- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Models, Model Outputs and Processed Data for "Climate...
Open Collections
UBC Research Data
Models, Model Outputs and Processed Data for "Climate Change Alters Social-Ecological Trade-offs in Achieving Ocean Futures’ Targets" Zeng, Zeyu; Vicky W. Y. Lam; U. Rashid Sumaila; William W. L. Cheung
Description
This dataset contains the model output results from the article "Climate Change Alters Social-Ecological Trade-offs in Achieving Ocean Futures’ Targets." The results feature data from the East China Sea (ECS) and the Northern South China Sea (NSCS) under various climate scenarios—including no climate change, the RCP2.6 low-emission scenario, and the RCP8.5 high-emission scenario—and diverse policy objectives. These include outcomes from different economic and ecological strategies. For detailed information, please refer to the README file.
Item Metadata
Title |
Models, Model Outputs and Processed Data for "Climate Change Alters Social-Ecological Trade-offs in Achieving Ocean Futures’ Targets"
|
Creator | |
Contributor | |
Date Issued |
2024-07-11
|
Description |
This dataset contains the model output results from the article "Climate Change Alters Social-Ecological Trade-offs in Achieving Ocean Futures’ Targets." The results feature data from the East China Sea (ECS) and the Northern South China Sea (NSCS) under various climate scenarios—including no climate change, the RCP2.6 low-emission scenario, and the RCP8.5 high-emission scenario—and diverse policy objectives. These include outcomes from different economic and ecological strategies. For detailed information, please refer to the README file.
|
Subject | |
Type | |
Language |
English
|
Notes |
Abstract:
The effects of climate change on marine ecosystems are causing cascading impacts on livelihood, food security and culture through fisheries. Such impacts interact and exacerbate the effects of overfishing on marine social-ecological systems, complicating the rebuilding of ecosystems to achieve desirable and sustainable ocean futures. Developing effective pathways for ecosystem rebuilding requires consideration of the co-benefits and trade-offs between ecological and social dimensions and between fishing sectors. However, the effects of intensifying climate change on such co-benefits or trade-offs are yet to be well understood, particularly in regions where ecosystem rebuilding is urgently needed. We applied a numerical optimization routine to define the scope for improvement towards the Pareto-frontier for ecological robustness and economic benefits of the northern South China Sea (NSCS) and the East China Sea (ECS) ecosystems. These two ecosystems were used to represent over-exploited low- and mid-latitude systems, respectively, and the optimization aims to improve their status through fisheries management. We find that the ECS ecosystem has the possibility of increasing the economic benefits generated by the fisheries it supports under climate change by 2050 while increasing the uncertainty of achieving biodiversity objectives. Nevertheless, climate change is projected to reduce the scope to restore ecosystem structures and the potential economic benefits in the NSCS ecosystem. This study highlights the contrasting impacts of climate change on the co-benefits/trade-offs in ecosystem rebuilding and the benefits obtainable by different fishing sectors even in neighboring ecosystems. We conclude that consideration at the nexus of climate-biodiversity-fisheries is a key to developing effective ecosystem rebuilding plan
|
Date Available |
2024-07-01
|
Provider |
University of British Columbia Library
|
License |
CC BY-NC-ND 4.0
|
DOI |
10.14288/1.0444131
|
URI | |
Publisher DOI | |
Rights URI | |
Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
Licence
CC BY-NC-ND 4.0