As s a l i n i t y and c o l l e c t i o n depth increase, so does the f l o e s i z e and range of p a r t i c l e s i z e s . The largest floes were c o l l e c t e d at depths i n the lower marine water. These f l o e s are more equant and commonly have edge-to-face clay alignment. Also, these larger f l o c c u l e s tend to have more organic matter attached than those c o l l e c t e d from the surface layer. C o l l o i d a l f l o e s are mostly composed of less than 2 ym clay plates i n t e r -mixed with c o l l o i d a l material ( Fig. 20A-D). The c o l l o i d a l material forms the cen t r a l part of the f l o e with clay plates attached around i t s outside. I t s f l o c c u l e s i z e ranges from 15 to 35 ym up. The alignment of the clay plates i s overlapping face-to-face and edge-to-edge. The shape i s mostly f l a t . These floes were sometimes associated with the large-grain f l o e s . Inorganic-biogenic f l o e s resemble the large-grain f l o e s , except that they contain over 30% inorganic biogenic components, such as broken diatom fr u s t u l e s (valves, valve mantles, g i r d l e s , marginal spinulae). These floes (Fig. 21A-F) recovered from the lower marine water, tend to be large (> 35 ym). The f l o e s are equant and have a pseudo-random oriented structure, i . e . , va-rious angles of edge-to-edge, edge-to-face and face-to-face plate alignments. The most abundant inorganic components were p l a t e - l i k e valves broken from Coscinodiscus l i n e a t u s . F i bres, possibly from setae of Corethron h y s t r i x or Chaetocerous decipiens, tend to be wrapped around the clay p a r t i c l e s and ac-t u a l l y t i e them together. Organic mucus of unknown composition and o r i g i n also coat many of the f l o e s . Carbonate excretions possibly from T i n t i n n i d s were found to be attached to some clay p l a t e s . 185 186 F i g u r e 20. V a r i e t y o f c o l l o i d a l f l o c c u l e s , a l l h a v i n g the c h a r a c t e r i s t i c f l a t -l y i n g c l a y p l a t e arrangement. The i n i t i a l f l o e shape i s round ( F i g . 20A). T h i s l a t e r changes i n t o ' s n a k e - l i k e ' shapes w i t h d e p t h ( F i g s . 20B & 20D). F i g u r e 20C shows c l a y p l a t e s a t t a c h e d a round an o r g a n i c mucous s u b s t a n c e . 187 1 8 8 Figure 21. Variety of inorganic-biogenic agglomerates; A) - clay plates t i e d together by organic f i b r e s ; B) - damaged c e n t r i c diatom attached to inorganic p a r t i c l e s ; C) - Tir i t i n n i d excretion on clay p a r t i c l e s ; D) - organic mucous and diatom f r u s t u l e s i n -termixed with clay plates; E) - agglomerate of mostly diatom fragments intermixed with clay plates; and F) - t y p i c a l three-dimensional agglomerate colonized by b a c t e r i a . 189 SEM analysis of the suspended sediment ash a f t e r combustion indicates that greater than 90% of the ash (by volume) i s always mineral grains. The remainder i s composed mostly of diatom f r u s t u l e s (CoscinOdiscus lineatus, As- t e r i o r i e l l a sp., Skeletonema costatum, Chaetoceros sp., Navicula sp., N i t z s c i a sp.). The major mineral components i d e n t i f i e d by XRD and the atomic l a t t i c e spacings which distinguished them are: a) feldspar (bytownite, a l b i t e , orth-clase) - 0.639 nm, 0.403 nm, 0.39 nm, 0.366 nm, 0.34 nm, 0.321 hm, 0.319 nm, 0.314 nm, 0.300 nm, 0.2535 nm, 0.2285 nm, 0.213 nm, 0.182 nm; b) quartz - 0.426 nm, 0.334 nm, 0.246 nm, 0.2285 nm, 0.182 nm and 0.154 nm; c) t r i o c t a h e d r a l mica (degraded b i o t i t e or b i o t i t e - v e r m i c u l i t e i n t e r l a y e r ) -- broad 1.0 nm basal re-f l e c t i o n (1.23 nm to 0.98 nm) and 0.50 nm, 0.334 nm, 0.290 nm, 0.200 nm and 0.153 nm r e f l e c t i o n s ; d) i r o n - r i c h c h l o r i t e (penninite) - weak f i r s t and t h i r d order basal r e f l e c t i o n s (1.4 nm, 0.472 nm) and strong second and fourth order basal r e f l e c t i o n s (0.71 nm, 0.354 nm) - (Note: often no 1.4 nm r e f l e c t i o n was present before heat treatment and the 0.71 nm r e f l e c t i o n was greatly reduced af t e r heat treatment. D i f f e r e n t i a t i o n from k a o l i n i t e was based on the well defined 0.354 nm r e f l e c t i o n at slow scan speed where the k a o l i n i t e 0.358 nm peak was never present.); e) amphibole (hornblende) - 0.84 nm, 0.296 nm, 0.282 nm, 0.2705 nm and 0.2585 nm; f) tourmaline - 0.638 nm, 0.348 nm, 0.296 nm, 0.258 nm, 0.238 nm and 0.219 nm; g) vermiculite (swelling v a r i e t y ) - 1.2 nm (1.1 nm - 1.23 nm) or 1.4 nm basal r e f l e c t i o n which expanded to 1.55 nm up to 1.70 nm upon g l y c o l a t i o n , (Note: e x f o l i a t i o n of s i l t and sand s i z e 'golden' mica was observed a f t e r H-2^2 t r e a t m e n t ' Also, the expansion to 1.7 nm of s i l t s i z e mica eliminates montmorillonite as a p o s s i b i l i t y . The expansion of clay p a r t i c l e s i n the same sample does not eliminate montmorillonite, however, and 190 i t may be present.) The minor mineral constituents are muscovite (same re-f l e c t i o n s as for b i o t i t e except i t s [060] r e f l e c t i o n i s at 0.150 nm not 0.153 nm), pyroxene (0.300 nm, 0.294 nm, 0.213 nm, 0.200 nm, 0.082 nm), epidote (0.5018 nm, 0.2900 nm, 0.2396 nm, 0.2161 nm, 0.211 nm, 0.164 nm) , p y r o p h y l l i t e (0.92 nm, 0.46 nm, 0.306 nm), ilmenite-magnetite (0.274 nm, 0.253 nm, 0.229 nm, 0.211 nm) , apatite (0.285 nm, 0.277 nm, 0.195 nm, 0.193 nm?, 0.183 nm?), and c a s s i t e r i t e ? (0.334 nm, 0.264 nm). Tourmaline i s more abundant i n the coarser f r a c t i o n than i n the f i n e r ( i n 79% of the samples), based on 0.348 nm to 0.32 nm peak height r a t i o . Quartz i s also more abundant i n the coarse f r a c t i o n ( i n 82% of the samples) based on 0.426 nm to 0.32 nm peak area r a t i o . Amphibole i s present i n approx-imately equal abundance i n both the coarse (2 - 20 ym) and the f i n e (0.2 - 2 ym) size f r a c t i o n s based on the 0.84 nm to 0.32 nm peak height r a t i o . In 97% of the samples, b i o t i t e i s greater i n the f i n e f r a c t i o n based on the 1.00 nm to 0.32 nm peak area r a t i o . In a l l samples, c h l o r i t e - i s greater i n the fine f r a c t i o n based on the 0.71 nm to 0.32 nm peak area r a t i o . The 0.32 nm peak (feldspar) i s used as the denominator because of i t s ubiquitous nature. In 83% of the samples, c h l o r i t e compared to mica (0.71 nm/1.0 nm peak area r a t i o ) i s greater i n the coarse f r a c t i o n . Table 4 gives the peak area r a t i o s of the major mineral constituents i n the water samples and bottom sediment samples for both t h e i r 0.2 - 2 ym and 2 - 20 ym size f r a c t i o n s c o l l e c t e d along transect A-K. No simple trends e x i s t i n mineralogy with distance from the r i v e r mouth. Both the suspended and bottom sediment have var i a b l e amounts of mica and l i t t l e v a r i a b i l i t y of chlo-r i t e and quartz r e l a t i v e to feldspar. Mica i s concentrated i n the f i r s t few kilometers from the r i v e r mouth; e s p e c i a l l y i n the f i n e s i z e f r a c t i o n of the bottom samples and the coarse f r a c t i o n of the suspended sediment samples. Water samples from t r a n s e c t A-K (<0.2ym) S t a t i o n 1.7nm 0.71nm l.OOnm 0.71nm 0.426nm l.Onm l.OOnm 0.32nm 0.32nm 0.320nm Bottom samples from t r a n s e c t A-K (<0.2um) 1.7nm 0.7lnm l.OOnm 0.7lnm 0.426nm l.Onm l.OOnm 0.32nm 0.32nm 0.320nm A 0.11 0.47 0.32 0.15 0.04 B 0. 11 0.21 0.88 0.18 0.06 - 0.36 0.82 0.20 0.04 C - 0.36 0.36 0.09 - - 0.52 0.51 0.22 _ D - 0.21 0.47 0. 10 0.03 0. 15 0.25 1.42 0.36 E - 0.23 0.24 0.06 0.03 - 0.35 0.94 0.33 0.13 F - 0.20 0.56 0.11 0.07 - 0.42 0.63 0.26 G - 0.30 0.40 0. 12 0.05 - 0.77 0.38 0.29 0.08 H - 0.20 0.32 0.06 0.03 - 1.12 0.39 0.44 0.09 I — 0.25 0.36 0.09 0.02 - 0.48 0.52 0.25 0.08 J - 0.38 0.49 0.19 0.04 - 0.61 0.41 0.25 0.05 K 0. 17 0.66 0.11 0.03 - 0.70 0.17 0.12 0.07 s i z e f r a c t i o n 2-20um s i z e f r a c t i o n 2-20um A 1.03 0.46 0.20 0.09 0.06 B - 0.31 0.22 0.07 0.08 - 0.67 0.18 0.12 0.09 C — 0.25 0.14 0.04 0.03 - 0.44 0.24 0.10 0.07 D — 0.24 0. 19 0.05 0.05 - 0.51 0.29 0. 15 0.06 E — 0.60 0.05 0.03 0.04 - 0.29 0.28 0.08 0.11 F - 0.25 0. 17 0.04 0.03 - 0.57 0.18 0.10 0. 12 G - 0.27 0.08 0.02 "0.06 - 0.94 0.21 0.20 0.10 H - 0.25 0. 11 0.03 0.09 - 1.40 0.22 0.31 0. 14 I - 0.47 0. 10 0.04 0.09 - 0.84 0.22 0.19 0.15 J - 0.67 0. 10 0.07 0.06 - 0.57 0.19 0. 11 0. 13 K — 0.67 0.10 0.06 0.05 - 0.77 0.13 0.11 0.12 Table 4. Peak area r a t i o s (XRD) f o r the major mi n e r a l c o n s t i t u e n t s i n the water samples and deposited sea-bed samples f o r both the 0.2 to 2.0 ym and 2.0 to 20.0 um s i z e f r a c t i o n s as c o l l e c t e d from t r a n s e c t A to K. 192 Analysis of suspended load discharge data Unpublished data f o r the Squamish River discharge, measured at a gauge s t a t i o n 5.0 km north of the d e l t a , was provided by the Water Survey of Canada. In addition to a continuous record of water l e v e l , suspended load was measured i n 1974 and 1975, unfortunately before t h i s project began. Analysis of these data, however, yielded the following i n s i g h t s : 1) d a i l y f l u c t u a t i o n s i n the suspended sediment concentration were at times larger than the fluctuations of the d a i l y mean f o r that month; 2) suspended sediment concentration peaked i n accordance with r i v e r discharge i n July and August; there was a delay i n the sediment discharge i n the spring months, though, as compared to the r i v e r d i s -charge; 3) as the suspended load increased, the proportion of sand increased, whereas that of s i l t and clay decreased. DISCUSSION Sediment-plume and Oceanography The suspended load enters the f j o r d as part of the cold g l a c i a l melt wa-ter. During the summer months, the r i v e r water skims across the surface of the f j o r d with l i t t l e mixing i n the surface layer ( i . e . , a 4%o s a l i n i t y i n - : crease from the r i v e r mouth to inner s i l l , a distance of 17 km). Substantial mixing, however, does occur i n the f a l l and spring. During winter, when r i v e r discharge i s lowest, wind mixing can e s s e n t i a l l y eliminate h o r i z o n t a l s t r a t i -f i c a t i o n (Hoos and Void, 1975), except r i g h t at the r i v e r mouth. The mixing that does take place during the summer, i s caused by wind-generated turbulence and entrainment, which causes an up-inlet current to replace the sea water l o s t to the surface layer ( T u l l y , 1958; Bowden, 1967; Pickard and Rogers, 1959; Rattray, 1967; Buckley, 1977). This subsurface current, which o r i g i n a t e s from outside the inner s i l l (Buckley, 1977), brings i n warm s a l i n e water, causing the h a l o c l i n e temperature maximum. The mixing between the currents causes both s a l i n i t y and temperature to increase i n the surface layer and the suspen-193 ded load to decrease. The slow and even mixing gives r i s e to the l i n e a r re-l a t i o n s h i p s of temperature, s a l i n i t y and inorganic concentration with distance from the r i v e r mouth (Fig..3). The c o r r e l a t i o n of inorganic concentration and s a l i n i t y suggests that processes that enhance the s e t t l i n g v e l o c i t y of grains do not s i g n i f i c a n t l y a l t e r t h i s state of simple d i l u t i o n . This i s supported by the component p a r t i c l e - s i z e d i s t r i b u t i o n of the suspended sediments not changing with increasing depth through the surface layer ( F i g . 16). That the d i l u t i o n equation are themselves correlated ( i . e . , b = 26.15-m + 1.24, F i g . 5) suggests a uniform and constant mixing mechanism. The surface currents of 10 to 40 cm/sec are capable of keeping most of the sediment suspended even i f the surface layer moved by a laminar flow. Wind-generated turbulence at the sur face (Buckley and Pond, 1976) i s present and would account for p a r t i c l e s great-er than 63 pm remaining i n suspension i n the surface layer, 17 km from the r i v e r mouth. The dominant cause of temporal v a r i a t i o n i n the surface layer flow has been re l a t e d to wind f o r c i n g (Buckley and Pond, 1976; Buckley, 1977). The d a i l y land-sea breezes gain t h e i r strength from f u n n e l l i n g through the steep-sided mountainous f j o r d . Surface current reversals have been found to occur during times of strong up-inlet winds (Buckley, 1977). During such e-vents, the surface current would slow down and stop and therefore increase the chance, of surface-layer sediments s e t t l i n g into the lower-marine-water. Generally though, over 50% of the i n i t i a l suspended load, at s t a t i o n (1), e x i t s over the inner s i l l during times of high r i v e r discharge. These u p - i n l e t winds are thought to be responsible for the 1 m maxima i n suspended load at stations near the r i v e r mouth. Here the down-inlet surface current flows 1 m below the sea surface when the surface water i s slowed down or reversed. Deep water replacement north of the s i l l takes place about once every three years ( B e l l , 1973). Such replacements would not add s i g n i f i c a n t sus-194 pensates, but would rather f l u s h out those from the inner basin. Short term v a r i a b i l i t y of suspended concentrations at the surface are thought to be r e l a t e d to the r i v e r j e t "swag" described by Buckley (1977). Orderliness or p e r i o d i c i t y to th i s l a t e r a l motion of the j e t i s suggested since the mean IWC of the surface-layer varies d i r e c t l y as i t s standard deviation. This would be a surface phenomenon since the v a r i a b i l i t y of sediment concen-t r a t i o n decreases with increasing s a l i n i t y . Most of the lower-marine-layer sediment originates from the surface-layer, which accounts for the l i n e a r c o r r e l a t i o n between the mean d a i l y i n o r -ganic concentration at the surface with that of the lower-marine-water. This i n turn suggests that: 1) the response time between the two layers i s f a s t (days), i n d i c a t i n g the presence of processes that enhance p a r t i c l e settlement, or 2) a steady state e x i s t s between the two layers which maintains i t s e l f for moderately long periods (weeks). ' Linear c o r r e l a t i o n between mean organic and inorganic concentrations i n the surface-layer indicate the Squamish River as a major organic input i n t o the f j o r d . Much of the river-borne seston i s flushed out of the de l t a ( C l i f f and Stockner, 1973; Levings, 1973) during the r i v e r freshet. The surface sus-pended load causes greater than 99% l i g h t attenuation i n the f i r s t meter which severely l i m i t s primary production and accounts f o r l i t t l e autochthonous or-ganic material i n the f j o r d ( C l i f f and Stockner, 1973). Much of the r i v e r -borne organic d e t r i t u s f a l l s close to the r i v e r d e l t a . The remainder i s f l u s h -ed out of the f j o r d with the inorganic load. Sedimentation Rates Howe Sound i s a basin of l a r g e l y inorganic deposition i n which the rate of sedimentation i s i n d i r e c t response to r i v e r discharge (as indicated by the suspended load at the surface). As the r i v e r discharge increases i t s compe-tence value increases, so that both grain s i z e and sedimentation increase pro-195 portlonately. The small quantities of sedimenting organic d e t r i t u s are d i r -e c t l y r e l a t e d to the sedimentation of inorganic grains. This suggests an i n -timate association during p a r t i c l e settlement. S t r a t i f i c a t i o n and presence of s u b s t a n t i a l lower-marine-currents can be surmised from the v a r i a t i o n of -sedimentation rates between l e v e l s at a given s t a t i o n and time. This i s supported by current observations ( B e l l , 1974). The lack of c o r r e l a t i o n between sedimentation rates and the water tur-b i d i t y surrounding the traps during the c o l l e c t i o n periods suggests that much of the suspended sediment i n the lower marine water e x i s t s simply as back-ground through iwhich larger p a r t i c l e s s e t t l e . This supports two conclusions: 1) sedimentation rates are a function of the coarse end of p a r t i c l e s i z e d i s -t r i b u t i o n (McCave, 1975; S y v i t s k i , 1978b), unless p a r t i c l e aggregation has occurred (Kranck, 1975; S y c i t s k i and Lewis, 1978); 2) water t u r b i d i t y cannot be used as a measure of the downward f l u x of p a r t i c l e s . One explanation for the increase i n s e t t l i n g v e l o c i t y of i n d i v i d u a l par-t i c l e s , .is that mineral grains s e t t l e as components of zooplankton f e c a l p e l -l e t s . I t i s a s i g n i f i c a n t contributor to the t o t a l sedimentation rate, es-p e c i a l l y of clay p a r t i c l e s . The lack of c o r r e l a t i o n between t o t a l sedimenta-t i o n rate and p e l l e t sedimentation rate could be due to: 1) increase i n sed-iment load associated with an increase i n the sand f r a c t i o n , too coarse for zooplankton ingestion; and 2) each s t a t i o n not having the same zooplankton population i n terms of types and numbers, and the population at any one s t a -t i o n not remaining constant with time of year ( S y v i t s k i and Lewis, 1978). Deep Water Sand Flow The discharge of sand i n deep water from the delta i s suggested to ex-p l a i n the mid-depth maximums i n sedimentation at s t a t i o n (1). V e r t i c a l plankton hauls i n that area have recovered up to 5 l i t r e s of sand (C. Levings, o r a l commun., 1978). These are not freshwater discharges of the type mention-196 ed by Hoskins and B u r r e l l (1972)*, but may be sand too coarse to t r a v e l i n the surface layer; the sand quickly s e t t l e s out and becomes entrained by a current at depth flowing seaward (suggested by Buckley, 1977), to s e t t l e out farther south. Bottom sedimentation maxima could be due to: 1) a slower moving mid-depth down-inlet current releasing i t s sand load before s t a t i o n (1) so that only the bottom trap would r e g i s t e r the event; or 2) a sediment slump or t u r b i d i t y current (Terzaghi, 1956). Size D i s t r i b u t i o n C h a r a c t e r i s t i c s Suspended sediment populations i n r i v e r s have been assumed to be l o g -normal and truncated (Middleton, 1977). This i s not so i n the Squamish River, where v a r i a b l e non-log-normal and multimodal s i z e d i s t r i b u t i o n s are observed. The random change of these modes with distance down the f j o r d surface layer (Figs. 16 and 19) indicates that the o r i g i n a l s i z e d i s t r i b u t i o n cannot be main-tained i n t h i s new and v a r i a b l e energy regime where perturbations of flow are the norm ( B e l l , 1974). The siz e modes of the bottom sediments were observed to be more consis-tent. Kranck (1975) suggested some s i z e modes i n marine sediment could be due to disaggregation during conventional analysis of previously f l o c c u l a t e d mater-i a l . Nichols (1972) indicated non-normal d i s t r i b u t i o n s to be the mixing of two log-normal populations. Grace et a l . (1978) noted that i n d i v i d u a l laminae i n bottom sediments have s i g n i f i c a n t v a r i a t i o n i n mean s i z e and i n the shape of the sublamina siz e frequency: d i s t r i b u t i o n s of which they are composed. A l l of the above reasons are thought to contribute to the resultant s i z e d i s t r i -bution of bulk sediment samples. I t i s thought that the l a s t mechanism of size mode formation, however, i s the most i n f l u e n t i a l . I f we assume that one day's c o l l e c t i o n i n a trap w i l l form part of a sedimentary lamina on the bot-tom ( i . e . , a sub-lamina), then summation of these d i s t r i b u t i o n s (biased by the 197 actual weight collected) should approximate the d i s t r i b u t i o n on the bottom. Figure 22 i s an example of how the 'observed' sediment on the f j o r d bottom compares with the 'expected' d i s t r i b u t i o n calculated from curves given i n Figure 12 and sedimentation rates given i n Table 3. This trap was suspend-ed 5 m above the bottom during the c o l l e c t i o n periods. Chi-squared analysis accepts the two d i s t r i b u t i o n s as in d i s t i n g u i s h a b l e at the 95% confidence l i m i t s (N = 16). Considering the error involved, the s i m i l a r i t y i s remarkable. Size d i s t r i b u t i o n s i m i l a r i t y between sediment c o l l e c t e d at various _ le v e l s at a given s t a t i o n and time suggests: 1) that the material has the same source ( i . e . , comes from the same part of the surface l a y e r ) ; and 2) that the p a r t i c l e s c o l l e c t e d have a v e r t i c a l descent path. Variations i n such size d i s t r i b u t i o n s ( i . e . , F i g . 11) suggest that p a r t i c l e s f e l l along paths which intersected the surface layer at various distances from the r i v e r mouth, thus tapping d i f f e r e n t sources. Deviation from log-normality with increasing distance from the d e l t a , for both suspended and bottom sediments, could be due to the disaggregation of samples before analysis. This does not necessa r i l y imply that f l o c c u l a t i o n or aggregation increases "down i n l e t but simply that p a r t i c l e s capable of f a l l -ing as sin g l e grains are less prevalent. This i s supported by the fac t that s i l t p a r t i c l e s diminish down the i n l e t . The very p o s i t i v e l y skewed and ext-remely l e p t o k u r t i c d i s t r i b u t i o n s from sediment c o l l e c t e d f a r from the delta would then be a r t i f a c t s of the method of size a n a l y s i s . In s i t u S e t t l i n g V e l o c i t y of Fjord Suspensates The i n s i t u s e t t l i n g v e l o c i t y of marine p a r t i c l e s (aggregagates, f l o c -culates, f e c a l p e l l e t s ) has not been analyzed i n the past for lack of method. Recently, Soutar et a l . (1977) proposed using sediment traps for such measure-ments although no method was d e t a i l e d . S y v i t s k i (1978b) developed the theory 9 8 - i 5 6 7 8 9 10 Equivalent Spherical Sedimentation Diameter, 0 Figure 22. The observed s i z e d i s t r i b u t i o n i s from deposited sea-bed sediment at s t a t i o n (B). The ^ expected s i z e d i s t r i b u t i o n has been c a l c u l a t e d from sub-laminae c o l l e c t e d by a sediment oo trap 5 m above s t a t i o n (B) over f i v e 8 to 12 c o l l e c t i o n i n t e r v a l s during the 1977 f i e l d season. 199 and method using samples and sediment traps. The method involves knowledge of: 1) the average concentration and dispersed -inorganic s i z e d i s t r i b u t i o n s i n terms of equivalent s p h e r i c a l sedimentation diameters (ESSD) from which fo(x) - the observed mean suspended sediment concentration of any s i z e f r a c -t i o n 'x' i n the water during time of c o l l e c t i o n - can be obtained; 2) the t o t a l inorganic sedimentation rate and the dispersed inorganic s i z e d i s t -r i b u t i o n of sediments c o l l e c t e d by the trap, i n terms of ESSD, from which Zo(x) - the observed average sedimentation rate of any s i z e f r a c t i o n 'x' -can be obtained; and 3) knowledge of f l u i d v i s c o s i t y ( s a l i n i t y , temperature, pressure) of the water overlying the sediment c o l l e c t o r , from thich Ve(x) -the expected t h e o r e t i c a l Stokes s e t t l i n g value of each s i z e f r a c t i o n - can be obtained. The Vo(x) — the observed average s e t t l i n g v e l o c i t y of any sli:e 'x' - can be solved using Vo(x) = Zo(x)/fo(x). The enhancement fa c t o r , .EH, can then be solved with EH(x) = Vo(x)/Ve(x). The expected sedimentation rate, Ze(x), can be solved using Ze(x) = fo(x)-Ve(x). The expected suspended s e d i -ment concentration, f e ( x ) , can be solved using fe(x) = Zo(x)/Ve(x). Accuracy of trap catchment i n the f i e l d has yet to be evaluated. Preliminary experi-ments of Lau (1978) indi c a t e that water motion over the trap o r i f i c e s would prevent the capture of p a r t i c l e s having the small s e t t l i n g v e l o c i t i e s . There-fore, i f marine sediments s e t t l e d out as seperate p a r t i c l e s , as suggested by Jacobs et a l . (1973), sediment traps would fu r n i s h under-estimates of clay s i z e p a r t i c l e s . Figure -23 gives a t y p i c a l r e s u l t of the expected and observed s i z e f r e -quency d i s t r i b u t i o n s i n the water above the trap and i n the trap i t s e l f . The quantitative values are provided i n Table 5. The trap sediment was found to overestimate the f i n e r end of the suspended sediment s i z e d i s t r i b u t i o n , op-posite to the expected error e f f e c t of turbulence over the trap mouth. The 200 underestimation of the s e t t l i n g v e l o c i t y i n the very coarse s i z e range i s merely a function of the inadequate sampling of th i s f r a c t i o n by a convention-a l water sampler (McCave, 1975). Table 6 provides a summary of 10 such c a l c u -l a t i o n s i n terms of the average Ve(x), Vo(x) and EH. Results indicate that the processes, that cause enhancement of p a r t i c l e s e t t l i n g , r e s u l t i n a basic uniform s e t t l i n g v e l o c i t y of approximately 20 m/day for p a r t i c l e s less than 20 ym. A 20 um p a r t i c l e also has a s e t t l i n g v e l o c i t y of approximately 20 m/day i n Howe Sound water. These two observations support the Kranck Theory (Kranck, 1973, 1975) which states "... as progressively larger floes are formed, the transport v e l o c i t i e s become more uniform and p a r t i c l e c o l l i s i o n less frequent. Eventually a [steady] .state i s reached i n which the s e t t l i n g v e l o c i t i e s of the largest floes equal the v e l o c i t i e s of the largest grains and further f l o c c u l a t i o n ceases". She further states "...as fl o e s become larger they also become more unstable and the stage where a l l sediment p a r t i -cles have the same speed i s approached, but not reached" ( i b i d ) . In the case of Howe Sound, the "la r g e s t grains" are those over 20 pm, which can be a s i g -n i f i c a n t amount of material. The enhancement of 0.7 ym p a r t i c l e s e t t l i n g v e l o c i t y can be as high as 1500 times due to enhancement processes. Enhancement Processes of P a r t i c l e S e t t l i n g Problems i n terminology s t i l l e x i s t and, to avoid confusion, a l l doubt-f u l terms are re-defined. Aggregates are inorganic p a r t i c l e s strongly bond-ed by intermolecular or intramolecular, or atomic cohesive forces such that they survive dispersion by sonication (Schubel, 1968). Agglomerates are or-ganic and. inorganic matter weakly held by surface tension and organic cohe-sion due to b i o l o g i c a l a c t i v i t y . . Floccules are inorganic p a r t i c l e s (mineral or biogenic) that are held together by e l e c t r o s t a t i c (Van der Waals) force. These terms have been widely (and unfortunately) used interchangeably. Equivalent Spherical Sedimentation Diameter (0) where 0 = -log^mm) Figure 23. Expected and observed s i z e d i s t r i b u t i o n from water and trap samples as i n d i c a t e d i n Table 5. o ESSD* Sedimentation Rate,Z(x) Suspension C o n c e n t r a t i o n , f ( x ) S e t t l i n g V e l o c i t y V ( x ) EH** (pm) (g/m 2/day) (g/m3) (m/day) observed expected observed expected observed expected 0.5 15.8 0.03 0.78 1018.2 20.3 0.014 1450 1.0 28.8 0.09 0.73 467.7 39.5 0.06 658 2.0 8.4 0.07. 0.21 33.1 40.0 0.2 200 3.0 2.2 0.15 0.21 3.8 10.5 0.5 21 4.0 2.9 0.6 0.41 2.8 7.1 0.9 8 6.0 5.5 1.2 0.42 2.4 13.1 2.1 6 8.0 23.4 5.1 0.83 5.7 28.2 3.8 7.4 12.1 52.1 9.9 0.84 5.7 62.0 8.5 7.3 16.1 18.6 4.6 0.24 • 1.1 77.5 15.1 5.1 20.1 8.5 3.4 0.12 0.3 70.8 23.5 3.0 24.1 9.4 5.6 0.16 0.3 58.8 34.0 1.7 28.4 4.2 2.7 0.05 0.1 84.0 47.1 1.8 32.4 4.1 0.8 0.01 0.1 410.0? 61.1 ?6.7 40.1 11.0 11.5 0.10 0.1 110.0 94.1 1.2 48.2 .22.8 41.9 0.22 0.2 103.6 135.8 0.8 64.7 7.2 22.2 0.07 0.03 102.9 244.8 0.4 T o t a l 224.8 81.9 5.4 1541.6 *ESSD = e q u i v a l e n t s p h e r i c a l s e d i m e n t a t i o n •diameter **EH = enhancement f a c t o r = V(x)Observed V(x)expected Table 5. Data based on s i z e d i s t r i b u t i o n s from sediment c o l l e c t e d i n the water 4 m above a trap and sediment c o l l e c t e d 5 m beneath the sea surface w i t h i n the sediment t r a p , at s t a t i o n (1). The c o l l e c t i o n p e r i o d was 8 hours i n 10°C sea water w i t h a s a l i n i t y of 24% 0. ho o ro 203 AVERAGE P a r t i c l e S i z e Vo(x) Ve(x) EH (ym) (m'day - 1) (m*day - 1) 0.7 22±7 0.015±.001 1466 1.4 24±6 0.07 ±.01 343 2.4 30±10 0.2 ±.1 150 3.4 22±7 0.6 ±.1 37 4.9 14±8 1.0 ±.2 14 6.9 14±4 2.2 ±.2 6 9.7 19±6 4.0 ±.3 2 13.8 21±12 8.7 ±.3 2 17.8 20±13 15.4 ±.4 1 Table 6. Summary of ten enhancement c a l c u l a t i o n s (see Table 5) on p a r t i c l e s e t t l i n g v e l o c i t i e s . 204 Based on these d e f i n i t i o n s f i e l d evidence has been reported of; 1) f l o c c u l e s by Postma (1967), Kajihara (1971), Sakamoto (1972), Kranck (1973), Bornhold (1975) , Biscay and Olsen (1976); 2) agglomerates by Kane (1967), Harding (1974) , Bigham (1974), Johnson (1974), Bornhold (1975), Biscaye and Olsen (1976) , Sholkovitz (1976), L a i (1977), and S y v i t s k i and Lewis (1978); and 3) aggregates only by Ernissee and Abbott (1975). Most of these references give only casual observations using questionable methodology. Only Ernissee and Abbott (1975) used our method of immediate and gentle f i l t r a t i o n of micro-samples so that the p r o b a b i l i t y of one p a r t i c l e landing on another was le s s than 1%. Also, except i n the present report, a c l a s s i f i c a t i o n of clumps of p a r t i c l e s has not been set out. As a r e s u l t , f i e l d data to support the theor-ies of processes that enhance settlement of p a r t i c l e s i n the natural environ-ment have not been h e l p f u l . The theory of f l o c c u l a t i o n has been adequately described previously (Verwey and Overbeek, 1948; Whitehouse et a l . , 1960; van Olphen, 1963; Hahn and Stumm, 1970; Edzwal and O'Melia, 1975) but only Sakamoto (1972) and Kranck (1973, 1975) have offered i n s i g h t s into f l o c c u l a t i o n i n the marine environ-ment per se. The processes, of marine agglomeration are a l s o i p o o r l y under-stood. Kane (1967) suggested that b a c t e r i a could colonize a f l o c c u l e and grow dense enough to form an agglomerate. Sholkovitz (1976) proposed the contemporaneous f l o c c u l a t i o n of clay minerals and Fe-humates. The i n t e r a c -t i o n of pelagic zooplankton and suspended sediment has also received some recent attention ( S y v i t s k i and Lewis, 1978). Lewin and Mackas (1972) demon-strated the a b i l i t y of the diatom Chaetoceros armatum to coat i t s e l f with mucilage to which clay minerals commonly adhere. The f i r s t suggestion of th i s came.from Lebour (1930) who suggested that T h a l a s s i o s i r a s u b t i l i s w i l l form mucilaginous colonies to which debris might adhere. Ernissee and Abbott (1975) reported the formation of an i n s i t u aggregate composed of Thalassio-205 s i r a sp. and quartz or feldspar grains i n the s i l t size-range. These grains were bound by a s i l i c e o u s web emanating from the valves or g i r d l e areas of the diatom. Biddle and Miles (1972) reported that s i l t grains c a r r i e d at-:... tached clay. P a e r l (1973) and Johnson (1974) demonstrated that mineral d e t r i -tus can become encrusted with organic matter and m i c r o f l o r a (fungi and bac-teria) . The following i s proposed as the theory of p a r t i c l e i n t e r a c t i o n of Howe Sound suspended sediments: 1) the p a r t i c l e s enter the f j o r d as single e n t i t i e s except for a) s i l t s i z e grains of quartz, feldspar and hornblende which already possess attached p a r t i c l e s of clay, and b) clay c l a s t s , the o r i g i n of which may be s i m i l a r to r i v e r mudball aggregates; 2) as the surface layer begins to mix with the marine water, the suspended load gets d i l u t e d downward, i n j e c t i n g some of the p a r t i c l e s into the h a l o c l i n e ; 3) inorganic s a l t - f l o c c u l a t i o n begins to take place. Clay plates of equal s i z e (below 20 ym) f l o c c u l a t e i n i t i a l l y with edge-to-edge o r i e n t a t i o n (Figs. 19A and B) . Non-platy minerals, however, continue to f a l l as s i n g l e e n t i t i e s , although some get caught and become part of the f l o e (Fig. 19C); 4) the i n i t i a l f l o e forming period does not cause an i n i t i a l a c c e l e r a t i o n downwards, but increases the l i k e l i h o o d of further p a r t i c l e c o l l i s i o n ; 5) the c o l l o i d a l f l o e s (Figs. 20A and B), being of low density (Kranck, 1975) , are s t i l l moving downward fas t e r by d i f f u s i o n and mixing than by gravity s e t t l i n g ; 6) during the i n i -t i a l stage, s t a b i l i z a t i o n of the f l o e s ( i n terms of e l e c t r o s t a t i c forces) i s slow due to the d i l u t e suspended concentrations, i . e . , 1 to 15 mg/il; 7) or-ganic cohesive forces s t a r t attaching part of the organic d e t r i t u s that comes i n contact with the f l o e s (Figs. 21A-C). At t h i s stage the term f l o c c u l e be-comes inappropriate to some of these new agglomerates; 8) zooplankton, j u s t under the h a l o c l i n e ( C l i f f and Stockner, 1973), s t a r t grazing on the f l o e s and agglomerates, producing mineral-bearing f e c a l p e l l e t s (Figs. 18A-D). 206 Those non-platy minerals, such as quartz and feldspar, that s t i l l . s e t t l e as singl e e n t i t i e s , are not consumed by the zooplankton ( S y v i t s k i and Lewis, 1978); 9) some large-grain f l o e s , due to si z e and s e t t l i n g v e l o c i t y , escape the zooplankton grazing. They continue to increase i n s i z e , developing face-to-face and face-to-edge p a r t i c l e orientations u n t i l stable three-dimensional, deep-water f l o e s are formed (Figs. 19D-F). Growth stops, since further par-t i c l e attachment would create hydrodynamic i n s t a b i l i t y (Kranck, 1975) ; 10) the c o l l o i d a l f l o e s r e t a i n t h e i r two-dimensionality with depth and grow into snake-l i k e floes ( F i g . 20D). These floes are thought to produce the large " v e r t i -c a l l y aligned mucous-like streamers commonly observed i n the water column during (submersible) dives i n northern Howe Sound" as observed by Levings and McDaniel (1973); 11) during descent, some of the agglomerates become colon-ized by ba c t e r i a ( Fig. 21F). Since these inorganic biogenic 'agglomerates' have both cohesive as well as e l e c t r o s t a t i c forces i n operation, they develop 'formless' three-dimensional blobs (also v i s u a l l y observed through the sub-mersible by Levings and McDaniels, 1973). These blobs contain low density organic matter ( i . e . , dead phytoplankton) which would increase the porosity of the agglomerate (McCave, 1975; Sakamoto, 1972). Hoskins and Burrel (1972) f i r s t noted fjords as prime s i t e s for " f l o c -c u l a t i o n " . In Howe Sound, f l o c c u l a t i o n , aggregation and agglomeration are act i v e , g i v i n g r i s e to s i x types of 'marine p a r t i c l e s ' . These p a r t i c l e s would have va r i a b l e s e t t l i n g v e l o c i t i e s due to Reynold's drag c o e f f i c i e n t (Sakamoto, 1972). Results from this study show that the idea of Meade (1972) that high concentrations (g/&) of highly charged p a r t i c l e s i n a low energy environment, are necessary ingredients f or natural f l o c c u l a t i o n , can be d i s -missed. Clay Mineralogy L a t e r a l change i n the clay mineralogy of bottom sediments, outward 207 from r i v e r deltas, was f i r s t explained by diagenetic processes (Grim, Dietz and Bradley, 1949; Powers, 1954; Johns and Grim, 1958; and Grim, 1968, p. 537). Later ' d i f f e r e n t i a l f l o c c u l a t i o n ' was favoured (Whitehouse et a l . , 1960; Hahn and Stumm, 1970; Sakamoto, 1972; Edzwald et a l . , 1974; and Edzwald and O'Melia, 1975). Gibbs (1977) disputed both theories and suggested that the observed clay mineralogy i n marine sediments i s a function of the size d i s t r i b u t i o n and s e t t l i n g rates of each mineral. Manheim et a l . (1972) and McCave (1975) sug-gest aggregative processes (agglomerative?), including b i o l o g i c a l agencies, may be so strong as to swamp the d i f f e r e n t i a l s e t t l i n g tendencies of i n d i v i d u -a l grains and make the sea-bed mineralogy resemble the surface mineralogy. Our r e s u l t s i n d i c a t e agreement between the l a s t two proposals. Floes and ag-glomerates suspended i n Howe Sound are composed of various minerals. Since the f l o e composition i s rela t e d to the si z e of available i n d i v i d u a l p a r t i c l e s , the si z e d i s t r i b u t i o n of each mineral i s i n fact responsible for sea-bed min-eralogy even though f l o c c u l a t i o n e x i s t s . Howe Sound i s a depositional basin for immature sediments. That quartz and tourmaline are found i n greater abundance i n the coarse f r a c t i o n , simply r e f l e c t s t h e i r s t r u c t u r a l resistance to mechanical crushing. The multimodal nature of the size d i s t r i b u t i o n s from r i v e r suspended sediment might be de-rive d from the summation of the i n d i v i d u a l mineral s i z e d i s t r i b u t i o n . The g l a c i a l f l o u r of Howe Sound has been d i r e c t l y derived fyQjcjm the g l a c i a l erosion of both the plutonic c r y s t a l l i n e complex of the P a c i f i c Ranges and the Gar i b a l d i volcanics of the Coast Mountains. Bustin and Mathews (1978) have noted that b i o t i t e a l t e r s to t r i o c t a h e d r a l vermiculite, and to a minor b i o t i t e - v e r m i c u l i t e random-mixed layer i n g r a n i t i c c l a s t s found i n g l a c i a l and g l a c i o f l u v i a l deposits adjacent to Howe Sound. This i s supported by our f i n d i n g of b i o t i t e - v e r m i c u l i t e i n Howe Sound a f t e r transport by the Squamish River, which flows through such deposits. 208 The concentration of expandable clay minerals (vermiculite, montmoril-lo n i t e ) near the mouth of the Squamish River i s an i n t e r e s t i n g problem. Por^ renga (1966) found montmorillonite enriched i n deep-water sediments at the front of the Niger d e l t a . Nelson (1972) found montmorillonite deposited at the mouths of d i s t r i b u t a r i e s of the Po d e l t a . He suggested that montmoril-l o n i t e might already be f l o c c u l a t e d i n the r i v e r . Deposition of s i l t and sand-size vermiculite at the bay-head delta i n Howe Sound i s due to i t s coarse-ness. The reason for early deposition of the clay s i z e vermiculite and mont-m o r i l l o n i t e , however, i s not c l e a r . A tentative explanation i s that c o l l o i -dal clay p a r t i c l e s that are observed attached to the large s i l t p a r t i c l e s of quartz and feldspar could be these highly charged expandable minerals. Since these large s i l t grains s e t t l e near the r i v e r mouth, t h i s mechanism might explain the c o l l o i d a l deposition of montmorillonite and ver m i c u l i t e . Analysis of the attached clay minerals on these s i l t grains by energy dispersive SEM might be used to solve the dilemma. SUMMARY AND CONCLUSION 1) G l a c i a l f l o u r , derived from g l a c i a l erosion of both a plutonic c r y s t a l l i n e and volcanic complex, i s discharged into Howe Sound v i a the Squamish River. The discharge peaks i n July and August. 2) The major constituents of the g l a c i a l f l o u r are feldspar (bytownite, a l -b i t e , orthoclase), quartz, t r i o c t a h e d r a l mica (degraded b i o t i t e and b i o t i t e -vermiculite i n t e r l a y e r ) , c h l o r i t e (penninite), amphibole (hornblende), tour-maline, and vermi c u l i t e . 3) The multimodal, non-log-normal s i z e d i s t r i b u t i o n s from r i v e r suspended sediment i s thought to originate from the summation of the i n d i v i d u a l mineral siz e d i s t r i b u t i o n s . I t was noted that tourmaline, vermiculite and quartz are concentrated i n the > 2 ym s i z e f r a c t i o n ; hornblende and feldspar are equally present throughout the sediment d i s t r i b u t i o n ; and c h l o r i t e , mica and 209 montmorillonite, are concentrated i n the < 2 ym s i z e f r a c t i o n . 4) The surface-layer sediment plume moves quickly down the i n l e t while slowly mixing with the marine water. Although f l o c c u l a t i o n occurs i n the lower brackish waters of the surface layer, mixing and d i f f u s i o n are the dominant means f o r sediment to enter the lower marine water. 5) More than 50% of the i n i t i a l suspended load i n the surface layer e x i t s out of the f j o r d during times of high r i v e r discharge. 6) The response time between the surface layer and the lower marine layer, i n terms of sedimentation of the surface suspended sediments, i s f a s t . This may be r e l a t e d to processes enhancing p a r t i c l e settlement. 7) Six marine p a r t i c l e types have been described. They are: i ) sand and s i l t grains with attached clay p a r t i c l e s ; - i i ) clay c l a s t s possibly r e l a t e d to r i v e r mudballs; i i i ) mineral-bearing f e c a l p e l l e t s from pelagic zooplank-ton; iv) large-grain inorganic f l o c c u l e s ; v) c o l l o i d a l f l o c c u l e s ; and v i ) i n -organic-biogenic agglomerates. 8) These marine p a r t i c l e s have s e t t l i n g v e l o c i t i e s i n excess of t h e i r i n d i -v i d u a l component grains. Generally, p a r t i c l e s < 20 ym i n diameter f a l l at 20 m/day. This gives p a r t i c l e s < 1 ym i n diameter a s e t t l i n g rate enhance-ment factor of over 1400 times. 9) The increased s e t t l i n g rate of the compound p a r t i c l e s of inorganic and organic matter r e s u l t s i n sediment traps c o l l e c t i n g f i n e s i z e p a r t i c l e s i n excess of that indicated by water t u r b i d i t y . Therefore, water t u r b i d i t y cannot be used as a measure of the downward f l u x of p a r t i c l e s . 10) S t r a t i f i c a t i o n and the presence of currents below the surface layer are indicated by v a r i a t i o n s of sedimentation rates and s i z e d i s t r i b u t i o n s (as determined from sediment traps) between l e v e l s i n the water column at a given s t a t i o n and time. 210 11) Mid-depth sedimentation maxima have been r e l a t e d to deep-water sand discharges near the r i v e r mouth. 12) Size d i s t r i b u t i o n of sediment deposited on the sea^-bed has been shown to be a function of the d a i l y "sublaminae" caught i n traps. The summation of these unimodal or multimodal and non-log-normal s i z e d i s t r i b u t i o n s of sub-laminae then, i s responsible for the si z e d i s t r i b u t i o n s of deposited sediment. 13) The increased down-inlet deviation from log-normality (of size d i s t r i b u -tions of both the suspended and the deposited sediment) i s an a r t i f a c t of the method of size analysis. 14) Table 7 gives a summary of the l i n e a r r e l a t i o n s h i p s between f i e l d para-meters disclosed i n t h i s study. The equations of regression have been pro-vided i n the text so that quantitative comparisons of Howe Sound with other fjords would be possible. Such equations are the f i r s t step towards b u i l d i n g mathematical models of f j o r d sedimentation. Figure 24 i s a graphic display of the sediment concentration i n upper Howe Sound during the summer freshet. In conclusion, fjords r e c e i v i n g copious g l a c i a l run-off are deposition-a l basins for immature c l a s t i c sediments intermixed with minor amounts of. s i l i c i o u s biogenic fragments. They o f f e r an excel l e n t example of floccular-t i v e and agglomerative sedimentary processes i n action. 211 Results from Linear Regression Analysis IWCI as S%«.f (surface-layer) v a r i a b i l i t y of IWC4- as S%0-t" (surface-layer) IWC4- as distance out from r i v e r mouthf (surface-layer) T°C+ as distance out from r i v e r mouthf (surface-layer) S%0+ as distance out from r i v e r mouthi (surface-layer) IWC(aah)t as IWC(xah)+ OWC(aah)t as OWC(xah)+ OWC(xah)t as IWC(xah)t OWC+'as IWCt at s t a t i o n (1) only (surface-layer) OWC(xbh)i as OWC(xah)+ at s t a t i o n (1) only IWC(xbh)t as IWC(xah)t IWC (abh) t as IWC(xbh)+ OSR+'as ISRt ISR+ as distance out from r i v e r moutht 0SR4- as distance out from r i v e r mouths CSR+ as OSRt xc+ as ISR+ ISR+ as IWC(xah)t OSRf as OWC(xah)t OSR+ as OWC(xbh)t xs+ as IWC(xah)f IWCf as current velocity!- (surface-layer) Table 7. Summary of the l i n e a r r e l a t i o n s h i p s between f i e l d parameters disclosed i n this study. (For d e f i n i t i o n of the symbols i n this table see t e x t ) . Figure 24. Sediment concentration i n upper Howe Sound during a t y p i c a l day during the summer f r e s h e t . I n d i c a t e d are athe deep water sand flow near the r i v e r mouth, and two conditions of water flow i n the s u r f a c e - l a y e r . to i—• ro 213 Acknowledgement This project was financed under NRC Grant 65-6224, The P a c i f i c Environ-ment I n s t i t u t e , West Vancouver, B.C., provided the research v e s s e l , "R/V Ac-t i v e Lass", skippered by Mr. A. Matheson, under the auspices of Dr. C. Le^ vings. The Geological Survey of Canada, Terrain Science D i v i s i o n , supplied part of the f i e l d and laboratory equipment through the kindness of Dr. J . Milliman. Release of unpublished data from the Water Survey of Canada was provided by Mr. D. Dobson. Assistance i n the f i e l d came from K. S y v i t s k i , G. Hodge, and D. Swinbanks. Laboratory and d r a f t i n g assistance came from G. Hodge and K. S y v i t s k i . The manuscript was c r i t i c a l l y reviewed by Mr. R. Macdonald and Dr. R.L. Chase ( I n s t i t u t e of Oceanography and Department of Geological Sciences, U.B.C); Dr. W.C. Barnes and Dr. R.V. Best (Department of Geological Sciences, U.B.C); Dr. L.M. Lavkulich (Department of S o i l Science); Dr. C o l i n Levings ( P a c i f i c . Environment I n s t i t u t e , West. Vancouver); and Dr. A.G. Lewis ( I n s t i t u t e of Oceanography and Department of Zoology, U.B.C). The authors are pleased to acknowledge the help and encouragment provided by t h e i r colleagues and these organizations. 214 REFERENCES d'Anglejan, B.F. 1970. Studies'on the p a r t i c u l a t e suspended matter i n the Gulf of St. Lawrence. Mar. S c i . Centre MS. Rept., 17, pp. 1-51. B e l l , L. 1975. Factors i n f l u e n c i n g the sedimentary environment of the Squa-mish River d e l t a i n southwestern B r i t i s h Columbia: unpubl. M.A.Sc. thesis , Geolog. S c i . , U.B.C, 145p. B e l l , W.H. 1973. The exchange of deep water i n Howe Sound basin. Mar. S c i . D i r e c t . , Pac. Reg.; Pac. Mar. S c i . Rept., 73-13, 35p. 1974. Oceanographic observations i n Howe Sound, 1972. Pac. Mar. S c i . Rept., 74-7, 113p. , 1975. The Howe Sound current metering program, Volume I I I - data report, stn. HS-5. Pac. Mar. S c i . Rept., 75-7, part A - 426p., part B - 440p. Biddle, P. and Miles, J.H. 1972. The nature of contemporary s i l t s i n B r i t i s h estuaries. Sedim. Geol., 7, pp. 23-33. Bigham, G.N. 1974. Suspended sediments contributed to the southeastern U.S. continental s h e l f : An in v e s t i g a t i o n by scanning electron microscopy. Mem. Inst. Geol. Bassin Aquitane, 7, pp. 103-108. Biscaye, P.E. and Olsen, CR. 1976. Suspended p a r t i c u l a t e concentrations and compositions i n the New York Bight. Am. Soc. Limnol. Oceanogr. spec, symp., 2, pp. 124-137. Bornhold, B.D. 1975. Suspended matter i n the southern Beaufort Sea. Beaufort Sea tech. Rept. # 25b, 30p. Bowden, K.F. 1967. C i r c u l a t i o n and d i f f u s i o n . In Lauff, G.H., Estuaries. Am. Assoc. Adv. S c i . Pub., 83, pp. 15-36. Bruun, A.F., Brodie, J.W. and Fleming, C A. 1955. Submarine geology of M i l -ford Sound. New Zeal. S c i . Tech. Sect. B, 36, pp. 397-410. Buckley, J.R. and Pond, S. 1976. Wind and the surface c i r c u l a t i o n of a f j o r d . J . F i s h . Res. Bd. Can., 33, pp. 2265-2271. . 1977. The currents, winds.and tides of northern Howe Sound. Unpublished manuscript Ph.D. thesi s , University of B r i t i s h Columbia, 238p. Bustin, R.M. and Mathews, W.H. 1978. Selective weathering of g r a n i t i c c l a s t s . Submitted to Can. J . Earth S c i . C l i f f , D.D. and Stockner, J.G. 1973. Primary and secondary components of the food-web of the outer Squamish. River estuary. F i s h . Res. Bd. Can. MS. Rept., 1214, 45p. 215 Crean, P.B. and Agnes, A.B. 1971. Oceanographic records from twelve cruises i n the S t r a i t of Georgia and Juan de Fuca S t r a i t , 1968. I. Introduc-t i o n . Dept. Energy, Mines, Res., Marine S c i . Br., V i c t o r i a , B.C. 55p. D i l l o n , W.P. 1964. F l o a t a t i o n technique for seperating f e c a l p e l l e t s and small marine organisms from sand. Limnol. Oceanogr., 9, pp. 601-602. Edzwald, J.K., Upchurch, J.B., O'Melia, C.R. 1974. Coagulation i n estuaries. Environ. S c i . Tech., 8, pp. 58-63. Edzwald, J.K. and O'Melia, C.R. 1975. Clay d i s t r i b u t i o n s i n recent estuarine sediments. Clays Clay Min., 29, pp. 39-44. Ernissee, J . J . and Abbott, W.H. 1975. Binding of mineral grains by a species of T h a l a s s i o s i r a . In Simonson, R., Third Symposium on Recent and F o s s i l Marine Diatoms. K i e l , Sept. 9-13, 1974; Royal octavo, 8, pp. 241-248. Gibbs, R.J. 1974. Suspended s o l i d s i n water. New York, Plenum Press. 317p. . 1977. Clay mineral segregation i n the marine environment. J . Sed. P e t r o l . , 47, pp. 237-243. Grace, J.T., Grothaus, B.T. and E h r l i c h , R. 1978. Non-normal s i z e frequency d i s t r i b u t i o n s of sand from i n d i v i d u a l laminae suggest r e i n t e r p r e -t a t i o n of conventional s i z e frequency data. Submitted to Jour. Sed. Pet. Gross, G.M., Gucluer, S.M., Creager, J.S. and Dawson, W.A. 1963. Varved ma-rin e sediments i n a stagnant f j o r d . Science, 141, pp. 3584. Grim, R.E., Dietz, R.S. and Bradley, W.F. 1949. Clay mineral composition of some sediments from the P a c i f i c Ocean o f f the C a l i f o r n i a coast and the Gulf of C a l i f o r n i a . Geol. Soc. Am. B u l l . , 60, pp. 1785-1808. . 1968. Clay Mineralogy, 2nd ed. New York, McGraw-Hill Book Co., 596p. Hahn, H.H. and Stum, W. 1970. The r o l e of coagulation i n natural waters. Am. J. S c i . , 268, pp. 354-368. Harbo, R.M., McComas, F.T. and Thompson, J.A.J. 1974. Fluoride concentrations i n two P a c i f i c coast i n l e t s - an i n d i c a t i o n of i n d u s t r i a l contamina-t i o n . J . F i s h . Res. Bd. Can., 31, pp. 1151-1154. Harding, G.C.H. 1974. The food of deep-sea copepods. Marine B i o l . Assoc. U.K. Jour., 54, pp. 141-155. Holtedahl, H. 1975. The geology of the Hardanger f j o r d , West Norway. Norges Geologishe Undarokelse, B u l l . , 36, pp. 1-87. Hoos, L.M. and Void, C L . 1975. The Squamish River estuary status of environ-mental knowledge to 1974. Special Estuary Series #2. Rept. Est. Wor-king Gp. Dept. Environment Reg. Bd. Pac. Reg. 36lp. 216 Hoskins, CM. and B u r r e l , D.C. 1972. Sediment transport and accumulation i n a f j o r d basin, Glacier Bay, Alaska. J . Geol., 80, pp. 539-551. Jacobs, M.B., Thorndike, E.M. and Ewing, M. 1973. A comparison of suspended p a r t i c u l a t e matter from nephloid and clear water. Mar. Geol., 14, pp. 117-128. Johns, W.D. and Grim, R.E. 1958. Clay mineral composition of recent sediments from the M i s s i s s i p p i River Delta. J. Sed. P e t r o l . , 28, pp. 186-199. Johnson, R.G. 1974. P a r t i c u l a t e matter at the sediment-water i n t e r f a c e i n coastal environments. J . Mar. Res., 32, pp. 313-330. Kajihara, M. 1971. S e t t l i n g v e l o c i t y and porosity of large suspended p a r t i -c l e s . Jour. Oceanographic Soc. Japan, 27, pp. 158-162. Kane, J.E. 1967. Organic aggregates i n surface waters of the L i g a r i a n Sea. Limnol. Oceanogr., 12, pp. 287-294. Kranck, K. 1973. F l o c c u l a t i o n of suspended sediment i n the sea. Nature, 246, pp. 348-350. . 1975. Sediment deposition from f l o c c u l a t e d suspension. Sedimento-logy, 22, pp. 111-123. L a i , D. 1977. The oceanic microcosm of p a r t i c l e s . Science, 198, pp. 997-1009. Lau, Y.L. 1978. Laboratory study of c y l i n d r i c a l sedimentation traps, (pre-p r i n t ) . Lebour, M.V. 1930. The planktonic diatoms of Northern seas. London, Dulau & Co., for the Ray Society. Levings, CD. 1973a. I n t e r t i d a l benthos of the Squamish Estuary. F i s h . Res. Bd. Can. MS. Rept., 1218, 60p. _. 1974. River diversion and i n t e r t i d a l benthos at the Squamish River Delta, B r i t i s h Columbia. Proc. Symp. on the Influence of Fresh-water Outflow i n B i o l o g i c a l Processes i n Fjords. 18p. and McDaniel, N. 1973b. B i o l o g i c a l observations from the submer-s i b l e Pisces IV near B r i t a n n i a Beach, Howe Sound, B.C. F i s h . Res. Bd. Can. Tech. Rept., # 409, 23p. Lewin, J . C and Mackas, D. 1972. Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington, I. P h y s i o l o g i c a l investigations of ChaetoCeras armatum and AsterOnella sOCiales i n laboratory cultures. Mar. B i o l . , 16, pp. 171-181. Loring, D.H. 1976. The d i s t r i b u t i o n and p a r t i t i o n of zinc, copper and lead i n the sediments of the Saguenay f j o r d . Can. Jour. Earth S c i . , 13, pp. 960-972. 217 MacDotiald, R.D. and M u r r a y , J.W. 1973. S e d i m e n t a t i o n and manganese c o n c r e t i o n s i n a B r i t i s h C o l umbia f j o r d ( J e r v i s I n l e t ) . G e o l . S u r v . Can., p a p e r 73-23, 67p. MacDonald, R.W. and Wong, C.S. 1977. The d i s t r i b u t i o n o f mercury i n Howe Smmd s e d i m e n t s . P a c . Mar. S c i . R e p t . 77-22, 49p. McCave, I.N. 1975. V e r t i c a l f l u x o f p a r t i c l e s i n t h e ocean. Deep Sea Res., 22, pp. 491-502. Manheim, F.T., Hathaway, J.C. and U c h u p i , E. 1972. Suspended m a t t e r i n s u r -f a c e w a t e r s o f t h e n o r t h e r n G u l f o f M e x i c o . G e o l . Oceanogr., 17, pp. 17-27. Mathews, W.H. 1958. Geology o f t h e Mount G a r i b a l d i map-area, s o u t h w e s t e r n B r i t i s h C o l u m b i a , Canada. I . Igneous and metamorphic r o c k s . I I Geomorphology and Q u a t e r n a r y v o l c a n i c s . G e o l . Soc. Amer. B u l l . , 69, pp. 161-178, pp. 179-198. , M u r r a y , J.W. and M c M i l l a n , N.J. 1966. Recent s e d i m e n t s and t h e i r e n v i r o n m e n t o f d e p o s i t i o n , S t r a i t o f G e o r g i a and F r a s e r R i v e r D e l t a . (A manual f o r f i e l d c o n f e r e n c e s . ) P r e p a r e d by Tenneco O i l and M i n e r a l s L t d . , C a l g a r y , A l b e r t a . Meade, R.H. 1972. T r a n s p o r t and d e p o s i t i o n o f sed i m e n t s i n e s t u a r i e s . I n N e l s o n , B.W. e d . , E n v i r o n m e n t a l Framework o f C o a s t a l P l a i n E s t u a r i e s , G e o l . Soc. Am. Memoir 133, pp. 91-120. M i d d l e t o n , G.V. 1976. H y d r a u l i c i n t e r p r e t a t i o n o f sand s i z e d i s t r i b u t i o n s : J . G e o logy, 84, pp. 405-426. N e l s o n , B.W. 1972. M i n e r a l o g i c a l d i f f e r e n t i a t i o n o f s e d i m e n t s d i s p e r s e d f r o m t h e Po d e l t a . jLn S t a n l e y , D.J. e d . , The M e d i t e r r a n e a n Sea: A n a t u r a l s e d i m e n t a t i o n l a b o r a t o r y . Douden, H u t c h i s o n and Ross, S t r o u d s b o u r g Penn., pp. 441-454. N i c h o l s , M.M. 1972. Sediments o f t h e James R i v e r e s t u a r y , V i r g i n i a . I n N e l s o n , B.W. E n v i r o n m e n t a l Framework of C o a s t a l P l a i n E s t u a r i e s , G e o l . Soc. Am. Memoir 133, pp. 169-212. P a e r l , H.W. 1973. D e t r i t u s i n Lake Tahoe: s t r u c t u r a l m o d i f i c a t i o n by a t t a c h e d m i c r o f l o r a . S c i e n c e , 180, pp. 496-498. P i c k a r d , G.L. 1956. P h y s i c a l f e a t u r e s o f B r i t i s h C o l u m b i a i n l e t s . T_n Ocean f l o o r s . a r o u n d Canada. P r o c . T r a n s . R. Soc. Can., 50, pp. 897-901. „and R o g e r s , K. 1959. C u r r e n t measurements i n K n i g h t I n l e t , B r i -t i s h C o l u m b i a . J . F i s h . Res. Bd. Can., 16, pp. 635-684. 1961. Oceanographic features of i n l e t s i n the B r i t i s h Columbia mainland coast. J . F i s h . Res. Bd. Can., 18, pp. 907-999. Porrenga, D.H. 1966. Clay minerals i n recent sediments of the Niger d e l t a . I n Clays and Clay M i n e r a l s , Proceedings of the 14th N a t i o n a l Conference, Pergamon P r e s s , Oxford, pp. 221-233. 218 Postma, H. 1967. Sediment t r a n s p o r t and sedimentation i n the es t u a r i n e e n v i -ronment. In L a u f f , G.H. ed., E s t u a r i e s . Am. Assoc. Adv. S c i . Pub., 83, pp."158-179. Powers, M.C. 1954. Clay diagenesis i n the Chesapeake Bay area. In Swinefad, A. and Plummer, N. eds., Clays and Clay M i n e r a l s : 2nd N a t ' l Conference on Clays and Clay m i n e r a l s , Columbia, Mo, 1953, P r o c , pp. 68-80. P r i c e , B.N. and S k e i , J.M. 1975. A r e a l and seasonal v a r i a t i o n s i n the chemis-t r y of p a r t i c u l a t e matter i n a deep water f j o r d . E s t . Coastal Mar. S c i . , 3, pp. 349-369. R a t t r a y , M. J r . 1967. Some aspects of the dynamics of c i r c u l a t i o n i n f j o r d s . In L a u f f , G.H. ed., E s t u a r i e s . Am. Assoc. Adv. S c i . Pub., 83, pp. 52-69. Sakamoto, W. 1972. Study on the process of r i v e r suspension from f l o c c u l a t i o n to accumulation i n estuary. Tokyo Daigaku J a i y o Kenkyojo B u l l . , 5, pp. 1-49. S c h o l k o v i t z , E.R. 1976. F l o c c u l a t i o n of d i s s o l v e d organic and i n o r g a n i c mat-t e r during the mixing of r i v e r water and sea water. Geochim. Cosmochim. Acta, 40, pp. 831-845. Schubel, J.R. 1968. Suspended sediment of the northern Chesapeake Bay: Johns Hopkins Univ. Chesapeake Bay I n s t . Tech. Rept. 35 (Ref. 68-2) 264p. . 1969. S i z e d i s t r i b u t i o n of the suspended p a r t i c l e s of the Ches-apeake Bay t u r b i d i t y maximum. Netherlands Jour. Sea Research, 4, pp. 283-309. . 1972. D i s t r i b u t i o n and t r a n s p o r t a t i o n of suspended sediment i n upper Chesapeake Bay. In Nelson, B.W. ed., Environmental Framework of Coastal P l a i n E s t u a r i e s , Geol. S o c Am. Memoir 133, pp. 151-168. S k e i , J.M., P r i c e , N.B. and C a l v e r t , S.E. 1972. The d i s t r i b u t i o n of heavy me-t a l s i n sediments of S o r f j o r d , Norway. Water, A i r and S o i l P o l l . , 1, pp. 452-461. S l a t t , R.M. and Gardiner, W.W. 1976. Comparative petrology and source of sed-iments i n Newfoundland f j o r d s . Can. Jour. Earth S c i . , 13, pp. 1460-1465. Soutar, S., K l i n g , S.A., G r i l l , P.A., D u f f r i n , E. and Bruland, K.W. 1977. Moni-t o r i n g the marine environment through sedimentation. Nature, 266, pp. 136-139. Sundby, B. and L o r i n g , D.H. 1978. Geochemistry of suspended p a r t i c u l a t e matter i n the Saguenay F j o r d . Can. J . Ear t h S c i . , 15, pp. 1002-1011. S y v i t s k i , J.P. and Murray, J.W. 1977. A d i s c u s s i o n of g r a i n s i z e d i s t r i b u t i o n using l o g p r o b a b i l i t y p l o t s . B u l l . Can. Petroleum Geol., 25, pp. 683-694. and Lewis, A.G. 1978. I n t e r a c t i o n of zooplankton and suspended sediments. Submitted to Sedimentology. 219 S y v i t s k i , J,P. and Swinbanks, D.D. 1978. VSA: A new f a s t s i z e analysis tech-nique f o r low sample weights based on Stokes s e t t l i n g v e l o c i t y . Sub-mitted to Jour. Sed. Pet. • . 1978a. A fa s t technique for a low sample weight random oriented mount to be used i n quantitative XRD analysis. Submitted to Jour. Sed. Pet. 1978b. Theory, u t i l i z a t i o n and r e l i a b i l i t y of suspended sed i -ment c o l l e c t o r s i n Lakes and Oceans. Submitted to Limnol. Oceanogr. , MacDonald, R. ahd Murray, J.W. 1978. Sedimentation of a Cana-dian f j o r d , Part B: Quaternary and Pleistocene deposits, ( i n prepara-tion) Terzaghi, K. 1956. V a r i e t i e s of submarine slope f a i l u r e s . Har. Univ., S o i l Mech. Ser. # 52, pp. 17-22. Thompson, J.A.J, and McComas, F.T. 1973. D i s t r i b u t i o n of mercury i n the se d i -ments and waters of Howe Sound, B.C. F i s h . Res. Bd. Can., Tech. Rept., # 396. and . 1974. Cu and Zn l e v e l s i n submerged mine t a i l i n g s at Bri t a n n i a Beach, B.C. F i s h . Res. Bd. Can., Tech. Rept., # 437. Toombs, R.B. 1956. Some c h a r a c t e r i s t i c s of Bute In l e t sediments. Proc. Trans. R. Soc. Can., 50, 3. T u l l y , J.P. 1958. On structure, entrainment and transport i n estuarine embay-ments. J . Marine Res., 17, pp. 523-535. van Olphen, H. 1963. An Introduction to Clay C o l l o i d a l Chemistry. Interscience, New York. Verwey, E.J.W. and Overbeek, J.Th.G. 1948. Theory of the S t a b i l i t y of Hydro- phobic C o l l o i d s . E l s e v i e r , New York. von Huene, R. 1966. G l a c i a l marine geology of Nuka Bay, Alaska, and adjacent continental s h e l f . Marine Geology, 4, pp. 291-304. Waldichuk, M., Markert, J.R. and Meikle, J.H. 1968. Fraser River estuary, Howe Sound and Malispina S t r a i t : p h y s i c a l and chemical oceanographic data 1957- 1966. Fis h . Res. Bd. Can. MS. Rept. # 939. Webster, T.J.M., Paranjabe, M.A. and Mann, K.H. 1975. Sedimentation of organ-i c matter i n St. Margaret's Bay, Nova Scotia, J . F i s h . Res. Bd. Can., 32, pp. 1399-1407. Werner, A.E. and Hyslop, W.F. 1968. Accumulation and composition of sediments from polluted water o f f the B.C. coast 1963-1966. F i s h . Res. Bd. Can., MS. Rept. # 963. Whitehouse, V.G., J e f f r e y , L.M. and Debrecht, J.D. 1960. D i f f e r e n t i a l s e t t l i n g tendencies of clay minerals i n s a l i n e waters. In Swineford, A. ed., Clays and Clay Minerals proc. 7th Nat' l . Conf. London, Pergamon Press, pp. 1-79. 220 SUMMARY AND CONCLUSION The study of suspended sediment provides i n s i g h t i n t o the source, t r a n s -port and accumulation of sediment i n d e p o s i t i o n a l b a s i n s . This allows f i e l d parameters used i n the study of ancient environments to be evaluated under present day dynamic c o n d i t i o n s . For example, many have used g r a i n s i z e f r e -quency d i s t r i b u t i o n s from ancient sediment to i n t e r p r e t the p a l e o - h y d r a u l i c regime. The i n t e r p r e t a t i o n s , however, are based on the s i m p l i s t i c assumption of s i n g l e g r a i n s e t t l i n g . R e s u lts from t h i s t h e s i s have i n d i c a t e d that processes that enhance the i n d i v i d u a l p a r t i c l e settlement are abundant i n one c o a s t a l marine environment, the f j o r d . Most p a r t i c l e s s e t t l i n g i n the f j o r d environment, f e l l as: 1) sand and s i l t grains c o n t a i n i n g attached cla y p a r t i c l e s ; 2) c l a y c l a s t s p o s s i b l y r e l a t e d to r i v e r mudballs; 3) mineral-bearing f e c a l p e l l e t s from p e l a g i c zoo-plankton; 4) l a r g e g r a i n i n o r g a n i c f l o c c u l e s ; 5) c o l l o i d a l f l o c c u l e s ; and 6) i n o r g a n i c - b i o g e n i c agglomerates. These marine p a r t i c l e s have s e t t l i n g ve-l o c i t i e s i n excess of t h e i r i n d i v i d u a l component g r a i n s . G e n e r a l l y , p a r t i c l e s < 20 pm i n diameter f e l l at 20 m/day. This gives p a r t i c l e s < 1 ym i n diameter a s e t t l i n g r a t e enhancement f a c t o r of over 1400X. Obviously, p a l e o - h y d r a u l i c i n t e r p r e t a t i o n s w i l l be i n e r r o r i f enhancement processes such as s a l t - f l o c c u -l a t i o n , zooplankton p e l l e t i z a t i o n and b i o l o g i c agglomeration are not taken i n t o account. S i z e d i s t r i b u t i o n s of sediment deposited on the sea-bed have been shown to be a f u n c t i o n of v a r i a b l e multimodal and/or non-log-normal s i z e d i s t r i b u t i o n s from sub-laminae f a l l i n g through the water column. The increase i n d e v i a t i o n from l o g - n o r m a l i t y down i n l e t , f o r s i z e d i s t r i b u t i o n s of both suspended and deposited sediment, i s an a r t i f a c t of the s i z e a n a l y t i c a l method. These two f a c t s f u r t h e r complicate p a l e o - h y d r a u l i c i n t e r p r e t a t i o n s of ancient environments. 221 S p e c i f i c a l l y , the study of Howe Sound suspended sediments has revealed that g l a c i a l f l o u r i s derived from g l a c i a l e r o s i o n of both a p l u t o n i c and v o l -c a n i c complex. The f l o u r ( f e l d s p a r , q u artz, t r i o c t a h e d r a l mica, c h l o r i t e , amphibole, tourmaline and v e r m i c u l i t e ) enters the s u r f a c e - l a y e r of the Howe Sound f j o r d as a sediment plume which moves q u i c k l y down i n l e t w h i l e slowly mixing w i t h the marine water. Although f l o c c u l a t i o n occurs i n the lower brack-i s h water of the s u r f a c e - l a y e r , mixing and d i f f u s i o n are the dominant means f o r sediment to enter the lower-marine-water. Once i n the marine water, zooplank-ton p e l l e t i z a t i o n and b i o l o g i c agglomeration of i n o r g a n i c f l o c c u l e s takes p l a c e . These processes that enhance the i n d i v i d u a l p a r t i c l e settlement, gen-erate a f a s t response time between the s u r f a c e - l a y e r and the lower-marine-layer i n terms of sedimentation of p a r t i c u l a t e matter. A n a l y s i s of sediment trap data has l e d to the f o l l o w i n g conclusions: 1) water t u r b i d i t y cannot be used as a measure of the downward f l u x of p a r t i -c l e s ; and 2) deep water sand discharges are common near the Squamish R i v e r mouth. Marine zooplankton have been found to i n g e s t suspended sediment at a ra t e dependent on sediment concentration and mineralogy. Ingested mineral p a r t i c l e s undergo chemical and mi n e r a l transformations as a f u n c t i o n of min-eralogy, c a t i o n exchange c a p a c i t y , and residence time i n the d i g e s t i v e t r a c t . C h l o r i t e , v e r m i c u l i t e , and h a l l o y s i t e have formed a f t e r zooplankton i n g e s t i o n of amphibole, m o n t m o r i l l o n i t e , and muscovite standards, r e s p e c t i v e l y . Such chemical changes may help e x p l a i n diagenesis of marine c l a y m i n e r a l s , and e l u c i d a t e zooplankton n u t r i t i o n . The s e t t l i n g v e l o c i t y of mineral-bearing p e l l e t s have been found to vary w i t h the density of the c o n s t i t u e n t p a r t i c l e s and p e l l e t volume ( r e l a t e d to the packing c o e f f i c i e n t of the p a r t i c l e s ) . When p e l l e t s are r i c h i n i n o r g -222 anic constituents, the increased bulk density causes them to s e t t l e more r a -p i d l y than organic f e c a l p e l l e t s . This increased rate of s e t t l i n g allows clay p a r t i c l e s to f a l l and be deposited where the hydrodynamic environment would prevent deposition p a r t i c l e s f i n e r than coarse s i l t . Many of the r e s u l t s and conclusions of t h i s thesis would not have been possible using past methodology. The theory and method of three techniques to be used i n the analysis of suspended sediment have been ou t l i n e d . 1) Vol-ume Size Analysis (VSA), provides a rapid, accurate and precise method of determining grain s i z e d i s t r i b u t i o n s of low weight samples. The method i s based on the s o l u t i o n to a set of equations that d i s c r e t e l y define the i n -creasing volume of a homogeneous sediment sample s e t t l i n g i n an enclosed v o l -ume of water. The r e s u l t s are i n terms of sedimentation diameters, a hydro-dynamically s e n s i t i v e property. 2) The Ag f i l t e r mount provides a f a s t tech-nique f o r a low sample weight random oriented mount to be used i n quantitative XRD analysis. The method has excellent p r e c i s i o n and does not f r a c t i o n a t e the mineral component due to t h e i r s e t t l i n g v e l o c i t y . 3) Suspended sediment c o l -l e c t o r s have been used to measure the downward f l u x of sediment i n the f j o r d environment. The traps have also provided a means to c a l c u l a t e the n a t u r a l s e t t l i n g v e l o c i t y of f l o c c u l a t e d or otherwise enhanced p a r t i c l e settlement. APPENDIX 1 1 C "VSALSW"--VOLUME SIZE ANALYSIS LOW SAMPLS WEIGHT f C PROGRAMMER:J.P.M.SYVITSKI 1 f D A T F : J A N . 2 1 / 7 8 A C PEAO IN * OF READINGS.M: # OF FREE FALL READINGS, HI I * OF C E^ TR IF Uf. E READ 5 C INGS,N2;TFMPERATURF OF EXPERIMENT, TR; CENTRIFLGE TEMPERATURE CORRECT ION, 6 r r T; tHE TEMPFRATURE OF OUTPUT O T : THE SAMPLE I O . T I T L F : 7 C RPM OF EACH CENTRIFUGE,RPMj TIME CF READING. T ; HEIGHT FROM TESTTUHE 8 r. BOTTOM, V : AND NS IS THE » OF SAMPLES TO BE RUN. 9 REAL T O ( 3 0 ) , V ( 3 0 ) , T ( 3 0 I . TR, B,ee , C T , O T , T T I 30) ,OTTC30) 10 RF AL TC(30I , D ( 3 0 ) , V O L ( 3 0 ) . V C ( 3 0 ) , W T ( 3 0 » , P W T ( 3 0 ) 11 REAL DLG(30 ) ,DM ID(30) ,TPT(30) ,TCNEW< 30),TONEW(30),VNEW(30> .RO.AK 12 REAL PPM(30) ,CPWT(30I .T ITLEI 20 ) ,TEMPI(301.TEMP2130 I,TFMP3C301 13 INTEGER N.N 1 ,N2,M,MM,K'K,K, NS.MK 14 K=0 1 5 * CALL D A S H L N f . 1 5 , . 1 0 , . 1 5 , . I C I 16 R FAD ( 5 , 1 ) NS 17 101 READ (5 ,2 ) N , N l , N 2 , T R , C T , C T 18 BEAD (5 ,13) TITLE 19 13 FORMAT (20A4) 2C M=Nl+l 21 READ ( 5 . 3 ) ( R P M ( I ) , I « M , N ) 22 READ (5 .4 ) ( T U ) . J * l , N ) 23 READ (5,51 ( V U I , J > l , N I 24 DD 8 1*1,5 25 8 WRITE 16,91 •. 2ft 9 FORMAT ( '0' ) 27 C 28 r ACCUMULATED SEDIMENT HEIGHTS ARE CONVERTED TO ACCUM. VOLUMES AND ?<•> C PRINTED. (NOTE: IF DENSITY CORRECTIONS ARE AVAILABLE THEY MUST 30 C BE USED TC RE-fALCULAT E THE VOLUMES TO WEIGHT AND RF-ENTEREO 31 C WITH STEPS 33 TO 37 REMOVED). 32 C 33 R0=.26 3* AK=.180 35 DD 6 J=1,N 36 V U ) =V(J> + .71 /51 37 6 V( J l * 3 . i 4L* { (AK* *2 *V ( J) * * 3 /3 ) <- (AK* PO*V (J) + *Z ) * (R0* *2 *V (J) I I 38 WRITE ( 6 , 7 ) I V ( J ) , J = U N ) 3<5 7 FORMAT (16F8.4 I 224 U i UJ QC u. c x K UJ c UJ 3 u -J «t o I l U ct CC UJ o 3 Z UJ o UJ X X o ar UJ I • NH U) •- Ui O _ j Z < •-> > UJ < 1/1 u. - I OD —• O — — CC CO CC * « * o o o • CM NH >-< O —» I - t - o o LJ O 0 S u — •a I x Z — Z — O. 2 - — »- • — «• — CL -t - 1 41 • H » O H I O •— O — O — ' — — O • —: —. o — 1+ • C O M —' II O *NJ + Z Z © O f \ j — i — —i — _ | — i * U II M t \J II N- NH < I I Z I K ii co c w a — # o * x > B M O C C O N O u> o N* «M] N* —• o o —* • • NM • 1/N O —J o (/) o o • NM • • l/> (Si + > MM. —I —• «* HN NH Z w NH -> + ' II MM. NH NH . 1 1 MN ^_ NM u> f\l — M- HM 1 NM w X c_ o w t - <£ >- NH NH 1 t- t- _ J c a 2 2 i I - c Q a o D C CQ * UN o x o (M I Z * N * — o H —> — II O c m ir. I 2 Z UJ — — z N - I— O -N I I - t- — — Z I V , N -^ K « N O — I - I I I -> I S J s Z NH I I Z I x o o z . x 5 i - i - x — — i » — II II — —• II - i »- — N- > I - — N- »- > || |l W || || O — — 3C Jt N M N U ; 11: ~ ? — — z z o U o u u o u Q - > I - » - t- I - > o INJ o 1-H — z II — — Jt Z Ul — z o o II — It z — DX C« U J >o z o c I - c U O U <-i (_) O l _ 81 60 I f)0 15 1=1,30 8 ? 15 V C K I )*0 83 on 21 1=1 ,N 84 VOL ( I ) = ( VC ( I )-( TC( U/TTJN1 )*V0L{ TC (1) /TTCN-l) )*VOL J2 J -85 G ( T C ( I ) / T T ( N - 2 ) ) * 86 £V0L(3>-*V0L(8I-8 9 f.(TC( I )/TT(N-8))*V0LI9>-90 £(TC(I>/TT(N-9)>*V0L(10 ) - ( TC (I)/TT (N-10 > )* VOK 11)-91 &(TC( I >/TT(N-lll»• 9 ? £V0L( 12J-(TC( I»/TT(N-12) l*VOL(13)-{TC(I)/TT 1N-l 3 )»*VOL (14)-93 K (TC( I J/TTINI-14) )-VOL (15) )«TQ( 1 ) 9 4 IF( I .EO. l» GO TO 21 95 IF(VOL (I ).LT.O.0) VOL( I" 1) *VOl(I-1 ) -{VOL I I - 1 ) * . 0 5 ) 96 IF(VHL(I I.LT.O.31 VOL (II-VOL(I-I 1*.05 97 21 CONT INUC 98 r 9 9 C SIMPLE CURVE SMOOTHING TECHNIOUE 100 C 101 V 0 L ( l ) = (VCLm*3*V0L ( 2 ) ) / 4 10? 00 6 5 I=2,NN 103 65 VOL (I)*(VnL< I-1)+V0L(I)*2*VQL(1*1) ) / 4 104 VnL{N» = ( v n L ( N - l ) * V 0 L ( M * 3 l /4 105 C 1 06 C C ALCULATICN OF WEIGhT % ANO DJMMULATIVE HEIGHT *. 107 C 108 CWT=0 109 A=0 I 10 on 22 1=1,N 111 WT(I ) = VOL(I )*2.65*1000 1 12 22 CWT=r.WT+WT( I ) 113 00 23 1=1,N 1 14 ?3 PWT( I )=(WT(I»/CWT)*lOO 115 00 24 I=1,N 116 A=A*PWT (MM-I) 117 24 TEMP2( I)*A II P 00 224 1=1,N ho 226 x rsi I 2 X O I I X t— -fc fcfc — 2 f * o »— Q. o < a *— o _ l z r~ fc • u. M X — ( - a — » — — z o — #—. fc ct »— J t 1 K l a. X 2 z a. X a u X •o ro fcfc UJ I o »* < a t _ J c X • o Q. X CJ X X t - y * X t-^ 1- IXJ X • t - •— cr LU X O o O r - CJ — o *fc rvi c j i _ i -—• a o OL —» T Q . v —* X CSJ ro — z 3 1- a z 3t fcfc O LU co m CO o fc 1 _ l —• a tt or Q. u a. LL c LU O U OC o o o o 1- 1- >—i 1 fc* ,* PSJ M r -r-Z X UJ <• • or » LL LU fc » a — X fc UJ X X CS fcM » CM r - X • UJ o •O at o — LL z fc fc* o » • o •e X X -1 •— ro - i INI 1-• LL . , fc ! ~ • w—t CM • LLi t • LU 1/1 fc — Z ^> CNl X i—i » CL U- O CO o 1 1- * ^ o X 31 » X * • • X a . o • (— LU fc # w O m fc - J CO c • 1 LL r r ( J • z .fc. o # • » o 1 o a. • I- («> r - —• 1— LL D: X fc* X c • u . LL a • o X o cu CJ — fc < - 1 >—• Vi C • 1- f- »- 1- c- r- k- N. z a rvj 1 •< < •C < < < < . 57 194.77 12.060 15.46 39.53 86.56 16.079 6.22 24.07 48 .69 20.066 4.60 17.85 31. 26 24. 119 7.62 13.05 21.64 28.381 2.24 5.42 15. 63 32 .359 0.61 3.18 12.02 4 0 . I i 7 0.74 2.57 7.61 48 .238 1.39 1.63 5.41 64.718 0.44 0.44 3.01 229 BETTER APPROXIMATION ROUTIHE SAPPLE « KAM 14 *4 PARTICLE SIZE WEIGHT PERCENT (MICRONS> 0 . 4 7 5 0 .946 1.919 2 .374 3 .845 6 . 0 3 0 8 .040 1 2 . 0 6 0 1 6 . 0 7 9 20 . 068 2 4 . 1 1 9 28 .381 3 2 . 3 5 9 4 0 . 1 3 7 4 8 . 2 3 8 6 4 . 7 1 8 U > 5 .89 9 . 0 5 4 . 7 3 6 . 7 7 7.60 11 .32 16 .74 14 .06 3 . 9 9 5.42 1 0 . 3 7 3 . 0 2 0 . 7 8 0 . 19 0 . 0 5 0.01 CUM. WT. ( SI 1 0 0 . 0 0 94.11 8 5 . 0 6 8 0 . 3 3 73. 56 6 5 . 9 5 54 .63 3 7 . 89 2 3 . 8 3 19. 84 14.42 4 .05 1. C3 0 . 2 6 0 .06 0.01 1 5 . 0 0 C SETTLING TIME (SEC/CM) 5571C62 1 4 0 6 1 . 7 6 3 4 1 7 . 81 I 5 2 4 . 6 3 851 .51 3 4 6 . 2 5 1 9 4 , 7 7 86. 56 4 8 . 6 9 3 1 . 2 6 21 . 64 15 .63 12.02 7 .81 5.41 3.01 . 230 APPENDIX #2 FIELD DATA BASE ON HOWE SOUND SUSPENDED SEDIMENTS This appendix contains 1) the sediment trap data, 2) the p r e c i s i o n of trap data, 3) the suspended sediment data, 4) the s i z e a n a l y t i c a l data, 5) the XPJ) data, and 6) the current meter data, f o r paper #6. The: method of analysis and s t a t i o n l o c a t i o n are given i n paper #6. The sample seri e s number and the cruise number are i d e n t i c a l . 231 TRAP//: 1 STATION//: 2 CRUISE//: 4 DATE: Sept. 24/76 TIME: 1100-1600 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW^ / TSR° / OSR°° / ISR°° 0/ 50a 165.13 4.3 7.14 95.7 157.99 50b 188.27 3.9 7.30 96.1 180.97 50c 174.46 3.1 5.45 96.9 167.16 50d 174.47 2.7 4.75 97.3 169.72 x" 175.58 3.5 6.20 96.5 169.40 191i 2. 6.8 184.4 100a 208.10 3.6 7.53 96.4 200.57 100b 203.49 4.4 9.04 95.6 194.45 100c 190.23 4.2 8.05 95.8 182.18 lOOd 223.84 3.6 8.05 96.4 215.79 ~x 206.40 4.0 8.20 96.0 198.10 224.8 8.8 216.0 * depth below mean sea l e v e l (m) ** t o t a l dry weight of sediment accumulated (mg) + organic dry weight (mg) weight of combustible percent ++ inorganic dry weight (mg) 2 o t o t a l sedimentation rate (gm/m /day) oo organic sedimentation rate (gm/m^/day) ooo inorganic sedimentation rate (gm/m^/day) 232 TRAP//: 2 STATION//: 1 CRUISE//: 5 DATE: A p r i l 26/77 TIME:1110-1700 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW~H' / TSR° / OSR°° / ISR 0°° / 5a 0.848 5b 0.858 3.70 5c 0.889 3.70 X 0.865 3.70 25a 0.571 25b 0.570 3.30 25c 0.617 3.40 ~x 0.586 3.35 45a 0.664 45b 0.649 3.40 45c 0.661 3.30 ~x 0.658 3.35 65a 0.790 65b 0.799 3.40 X 0.794 0.032. 96.30 0.826 0.033 96.30 0.856 0.032 96.30 0.833 0.019 96.70 0.551 0.021 96.60 0.596 0.020 96.65 0.566 0.022 • 96.60 0.627 0.022 96.70 0.639 0.022 96.65 0.636 0.027 96.60 0.722 783.2 28.8 754.4 530.8 17.6 513.2 596.0 20.0 576.0 718.8 24.4 694.4 ** (g) + (g) ++ (g) 233 TRAP//: 3 STATION//: 1 CRUISE//: 6 DATE: May 24/77 TIME: 1115-1415, 5m trap also i n at 1430-1830 DBSL* / TSA** / % Org. / QDW+ / % Inorg. / IDW"4"*" / TSR° / OSR°° / I S R ° O Q / 5a 52.94 11.8 6.26 88.2 46.68 5b 51.81 10.1 5.21 89.9 46.60 5c 51.32 8.9 4.55 91.1 46.77 5d 51.26 8.2 4.20 91.8 47.06 X 51.83 9.8 5.08 90.2 46.75 40.0 4.0 36.4 25a 14.67 10.4 1.53 89.6 13.14 25b 17.89 9.1 1.63 90.9 16.26 25c 15.65 9.7 1.52 90.3 14.13 25d 17.08 11.0 1.88 89.6 15.20 X 16.32 10.0 1.63 90.0 14.69 22.0 2.0 20.0 45a 22.71. 7.9 1.80 92.1 20.92 45b 21.63 8.0 1.73 92.0 19.90 45c 21.82 6.8 1.48 93.2 20.34 45d 19.81 7.6 1.50 92.4 18.30 "x 21.49 7.6 92.4 92.4 18.30 28.8 2.0 26.8 55a 26.56 7.0 1.86 93.0 24.70 55b 31.53 7.' 3 2.30 92.7 29.23 55c 25.10 8.9 2.23 91.1 22.87 55d 31.19 10.5 3.29 89.5 27.90 ~x 28.60 8.4 2.40 91.6 26.20 38.4 3.0 35.4 ** (mg) + (mg) ++ (mg) 234 TRAP#: 4 STATION//: 2 CRUISE//: 6 DATE: May 25/77 TIME: 0815-1000, 1030-2045 DBSL* / TSA** / % Org. / QDW+ / % I n o r g . / IDW"1"* / TSR° / 0SR°° / ISR° 0° / 5a 37.18 14.4 5.34 85.6 31.83 5b 34.84 13.0 4.52 87.0 30.31 5c 35.07 11.6 4.07 88.4 31.00 "x 35.70 13.0 4.64 87.0 31.06 16.0 2.0 14.0 45a 23.33 9.6 2.23 90.4 21.09 45b 22.79 9.7 2.22 90.3 20.57 45c 21.40 7.7 1.66 92.3 19.42 X 22.53 9.0 2.03 91.0 20.36 10.4 0.8 9.6 85a 17.81 9.4 1.67 90.6 16.14 85b 17.26 8.5 1.46 91.5 15.79 85c 18.08 9.2 1.66 90.8 16.42 17.72 9.0 1.59 91.0 16.13 7.6 0.8 6.8 135a 47.70 6.8 3.23 93.2 44.47 135b 50.00 6.5 3.27 93.5 46.93 135c 46.00 7.2 3.31 92.8 42.69 X 47.97 6.8 3.28 93.2 44.69 21.6 1.6 20.0 ** (mg) + (mg) ++ (mg) 235 TRAP//: 5 STATION//: 1 CRUISE//: 7 DATE: June 27/77 TIME: 1130-1830 DBSL* / TSA** / % Org. / QDW+ / % Inorg. / IDW"^ / TSR° / OSR°° / ISR°°° / 3a 0.374 0.009 0.365 3b 0.386 0.008 0.378 X 0.380 2.1 0.008 97.9 0.372 294.8 6.2 291.8 13a 0.397 0.008 0.389 13b 0.419 0.008 0.411 13c 0.412 0.009 0.403 ~x 0.409 2.0 0.008 98.0 0.401 317.6 6.2 311.2 33a 1.104 0.015 1.089 33b 1.105 0.017 1.088 33c 1.102 0.017 1.085 X 1.104 1.5 0.016 98.5 1.087 856.8 12.4 843.6 53a 0.976 0.015 0.961 53b 0.953 0.015 0.938 ~x 0.964 0.015 0.950 748.0 11.6 737.2 ** (g) + (g) ++ (g) 236 TRAP//: 6 STATION//: 5 CRUISE//: 7 DATE: June 28/77 DATE: 1000-1030, 1230-1830 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW*4" / TSR° / OSR°° / ISR°°° / 5a 44.72 2.9 1.29 97. 1 43.43 5b 45.00 5c 44.51 X 44.74 2.9 1.30 97.1 43.44 37.3 1.0 36.3 20a 51.81 2.6 1.34 97.4 50.47 20b 53.44 20c 52.98 X 52.74 2.6 1.37 97.4 51.37 43.4 1.0 42.4 60a 96.21 2.4 2.26 97.6 93.95 60b 93.70 60c 95.20 -X 95.04 2.4 2.28 97.6 92.76 79.4 1.9 77.5 100a 110.94 2.8 3.16 97.2 107.78 100b 115.18 100c 117.05 X 114.39 2.8 3.20 97.2 112.2 96.0 3.1 92.4 ** (mg) + (mg) ++ (mg) 237 TRAP//: 7 STATION//: 8 CRUISE//: 7 DATE: June 29/77 TIME: 0920-1320 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW"*^ / TSR° / OSR°° / ISR°°° / 5a 13.80 5b 14.26 1.3 0.19 98.7 14.07 5c 14.30 X 14.42 1.3 0.18 98.7 13.94 19.2 0.3 18.9 15a 5.61 15b 5.96 13.8 0.82 86.2 5.14 15c 5.84 "x 5.80 13.8 0.80 86.2 5.00 7.7 0.9 6.8 25a 7.18 25b 6.67 8.8 0.59 91.2 6.08 © X 6.79 8.8 0.59 91.2 6.20 9.2 0.8 8.4 35a 8.15 35b 7.96 9.0 0.72 91.0 7.24 35c 7.63 X 7.91 9.0 0.71 91.0 7.20 10.7 1.0 9.7 ** (mg) + (mg) ++ (mg) 238 Part A TRAP//: 8 STATION//: 1 CRUISE//: 8 DATE: July 20/77 TIME: 1145-1330, 1355-1630, 1650-1945 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW44" / TSR° / OSR°° / I S R Q O ° / 5a 0.299 2.1 0.006 97.9 0.293 5b 0.313 "x 0.306 2.1 0.006 97.9 0.299 229.6 4.8 224.8 20a 0.254 1.9 0.005 98.1 0.249 20b 0.256 X 0.255 1.9 0.005 98.1 0.250 191.2 3.6 187.6 40a 0.293 40b 0.296 1.8 0.005 98.2 0.291 "x 0.294 1.8 0.005 98.2 0.289 220.0 4.0 216.0 55a 0.332 1.9 0.006 98.1 0.326 55b 0.325 X 0.328 1.9 0.006 98.1 0.332 246.0 4.8 241.2 ** (g) + (g) ++ (g) 239 Part B TRAP#: 8 STATION*: 1 CRUISE#: 8 DATE: July 20/77 TIME: DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDw"1"*" / TSR° / 0SR°° / ISR 0°° / 5a 0.477 2.2 0.010 97.8 0.437 5b 0.465 X 0.456 2.2 0.010 97.8 0.446 342.0 7.6 334.4 20a 0.363 1.9 0.007 98.1 0.363 20b 0.377 X 0.370 1.9 0.007 98.1 0.363 276.8 4.8 272.0 40a 0.391 40b 0.406 1.7 0.007 98.3 0.399 X 0.398 1.7 0.007 98.3 0.391 298.4 4.8 293.6 55a 0.407 2.0 0.008 98.0 0.399 55b 0.397 ~x 0.402 2.0 0.008 98.0 0.394 301.2 5.6 295.6 ** (g) + (g) ++ (g) o data from traps at a = 45 240 Part A TRAP//: 9 STATION//: 2 CRUISE//: 8 DATE: July 21/77 TIME: 0850-1235, 1340-1800 DBSL* / TSA** / % Org. / QDW+ / % Inorg. / .IOW*"4"./ TSR° / 0SR° O / ISR° 0° / 5 0.458 1.8 0.008 98.2 0.450 308.0 5.6 302.4 45 0.239 2.3 0.005 97.7 0.234 160.8 3.6 157.2 85a 0.220 3.5 0.008 96.5 0.212 85b 0.216 ~x 0.218 3.5 0.008 96.5 0.210 145.2 5.2 140.0 135a 0.231 135b 0.236 3.2 0.008 96.8 0.238 Q "x 0.234 3.2 0.008 96.8 0.232 157.2 5.2 152.0 ** (g) + (g) ++ (g) 241 Part B TRAP//: 9 STATION//: 2 CRUISE//: 8 DATE: July 21/77 TIME: 0850-1235, 1340-1800 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW"^ / TSR° / OSR°° / I S R ° Q O / 5a 0.571 1.8 0.01 98.2 0.561 5b 0.533 X 0.552 1.8 0.01 98.2 0.542 370.4 6.0 364.4 45a 0.243 2.1 0.005 97.9 0.238 45b 0.254 "x 0.248 2.1 0.005 97.9 0.243 167.2 4.0 163.2 85a 0.196 3.6 0.007 96.4 0.189 X 131.6 4.8 126.8 135a 0.262 135b 0.261 3.1 0.008 96.9 0.253 0 ~x 0.262 3.1 0.008 96.9 0.254 172.8 2.8 170.0 ** (g) + (g) ++ (g) data from traps at a = 45 242 TRAP//: 10 STATION//: 1 CRUISE//: 9 DATE: August 22/77 TIME: 1115-1330, 1405-1950 DBSL* / TSA** / % Org. / QDW+ / % Inorg. / IDW"^ / TSR° / 0SR°° / ISR°°° / 5a 1.65 5b 1.63 1.2 0.023 98.8 1.61 • 5c 1.67 ~x 1.65 1.2 0.020 98.8 1.63 1120.4 13.2 1107.2: 20a 1.78 1.1 0.024 98.9 1.76 20b 1.79 20c 1.81 X 1.79 1.1 0.020 98.9 1.77 1215.6 13.2 1202.4 40a 1.57 40b 1.67 1.2 0.022 98.8 1.65 40 c 1.58 "x 1.61 1.2 0.020 98.8 1.59 1093.2 12.8 1080.4 55a 1.93 1.0 0.023 99.0 55b 1.95 55c 1.95 X 1.94 1.0 0.020 99.0 1.92 1317.6 13.2 1304.4 ** (g) + (g) ++ (g) 243 TRAP//: 11 STATION//: 2 CRUISE//: 9 DATE: August 23/77 TIME: 0815-1945 DBSL* / TSA** / % Org. / ODW+ / % Inorg. / IDW"^ / TSR° / OSR°° / ISR°°° / 5a 0.40 5.0 0.016 95.0 0.38 5b 0.40 5c 0.41 X 0.40 5.0 0.020 95.0 0.38 188.8 9.2 179.6 40a 0.82 1.2 0.011 98.8 0.81 40b 0.82 40c 0.81 "x 0.82 1.2 0.010 98.8 0.81 387.2 4.4 382.8 80a 0.62 1.6 0.008 98.4 80b 0.63 80 c 0.63 X 0.63 1.6 0.010 98.4 0.62 297.6 4.8 292.8 120a 0.72 1.4 0.011 98.6 0.71 120b 0.72 120c 0.72 X 0.72 1.4 0.010 98.6 0.71 340.0 4.8 335,. 2 ** (g) + (g) ++ (g) TRAP//: 12 STATION//: 1 CRUISE//: 10 DATE: October 31/77 TIME: 110-1900 DBSL* / TSA* / % Org. / ODW / % Inorg. / IDW / TSR° / OSR°° / ISR°° 0 / 5a 42.5 5b 45.3 5c 44.5 4.3 1.9 95.7 42.6 "x 44.1 4.3 1.8 95.7 42.3 30.0 1.2 28.8 20a 59.8 3.8 2.3 96.2 57.5 20b 58.8 20c 60.5 ~x 59.7 3.8 2.3 96.2 57.4 40.4 1.2 39.2 40a 104.0 2.2 2.3 97.8 101.7 40b 108.7 40c 103.5 X 105.4 2.2 2.3 97.8 103.1 71.6 1.6 70.0 55a 185.8 55b 185.0 2.3 4.2 97.7 180.8 55c 183.8 "x 184.8 2.3 4.3 97.7 180.6 125.6 2.8 122.8 ** (mg) + (mg) ++ (mg) 245 Sample ID* c o e f f i c i e n t of v a r i a t i o n 0 (%) TSA** ODW*** IDW+ 5-1-5 2.0 5-1-25 4.6 5-1-45 1.2 6-1-5 1.5 17.9 0.2 6-1-25 8.8 10.2 9.2 6-1-45 5.7 9.9 5.7 6-1-55 11.7 25.2 11.1 6-2-5 3.6 13.9 2.5 6-2-45 4.4 16.0 4.2 6-2-85 2.4 7.4 2.0 6-2-135 4.2 1.2 4.8 7-1-13 2.7 6.9 2.8 7-1-33 0.1 7.1 0.2 7-5-5 0.6 7-5-20 1.6 7-5-60 1.3 7-5-100 2.7 7-8-5 2.0 7-8-15 3.1 7-8-25 3.9 7-8-35 3.3 9-1-5 1.2 9-1-20 0.9 9-1-40 3.4 9-1-55 0.6 9-2-5 1.4 9-2-40 0.7 9-2-80 0.9 9-2-120 0.0 10-1-5 3.3 J 10-1-40 2.2 10-1-55 2.5 S.E. lie • 100 where "x i s the mean trap accumulation per s t a t i o n l e v e l * cruise - s t a t i o n - depth below sea l e v e l ** t o t a l sediment accumulated *** organic dry weight + inorganic dry weight 246 SERIES//: 1 DATE: June 25/76 S. & D. / TSM* / % Org. / OWC** / % Inorg. / IWC° / S % / T°C / TIME / IA-OIEL, 21.0 5.2 1.1 94.8 19.9 0.0 9.5 0800 lA-0m + 1.2 0.0 0.0 100.0 1.2 lA-5m 11.3 35.3 4.0 64.7 7.3 5.5 11.3 lA-5m : 0.9 86.2 0.8 13.8 0.1 1A-I2m 7.7 35.3 2.7 64.7 5.0 24.0 10.0 lA-67m 14.6 25.9 3.8 74.1 10.8 28.0 9.4 2A-0mj, 17.5 0.0 0.0 100.0 17.5 0.0 12.3 0840 2A-0m 0.7 19.7 0.1 80.3 0.6 2A-5m 19.0 76.7 14.6 23.3 4.4 26.5 11.1 2A-15m 10.0 17.9 1.8 82.1 8.2 27.0 10.0 2A-145m 6.2 71.1 4.4 28.9 1.8 29.0 9.6 3A-0mJ, 5.7 29.5 1.7 70.5 4.0 1.0 12.2 0920 3A-0m 2.1 0.0 0.0 100.0 2.1 3A-5m 4.1 7.2 0.3 92.8 3.8 18.0 11.2 3A-15m 3.7 78.1 2.9 21.9 0.8 25.0 12.0 lB-Omj, 28.5 0.0 0.0 100.0 28.5 1.0 11.4 0950 LB-Om 1.7 3.7 0.1 96.3 1.6 lB-5m 7.2 9.5 0.7 90.5 6.5 16.0 11.9 lB-56m 6.1 41.6 2.5 58.4 3.6 29.0 9.3 2B-0mj, 21.1 5.0 1.1 95.0 20.0 1.5 12.2 1050 2B-0m 0.4 86.1 0.3 13.9 0.1 2B-5m 13.5 30.3 4.1 69.7 9.4 17.0 2B-lm 3.5 47.4 1.7 52.6 1.8 29.0 9.6 3B-0m* 12.0 46.0 5.5 54.0 6.5 2.0 10.6 1120 3B-0m 2.3 53.1 1.2 46.9 1.1 3B-15m 2.4 76.0 1.8 24.0 0.6 26.0 10.0 3B-64m 6.7 45.7 3.1 54.3 3.6 30.0 9.6 lC-5m 13.8 0.0 0.0 100.0 13.8 12.0 12.2 1150 lC-15m 6.8 56.5' 3.8 43.5 3.0 28.0 14.5 lC-bottom 5.2 32.2 1.7 67.7 3.5 31.0 9.5 3D-0mJ, ' 21.6 22.8 4.9 77.2 16.7 1.0 13.2 1545 3D-0m 0.2 0.0 0.0 100.0 0.0 3D-5m 9.9 0.0 0.0 100.0 9.9 10.0 10.8 3D-15m 3.4 0.0 0.0 100.0 3.4 26.0 10.7 3D-65m 3.2 0.0 0.0 100.0 3.2 30.0 9.2 lD-Omt. 23.4 7.8 1.8 92.2 21.6 1.5 11.3 1600 lD-Om 0.3 57.3 0.2 42.7 0.1 lD-5m 9.0 18.7 1.7 81.3 7.3 13.0 10.8 ID-15m 8.2 17.3 1.4 82.7 6.8 30.0 10.6 lD-62m 4.3 3.4 0.1 96.6 4.2 31.0 4- s i l t +clay f r a c t i o n ++ sand f r a c t i o n * t o t a l suspended matter (mg/1) ** organic weight concentration (mg/1) o suspended i n o r g a n i c weight concentration (mg/1) 247 SERIES//: 2 DATE: July 29/76 S - & D- A TSM*7 %,0rg. / OWC** / % Inorg. / IWC° / S %./ T°C / pH / TIME / 7A-0m 6.0 4.0 0.2 96.0 5.8 3.5 11.0 7.7 7A-5m 2.7 47.0 1.3 53.0 1.4 22.0 10.4 7.8 7 A-7m 2.4 60.0 1.4 40.0 1.0 26.0 10.2 7.8 7A-10m 2.0 49.6 1.0 50.4 1.0 27.0 10.2 7.7 7A-250m 4.1 53.3 2.2 46.7 1.9 30.5 10.0 7.4 8A-0m 5.1 18.5 0.9 81.5 4.2 5.0 12.2 7.7 8 A-2m 5.8 54.5 3.2 45.5 2.6 10.5 13.0 8.0 8A-4m 22.5 13.0 7.7 8 A-7m 2.3 40.0 0.9 60.0 1.4 25.5 12.0 7.7 8A-40m 10.3 94.0 9.7 6.0 0.6 28.0 10.0 7.7 9A-0m 4.8 'i 25.4 1.2 74.6 3.6 6.5 14.0 8.0 9A-.9m 3.2 42.5 1.4 57.5 1.8 7.5 14.0 8.1 9A-2.6m 3.2 57.8 1.8 42.2 1.4 10.0 13.5 7.9 9A-5.2m 2.2 56.0 1.2 44.0 1.0 20.5 13.1 8.0 9A-138.6m 1.9 55.0 1.0 45.0 0.9 30.0 9.3 7.6 7B-0m 8.5 10.0 0.9 90.0 7.6 5.0 12.1 7.9 7B-3m 2.7 41.0 1.1 59.0 1.6 11.0 13.2 8.0 7B-4.9m 2.0 62.0 1.2 38.0 0.8 18.0 13.5 7.8 7B-7.9m 1.7 54.0 0.9 46.0 0.8 24.0 12.3 7.8 7B-167Am 30.5 9.9 7.3 7B-167Bm 17.7 8.0 1.4 92.0 16.3 30.5 9.9 7.3 8B-0mA 8B-0mB 8B-lm 8B-3m 8B-6m 8B-36m 9B-0m 9B-2m 9B-6m 7C-0m 7C-2m 7C-6m 7C-340m 8C-0m 8C-2m 8C-6m 8C-40m 3.7 2.5 3.6 3.2 1.5 1.2 3.0 3.2 1.2 6.0 3.4 1.6 11.5 4.7 4.6 1.6 2.4 38.6 29.6 50.0 46.0 60.3 40.0 46.3 48.1 68.0 28.2 31.0 38.7 22.4 24.0 35.8 62.4 63.1 1.4 0.7 1.8 1.5 0.9 0.5 1.4 1.5 0.8 1.7 1.1 0.6 2.6 1.1 1.6 0.6 1.5 61.4 70.4 50.0 54.0 39.7 60.0 53.7 51.9 32.0 71.8 69.0 61.3 77.6 76.0 64.2 37.6 36.9 2.3 1.8 1.8 1.7 0.6 0.7 •8.0 7.5 12.0 20.0 25.0 29.0 14.7 14.3 14.3 14.1 12.1 10.5 1.6 10.0 1.7 12.0 0.4 23.5 4.3 6.0 2.3 12.0 1.0 24.0 8.9 32.0 3.6 6.0 3.0 12.0 1.0 23.0 0.9 29.5 7.4 7.9 8.3 8.1 7.7 7.6 14.6 8.0 13.1 7.9 13.1 7.9 13.7 7.0 13.3 8.1 13.5 7.8 9.0 7.2 14.9 8.2 15.2 8.3 13.7 8.0 9.8 7.6 1100 1135 1310 1350 1435 1520 1540 1630 248 SERIES//: 2 DATE: J u l y 30/76 S. & D. / TSM* / : I Org. / owe** / ; I I n o r g . / IWC° / S %./ ' T°C / p l l / TIME / 4A-0m 8.3 13.3 1.1 86.7 7.2 0.5 10.1 7.2 0830 4A-1.7m 8.0 32.6 2.6 67.4 5.4 8.0„ 10.6 7.7 4A-3.5m 3.9 21.1 1.1 72.9 2.8 18.0 11.6 7.8 4A-6.lm 2.6 30.0 0.8 70.0 1.8 22.0 12.0 7.7 4A-295m 2.8 49.3 1.4 50.7 1.4 30.0 8.7 7.2 5A-0m 9.0 20.4 1.8 79.6 7.2 3.0 10.1 7.5 0915 5A-2m 7.9 16.3 1.3 83.7 6.6 4.5 10.5 7.8 5A-4m 6.0 24.1 1.4 75.9 4.6 21.5 12.0 7.7 5 A-7m 2.0 41.8 0.8 58.2 1.2 25.0 11.5 7.4 5A-235m 3.7 47.4 1.8 52.6 1.9 30.0 8.9 7.5 6A-0m 7.4 21.1 1.6 78.9 5.8 4.0 10.1 7.8 0945 6A-1.9m 4.4 10.9 0.5 89.1 3.9 11.5 12.0 8.1 6A-3.8m 3.1 48.0 1.5 52.0 1.6 19.0 12.6 8.1 6A-6.6m 1.7 33.3 0.6 66.7 1.1 25.0 12.0 7.8 6A-240m 3.2 35.0 1.1 65.0 2.1 31.5 8.6 7.7 4B-0m 6.6 41.7 3.1 58.3 3.5 2.0 9.9 7.5 1025 4B-1.6m 5.3 42.3 2.2 57.7 3.1 3.0 9.6 7.7 4B-3.3m 8.5 13.2 1.1 86.8 7.4 9.0 10.7 7.9 4B-5.7m 2.2 45.5 1.0 54.5 1.2 24.0 10.5 8.0 4B-197Am 5.9 35.7 2.1 64.3 3.8 30.5 9.0 7.8 4B-197Bm 1.5 14.3 0.2 85.7 1.3 31.0 5B-0m 4.7 24.0 1.1 76.0 3.6 3.0 10.9 1050 5B-2m 5.1 18.5 0.9 81.5 4.2 2.0 10.4 5B-4m 6.1 20.7 1.3 79.3 4.8 9.0 10.5 5B-7m 2.8 33.6 0.9 66.4 1.9 23.0 12.0 5B-207Am 3.5 17.6 0.6 82.4 2.9 31.0 9.0 6B-0m 6.8 18.3 1.2 81.7 5.6 5.0 11.3 1115 6B-lm 6.9 19.1 1.3 80.9 5.6 5.5 11.5 6B-3m 4.3 36.9 1.6 63.1 2.7 13.5 12.5 6B-6m 1.6 50.0 0.8 50.0 0.8 23.0 12.3 6B-229Am 2.7 40.7 1.1 59.3 1.6 31.0 9.1 6B-229Bm 2.2 52.0 1.1 48.0 1.1 31.0 9.1 249 SERIES*: 3 DATE: August .16/76 S. & D. / TSM* / % Org. / OWC** / % I n o r g . / IWC° / S %. / T°C / TIME/ lA-Om 13.9 17.3 2.4 82.7 11.5 1.0 11.6 1030 lA-3m 14.9 0.6 0.1 99.4 14.8 10.0 12.7 lA-5m 4.2 45.0 S I . 9 55.0 2.3 23.0 12.7 lA-8m 5.1 31.2 1.6 68.8 3.5 25.0 11.5 lA-86m 6.4 30.0 1.9 70.0 4.5 30.0 9.2 2A-0m 8.4 13.5 1.1 86.5 7.3 1.0 11.7 1110 2A-2m 15.6 39.8 6.2 60.2 9.4 2.0 11.4 2 A-4m • 4.6 39.5 1.8 60.5 2.8 22.0 11.6 2 A-7m 4.8 42.9 1.1 57. 1 2.7 28.0 10.4 2A-150Am 3.2 30.4 1.0 69.6 2.2 30.0 9.6 2A-150Bm 3.5 44.4 1.6 55.6 1.9 30.0 9.2 3A-0Am 20.5 9.6 2.0 90.4 18.5 0.0 10.4 1140 3A-OBm 11.4 20.0 2.3 80.0 9.1 0.0 10.3 3A-lm 9.4 8.8 0.8 91.2 8.6 0.5 11.2 3 A-3m 5.1 17.0 11.9 3A-6m 2.5 73.3 1.8 26.7 0.7 27.0 10.4 3A-55m 3.8. 26.6 1.0 73.4 2.8 30.0 9.5 lB-Om 20.8 11.3 2.4 88.7 18.4 10.0 10.4 1300 l B - l m 14.4 18.6 2.7 81.4 11.7 1.0 10.9 IB-3m 3.8 40.9 1.6 59.1 2.2 21.0 11.8 lB-6m 4.6 22.3 1.5 67.7 3.1 27.0 10.3 IB-7 9m 10.5 30.0 9.3 2B-0Am 9.1 0.0 0.0 100.0 9.1 2.0 11.3 1325 2B-0Bm 14.9 12.7 1.9 87.3 13.0 1.0 10.7 2B-2m 4.0 11.6 2B-4m 3.2 50.0 1.6 50.0 1.6 22.0 12.0 2B-7m 7.1 • 26.0 10.9 2B-147m 5.2 25.0 1.3 75.0 3.9 30.0 9.6 3B-0Am 12.1 10.3 1.3 89.7 10.8 0.0 10.1 1405 3B-0Bm 12.4 11.8 1.5 88.2 10.9 0.0 10.6 3B-lm 20.2 14.1 2.8 85.9 17.4 0.0 10.6 3B-3m 3.0 29.8 0.9 70.2 2.1 20.0 11.3 3B-6m 7.2 42.2 3.0 57.8 4.2 24.0 11.1 3B-70m 2.4 72.5 1.7 27.5 0.7 31.5 9.1 250 SERIES//: 4 DATE: September 24/76 S. & D. / TSM* /• % Org. / owe** / % Inorg. , / iwc° / s •%./ T°C / TIME. 2-0m 2.8 4.0 0.1 96.0 2.7 6.0 13.0 1220 lm 5.4 20.8 1.6 79.2 3.8 •6.5 11.9 1230 3m 1.5 35.7 0.5 64.3 1.0 16.0 13.4 1230 10m 1.0 27.8 0.3 72.2 0.7 26.0 12.3 1230 118m 3.0 25.9 0.8 74.1 2.2 30.5 10.6 1225 0m 8.1 11.1 0.9 88.9 7.2 6.0 12.1 1250 Om 1.5 28.6 0.4 71.4 1.1 6.0 11.5 1251 Om 2.4 23.8 0.6 76.2 1.8 6.0 11.9 1252 lm 11.9 13.2 1.6 86.8 10.3 6.0 12.4 1310 3m 3.9 32.4 1.3 67.6 2.6 19.0 13.0 1310 10m 1.6 42.9 0.7 57.1 0.9 25.0 12.9 1310 116m 1.3 63.6 0.8 36.4 0.5 30.0 9.5 1325 lm 4.9 20.4 1.0 79.6 3.9 8.0 12.1 1415 3m 2.4 27.3 0.7 33.3 1.7 16.0 12.5 1415 10m 2.8 52.0 1.5 53.6 1.3 26.0 12.2 1415 15m 1.2 45.4 0.5 54.6 0.7 28.0 11.5 1415 Om 3.2 20.7 0.7 79.3 2.5 8.0 11.9 1423 Om 7.3 18.8 1.4 81.2 5.9 6.0 11.9 1428 lm 6.7 18.6 1.2 81.4 5.5 8.0 11.5 1436 3m 6.5 22.4 1.5 77.6 5.0 14.0 12.9 1436 10m 1.4 84.6 1.2 15.4 0.2 22.0 12.1 1438 15m 1.4 69.2 1.0 30.8 0.4 26.0 11.4 1440 Om 4.5 15.0 0.7 85.0 3.8 5.0 12.4 1450 Om 3.1 33.3 1.0 66.7 2.1 5.0 11.2 1510 ,0m 3.9 5.5 11.8 1523 lm 5.1 22.2 1.1 77.8 4.0 6.0 12.0 1515 3m 1.5 53.8 0.8 46.2 0.7 16.0 12.6 1515 10m 2.0 44.4 0.9 55.6 1.1 24.0 12.5 1520 15m 1.8 50.0 0.9 50.0 0.9 27.0 11.2 1515 Om 6.4 13.8 0.9 86.2 5.5 5.0 12.1 1545 lm . 5.0 11.6 1545 3m 2.3 20.0 0.5 80.0 1.8 14.0 12.2 1546 10m 1.1 56.0 0.6 44.0 0.5 24.0 11.9 1545 15m 1.9 42.9 0.8 57.1 1.1 26.0 11.6 1545 Om 1.9 24.1 0.5 75.9 1.4 11.8 1556 251 SERIES//: 5 DATE: A p r i l 26/77 S. & D. / TSM* I % Org. / OWC** / % Inorg. / IWC° / S %./ T°C / TIME / 1-Om 1-lm l-3m l-5m 1-12m 30.9 30.5 21.5 13.2 55.0 7.4 13.1 17.1 30.6 27.6 2.3 4.0 3.7 4.0 1.5 92.6 86.9 82.9 69.4 72.4 28.6 26.5 17.8 9.2 4.0 0.0 4.0 13.0 20.0 28.0 8.8 11.4 11.2 11.6 10.4 1310 1-Om 1-lm 1-K3m l-5m l-12m 45.0 39.3 18.4 8.5 7.2 6.5 8.7 19.4 25.7 25.1 2.9 3.4 3.6 2.2 1.8 93.5 91.3 80.6 74.3 74.9 42.1 35.9 14.8 6.3 5.4 3.0 6.0 16.0 25.0 28.0 9.5 10.3 10.7 10.4 10.2 1335 1-Om 1-lm l-3m l-5m 1-12m 35.0 66.3 30.2 18.2 6.0 14.1 6.7 11.6 21.5 25.4 4.9 4.4 3.5 3.9 1.5 85.9 93.3 88.4 78.5 74.6 30.1 61.9 26.7 14.3 4.5 0.0 2.0 12.0 18.0 27.0 8.6 9.9 10.6 10.9 10.8 1415 1-Om 1-lm l-3m l-5m l-12m 32.2 55.7 23.8 12.9 8.9 1.3 28.1 11.5 18.7 22.2 0.4 15.7. 2.7 2.4 2.0 98.7 71.9 88.5 81.3 77.8 31.9 40.0 21.1 10.5 6.9 0.0 0.0 10.0 20.5 27.0 8.2 8.1 9.5 10.6 9.4 1445 1-Om 1-lm l-3m l-5m 1- 12m 47.9 65.0 28.4 17.3 6.1 11.4 8.0 11.1 6.9 23.6 5.5 5.2 3.2 1.2 1.4 88.6 92.0 88.9 93. 1 76.4 42.4 59.8 25.2 16.1 4.7 0.0 1.0 12.0 20.0 27.0 9.4 10.9 10.9 11.9 10.5 1545 1- Om 1- lm 1- 3m 1- 5m 1- 12m 31.3 44.2 29.9 27.8 7.8 10.7 10.2 9.0 10.6 19.6 3.3 4.5 2.7 2.9 1.5 89.3 89.8 91.0 89.4 80.4 28.0 39.7 27.2 24.9 6.3 0.0 2.0 4.0 18.0 26.5 .9.0 9.0 10.0 11.6 10.3 1610 1- Om 1- lm 1- 3m 1- 5m 1- 12m 21.7 17.7 19.1 21.1 8.2 14.5 12.3 14.8 13.9 16.1 3.1 2.2 2.8 2.9 1.5 85.5 87.7 85.2 86.1 83.9 18.6 15.5 16.3 18.2 6.7 4.0 4.0 8.0 19.0 26.5 9.0 9.9 9.4 10.5 10.3 1635 252 SERIES//: 5 DATE: A p r i l 27/77 S. & D. / TSM* 7 % Org. / owe** / : I Inorg. :/:iwc° : / S %./ T°C / : T I M E 9A-0m 8.0 36.4 2.9 63.6 5.1 15.00 11.4 0855 9 A-2m 5.6 24.2 1.4 75.8 4.2 16.0 10.8 9A-5m 9.4 20.6 1.9 79.4 7.5 23.5 11.2 9A-12m 4.3 43.2 1.9 56.8 2.4 28.0 10.8 9A-0m 8.6 23.8 2.0 76.2 6.6 15.0 10.8 8A-0m 7.1 21.6 1.5 78.4 5.6 15.0 10.5 0930 8A-lm 8.3 22.2 1.8 77.8 6.5 15.5 10.9 8 A-3m 6.6 37.8 2.5 62.2 4.1 22.5 10.4 8A-5m 4.5 43.4 2.0 56.6 2.5 26.0 10.9 8A-12m 4.0 30.7 1.2 69.3 2.8 29.5 10.4 7A-0m 7.5 17.7 1.3 82.3 6.2 10.0 11.0 1000 7A-lm 7.2 27.7 2.0 72.3 5.2 15.0 11.0 7A-3m 6.6 33.7 2.2 66.3 4.4 20.0 12.1 7A-5m 5.3 30.2 1.6 69.8 3.7 22.0 12.4 7A-12m 5.6 25.9 1.5 74.1 4.1 26.0 10.2 8B-0m 6.0 19.2 1.2 80.8 4.8 17.0 11.4 1030 8B-lm 6.0 26.6 1.6 73.4 4.4 18.0 12.3 8B-3m 6.5 25.3 1.6 74.4 4.9 22.0 12.5 8B-5m 5.1 25.1 1.3 74.9 3.8 26.0 11.8 8B-12m 4.1 43.6 1.8 56.4 2.3 29.0 12.2 9B-0m 5.3 24.4 1.3 75.6 4.0 17.0 13.4 1110 9B-lm 6.6 22.6 1.5 77.4 5.1 17.0 13.5 9B-3m 6.6 30.7 2.0 69.3 4.6 17.0 12.6 9B-5m 6.8 43.1 2.9 56.9 3.9 22.0 12.7 9B-12m 4.0 53.8 2.2 46.2 1.8 28.0 12.2 253 SERIES//: 6 DATE: May 24/77 S. & D. / TSM* / % Org. / owe** / : 1:Inorg. :/:iwc° / S %, / T°C / TIME 1-Om 7.9 17.6 1.4 82.4 6.5 0.0 10.0 1245 1-lm 8.8 24.2 2.1 75.8 6.7 0.0 10.2 l-3m 8.3 43.7 3.6 56.3 4.7 5.0 11.6 l-5m 3.3 40.0 1.3 60.0 2.0 19.0 11.6 l-10m 1.8 35.2 0.6 64.8 1.2 29.0 9.8 l-20m 1.8 18.5 0.3 81.5 1.5 31.0 9.5 1315 l-40m 2.1 5.9 0.1 94.1 2.0 32.0 9.5 l-60m 2.2 29.8 0.7 70.2 1.5 32.0 9.5 l-70m 43.1 11.0 4.8 89.0 38.3 32.0 9.4 1-Om 6.2 10.0 0.6 90.0 5.6 1.5 9.6 1535 1-lm 9.1 13.5 1.2 86.5 7.9 2.0 9.9 l-3m 9.1 25.1 2.3 74.9 6.8 4.0 10.4 l-5m 3.5 28.6 1.0 71.4 2.5 22.0 10.6 l-10m 1.4 6.0 0.1 94.0 1.3 30.0 10.2 l-20m 1.7 27.4 0.5 72.6 1.2 32.0 9.9 1600 l-40m 1.8 30.1 0.5 69.9 1.3 32.0 10.0 1-4 5m 2.2 15.7 0.3 84.3 1.9 32.0 9.4 l-55m 2.2 7.9 0.2 92.1 2.0 32.0 9.5 254 S E R I E S / / : 6 D A T E : May 25/77 S. & D. / T S M * 7 % Org. / owe** 7 :; 1: inorg. / : I W C ° 7 s:%./ T ° C / T I M E 2-Om 4.8 14.7 0.7 85.3 4.1 3.0 11.2 1030 2-lm 6.7 31.4 2.1 68.6 4.6 4.5 11.6 2-3m 4.0 28.1 1.1 71.9 2.9 15.0 12.2 2-5m 5.6 79.2 4.4 20.8 1.2 26.0 10.6 2-10m 1.2 25.0 0.3 75.0 0.9 30.0 9.4 2-20m 1.0 48.0 0.5 52.0 0.5 31.0 9.4 1100 2-4 Om 1.8 67.4 1.2 32.6 0.6 32.0 9.3 2-60m 1.1 32.4 0.4 67.6 0.7 32.0 9.4 2-8 Om 1.1 15.5 0.2 84.5 0.9 32.0 9.4 2-60Bm 1.1 30.8 0.3 69.2 0.8 32.0 9.4 1115 2-80Bm 0.7 2.>9 0.0 97.1 0.7 32.0 9.3 2-100m 1.1 34.8 0.4 65.2 0.7 32.0 9.1 2-120m 2.5 43.4 1.1 56.6 1.4 32.0 8.9 2T-0m 4.6 10.9 0.5 89.1 4.1 3.0 11.3 2-Om 5.3 30.2 1.6 69.8 3.7 5.0 12.5 1530 2-lm 5.7 30.8 1.8 69.2 3.9 9.5 13.5 2-3m 3.1 14.7 0.5 85.3 2.6 22.0 12.5 2-5m 2.0 42.4 0.8 57.6 1.2 29.0 10.5 2-10 1.0 27.7 0.3 72.3 0.7 30.5 10.1 2-20m 1.2 39.7 0.5 60.3 0.7 32.0 9.5 1550 2-30m 1.1 87.4 1.0 12.6 0.1 32.0 9.7 2-40m 2.3 82.4 1.9 17.6 0.4 32.0 9.6 2-5 Om 0.4 32.0 9.8 2-60m 1.1 53.8 0.6 46.2 0.5 32.0 9.4 1610 2-80m 1.2 67.5 0.8 32.5 0.4 32.0 9.5 2-100m 1.3 63.2 0.8 36.8 0.5 32.0 9.4 2-120m 1.4 30.4 0.4 69.6 1.0 32.0 9.4 2-Om 4.5 41.3 1.9 58.7 2.6 4.0 12.2 1625 255 S E R I E S / / : 6 D A T E : May 26/77 S. & D. 7 T S M * / % Org. / owe** / %: inorg. ./ I W C ° :/ s:%.7 T ° C / : T I M E 7-Om 2.4 32.2 0.8 67.8 1.6 12.0 12.5 0900 7-lm 2.8 34.3 1.0 65.7 1.8 11.5 13.1 7-3m 2.5 51.6 1.3 48.4 1.2 14.0 13.5 7-5m 2.4 45.9 1.1 54.1 1.3 15.0 14.0 7-9.8m. 0.8 46.9 0.4 53.1 0.4 28.5 9.5 0915 7-24.6m 0.4 10.5 0.0 89.5 0.4 30.0 8.7 7-49.2m 0.3 0.0 0.0 100.0 0.3 30.0 8.9 7-73.6m 1.1 39.1 0.4 60.9 0.7 30.0 8.8 0930 7-117m 0.8 40.5 0.3 59.5 0.5 30.5 8.6 7-182m 0.5 0.0 0.0 100.0 0.5 30.0 8.5 8-0m 2.3 30.8 0.7 69.2 1.6 11.5 13.1 0955 8-2m 2.4 34.9 0.8 65.1 1.6 12.0 13.0 8-4m 2.6 45.0 1.2 55.0 1.4 12.0 13.1 8-6m 2.7 43.8 1.2 56.2 1.5 14.0 12.3 8-9m 1.3 41.1 0.5 58.9 0.8 26.0 10.0 1010 8-2 2m 0.5 16.0 0.1 84.0 0.4 30.0 8.8 8-30m 0.8 26.5 0.2 73.5 0.6 30.0 8.8 9-0m 3.0 38.8 1.2 61.2 1.8 11.5 13.0 1020 9-lm 2.9 35.0 1.0 65.0 1.9 11.0 13.3 9-3m 2.6 37.1 1.0 62.9 1.6 12.5 13.5 9-5m 2.7 36.0 1.0 64.0 1.7 15.5 13.0 9-8m 1.5 25.9 0.4 74.1 1.1 25.0 10.1 1030 9-20m 0.6 22.4 0.1 77.6 0.5 29.5 8.5 • 9-4 lm 1.0 28.0 0.3 72.0 0.7 29.5 8.5 9-68m 0.7 0.0 0.0 100.0 0.7 30.0 8.5 1040 9-91m 0.7 0.0 0.0 100.0 0.7 30.0 8.4 9-113m 30.0 8.4 256 SERIES//: 7 DATE: June 27/77 S. & D. / TSM* / % Org. / owe** / %:Inorg. :/ iwc°: /:s:%./ T ° C / TIME 1-Om 57.4 5.3 3.1 94.7 54.3 2.0 10.2 1300 1-lm 33.2 8.4 2.8 91.6 30.4 2.0 11.2 l-2m 32.0 7.0 2.2 93.0 29.8 10.0 12.7 l-3m 16.5 9.6 1.6 90.4 14.9 14.0 13.8 l-4m 8.7 8.9 0.8 91.1 7.9 18.0 13.6 l-5m 7.8 7.9 0.6 92.1 9.2 23.0 13.2 1330 l-10m 5.9 0.0 0.0 100.0 5.9 28.0 11.3 l-20m 11.8 3.2 0.4 96.8 11.4 31.0 10.5 l-40m 6.3 1.7 0.1 98.3 6.2 32.0 10.1 l-55m 4.8 17.3 0.8 82.7 4.0 32.0 9.4 1-Om 43.5 7.6 3.3 92.4 40.2 2.0 10.5 1625 1-lm 55.2 6.2 3.4 93.8 51.8 2.0 10.9 l-2m 45.2 5.8 2.6 94.2 42.6 2.0 11.1 l-3m 49.7 3.6 1.8 96.4 47.9 2.0 11.3 l-4m 29.1 8.7 2l5 91.3 26.6 9.0 12.2 l-5m 11.0 8.8 1.0) 91.2 10.0 18.0 12.8 1650 l-10m 3.9 11.2 0.4 88.8 3.5 30.0 10.8 l-20m 3.9 11.7 0.5 88.3 3.4 31.0 10.5 1-4 Om 7.4 9.2 0.7 90.8 6.7 32.0 9.5 l-60m 8.9 7.3 0.7 92.7 8.2 32.0 9.4 257 SERIES// : 7 DATE: June 28/77 S . & D. / TSM* /: % Org. , / owe** / % :Inorg. :/:iwc° / : s : % . / T°C / .TIME 5-Om 16.9 0.9 0.1 99.1 16.8 3.0 12.3 1015 5-lm 14.3 8.0 1.1 92.0 13.2 4.0 13.5 1005 5-2m 13.7 6.0 0.8 94.0 12.9 5.0 13.1 1005 5-3m 12.4 2.5 0.3 97.5 12.1 15.0 13.7 1010 5-4m 4.6 16.3 0.8 83.7 3.8 23.0 13.4 1010 5-5m .3.4 13.2 0.4 86.8 3.0 24.5 12.3 1015 5-7m 2'J9 13.7 0.4 86.3 2.5 28.0 11.8 1015 5-Om 19.8 5.4 1.1 94.6 18.7 3.0 14.3 1400 5-5m 4.8 11.0 0.5 89.0 4.3 23.0 14.5 1400 5-10m 2.0 0.2 0.0 99.5 2.0 31.0 11.9 1400 5-20m 1.7 0.0 0.0 100.0 1.7 32.0 11.2 1410 5-4 Om 1.6 8.0 0.1 92.0 1.5 32.0 10.8 1410 5-60m 2.2 16.6 0.4 83.4 1.8 32.0 9.5 1410 5-100m 1.7 7.3 0.1 92.7 1.6 32.0 9.5 1410 5-Om 17.4 8.5 1.5 91.5 15.9 4.0 13.2 1610 5-lm 17.8 8.2 1.5 91.8 16.3 4.0 13.2 1600 5-2m 11.8 0.0 0.0 100.0 11.8 8.0 13.9 1600 5-3m 10.3 10.1 1.0 89.9 9.3 9.0 13.7 1600 5-4m 7.5 6.0 0.4 94.0 7.1 15.0 13.6 1610 5-5m 4.9 10.5 0.5 89.5 4.4 23.0 14.3 1610 5-7m 3.0 14.8 0.5 85.2 2.5 28.0 13.5 1640 5-10m 2.1 19.1 0.4 80.9 1.7 32.0 11.2 1640 5-20m 2.3 23.8 0.5 76.2 1.8 32.0 9.9 1640 5-40m 1.5 35.5 0.5 64.5 1.0 33.0 9.8 1640 5-60m 2.0 24.3 0.5 75.7 1.5 33.0 9.8 1645 5-80m 2.1 33.8 0.7 66.2 1.4 33.0 9.7 1645 5-100m 2.1 24.1 0.5 75.9 1.6 33.0 9.5 1645 258 SERIES//: 7 DATE: June 29/77 S. & D. /-TSM*./ % Org. / OWC** / % Inorg. / IWC° / S %./ T°C / TIME / 8-0m 5 . 9 . 14.3 0.8 85.7 5.1) 8.0 14.7 1010 8-lm 3.90 32.3 1.3 67.7 2.6; 8.0 16.1 0940 8-3m 2.1 12.5 0.3 87.5 1.8 18.0 15.8 0940 8-5m 2.0 46.8 0.9 53.2 1.1 20.0 15.3 0945 8-7m 1.4 26.6 0.4 73.4 1.0 26.0 12.9 0945 8-10m 1.6 10.2 0.2 89.8 1.4 28.0 12.0 0950 8-12m 1.2 10.0 0.1 90.0 1.1 30.0 11.2 0950 8-15m 1.3 0.0 0.0 100.0 1.3 30.0 10.6 0955 8-25m 1.1 13.4 0.1 86.6 1.0 31.0 10.0 0955 8-35m 1.0 23.6 0.2 76.4 0.8 32.0 9.8 1000 8-0m 3.5 13.4 0.5 86.6 3.0 7.0 16.2 1230 8-2m 3.8 21.6 0.8 78.4 3.0 8.0 16.6 1210 8-3m 2.8 5.0 0.1 95.0 2.7 12.0 16.2 1210 8-5m 2.8 21.0 0.6 79.0 2.2 20.0 15.6 1215 8-7m 2.2 26.8 0.6 73.2 1.6 26.0 12.7 1215 8-10m 1.2 36.9 0.2 63.1 1.4 30.0 11.6 1220 8-12m 0.8 35.5 0.3 64.5 0.5 30.0 10.9 1220 8-15m 0.8 34.2 0.3 65.8 0.5 31.0 10.4 1225 8-25m 1.0 30.3 0.3 69.7 0.7 32.0 9.8 1225 8-35m 0.8 6.8 0.1 93.2 0.7 32.0 9.6 1230 259 SERIES//: 8 DATE: July 20/77 S. & D. / TSM* / % Org. / owe** / ; I Inorg. / IWC° / S %./ T°C / TIME 1-Om 58.6 4.5 2.6 95.5 56.0 5.0 11.8 1440 1-lm 54.9 7.3 4.0 92.7 50.9 8.0 12.2 1450 l-2m 22.5 7.9 1.8 92.1 20.7 14.0 13.5 1450 l-3m 7.5 20.3 1.5 79.7 6.0 18.0 14.2 1500 l-4m 6.9 13.4 0.9 86.6 6.0 20.0 14.0 1500 l-5m 6.0 16.4 1.0 83.6 5.0 26.0 12.6 1515 l-10m 3.8 22.6 0.9 77.4 2.9 30.0 11.6 1515 l-20m 3.0 25.4 0.8 74.6 2.2 32.0 10.2 1525 l-40m 2C6 19.5 0.5 80.5 2.1 32.0 9.5 1525 l-55m 311 7.1 0.2 92.9 2.9 32.0 9.7 1544 1-Om 42.8 7.0 3.0 93.0 39.8 2.0 11.2 1720 1-lm 44.7 5.6 2.5 94.4 42.2 3.0 11.8 1720 l-2m 18.8 7.7 1.5 92.3 17.3 14.0 13.0 1720 l-3m 18.5 8.4 1.5 91.6 17.0 16.0 13.0 1730 l-4m 5.5 12.9 0.7 87.1 4.8 23.0 12.2 1730 l-5m 6.1 7.1 0.4 92.9 5.7 25.0 11.9 1737 l-10m 2.8 39.0 1.1 61.0 1.7 29.0 10.9 1737 l-20m 2.4 7.3 0.2 92.7 2.2 30.5 10.5 1750 l-40m 2.0 6.8 0.1 93.2 1.9 31.0 9.8 1750 1-5 5m 3.9 8.8 0.3 91.2 3.6 32.0 9.6 1800 260 SERIES//: 8 DATE: J u l y 21/77 S. & D. / TSM* / % Org. 7 owe** / ; X I n o r g . ./ IWC° / S .%./ T°C / TIME 2-Om 49.9 , 1.6 0.8 98.4 49.1 4.0 12.2 1005 2-lm 36.8 4.8 1.8 95.2 35.0 4.0 13.1 1005 2-2m 18.9 2.5 0.5 97.5 18.4 6.0 14.1 1005 2-3m 24.4 8.2 2.0 91.8 22.4 10.0 14.2 1010 2-4m 6.6 12.2 0.8 87.8 5.8 •18.0 14.6 1010 2-5m 5.0 7.2 0.4 92.8 4.6 20.0 14.5 1015 2-10m 2.5 14.7 0.4 85.3 2.1 30.0 11.6 1015 2-20m 32.0 10.8 1024 2-4 Om 2.4 20.6 0.5 79.4 1.9 33.0 9.6 1024 2-60m 33.0 9.8 1035 2-100m 2.1 26.6 0.6 73.4 1.5 33.0 9.8 1035 2-6 Om 1.7 12.5 0.2 87.5 1.5 35.0 9.4 1050 2-20m 1.8 6.1 0.1 93.9 1.7 33.0 10.1 1055 2-Om 28.2 8.3 2.3 91.7 25.9 8.0 13.5 1625 2-lm 25.2 4.7 1.2 95.3 24.0 8.0 14.1 1625 2-2m 16.9 13.7 2.3 86.3 14.6 16.0 14.7 1625 2-3m . 7.8 12.4 1.0 87.6 6.8 20.0 14.2 1632 2-4m 4.5 10.2 0.5 89.8 4.0 24.0 13.1 1632 2-5m 4.9 10.0 0.5 90.0 4.4 26.0 12.2. 1635 2-10m 4.1 14.6 0.6 85.4 3.5 30.0 10.2 1635 2-20m 2.5 4.8 0.1 95.2 2.4 31.0 10.2 1640 2-40m 2.6 6.6 0.2 93.4 2.4 32.0 9.6 1640 2-60m 1.7 3.8 0.1 96.2 1.6 32.0 9.7 1650 2-100m 1.8 10.4 0.2 87.6 1.6 32.0 9.4 1650 261 SERIES//: 9 DATE: August 22/77 S. & D. / TSM* / % Org. / owe** / ; I I n o r g . / IWC° / S %./ T°C / TIME 1-Om 63.9 3.9 2.5 96.1 61.4 1.5 11.2 1240 1-lm 46.5 5.5 2.5 94.5 44.0 2.0 11.5 1240 l-2n© 35.0 2.3 0.8 97.7 34.2 3.0 11.6 1240 l-3m 38.9 5.8 2.3 94.2 36.6 3.0 12.1 1245 l-4m 38.0 5.2 2.0 94.8 36.0 9.0 13.2 1245 l-5m 32.4 9.4 3.0 90.6 29.4 16.0 14.0 1250 l-10m•, 12.4 7.6 0.9 92.4 11.5 27.0 12.3 1250 l-20m 7.2 4.3 0.3 95.7 6.9 30.0 10.7 1255 l-30m 6.5 12.1 0.8 87.9 5.7 30.0 9.8 1255 l-40m 7.8 10.3 0.8 89.7 7.1 30.0 9.8 1300 l-55m , 7 - ° 5.7 0.4 94.3 6.6 31.0 9.5 1300 1-Om 77.7 6.4 5.0 93.6 72.7 2.0 11.5 1613 1-lm 74.1 6.1 4.5 93.9 69.6 2.0 11.3 1613 l-2n® 55.9 3.9 2.2 96.1 53.7 2.0 11.7 1613 l-3m 63.9 5.6 3.6 94.4 60.3 2.0 11.8 1617 l-4m 58.9 6.9 4.1 93.1 54.8 3.0 12.3 1617 l-5m© 36.2 9.9 3.6 90.1 32.6 6.0 13.6 1622 l-10nt£> 9.7 17.0 1.7 83.0 8.0 26.0 13.4 1622 l-20m© 4.8 12.1 0.6 87.9 4.2 29.0 10.7 1625 l-30m 2.8 2.0 0.1 98.0 2.7 30.0 10.0 1625 l-40m 2.6 11.3 0.3 88.7 2.3 30.0 9.8 1630 l-55m . 2.6 13.9 0.4 86.1 2.2 31.0 9.5 1630 (2) only s i l t and clay f r a c t i o n 262 SERIES// : 9 DATE : August 23/77 S. & D. / TSM* / % Org. / owe** / % Inorg. / IWC° / S %./ T°C / TIME 2-Om 30.2 4.3 1.3 95.7 28.9 1.0 11.7 1002 2-lm 35.0 9.3 3.3 90.7 31.7 1.0 11.4 1002 2-2m 29.7 4.1 1.2 95.9 28.5 3.0 12.0 1002 2-3m 10.0 26.7 2.7 73.3 7.3 18.0 15.8 1006 2-4m 7.7 13.5 1.0 86.5 6.7 22.0 15.6 1006 2-5m 9.4 2.9 0.3 97.1 9.1 22.0 15.2 1012 2-10m 5.3 15.8 0.8 84.2 4.5 27.0 11.8 1012 2-20m 6.4 18.4 1.2 81.6 5.2 30.0 10.5 1016 l-40m 3.2 2.3 0.1 97.7 3.1 30.5 9.4 1016 2-60m 15.2 6.9 1.0 93.1 14.2 30.5 9.4 1020 2-80m 21.1 16.3 3.5 83.7 17.6 30.5 8.9 1020 2-100m 3.4 10.8 0.4 89.2 3.0 31.0 9.0 1035 2-120m 13.6 11.0 1.5 89.0 12.1 31.0 8.7 1035 2-0m 23.1 7.1 1.6 92.9 21.5 2.0 12.1 1542 2-lm 23.7 5.2 1.2 94.8 22.5 2.0 12.4 1542 2-2m 24.1 5.8 1.4 94.2 22.7 4.0 12.6 1542 2-3m 10.8 1.5 0.2 98.5 10.6 7.0 13.3 1545 2-4m 21.2 3.9 0.8 96.1 20 .4 15.0 15.5 1545 2-5m 7.7 4.6 0.4 95.4 7.3 18.0 15.7 1550 2-10m 3.8 4.7 0.2 95.3 3.6 26.0 12.5 1550 2-20m 2.8 8.4 0.2 91.6 2.6 30.0 10.1 1556 2-40m 3.3 2.4 0.1 97.6 3.2 30.0 9.7 1556 2-60m 2.9 3.6 0.1 96.4 2.8 30.0 9.5 1603 2-80m 3.6 4.0 0.1 96.0 3.5 30.0 9.0 1603 2-100m 2.1 0.0 0.0 100.0 2.1 30.0 9.0 1612 2-120m 2.5 0.0 0.0 100.0 2.1 30.0 8.8 1612 263 SERIES//: 9 DATE: August 24/77 S. & D. / TSM* / % Org. / OWC** /.% Inorg. / IWC° / S %./ T°C / TIME/ 7»0m 11.4 10.0 1.1 90.0 10.3 2.0 13.1 0857 7-lm 10.6 9.2 1.0 90.8 9.6 3.0 13.3 0857 7-3m 4.7 0.0 0.0 100.0 4.7 15.0 17.7 0857 7-5m 2.6 11.9 0.3 88.1 2.3 18.0 17.3 0904 7-7m 2.6 5.9 0.2 94.1 2.4 22.0 15.5 0904 7-10m 1.2 2.8 0.0 97.2 1.2 26.0 12.8 0908 7-20m 0.7 29.0 10.6 0908 7-40m 0.8 10.8 0.1 89.2 0.7 30.0 9.7 0914 8-0m 11.2 5.0 0.6 95.0 10.6 3.5 12.8 0927 8-lm 11.4 11.7 1.3 88.3 10.1 3.5 13.3 0930 8-3m 6.3 11.8 0.7 88.2 5.6 12.0 16.7 0930 8-5m 3.0 2.1 0.1 97.9 2.9 16.0 17.6 0935 8-7m 3.0 20.7 0.6 79.3 2.4 22.0 15.8 0935 8-10m 0.7 33.3 0.2 66.7 0.5 27.0 12.6 0940 8-20m 1.1 19.8 0.2 80.2 0.9 30.0 10.7 0940 8-30m 1.4 5.7 0.1 94.3 1.3 30.0 10.2 0945 9-0m 13.6 12.1 1.7 87.9 11.9 4.0 12.8 0957 9-lm 10.9 2.5 0.3 97.5 10.6 4.0 13.4 0957 9-3m 3.2 30.7 1.0 69.3 2.2 14.0 17.7 0957 9-5m 2.1 26.9 0.6 73.1 1.5 18.0 17.6 1001 9-7m 1.4 12.3 0.2 87.7 1.2 22.0 16.1 1001 9-10m 0.9 10.0 0.1 90.0 0.8 27.0 13.3 1005 9-20 2.3 10.3 0.2 89.7 2.1 30.0 10.5 1005 9-40m 0.7 13.2 0.1 86.8 0.6 30.0 9.4 1009 264 SERIES//: 10 DATE: October 31/77 S. & D. / TSM* / % Org.,/ OWC** / % Inorg. / IWC° /;S %./ T°C / TIME / 1-Om 7.0 7.3 0.5 92.7 6.5 7.0 7.6 1250 1-lm 7.0- 6.4 0.6 92.2 6.4 8.0 8.1 1250 l-2Am 3.3 20.0 10.0 1250 l-2Bm 5.1 12.6 0.7 87.4 4.4 14.0 9.1 1255 l-3Bm 2.1 21.0 10.0 1255 l-3Bm 4.1 16.0 0.7 84.0 3.4 19.0 9.9 1305 l-4Am 2.5" 5.8 0.2 94.2 2.3 21.0 10.3 1305 l-4Bm • 4.0 19.4 0.8 80.6 3.2 20.0 10.1 1310 l-5Am 2.4 10.3 0.2 89.7 2.2 22.5 10.3 1310 l-5Bm 1.0 25.0 10.7 1315 l-10Am 1.5 18.8 0.3 81.2 1.2 26.0 10.4 1315 1-1 OBm 2.1 25.0 10.4 1320 l-20Am 1.3 16.7 0.2 83.3 1.1 28.0 10.8 1320 l-20Bm 1.3 33.3 0.4 66.7 0.9 28.0 10.3 1325 l-40Am 2.7 0.0 0.0 100.0 2.3 29.5 9.4 1325 l-40Bm 2.5 15.2 0.4 84.8 2.1 29.0 9.4 1335 l-55m 4.8 14.5 0.7 85.5 4.1 30.0 911 1335 265 SERIES//: 10 DATE: November 1/77 S. & D. / TSM* / % Org. / OWC** / % Inorg.. / IWC° / S .%../ T°C / TIME / 1-Om 4.5 9.0 7.1 0850 l-5m 1.2 26.0 10.1 0850 2-Om 4.3 13.1 0.5 86.9 3.8 10.5 7.3 0910 2-5m 2.2 30.8 0.7 69.2 1.5 26.0 10.2 0910 4-0m 3.3 13.1 0.5 86.9 2.8 14.0 8.0 0920 4-5m 1.2 26.0 10.0 0920 8-0m — 1.8 18.0 8.7 1015 8-5m 1.3 21.3 0.3 78.7 1.0 25.0 10.4 1015 9-0m 2.5 22.8 0.6 77.2 1.9 19.0 9.3 1025 9-5m 1.3 13.8 0.2 86.2 1.1 23.0 10.0 1025 TRAP//: 2 STATION//: 1 CRUISE//: 5 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 25m 45m 65m P a r t i c l e Size*(um) 0.7 40.1 13.4 21.6 30.7 1.4 16.1 32.5 17.6 19.3 2.4 13.7 12.7 13.4 26.7 3.4 10.0 5.6 20.7 17.1 4.9 16.4 5.9 6.0 25.9 6.9 16.5 11.5 2.7 12.3 9.7 34.5 23.1 12.0 7.6 13.8 41.2 17.4 29.4 10.5 17.8 36.0 26.1 37.3 33.4 21.8 82.5 26.9 50.1 88.8 25.9 128.7 46.3 42.1 62.7 30.0 37.3 32.7 48.9 21.1 35.6 9.6 47.4 87.8 22.0 43.5 47.4 61.9 50.3 39.6 55.2 124.7 114.1 75.7 92.7 >64.0 99.9 35.7 60.4 184.6 Moment Measures x(ym) 9.4 9.8 9.5 10.6 S.D.(um) 5.6 6. 1 3.6 8.7 skewness 0.0 1.1 -0.4 0.9 kurtosis 1.5 3.1 3.0 2.4 ^equivalent s p h e r i c a l sedimentation diameter 267 TRAP//: 2 STATION//: 1 CRUISE//: 5 "1 I 1 1 1 1 2 4 6 8 10 12 ESSD* (0) *ESSD = CWT% = equivalent s p h e r i c a l sedimentation diameter cummulative weight percent 268 TRAP//: 5 STATION//: 1 CRUISE//: 7 2 Inorganic Sedimentation Rate (g/m /day) Trap depth: 13m 33m 53m P a r t i c l e Size*(ym) 0.7 22.7 57.0 43.7 1.4 52. 1 131.0 100.4 2.4 15.2 38.3 29.3 3.4 3.9 9.8 7.5 4.9 3.5 13.5 14.7 6.9 12.6 33.4 30.2 9.7 34.5 24.6 25.1 13.8 45.4 20.6 65.4 17.8 13.1 33.2 73.0 21.8 16.8 41.3 37.1 25.9 31.6 75.1 42.3 30.0 9.2 21.9 12.6 35.6 2.4 5.6 3.9 43.5 7.6 42.5 29.4 55.2 20.7 135.1 97.6 >64.0 19.8 160.6 124.9 Moment Measures x(ym) 5.4 8.8 8.1 S.D.(ym) 3.4 6.9 5.9 skewness 0.8 0.4 0.3 k u r t o s i s 3.7 1.5 1.6 269 *ESSD = equivalent s p h e r i c a l sedimentation diameter CWT% = cummulative weight percent TRAP//: 6 STATION//: 5 CRUISE//: 7 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 20m 60m 100m P a r t i c l e Size(ym)* 0.7 14.5 9.5 13.7 23.2 1.4 4.6 11.5 18.4 6.9 2.4 2.4 5.7 5.5 6.4 3.4 1.2 1.6 1.8 10.0 4.9 0.7 0.4 3.4 6.4 6.9 1.0 0.4 6.9 8.7 9.7 1.2 1.2 2.5 2.5 13.8 2.3 1.5 6.0 6.3 17.8 0.9 1.1 10.3 13.2 21.8 2.2 1.1 3.5 4.4 25.9 3.9 2.0 2.2 2.2 30.0 1.1 1.6 1.5 0.6 35.6 0.3 2.5 0.4 0.2 43.5 0.1 0.9 0.4 0.0 55.2 0.02 0.9 0.8 0.4 >64.0 0.01 1.0 0.2 1.4 Moment Measures x(ym) 2.4 3.2 2.6 2.6 S.D.(ym) 3.6 2.3 3.6 3.7 skewness 3.2 6.0 2.5 2.2 k u r t o s i s 25.8 54.5 9.8 8.2 271 *ESSD = CWT% = equivalent s p h e r i c a l sedimentation diameter cummulative weight percent TRAP//: 8 STATION//: 1 CRUISE//: 8 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 20m 40m 55m P a r t i c l e Size*(um) 0.7 15.9 13.7 9.2 18.2 1.4 28.8 20.7 21. 1 15.9 2.4 8.4 6.0 6.2 10.5 3.4 2.2 1.9 1.8 11.1 4.9 2.9 5.1 8.4 7.3 6.9 5.5 11.6 17.8 10.3 9.7 23.4 12.0 13.4 14.7 13.8 52.1 24.3 19.8 44.9 17.8 18.6 34.4 5.1 47.6 21.8 8.5 12.5 23.0 13.6 25.9 9.4 8.3 50.2 3.5 30.0 4.2 4.6 14.7 2.1 35.6 4.1 5.8 3.8 3. 1 43.5 11.0 6.3 6.0 10.1 55.2 22.8 12.4 11.8 21.5 >64.0 7.2 7.9 3.7 6.8 Moment Measures x(um) 5.7 5.6 5.8 5.5 S.D.(um) 4.7 3.8 5.7 5.1 1skewness 2.1 2.2 2.1 1.7 k u r t o s i s 8.0 7.6 6.7 5.1 TRAP//: 8 STATION//: 1 CRUISE//: 8 100 _, 80-J 60-\ 40-^ 20J *ESSD = equivalent s p h e r i c a l sedimentation diameter CWT% = cummulative weight percent 274 TRAP#: 9 STATION//: 2 CRUISE//: 8 2 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 45m 85m 135m. P a r t i c l e Size*(um) 0.7 23.5 16.2 16.1 6.2 1.4 16.3 14.1 5.7 14.9 2.4 23.9 12.0 5.5 8.8 3.4 6.9 5.3 11.6 10.6 4.9 3.8 5.4 16.0 7.4 6.9 8.5 8.0 4.6 6.9 9.7 10.7 16.2 3.3 11.3 13.8 5.6 7.8 10.0 6.4 17.8 3.8 2.1 12.2 7.9 21.8 27.9 12.9 9.9 16.9 25.9 62.2 28.6 15.5 34.2 30.0 37.2 8.4 7.2 10.0 35.6 10.3 2.1 7.4 2.6 43.5 •17.1 4.8 5.2 •2.5 55.2 33.9 9.9 7.7 4.3 >64.0 10.6 3.1 2.4 1.4 Moment Measures x(ym) 7.3 5.2 5.2 5.0 S.D.(ym) 5.3 4.4 2.7 5.8 skewness 1.1 1.8 0.6 2.1 kurtosis 3.4 5.8 2.9 6.6 TRAP#: 9 STATION//: 2 CRUISE//: 8 *ESSD CWT% = equivalent s p h e r i c a l sedimentation diameter = cummulative weight percent TRAP//: 10 STATION//: 1 CRUISE//: 9 Inorganic Sedimentation Rate (gm/m /day) Trap depth: 5m 20m 40m 55m P a r t i c l e Size*(um) 0.7 78.4 191.5 27.3 77.0 1.4 54.7 55.6 62.8 98.9 2.4 15.3 16.9 18.3 27.7 3.4 3.9 4.4 4.7 7.1 4.9 1.0 1.1 1.2 1.8 6.9 7.4 0.3 1.2 0.4 9.7 16.5 0.1 3.7 0.1 13.8 33.4 0.01 13.1 11.4 17.8 65.6 26.3 21.9 29.7 21.8 128.4 111. 1 58.5 72.7 25.9 260.9 134.0 121.4 135.1 30.0 76.1 38.8 35.4 73.6 35.6 19.5 26.3 9.1 88.4 43.5 89.2 125.8 90.5 122.3 55.2 195.2 255.4 284.4 289.6 >64.0 61.4 214.6 326.9 268.6 Moment Measures x(ym) 8.9 10.4 13.0 11.4 S.D.(ym) 6.7 7.6 11.9 7.9 skewness 0.9 0.1 0.5 0.2 k u r t o s i s 2.6 1.5 1.4 1.5 TRAP//: 10 STATION//: 1 CRUISE//: 9 °H 1 1 r 1 2 4 6 8 ESSD (0) *ESSD = equivalent s p h e r i c a l sedimentation diameter CWT% = cummulative weight percent 278 TRAP//: 11 STATION//: 2 4 CRUISE//: 9 2 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 40m 80m 120m P a r t i c l e Size*(um) 0.7 15 .8 13. 0 8 .9 49 .1 1.4 8 .2 37. 4 20 .6 12 .4 2.4 6 .1 26. 0 11 .2 7 .6 3.4 4 .6 7. 3 17 .8 21 .6 4.9 6 .1 12. 2 14 .2 30 .5 6.9 6 .9 24. 2 5 .1 14 .7 9.7 14 .2 8. 9 15 .9 13 .5 13.8 21 .2 16. 1 29 .5 33 .3 17.8 8 .3 24. 7 8 .6 30 .8 21.8 19 .6 28. 9 20 .9 29 .5 25.9 31 .8 5.1. 8 43 .5 49 .8 30.0 9 .2 15. 1 13 .8 14 .5 35.6 2 .4 3. 9 5 .7 3 .7 43.5 6 .7 28. 5 20 .2 9 .9 55.2 14 .2 63. 9 43 .3 22 .5 >64.0 4 .5 21. 0 13 .6 11 .9 Moment Measures x(um) 6 .1 7. 6 7 .4 5 .4 S.D. (ym) 4 .5 5. 0 4 .6 3 .5 skewness 1 .3 0. 8 0 .7 1 .1 kurtosi s 3 .9 2. 4 2 .0 3 .5 TRAP//: 11 STATION//: 2 CRUISE//: 9 ESSD* (0) *ESSD = equivalent s p h e r i c a l sedimentation diameter CWT% = cummulative weight percent TRAP//: 12 STATION//: 1 CRUISE//: 10 Inorganic Sedimentation Rate (g/m /day) Trap depth: 5m 20m 40m 55m P a r t i c l e Size*(pm) 0.7 2.1 6.3 4.2 4.6 1.4 4.8 3.4 9.7 7.0 2.4 1.4 0.9 2.8 2.6 3.4 1.1 0.2 1.0 1.8 4.9 1.8 0.1 1.2 0.5 6.9 1.3 1.6 1.2 0.1 9.7 2.3 4.2 1.5 0.03 13.8 1.7 2.7 7.2 4.4 17.8 0.9 2.0 12.7 10.0 21.8 2.0 2.1 6.3 2.9 25.9 4.0 3.8 6.9 3.0 30.0 1.2 1.1 2.3 16.3 35.6 0.3 0.3 1.6 26.6 43.5 0.4 2.6 3.2 7.7 55.2 1.3 5.9 5.0 9.7 >64.0 1-9 1.9 3.2 25.5 Moment Measures x(um) 5.2 6.7 6.1 10.5 S.D.(pm) 3.4 4.5 3.8 7.6 skewness 1.2 0.7 1.5 0.4 k u r t o s i s 4.6 2.5 5.5 1.6 TRAP//: 12 STATION//: 1 CRUISE//: 10 *ESSD = equivalent s p h e r i c a l sedimentation diameter CWT% = cummulative weight percent GRAIN SIZE STATISTICS ON BOTTOM SEDIMENT TRANSECT Cruise & Station Mean(um) & Depth 8-B-85m 11.5 8-C-65m 10.1 8-D-177m 8.8 8-E-200m 6.3 8-F-200m 5.6 8-G-243m 2.5 8-H-278m 5.4 8-I-286m 3.0 8-J-135m 3.6 8-K-19m 1.4 8-L-136m 1.2 S.D.(ym) skewness kurtosis 10.7 0.4 1.5 10.5 1.2 2.9 6.9 0.6 2.1 4.8 0.9 2.6 5.1 0.7 2.0 3.7 2.9 21.2 5.9 0.7 1.9 2.8 5.8 78.0 3.0 1.4 4.6 2.7 8.4 112.6 2.9 9.5 139.2 GRAIN SIZE STATISTICS ON SURFACE WATER TRANSECT MOMENT MEASURES C r u i s e & S t a t i o n Mean(ym) S.D. (ym) skewness k u r t o s i s 8-A-O 3.3 3.8 2.3 7.6 8-B-O 2.2 3.2 2.6 11.1 8-C-O 1.5 3.1 4.3 33.6 8-D-O 1.7 2.6 7.4 91.7 8-E-O 2.2 2.7 7.0 86.7 8-F-O 1.0 2.9 7.2 73.1 8-G-O 3.0 2.3 6.7 87.4 8-H-O 2.4 2.5 6.0 73.8 8-1-0 1.3 3.0 10.0 152.0 8-J-O 1.5 2.7 9.7 123.3 8-K-O 1.4 2.9 7.4 84.4 284 P a r t i c l e S i z e * / 8-1-0 / (ym) 0.7 6.98 1.4 6.52 2.4 1.90 3.4 1.89 4.9 3.61 6.9 3.71 9.7 7.40 13.8 7.46 17.8 2.13 21.8 1.09 25.9 1.39 30.0 0.41 35.6 0.12 43.5 0.86 55.2 1.93 >64.0 0.61 ension Concentration (mg/1) Sample ID** 8-2-0 / 9-1-0 / 9-7-0 9.04 4.59 0.69 6.50 10.55 1.69 2.25 3.09 0.70 2.46 2.50 0.19 3.79 5.12 0.05 3.17 6.32 0.32 2.85 10.00 0.69 4.22 7.95 0.56 1.22 2.24 0.86 0.31 1.92 0.25 0.08 3.25 0.06 0.02 : 1.41 0.62 0.00 .1.31 1.39 0.28 1.93 0.64 0.75 3.67 0.81 0.56 1.15 0.78 x(ym) 3.3 S.D.(ym) 3.8 skevmess 2.3 k u r t o s i s 7.6 Moment Measures 2.2 4.1 6.8 3.2 3.1 3.3 2.6 2.0 0.2 11.1 6.8 3.4 * equ i v a l e n t s p h e r i c a l sedimentation diameter ** c r u i s e ( s e r i e s ) - s t a t i o n - depth 285 SUSPENDED SEDIMENT SAMPLES CRUISE//: 9 2 4 6 8 10 12 ESSD* (0) *ESSD = CWT% = equivalent s p h e r i c a l sedimentation diameter cummulative weight percent Suspension Concentration (mg/1) Sample ID** P a r t i c l e S i z e * / 10-1-0 / 10-2-0 / 10-4-0 / 10-8-0 / 10-9-0 (ym) 0.7 1158 2.27 1.44 0.93 0.94 1.4 0.72 0.73 0.42 0.28 0.35 2.4 0.36 0.37 0.17 0.12 0.26 3.4 0.10 0. 11 0.05 0.05 0.09 4.9 0.20 0.04 0.06 0.06 0.07 6.9 0.47 0.02 0.23 0.14 0.06 9.7 0.43 0.02 0.32 0.12 0.02 13.8 0.47 0.04 0.09 0.03 0.02 17.8 0.14 0.03 0.02 0.01 0.03 21.8 0.04 0.03 0.01 0.00 0.03 25.9 0.01 0.06 0.00 0.00 0.04 30.0 0.00 0.02 0.00 0.00 0.01 35.6 0.00 0.02 0.00 0.00 0.00 43.5 0.00 0.03 0.00 0.00 0.00 55.2 0.00 0.01 0.00 0.00 0.00 >64.0 0.00 0.00 0.00 0.00 0.00 Moment Measures x(um) 1.4 0.9 1.0 1.0 0.9 S.D.(um) 3.5 3.1 3.8 3.2 2.9 skewness 3.6 15.5 8.2 9.3 11.5 kurtosis 22.5 283.2 106.8 136.2 176.3 287 Assorted Water Samples Station Date Depth Size f r a c t i o n 0.7lnm 1.OOnm 0.7lnm 0.426nm r \ . x l.OOnm 0.32nm 0.32nm 0.320nm 1 June 25/76 ,0 0.2 - 2 0.40 0.30 0. 12 0.03 1 June 25/76 0 0.2 - 2 0.18 0.46 0.08 0.04 1 June 25/76 0 2.0 - 20 0.79 0.11 0.09 0.07 1 June 25/76 20 0.2 - 2 0.30 0.50 0.15 — 1 June 25/76 20 2.0 - 20 0.53 0.13 0.07 0.06 3 Aug. 16/76 0 0.2 - 2 0.27 0.48 0.13 0.05 3 Aug. 16/76 0 2.0 - 20 0.90 0.07 0.07 0.08 3 Aug. 16/76 66 0.2 - 2 0.25 0.39 0.08 0.08 3 Aug. 16/76 66 2.0 - 20 0. 19 0.34 0.09 0.06 Mamquam R. July 30/76 0 0.2 - 2 0.32 0.20 0.07 0.07 Mamquam R. July 30/76 0 2.0 - 20 4.00 0.02 0.07 0.05 1 July 30/76 0 0.2 - 2 0.43 0.37 0.16 0.08 1 July 30/76 0 2.0 - 20 0.61 0.07 0.04 0.06 1 July 30/76 0 0.2 - 2 0.15 1.44 0. 13 0.10 1 July 30/76 0 2.0 - 20 0.86 0.05 0.05 0.14 2 Sept. 24/76 141 0.2 - 2 1.26 0.18 0.23 0.09 2 Sept. 24/76 141 2.0 - 20 0.39 0.21 0.08 0.09 9 A p r i l 26/77 0 0.2 — 2 0.50 0.23 0.12 0.09 9 A p r i l 26/77 0 2.0 - 20 1.43 0.10 0.14 0.08 1 June 27/77 0 0.2 - 2 0.20 0.57 0.08 0.04 1 June 27/77 0 2.0 - 20 0.38 0.20 0.07 0.08 4 June 27/77 0 0.2 - 2 0.16 0.69 0. 11 0.06 8 June 27/77 0 0.2 - 2 0.28 0.71 0.20 0.04 M i l l Cr. July 22/77 0 0.2 - 2 0.20 0.46 0.09 0.09 M i l l Cr. July 22/77 0 2.0 - 20 0.68 0. 17 0. 12 0.06 Trap > Samples from Station (1) A p r i l 26, 1977 Depth Size Fr a c t i o n 1. 70nm 0. , 7 lnm 1.OOnm 0.71nm 0.426nm (m) (um.) 0. 32nm 1. ,00nm 0.32nm 0.32nm 0.320nm 5 0.2 -• 2 _ _ _ 0. 18 0.04 5 2.0 -• 4„ 0. 26 - - 0.10 0.08 5 4.0 - 20. - - - - 0.10 25 0.2 -• 2 - 16. 0 0.02 0.39 0.03 25 2.0 -• 4 0. 96 - - 0.04 0.04 25 4.0 - 20 0. 65 - - 0.11 0. 14 45 0.2 -• 2 0. 53 7. .3 0.04 0.06 0.06 45 2.0 -• 4 0. 42 28.0 0.01 0.06 0. 10 45 4.0 - 20 - - - 0.28 0.04 SERIES//: 8 STATION//: 2 DATE: July 21/77 DBSL* / CV** / CD*** / TIME / (m) (cm/sec) (mag.) 0.0 35.1 170° 0942 1.0 20.8 165° 0943 2.0 9.1 200° 0945 3.0 23.4 170° 0946 2.0 6.5 150° . 0947 4.0 27.3 170° 0948 4.0 23.4 170° 0950 4.0 19.5 170° 0957 2.0 3.9 35° 1000 118.0 ' 1.3 110° 1100 0.0 5.2 175° 1521 1.0 26.0 160° 1522 2.0 7.8 170° 1523 3.0 10.4 180° 1525 4.0 6.5 170° 1526 5.0 7.8 175° 1527 10.0 3.1 155° 1528 5.0 7.8 130° 1532 4.0 7.8 90° 1533 3.0 11.7 70° 1534 2.0 11.7 180° 1535 1.0 35.1 150° 1536 0.0 7.8 200° 1538 1.0 28.6 165° 1542 2.0 11.7 190° 1543 2.0 10.4 170° 1657 3.0 10.4 195° 1700 4.0 3.9 180° 1703 3.0 7.8 190° 1705 2.0 26.0 165° 1707 1.0 22.1 160° 1710 depth below sea l e v e l current v e l o c i t y current d i r e c t i o n SERIES//: 9 STATION//: 1 DATE: August 22/77 DBSL* '/ CV** / CD*** / TIME / (m) (cm/sec) (mag.) 0.0 41.0 260° 1416 0.0 33.8 250° 1432 1.0 32.5 265° 1434 3.0 11.7 315° 1435 5.0 1.0 200° 1438 10.0 2.3 220° 1442 20.0 3.2 150° 1446 30.0 2.9 80° 1450 40.0 3.2 60° 1458 30.0 4.3 280° 1502 20.0 5.9 310° 1507 10.0 5.2 235° 1512 5.0 10.4 255° 1521 3.0 19.9 315° 1526 1.0 46.8 280° 1529 0.0 53.3 265° 1531 0.0 39.0 262° 1635 100 35.1 262° 1640 3.0 8.8 345° 1642 5.0 13.0 235° 1644 7.0 7.8 215° 1647 8.0 7.2 225° 1650 9.0 2.6 207° 1651 10.0 5.2 122° 1653 9.0 2.6 185° 1656 8.0 7.8 200° 1700 7.0 9.1 180° 1703 5.0 14.3 175° 1705 3.0 4.6 347° 1712 1.0 22.1 270° 1714 0.0 26.0 260° 1716 . r; j M.1 0.0 29.9 285° 1910 SERIES//: 9 STATION//: 2 DATE: August 23/77 DBSL* / CV** / CD*** / TIME/ (m) (cm/sec) (mag.) 0.0 22.1 1.0 18.9 2.0 7.0 3.0 6.5 4.0 2.9 5.0 4.9 7.0 6.2 10.0 3.6 20.0 4.6 30.0 4.3 20.0 3.2 10.0 2.0 5.0 1.3 3.0 3.9 1.0 14.3 0.0 12.4 0.0 11.2 1.0 11.2 2.0 .'•5.2 3.0 10.4 2.0 3.9 3.0 9.1 4.0 10.4 5.0 9.1 7.0 0.4 10.0 7.2 20.0 0.6 10.0 2.6 5.0 10.4 3.0 11.2 2.0 7.8 1.0 18.2 0.0 15.6 235° 1053 240° 1055 190° 1057 180° 1059 165° 1101 308° 1105 80 1108 75° 1110 115° 1115 265° 1120 225° 1125 180° 1127 170° 1129 285° 1131 320° 1135 235° 1139 270° 1626 275° 1628 130° 1630 225° 1632 130° 1636 225° 1638 200° 1640 175° 1642 1644 75° 1645 1647 65° 1653 205° 1655 210° 1657 90° 1659 320° 1700 280° 1702 SERIES//: 10 STATION//: 1 DATE: October 31/77 DBSL* / CV** / CD*** / TIME / (m) (cm/sec) (mag. ) 0.0 29.0 1430 1.0 6.9 315° 1432 2.0 2.6 20° 1434 3.0 0.8 300° 1436 4.0 0.8 120° 1438 10.0 3.0 130° 1440 5.0 2.6 115° 1442 4.0 0.8 65° 1444 3.0 2.3 110° 1446 2.0 3.8 50° 1448 1.0 6.1 330° 1449 0.0 25.9 305° 1451 0.0 41.2 300° 1607 1.0 21.3 300° 1608 2.0 6.1 225° 1612 3.0 4.6 225° 1614 4.0 0.8 180° 1615 5.0 3.0 215° 1616 10.0 2.3 255° 1618 15.0 0.8 120° 1621 20.0 1.5 120° 1624 5.0 1.5 200° 1628 4.0 5.3 190° 1629 3.0 7.6 205° 1631 2.0 6.9 180° 1632 1.0 9.6 285° 1634 0.0 35.0 295° 1636 * depth below sea l e v e l JL JL current v e l o c i t y A **N S\ /\ current d i r e c t i o n