- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Research Data /
- Protease-inhibitor interaction predictions: Lessons...
Open Collections
UBC Research Data
Protease-inhibitor interaction predictions: Lessons on the complexity of protein-protein interactions Fortelny, Nikolaus; Butler, Georgina; Overall, Christopher; Pavlidis, Paul
Description
Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features. Thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions were indeed more challenging than predictions of non-proteolytic and non-inhibitory interactions. In summary, we describe a novel and well-defined but difficult protein interaction prediction task, and thereby highlight limitations of computational interaction prediction methods.
Item Metadata
Title |
Protease-inhibitor interaction predictions: Lessons on the complexity of protein-protein interactions
|
Creator | |
Contributor | |
Date Created |
2017
|
Date Issued |
2019-03-05
|
Description |
Protein interactions shape proteome function and thus biology. Identification of protein interactions is a major goal in molecular biology, but biochemical methods, although improving, remain limited in coverage and accuracy. Whereas computational predictions can guide biochemical experiments, low validation rates of predictions remain a major limitation. Here, we investigated computational methods in the prediction of a specific type of interaction, the inhibitory interactions between proteases and their inhibitors. Proteases generate thousands of proteoforms that dynamically shape the functional state of proteomes. Despite the important regulatory role of proteases, knowledge of their inhibitors remains largely incomplete with the vast majority of proteases lacking an annotated inhibitor. To link inhibitors to their target proteases on a large scale, we applied computational methods to predict inhibitory interactions between proteases and their inhibitors based on complementary data including coexpression, phylogenetic similarity, structural information, co-annotation, and colocalization, and also surveyed general protein interaction networks for potential inhibitory interactions. In testing nine predicted interactions biochemically, we validated the inhibition of kallikrein 5 by serpin B12. Despite the use of a wide array of complementary data, we found a high false positive rate of computational predictions in biochemical follow-up. Based on a protease-specific definition of true negatives derived from the biochemical classification of proteases and inhibitors, we analyzed prediction accuracy of individual features. Thereby we identified feature-specific limitations, which also affected general protein interaction prediction methods. Interestingly, proteases were often not coexpressed with most of their functional inhibitors, contrary to what is commonly assumed and extrapolated predominantly from cell culture experiments. Predictions of inhibitory interactions were indeed more challenging than predictions of non-proteolytic and non-inhibitory interactions. In summary, we describe a novel and well-defined but difficult protein interaction prediction task, and thereby highlight limitations of computational interaction prediction methods.
|
Subject |
Medicine, Health and Life Sciences; Medicine, Health and Life Sciences; proteases; protein-protein interaction; protease-inhibitor interaction; computational prediction; Medicine, Health and Life Sciences; proteases; protein-protein interaction; protease-inhibitor interaction; computational prediction
|
Type | |
Notes | |
Date Available |
2019-03-05
|
Provider |
University of British Columbia Library
|
License |
This work is licensed under a Creative Commons Attribution 4.0 International License.
|
DOI |
10.14288/1.0343444
|
URI | |
Publisher DOI | |
Aggregated Source Repository |
Dataverse
|
Item Media
Item Citations and Data
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License.