- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Data from: Recently-formed polyploid plants diversify...
Open Collections
UBC Research Data
Data from: Recently-formed polyploid plants diversify at lower rates Mayrose, Itay; Zhan, Shing H.; Rothfels, Carl J.; Magnuson-Ford, Karen; Barker, Michael S.; Rieseberg, Loren H.; Otto, Sarah P.
Description
Abstract
Polyploidy, the doubling of genomic content, is a widespread feature, especially among plants, yet its macro-evolutionary impacts are contentious. Traditionally, polyploidy has been considered an evolutionary dead-end, whereas recent genomic studies suggest that polyploidy has been a key driver of macro-evolutionary success. Here we examine the consequences of polyploidy on the time scale of genera across a diverse set of vascular plants, encompassing hundreds of inferred polyploidization events. Likelihood-based analyses indicate that polyploids generally exhibit lower speciation rates and higher extinction rates than diploids, providing the first quantitative corroboration of the dead-end hypothesis. The increased speciation rates of diploids can, in part, be ascribed to their capacity to speciate via polyploidy. Only particularly “fit” lineages of polyploids may persist to enjoy longer term evolutionary success.
Usage notes
polyploidy_database
Item Metadata
| Title |
Data from: Recently-formed polyploid plants diversify at lower rates
|
| Creator | |
| Date Issued |
2021-05-20
|
| Description |
Abstract
Polyploidy, the doubling of genomic content, is a widespread feature, especially among plants, yet its macro-evolutionary impacts are contentious. Traditionally, polyploidy has been considered an evolutionary dead-end, whereas recent genomic studies suggest that polyploidy has been a key driver of macro-evolutionary success. Here we examine the consequences of polyploidy on the time scale of genera across a diverse set of vascular plants, encompassing hundreds of inferred polyploidization events. Likelihood-based analyses indicate that polyploids generally exhibit lower speciation rates and higher extinction rates than diploids, providing the first quantitative corroboration of the dead-end hypothesis. The increased speciation rates of diploids can, in part, be ascribed to their capacity to speciate via polyploidy. Only particularly “fit” lineages of polyploids may persist to enjoy longer term evolutionary success.; Usage notes polyploidy_database |
| Subject | |
| Type | |
| Notes |
Dryad version number: 1 Version status: submitted Dryad curation status: Published Sharing link: https://datadryad.org/stash/share/t63fJJUo6fsJBeOxV-vrwsb5D-rDv0Lv-d-RCzaQVCg</p> Storage size: 5037670 Visibility: public |
| Date Available |
2020-06-24
|
| Provider |
University of British Columbia Library
|
| License |
CC0 1.0
|
| DOI |
10.14288/1.0398088
|
| URI | |
| Publisher DOI | |
| Rights URI | |
| Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
License
CC0 1.0