UBC Research Data

Data from: Phytochrome diversity in green plants and the origin of canonical plant phytochromes Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J.; Villarreal, Juan Carlos; Stevenson, Dennis W.; Graham, Sean W.; Wong, Gane Ka-Shu; Pryer, Kathleen M.; Mathews, Sarah


Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.; Usage notes
alignments_and_treesThis zip file contains the alignments and trees, as well as a ReadMe file.baits-120-60The probe sequences to target phytochrome, phototropin and neochrome genes, with a special focus on those of hornworts and ferns.

Item Media

Item Citations and Data

Usage Statistics