UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Vibration, static standing, dynamic standing, and spasticity in individuals with spinal cord injury Sadeghi, Mahsa

Abstract

Spasticity is a common consequence of upper motor neuron lesions such as spinal cord injury (SCI). Spasticity is experienced by 65-78% of individuals with SCI. Spasticity management is one of the most important challenges that clinicians and researchers encounter. Physical therapy techniques are the essential component of spasticity management that are used during and after other spasticity management tools. Vibration and standing training are two physiotherapy techniques that might be beneficial to manage spasticity in individuals with SCI. This thesis is divided into two major parts to study how these two physiotherapy techniques are useful to manage spasticity in individuals with SCI. The first study was a systemic review exploring how effective whole body and focal vibration are for spasticity management in individuals with SCI. The second study was a cross-over study that evaluated the difference between the effects of static and dynamic (using the Segway) standing training on spasticity immediately and one hour after the interventions in individuals with SCI. Spasticity was measured by three different outcome measures including self-assessment (visual analog scale), clinical (Modified Ashworth Scale), and electrophysiologic (electromyography) measures. There was evidence to support the decreasing effects of either whole body or focal vibration on spasticity in individuals with SCI. There was no statistically significant difference between the dynamic and static standing interventions for spasticity reduction. We concluded that vibration (focal and whole body) has promising effects for spasticity reduction in individuals with SCI. We also concluded that dynamic standing training has no greater effect on spasticity reduction compared to the static standing training.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada