UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The discrete velocity method in plasma physics Irwin, Andrew J.

Abstract

The objective of this thesis is to apply a discrete velocity model to kinetic theory problems in plasma physics. Numerical approaches commonly used in kinetic theory are described and compared with the discrete velocity models. The discrete Boltzmann equation (DBE) is a commonly used discrete velocity method for problems in rarefied gas dynamics and is adapted for plasma physics in this thesis. The Boltzmann equation is used to model the relaxation to equilibrium of a pure electron plasma. The first of two problems studied is the relaxation of test particles in a Maxwellian bath. This is a linear version of the second problem and serves as a test experiment for the method and the computer code. The second problem is the nonlinear relaxation of an anisotropic velocity distribution of electrons due to self-collisions. This physical situation arises in many natural phenomena, such as atmospheric and space plasmas, as well as in many laboratory investigations. Pure electron plasmas have been the subject of many experiments, including studies of time dependent transport properties and studies of the relaxation of anisotropic velocity distributions. The Fokker-Planck and Boltzmann equations are commonly used as the theoretical starting point for studies of plasmas.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.