UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Impact of air pollution on exercise responses, dyspnea, and respiratory health in adults with and without chronic obstructive pulmonary disease Syed, Nafeez

Abstract

Problem: Little is known about which demographic and pulmonary function characteristics are associated with exertional dyspnea and whether or not acute exposure to traffic-related air pollution (TRAP) impacts dyspnea, pulmonary function, and exercise responses in older adults with and without chronic obstructive pulmonary disease (COPD). Methods: Study 1: We investigated the association between exertional dyspnea and select outcome measures in a random population sample (n=844) of healthy controls, at-risk smokers, and COPD (Chapter 2). Study 2: We investigated the acute effects of TRAP versus filtered air on a wide range of outcomes in healthy controls (n=11) and ex-smokers with (n=9) or without (n=9) mild-to-moderate COPD. Data from study 2 was divided into three chapters. Study 3: The association between short-term increases in ambient air pollution with rescue inhaler use, sleep duration, and physical activity was tested in COPD using remote monitoring technology (RMT) (Chapter 6). Results: Study 1 demonstrated that exertional dyspnea is significantly associated with sex, forced expiratory volume in 1 second, COPD Assessment Test score, and Medical Research Council Dyspnea score, but not lung diffusion capacity for carbon monoxide in healthy individuals, at-risk smokers, and COPD (Chapter 2). Study 2 showed that TRAP did not affect routine measures of pulmonary function in any group (Chapter 3) or impulse oscillometry-derived data, except total airway resistance at 5Hz (R₅) in healthy never smokers (Chapter 4). TRAP had a deleterious effect on exercise endurance, absolute operating lung volumes, and exertional dyspnea in healthy controls but not in ex-smokers with and without COPD (Chapter 5). Lastly, in Study 3 we showed that RMT could be useful to track inhaler use, sleep, and physical activity during periods of increased ambient air pollution in COPD (Chapter 6). Conclusion: This thesis demonstrates that exertional dyspnea is associated with disease severity and burden in COPD and that TRAP negatively impacts dyspnea, exercise endurance, and select ventilatory responses in healthy older adults but not ex-smokers with and without COPD. We also demonstrated that RMT can be useful for monitoring inhaler use, sleep, and physical activity in individuals with COPD during periods of increased air pollution.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International