UBC Research Data

Data from: Time scale matters: genetic analysis does not support adaptation-by-time as the mechanism for adaptive seasonal declines in kokanee reproductive lifespan Morbey, Yolanda E.; Jensen, Evelyn L.; Russello, Michael A.

Description

<b>Abstract</b><br/>Seasonal declines of fitness-related traits are often attributed to environmental effects or individual-level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive life span have been attributed to adaptation-by-time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian-linked loci. We detected no genetic differences in presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation-by-time as an important evolutionary mechanism underlying seasonal declines in reproductive life span and a need for greater consideration of other mechanisms such as time-dependent, adaptive adjustment of reproductive effort.; <b>Usage notes</b><br /><div class="o-metadata__file-usage-entry"><h4 class="o-heading__level3-file-title">Time scale matters: genetic analysis does not support adaptation-by-time as the mechanism for adaptive seasonal declines in kokanee reproductive lifespan</h4><div class="o-metadata__file-description">Seasonal declines of fitness-related traits are often attributed to environmental effects or individual-level decisions about reproductive timing and effort, but genetic variation may also play a role. In populations of Pacific salmon (Oncorhynchus spp.), seasonal declines in reproductive lifespan have been attributed to adaptation-by-time, in which divergent selection for different traits occurs among reproductively isolated temporal components of a population. We evaluated this hypothesis in kokanee (freshwater obligate Oncorhynchus nerka) by testing for temporal genetic structure in neutral and circadian-linked loci. We detected no genetic differences in at presumably neutral loci among kokanee with different arrival and maturation dates within a spawning season. Similarly, we detected no temporal genetic structure in OtsClock1b, Omy1009uw, or OmyFbxw11, candidate loci associated with circadian function. The genetic evidence from this study and others indicates a lack of support for adaptation-by-time as an important evolutionary mechanism underlying seasonal declines in reproductive lifespan, and a need for greater consideration of other mechanisms such as time-dependent, adaptive adjustment of reproductive effort.</div><div class="o-metadata__file-name">Morbey et al. Ecol Evol DRYAD.xls</br></div></div>

Item Media

Item Citations and Data

Licence

This dataset is made available under a Creative Commons CC0 license with the following additional/modified terms and conditions: CC0 Waiver