- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Using Remote Sensing Data and Raster Analysis Tools...
Open Collections
UBC Research Data
Using Remote Sensing Data and Raster Analysis Tools to Assess Fire Hazard Severity in South-Central British Columbia Miskovic, Sebastian
Description
Wildfire is a significant threat to ecosystems and human safety, exacerbated by climate warming. The Penticton region of British-Columbia, Canada is an area which is experiencing increasingly worsening wildfire events. These natural disturbance events represent a significant threat to local ecosystems, property and human life and wellbeing. As fire conditions worsen, and the population density of this region increases, landscape analysis of fire hazard levels is necessary to direct emergency service management prior to and during wildfire events and to inform policy on how to manage these natural disasters. To assess fire hazard levels, a GIS-based multi-criteria analysis was performed to understand fire hazard spatially, subdivided into low, moderate, high, and severe hazard areas. Two models were built to achieve this, taking into account commonly used variables employed to assess fire hazard severity around the world. To identify potential differences in hazard assessment, the models weighted these variables differently from one another. Fire location points from the year 2000 to 2021 were overlayed with each respective model output. Model 1 spatially overlapped with 73.88% of these fires, while model 2 spatially overlapped with 74.35%. These results can help identify areas of elevated hazard under ideal burning conditions, inform deployment of emergency services and resources, and provide a framework for using a GIS to conduct a fire hazard landscape assessment.; Datasets associated and created to complete analysis employed in this research project.
Item Metadata
Title |
Using Remote Sensing Data and Raster Analysis Tools to Assess Fire Hazard Severity in South-Central British Columbia
|
Creator | |
Contributor | |
Date Issued |
2023-04-20
|
Description |
Wildfire is a significant threat to ecosystems and human safety, exacerbated by climate warming. The Penticton region of British-Columbia, Canada is an area which is experiencing increasingly worsening wildfire events. These natural disturbance events represent a significant threat to local ecosystems, property and human life and wellbeing. As fire conditions worsen, and the population density of this region increases, landscape analysis of fire hazard levels is necessary to direct emergency service management prior to and during wildfire events and to inform policy on how to manage these natural disasters. To assess fire hazard levels, a GIS-based multi-criteria analysis was performed to understand fire hazard spatially, subdivided into low, moderate, high, and severe hazard areas. Two models were built to achieve this, taking into account commonly used variables employed to assess fire hazard severity around the world. To identify potential differences in hazard assessment, the models weighted these variables differently from one another. Fire location points from the year 2000 to 2021 were overlayed with each respective model output. Model 1 spatially overlapped with 73.88% of these fires, while model 2 spatially overlapped with 74.35%. These results can help identify areas of elevated hazard under ideal burning conditions, inform deployment of emergency services and resources, and provide a framework for using a GIS to conduct a fire hazard landscape assessment.; Datasets associated and created to complete analysis employed in this research project.
|
Subject | |
Geographic Location | |
Type | |
Date Available |
2023-04-06
|
Provider |
University of British Columbia Library
|
License |
CC-BY 4.0
|
DOI |
10.14288/1.0431349
|
URI | |
Publisher DOI | |
Rights URI | |
Country |
Canada
|
Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
Licence
CC-BY 4.0