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Abstract 

A b s t r a c t 

A n electric version of the well-known magnetic Me lv in solution of closed 
string theory is derived. B y analogy with the Ka luza -Kle in Me lv in solution, 
which is flat space with points identified under a simultaneous rotation and 
translation in a compact dimension, an orbifold of Minkowski space involving 
identifications under a Lorentz boost and a translation is introduced. When 
dimensional reduction to 9 dimensions is performed, the resulting background 
involves an electric Ka luza -Kle in gauge field, giving rise to the electric Melv in 
interpretation. As was done by other authors for the magnetic Me lv in back
ground, a curved generalization of this orbifold is derived using a series of 
T-duali ty transformations. The closed string is quantized on the resulting 
space, and the string spectrum and parti t ion function are calculated. 
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Chapter 1: Introduction 1 

C h a p t e r 1 

I n t r o d u c t i o n 

Before string theory can become a complete description of nature on the 
most fundamental level, the behaviour of strings in background electromag
netic fields must be understood. One way to introduce electromagnetism 
into string theory is to add boundary terms to the open string worldsheet 
action which couple charges at the string endpoints to a background gauge 
field. This is only an approximation, valid for weak fields, however, since it 
does not take into account the effect of the energy of the gauge field on the 
curvature of the background spacetime. Moreover, since it does not change 
the bulk string worldsheet action, it does not include the effect of such a field 
on closed strings. It is difficult, however, to include these effects, since this 
involves finding a conformally invariant string theory background by solving 
the equations of string theory to all orders in perturbation theory, and few 
solutions are known. 

One such solution is the Melvin background. Classically, there exists 
a class of static, cylindrically symmetric solutions of the Einstein-Maxwell 
system of equations involving electric and magnetic fields, known as Melvin 
solutions. An example of such a solution has a line element and electromag
netic field strength given by [6]: 

ds2 = + (-dt2 + dz2 + dr2) + * V (1.1) 

V 4 ) V
 J

 0 + 
Brdr A d<p 

= (1 + a r ! ) 2 

where r and <p are polar coordinates in the x-y plane. This represents a 
magnetic flux tube along the z-axis, whose energy induces a cylindrically-
symmetric spacetime curvature which confines the flux so that it is most 
intense at the z-axis, and goes to zero at infinity. A string theory analogue 
of this background can be obtained by considering the following metric: 

ds2

w = -dt2 + dx] + dx\ + dr2 + r2 (dip + bdx9)2 (1.2) 
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where xs represents a number of flat spatial dimensions, xc, is a compact 
dimension, and b is a constant. This is related to Minkowski space by the 
shift of the angular coordinate <p —> (p + bdx^. By completing the square, the 
metric, (1.2), may be rewritten in the form: 

ds2

10 = -dt2 + dx] + dr2 + ( l + b2r2) (dx9 + ^^^A (L3) 

r2 

1 + b2r2 

In this form, dimensional reduction may be carried out along the x 9 direction 
(see appendix A), giving the 9-dimensional background: 

r 2 

dsl = -dt2 + dx2 + dr2 + - z^-zdip2 (1.4) 
1 + bzrz 

br2 

A« = e2° = l + b2r2 

v • i + b2r2 

where Av is the Kaluza-Klein one-form gauge field, and e2a is the Brans-Dicke 
scalar. The field strength, dA, generated by Av is that of a magnetic flux tube 
perpendicular to the r — <p plane, with the magnitude of the field strength 
determined by the constant b. Thus, (1.4) is a Melvin-type cylindrically-
symmetric spacetime background involving a magnetic field which is gen
erated by a Kaluza-Klein gauge field. The ten-dimensional string theory 
metric, (1.2), from which it was obtained is called the Kaluza-Klein Melvin 
( K K Melvin) background. 

The K K Melvin model has improved our understanding of strings in mag
netic fields, and has also revealed new connections between different string 
theories. Because it is just flat space with a coordinate shift, the Melvin 
background (1.2) is an exact solution of string theory. Moreover, all string 
theories, including closed string theories, can be quantized on this space, and 
their mass spectra and partition functions calculated. Closed strings cou
ple to the Kaluza-Klein gauge field via their Kaluza-Klein momentum and 
winding excitations, resulting in a non-trivial modification of their flat space 
spectrum. Also, it can be shown that, for certain values of the background 
parameters, type II string theory on Melvin space interpolates between type 
II string theory and the non-supersymmetric type 0 string theories on or
dinary Minkowski space as the radius of the compact dimension is varied 
from 0 to oo [4]. This has led to the speculation that the type II superstring 
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theories are the endpoint of tachyon condensation in the type 0 theories [7]. 
Similar connections have also been found between non-supersymmetric and 
supersymmetric heterotic string theories on Melvin space [8]. 

Another interesting feature of the background (1.2) is that it can be 
generalized to a curved background, on which string theory is also exactly 
solvable [2]. Performing a T-duality transformation along the x9 direction 
(see Appendix B), (1.2) becomes 

r2 -
ds\9 = — dt2 + dx] + dxl + -r-z [dip + bdx9] [dtp — bdx9] (1.5) 

1 + blrz 

_ br2 2 ( # -#o ) _ 1 

l + & 2 r 2 l + & 2 r 2 

where BVXg is an NS-NS antisymmetric tensor field and $ is the dilaton. A 
second parameter b can be introduced with the coordinate shift tp —>• tp + bx9. 
This parameter is analogous to the field strength parameter b in the T-
dualized space. Performing this shift, the background (1.5) becomes 

ds\0 = -dt2 + dx2 + dxl + 1 + b2r2 K> +(b + l>) dx9] [dtp+ (1.6) 

(b — dx9 

_ br2 2 ( * - * 0 ) 1 

l + b2r2 , l + b2r2 

Another T-duality transformation along x9 interchanges b and its T-dual b, 
giving 

r2 

dsl0 = -dt2 + dx] + dx\ + 1 p 2 dip + (b + fc) dx9 [dtp+ (1.7) 

(b — dxg^ 

hr2 

U - — p 2 ( * - * o ) 1 + 6 2r 2 1 + b2r2 

This is a generalization of the KK Melvin background, since the choice b = 0 
yields (1.2). Dimensional reduction of (1.7) to nine dimensions gives: 

r 2 

dsl = -dt2 + dx2 + dr2 H -, -—^dtp2 (1.8) 
(1 + b2r2) (l + b2r2) 
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A = ^ B ~br" c2(*-*»] = 1 

"*> l + b 2 r 2 D * 1 + ~b2r2 1 + ~b2r2 

e2° 
1 + b2r2 

1 + ~b2r2 

where Av is a Kaluza-Klein gauge field and Bv is a gauge field arising from 
the dimensional reduction of the NS-NS 2-form. This 9-dimensional back
ground is a generalization of the background (1.4) involving two magnetic 
gauge fields, with field strength parameters b and b. Thus the string theory 
background (1.7) is a Melvin background which generalizes the K K Melvin 
model. It can be shown that (1.7), like (1.2), is also a solution of string the
ory to all orders in a', and that it admits an exact solution of closed string 
theory [2] [9]. 

In addition to magnetic backgrounds such as (1.1), there also exist similar 
solutions of the classical Einstein-Maxwell equations involving electric fields, 
and it would be useful to find electric Melvin solutions in string theory as well. 
The study of an electric Melvin background may improve our understanding 
of aspects of string theory in electric fields, such as Schwinger pair creation 
of strings. Moreover, it has been suggested that such backgrounds may have 
implications for string cosmology [11] [12]. 

The purpose of this thesis is to construct an electric Melvin background 
analogous to (1.7), and to study closed string theory on this background. The 
background studied is a generalization of the one described in [11] to a curved 
space involving two electric field parameters. In chapter 2, the quantization of 
closed string theory on (1.7) is reviewed. This will illustrate the method that 
will be used to quantize the string on the electric Melvin background, and 
will also allow a comparison of the magnetic and electric cases. In chapter 3, 
the electric Melvin background is derived, and the geometry of the resulting 
space is described. The closed string is then quantized on this space, and the 
partition function is calculated. 
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C h a p t e r 2 
T h e M a g n e t i c M e l v i n S o l u t i o n 

The pupose of this chapter is to review the quantization of the closed 
string on the magnetic Melvin background (1.7), as given in [2] and [3], 
in order to provide the necessary background for an understanding of the 
electric Melvin solution described in the following chapter. In section 2.1, 
the closed bosonic string is quantized on this background, and its quantum 
Hamiltonian is derived in terms of free string oscillator modes. The following 
section will extend these results to the type II superstring. 

2.1 T h e C l o s e d B o s o n i c S t r i n g 

2.1.1 Solu t ion of the Equat ions of M o t i o n 

The bosonic string worldsheet Lagrangian for the background (1.7) can be 
obtained from the usual worldsheet action [5]: 

Choosing the conformal gauge, the worldsheet metric hap becomes the flat 
Minkowski metric and the worldsheet Ricci scalar R is zero, giving 

Substituting the spacetime metric and antisymmetric tensor from (1.7) into 
(2.2) gives, for the Lagrangian, 

S = -

S = 

j— \d+<p + {b + b)d+x9] \d-<p + (b-b)d-xg] (2.3) 
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where the derivatives d+ and <9_ are with respect to the light cone worldsheet 
coordinates a+ = r + a and <7_ = r — a. The flat space dimensions, xs, were 
omitted. 

In order to solve string theory on the Melvin background, a coordinate 
system must be chosen such that the equations of motion can be solved and 
the Hamiltonian is diagonal. Introducing light-cone coordinates 

u = Xc, — t 
v — x9 + 1 

(2.4) 

and using coordinates x = rel,p and x* = re l,p for the r — <p plane, (2.3) can 
be rewritten in the form: 

d+rd-r+ xx d+(p + bd+x9 + bd+(u + t) 
1 + b2xx* 

[d-tp + bd-Xg — bd^(v — t)j + d+ild^v 

(2.5) 

In (2.5), the term 

d+xgd-t — d+td-Xc, (2.6) 

was added to the Lagrangian. This term does not affect the equations of 
motion, since it can be converted to a surface term by integrating by parts. 
The coordinate transformation 

(p1 = <p + bxg + bt (2.7) 

removes the explicit dependence of the Lagrangian on the parameter b and 
expresses it entirely in terms of light-cone coordinates, giving 

L = d+rd-r+ xx 
1 + b2xx* 

d+ip' + bd+u] \d-<p' - bd.v] + d+ud.v (2.8) 

The term involving d+rd-r in (2.8) can be combined with the term involving 
d+<p'd-(p' to form the phase shifted x-coordinate 

rei<p' — ei(bxg+bt)x (2.9) 

Expanding (2.8) and obtaining a common denominator, 

1 
L = 

1 + b2x'x'* 
d+rd-r + b2x'x'*d+rd-r 

x'x'* 
1 + b2x'x'* 

[d+ip'd.ip1-
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+ 
1 

1 + b2x'x'* 
bd+ip'd^v + bd+ud-ip' — b2d+ud-v 

b2x'x'md+ud-v] 

= i \d+rd-r + b2x'x'*d+rd.r + x'x'*d+<p'd-(p'-
1 + b2x'x'* L 

bx'x'* d+ip'd-V + bx'x'*d+ud-(p' + d+ud-v] 

The first and third terms in (2.10) can be combined using 

[d+ud-v+ 

(2.10) 

d+x'd^x'* 

= (d+r + ird+f') (d-r — ird-tp') 

= d+rd-r + r2d+tp'd-<p' + ir (d+<p'd-r - d-ip'd+r) (2.11) 

Substituting (2.11) into (2.10) gives 

1 
L = = [d+x'd-X1* — ir (d+ip'd-r — d-<p'd+r) + 

1 + b2x'x'* 
b2x'x'*d+rd^r - bx'x'*d+tp'd-V + bx'x'*d+ud-ip'+ (2.12) 

d+ud-v] 

The second term in (2.12) is a total derivative and can be neglected: 

ir (d+ip1 d-r — d-ip'd+r) 
1 + b2r2 

= 4 ^ {«9_ [d+<p'ln ( l + b2r2)] -d+ [d.tp'ln ( l + b2r2)] } 

Therefore, from (2.11) and (2.12), 

1 
L = . d+x'd-x' - b2x'x'*d+x'd-x'* + ~b2x'x'*d+x'd-x'*+ 

1 + b2x'x'* 

b2x'x'*d+rd-r - bx'x'*d+<p'd-v + bx'x"d-<p'd+u + d+ud-v] 

B+x'd-x'* + 
1 + b2x'x'* 

b2 (x'x'*f d+ip'd.ip' - bx'x'*d+<p'd-v 

+bx x *d_<p d+u + d+ud^v 

= d+x'd-x'* + 

~bx'x'*d-<p'} 

1 + b2x'x'* 
d+u — bx'x'*d+(p' [d-V+ (2.13) 
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Using (2.9), tp' can be expressed in terms of x'\ 

> 1 , x 

2% \ x'*, 

This gives 

d±tp' 
2i 

-d±x' :d±x" 

Substituting (2.15) into (2.13), 

L = -1 

1 + b2x'x'* 
8+u - — {x'*d+x' - x'd+x'*) 

(2.14) 

(2.15) 

(2.16) 

d-v + - (x'*d-x' - x'd-x'*) 
2i 

+ d+x'd.x' 

The equations of motion of the Lagrangian in the form (2.16) can be 
solved in terms of free fields. Taking F(x') = , r , 1 , and 

° x ' 1+b^x'x'* 
2i (x'*d±x' — x'd±x'*), the equations of motion for u and v are 

A 

d-[F(x')(d+u-bA+)] = 0 (2.17) 
d+[F(x'){d-v + bAJ)] = 0 (2.18) 

Integrating (2.17) and (2.18) once with respect to a_ and a+, respectively, 
gives 

F(x') d+u-bA+ = h+{a+) 

F(x') d-v + bA-

(2.19) 

(2.20) 

where h+ and h- are arbitrary functions of a+ and cr_, respectively. From 
(2.16), the equation of motion for x' is: 

dL n dL dL 
d. 

d+ 

b 

+ d(d+x') 

b 

d(d_x') dx1 = 0 

2i 
x'*h- + d-x" x'*hA ~-~b2x'*h+h-+ 

—d+x'*h_ d_x'*h+ 

2i + 2i + 

0 

d+d-x'* + ibh„d+x'* - ibh+d.x'* + b2h+h_x'* = 0 
d+d-x' — ibh-d+x' + ibh+d-x' + b2h+h-.x' = 0 (2.21) 
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It can be checked by substitution that the solution to (2.21) is 

x = e 
JbV- -i ibU+X . (2.22)' 

where U+ and V_ are arbitrary functions of a+ and cr_, respectively, such 
that h+ — d+U+ and h- = 9_V_, and X satisfies the free string equation of 
motion d+d-X = 0. X can be expressed as 

X = X+ + X_ 

X+ = e 2 ^ X + (2-23) 

x_ = e-2i^-x_ 

where x+ a n d X- a r e single-valued free fields with oscillator expansions 

f~cV 00 

X+ = J2 anexp{-2ina+) ' (2.24) 
' n=—oo 

[o7 °° 

X- = « 1 I T E o„eajp(-2mo-_) (2.25) 
' ra=—oo 

and 7 is chosen so that the physical coordinate, x = rel,p, is single-valued: 

x(a + Tr, r) = x(cr, r) (2.26) 

The light-cone coordinates can also be solved for in terms of the free field X. 
Substituting (2.22) into (2.19) and simplifying gives 

d+u - (-ibd+UXX* + X*d+X - ibd+UXX* - Xd+X*) F(x') 

= d+U 

d+u = d+U{l + b2XX*) - \l2d+uxx* - \l2d+uxx* + 
£ Zi 

\il(x*d+x - xe+x*) 
Z 

d+u = d+U + \ib{Xd+X* - X*8+X) (2.27) 
Z 

Similarly, 

d-v = d-V- - \ib (Xd„X* - X*d„X) (2.28) 
z 
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These equations can be integrated to give 

u = U+ + U- - b(p (2.29) 
v = V+ + V- - b(p 

where U- and V+ are arbitrary functions of <7_ and a+, respectively, and 

<p = 27ra' [J_0_) - J+(a +)] + %- (X+Xl - X*+X_) (2.30) 

J+ and J_ are angular momentum currents in the r — <p plane, given by: 

J±(?±) = ^ 7 JQ

a±
 da± (X±0±X*± - X*±d±X±) (2.31) 

2.1.2 B o u n d a r y Condi t ions 

The solutions (2.22) and (2.29) for the non-trivial spacetime coordinates must 
be supplemented by the periodic closed string boundary condition, which 
further constrains the form of these solutions. From (2.4) and (2.30), u, v, 
and <p satisfy.the boundary conditions 

u(a + 7r, r) = u(a, T) + 2irwR 
V(O + -K,T) = V{O,T)+ 2irwR (2.32) 

<p(o~ + 7r, r) = <p(cr, r) — 2na'J 

where w is the winding number in the compact rr9 direction, and J = J+(n) + 
J_(7r) = JL + JR is the angular momentum in the r — tp plane. The conditions 
on u and v are a consequence of the identification x9 = x9 + 2irwR for a closed 
string on a compact space with winding number w. Information on the form 
of U± and V± can be obtained from (2.32). U± and V± can be expressed in 
terms of the usual mode expansions: 

U± = a±P

u

± + U'± (2.33) 
14 = a±pv

± + Vl 

where p± and pv

± are constants, and U'± and V± are periodic functions of o±. 
(2.32) gives the boundary condition for U+ and (7_: 

u (a + 7r, r) — u (a, r) = 2irwR 
U+ (cr+ + TT) + U- (<7_ - TT) - U+ (cr+) - U_ - b [ip (a + TT, r) -

<p (cr, r)] = 2nwR 
U+ (cr+ + TT) + U- (cr_ - vr) = U+ (cr+) + £ _ (cr_) - b2ira'J + (2.34) 
2nwR 



Chapter 2: The Magnetic Melvin Solution 11 

Similarly, for V±, 

V+ (a+ + TT) + V- (a- -n) = V+ {a+) + V_ (<7_) - ~b2na'J + (2.35) 

2itwR 

From (2.34) and (2.35), p± and pv

± have a similar form to that of free string 
theory, except with a shift in the winding number term: 

u 
p± 

(2.36) : ±(wR - a'bJ) + pu 

pv

± = ±(wR - a'bJ) + pv 

Pu = \(s-p) 

Pv = l(s + p) 

where s and p are constants which will be shown to be related to the canonical 
energy and momentum of the string. 

A n expression for the phase, 7, in (2.23) can be found by imposing peri
odicity on the physical coordinate, x. The expression for x in terms of free 
fields as obtained from (2.9), (2.22), and (2.23) is 

x = re* 

= exp i (-6ar9 -bt + bV- - bU+) [exp (2i-ya+)x++ (2.37) 

exp(-2fY<r_)x-] 

Therefore, using (2.33) and (2.36), 

x(a + 7r, r) = expz {—b [xg(a, r) + 2nwR] — bt + b [V_(cr_) + 

7T (wR — a'bJ^j 7r(s + p) U+(a+) + n{wR- a'bJ)+ 

1 
ir(s — p) j • [exp(2i7cr+ + 2i77r)x+ + exp(—2z7<7_ -f 2ijn)x-

exp 1 —2biYwR — birs + 27r7 x(a, r ) (2.38) 

To satisfy (2.26), 7 must therefore be given by 

7 = bwR H—bs 
2 

(2 .39) 
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Because it occurs only in the phase factors in (2.23), 7 is defined only modulo 
an integer, so the restriction 

0 < 7 < 1 (2.40) 

may be imposed. 

2.1.3 H a m i l t o n i a n 

The Hamiltonian can be found from the Fourier modes of the worldsheet 
energy-momentum tensor. The general expression for the energy-momentum 
tensor is [1]: 

Tap = -4TTCX 
, 1 6S 

(2.41) 

where S is the world sheet action given by (2.1). Substituting (2.1) into 
(2.41) gives: 

Tap = daX^dpx'g^ - -haphalp''da<xiidp<xvg^ (2.42) 

The contribution of the dilaton term vanished because of the identity 
sj^p f \ZhRdadr = 0. The second term in (2.42) vanishes in the light-cone 
coordinate system, with coordinates a+ and a_, when hal3 is the Minkowski 
metric. Thus, 

T + + = d+x»d+xv

9lxv 

The Lagrangian, (2.16), has the form 

L = hafidax^dpxug^ 

(2.43) 
(2.44) 

(2.45) 

Comparing (2.45) with (2.43) and (2.44), the energy momentum tensor can 
be seen to be: 

T±_ = 
1 + b2x'x'* 

d±u- — {x'*d±x'-x'd±x'*) [d±v+ (2.46) 

^ {x'*d±x' - x'd±x'*) + d±x'd±x' 

file:///ZhRdadr
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Substituting the expressions (2.29) and (2.22) for u, v, and x1, T++ can be 
put into a form which resembles the free string energy momentum tensor: 

•++ -
?h ih / -

d+v+ - j {x*d+x - xd+x*) - - [-ibd+u+x*x 

+X*d+X - ibd+U+XX* - Xd+X*)] + [-i~bd+U+X + d+x] • 

\ibd+U+X* + d+X*] 

= d+U+d+V+ + d+Xd+X* , (2.47) 

Similarly, 

T__ = d_l/_d_1/_ + d-Xd^X* (2.48) 

Expressing (2.47) and (2.48) in terms of free fields using (2.23) and (2.33), 

T±± = (pu

± + d±U')(pl + d±V') + (±2i1X± + d±x±)-

= plpv

±+pu

±d±Vl+pv

±d±U' + d±U'd±V' + 4j2x±X*± (2.49) 

±2ijx±d±X*± T 2ijx*±d±x± + d±x±d±x± 

By choosing the light-cone gauge, the nonzero oscillator modes of the light-
cone coordinate u can be set equal to zero, thus eliminating these modes from 
the Hamiltonian. These modes correspond to U'± in (2.33). Taking U'^ = 0, 
(2.49) becomes 

T±± = Plpl+Pld±v±±2ij(x±d±x*±-X*d±x)+^2X±X*±(2-W) 

+d±X±d±X*± 

The Virasoro generators L0 and L 0 are Fourier coefficients of T and T + + : 

L0 = y*— fdaT__ (2.51) 
Ana'Jo 

L o = aL I o d a T + + 

Substituting (2.50) into these expressions and using the oscillator expansions 
(2.24) and (2.25) gives: 

L o = I' \p-P- + P-d-VL ~ 2i1{x-d_X- ~ X*d-X) 

file:///p-P-
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2 oo 

= _ _ _ _ _ V [ ( 2 m ) a > n - ( - 2 m ) a > n ] + - E < a « 
4a' 4 ~ n = - o o 

n=—oo 
1 °° 

+ - E ( 2m) ( -2m)a*a„ 
oo 1 0 0 -i oo 

_ _ _ . + 7 £ na> n + i 7

2 E E " 2< a" 
4a' Z n = - o o n = - o o n=—oo 

oo ____ 1 , ^ 2 * (2.52) 

In the derivation of (2.52), the contribution of the V term vanished by 
periodicity: 

fW d-V'_do = - T((9+ - d-)V'_da = - T daVLda = -V% = 0 (2.53) 
yo Jo Jo 

Similarly, it can be shown that 

L ° = ^ f r + \ E (n - 7) 2 K°<n 4a' 1 2 „ 

The Hamiltonian is given by ' 

i f = Lo + LQ 

From (2.52), (2.54), and (2.36), this gives 

(2,54) 

(2.55) 

H = -{wR - a'bJ) + pu] \-(wR - a'bJ) + pv] + ^ - [(wR 
-1 OO 

-a'bJ) + P

u] [(wR - a'bJ) +PV} + - E (« + 7 ) 2 < « n + 
n=—oo 

J oo 

2 E ( ^ - 7 ) 2 5 ; a n 

2a 7 ( u , „ - a ' „ ) 2 + — p Y + - E (n + 7)2<an 
2 oo 

+ 2 S ( n - 7 ) 2 a ; a „ 
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, , . 2 p 2 _v i 1 oo 

W £ - - wRbJ + |fc 2 J 2 + ̂  (s2 - p2) + i E + 7)X<V 2a' 

1 0 0 

+ 2 ^ ( n - 7) 25;a n 

= ( 4 u , 2 # + s2 - p 2 ) + W (" + 7) 2 < a , 
8a 

1 
2 

(2.56) 

+ ̂  E (n - 7) 2 <5 n - 6wi2J + \a'b2J2 

The contribution of the additional 22 flat space coordinates to (2.56) is the 
same as that of free bosonic string theory, and was omitted in the derivation 
of (2.56). 

The parameters s and p are related to the energy of the string and its 
momentum in the XQ direction. The canonical energy and momentum are 
given by: 

E _ 1 r 
27ra' Jo 

da 
dL 

d(dTt) 
m 1 fn dL 

d(dTx9) 

(2.57) 

(2.58) 

where m is the momentum number in the xg direction and R is the compact-
ification radius. From (2.3), the integrand of (2.57) is just given by the free 
theory expression: 

dL 
d(dTt) 

= -dTt (2.59) 

The integral can be carried out using (2.4), (2.29), and (2.33): 

1 rn 

E = / dTtda 
2na' Jo 

i r r i da 

+ V.-U+- <7_] 

TOt Jo 4TTCX 
(T + a)(wR - 6a'J) + -(r + a)(s +p) + V+ 

Z 

(r - a)(wR - ba'J) + -(r - a)(s + p) + VL-(T + a)-
Z 
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[wR - ba'J) - - ( V + a)(s - p) + ( r - a)(wR - la'J) 

- ^ { T - O ) ( S - p ) da 

- j t ' L " d r \ - 2 p T + V+ + V L ] d ° 
P 

2a' 
(2.60) 

The contribution of the last two terms vanished by periodicity of V± in a 
since, for example, 

d-V+ = 0 
drV+ = d„Vi 

j*dTV+da = £ drV+da = V+\% = 0 

The expression for (2.58) is more complicated because of the nontrivial de
pendence of (2.3) on xg. Using (2.3) to calculate the integrand gives: , 

dL 
d{dTx9) 1 + b2r2 2 

1 + b2r2 2 

- ( 6 + 6) [#_</>+(6-6>_x 9 ] 

^ ( 6 - 6 ) [d+ip + (6 + b)d+x9] + dTx9 

(2.61) 

The first two terms in (2.61) can be integrated using a relation between <p 
and <p, where <p is the expression in (2.30). Using (2.30) and (2.31), 

d+<p d. i 
2 

- (x+d+x*+ - x*+d+x+) - 1 {x_d+xi - xid+x+) 

2ua' [J_(c_) - J+(a+)] + i (x+X*_ - X*+X_) 

i 
2 

= %- (X*d+X - Xd+X*+) (2.62) 

This can be expressed in terms of the coordinates r, ip, and x9 using (2.9) 
and (2.22): 

d+<2> = -r 
+ r 2 

[d+r + ir (d+<p + bd+x9 + bd+t + 6<9+L7+)] - (2.63) 

d+r — ir (d+(p + 6<9+a;9 + bd+t + bd+U+) 



Chapter 2: The Magnetic Melvin Solution 17 

From (2.19), the last term is given by 

d+U = F(x')(d+u-bA+) 

1 + 6 V 
d+XQ — d+t — ~ r (d+r + ir (d+<p + bd+x9 + bd+t)} 

—r (d+r — ir (d+cp 4- bd+xc, 4- } 

d+x9 — d+t — br2 (d+ip + bd+x9 + bd+t) 
1 + b2r2 

Substituting (2.64) into (2.63), 

d+(p = —r 2 < d+ip 4- bd+xa 4- bd+t H — 
1 l + 6 2 r 2 

d+£ - 6r2 + bd+x9 + bd+t)] } 

6 

(2.64) 

[d+x9-

—r < d+y? + bd+x9 + 
1 + b2r2 

d+x9 — br2 (d+(p 4- bd+xc,) 

-r' 
b b2r2 

d+(f + bd+x9 4- —-~—d+x9 - -—=— d+(p 
1 + b2r2 1 + b2r2 

b2br2 

1 + b2r2 
d+x9 

1 + b2r2 

b2r2d+y - bb2r2d+x9 

d+(p 4- b r d+tp + bd+x9 + bb r d+x9 + bd+x9 

d+<p + (b 4- b)d+x9 

1 4- b2r2 

Similarly, it can be shown that 

fl - r " 
d-(p = =— 

1 4- 6 2 r 2 

Using (2.65) and (2.66), (2.61) becomes 

dL 

d-ip 4- (b — b)d-x9 

(2.65) 

(2.66) 

d(dTx9) 
dTx9 — (b — b)d+ip 4- (b + b)d-<p 

dTx9 ~\{b- b)(dT 4- + ^(6 + 6)(0T - da)(p 

dTx9 — bda(p 4- bdr<p (2.67) 
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The first term in (2.67) can be evaluated using (2.4), (2.29) and (2.33): 

dTx9 = dT 
-(u + v) 

2(r + a){wR - a'bJ) + - ( r + CT)(S - p) -: 2(Y - CT)-
_ 

(wR - a'bJ) + ^(T-O-)(S-p) + ^(T + O-)(S + p) + ^ ( T - CT)-

(5 + p) + i/j + y_-

5 - bdT(p + dTV[ + drV'_ (2.68) 

As in (2.60), the last two terms integrate out. Substituting (2.67) and (2.68) 
gives, for the momentum (2.58), 

Using (2.30), the second term is 

/ da<pda 
Jo 

= 2 W [J_(„) - J+(a+)} \T=l + 1 - X*+X_) | » = J 

= 2 W [J_(r - TT) - J+(r + TT) - J_(r) + J+(r)] 
= 27ra ' [J_(-7r) - J +(TT)] 

= -2W [ J_(T T) + J+(TT)] 

= - 2 W J 

The momentum is therefore 

(2.69) 

Solving for s gives: 

s = 2a' m h T 

Substituting (2.72) into (2.39) yieldsthe expression for 7: 

ba'm . ~ 
7 = bRw H a bbJ 

R 

(2.70) 

(2-71) 

(2.72) 

(2.73) 
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2.1.4 L igh t -Cone Gauge Quan t iza t ion 

Quantization of the string in the light-cone gauge can be carried out by-
introducing canonical commutation relations for the spacetime coordinates. 
For the cartesian coordinates X\ and x2 in the r — <p plane, these are 

[P\a,r),x\a',T)} = [P2(a)r),x2(a',T)} = -z6(a-a') ' (2.74) 

where P 1 and P2 are the canonical momenta associated with x1 and x2. In 
terms of x and x*, (2.74) becomes 

[Px(a,r),x*(a',r)} = [P a>, r), x(a', r)] = -i6(a - a1) (2.75) 

where Px = |(Pi + iP2) and P* = \{Pl-iP2). 
The commutation relations of the Fourier modes can be derived from 

(2.75). The calculation can be simplified using a relation between the fields 
x and x* and.the free fields X and X*. In [2] it is shown that the action 
associated with x and x* is related to a free string action involving X and 
X* via the duality that relates (1.2) to (1.7). This relation implies the 
equivalence of the canonical commutation relations (2.75) to those of the 
free fields, 

[Px(a,r),X*(a',r)} = [P*x(a,r), X(o>, r)] = -iS(a - a') (2.76) 

where, since the action of X is the free string one, Px = 4^9rX is the 
usual canonical momentum from free string theory. Substituting the mode 
expansions (2.24) and (2.25) in the left-hand side of (2.76) gives 

1

1[drX{a,T)tX' (cr',r)] 
47rcy 
1 

47T 

oo 

e 2 i 7 ( r + a ) (ij - in) ane-2in{T+a)

 + e - 2 i ^ T ^ -

]T ( - i 7 - m ) a n e - 2 i n ( T - C T ' , e - 2 i 7 ^ £ a*ne2in^ + 

3 2«T(T-(T) E < * 2m(r—<r) 

4 - E e - 2 i " ( — ' ) [ a n , a ; ] ( n - 7 ) + 
7T 

L n = - o o 

(2.77) 

1 oo 

- E e 2 - (—') [a n ,<] (n + 7 ) 
7T 
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Equating this to the right-hand side of (2.76), it can be seen that the Fourier 
modes must satisfy the commutation relations 

[an,a*m] = 2(n + 7) 1 &n 

[an,a*m] = 2(n-^y15n 

(2.78) 
(2.79) 

These commutation relations show that the Hamiltonian depends on 7 only 
modulo an integer, as expected from the fact that it is a phase. If an arbitrary 
integer, k, is added to 7, the commutation relations remain the same if 
the redefinitions an —> an+k, a* —> a*n+k, an —>• a„_fc, and 5* —> a*n_k are 
made. The Hamiltonian is invariant under these redefinitions, since they 
leave the infinite sums over oscillators unchanged. The theory is therefore 
invariant under shifting 7 by an integer, and 7 may be restricted to the range 
0 < 7 < 1. For 7 in this range, the normalized creation and annihilation 
operators corresponding to the Fourier modes in (2.78) and (2.79) are given 
by: 

bl n+ 

bL 

ui± 

(2.80) 

where the b operators satisfy 

bo,bl = 

b~n± > b\n± (2.81) 

= 1, MSI = 1 

Using these quantized oscillator modes, an operator expression can be 
derived for the quantum Hamiltonian corresponding to the classical Hamil
tonian (2.56). The quantized version of (2.52) and (2.54) is obtained by 
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symmetrizing the sums over modes, giving 

\ __ in + T ) 2 a*nan = j E (n + 7? « a n + ana*n) (2.82) 

^ _ _ ( « - 7 ) 2 ^ a n = J E (n - 7) 2 (S;a„ + ana*n) (2.83) 

In terms of the normalized operators (2.81), (2.82) is 
1 
4 7 E ( n + 7 ) 2 « « n + ana*n) 

• oo oo 

= o E (« + 7 ) (bLbn- + &„-&],-) + - E in - 7) • 
Z n = l Z n = l 

(bn+bl_, + bl+bn+) + i 7 (blb0 + b0bl) (2.84) 

The infinite sums arising in the normal-ordering of this expression can be 
evaluated using a generalized zeta function regularization: 

00 2 n 

E ( " + C) = - T 7 5 + 9 C ( 1 - C ) ( 2 - 8 5 ) 
n = l i Z Z 

where c is an arbitrary constant. This gives, for (2.84), 

\ E ( n + 7 ) 2 (o>„ + a„a*) n 
00 1 1 °° 

= E ( n + 7 ) ^ - 6 n - - ^ T + T 7 ( l - 7 ) + E ( n - 7 ) -
n = l / 4 4 n = l 

- 24 - 47 (1 + 7) + 7 & 0 & 0 + ^ 7 

00 00 

= E ( ™ + 7 ) & t A - + E ( ™ - 7 ) O n + + 7 ^ o ( 2- 8 6) 
n = l n = l 

h -7(1 ~ 7) 
12 2 ' V '/ 

Similarly, for the left-movers, 

\ E ( n ~ 7 ) 2 ( 5 n 5 n + 

00 

= E ( " - 7 ) ^ - & n - + E ( ^ + 7 ) ^ A + + 7 ^ o (2.87) 
n=l n—1 

1 1 , 
- 7 7 2 + 2 - 7 ( 1 - 7 ) 
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Substituting the expressions (2.86) and (2.87) for the quantized version of 
the infinite sums in (2.56) gives the following expression for the quantum 
Hamiltonian: 

-I CO 

H = —(4w2R2 + S 2 - P

2 ) + Y / ( n + y)bn-bn- + 
n = l 

£ (n - 7) h{+bn+ + + £ (n - 7) b L k - + (2.88) 
n = l 

oo 
n = l 

£ (n + 7) ~b{+bn+ + jbl~b0 - bwRJ - 2 + 
71 = 1 

7 ( 1 - 7 ) + ^ ^ 

The normal-ordering constant in (2.88) was obtained by adding the normal-
ordering constants in (2.86) and (2.87) to the usual contributions from the 
remaining 22 trivial coordinates. 

The infinite sums in (2.88) can be identified with level number and angular 
momentum operators. Right- and left-moving level number operators can be 
defined by 

oo 

NR = £ n (&],_&„_ + b]

n+bn+) 
n=l 

oo 
NL = J2n{bn-~bn-+~bi+~bn+) 

(2.89) 

71 = 1 

Similar expansions can be obtained for the angular momentum operators JL 
and JR, using (2.31) and (2.23). For example, the classical expression for JR 
is 

JR = T do-(X-d-X*_-X*_d-X-) 
Ana' Jo v ' 

% - j* da_ [X- (2ijX- + d-X-) ~ X- (-2i7X- + d-X-) 

£ (2.7 + 2m) a*nan - £ (-2.7 - 2m) a > „ 
.71 = —OO 7l= — OO 

^ OO 
-- £ (n + j)a*nan (2.90) 
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Symmetrizing to obtain the quantum version, 

JR = - 7 E (n + j) (a*nan + ana*n) (2.91) 
n=—oo 

where a hat is used to distinguish this operator from its normal-ordered form. 
Similarly, 

oo 

h = - T E (" - 7) ( & X + a na;) (2.92) 
n=—oo 

Using (2.80) and normal ordering, 
-ĵ  oo oo 

JR = ~o E ( f e i - & n - + & „ _ & ] , _ ) + - E (bn+b]

n+ + bll+bn+) 
n=\ n=l 

-\(b0b0 + b0bl) 
oo oo -I 

= - E bLbn- - C (0) + E O n + + C (0) - &J&„ - r 

= - E bl-bn- + - + E - 2 ~ 6«^o - 2 
n = l n = l 

oo ^ 

= E ( O n + - bi_bn_) - blbQ - - (2.93) n-1 

where zeta function regularization was used to compute the normal ordering 
constants. Similarly, it can be shown that 

oo 

JL = E {bn+bn+ ~ bnX-) + b0b0 + - (2.94) 
n=l 1 

The normal ordering constants of JL and JR cancel in the angular momentum 
operator J = JL + JR, giving a normal ordering constant of zero for J. The 
first and second terms in (2.93) are the spin, SR, and the orbital angular 
momentum, or Landau level, IR, respectively: 

Similarly, 

JR = -IR + Sr-^ (2.95) 

JL = IL + Sl + 1 (2.96) 
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Using (2.60), (2.72), (2.89), (2.93), and (2.94), the Hamiltonian, (2.88), can 
be expressed in terms of N and J : 

H = J -
8a' 

4w2R2 + 4a'2{^-bj) — 4a'2 E2 

R 
•+ [NR - lJR, 

+ [NL + 7JL) - bwRJ + \a'b2J2 - 2 + 7 (1 - 7) 
Z 

= -\a'E2^NL + NR + \a'(^-bj) + (2.97) 

1 ( wR 
GbJ) - 7 ( ^ - ^ L ) - 2 + 7 ( 1 - 7 ) 

This operator expression for the Hamiltonian must be supplemented by the 
level-matching condition, L 0 — L0 = 0. From (2.52) and (2.54), 

P-P- ^1X-( __ ^ * P X 1 

4a' 

= 4_ [" H " + P " l [" H " + P 1 - 4cV 
- a'&j) + pu\ [{wR - a'bJ) + pv] + {NR - yJR) 

- (NL + 1JL) 

= ~ ^ i { w R - a'~bJ) (PU + PV) + NR-NL-JJ 

= —^-l(wR-a'bj)s + NR-NL-'yJ 

(wR - a'bJ) m 
R 

bJ)+NR-NL-1J 

T a mb . ~ 0 
mw — wRbJ —— J + a bbJ 

R 
= —mw + 7 J + NR — NL — •yJ 
— NR — NL — mw 

Therefore, the level matching condition is: 

NR — NL — mw 

N R - N L - 7 J 

(2.98) 

(2.99) 

The Hamiltonian (2.97) is a periodic function of the parameter 7, which 
also implies periodicity in the magnetic field strength parameters b and b. 
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The Hamiltonian was derived for 7 in the range 0 < 7 < 1. For 7 outside 
this range, because of a change in normal ordering constants, an integer must 
be added to 7 so that it satisfies this condition. From the form (2.73) of 7, 
it can be seen that this implies invariance of the spectrum under the shift 

b-+b+^ (2.100) 
XL 

for any integer n, and that, in (2.97), b should be restricted to the interval 

. 0 < b < 4 (2.101) 
R 

This periodicity in b is to be expected, since, from the form of the K K 
Melvin metric (1.2), the background space is such that a translation in the 
£9 direction is accompanied by a rotation in a plane by an angle 2irbR, where 
R is the radius of the compact direction. The shift (2.100) thus adds 2im to 
this angle, leaving the theory unchanged. Similarly, the spectrum is periodic 
under the shift 

(2.102) 
a 

Consequently, b in (2.97) should be restricted to the interval 

0 < b < — (2.103) 
a' 

This periodicity also follows from the periodicity in b, since b is the equivalent 
of b in the T-dualized space, for which the radius of the compact dimension 
is i. 

2.2 Type II Superstring 

The results of section 2.1 for the closed bosonic string can be extended to 
the type II superstring. This can be done by constructing a worldsheet 
supersymmetric version of the action (2.2) [3]. In conformal gauge, the RNS 
superstring Lagrangian has the form 

L = 
1 + b2x'x'* 

d+u- y. (x'*d+x' - x'd+x'* - 2i\'*L\'L) 
2% 

[d-v 

+ - (x'*d-x' - x'd-x'* - 2iX'RX'R) 
2i 

+iX'*Ld-X'L 

+ d+x'd-x'* + iX'*Rd+X'R 

(2.104) 
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d+-^^ = 0 

As in (2.16), the coordinate x is given by x = relv> = xi + ix2, where x\ and 
x2 are cartesian coordinates in the r — (p plane. XL and XR are the left- and 
right-moving components of the spinor, A = Ax + iX2, corresponding to the 
x coordinate. The primes indicate the same rotation of the physical fields as 
in (2.9): 

x' = e^bX9+h)x (2.105) 
y = ei(bxg+bt) ̂  

The solution of this theory is similar to that of the bosonic theory. The 
equations of motion (2.19) and (2.20), for u and v become, 

dL 
d{d+u) 

d+ [F(x') (d-v + bA- - bX'RX'R)] = 0 

F{x') (d-v + lA. - bX'RX'R) = h- (2.106) 

and 

d~dltv) = ° 

c9_ [F(x') (d+u - bA+ + bX'lA _)] = 0 

F(x') (d+u - bA_ + bX'*LX'L) = h+ (2.107) 

The equation of motion, (2.21), for x' and its solution, (2.22), in the bosonic 
string case are unchanged in the superstring theory, except for the new form 
oih+ and h_, (2.106) and (2.107). Thus the solution of (2.106) and (2.107) 
for d-V and d+u parallels (2.27) and (2.28), except for the addition of the 
fermionic term. Therefore, 

d+u = d+U+ + \ib (Xd+X* - X*d+X) - bX'*LX'L (2.108) 

d.v = d-V- - \ib {Xd-X* - X*d-X) + bX'RX'R (2.109) 

Integrating (2.108) and (2.109) gives 
r<7+ -

u = ubosonic - / bX'*LX'Lda+ + Ku(o-) • (2.110) 
. 

v = vbosonic + / bX'*RX'Rda- + Kv(a+) (2-111) 
Jo 
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where ubosonic and Vbosonic are the corresponding solutions for the bosonic 
string, (2.29), and Ku and Kv are arbitrary functions. Taking 
Ku = f0

a~ b\'RX'Rda- and Kv = — /0

CT+ bX'*LX'Lda+, the solution in the super-
string case becomes the same as that in the bosonic string case, except with 
fermionic contributions to the angular momentum currents: 

J±{a±) = 7 ^ 7 7 d°± (X±d±X*± - X*±d±X± 

+2i\'l\'L 

R R 

For the fermions, the equations of motion are given by 

dL dL 

(2.112) 

d+ 

and 

d. 

d{d+x'R) ^ dX'R 

d+X'R + ibh+X'n 

dL _ dL 
d(d-\'L) ~ WL 

d-X'L - ibh-\'L 

0 

0 

0 

0 

(2.113) 

(2.114) 

As can be checked by substitution, the solution is (c.f. (2.22) and (2.23)): 

e-ilu++ilv. A r j 

e-iiu++ibv.AL t 

X'R = 

X'L = 

AR = 

A L = e2i^rj+ 

d+AR = 0 

c L A L = 0 (2.115) 

where r]+ and 77_ are free fermionic fields with expansions 

U E -2ira- (2.116) 

/ 2a 7 E dne~ •2ina-

and similarly for r]+

NS^ and rj+

R\ Since the boundary conditions (2.32) are 
unchanged, the form of U± and V± is still (2.33), so that 7 is the same as in 



Chapter 2: The Magnetic Melvin Solution 28 

(2.39). Moreover, it can be shown using (2.104) that the form of E and pxg, 
(2.60) and (2.71), is unchanged, so that 7 is again given by (2.73). 

As in the bosonic string theory, the energy-momentum tensor reduces to 
the free string theory form: 

T++ = d+U+d+V+ + d+Xd+X* + iA*Ld+KL (2.117) 
T__ = d-U-d-V- + d.Xd-X* + iA*Rd-AR 

The bosonic parts of the Virasoro operators L0 and L0 are given by (2.52) 
and (2.54). Substituting (2.115) and (2.116) into (2.117) gives the fermionic 
parts, I/Q and L(, of L0 and L0: 

a = ^j\ARd.ARda 

j E r e z + | (r + 7) c*cT , NS sector 
1 T,nGZ (n + 7) d*ndn , R sector 

(2.118) 

If = i ^rez+\iT ~l)Kcr , NS sector 
° I T,nez {n - 7) d*ndn , R sector 

The classical Hamiltonian is given by (2.56) with (2.118) and (2.119) added. 
Quantization of the theory in the light-cone gauge leads to the same 

Hamiltonian, (2.97), except with fermionic contributions to N and J. From 
the Lagrangian (2.104), the anticommutation relations for the right-moving 
fermion fields are, 

{\R

,{a,T),\R(a',T)} = 2ira'5{o--o-') (2.120) 

From (2.115), this anticommutator is the same as that of the free fields, 
(2.116), since the phase factors cancel. Therefore, the oscillator commutation 
relations are the same as those of free string theory, 

{c*r,Cl} = 5rl (2.121) 
{dn,dm} = 5„ Jnm 

The quantum version of L{ and L{ is obtained from (2.118) and (2.119) by 
antisymmetrizing the oscillator products. For LQ in the Ramond sector, this 
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gives: 

I oo 
4 = 2 5_ (n + 7) (d*ndn - dnd*n) 

n=—oo 
1 OO 1 oo 

= 7 5 £ ( ™ + 7 ) « ^ - « ) - x £ ( n - 7 ) - (2-122) 
Z n = l Z n = l 

(d-nd-n - d-nd*_n) + ^7 [dj, d0] 

This expression can be normal-ordered using the expression for generalized 
zeta function regularization, (2.85). The result is 

OO OO I 
L{ = J2(n + ~,)d*ndn + J2(n-l)d-nd*_n + -j[d*0,d0} (2.123) 

71 = 1 71=1 Z 

1 1 2 
_i y 

12 2 ' 
A similar calculation can be used to derive the normal-ordered expressions 
for the left movers and for the NS sector. The normal-ordered level number 
operators are 

_ f Nto, + EZi r (c;cr + c_PcI r) , iVS sector ^ 

* ~ j iV 6 o , + E~=i n \d*ndn + d_ n d*„) , R sector 

and the same for NL with tildes over the oscillators, where Nbos is the bosonic 
part, (2.89). The classical angular momentum operators are: 

if7 

JR - (JR)bos + ~.—: / (2iX*RXR)da-
4.TTOC Jo 

1 fn 

= {JR)*. ~ ^ Jq V-V-da-

= { ( J * L ~ C ^ ' NS sector ^ ^ 

and similarly for J L . Antisymmetrizing and normal-ordering to obtain the 
quantum version, 

j = ) {Jx)bos + Zrez+±{c;cr-C-rc*_r) , NS sector 
R (jR)bos + En=i {d*ndn - d.nd*_n) + \ [d*Q, d0] , R sector 
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When the fermionic parts of L0 and L0 are added to the bosonic contribu
tions, the superstring Hamiltonian becomes 

1 1 f m \ 2 

H = --a'E2 + NL + NR + -a'(--bJ) + (2.127) 

tfbj) - J { J R - J l ) + C + J 

where c is the normal-ordering constant of free type II superstring theory. 
The range of 7 in the superstring Hamitonian (2.127) is — 1 < 7 < 1, 

rather than 0 < 7 < 1 as in the bosonic theory. This is because super-
string theory is only invariant under rotations by an even multiple of 27r, 
since fermions are multiplied by -1 when rotated by an odd multiple of 2TY. 
Consequently, the shifts (2.100) and (2.102) under which b and b are periodic 
become 

2n . 
b -> b+— (2.128) 

ix 

b -> b-\ 

From the form (2.73) of 7, this implies that 7 is periodic only under even 
integer shifts. 
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C h a p t e r 3 

T h e E l e c t r i c M e l v i n S o l u t i o n 

3.1 T h e E l e c t r i c M e l v i n B a c k g r o u n d 

The KK-Melvin metric 

ds2

10 = -dt2 + dx] + dx\ + dr2 + r2 (dip + bdx9)2 (3.1) 

is equivalent to an orbifold of Minkowski space which identifies points under 
a combination of a translation in the x 9 direction and a rotation in the r — ip 
plane [10]. This can be shown by introducing the coordinate ip' = <p + bxg, 
giving 

ds2 = -dt2 + dx2 + dx\ + dr2 + r2d<p'2 (3.2) 

or, using x' = rew\ 

ds2 = -dt2 + dx2

s + dx\ + dx'dx'* (3.3) 

This is Minkowski space with the identification 

(_9, (p') = (X9 + 2TTR,(p'-r2nbR) (3.4) 

That is, points are identified under a rotation through the angle 2nbR, ac
companied by a translation by 2nR in the £ 9 direction. 

A natural generalization of this would be an orbifold of Minkowski space 
by a Lorentz boost, since, like rotations, Lorentz boosts are part of the 
Lorentz group of isometries of Minkowski space. A KK-Melvin-like boost 
orbifold can be constructed from a space involving a flat spatial direction X, 
a compact spatial direction xg, and a time direction T. A boost in this space 
is given by 

... X-vT - . . 
x = 7T^ ^ 

T-vX 

T = V l - v 2 
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where v is the velocity of the boosted, frame. In light-cone coordinates X+ 

X + T, X~ = X — T, this transformation has the form 

X+l = \ \ \ ^ X + (3.6) 

x-' = 

or, taking = 

X+' = e^X+ (3.7) 

X-' = e-^X-

The parameter B is an imaginary angle by which points in the X — T plane 
are "rotated". This can be seen by dividing the X — T plane into two regions 
as shown in Figure 3.1 and parametrizing the regions as follows: 

/ : X = tsinhx 

T = tcoshx , (3.8) 

II : X — tcoshx 

T = tsinhx 

where —oo < t < oo and —oo < x < oo. As shown in Figure 3.2, the value of 
t labels two hyperbolae, one in I and the other in II, while x labels points on 
these hyperbolae. In these coordinates, X+ and X~ take the "polar" form 

X+ = tex (3.9) 

X~ = Tie' 

where the upper and lower signs refer to region I and region II, respectively. 
The Lorentz boost (3.7) corresponds to a shift of the imaginary angle x. The 
generalization of (3.3) and (3.4) to a boost orbifold is then 

ds2 = dX+'dX-' + dx2 (3.10) 

(x9,x') = (x9 + 2nR, X' + 2-nER) (3.11) 

where 

X+l = tex 

X'' = Tte~x' (3.12) 

x1 = X + EXQ 
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Figure 3.1: Regions I and I I of the X - T plane. 

and E is a constant. Points in this space are identified under a spatial trans
lation in the x9 direction accompanied by a spacetime translation along one 
of the hyperbolae in Figure 3.2. Substituting (3.12) into (3.10) gives 

ds2 = d (tex+Ex9) d (+te-x-Ex°) + dx\ 

= (dt + tdx + tEdx9) (^dt ±tdx ±tEdx9) + dx9 

= Tdt2 ± t2 (dx + Edx9f + dxl (3-13) 

Flat Euclidean directions can be added to this space to attain the critical 
dimension for string theory, giving 

ds2 = dx] T dt2 ± t2 (dx + Edx9)2 + dx2

9 (3.14) 
i 

As was done for the KK-Melv in background in chapter 1, dimensional re
duction of the rrietric (3.14) may be carried out to produce a nine dimensional 
Kaluza-Klein theory. Rewriting (3.14) in the form (A.2) yields 

( Et2 \ 2 

ds2 = dx] T dt2 + ( l ± E2t2) I dx9 ± 1 ± E 2 t 2 d x ) ± (3"15) 
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x 

Figure 3.2: The coordinates t and x. Points with t equal to a positive 
constant and — oo < x < oo are shown. 

-dx2 

1 ± EH2 

Therefore, dimensional reduction gives 

ds2, = dx2

sTdt2± i ± m 2 dx2 (3.16) 

Et2 

A — +-
1±EH2 

e2a = 1 ± Ezt 2 . 2 

The nature of the gauge field can be made more clear by transforming to the 
cartesian coordinates X and T using (3.8). In these coordinates, the gauge 
field is 

ET -EX 

1 - E2 (X2 - T2) 

and the field strength is 

F = dA 

1 - E2 (X2 - T2) 
(3.17) 
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2E ^dT A dX (3.18) 

[i - E2 (x2
 - r2)] 

This field strength is that of an electric field along the X-axis. The similarity 
of (3.14) to the Melvin background (3.1), and the fact that it gives rise to 
a background with an electric Kaluza-Klein gauge field on reduction to nine 
dimensions, suggests the interpretation of (3.14) as an electric KK-Melv in 
background. 

Despite the similarities in the way in which the backgrounds (3.1) and 
(3.14) were constructed, the nature of the electric Melvin spacetime is unlike 
that of the magnetic Melvin background or of Melvin backgrounds in classical 
relativity. The electric Melvin background is not static in all regions, a 
property which is usually considered a defining characteristic of Melvin spaces 
[13]. It is static in region II, since, from (3.14), the metric has the timelike 
Kill ing vector J ^ , corresponding to a space-time translation along a hyperbola 
in the left or right wedge of Figure 3.2. However, in region I, there is no 
timelike Kil l ing vector, and the space is time-dependent. Also, the electric 
Melvin background is pathological in some regions because of the existence 
of closed timelike curves (CTC's), which are unphysical because they violate 
causality. From (3.9) and the form of the electric Melvin metric (3.14), an 
infinitesimal translation dxg = ^ is accompanied by an infinitesimal boost 
in the X direction given by 

This combined boost and translation becomes timelike in region II when the 
following condition is satisfied: 

dX+ 

— (te1) Edx9 

= f3tex 

= ±(3te~x 

(3.19) 
dX~ 

-dT2 + dX2 + dx2

9 

dX+dX~ + dxl < 
< 0 

0 

< 0 
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\t\ > 
1 
E 

(3.20) 

For spacetime regions satisfying (3.20), any finite translation in x9 with its 
accompanying boost becomes everywhere a timelike translation in spacetime, 
so that (3.11) identifies points separated by a timelike interval, and there exist 
CTC's connecting these points. Thus, these regions should be excluded when 
discussing string theory on the electric Melvin space. The regions are shown 
in Figure 3.3. 

The electric KK-Melv in background can be generalized to a curved 2-
parameter background in the same way as was done for the corresponding 
magnetic background in chapter 1. Starting with (3.14), a T-duality trans
formation along xd yields 

B. 

ds = dxs =p dt + dxl ^ 

Et2 

t2 

XXg = ± 

1 ± EH2 

2 ( * - * o ) _ _ 

(dx + Edx9) (dx - Edx9) (3.21) 

1 ± E2t2 1 ± E2t2 

The shift 

x —> x + Edx9 

introduces a second electric field parameter T-dual to E. This gives. 

t2 

(3.22) 

ds' = dx2

s =F dt2 4- dxl ± 1 ± E2t2 
dx+(E + E) dxg] • (3.23) 

B. 

dx + - E) dxc, 

Et2 

XXg ± - 2 ( * - * 0 ) 
l±E2t2 

Another T-duality along XQ gives 

1 ± E2t2 

ds2 

BT 

dx2

s T dt2 + dxl ^ 

dx + (E - E) dx9 

Et2 

1 ± E2t2 
dx+ (E + E) dx9] • (3.24) 

± -
1 ±E2t2 

2 ( * - # o ) _ 

1 ± E2t2 

When this background is dimensionally reduced, the resulting background 
has two electric gauge fields similar to that in (3.16) with parameters E and 
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X 

Figure 3.3: Regions with CTC's in the electric KK-Melvin space. 

E. (3.24) can therefore be considered an electric Melvin background, like 
the background (3.14) of which it is a generalization. The properties of the 
spacetime (3.24) are similar to those of (3.14), but it has some additional 
pathologies. Timelike singularities occur in region II at \t\ = A. This results 
from the fact that, at these points, the x9 direction along which T-duality 
was carried out to produce (3.24) becomes null in (3.14). Also, the shift 
(3.22) results in an identification of points in the T-dualized space: 

/ a' ~a'\ 
{X9,X')EE \X9 + 2?T-,X'+ 2TTE—\ (3.25) 

where x' = x + Ex9. This produces an additional region, t > A, where CTC's 
occur. These properties are illustrated in Figure 3.4. 
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3.2 Quantization of the Closed String 
Like its magnetic version, the electric Melvin background (3.24) admits an 
exact solution of closed string theory. Since the steps involved in the quan
tization are very similar to those in the magnetic case, only an outline will 
be given in this section. 

In a suitably-chosen coordinate system, the Lagrangian reduces to a form 
similar to (2.16), for which the equations of motion may be solved in terms 
of free fields. The bosonic string Lagrangian for (3.24) is, omitting the flat 
space dimensions, xs, 

L = ^d+td-t + d+xgd-x$ ± 

d.x + (E~E) 8-XQ 

Introducing coordinates 

t2 

1 ± EH2 
d+x+ (E + E)d+x9] -(3.26) 

x' = x 4- Ex9 
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X+l = tex' = eEx9X+ 

X~' =• Tte 
(3.27) 

-x = e - E x 9 X -

(3.26) reduces to 

E2X+X-
d+x9 + ̂  {x-'d+x+l - x+'d+x-') (3.28) 

d-x9 - | (x-'d_x+l - x+'d_x-') d+X+'d-X~' 

T h e l igh t -cone coord ina tes u a n d v t ha t were used i n the magne t i c case canno t 
be used i n (3.28), because of the n o n - t r i v i a l t i m e dependence. D e f i n i n g 

F(X-',X+I) = - 1 

EX+X-

A ± = - (x-'d±x+l - x+,d±x-') 
the equat ions of m o t i o n of x9, X+l, a n d X ' become 

F (d+x9 + EA+) = h+ (<r+) 

F (d^x9 — EA_) = / i _ (<7_) 

d+d„X-' + Eh-d+X'' - Eh+d-X~' - E2h+h_X~' 
d+d-X+' - Eh^d+X+I + Eh+d^X+' - E2h+h_X+) 

(3.29) 

(3.30) 

0 (3.31) 

0 (3.32) 

where h+ ( « r + ) a n d / i _ (cr_) are a r b i t r a r y funct ions . T h e so lu t ions for X ' 
a n d X+l are 

^—' _ e-EXgR+EXgL z -

where X9L a n d X9R are funct ions of a+ a n d cr_ sa t i s fy ing d-X^R 
5 + X 9 L = h+, a n d Z ~ a n d Z + are free fields g iven by 

(3.33) 

(3.34) 

/ i _ a n d 

Z ~ = Z7 + Z R JR 

Z+ = Zt + Zt Zt = e2^xi Z+

R=e-2^-XR 

x% 

X) a*exp(-2ina+) (3.35) 
n=—oo 

/ oo 

y E a±exp(-2ina-) 
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The symbol Z was used instead of X as in chapter 2 to avoid confusion with 
the coordinates X±. As in the magnetic case, the factors involving 7 in (3.35) 
ensure periodicity of X±. The solution for x9 is 

x 9 = X9L + X9R - E(p 

where 

and 

<p = 2ira' [JR (a_) - JL ((7+)] + \ [ziZ~R - Z+Zi) 

JL = Y~ r da± (zid±Z~ - Z~d±Zt 
R ATTCC' JO V R R R R 

(3.36) 

(3.37) 

(3.38) 

The boost momentum is defined by JL (TT) + JR (TT). 
Periodicity of the spacetime coordinates establishes the form of X Q L , XQR 

and 7. The boundary conditions 

x9(a + TT,T) = Xg(cr, r) + 2TTWR 

if (a + TT,T) — ip (a, T) — 2TTQ.' J 

(3.39) 

imply 

where 

XgL = cr±pL + X'gl 

R R R 
(3:40) 

X9L 

X9R 

PL 

PR 

la' 0 0 1 
T T __ -a9

nexp(-2ina+) 
2 n=-oo n 

ia' 0 0 1 
77 __ -a?nexp(-2in<r-) 

Z n=-oo n 

(wR - a'Ej) + ^p 

- (wR - a'Ej) + ]-p 

(3.41) 

p is a constant which, by calculating the canonical momentum of the string 
in the £9 direction, can be shown to be 

p = 2a' m 
_R 

EJ (3.42) 
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where m is the momentum number. Periodicity of X+ and X implies 

7 = EwR + -Ep 
Zi 

= ERw 
Ea'm 

R 
- cx'EEJ (3.43) 

Unlike in the magnetic case, 7 is not periodic, and there is no restriction 
on its values. This is because it appears in (3.35) in scaling factors, rather 
than in phase factors as in (2.23). It can also be seen from the form of the 
metric (3.14). When the periodic coordinate ip in (3.1) is replaced by the 
non-compact coordinate x in (3.14), the metric is no longer invariant under 
shifts of the field parameters such as (2.100). 

The classical Hamiltonian is calculated as in chapter 2. The energy-
momentum tensor reduces to the form 

T±± = (?±X*R)2 + d±Z+d±Z~ (3.44) 

Substituting the solutions (3.35) into (3.44) gives 

T__ = p | + 2 p ^ _ X 9 f l + ( c 9 _ X 9 J 2 - ^ ^ ^ 

+ d-xld-Xk . (3-45) 

T + + = pl + 2pLd+X^ + (d+X9L)2-41

2xixI-21(xld+xl-xld+xl) 
+ d+xld+Xl 

For the Virasoro operator L0, this gives 

1 f* 
L 0 = — - / dcrT__ 

47rcr Jo 

4a' 47ra! 
1 r* 

Ta' Jo 
da a 

12 

£ all(—2i)exp(—2ino-) 

4Y 

2 7 

a 

__ a+exp(-2ina_) 

7} ( a+exp(-2ina-) \ ( £ an {-2in) exp (-2i 

,n=—00 
/ 00 

__ a „ e x p ( - 2 m c _ ) 
,n=—00 

/ 00 

?ncr_ 

anexp(—2inaJ) J I £ a* (—2in) exp(—2ino-) + 
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a 
~2 

a+ (—2m) exp (—2mcr_) E an (—2in) exp (—2in<j-) 

v2 1 0 0 1 0 0 

= S + o E " o f " E «>=n-
^ " Z n=-oo z n=-oo 

oo oo 

* 7 E n a n Q = n + 2 E n 2 ( l n a - n 
n=—oo n=—oo 

= + £ t ay_n + l E (n-^7)2a>:„ 
^ n=-oo z n=-oo 

(3.46) 

The second term, which is the oscillator contribution from Xg, was not present 
in the magnetic case because these oscillators were eliminated by the choice 
of light-cone gauge. The light-cone gauge cannot be used in the electric 
case, because of the non-trivial time dependence of the Lagrangian. The 
expression for LQ is 

Z 1 o u i o u 

(3.47) 

Therefore, the Hamiltonian is: 

H = LQ + Lo 
J _ 
4a 7 

^ 0 0 

- (wR - a'Ej) + -p + 4a' L 
(wR - j) + ^p + 

oo 

2 E a V - n + 2 E + 
n=—oo 

oo oo oo 

2 E ( n - n ) 2 ^ a : n + 2 E (« + i 7 ) 2 ^ s : „ 
n=—oo n=—oo' 

1 1 00 -| oo 
= -L( 4 «, a # + £ 2 «V-„ + £ E « n « 9 - n + (3-48) 

° " ^ n=-oo L n=-oo 

2 E (n - ̂ )2 On a l n + « ^ (n + ̂ )2 o+a:„ -
n=—oo n=—oo 

EwitV + \a'E2J2 

The usual contribution from the 23 flat space coordinates should be added 
to this Hamiltonian. 



Chapter 3: The Electric Melvin Solution 43 

Quantization of this theory is similar to that of the magnetic Melvin the
ory, except that the light-cone gauge cannot be used because of the non-linear 
time dependence. B R S T quantization can be used instead. The canonical 
commutation relation is 

1 
1dTZ+ (a,r),Z~ (cr',r) 

4na 
= -i5 (a - a') 

-dTZ~ (a,r))Z+ (a',r) (3.49) 

The left-hand side is 

i [ ^ + ( ^ ) , r K r ) ] 

= _ L J e 2 7 ( r + * ) ( 7 - m ) a + e - 2 ^ + ^ + e - 2 ^ - ^ -
47T „_ ^ 

00 00 
£ ( - 7 - m ) a + e - 2 i " ( r - ^ , e - 2 ^ T + f f ) £ a ~ e - 2 i n ^ + 

; 2 7 ( r - a ) ^ a ~ e _ 2 i n ( r _ 0 ' ) 

= i^'^W £ e-^-^[a:,~aZn](n + ll) 
I n=-oo 

1 00 1 
i E e 2 i "(—')[a+ a : J ( n - i 7 ) 

n=—00 J 

This leads to the commutators 

an > fl-m] = 2 (n - v y ) - 1 5 n + m 

fln > ° - m ] = 2 (n + 17 ) _ 1 5 „ + m 

The normalized creation and annihilation operators are: 

(3.50) 

(3.51) 

(3.52) 

fe.. 

n+ 

t 

n— 

t 

v+aln bn+ = uj+an 

6„_ = w _ a + 

w _ a l n bn 

+ (3.53) 
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b~l = y^7flo b0 = J^i^ 

u± = y^(n±z7), n = l,2,... 

The b operators satisfy the commutation relations (2.81). 
The commutation relations (3.51) and (3.52) can be used to normal-order 

the expression (3.48) to produce a quantum Hamiltonian. By symmetrizing 
and normal-ordering, it can be shown that 

2 oo 

- E (n ~  an a - n = E (n ~ h) bi-bn- + (3.54) 
1 n n=l 
oo ^ ^ 

E ( n + fy) 6„+&„+ + hblb0 - — + -17 (1 - 47) 

n=l i Z ^ 
00 

oE(" + *7)2 5 n a - n = E (n + *7) & n - & n - + (3.55) 
^ n n=l 
oo _ ^ 1 

E (™ ~ «7) &n+&r.+ + *7&0&0 - ^ + -17 (1 - 17) n=l 

The quantum Hamiltonian is therefore 

1 oo oo 

H = 7 ^ ( 4 ^ 2 + p 2 ) + E « + E « + 
8 a n= l n = l 
00 oo 

53 (n - 17) 6„_6n_ + E (n + *7) &n+&n-r + 17&J&0 + (3.56) 
n=l n=l 
00 00 

53 ( n + *7) bl-K- + 53 ( n - ?'7) &n+&n+ + f-y6j60 -
n=l n=l 
£w.RJ - 2 + 17 (1 - 17) + -a'E2J2 

2 
This can also be expressed in terms of level number operators and boost 
operators. The level operators are given by 

00 

NR = Y,[n{hn-bn-+bUbn+)+a\al] (3.57) 
n=l 

oo 

N L = E [n (bl-bn- + b ]
n+bn+) + a9_na9

n] n=l 
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From (3.38), the boost generators have the form 

CO o o 

o o 

n - 1 
oo 

JR — i 5_ bl_bn- - i £ b]l+bn+ - iblb0 

(3.58) 

(3.59) 
n = l n-1 

Substituting (3.57), (3.58), and (3.59) into (3.56), 

1 /m \ 2 

H = NL + NR + -a1 - EJ) + (3.60) 

/oJEjj - 7 {JR - JL) - 2 + _ 7 (1 - .7) 

1 ( w R 

2 IT rV 

The level-matching condition, LQ — L0 = 0, is 

]VR — iVr, = m „ (3.61) 

These results can be extended to the type II superstring. The RNS su-
perstring Lagrangian is 

L = 
1 

1 - E2X+X~ 
d+X9 + j (x-'d+x+l - x+,d+x-'- (3.62) 

E 
2iAZ'A^)] d.x9 - - (x-'d-X+l - X+'d-X~' - 2iXR'XR + 
d+X+'d-X-' + iX^'d+XR1 + iXl'd-Xf 

where A^ and A^ are the left- and right-moving components of the spinors 
X± = Ax ± Ay, which correspond to the coordinates X±, and 

(3.63) 

Quantization of this theory leads to a Hamiltonian with the same form as 
(3.60), except with the operators N and J replaced with their fermionic ver
sions, and the normal-ordering constant changed to c + ry, where c is the 
normal-ordering constant of free superstring theory. 
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3.3 Partition Function 
The partition function for the bosonic string in the electric Melvin back
ground can be calculated from the usual expression in terms of a trace over 
states of the string: 

. J2 .23 co 

Z = j-rjl[dPa
 T r e x P [ 2™ ( r L o - flo)] (3.64) 

a = l vn.w——oo 
where r = T\ + ir2, T\ and r 2 are the modular parameters of the torus, pa are 
the momenta in the 23 free directions, and m and w are the momentum and 
winding modes in the x 9 direction. The domain of integration for T_ and r 2 

is the fundamental region, 

= { T _ , T 2 | \T\ > 1, — ^ < T_ < y 0 < r 2 < ooj 

(3.64) can be expressed as 

__ 
T2 

^ 2 3 ^ 0 - ^ 3 

(3.65) 

(3.66) 

where Z23 and _ j are the usual contributions of 23 free bosons and of the 
B R S T ghosts, respectively, and Z3 is the contribution of the three non-trivial 
coordinates, X+, X~, and x$. Z3 is given by 

oo 

Z-i = Trexp fain ( _ 0 - L0) - 27rr 2F (3.67) 
m,w=—oo 

where H is given by (3.60) and L0 — L0 = NR — NJJ — mw. 
The calculation of Z% is facilitated by expressing H in the form 

1 2 D 2 - - a' (m H (E + E)jR+(E- E) (3.68) 

JL}}2 - wR 

7 2 + ry - 2 

Substituting (3.68) into (3.67) gives 
OO r 

£ Trexp < — 2 

(E + E)JR-(E- E) JL] + 2a'E2JRJL + 

iTTlTi mw + N - N — 27rr2 

m,w=—oo 

NR + NL + J { ^ - ((E + E)JR+(E- E) JL))2 - (3.69) 

wR i[(E + E)JR-(E- E) JL) + 2a'E2JRJL + j2 + ij - 2]} 
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This expression contains terms quadratic in JL and JR, which must be lin
earized before the trace can be calculated. The j2 term can be linearized 
using the identity 

e~2^2 = ̂ 2Y2 p due — 2 7 T T 2 I / — 4 T T I T _ 7 I ' (3.70) 

(3.70) can be verified by completing the square in the exponent and evaluat
ing the resulting Gaussian integral. From the form (3.60) of H , it can be seen 
that the remaining terms linear in 7 in (3.69) and (3.70) can be absorbed 
into a redefinition of JR and JL'-

R 

J'r 

J R - i v - -i 

J L + iv + ~-i 

(3.71) 

The contribution to (3.69) of the fourth term in (3.68) becomes linear in JL 

and JR after Poisson resummation over m is carried out. After completing 
the square, the m-dependent part of (3.69) becomes 

J2 exp-Ur2a - + 1—— - (E + E) J R - (3.72) 
m,w=—00 

• ( E ~ E ) J L ] 2 + 2mRwriT2 [(E + E ) J R + ( E - E) JL] + 

TTR2W2T2 \ 

a'r2 J 

The Poisson resummation formula is [5]: 

—TT (m — 6) 2 1 

__ exp — \[a £ exP (^—^CLW'2 + 2iTibw') (3.73) 

where a and b are arbitrary constants. Using (3.73), (3.72) becomes 

R A f TTR2 

__ exp w12 + ^ ^ w w 1 + 2niR [(E+ (3.74) 

E) J R + ( E - E) JL] W' - 2mRT! [(E + E) J r + (E-

E)jL 

TTR2T? ' 
W- ; W 

OL'T2 
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Substituting (3.70) and (3.74) into (3.69), and using (3.71), (3.69) reduces to 

Z* = 
V2R IR f°° r / \ i 

=• / duTrexp —2ITT2 (v2 — 2) exP 
•KR2 

OL'T2 

(3.75) 
w,w ——oo 

(w' — TW) (w' — fw)} exp \2iri (TNR — TNL)] exp [2m («/ — TW) • 

R(E + E) J'r] exp [2m {w' - fw) R(E - E) J'L] • 

exp ( - ^ T 2 a ' E 2 J ' R J ' L ) 

The last factor in (3.75) can be made linear in the boost operators by using 
the identity 

4_ 

r2 

J d\i\2exp 

ir2\Ta'EJ'L] 

47T 
T2 

X 
R 

2jd 
7 [w' — Tw) — (3.76) 

R 
X H —j (w' - fw) - iT2Va'EJ'R 

2Va 

where A = Ai 4- iX2. This identity can be proved by converting the right-
hand side into a product of Gaussian integrals over Ai and A2. When (3.76) 
is inserted into (3.75), the first and last factors in (3.75) cancel out, giving 

Z* = 
AV2R 
—7=—< ,47TT2 

/

OO . . 

duexp (—2TXT2V2\ • 
-00 ^ ' 

(3.77) 

0 0 r°° ( 4TT 
E / dXidX2exp { — — 

w,w ——OO 

R 
+ —7= 

r2 

XX-
R 

2 v V 
(«/ — TW) X 

(w' — TW) X ) 
J J 

Trexp [2ni (TNR - XJ'R). 

Trexp [-2m (fNL + xJ'L). 

where 

X = -Va' 
R 

2EX + E^= [w1 - TW) 
Vet' 

(3.78) 

The traces in (3.77) can be evaluated using (3.57), (3.58) and (3.59). For the 
right-movers, this gives 

Trexp [2m (TNR - xJ'R). 

file:///2iri
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= Trexp2m' I r 53 [n (bli-bn- + b\ljrbn+ 

OO OO 

XI 53 b n - & n - + X* 53 + X«&0&0+. 
n=l n=l 

^x + ^ x j 

= e-2wx^+^Trexp\27rif^{nr-ix)bl_bn^ + 
I n=l 

oo oo 

2ni 53 (nr + ix) &n A + - 27rx&J&0 + 2vrzr 53 a 9 . ^ n=l n=l 
-27rx(^+|) 

1 - e - 2 ^ n I 
n=l X i 

g27ri(nr—i\) 
(3.79) 

g27ri(nr+ix) J \ \ g27rmr 

Similarly, 

Trexp [-2m (fNL + xJ'L)] 

eM'H) (-^—) f f ( - 1 -

V i _ e 2 ^ ; 11 V l - e - 2 7 r 
27ri(rjT+ix) 

(3.80) 

1̂  Q—2ni(nT—ix) J \ \ g—27rmr 

The integral over J/ in (3.77) can be evaluated using the ^-dependence of the 
traces given by (3.79) and (3.80). The result is: 

j duexp |-27rr 2^ 2 - 27rx (V + ^ + 27rx (v + ^ J 

V2r 2 

Substituting (3.79), (3.80), and (3.81) into (3.77) gives 

(3.81) 

-^ye** 7 * 53 / d\xd\2exp -— A A -

it" - R 
— 7 = (w' — TW) A H T = ( « / — f IU) A— 
2vo:' 2yQ!' 

(3.82) 

, - \ 2 
g (x - x) 1 lOx (iv Oi ( ix,r) | 2 
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where ©i is the Jacobi Oi-function given by 

Gi (u, T) = 2exp C^f) sinirv fj (l - e2lxinT) • (3.83) 

_ e2ni(nr+u) j ^ _ ^ i { n r - v ) j 

Unlike the partition functions of the magnetic Melvin solution and of free 
string theory, which are analytic everywhere in the interior of the fundamen
tal domain F0, the electric Melvin partition function has an infinite number 
of simple poles in Fo. This can easily be seen in the special cases E = 0 and 
E = 0. Choosing E = 0, and considering only the terms with w = 0, the 
0i-function in (3.82) becomes 

0i {ix, r) = 2exp C^f) sin {-inERw') fj (l — e2ninT) • (3.84) 

^ _ e2iri(nT-iERw')^ ^ _ e2ni(nT+iERw') j 

The second factor in the infinite product can become zero at values of T\ and 
r 2 satisfying 

2?ri (TIT - _ i W ) = 2TTZA; (3.85) 
u 

for some integer k. Solving for r gives 
k ERw1 

T = - + I (3.86 
n n 

For values of k, n, and w' such that |£ | < | , _•' > 0, and 
k2 E2R2w'2 

— + ' 2 > 1 

this zero lies in F0. Thus, the factor of [6i (ix, T ) ] - 1 in (3.82) has an infinite 
number of poles in the fundamental domain. The presence of poles can 
also be demonstrated in the case E — 0, E ^ 0. In this case, the @i-
function is independent of w and w', and the sums over w and w' yield 5-
functions, allowing the integrals over Xx and A 2 to be evaluated. The resulting 
expression contains a ©i-function with zeros at the points 

k a'Ew' 
T = - + I—— 3.87 

n nR 

for arbitrary integers k and w', producing poles in the partition function at 
these points. 
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Chapter 4 
Conclusion 

In this thesis, an electric Melvin solution of string theory analogous to 
the magnetic Melvin solution of [2] was presented. The electric KK-Melv in 
background described in [11] was generalized to a curved, 2-parameter back
ground using a T-duality transformation. The closed string was quantized 
on this space using techniques similar to those used in [2] and [3] for the mag
netic Melvin space. The partition function was calculated, and was shown to 
possess poles in the interior of the fundamental region for two special cases 
of the electric field parameters. 

There are many possibilities for further research on the electric Melvin 
solution. More insight into the nature of the solution and its implications 
for string theory would be provided by determining the physical significance 
of the poles in the partition function described in section 3.3. Also, the 
electric field in this background should result in pair creation of strings by the 
Schwinger mechanism. It may be possible to find an expression for the pair 
production rate by calculating the imaginary part of the partition function, 
as was done for open strings in a constant electric field in [14]. Another 
possibility is to find generalizations of the solution. Other string theories, 
such,as open string theories, could be quantized on the space. Combinations 
of the magnetic and electric Melvin solutions could also be constructed, and 
may be worth investigating. This could be done by quantizing the string on 
an orbifold which identifies points under both rotations and boosts. 
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Appendix A 
Dimensional Reduction 

Dimensional reduction is a technique by which the low-energy limit of 
string theory on a space with a compact dimension can be viewed as a gauge 
theory on a lower dimensional space [5]. For a d + 1-dimensional space with 
dimensions xM, M = 0, l , . . .d , with xd compact, the line element can be 
expressed as 

ds2 = gMNdxMdxN 

= g^dx^dx" + 2gf,ddx"dxd + gdd (dxdf (A. l ) 

where M and N range from 0 to d, and fj, and v range from 0 to d — 1. 
Completing the square, (A. l ) can be rewritten in the form 

ds2 = g'^dx^dx" + gdd (dxd + A^dx") 

for some vector A^. In this form, the original metric has been separated into 
a d-dimensional metric g' , a scalar gdd, called the Brans-Dicke scalar, and 
a vector field A^, called a Kaluza-Klein field. 

If the metric gMN of the d+ 1-dimensional space does not .depend on xd, 
this space can be viewed as a d-dimensional space with metric g' and gauge 
field Aft. The metric g' transforms as a d-dimensional metric for coordinate 
transformations of the form x^ —> x'^ (xu). Under the transformation 

x ' d = x
d + A (x") 

the metric (A.2) is invariant if the gauge transformation 

A'^A,- d,X (A.4) 
is made. Fields which are charged under the Kaluza-Klein gauge field can 
occur in the low-energy string spectrum. For example, because of the iden
tification xd = xd + 2TTR, a scalar field 4>

 c a n be expanded as 

4>(xM)= £ 4>n(x*)exp^pJ (A.5) 

(A.2) 

(A.3) 
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Under the translation (A.3), a given mode in this expansion is multiplied by 
a factor of e - 1* - . The modes are thus charged under A^, with charges equal 
to the quantized momentum ^ in the xd direction. 

This technique can be extended to backgrounds with an antisymmetric 
tensor field, B M N . The general string action (2.1) is invariant under the 
gauge transformation 

5BMN = dM(N ~ 0n(M (A.6) 

where is an arbitrary vector. This transformation adds a total derivative 
to the action. For ( M independent of xd, (A.6) reduces to a gauge transfor
mation of an antisymmetric tensor field and of a vector: 

SB^ = d ^ - d ^ (A.7) 
bB^d = c^C xd 

Therefore, the dimensionally-reduced theory involves an antisymmetric ten
sor field, B^, and a one-form gauge field, B^ = B^xd. 
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Appendix B 
T-duality 

T-duality is a symmetry of 2-dimensional conformal field theory which 
relates different spacetime backgrounds in string theory. For a given back
ground with metric 5^ , antisymmetric tensor B^, and dilaton $, which are 
independent of some coordinate x°, the general bosonic string worldsheet 
action (2.1) is equivalent on shell to the action [16] 

S = JdadT{VhhaP[gQ0VaVp + 2g0iVadpXi+ 

gijdaX%X>] + ea / 3 [BoiVadpX* + BijdaX'dpX*] + (B.l) 

eaf}X°daVp + a'VhR® (X)} 

where i and j run from 1 to 25. The field equation for X°, ea0daVp = 0, 
has as a solution Va = daX°, which when substituted into (B.l) gives back 
(2.1). Another action which is equivalent to (B.l) on shell can be derived by 
solving for Va through its equation of motion, and substituting the solution 
into (B.l). This gives an action of the form 

S = - — * - / dadT\^daX^dpXvh^g.v^^daX^dpXvB.v{^,.2) 
4.TJOL J L 

+a'VhR<f> (1)] 

with 

goo 
1 

goo 

Boi 
, 9o% — 

#00 

9ij = 9ij 
9oi9oj — B0iB0j 

9oo 
(B.3) 

Boi 
_ goi 

goo 

B^ = B^ 
1 9oiBoj — B0ig0j 

9oo 
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In addition to preserving the classical properties of the background, the trans
formation (B.3) also preserves conformal invariance at one-loop order, pro
vided that it is accompanied by a shift in the dilaton: 

$ ->• $ - ^lng00 (BA) 

This can be shown by substituting (B.3) and (B.4) into the one-loop confor
mal invariance equations of string theory [15]. This transformation is called 
a T-duality transformation along the X° direction. 

When T-duality is done along a compact direction, a generalization is 
obtained of the R —> ^ duality of string theory on flat space with a compact 
dimension of radius R [17]. For a space with X° = X° + 2ir, if the identifi
cation ^/goo = R is made, the direction X° in the T-dual space is compact 
with radius -̂ ==. In the case of flat space, g0i = B^ = 0 and (B.3) reduces 

to the R —> - 5 duality under which the string spectrum is invariant. 
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