- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A deuterium NMR study of gramicidin A’
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A deuterium NMR study of gramicidin A’ Lyons, Michael James
Abstract
This thesis presents the results of the first application of a novel solid state nuclear magnetic resonance technique (K. P. Pauls et. al., Eur. Biophys. J. 11:1) to a naturally occuring membrane polypeptide. Deuterium NMR was used to study the structure and dynamics of hydrogen-exchanged gramicidin A', an ion channel, in model membranes. The technique exploits recently developed procedures for solvent-signal suppression (P. T. Callaghan et. al., J. Magn. Reson. 56:101), and "depakeing" powder spectra (E. Sternin, M.Sc. Thesis,U.B.C.). The spectra of gramicidin A' in crystalline form, and in the gel phase of the lipid bilayer are similar and indicate little molecular motion on the NMR timescale. In the liquid crystalline phase, however, the spectra suggest rapid uniaxial rotation of the gramicidin about the bilayer director. The frequencies of the liquid crystalline phase spectra were found to be independent of bilayer thickness, temperature, and the presence of sodium chloride, in the ranges investigated. The results are discussed in the context of the conduction properties of the gramicidin ion channel, other spectroscopic studies, and thecretical models of the structure and action of gramicidin.
Item Metadata
Title |
A deuterium NMR study of gramicidin A’
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1985
|
Description |
This thesis presents the results of the first application of a novel solid state nuclear magnetic resonance technique (K. P. Pauls et. al., Eur. Biophys. J. 11:1) to a naturally occuring membrane polypeptide. Deuterium NMR was used to study the structure and dynamics of hydrogen-exchanged gramicidin A', an ion channel, in model membranes. The technique exploits recently developed procedures for solvent-signal suppression (P. T. Callaghan et. al., J. Magn. Reson. 56:101), and "depakeing" powder spectra (E. Sternin, M.Sc. Thesis,U.B.C.). The spectra of gramicidin A' in crystalline form, and in the gel phase of the lipid bilayer are similar and indicate little molecular motion on the NMR timescale. In the liquid crystalline phase, however, the spectra suggest rapid uniaxial rotation of the gramicidin about the bilayer director. The frequencies of the liquid crystalline phase spectra were found to be independent of bilayer thickness, temperature, and the presence of sodium chloride, in the ranges investigated. The results are discussed in the context of the conduction properties of the gramicidin ion channel, other spectroscopic studies, and thecretical models of the structure and action of gramicidin.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-05-19
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0085224
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.