UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A fast heuristic for finding the minimum weight triangulation Beirouti, Ronald

Abstract

No polynomial time algorithm is known to compute the minimum weight triangulation (MWT) of a point set. In this thesis we present an efficient implementation of the LMTskeleton heuristic. This heuristic computes a subgraph of the MWT of a point set from which the MWT can usually be completed. For uniformly distributed sets of tens of thousands of points our algorithm constructs the exact MWT in expected linear time and space. A fast heuristic, other than being usefull in areas such as stock cutting, finite element analysis, and terrain modeling, allows to experiment with different point sets in order to explore the complexity of the MWT problem. We present point sets constructed with this implementation such that the LMT-skeleton heuristic does not produce a complete graph and can not compute the MWT in polynomial time, or that can be used to prove the NP-Hardness of the MWT problem.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.