UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An investigation of surface energy balance and turbulent heat flux on mountain glaciers Fitzpatrick, Noel

Abstract

The exchange of energy between a glacier surface and its surroundings, known as its surface energy balance (SEB), is a primary control on surface ablation rates. In the modelling of glacier SEB, parameterisation rather than direct measurement is frequently used to estimate one or more of the contributing heat fluxes, with smaller fluxes often deemed negligible. The turbulent fluxes of sensible and latent heat are commonly parameterised using forms of the bulk aerodynamic method. These techniques were developed for flat, uniform surfaces, and substantial uncertainty remains in the validity of their application over sloped, inhomogeneous glacier terrain. A multi-year field campaign was performed on two glaciers in the Purcell Mountains of British Columbia, Canada, where season-long observations of the complete SEB were obtained at multiple locations. The obtained dataset was used to drive an ablation model which showed good agreement with observed rates at seasonal, daily, and sub-daily timescales, effectively closing the energy balance. Through eddy covariance measurements, the turbulent heat fluxes were observed to be important components of SEB at each location, providing 31% of seasonal melt energy, and up to 78% of melt energy on individual days, underlining the need for their accurate estimation. The rain heat flux, often assumed negligible, was a significant contributor to melt energy on daily and sub-daily timescales during heavy rainfall (up to 20% day⁻¹). An evaluation of common turbulent flux parameterisation methods found their performance to be highly sensitive to the choice of roughness length scheme and atmospheric stability function. Observed roughness length values differed from those commonly assumed for glacier surfaces, and varied substantially between locations, highlighting the need for site-specific values. Two techniques were developed for the remote estimation of roughness using digital elevation models, and performed well when compared with in situ observations. The occurrence of shallow, katabatic surface layers with low-level wind maximums was frequently observed over the sloped, glacial test sites. Existing stability parameters and functions used in turbulent flux parameterisation were found to be unreliable in these conditions, as was the commonly employed assumption of constant turbulent flux and friction velocity with height through this layer.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International