- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Estimation of error rates and fade distributions...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Estimation of error rates and fade distributions on a Rayleigh fading channel with additive white Gaussian noise Ng, Jimmy Hon-yuen
Abstract
Several characteristics of the Rayleigh fading channel are examined. A digital Rayleigh fading simulator is used to generate the (fading) signal envelope from which various statistics are derived. Based on the simulation results, a simple model is proposed in order to estimate the block error rate of a block of N data bits transmitted over the Rayleigh fading channel in the presence of additive white Gaussian noise. This model gives an average estimation error of about 4 % over the range of blocksizes N = 63, 127, 255, 511, 1023, 2047 (bits), average signal-to-noise ratios 70 = 5 to 35 (dB) and fading frequencies f[sub D] = 10 to 90 (Hz) corresponding to vehicle speeds of 8 to 71 MPH at a radio carrier frequency of 850 MHz. A second somewhat more complex model for estimating the block error rate is found to yield a lower average estimation error of 2.4 % over the same set of simulated data. The probability distributions of the fade rate and the fade duration are also examined. Empirical models are derived for the estimation of the probability mass function of the fade rate and the probability density function of the fade duration. These empirical models allow fairly accurate estimates without the need for cosdy and time-consuming simulations. The probability of m-bit errors in an N-bit block is an important parameter in the design of error-correcting codes for use on the mobile radio channel. However, such probabilities are difficult to determine without performing extensive simulation or field trials. An approach to estimate them empirically is proposed.
Item Metadata
Title |
Estimation of error rates and fade distributions on a Rayleigh fading channel with additive white Gaussian noise
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1986
|
Description |
Several characteristics of the Rayleigh fading channel are examined. A digital Rayleigh fading simulator is used to generate the (fading) signal envelope from which various statistics are derived.
Based on the simulation results, a simple model is proposed in order to estimate the block error rate of a block of N data bits transmitted over the Rayleigh fading channel in the presence of additive white Gaussian noise. This model gives an average estimation error of about 4 % over the range of blocksizes N = 63, 127, 255, 511, 1023, 2047 (bits), average signal-to-noise ratios 70 = 5 to 35 (dB) and fading frequencies f[sub D] = 10 to 90 (Hz) corresponding to vehicle speeds of 8 to 71 MPH at a radio carrier frequency of 850 MHz. A second somewhat more complex model for estimating the block error rate is found to yield a lower average estimation error of 2.4 % over the same set of simulated data.
The probability distributions of the fade rate and the fade duration are also examined. Empirical models are derived for the estimation of the probability mass function of the fade rate and the probability density function of the fade duration. These empirical models allow fairly accurate estimates without the need for cosdy and time-consuming simulations.
The probability of m-bit errors in an N-bit block is an important parameter in the design of error-correcting codes for use on the mobile radio channel. However, such probabilities are difficult to determine without performing extensive simulation or field trials. An approach to estimate them empirically is proposed.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-07-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0096917
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.