UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Local and overall buckling of thin-walled beams and columns using finite elements Toneff, Janine Diana

Abstract

Steel members with open thin-walled cross sections are used extensively in civil engineering structures. In addition to overall instability, (Euler buckling, torsional buckling, lateral-torsional buckling, etc.), the thin plates making up the cross section may themselves be susceptible to local plate buckling. The possible interaction of these two modes of buckling and its effect on member stability and strength is therefore of interest in the analysis of such members. The purpose of this thesis is to develop a tool for this type of analysis by adapting a finite element for a thin-walled beam-column of arbitrary cross section to include 'local' degrees of freedom to allow for cross section distortion. The formulation will involve geometric nonlinearities due to large displacements and rotations, but material behaviour will be limited to the linear elastic case.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.