- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Data for The surface is not superficial: Utilizing...
Open Collections
UBC Research Data
Data for The surface is not superficial: Utilizing hyper-local thermal photogrammetry for pedestrian thermal comfort inquiry Steinharter, Logan
Description
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface temperatures (TS) at the scale of pedestrian activity (e.g., bus stops or street segments), may provide more accurate insights into thermal comfort. This study compares hyper-local ~0.01 m resolution TS collected via consumer-grade Forward-Looking Infrared (FLIR) thermography with resampled 30 m resolution SD-LST from Landsat 8 and 9 images to evaluate their utility in predicting thermal comfort indices across 60 bus stops in Denver, Colorado. During the summer of 2023, 270 FLIR measurements were collected over 19 dates, with a four-day subset (n = 33) coinciding with Landsat imagery. FLIR TS averaged 25.12 ± 5.39 °C, while SD-LST averaged 35.90 ± 12.56 °C, a significant 10.77 °C difference (95% CI: 6.81–14.73; p < 0.001). FLIR TS strongly correlated with biometeorological metrics such as air temperature and mean radiant temperature (r > 0.8; p < 0.001), while SD-LST correlations were weak (r < 0.3). Linear mixed-effects models using FLIR TS explained 50–66% of the variance in thermal comfort indices and met ISO 7726 standards. Each 1 °C increase in FLIR TS predicted a 0.75 °C rise in mean radiant temperature. These results highlight hyper-local thermography as a reliable, low-cost tool for urban heat resilience planning.
Item Metadata
| Title |
Data for The surface is not superficial: Utilizing hyper-local thermal photogrammetry for pedestrian thermal comfort inquiry
|
| Creator | |
| Contributor | |
| Date Issued |
2026-01-22
|
| Description |
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface temperatures (TS) at the scale of pedestrian activity (e.g., bus stops or street segments), may provide more accurate insights into thermal comfort. This study compares hyper-local ~0.01 m resolution TS collected via consumer-grade Forward-Looking Infrared (FLIR) thermography with resampled 30 m resolution SD-LST from Landsat 8 and 9 images to evaluate their utility in predicting thermal comfort indices across 60 bus stops in Denver, Colorado. During the summer of 2023, 270 FLIR measurements were collected over 19 dates, with a four-day subset (n = 33) coinciding with Landsat imagery. FLIR TS averaged 25.12 ± 5.39 °C, while SD-LST averaged 35.90 ± 12.56 °C, a significant 10.77 °C difference (95% CI: 6.81–14.73; p < 0.001). FLIR TS strongly correlated with biometeorological metrics such as air temperature and mean radiant temperature (r > 0.8; p < 0.001), while SD-LST correlations were weak (r < 0.3). Linear mixed-effects models using FLIR TS explained 50–66% of the variance in thermal comfort indices and met ISO 7726 standards. Each 1 °C increase in FLIR TS predicted a 0.75 °C rise in mean radiant temperature. These results highlight hyper-local thermography as a reliable, low-cost tool for urban heat resilience planning.
|
| Subject | |
| Type | |
| Date Available |
2026-01-19
|
| Provider |
University of British Columbia Library
|
| License |
CC-BY 4.0
|
| DOI |
10.14288/1.0451345
|
| URI | |
| Publisher DOI | |
| Rights URI | |
| Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
License
CC-BY 4.0