UBC Research Data

Data from: Testing a “genes-to-ecosystems” approach to understanding aquatic-terrestrial linkages Crutsinger, Gregory; Rudman, Seth; Rodriguez-Cabal, Mariano; Mckown, Athena; Sato, Takuya; MacDonald, Andrew M.; Heavyside, Julian; Geraldes, Armando; Hart, Edmund; LeRoy, Carri; El-Sabaawi, Rana; McKown, Athena D.; Crutsinger, Gregory M.; Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Hart, Edmund M.; LeRoy, Carri J.; El-Sabaawi, Rana W.

Description

Abstract
A ‘genes-to-ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species in order to shed light on the relationships among hierarchies of ecological organization (genes [RIGHTWARDS ARROW] individuals [RIGHTWARDS ARROW] communities [RIGHTWARDS ARROW] ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome-wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after-life’ effects of litter from different genotypes were directly comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small portion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic-terrestrial linkages, but challenges the ability to predict community or ecosystem responses based on the actions of one or a few genes.; Usage notes
Crutsinger et al.Excel format showing individual, community, and ecosystem data from mesocosm experiment sorted by the identity of the Populus trichocarpa genotype.Structural Equation Model R scriptmolecolLARS_SEM.r
Structural Equation Model data filepop_dat.csv

Item Media

Item Citations and Data

Licence

CC0 Waiver

Usage Statistics