- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Metabolism of 2-ketogluconate by Pseudomonas aeruginosa
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Metabolism of 2-ketogluconate by Pseudomonas aeruginosa Kay, William Wayne
Abstract
The non-phosphorylated oxidative pathway of glucose dissimilation has been confirmed in Pseudomonas aeruginosa using whole cells and cell-free extracts. The oxidation of glucose to 2-ketogluconate was complete and stoichiometric in cell-free extracts and cell-free extracts of glucose grown cells were shown to be incapable of metabolizing 2-ketogluconate. It was shown that whole cells completely degraded 2-ketogluconate and quantitatively accumulated pyruvic acid in the presence of specific inhibitors. The initial step involved in 2-ketogluconate dissimilation was found to be exceptionally labile to the effects of a variety of metabolic inhibitors. The metabolism of 2-ketogluconate was demonstrated to involve the initial phosphorylation with adenosine triphosphate (ATP) as the phosphate donor. The resultant intermediate, 2-keto-6-phosphogluconate, was identified and was shown to undergo reduction by a nicotinamide adenine dinucleotide phosphate linked reductase to 6-phosphogluconate which, in turn, was metabolized to pyruvate by enzymes of the Entner-Doudoroff pathway. Radioactivity from 2-ketogluconate-C¹⁴ was rapidly incorporated into cellular constituents, primarily protein, by washed cell suspensions of P. aeruginosa, but oxidation of 2-ketogluconate did not involve the accumulation of keto-acid intermediates. The role of 2-ketogluconic acid as a key intermediate for the conservation of excess carbon under conditions where nitrogen is limiting was discussed.
Item Metadata
Title |
Metabolism of 2-ketogluconate by Pseudomonas aeruginosa
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1965
|
Description |
The non-phosphorylated oxidative pathway of glucose dissimilation has been confirmed in Pseudomonas aeruginosa using whole cells and cell-free extracts. The oxidation of glucose to 2-ketogluconate was complete and stoichiometric in cell-free extracts and cell-free extracts of glucose grown cells were shown to be incapable of metabolizing 2-ketogluconate.
It was shown that whole cells completely degraded 2-ketogluconate and quantitatively accumulated pyruvic acid in the presence of specific inhibitors. The initial step involved in 2-ketogluconate dissimilation was found to be exceptionally labile to the effects of a variety of metabolic inhibitors.
The metabolism of 2-ketogluconate was demonstrated to involve the initial phosphorylation with adenosine triphosphate
(ATP) as the phosphate donor. The resultant intermediate, 2-keto-6-phosphogluconate, was identified and was shown to undergo reduction by a nicotinamide adenine dinucleotide phosphate linked reductase to 6-phosphogluconate which, in turn, was metabolized to pyruvate by enzymes of the Entner-Doudoroff pathway.
Radioactivity from 2-ketogluconate-C¹⁴ was rapidly incorporated into cellular constituents, primarily protein, by washed cell suspensions of P. aeruginosa, but oxidation
of 2-ketogluconate did not involve the accumulation of keto-acid intermediates.
The role of 2-ketogluconic acid as a key intermediate
for the conservation of excess carbon under conditions where nitrogen is limiting was discussed.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-09-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0104693
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.