- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Geographical validation of the Smart Triage Model by...
Open Collections
UBC Research Data
Geographical validation of the Smart Triage Model by age group Zhang, Cherri; Wiens, Matthew O; Dunsmuir, Dustin; Pillay, Yashodani; Huxford, Charly; Kimutai, David; Tenywa, Emmanuel; Ouma, Mary; Kigo, Joyce; Kamau, Stephen; Chege, Mary; Kenya-Mugisha, Nathan; Mwaka, Savio; Dumont, Guy A; Kisson, Niranjan; Akech, Samuel; Ansermino, J Mark
Description
<br /><strong>Background:</strong> Age is an important risk factor among critically ill children with neonates being the most vulnerable. Clinical prediction models need to account for age differences and must be externally validated and updated, if necessary, to enhance reliability, reproducibility, and generalizability. We externally validated the Smart Triage model using a combined prospective baseline cohort from three hospitals in Uganda and two in Kenya using admission, mortality, and readmission. <br/> <br /><strong>Methods:</strong> We evaluated model discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots. In addition, we performed subsetting analysis based on age groups (< 30 days, ≤ 2 months, ≤ 6 months, and < 5 years). We revised the model for neonates (< 1 month) by re-estimating the intercept and coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants under the age of five (under-5) were included in the analysis. <br/> <br /><strong>Results:</strong> The proportion with an outcome ranged from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk thresholds (CI) were 0.85 (0.83-0.87) and 0.68 (0.58-0.76) for children under-5 and neonates, respectively. Specificity at the high-risk thresholds were 0.93 (0.93-0.94) and 0.96 (0.94-0.98) for children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC of 0.83 (0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively. <br/> <br /><strong>Discussion:</strong> The Smart Triage model showed good discrimination for children under-5. However, a revised model is recommended for neonates due to their uniqueness in disease susceptibly, host response, and underlying physiological reserve. External validation of the neonatal model and additional external validation of the under-5 model in different contexts is required. <br/>; <br /><strong>NOTE for restricted files:</strong> If you are not yet a CoLab member, please complete our <a href = "https://rc.bcchr.ca/redcap/surveys/?s=EDCYL7AC79">membership application survey</a> to gain access to restricted files within 2 business days. <br />Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator at <a href = mailto:sepsiscolab@bccchr.ca>sepsiscolab@bcchr.ca</a> or visit our <a href = "https://wfpiccs.org/pediatric-sepsis-colab/">website</a>.
Item Metadata
Title |
Geographical validation of the Smart Triage Model by age group
|
Creator | |
Contributor | |
Date Issued |
2024-06-12
|
Description |
<br /><strong>Background:</strong> Age is an important risk factor among critically ill children with neonates being the most vulnerable. Clinical prediction models need to account for age differences and must be externally validated and updated, if necessary, to enhance reliability, reproducibility, and generalizability. We externally validated the Smart Triage model using a combined prospective baseline cohort from three hospitals in Uganda and two in Kenya using admission, mortality, and readmission.
<br/>
<br /><strong>Methods:</strong> We evaluated model discrimination using area under the receiver-operator curve (AUROC) and visualized calibration plots. In addition, we performed subsetting analysis based on age groups (< 30 days, ≤ 2 months, ≤ 6 months, and < 5 years). We revised the model for neonates (< 1 month) by re-estimating the intercept and coefficients and selected new thresholds to maximize sensitivity and specificity. 11595 participants under the age of five (under-5) were included in the analysis.
<br/>
<br /><strong>Results:</strong> The proportion with an outcome ranged from 8.9% in all children under-5 (including neonates) to 26% in the neonatal subset alone. The model achieved good discrimination for children under-5 with AUROC of 0.81 (95% CI: 0.79-0.82) but poor discrimination for neonates with AUROC of 0.62 (95% CI: 0.55-0.70). Sensitivity at the low-risk thresholds (CI) were 0.85 (0.83-0.87) and 0.68 (0.58-0.76) for children under-5 and neonates, respectively. Specificity at the high-risk thresholds were 0.93 (0.93-0.94) and 0.96 (0.94-0.98) for children under-5 and neonates, respectively. After model revision for neonates, we achieved an AUROC of 0.83 (0.79-0.87) with 13% and 41% as the low- and high-risk thresholds, respectively.
<br/>
<br /><strong>Discussion:</strong> The Smart Triage model showed good discrimination for children under-5. However, a revised model is recommended for neonates due to their uniqueness in disease susceptibly, host response, and underlying physiological reserve. External validation of the neonatal model and additional external validation of the under-5 model in different contexts is required.
<br/>; <br /><strong>NOTE for restricted files:</strong> If you are not yet a CoLab member, please complete our <a href = "https://rc.bcchr.ca/redcap/surveys/?s=EDCYL7AC79">membership application survey</a> to gain access to restricted files within 2 business days.
<br />Some files may remain restricted to CoLab members. These files are deemed more sensitive by the file owner and are meant to be shared on a case-by-case basis. Please contact the CoLab coordinator at <a href = mailto:sepsiscolab@bccchr.ca>sepsiscolab@bcchr.ca</a> or visit our <a href = "https://wfpiccs.org/pediatric-sepsis-colab/">website</a>.
|
Subject | |
Type | |
Language |
English
|
Notes |
This research was supported by the Wellcome Trust Innovator Award (ID: 215695/B/ 19/Z), Grand Challenges Canada (ID: TTS-2008-35944, and BCCHF.
|
Date Available |
2024-06-12
|
Provider |
University of British Columbia Library
|
License |
CC BY-NC-SA 4.0
|
DOI |
10.14288/1.0443958
|
URI | |
Publisher DOI | |
Rights URI | |
Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
Licence
CC BY-NC-SA 4.0