- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Incidence networks for Geometric Deep Learning
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Incidence networks for Geometric Deep Learning Albooyeh, Marjan
Abstract
Sparse incidence tensors can represent a variety of structured data. For example, we may represent attributed graphs using their node-node, node-edge, or edge-edge incidence matrices. In higher dimensions, incidence tensors can represent simplicial complexes and polytopes. In this work, we formalize incidence tensors, analyze their structure, and present the family of equivariant networks that operate on them. We show that any incidence tensor decomposes into invariant subsets. This decomposition, in turn, leads to a decomposition of the corresponding equivariant layer that allows efficient and intuitive pooling-and-broadcasting implementation, for both dense and sparse tensors. We demonstrate the effectiveness of this family of networks by reporting state-of-the-art on graph learning tasks for many targets in the QM9 dataset.
Item Metadata
Title |
Incidence networks for Geometric Deep Learning
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2019
|
Description |
Sparse incidence tensors can represent a variety of structured data. For example, we may represent attributed graphs using their node-node, node-edge, or edge-edge incidence matrices. In higher dimensions, incidence tensors can represent simplicial complexes and polytopes. In this work, we formalize incidence tensors, analyze their structure, and present the family of equivariant networks that operate on them. We show that any incidence tensor decomposes into invariant subsets. This decomposition, in turn, leads to a decomposition of the corresponding equivariant layer that allows efficient and intuitive pooling-and-broadcasting implementation, for both dense and sparse tensors. We demonstrate the effectiveness of this family of networks by reporting state-of-the-art on graph learning tasks for many targets in the QM9 dataset.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-10-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0384585
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2019-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International