- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Local and overall buckling of thin-walled beams and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Local and overall buckling of thin-walled beams and columns using finite elements Toneff, Janine Diana
Abstract
Steel members with open thin-walled cross sections are used extensively in civil engineering structures. In addition to overall instability, (Euler buckling, torsional buckling, lateral-torsional buckling, etc.), the thin plates making up the cross section may themselves be susceptible to local plate buckling. The possible interaction of these two modes of buckling and its effect on member stability and strength is therefore of interest in the analysis of such members. The purpose of this thesis is to develop a tool for this type of analysis by adapting a finite element for a thin-walled beam-column of arbitrary cross section to include 'local' degrees of freedom to allow for cross section distortion. The formulation will involve geometric nonlinearities due to large displacements and rotations, but material behaviour will be limited to the linear elastic case.
Item Metadata
Title |
Local and overall buckling of thin-walled beams and columns using finite elements
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1986
|
Description |
Steel members with open thin-walled cross sections are used extensively in civil engineering structures. In addition to overall instability, (Euler buckling, torsional buckling, lateral-torsional buckling, etc.), the thin plates making up the cross section may themselves be susceptible to local plate buckling. The possible interaction of these two modes of buckling and its effect on member stability and strength is therefore of interest in the analysis of such members. The purpose of this thesis is to develop a tool for this type of analysis by adapting a finite element for a thin-walled beam-column of arbitrary cross section to include 'local' degrees of freedom to allow for cross section distortion. The formulation will involve geometric nonlinearities due to large displacements and rotations, but material behaviour will be limited to the linear elastic case.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-07-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0062925
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.